Search Results

Search found 38690 results on 1548 pages for 'try catch throw'.

Page 478/1548 | < Previous Page | 474 475 476 477 478 479 480 481 482 483 484 485  | Next Page >

  • Error while installing GNU Octave packages

    - by carllacan
    I want to install the GNU Octave optim package, but I keep receiving errors in the process. Apparently I need to install some other packages first, one of which is the general package. However, when I try to, I receive this error: octave:17> pkg install general-1.3.2.tar.gz make: /usr/bin/mkoctfile: Command not found make: *** [__exit__.oct] Error 127 'make' returned the following error: make: Entering directory `/tmp/oct-CGIPo9/general/src' /usr/bin/mkoctfile __exit__.cc make: Leaving directory `/tmp/oct-CGIPo9/general/src' error: called from `pkg>configure_make' in file /usr/share/octave/3.6.1/m/pkg/pkg.m near line 1391, column 9 error: called from: error: /usr/share/octave/3.6.1/m/pkg/pkg.m at line 834, column 5 error: /usr/share/octave/3.6.1/m/pkg/pkg.m at line 383, column 9

    Read the article

  • FBX SDK Not Converting Child Node Coordinate Systems

    - by Al Bundy
    I am trying to import a scene into my application from an fbx file. In 3DS Max, the scene and it’s local translations are as follows: Root (0, 0, 0) '-Sphere001 (-15, 30, 0) ' '-Sphere002 (-2, -30, 0) ' '-Sphere003 (-30, -20, 0) '-Cube001 (35, -15, 0) This is the code that I am using to get the translations of each node: FbxDouble3 fbxPosition = pChild->LclTranslation.Get(); FbxDouble3 fbxRotation = pChild->LclRotation.Get(); FbxDouble3 fbxScale = pChild->LclScaling.Get(); When I try to import the scene, the first node from the scene is getting converted to a right handed system, using this conversion: (X, Z, -Y), but none of their child nodes are. after importing the scene, the local translations I get are as follows: Root (0, 0, 0) --Sphere001 (-15, 0, -30) - converted ----Sphere002 (-2, -30, 0) - not converted ------Sphere003 (-30, -20, 0) - not converted --Cube001 (35, 0, 15) - converted Can anybody help me make sense of this? Thanks

    Read the article

  • Can't add more than eight keyboard layouts

    - by Woofi Alakhi
    I read this article where is a workaround to add maximum eight keyboard layouts. But my questions are: I would like to try this, but I see they've written there something with "gnome" in the script. In my Ubuntu, 13.04, I have Unity. What do I do? I would have to do this for four x four keyboard layouts (to have 13 keyboard layouts). This script, however, is designed for two x four keyboard layouts. How do I get the four x four? I would really appreciate your tips and hints on this. And I would kindly ask you to keep it simple, if possible, because I'm really no expert in both Ubuntu and computers in general.

    Read the article

  • How to boot Ubuntu 12.04-64bit from a USB from Compaq CQ58

    - by user208092
    I try to boot Ubuntu 12.04, 64-bit on my Compaq CQ58 laptop from a USB but it is not working. I've correctly installed the Ubuntu on my pen drive following the instructions on Ubuntu website. (http://www.ubuntu.com/download/desktop/create-a-usb-stick-on-windows) These are my BIOS settings: Post Hotkey Delay (sec) <0 CD-ROM Boot Internal Network Adapter Boot Network Boot Protocol Legacy Support Secure Boot Platform Key Enrolled Pending Action None Clear All Secure Boot UEFI Boot Order: USB Diskette on Key/USB Hard Disk OS Boot Manager Internal CD/DVD ROM Drive ! Network Adapter With these settings when i restart my computer what shows up is: Boot Device Not Found. This is what I get on the Boot Manager: Boot Option Menu OS boot Manager Boot From EFI File (Arrow Up) and (Arrow Down) to change option, ENTER to select an option. Press F10 to BIOS Setup Options, ESC to exit. PLEASE HELP... P.S. My laptop has windows 8

    Read the article

  • Which mailx package should I install for Nagios?

    - by user1196
    I'm following the Nagios Ubuntu quickstart instructions. I'm on Ubuntu 10.10 and installing Nagios 3.2.3. At the bottom of the docs it says I need to install the mailx and postfix packages. (Postfix is already installed.) But when I try to install mailx, I get asked which of 3 packages to install: $ sudo apt-get install mailx [sudo] password for nagios: Reading package lists... Done Building dependency tree Reading state information... Done Package mailx is a virtual package provided by: mailutils 1:2.1+dfsg1-4ubuntu1 heirloom-mailx 12.4-1.1 bsd-mailx 8.1.2-0.20090911cvs-2ubuntu1 You should explicitly select one to install. E: Package mailx has no installation candidate Which one should I install?

    Read the article

  • add-apt-repository not working UbuntuGnome 12.10

    - by nickcannariato
    When I try to add a ppa using the command: sudo add-apt-repository [insert ppa] the output I get is: Error in sitecustomize; set PYTHONVERBOSE for traceback: EOFError: EOF read where not expected Traceback (most recent call last): File "/usr/bin/add-apt-repository", line 3, in <module> from __future__ import print_function EOFError: EOF read where not expected This is the desktop version. It's a clean install and I didn't get any log errors on install. I haven't added or removed any python versions. Can someone set me straight on how to fix this?

    Read the article

  • How can I login to lightdm with password for fingerprint-enabled user after 12.10 upgrade?

    - by jxn
    Sorry for the long question. I have a laptop with ubuntu quantal 12.10, a fingerprint scanner, and a few active user accounts. When the machine boots up to lightdm, I get a prompt toenter my password or scan my finger print. Every now and then, fingerprint scanning just doesn't seem to work. Before the 12.10 upgrade, I was always able to enter my password for this user when fingerprint failed. Now, no matter what, I have to scan my prints to login as this user. If I try to login as a different user (fingerprint is not enabled for any others), I can see the password is typed out -- asterisks show in the password input box as I type them -- and get in. Not so for the fingerprint user. Any clues on how to figure out what's gone wrong?

    Read the article

  • Estimating time for planning and technical design using Evidence Based Scheduling

    - by Turgs
    I'm at the beginning of a development project in a large organization. The Functional Requirements are currently being worked out and documented with our business stakeholders by our Enterprise Design department. I'm required to produce Technical Design Documents and manage the team to actually build the solution. I'm wanting to try Evidence Based Scheduling, but as I understand, part of that is breaking the job down into small tasks that are less than 14 hours in duration, which requires me to have already done the Technical Design. Therefore, can Evidence Based Scheduling only be used after the Technical Design has been done? How do you then plan and estimate the time it may take to come up with the Technical Design?

    Read the article

  • New Wordpress posts generate 404 error.

    - by Steve
    I had a working installation of WordPress, and I recently encountered an issue where when I tried to login to the back-end, the browser would redirect to the login URL of the previous domain WordPress was installed on. I fixed this by reinstalling WordPress, and I can now login to the backend, but any new posts I make, or old posts I have generate 404 errors. Additionally, if I try to navigate to any category page, I again receive a 404 error. I have looked at the wp_posts table of my database, and the GUID field each contains the correct domain name and URL structure. What should I be checking here? Site in question.

    Read the article

  • Downloading specific video renditions in WebCenter Content

    - by Kyle Hatlestad
    I recently had a question come up on one of my previous blog articles about downloading a specific video rendition.  When accessing image renditions, you simply need to pass in the 'Rendition=<rendition name>' parameter on the GET_FILE service and it will be returned.  But when you try that with videos, you get the error message, "Unable to download '<Content ID>'. The rendition or attachment '<Rendition Name>' could not be found in the list manifest of the revision with internal revision ID '<dID>'. [Read More] 

    Read the article

  • Meet Peter, 80 years old today

    - by AdamRG
    You have to arrive at the office early in the morning to meet Peter. He arrives at 5am and by 8:30am he's gone. Peter has been a cleaner here for several years. He is 80 years old today. Peter was born only a couple of km from our office in Cambridge, England and was for many years an Engineer for Pye Electronics. I'm lucky enough to arrive in the office early enough to catch Peter, dressed smarter than most of us in shirt and tie, and he tells stories of how Cambridge was years ago. He says the site of our office is on land between what would have been a prisoner of war camp (camp 1025), and a few hundred metres North, a camp of American allies. In February 1944, Peter was 13 years old. One night, a Dornier Do 217 heavy bomber heading towards London was hit by anti-aircraft fire and the crew of four parachuted from the plane. The plane however, continued on autopilot for over 50km. Gradually dropping lower and lower, narrowly missing the spires of Cambridge, it eventually came to land, largely intact, in allotment gardens by Peter's house near Milton Road. He told me that he was quick to the scene, along with some other young lads, and grabbed parts of the plane as souvenirs. It's one of many tales that Peter recounts, but I happened to discover a chapter about this particular plane crash in a history book called the War Torn Skies of Great Britain by Julian Evan-Hart. It reads: 'It slid to a halt in the allotment gardens of Milton Road. The cockpit ended up crumpled against a wooden fence and several incendiary bombs that had broken loose from their containers in the ruptured bomb bay were strewn over the ground behind the Dornier.' I smiled when I read the following line: 'Many residents came to see the Dornier in the allotments. Several lads made off with souvenirs' It seems a young Peter has been captured in print! For his birthday, among other things, we gave him a copy of the book. Working for a software company and rushing headlong through the 21st century, it's easy to forget even our recent history, or what feet stood on the same ground before us. That aircraft crashed only 700 metres from where our office now stands. The disused and overgrown railway line that runs down the side of the office closed to passengers 30 years ago. The industrial estate the other side was the site of a farm, Trinity Hall Farm, as recently as 60 years ago. Roman rings and Palaeolithic handaxes have been unearthed nearby. I suppose Peter will be one of the last people I'll ever hear talking first-hand about Cambridge during the war. It's a privilege to know him. Happy birthday Peter.

    Read the article

  • Big Data – Operational Databases Supporting Big Data – RDBMS and NoSQL – Day 12 of 21

    - by Pinal Dave
    In yesterday’s blog post we learned the importance of the Cloud in the Big Data Story. In this article we will understand the role of Operational Databases Supporting Big Data Story. Even though we keep on talking about Big Data architecture, it is extremely crucial to understand that Big Data system can’t just exist in the isolation of itself. There are many needs of the business can only be fully filled with the help of the operational databases. Just having a system which can analysis big data may not solve every single data problem. Real World Example Think about this way, you are using Facebook and you have just updated your information about the current relationship status. In the next few seconds the same information is also reflected in the timeline of your partner as well as a few of the immediate friends. After a while you will notice that the same information is now also available to your remote friends. Later on when someone searches for all the relationship changes with their friends your change of the relationship will also show up in the same list. Now here is the question – do you think Big Data architecture is doing every single of these changes? Do you think that the immediate reflection of your relationship changes with your family member is also because of the technology used in Big Data. Actually the answer is Facebook uses MySQL to do various updates in the timeline as well as various events we do on their homepage. It is really difficult to part from the operational databases in any real world business. Now we will see a few of the examples of the operational databases. Relational Databases (This blog post) NoSQL Databases (This blog post) Key-Value Pair Databases (Tomorrow’s post) Document Databases (Tomorrow’s post) Columnar Databases (The Day After’s post) Graph Databases (The Day After’s post) Spatial Databases (The Day After’s post) Relational Databases We have earlier discussed about the RDBMS role in the Big Data’s story in detail so we will not cover it extensively over here. Relational Database is pretty much everywhere in most of the businesses which are here for many years. The importance and existence of the relational database are always going to be there as long as there are meaningful structured data around. There are many different kinds of relational databases for example Oracle, SQL Server, MySQL and many others. If you are looking for Open Source and widely accepted database, I suggest to try MySQL as that has been very popular in the last few years. I also suggest you to try out PostgreSQL as well. Besides many other essential qualities PostgreeSQL have very interesting licensing policies. PostgreSQL licenses allow modifications and distribution of the application in open or closed (source) form. One can make any modifications and can keep it private as well as well contribute to the community. I believe this one quality makes it much more interesting to use as well it will play very important role in future. Nonrelational Databases (NOSQL) We have also covered Nonrelational Dabases in earlier blog posts. NoSQL actually stands for Not Only SQL Databases. There are plenty of NoSQL databases out in the market and selecting the right one is always very challenging. Here are few of the properties which are very essential to consider when selecting the right NoSQL database for operational purpose. Data and Query Model Persistence of Data and Design Eventual Consistency Scalability Though above all of the properties are interesting to have in any NoSQL database but the one which most attracts to me is Eventual Consistency. Eventual Consistency RDBMS uses ACID (Atomicity, Consistency, Isolation, Durability) as a key mechanism for ensuring the data consistency, whereas NonRelational DBMS uses BASE for the same purpose. Base stands for Basically Available, Soft state and Eventual consistency. Eventual consistency is widely deployed in distributed systems. It is a consistency model used in distributed computing which expects unexpected often. In large distributed system, there are always various nodes joining and various nodes being removed as they are often using commodity servers. This happens either intentionally or accidentally. Even though one or more nodes are down, it is expected that entire system still functions normally. Applications should be able to do various updates as well as retrieval of the data successfully without any issue. Additionally, this also means that system is expected to return the same updated data anytime from all the functioning nodes. Irrespective of when any node is joining the system, if it is marked to hold some data it should contain the same updated data eventually. As per Wikipedia - Eventual consistency is a consistency model used in distributed computing that informally guarantees that, if no new updates are made to a given data item, eventually all accesses to that item will return the last updated value. In other words -  Informally, if no additional updates are made to a given data item, all reads to that item will eventually return the same value. Tomorrow In tomorrow’s blog post we will discuss about various other Operational Databases supporting Big Data. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Big Data, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL

    Read the article

  • Ubuntu 13.10 gives "Package 'libapache2-mod-auth-mysql' has no installation candidate" error

    - by John Crawford
    I'm trying to install my LAMP environment on Ubuntu 13.10 using my script file that can be found here. That script worked for Ubuntu 12.04, Ubuntu 13.04 but when I try it on Ubuntu 13.10 it gives the following error: E: Package 'libapache2-mod-auth-mysql' has no installation candidate Any idea on how to fix this? Note, I do want this package to be installed. EDIT: I've found out now that the reason this could not be installed was because it needed the following two packages that were missing: libmysqlclient16 and apache2.2-common. Do I just need to install these packages or were they removed for a reason?

    Read the article

  • Shadow mapping with deffered shading for directional lights - shadow map projection problem

    - by Harry
    I'm trying to implement shadow mapping to my engine. I started with directional lights because they seemed to be the easiest one, but I was wrong :) I have implemented deferred shading and I retrieve position from depth. I think that there is the biggest problem but code looks ok for me. Now more about problem: Shadow map projected onto meshes looks bad scaled and translated and also some informations from shadow map texture aren't visible. You can see it on this screen: http://img5.imageshack.us/img5/2254/93dn.png Yelow frustum is light frustum and I have mixed shadow map preview and actual scene. As you can see shadows are in wrong place and shadow of cone and sphere aren't visible. Could you look at my codes and tell me where I have a mistake? // create shadow map if(!_shd)glGenTextures(1, &_shd); glBindTexture(GL_TEXTURE_2D, _shd); glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, 1024, 1024, 0, GL_DEPTH_COMPONENT, GL_FLOAT,NULL); // shadow map size glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, _shd, 0); glDrawBuffer(GL_NONE); // setting camera Vector dire=Vector(0,0,1); ACamera.setLookAt(dire,Vector(0)); ACamera.setPerspectiveView(60.0f,1,0.1f,10.0f); // currently needed for proper frustum corners calculation Vector min(ACamera._point[0]),max(ACamera._point[0]); for(int i=0;i<8;i++){ max=Max(max,ACamera._point[i]); min=Min(min,ACamera._point[i]); } ACamera.setOrthogonalView(min.x,max.x,min.y,max.y,-max.z,-min.z); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, _s_buffer); // framebuffer for shadow map // rendering to depth buffer glBindFramebuffer(GL_DRAW_FRAMEBUFFER, _g_buffer); Shaders["DirLight"].set(true); Matrix4 bias; bias.x.set(0.5,0.0,0.0,0.0); bias.y.set(0.0,0.5,0.0,0.0); bias.z.set(0.0,0.0,0.5,0.0); bias.w.set(0.5,0.5,0.5,1.0); Shaders["DirLight"].set("textureMatrix",ACamera.matrix*Projection3D*bias); // order of multiplications are 100% correct, everything gives mi the same result as using glm glActiveTexture(GL_TEXTURE5); glBindTexture(GL_TEXTURE_2D,_shd); lightDir(dir); // light calculations Vertex Shader makes nothing related to shadow calculatons Pixel shader function which calculates if pixel is in shadow or not: float readShadowMap(vec3 eyeDir) { // retrieve depth of pixel float z = texture2D(depth, gl_FragCoord.xy/screen).z; vec3 pos = vec3(gl_FragCoord.xy/screen, z); // transform by the projection and view inverse vec4 worldSpace = inverse(View)*inverse(ProjectionMatrix)*vec4(pos*2-1,1); worldSpace /= worldSpace.w; vec4 coord=textureMatrix*worldSpace; float vis=1.0f; if(texture2D(shadow, coord.xy).z < coord.z-0.001)vis=0.2f; return vis; } I also have question about shadows specifically for directional light. Currently I always look at 0,0,0 position and in further implementation I have to move light frustum along to camera frustum. I've found how to do this here: http://www.gamedev.net/topic/505893-orthographic-projection-for-shadow-mapping/ but it doesn't give me what I want. Maybe because of problems mentioned above, but I want know your opinion. EDIT: vec4 worldSpace is position read from depht of the scene (not shadow map). Maybe I wasn't precise so I'll try quick explain what is what: View is camera view matrix, ProjectionMatrix is camera projection,. First I try to get world space position from depth map and then multiply it by textureMatrix which is light view *light projection*bias. Rest of code is the same as in many tutorials. I can't use vertex shader to make something like gl_Position=textureMatrix*gl_Vertex and get it interpolated in fragment shader because of deffered rendering use so I want get it from depht buffer. EDIT2: I also tried make it as in Coding Labs tutorial about Shadow Mapping with Deferred Rendering but unfortunately this either works wrong.

    Read the article

  • What can Haskell's type system do that Java's can't and vice versa?

    - by Matt Fenwick
    I was talking to a friend about the differences between the type systems of Haskell and Java. He asked me what Haskell's could do that Java's couldn't, and I realized that I didn't know. After thinking for a while, I came up with a very short list of minor differences. Not being heavy into type theory, I'm left wondering whether they're formally equivalent. To try and keep this from becoming a subjective question, I'm asking: what are the major, non-syntactical differences between their type systems? I realize some things are easier/harder in one than in the other, and I'm not interested in talking about those. And to make it more specific, let's ignore Haskell type extensions since there's so many out there that do all kinds of crazy/cool stuff.

    Read the article

  • Oracle Optimized Solutions at Oracle OpenWorld 2012

    - by ferhatSF
    Have you registered for Oracle OpenWorld 2012 in San Francisco from September 30 to October 4? Visit the Oracle OpenWorld 2012 site today for registration and more information. Come join us to hear how Oracle Optimized Solutions can help you save money, reduce integration risks, and improve user productivity. Oracle Optimized Solutions are designed, pre-tested, tuned and fully documented architectures for optimal performance and availability. They provide written guidelines to help size, configure, purchase and deploy enterprise solutions that address common IT problems. Built with flexibility in mind, Oracle Optimized Solutions can be deployed as complete solutions or easily tailored to meet your specific needs - they are proven to save money, reduce integration risks and improve user productivity. Here is a preview of the planned Oracle OpenWorld sessions(*) on Oracle Optimized Solutions. October 1, 2012 Monday Time Session ID Title Location 12:15 PM CON7916 Accelerate Oracle E-Business Suite Deployment with SPARC SuperCluster Moscone West - 2001 03:15 PM GEN9691 General Session: Accelerate Your Business with the Oracle Hardware Advantage Moscone North - Hall D 04:45 PM CON4821 Building a Flexible Enterprise Cloud Infrastructure on Oracle SPARC Systems Moscone West - 2001 October 2, 2012 Tuesday Time Session ID Title Location 10:15 AM CON4561 Backup-and-Recovery Best Practices with Oracle Engineered Systems Products Moscone South - 252 11:45 AM CON3851 Optimizing JD Edwards EnterpriseOne on SPARC T4 Servers for Best Performance Moscone West - 2000 01:15 PM GEN11472 General Session: Breakthrough Efficiency in Private Cloud Infrastructure Moscone West - 3014 01:15 PM CON4600 Extreme Storage Scale and Efficiency: Lessons from a 100,000-Person Organization Moscone South - 252 05:00 PM CON9465 Next-Generation Directory: Oracle Unified Directory Moscone West - 3008 05:00 PM CON4088 Accelerate Your SAP Landscape with the Oracle SPARC SuperCluster Moscone West - 2001 05:00 PM CON7743 High-Performance Security for Oracle Applications Using SPARC T4 Systems Moscone West - 2000 05:00 PM CON3857 Archive Strategies for 100 Percent Data Availability Moscone South - 270 October 3, 2012 Wednesday Time Session ID Title Location 10:15 AM CON6528 Configure Oracle Hybrid Columnar Compression to Optimize Query Database Performance up to 10x Moscone South - 252 11:45 AM CON2590 Breakthrough in Private Cloud Management on SPARC T-Series Servers Moscone South - 270 01:15 PM CON4289 Oracle Optimized Solution for Siebel CRM at ACCOR Moscone West - 2000 05:00 PM CON7570 Improve PeopleSoft HCM Performance and Reliability with SPARC SuperCluster Moscone South - 252 * Schedule subject to change In addition, there will be Oracle Optimized Solutions Hands-On-Labs sessions planned. Please enroll ahead of time as space is limited: Oracle Optimized Solutions: Hands on Labs in Oracle OpenWorld Place: Marriott Marquis - Salon 14/15 Date and Time Session ID Title Monday October 1, 2012 01:45 PM HOL9868 Enterprise Cloud Infrastructure for SPARC with Oracle Enterprise Manager Ops Center 12c Monday October 1, 2012 03:15 PM HOL9907 Oracle Virtual Desktop Infrastructure Performance and Tablet Mobility Wednesday October 3, 2012 05:00 PM HOL9870 x86 Enterprise Cloud Infrastructure with Oracle VM 3.x and Sun ZFS Storage Appliance Thursday October 4, 2012 11:15 AM HOL9869 0 to Database Backup and Recovery in 60 Minutes Oracle Optimized Solutions executives and experts will also be at hand for discussions and follow ups. And don’t forget to catch live demonstrations of our complete Oracle Optimized Solutions while at Oracle OpenWorld 2012 in San Francisco. We recommend the use of the Schedule Builder tool to plan your visit to the conference and for pre-enrollment in sessions of your interest. We hope to see you there!

    Read the article

  • Mobile game production workflow using Html5 and visual studio

    - by Mihalis Bagos
    I want to know of any framework, that lets you build/test applications inside Visual Studio using Html5/JS. We need to be able to have an emulator (like the one on android sdk) for as many devices as possible, and we need to be able to run the application with as few steps as possible (using the "RUN" command in visual studio is no1 choice). Also, this extends to build and deployment to app stores. Is there a way to circumvent the cloud services and build locally? I am at a loss of the plethora of tools and technologies available for game design using Html5. However, I really don't like the way implementations try to get you to rely on their cloud services, so services like appmobi are at the bottom of the favored list.

    Read the article

  • Choosing 3D modeling software Maya or 3D max?

    - by Kenneth J
    I've am a developer whose has spent most of my programming life developing web and business applications. I want to try my hand at something more challenging (but stay in the comfort of Visual Studio) ...perhaps XNA. Want 3D modeling software would be best for someone developing XNA? I have played with 3d MAX and Maya but never really did anything too involved. What are the pros and cons between them (in terms of game development)? Does one win out over the other for game development? Or is it pretty much just preference? I am new to game development and just trying to figure out the best tools to use before I really started. Any advice or other suggections would be greatly appreciated.

    Read the article

  • Did You Know? What settings to always change

    - by Kalen Delaney
    A week ago, I taught my SQL Server 2012 Internals class to a great group of very interactive students. Even though a dozen of them were taking the class remotely, there were still lots of really great questions and and lots of discussion. One of the students asked if I could summarize all the settings that I recommended changing from the default, right out of the box. I said I’d try to put a list together by the end of the week, but I didn’t make it. So I said I would put it together and blog it....(read more)

    Read the article

  • .NET Security Part 3

    - by Simon Cooper
    You write a security-related application that allows addins to be used. These addins (as dlls) can be downloaded from anywhere, and, if allowed to run full-trust, could open a security hole in your application. So you want to restrict what the addin dlls can do, using a sandboxed appdomain, as explained in my previous posts. But there needs to be an interaction between the code running in the sandbox and the code that created the sandbox, so the sandboxed code can control or react to things that happen in the controlling application. Sandboxed code needs to be able to call code outside the sandbox. Now, there are various methods of allowing cross-appdomain calls, the two main ones being .NET Remoting with MarshalByRefObject, and WCF named pipes. I’m not going to cover the details of setting up such mechanisms here, or which you should choose for your specific situation; there are plenty of blogs and tutorials covering such issues elsewhere. What I’m going to concentrate on here is the more general problem of running fully-trusted code within a sandbox, which is required in most methods of app-domain communication and control. Defining assemblies as fully-trusted In my last post, I mentioned that when you create a sandboxed appdomain, you can pass in a list of assembly strongnames that run as full-trust within the appdomain: // get the Assembly object for the assembly Assembly assemblyWithApi = ... // get the StrongName from the assembly's collection of evidence StrongName apiStrongName = assemblyWithApi.Evidence.GetHostEvidence<StrongName>(); // create the sandbox AppDomain sandbox = AppDomain.CreateDomain( "Sandbox", null, appDomainSetup, restrictedPerms, apiStrongName); Any assembly that is loaded into the sandbox with a strong name the same as one in the list of full-trust strong names is unconditionally given full-trust permissions within the sandbox, irregardless of permissions and sandbox setup. This is very powerful! You should only use this for assemblies that you trust as much as the code creating the sandbox. So now you have a class that you want the sandboxed code to call: // within assemblyWithApi public class MyApi { public static void MethodToDoThings() { ... } } // within the sandboxed dll public class UntrustedSandboxedClass { public void DodgyMethod() { ... MyApi.MethodToDoThings(); ... } } However, if you try to do this, you get quite an ugly exception: MethodAccessException: Attempt by security transparent method ‘UntrustedSandboxedClass.DodgyMethod()’ to access security critical method ‘MyApi.MethodToDoThings()’ failed. Security transparency, which I covered in my first post in the series, has entered the picture. Partially-trusted code runs at the Transparent security level, fully-trusted code runs at the Critical security level, and Transparent code cannot under any circumstances call Critical code. Security transparency and AllowPartiallyTrustedCallersAttribute So the solution is easy, right? Make MethodToDoThings SafeCritical, then the transparent code running in the sandbox can call the api: [SecuritySafeCritical] public static void MethodToDoThings() { ... } However, this doesn’t solve the problem. When you try again, exactly the same exception is thrown; MethodToDoThings is still running as Critical code. What’s going on? By default, a fully-trusted assembly always runs Critical code, irregardless of any security attributes on its types and methods. This is because it may not have been designed in a secure way when called from transparent code – as we’ll see in the next post, it is easy to open a security hole despite all the security protections .NET 4 offers. When exposing an assembly to be called from partially-trusted code, the entire assembly needs a security audit to decide what should be transparent, safe critical, or critical, and close any potential security holes. This is where AllowPartiallyTrustedCallersAttribute (APTCA) comes in. Without this attribute, fully-trusted assemblies run Critical code, and partially-trusted assemblies run Transparent code. When this attribute is applied to an assembly, it confirms that the assembly has had a full security audit, and it is safe to be called from untrusted code. All code in that assembly runs as Transparent, but SecurityCriticalAttribute and SecuritySafeCriticalAttribute can be applied to individual types and methods to make those run at the Critical or SafeCritical levels, with all the restrictions that entails. So, to allow the sandboxed assembly to call the full-trust API assembly, simply add APCTA to the API assembly: [assembly: AllowPartiallyTrustedCallers] and everything works as you expect. The sandboxed dll can call your API dll, and from there communicate with the rest of the application. Conclusion That’s the basics of running a full-trust assembly in a sandboxed appdomain, and allowing a sandboxed assembly to access it. The key is AllowPartiallyTrustedCallersAttribute, which is what lets partially-trusted code call a fully-trusted assembly. However, an assembly with APTCA applied to it means that you have run a full security audit of every type and member in the assembly. If you don’t, then you could inadvertently open a security hole. I’ll be looking at ways this can happen in my next post.

    Read the article

  • Easy to use cross-platform 3D engines for C++ game development?

    - by davr
    I want to try my hand at writing a 3D game. However I don't want to start at such a low level of drawing individual triangles and writing my own 3D object loader and so on. I've heard of things like Irrlicht, Crystal Space 3D, and Cafu, but I don't have any experience with any of them. I'm looking for suggestions from people who have experience with these or other engines on which ones are well written, and are easy to get started using, without having to learn a ton of 3D math theory and how GPU's work internally.

    Read the article

  • rotating model around own Y-axis XNA

    - by ChocoMan
    I'm have trouble with my model rotating around it's own Y-axis. The model is a person. When I test my world, the model is loaded at a position of 0, 0, 0. When I rotate my model from there, the model rotates like normal. The problem comes AFTER I moved the model to a new position. If I move the the model forward, left, etc, then try to rotate it on it's own Y-Axis, the model will rotate, but still around the original position in a circular manner (think of yourself swing around on a rope, but always facing outward from the center). Does anyone know how to keep the center point of rotation updated?

    Read the article

  • Indicator-cpufreq does not work at 12.04 ¿infinite loop insaid?

    - by Juan
    Good night, i want to use indicator-cpufreq, but it is not possible, i think that when i start it, i get an infinite loop and it doesnt start I think i am doing it well, here you have a snapshoot when i try to start it http://i.stack.imgur.com/mvaYf.jpg But 6 or 7 minutes later, it continues at the same point, i have to stop it with Ctrl-c, and shows that: http://i.stack.imgur.com/Vi0pp.jpg It says:" Traceback (most recent call last): File "/usr/bin/indicator-cpufreq", line 82, in gtk.main() KeyboardInterrupt" I do not have idea of what do for fix that, i hope you can help me to do that Thanks for your time and sorry about my english

    Read the article

  • Getting a solid understanding of Linux fundamentals

    - by JoshEarl
    I'm delving into the Linux world again as a diversion from my Microsoft-centric day job, and every time I tackle a new project I find it a frustrating exercise in trial and error. One thing that I always try to do when learning something new is figure out what the big pieces are and how they work together. I haven't yet come across a resource that explains Linux at this level. Resources seem to be either aimed at the barely computer literate crowd (Linux doesn't bite. Promise!) or the just compile the kernel and make your own distro crowd. I'm looking for a "JavaScript: The Good Parts" type of road map that doesn't necessarily answer all my questions so much as help me understand what questions I need to be asking. Any suggestions?

    Read the article

  • Much Ado About Nothing: Stub Objects

    - by user9154181
    The Solaris 11 link-editor (ld) contains support for a new type of object that we call a stub object. A stub object is a shared object, built entirely from mapfiles, that supplies the same linking interface as the real object, while containing no code or data. Stub objects cannot be executed — the runtime linker will kill any process that attempts to load one. However, you can link to a stub object as a dependency, allowing the stub to act as a proxy for the real version of the object. You may well wonder if there is a point to producing an object that contains nothing but linking interface. As it turns out, stub objects are very useful for building large bodies of code such as Solaris. In the last year, we've had considerable success in applying them to one of our oldest and thorniest build problems. In this discussion, I will describe how we came to invent these objects, and how we apply them to building Solaris. This posting explains where the idea for stub objects came from, and details our long and twisty journey from hallway idea to standard link-editor feature. I expect that these details are mainly of interest to those who work on Solaris and its makefiles, those who have done so in the past, and those who work with other similar bodies of code. A subsequent posting will omit the history and background details, and instead discuss how to build and use stub objects. If you are mainly interested in what stub objects are, and don't care about the underlying software war stories, I encourage you to skip ahead. The Long Road To Stubs This all started for me with an email discussion in May of 2008, regarding a change request that was filed in 2002, entitled: 4631488 lib/Makefile is too patient: .WAITs should be reduced This CR encapsulates a number of cronic issues with Solaris builds: We build Solaris with a parallel make (dmake) that tries to build as much of the code base in parallel as possible. There is a lot of code to build, and we've long made use of parallelized builds to get the job done quicker. This is even more important in today's world of massively multicore hardware. Solaris contains a large number of executables and shared objects. Executables depend on shared objects, and shared objects can depend on each other. Before you can build an object, you need to ensure that the objects it needs have been built. This implies a need for serialization, which is in direct opposition to the desire to build everying in parallel. To accurately build objects in the right order requires an accurate set of make rules defining the things that depend on each other. This sounds simple, but the reality is quite complex. In practice, having programmers explicitly specify these dependencies is a losing strategy: It's really hard to get right. It's really easy to get it wrong and never know it because things build anyway. Even if you get it right, it won't stay that way, because dependencies between objects can change over time, and make cannot help you detect such drifing. You won't know that you got it wrong until the builds break. That can be a long time after the change that triggered the breakage happened, making it hard to connect the cause and the effect. Usually this happens just before a release, when the pressure is on, its hard to think calmly, and there is no time for deep fixes. As a poor compromise, the libraries in core Solaris were built using a set of grossly incomplete hand written rules, supplemented with a number of dmake .WAIT directives used to group the libraries into sets of non-interacting groups that can be built in parallel because we think they don't depend on each other. From time to time, someone will suggest that we could analyze the built objects themselves to determine their dependencies and then generate make rules based on those relationships. This is possible, but but there are complications that limit the usefulness of that approach: To analyze an object, you have to build it first. This is a classic chicken and egg scenario. You could analyze the results of a previous build, but then you're not necessarily going to get accurate rules for the current code. It should be possible to build the code without having a built workspace available. The analysis will take time, and remember that we're constantly trying to make builds faster, not slower. By definition, such an approach will always be approximate, and therefore only incremantally more accurate than the hand written rules described above. The hand written rules are fast and cheap, while this idea is slow and complex, so we stayed with the hand written approach. Solaris was built that way, essentially forever, because these are genuinely difficult problems that had no easy answer. The makefiles were full of build races in which the right outcomes happened reliably for years until a new machine or a change in build server workload upset the accidental balance of things. After figuring out what had happened, you'd mutter "How did that ever work?", add another incomplete and soon to be inaccurate make dependency rule to the system, and move on. This was not a satisfying solution, as we tend to be perfectionists in the Solaris group, but we didn't have a better answer. It worked well enough, approximately. And so it went for years. We needed a different approach — a new idea to cut the Gordian Knot. In that discussion from May 2008, my fellow linker-alien Rod Evans had the initial spark that lead us to a game changing series of realizations: The link-editor is used to link objects together, but it only uses the ELF metadata in the object, consisting of symbol tables, ELF versioning sections, and similar data. Notably, it does not look at, or understand, the machine code that makes an object useful at runtime. If you had an object that only contained the ELF metadata for a dependency, but not the code or data, the link-editor would find it equally useful for linking, and would never know the difference. Call it a stub object. In the core Solaris OS, we require all objects to be built with a link-editor mapfile that describes all of its publically available functions and data. Could we build a stub object using the mapfile for the real object? It ought to be very fast to build stub objects, as there are no input objects to process. Unlike the real object, stub objects would not actually require any dependencies, and so, all of the stubs for the entire system could be built in parallel. When building the real objects, one could link against the stub objects instead of the real dependencies. This means that all the real objects can be built built in parallel too, without any serialization. We could replace a system that requires perfect makefile rules with a system that requires no ordering rules whatsoever. The results would be considerably more robust. We immediately realized that this idea had potential, but also that there were many details to sort out, lots of work to do, and that perhaps it wouldn't really pan out. As is often the case, it would be necessary to do the work and see how it turned out. Following that conversation, I set about trying to build a stub object. We determined that a faithful stub has to do the following: Present the same set of global symbols, with the same ELF versioning, as the real object. Functions are simple — it suffices to have a symbol of the right type, possibly, but not necessarily, referencing a null function in its text segment. Copy relocations make data more complicated to stub. The possibility of a copy relocation means that when you create a stub, the data symbols must have the actual size of the real data. Any error in this will go uncaught at link time, and will cause tragic failures at runtime that are very hard to diagnose. For reasons too obscure to go into here, involving tentative symbols, it is also important that the data reside in bss, or not, matching its placement in the real object. If the real object has more than one symbol pointing at the same data item, we call these aliased symbols. All data symbols in the stub object must exhibit the same aliasing as the real object. We imagined the stub library feature working as follows: A command line option to ld tells it to produce a stub rather than a real object. In this mode, only mapfiles are examined, and any object or shared libraries on the command line are are ignored. The extra information needed (function or data, size, and bss details) would be added to the mapfile. When building the real object instead of the stub, the extra information for building stubs would be validated against the resulting object to ensure that they match. In exploring these ideas, I immediately run headfirst into the reality of the original mapfile syntax, a subject that I would later write about as The Problem(s) With Solaris SVR4 Link-Editor Mapfiles. The idea of extending that poor language was a non-starter. Until a better mapfile syntax became available, which seemed unlikely in 2008, the solution could not involve extentions to the mapfile syntax. Instead, we cooked up the idea (hack) of augmenting mapfiles with stylized comments that would carry the necessary information. A typical definition might look like: # DATA(i386) __iob 0x3c0 # DATA(amd64,sparcv9) __iob 0xa00 # DATA(sparc) __iob 0x140 iob; A further problem then became clear: If we can't extend the mapfile syntax, then there's no good way to extend ld with an option to produce stub objects, and to validate them against the real objects. The idea of having ld read comments in a mapfile and parse them for content is an unacceptable hack. The entire point of comments is that they are strictly for the human reader, and explicitly ignored by the tool. Taking all of these speed bumps into account, I made a new plan: A perl script reads the mapfiles, generates some small C glue code to produce empty functions and data definitions, compiles and links the stub object from the generated glue code, and then deletes the generated glue code. Another perl script used after both objects have been built, to compare the real and stub objects, using data from elfdump, and validate that they present the same linking interface. By June 2008, I had written the above, and generated a stub object for libc. It was a useful prototype process to go through, and it allowed me to explore the ideas at a deep level. Ultimately though, the result was unsatisfactory as a basis for real product. There were so many issues: The use of stylized comments were fine for a prototype, but not close to professional enough for shipping product. The idea of having to document and support it was a large concern. The ideal solution for stub objects really does involve having the link-editor accept the same arguments used to build the real object, augmented with a single extra command line option. Any other solution, such as our prototype script, will require makefiles to be modified in deeper ways to support building stubs, and so, will raise barriers to converting existing code. A validation script that rederives what the linker knew when it built an object will always be at a disadvantage relative to the actual linker that did the work. A stub object should be identifyable as such. In the prototype, there was no tag or other metadata that would let you know that they weren't real objects. Being able to identify a stub object in this way means that the file command can tell you what it is, and that the runtime linker can refuse to try and run a program that loads one. At that point, we needed to apply this prototype to building Solaris. As you might imagine, the task of modifying all the makefiles in the core Solaris code base in order to do this is a massive task, and not something you'd enter into lightly. The quality of the prototype just wasn't good enough to justify that sort of time commitment, so I tabled the project, putting it on my list of long term things to think about, and moved on to other work. It would sit there for a couple of years. Semi-coincidentally, one of the projects I tacked after that was to create a new mapfile syntax for the Solaris link-editor. We had wanted to do something about the old mapfile syntax for many years. Others before me had done some paper designs, and a great deal of thought had already gone into the features it should, and should not have, but for various reasons things had never moved beyond the idea stage. When I joined Sun in late 2005, I got involved in reviewing those things and thinking about the problem. Now in 2008, fresh from relearning for the Nth time why the old mapfile syntax was a huge impediment to linker progress, it seemed like the right time to tackle the mapfile issue. Paving the way for proper stub object support was not the driving force behind that effort, but I certainly had them in mind as I moved forward. The new mapfile syntax, which we call version 2, integrated into Nevada build snv_135 in in February 2010: 6916788 ld version 2 mapfile syntax PSARC/2009/688 Human readable and extensible ld mapfile syntax In order to prove that the new mapfile syntax was adequate for general purpose use, I had also done an overhaul of the ON consolidation to convert all mapfiles to use the new syntax, and put checks in place that would ensure that no use of the old syntax would creep back in. That work went back into snv_144 in June 2010: 6916796 OSnet mapfiles should use version 2 link-editor syntax That was a big putback, modifying 517 files, adding 18 new files, and removing 110 old ones. I would have done this putback anyway, as the work was already done, and the benefits of human readable syntax are obvious. However, among the justifications listed in CR 6916796 was this We anticipate adding additional features to the new mapfile language that will be applicable to ON, and which will require all sharable object mapfiles to use the new syntax. I never explained what those additional features were, and no one asked. It was premature to say so, but this was a reference to stub objects. By that point, I had already put together a working prototype link-editor with the necessary support for stub objects. I was pleased to find that building stubs was indeed very fast. On my desktop system (Ultra 24), an amd64 stub for libc can can be built in a fraction of a second: % ptime ld -64 -z stub -o stubs/libc.so.1 -G -hlibc.so.1 \ -ztext -zdefs -Bdirect ... real 0.019708910 user 0.010101680 sys 0.008528431 In order to go from prototype to integrated link-editor feature, I knew that I would need to prove that stub objects were valuable. And to do that, I knew that I'd have to switch the Solaris ON consolidation to use stub objects and evaluate the outcome. And in order to do that experiment, ON would first need to be converted to version 2 mapfiles. Sub-mission accomplished. Normally when you design a new feature, you can devise reasonably small tests to show it works, and then deploy it incrementally, letting it prove its value as it goes. The entire point of stub objects however was to demonstrate that they could be successfully applied to an extremely large and complex code base, and specifically to solve the Solaris build issues detailed above. There was no way to finesse the matter — in order to move ahead, I would have to successfully use stub objects to build the entire ON consolidation and demonstrate their value. In software, the need to boil the ocean can often be a warning sign that things are trending in the wrong direction. Conversely, sometimes progress demands that you build something large and new all at once. A big win, or a big loss — sometimes all you can do is try it and see what happens. And so, I spent some time staring at ON makefiles trying to get a handle on how things work, and how they'd have to change. It's a big and messy world, full of complex interactions, unspecified dependencies, special cases, and knowledge of arcane makefile features... ...and so, I backed away, put it down for a few months and did other work... ...until the fall, when I felt like it was time to stop thinking and pondering (some would say stalling) and get on with it. Without stubs, the following gives a simplified high level view of how Solaris is built: An initially empty directory known as the proto, and referenced via the ROOT makefile macro is established to receive the files that make up the Solaris distribution. A top level setup rule creates the proto area, and performs operations needed to initialize the workspace so that the main build operations can be launched, such as copying needed header files into the proto area. Parallel builds are launched to build the kernel (usr/src/uts), libraries (usr/src/lib), and commands. The install makefile target builds each item and delivers a copy to the proto area. All libraries and executables link against the objects previously installed in the proto, implying the need to synchronize the order in which things are built. Subsequent passes run lint, and do packaging. Given this structure, the additions to use stub objects are: A new second proto area is established, known as the stub proto and referenced via the STUBROOT makefile macro. The stub proto has the same structure as the real proto, but is used to hold stub objects. All files in the real proto are delivered as part of the Solaris product. In contrast, the stub proto is used to build the product, and then thrown away. A new target is added to library Makefiles called stub. This rule builds the stub objects. The ld command is designed so that you can build a stub object using the same ld command line you'd use to build the real object, with the addition of a single -z stub option. This means that the makefile rules for building the stub objects are very similar to those used to build the real objects, and many existing makefile definitions can be shared between them. A new target is added to the Makefiles called stubinstall which delivers the stub objects built by the stub rule into the stub proto. These rules reuse much of existing plumbing used by the existing install rule. The setup rule runs stubinstall over the entire lib subtree as part of its initialization. All libraries and executables link against the objects in the stub proto rather than the main proto, and can therefore be built in parallel without any synchronization. There was no small way to try this that would yield meaningful results. I would have to take a leap of faith and edit approximately 1850 makefiles and 300 mapfiles first, trusting that it would all work out. Once the editing was done, I'd type make and see what happened. This took about 6 weeks to do, and there were many dark days when I'd question the entire project, or struggle to understand some of the many twisted and complex situations I'd uncover in the makefiles. I even found a couple of new issues that required changes to the new stub object related code I'd added to ld. With a substantial amount of encouragement and help from some key people in the Solaris group, I eventually got the editing done and stub objects for the entire workspace built. I found that my desktop system could build all the stub objects in the workspace in roughly a minute. This was great news, as it meant that use of the feature is effectively free — no one was likely to notice or care about the cost of building them. After another week of typing make, fixing whatever failed, and doing it again, I succeeded in getting a complete build! The next step was to remove all of the make rules and .WAIT statements dedicated to controlling the order in which libraries under usr/src/lib are built. This came together pretty quickly, and after a few more speed bumps, I had a workspace that built cleanly and looked like something you might actually be able to integrate someday. This was a significant milestone, but there was still much left to do. I turned to doing full nightly builds. Every type of build (open, closed, OpenSolaris, export, domestic) had to be tried. Each type failed in a new and unique way, requiring some thinking and rework. As things came together, I became aware of things that could have been done better, simpler, or cleaner, and those things also required some rethinking, the seeking of wisdom from others, and some rework. After another couple of weeks, it was in close to final form. My focus turned towards the end game and integration. This was a huge workspace, and needed to go back soon, before changes in the gate would made merging increasingly difficult. At this point, I knew that the stub objects had greatly simplified the makefile logic and uncovered a number of race conditions, some of which had been there for years. I assumed that the builds were faster too, so I did some builds intended to quantify the speedup in build time that resulted from this approach. It had never occurred to me that there might not be one. And so, I was very surprised to find that the wall clock build times for a stock ON workspace were essentially identical to the times for my stub library enabled version! This is why it is important to always measure, and not just to assume. One can tell from first principles, based on all those removed dependency rules in the library makefile, that the stub object version of ON gives dmake considerably more opportunities to overlap library construction. Some hypothesis were proposed, and shot down: Could we have disabled dmakes parallel feature? No, a quick check showed things being build in parallel. It was suggested that we might be I/O bound, and so, the threads would be mostly idle. That's a plausible explanation, but system stats didn't really support it. Plus, the timing between the stub and non-stub cases were just too suspiciously identical. Are our machines already handling as much parallelism as they are capable of, and unable to exploit these additional opportunities? Once again, we didn't see the evidence to back this up. Eventually, a more plausible and obvious reason emerged: We build the libraries and commands (usr/src/lib, usr/src/cmd) in parallel with the kernel (usr/src/uts). The kernel is the long leg in that race, and so, wall clock measurements of build time are essentially showing how long it takes to build uts. Although it would have been nice to post a huge speedup immediately, we can take solace in knowing that stub objects simplify the makefiles and reduce the possibility of race conditions. The next step in reducing build time should be to find ways to reduce or overlap the uts part of the builds. When that leg of the build becomes shorter, then the increased parallelism in the libs and commands will pay additional dividends. Until then, we'll just have to settle for simpler and more robust. And so, I integrated the link-editor support for creating stub objects into snv_153 (November 2010) with 6993877 ld should produce stub objects PSARC/2010/397 ELF Stub Objects followed by the work to convert the ON consolidation in snv_161 (February 2011) with 7009826 OSnet should use stub objects 4631488 lib/Makefile is too patient: .WAITs should be reduced This was a huge putback, with 2108 modified files, 8 new files, and 2 removed files. Due to the size, I was allowed a window after snv_160 closed in which to do the putback. It went pretty smoothly for something this big, a few more preexisting race conditions would be discovered and addressed over the next few weeks, and things have been quiet since then. Conclusions and Looking Forward Solaris has been built with stub objects since February. The fact that developers no longer specify the order in which libraries are built has been a big success, and we've eliminated an entire class of build error. That's not to say that there are no build races left in the ON makefiles, but we've taken a substantial bite out of the problem while generally simplifying and improving things. The introduction of a stub proto area has also opened some interesting new possibilities for other build improvements. As this article has become quite long, and as those uses do not involve stub objects, I will defer that discussion to a future article.

    Read the article

< Previous Page | 474 475 476 477 478 479 480 481 482 483 484 485  | Next Page >