Search Results

Search found 15912 results on 637 pages for 'oracle concepts'.

Page 480/637 | < Previous Page | 476 477 478 479 480 481 482 483 484 485 486 487  | Next Page >

  • Architects overcoming challenges in the cloud

    - by stephen.g.bennett
    Computerworld has released an article based on an Silver Clouds, Dark Linings : A Concise Guide to Cloud Computing. This exceprt is from the roadmap chapter of the book. The book highlights common techniques in building roadmaps such as current reality, future vision, gap analysis, roadmap but also goes into detail in identifying the type of organization you are and what the common challenges you will need to address within your roadmap. In addition over at ArchBeat they have released a four part interview dicussing the book. Have a happy holiday

    Read the article

  • IPS Facets and Info files

    - by mkupfer
    One of the unusual things about IPS is its "facet" feature. For example, if you're a developer using the foo library, you don't install a libfoo-dev package to get the header files. Intead, you install the libfoo package, and your facet.devel setting controls whether you get header files. I was reminded of this recently when I tried to look at some documentation for Emacs Org mode. I was surprised when Emacs's Info browser said it couldn't find the top-level Info directory. I poked around in /usr/share but couldn't find any info files. $ ls -l /usr/share/info ls: cannot access /usr/share/info: No such file or directory Was I was missing a package? $ pkg list -a | egrep "info|emacs" editor/gnu-emacs 23.1-0.175.0.0.0.2.537 i-- editor/gnu-emacs/gnu-emacs-gtk 23.1-0.175.0.0.0.2.537 i-- editor/gnu-emacs/gnu-emacs-lisp 23.1-0.175.0.0.0.2.537 --- editor/gnu-emacs/gnu-emacs-no-x11 23.1-0.175.0.0.0.2.537 --- editor/gnu-emacs/gnu-emacs-x11 23.1-0.175.0.0.0.2.537 i-- system/data/terminfo 0.5.11-0.175.0.0.0.2.1 i-- system/data/terminfo/terminfo-core 0.5.11-0.175.0.0.0.2.1 i-- text/texinfo 4.7-0.175.0.0.0.2.537 i-- x11/diagnostic/x11-info-clients 7.6-0.175.0.0.0.0.1215 i-- $ Hmm. I didn't have the gnu-emacs-lisp package. That seemed an unlikely place to stick the Info files, and pkg(1) confirmed that the info files were not there: $ pkg contents -r gnu-emacs-lisp | grep info usr/share/emacs/23.1/lisp/info-look.el.gz usr/share/emacs/23.1/lisp/info-xref.el.gz usr/share/emacs/23.1/lisp/info.el.gz usr/share/emacs/23.1/lisp/informat.el.gz usr/share/emacs/23.1/lisp/org/org-info.el.gz usr/share/emacs/23.1/lisp/org/org-jsinfo.el.gz usr/share/emacs/23.1/lisp/pcvs-info.el.gz usr/share/emacs/23.1/lisp/textmodes/makeinfo.el.gz usr/share/emacs/23.1/lisp/textmodes/texinfo.el.gz $ Well, if I have what look like the right packages but don't have the right files, the next thing to check are the facets. The first check is whether there is a facet associated with the Info files: $ pkg contents -m gnu-emacs | grep usr/share/info dir facet.doc.info=true group=bin mode=0755 owner=root path=usr/share/info file [...] chash=[...] facet.doc.info=true group=bin mode=0444 owner=root path=usr/share/info/mh-e-1 [...] file [...] chash=[...] facet.doc.info=true group=bin mode=0444 owner=root path=usr/share/info/mh-e-2 [...] [...] Yes, they're associated with facet.doc.info. Now let's look at the facet settings on my desktop: $ pkg facet FACETS VALUE facet.locale.en* True facet.locale* False facet.doc.man True facet.doc* False $ Oops. I've got man pages and various English documentation files, but not the Info files. Let's fix that: # pkg change-facet facet.doc.info=True Packages to update: 970 Variants/Facets to change: 1 Create boot environment: No Create backup boot environment: Yes Services to change: 1 DOWNLOAD PKGS FILES XFER (MB) Completed 970/970 181/181 9.2/9.2 PHASE ACTIONS Install Phase 226/226 PHASE ITEMS Image State Update Phase 2/2 PHASE ITEMS Reading Existing Index 8/8 Indexing Packages 970/970 # Now we have the info files: $ ls -F /usr/share/info a2ps.info dir@ flex.info groff-2 regex.info aalib.info dired-x flex.info-1 groff-3 remember ...

    Read the article

  • GlassFish Community Event and Party at JavaOne 2011 - Oct 2, 2011

    - by arungupta
    As in the previous years (2010, 2009, 2008 (more), and 2007), the GlassFish community event and party are getting planned along with JavaOne 2011 as well. Here are the coordinates for the community event: Date: Sunday, October 2nd, 2011 Time: 12:30pm - 4:30pm Venue: Moscone West The party will be held at the regular venue of The Thirsty Bear. This is your chance to meet the core members of engineering, product management, executive management, and rest of the team. This is your (yet another) chance to voice your opinion and be heard. There will be community updates, customer testimonials, unconference, and fun activities too. Stay tuned for more details. Here are some pictures from the yesteryears: A conference badge will be required to attend the community event but the party will be open to all friends of GlassFish. So if you are in town, plan to stop by at the community event and/or the party. Stay tuned for RSVP details. Its going to be lot of fun!

    Read the article

  • GlassFish Community Event and Party at JavaOne 2011 - Oct 2, 2011

    - by arungupta
    As in the previous years (2010, 2009, 2008 (more), and 2007), the GlassFish community event and party are getting planned along with JavaOne 2011 as well. Here are the coordinates for the community event: Date: Sunday, October 2nd, 2011 Time: 12:30pm - 4:30pm Venue: Moscone West The party will be held at the regular venue of The Thirsty Bear. This is your chance to meet the core members of engineering, product management, executive management, and rest of the team. This is your (yet another) chance to voice your opinion and be heard. There will be community updates, customer testimonials, unconference, and fun activities too. Stay tuned for more details. Here are some pictures from the yesteryears: A conference badge will be required to attend the community event but the party will be open to all friends of GlassFish. So if you are in town, plan to stop by at the community event and/or the party. Stay tuned for RSVP details. Its going to be lot of fun!

    Read the article

  • Technical : Configure WebCenter PS5 with WebCenter Content - Good Example

    - by Vikram Kurma
    Read Intro for this post and understand the problem here Solution  : To integrate Jdeveloper with WebCenter Content PS5 and browse through the folders , we need to enable "folders_g" features instead of "Framework Folders" . Detailed steps below . Login to Webcenter content using admin credentials https://<hostname>:<port number>/cs Go to "Administration" menu and click on "Admin Server"  In the newly opened browser , click on 'Component Manager' in the left navigation menu . On the right hand side , you should see "Advanced Component Manager" , click on it . You will now see a list of enabled and disabled features . Disable "Framework Folders" and enable "folders_g" folders . Restart the server . There you go ! . You should have a successful connection and you should be able to traverse through the contribution folders from Jdeveloper. I am posting a few pics to help you navigate the steps .    

    Read the article

  • Book Reviews: Art of Community and Eyetracking Web Usability

    - by ultan o'broin
    Holidays time offers a chance to catch up on some user experience and user assistance related material. So, two short book reviews (which I considered using my new Tumblr blog for. More about that another time) coming up. The Art of Community by Jono Bacon Excellent starting point for anyone wanting to get going in the community software (FLOSS, for example) space or understand how to set up, manage, and leverage the collective intelligence of communities for whatever ends. The book is a little too long in my opinion, and of course, usage of what Jono is recommending needs to be nuanced and adapted for enterprise applications space (hardly surprising there is a lot about Ubuntu, Lug Radio, and so on given Jono's interests). Shame there wasn't more information on international, non-English community considerations too. Still, some great ideas and insight into setting up and managing communities that I will leverage (watch out for the results on this blog, later in 2011). One section, on collaborative writing really jumped out. It reinforced the whole idea that to successful community initiatives are based on instigators knowing what makes the community tick in the first place. How about this for insight into user profiles for people who write community user assistance (OK then, "doc") and what tools they might use (in this case, we're talking about Jokosher): "Most people who write documentation for open source software projects would fall into the category of power user. They are technology enthusiasts who are not interested in the super-technical avenues of programming, but want to help out. Many of these people have good writing skills and a good knowledge of using the software, so the documentation fit is natural. With Jokosher we wanted to acknowledge this profile of user. As such, instead of focussing on complex text processing tools, we encouraged our documentation contributors to use a wiki." The book is available for free here, and well as being available from usual sources. Eyetracking Web Usability by Jakob Nielsen and Kara Prentice Another fine book by established experts. I have some field experience of eyetracking studies myself --in the user assistance for enterprise applications space--though Jakob and Kara concentrate on websites for their research here. I would caution how much about websites transfers easily to the applications space, especially enterprise applications, as claimed in the book too. However, Jakob and Kara do make the case very well that understanding design goals (for example, productivity improvement in the case of applications) and the context of the software use is critical. Executing a study using eyetracking technology requires that you know what you want to test, can set up realistic tasks for testing by representative testers, and then analyze the results. Be precise, as lots of data will be generated (I think the authors underplay the effort in analyzing data too). What I found disappointing was the lack of emphasis on eyetracking as only part of the usability solution. It's really for fine-tuning designs in my opinion, and should be used after other design reviews. I also wasn't that crazy about the level of disengagement between the qualitative and quantitative side of this kind of testing that the book indicated. I think it is useful to have testers verbalize their thoughts and for test engineers to prompt, intervene, or guide as necessary. More on cultural or international aspects to usability testing might have been included too (websites are available to everyone). To conclude, I enjoyed the book, took on board some key takeaways about methodologies and found the recommendations sensible and easy to follow (for example about Forms layouts). Applying enterprise applications requirements such as those relating to user profiles, design goals, and overall context of use in conjunction with what's in this book would be the way to go here. It also made me think of how interesting it would be to compare eyetracking findings between website and enterprise applications usage.

    Read the article

  • Book Review

    - by frank.buytendijk
    ... and in the series of videoblogs, here is number 3: reviewing a few really books I recently read. Access the videoblog here. More on www.youtube.com/frankbuytendijk. frank

    Read the article

  • Interviews Gone Bad.....Now What Do I Do?

    - by david.talamelli
    We have all done it at some stage of our working careers - you know those times when you leave an interview and then you think to yourself "why didn't I ask that question" or "I can't believe I said that" or "how could I have forgotten to say that". It happens to everyone but how you handle things moving forwards could be critical in helping you land that dream job. There is nothing better than seeing that dream job with the dream company that you are looking to work for advertised (or in some cases getting called by the Recruiter to let you know about that job). The role may seem perfect and it could be just what you are looking for and it is with the right company as well. You have sent in your resume and have subsequently had one, two or maybe three interviews for the role. After each step of the process you get a little bit more excited about the role as you start to think about your work day in your new role/company. Then it happens, you get it: you get The Phone Call to inform you that you have not been successful in securing the position that you have invested so much time and effort into. It can be disappointing to hear this news but what you do next is important in potentially keeping that door open for future opportunities with that company. How you handle yourself in this situation is important: if any of you remember the Choose Your Own Adventure Books do you: Tell the Recruiter (maybe get aggressive) they are wrong in their assessment and that you are the right candidate for the role Switch off and say ok thanks and hang up without engaging in any further dialogue Thank the company for their time and enquire if there may be any other opportunities in the future to explore If you chose the first option - the company in question may consider whether or not to look at you for other opportunities. How you handle yourself in the recruitment process could be an indication of how you would deal with clients/colleagues in your role and the impression that you leave a potential employer may be what sticks in their mind when they think of you (eg: isn't that the person who couldn't handle it when we told him he wasn't right for our role). The second option potentially produces a similar outcome. If you rush to get off the phone, the company may come back to you to talk about other roles when they come up, but you also leave open the potential thought with the company you were only interested in that role and therefore not interested in any other opportunities. Why take the risk of the company thinking that and potentially not getting back to you in the future. By picking the third option, you actively engage with the company and keep the dialogue open for future discussions. Ok, so you didn't get the role you interviewed for - you don't know who else the company may have been interviewing - maybe they found someone who was a better fit, or maybe there were too many boxes you didn't tick to step straight into that specific role. Take a deep breath and keep the company engaged. You are fresh in their mind - take advantage of that fact and let them know that while you respect their decision, that you are still interested in the company and would like to be kept in mind for future roles. Ask if it is ok to keep in touch and when they would like to keep in touch, as long as you are interested let them know you are still interested. You do need to balance that though if you come across as too keen or start stalking people - it could equally damage your brand. Companies normally have more than one open role. New roles are created all the time, circumstances change and hiring people is not a static business, it changes course from everyone's best laid initial plans. If you didn't get that initial role you wanted, keep the door open with that company so that when those new roles do come up or when circumstances do change you have already laid the ground to step into those new positions.

    Read the article

  • Good ol fashioned debugging

    - by Tim Dexter
    I have been helping out one of our new customers over the last day or two and I have even managed to get to the bottom of their problem FTW! They use BIEE and BIP and wanted to mount a BIP report in a dashboard page, so far so good, BIP does that! Just follow the instructions in the BIEE user guide. The wrinkle is that they want to enter some fixed instruction strings into the dashboard prompts to help the user. These are added as fixed values to the prompt as the default values so they appear first. Once the user makes a selection, the default strings disappear. Its a fair requirement but the BIP report chokes Now, the BIP report had been setup with the Autorun checkbox, unchecked. I expected the BIP report to wait for the Go button to be hit but it was trying to run immediately and failing. That was the first issue. You can not stop the BIP report from trying to run in a dashboard. Even if the Autorun is turned off, it seems that dashboard still makes the request to BIP to run the report. Rather than BIP refusing because its waiting for input it goes ahead anyway, I guess the mechanism does not check the autorun flag when the request is coming from the dashboard. It appears that between BIEE and BIP, they collectively ignore the autorun flag. A bug? might be, at least an enhancement request. With that in mind, how could we get BIP to not at least not fail? This fact was stumping me on the parameter error, if the autorun flag was being respected then why was BIP complaining about the parameter values it should not even be doing anything until the Go button is clicked. I now knew that the autorun flag was being ignored, it was a simple case of putting BIP into debug mode. I use the OC4J server on my laptop so debug msgs are routed through the dos box used to start the OC4J container. When I changed a value on the dashboard prompt I spotted some debug text rushing by that subsequently disappeared from the log once the operation was complete. Another bug? I needed to catch that text as it went by, using the print screen function with some software to grab multiple screens as the log appeared and then disappeared. The upshot is that when you change the dashboard prompt value, BIP validates the value against its own LOVs, if its not in the list then it throws the error. Because 'Fill this first' and 'Fill this second' ie fixed strings from the dashboard prompts, are not in the LOV lists and because the report is auto running as soon as the dashboard page is brought up, the report complains about invalid parameters. To get around this, I needed to get the strings into the LOVs. Easily done with a UNION clause: select 'Fill this first' from SH.Products Products UNION select Products."Prod Category" as "Prod Category" from SH.Products Products Now when BIP wants to validate the prompt value, the LOV query fires and finds the fixed string -> No Error. No data, but definitely no errors :0) If users do run with the fixed values, you can capture that in the template. If there is no data in the report, either the fixed values were used or the parameters selected resulted in no rows. You can capture this in the template and display something like. 'Either your parameter values resulted in no data or you have not changed the default values' Thats the upside, the downside is that if your users run the report in the BP UI they re going to see the fixed strings. You could alleviate that by having BIP display the fixed strings in top of its parameter drop boxes (just set them as the default value for the parameter.) But they will not disappear like they do in the dashboard prompts, see below. If the expected autorun behaviour worked ie wait for the Go button, then we would not have to workaround it but for now, its a pretty good solution. It was an enjoyable hour or so for me, took me back to my developer daze, when we used to race each other for the most number of bug fixes. I used to run a distant 2nd behind 'Bugmeister Chen Hu' but led the chasing pack by a reasonable distance.

    Read the article

  • Sessions De Passage De Tests D’implementation

    - by swalker
    Colombes Exceptionnel pour vos Partenaires : Exemption des frais de passage pour les Examens d'implémentation s'ils participent à l'une des sessions des 3 jours de Test Fest le 28 novembre, le 29 novembre et le 9 décembre (cette dernière session est presque pleine) Pour les inscriptions c’est ici : >> 28 novembre 2011 >> 29 novembre 2011 >> 9 décembre 2011

    Read the article

  • List of all states from COMPOSITE_INSTANCE, CUBE_INSTANCE, DLV_MESSAGE tables

    - by Deepak Arora
    In many of my engagements I get asked repeatedly about the states of the composites in 11g and how to decipher them, especially when we are troubleshooting issues around purging. I have compiled a list of all the states from the COMPOSITE_INSTANCE, CUBE_INSTANCE, and DLV_MESSAGE tables. These are the primary tables that are used when using BPEL composites and how they are used with the ECID.  Composite State Values COMPOSITE_INSTANCE States State Description 0 Running 1 Completed 2 Running with faults 3 Completed with faults 4 Running with recovery required 5 Completed with recovery required 6 Running with faults and recovery required 7 Completed with faults and recovery required 8 Running with suspended 9 Completed with suspended 10 Running with faults and suspended 11 Completed with faults and suspended 12 Running with recovery required and suspended 13 Completed with recovery required and suspended 14 Running with faults, recovery required, and suspended 15 Completed with faults, recovery required, and suspended 16 Running with terminated 17 Completed with terminated 18 Running with faults and terminated 19 Completed with faults and terminated 20 Running with recovery required and terminated 21 Completed with recovery required and terminated 22 Running with faults, recovery required, and terminated 23 Completed with faults, recovery required, and terminated 24 Running with suspended and terminated 25 Completed with suspended and terminated 26 Running with faulted, suspended, and terminated 27 Completed with faulted, suspended, and terminated 28 Running with recovery required, suspended, and terminated 29 Completed with recovery required, suspended, and terminated 30 Running with faulted, recovery required, suspended, and terminated 31 Completed with faulted, recovery required, suspended, and terminated 32 Unknown 64 - CUBE_INSTANCE States State Description 0 STATE_INITIATED 1 STATE_OPEN_RUNNING 2 STATE_OPEN_SUSPENDED 3 STATE_OPEN_FAULTED 4 STATE_CLOSED_PENDING_CANCEL 5 STATE_CLOSED_COMPLETED 6 STATE_CLOSED_FAULTED 7 STATE_CLOSED_CANCELLED 8 STATE_CLOSED_ABORTED 9 STATE_CLOSED_STALE 10 STATE_CLOSED_ROLLED_BACK DLV_MESSAGE States State Description 0 STATE_UNRESOLVED 1 STATE_RESOLVED 2 STATE_HANDLED 3 STATE_CANCELLED 4 STATE_MAX_RECOVERED Since now in 11g the Invoke_Messages table is not there so to distinguish between a new message (Invoke) and callback (DLV) and there is DLV_TYPE column that defines the type of message: DLV_TYPE States State Description 1 Invoke Message 2 DLV Message MEDIATOR_INSTANCE STATE Description  0  No faults but there still might be running instances  1  At least one case is aborted by user  2  At least one case is faulted (non-recoverable)  3  At least one case is faulted and one case is aborted  4  At least one case is in recovery required state  5 At least one case is in recovery required state and at least one is aborted  6 At least one case is in recovery required state and at least one is faulted  7 At least one case is in recovery required state, one faulted and one aborted  >=8 and < 16  Running >= 16   Stale In my next blog posting I will walk through the lifecycle of a BPEL process using the above states for the following use cases: - New BPEL process - initial Receive activity - Callback BPEL process - mid-level Receive activity As always comments and questions welcome! Deepak

    Read the article

  • ADF Faces Layouts Demo - A Hidden Treasure

    - by shay.shmeltzer
    Layouting pages with ADF Faces containers is sometimes not as simple as we would have liked it to be - especially for people who are just getting started. There are some tricks that can help you achieve the layout that you are looking for. One great way to learn some of those tricks is to look at the new "Visual Design" section of the ADF Faces Hosted demo. For example look at the Form Layout part - and you'll see nicely aligned forms that contain various UI layout scenarios. Want to learn how this has been achieved? - just click the "page source" link at the top right - and you can see how that layout has been done. Don't forget that you can also download the full demo source here. One other good resource I came across today is the "Designing well known websites with ADF Rich Faces" presentation from Maiko Rocha and George Magessy - it's missing the demo part - but you can still learn a lot from the slides. Designing well known websites with ADF Rich Faces

    Read the article

  • Integrating NetBeans for Raspberry Pi Java Development

    - by speakjava
    Raspberry Pi IDE Java Development The Raspberry Pi is an incredible device for building embedded Java applications but, despite being able to run an IDE on the Pi it really pushes things to the limit.  It's much better to use a PC or laptop to develop the code and then deploy and test on the Pi.  What I thought I'd do in this blog entry was to run through the steps necessary to set up NetBeans on a PC for Java code development, with automatic deployment to the Raspberry Pi as part of the build process. I will assume that your starting point is a Raspberry Pi with an SD card that has one of the latest Raspbian images on it.  This is good because this now includes the JDK 7 as part of the distro, so no need to download and install a separate JDK.  I will also assume that you have installed the JDK and NetBeans on your PC.  These can be downloaded here. There are numerous approaches you can take to this including mounting the file system from the Raspberry Pi remotely on your development machine.  I tried this and I found that NetBeans got rather upset if the file system disappeared either through network interruption or the Raspberry Pi being turned off.  The following method uses copying over SSH, which will fail more gracefully if the Pi is not responding. Step 1: Enable SSH on the Raspberry Pi To run the Java applications you create you will need to start Java on the Raspberry Pi with the appropriate class name, classpath and parameters.  For non-JavaFX applications you can either do this from the Raspberry Pi desktop or, if you do not have a monitor connected through a remote command line.  To execute the remote command line you need to enable SSH (a secure shell login over the network) and connect using an application like PuTTY. You can enable SSH when you first boot the Raspberry Pi, as the raspi-config program runs automatically.  You can also run it at any time afterwards by running the command: sudo raspi-config This will bring up a menu of options.  Select '8 Advanced Options' and on the next screen select 'A$ SSH'.  Select 'Enable' and the task is complete. Step 2: Configure Raspberry Pi Networking By default, the Raspbian distribution configures the ethernet connection to use DHCP rather than a static IP address.  You can continue to use DHCP if you want, but to avoid having to potentially change settings whenever you reboot the Pi using a static IP address is simpler. To configure this on the Pi you need to edit the /etc/network/interfaces file.  You will need to do this as root using the sudo command, so something like sudo vi /etc/network/interfaces.  In this file you will see this line: iface eth0 inet dhcp This needs to be changed to the following: iface eth0 inet static     address 10.0.0.2     gateway 10.0.0.254     netmask 255.255.255.0 You will need to change the values in red to an appropriate IP address and to match the address of your gateway. Step 3: Create a Public-Private Key Pair On Your Development Machine How you do this will depend on which Operating system you are using: Mac OSX or Linux Run the command: ssh-keygen -t rsa Press ENTER/RETURN to accept the default destination for saving the key.  We do not need a passphrase so simply press ENTER/RETURN for an empty one and once more to confirm. The key will be created in the file .ssh/id_rsa.pub in your home directory.  Display the contents of this file using the cat command: cat ~/.ssh/id_rsa.pub Open a window, SSH to the Raspberry Pi and login.  Change directory to .ssh and edit the authorized_keys file (don't worry if the file does not exist).  Copy and paste the contents of the id_rsa.pub file to the authorized_keys file and save it. Windows Since Windows is not a UNIX derivative operating system it does not include the necessary key generating software by default.  To generate the key I used puttygen.exe which is available from the same site that provides the PuTTY application, here. Download this and run it on your Windows machine.  Follow the instructions to generate a key.  I remove the key comment, but you can leave that if you want. Click "Save private key", confirm that you don't want to use a passphrase and select a filename and location for the key. Copy the public key from the part of the window marked, "Public key for pasting into OpenSSH authorized_keys file".  Use PuTTY to connect to the Raspberry Pi and login.  Change directory to .ssh and edit the authorized_keys file (don't worry if this does not exist).  Paste the key information at the end of this file and save it. Logout and then start PuTTY again.  This time we need to create a saved session using the private key.  Type in the IP address of the Raspberry Pi in the "Hostname (or IP address)" field and expand "SSH" under the "Connection" category.  Select "Auth" (see the screen shot below). Click the "Browse" button under "Private key file for authentication" and select the file you saved from puttygen. Go back to the "Session" category and enter a short name in the saved sessions field, as shown below.  Click "Save" to save the session. Step 4: Test The Configuration You should now have the ability to use scp (Mac/Linux) or pscp.exe (Windows) to copy files from your development machine to the Raspberry Pi without needing to authenticate by typing in a password (so we can automate the process in NetBeans).  It's a good idea to test this using something like: scp /tmp/foo [email protected]:/tmp on Linux or Mac or pscp.exe foo pi@raspi:/tmp on Windows (Note that we use the saved configuration name instead of the IP address or hostname so the public key is picked up). pscp.exe is another tool available from the creators of PuTTY. Step 5: Configure the NetBeans Build Script Start NetBeans and create a new project (or open an existing one that you want to deploy automatically to the Raspberry Pi). Select the Files tab in the explorer window and expand your project.  You will see a build.xml file.  Double click this to edit it. This file will mostly be comments.  At the end (but within the </project> tag) add the XML for <target name="-post-jar">, shown below Here's the code again in case you want to use cut-and-paste: <target name="-post-jar">   <echo level="info" message="Copying dist directory to remote Pi"/>   <exec executable="scp" dir="${basedir}">     <arg line="-r"/>     <arg value="dist"/>     <arg value="[email protected]:NetBeans/CopyTest"/>   </exec>  </target> For Windows it will be slightly different: <target name="-post-jar">   <echo level="info" message="Copying dist directory to remote Pi"/>   <exec executable="C:\pi\putty\pscp.exe" dir="${basedir}">     <arg line="-r"/>     <arg value="dist"/>     <arg value="pi@raspi:NetBeans/CopyTest"/>   </exec> </target> You will also need to ensure that pscp.exe is in your PATH (or specify a fully qualified pathname). From now on when you clean and build the project the dist directory will automatically be copied to the Raspberry Pi ready for testing.

    Read the article

  • FIFA EM 2012: Tippspiel Anwendung von Christian Rokitta

    - by carstenczarski
    Sie sind nicht nur APEX-Entwickler, sondern auch Fußballfan ...? Dann ist die EURO2012 Tippspiel-Anwendung (natürlich mit APEX entwickelt) von Christian Rokitta genau das Richtige für Sie. Aber auch alle anderen finden hier eine APEX-Anwendung, welche die Möglichkeiten für ein APEX-Anwendungslayout eindrucksvoll vor Augen führt. Es hat doch wesentlich mehr drin, als die mitgelieferten Templates anbieten.

    Read the article

  • Removing the "Cannot find a skin that matches family portal and version v1.1" message

    - by Maiko Rocha
    Do you get annoyed by the following message on your weblogic log output? <SkinFactoryImpl> <getSkin> Cannot find a skin that matches family portal and version v1.1. We will use the skin portal.desktop. Yes? Well, me too :-). To get rid of it just open your portal application's trinidad-config.xml file and remove the <skin-version> element from it. Before: <?xml version="1.0" encoding="UTF-8"?> <trinidad-config xmlns="http://myfaces.apache.org/trinidad/config">   <skin-family>#{preferenceBean.defaultTrinidadSkin}</skin-family> <skin-version>v1.1</skin-version> </trinidad-config> After: <?xml version="1.0" encoding="UTF-8"?> <trinidad-config xmlns="http://myfaces.apache.org/trinidad/config">   <skin-family>#{preferenceBean.defaultTrinidadSkin}</skin-family> </trinidad-config>

    Read the article

  • NoSQL Memcached API for MySQL: Latest Updates

    - by Mat Keep
    With data volumes exploding, it is vital to be able to ingest and query data at high speed. For this reason, MySQL has implemented NoSQL interfaces directly to the InnoDB and MySQL Cluster (NDB) storage engines, which bypass the SQL layer completely. Without SQL parsing and optimization, Key-Value data can be written directly to MySQL tables up to 9x faster, while maintaining ACID guarantees. In addition, users can continue to run complex queries with SQL across the same data set, providing real-time analytics to the business or anonymizing sensitive data before loading to big data platforms such as Hadoop, while still maintaining all of the advantages of their existing relational database infrastructure. This and more is discussed in the latest Guide to MySQL and NoSQL where you can learn more about using the APIs to scale new generations of web, cloud, mobile and social applications on the world's most widely deployed open source database The native Memcached API is part of the MySQL 5.6 Release Candidate, and is already available in the GA release of MySQL Cluster. By using the ubiquitous Memcached API for writing and reading data, developers can preserve their investments in Memcached infrastructure by re-using existing Memcached clients, while also eliminating the need for application changes. Speed, when combined with flexibility, is essential in the world of growing data volumes and variability. Complementing NoSQL access, support for on-line DDL (Data Definition Language) operations in MySQL 5.6 and MySQL Cluster enables DevOps teams to dynamically update their database schema to accommodate rapidly changing requirements, such as the need to capture additional data generated by their applications. These changes can be made without database downtime. Using the Memcached interface, developers do not need to define a schema at all when using MySQL Cluster. Lets look a little more closely at the Memcached implementations for both InnoDB and MySQL Cluster. Memcached Implementation for InnoDB The Memcached API for InnoDB is previewed as part of the MySQL 5.6 Release Candidate. As illustrated in the following figure, Memcached for InnoDB is implemented via a Memcached daemon plug-in to the mysqld process, with the Memcached protocol mapped to the native InnoDB API. Figure 1: Memcached API Implementation for InnoDB With the Memcached daemon running in the same process space, users get very low latency access to their data while also leveraging the scalability enhancements delivered with InnoDB and a simple deployment and management model. Multiple web / application servers can remotely access the Memcached / InnoDB server to get direct access to a shared data set. With simultaneous SQL access, users can maintain all the advanced functionality offered by InnoDB including support for Foreign Keys, XA transactions and complex JOIN operations. Benchmarks demonstrate that the NoSQL Memcached API for InnoDB delivers up to 9x higher performance than the SQL interface when inserting new key/value pairs, with a single low-end commodity server supporting nearly 70,000 Transactions per Second. Figure 2: Over 9x Faster INSERT Operations The delivered performance demonstrates MySQL with the native Memcached NoSQL interface is well suited for high-speed inserts with the added assurance of transactional guarantees. You can check out the latest Memcached / InnoDB developments and benchmarks here You can learn how to configure the Memcached API for InnoDB here Memcached Implementation for MySQL Cluster Memcached API support for MySQL Cluster was introduced with General Availability (GA) of the 7.2 release, and joins an extensive range of NoSQL interfaces that are already available for MySQL Cluster Like Memcached, MySQL Cluster provides a distributed hash table with in-memory performance. MySQL Cluster extends Memcached functionality by adding support for write-intensive workloads, a full relational model with ACID compliance (including persistence), rich query support, auto-sharding and 99.999% availability, with extensive management and monitoring capabilities. All writes are committed directly to MySQL Cluster, eliminating cache invalidation and the overhead of data consistency checking to ensure complete synchronization between the database and cache. Figure 3: Memcached API Implementation with MySQL Cluster Implementation is simple: 1. The application sends reads and writes to the Memcached process (using the standard Memcached API). 2. This invokes the Memcached Driver for NDB (which is part of the same process) 3. The NDB API is called, providing for very quick access to the data held in MySQL Cluster’s data nodes. The solution has been designed to be very flexible, allowing the application architect to find a configuration that best fits their needs. It is possible to co-locate the Memcached API in either the data nodes or application nodes, or alternatively within a dedicated Memcached layer. The benefit of this flexible approach to deployment is that users can configure behavior on a per-key-prefix basis (through tables in MySQL Cluster) and the application doesn’t have to care – it just uses the Memcached API and relies on the software to store data in the right place(s) and to keep everything synchronized. Using Memcached for Schema-less Data By default, every Key / Value is written to the same table with each Key / Value pair stored in a single row – thus allowing schema-less data storage. Alternatively, the developer can define a key-prefix so that each value is linked to a pre-defined column in a specific table. Of course if the application needs to access the same data through SQL then developers can map key prefixes to existing table columns, enabling Memcached access to schema-structured data already stored in MySQL Cluster. Conclusion Download the Guide to MySQL and NoSQL to learn more about NoSQL APIs and how you can use them to scale new generations of web, cloud, mobile and social applications on the world's most widely deployed open source database See how to build a social app with MySQL Cluster and the Memcached API from our on-demand webinar or take a look at the docs Don't hesitate to use the comments section below for any questions you may have 

    Read the article

  • Observations in Migrating from JavaFX Script to JavaFX 2.0

    - by user12608080
    Observations in Migrating from JavaFX Script to JavaFX 2.0 Introduction Having been available for a few years now, there is a decent body of work written for JavaFX using the JavaFX Script language. With the general availability announcement of JavaFX 2.0 Beta, the natural question arises about converting the legacy code over to the new JavaFX 2.0 platform. This article reflects on some of the observations encountered while porting source code over from JavaFX Script to the new JavaFX API paradigm. The Application The program chosen for migration is an implementation of the Sudoku game and serves as a reference application for the book JavaFX – Developing Rich Internet Applications. The design of the program can be divided into two major components: (1) A user interface (ideally suited for JavaFX design) and (2) the puzzle generator. For the context of this article, our primary interest lies in the user interface. The puzzle generator code was lifted from a sourceforge.net project and is written entirely in Java. Regardless which version of the UI we choose (JavaFX Script vs. JavaFX 2.0), no code changes were required for the puzzle generator code. The original user interface for the JavaFX Sudoku application was written exclusively in JavaFX Script, and as such is a suitable candidate to convert over to the new JavaFX 2.0 model. However, a few notable points are worth mentioning about this program. First off, it was written in the JavaFX 1.1 timeframe, where certain capabilities of the JavaFX framework were as of yet unavailable. Citing two examples, this program creates many of its own UI controls from scratch because the built-in controls were yet to be introduced. In addition, layout of graphical nodes is done in a very manual manner, again because much of the automatic layout capabilities were in flux at the time. It is worth considering that this program was written at a time when most of us were just coming up to speed on this technology. One would think that having the opportunity to recreate this application anew, it would look a lot different from the current version. Comparing the Size of the Source Code An attempt was made to convert each of the original UI JavaFX Script source files (suffixed with .fx) over to a Java counterpart. Due to language feature differences, there are a small number of source files which only exist in one version or the other. The table below summarizes the size of each of the source files. JavaFX Script source file Number of Lines Number of Character JavaFX 2.0 Java source file Number of Lines Number of Characters ArrowKey.java 6 72 Board.fx 221 6831 Board.java 205 6508 BoardNode.fx 446 16054 BoardNode.java 723 29356 ChooseNumberNode.fx 168 5267 ChooseNumberNode.java 302 10235 CloseButtonNode.fx 115 3408 CloseButton.java 99 2883 ParentWithKeyTraversal.java 111 3276 FunctionPtr.java 6 80 Globals.java 20 554 Grouping.fx 8 140 HowToPlayNode.fx 121 3632 HowToPlayNode.java 136 4849 IconButtonNode.fx 196 5748 IconButtonNode.java 183 5865 Main.fx 98 3466 Main.java 64 2118 SliderNode.fx 288 10349 SliderNode.java 350 13048 Space.fx 78 1696 Space.java 106 2095 SpaceNode.fx 227 6703 SpaceNode.java 220 6861 TraversalHelper.fx 111 3095 Total 2,077 79,127 2531 87,800 A few notes about this table are in order: The number of lines in each file was determined by running the Unix ‘wc –l’ command over each file. The number of characters in each file was determined by running the Unix ‘ls –l’ command over each file. The examination of the code could certainly be much more rigorous. No standard formatting was performed on these files.  All comments however were deleted. There was a certain expectation that the new Java version would require more lines of code than the original JavaFX script version. As evidenced by a count of the total number of lines, the Java version has about 22% more lines than its FX Script counterpart. Furthermore, there was an additional expectation that the Java version would be more verbose in terms of the total number of characters.  In fact the preceding data shows that on average the Java source files contain fewer characters per line than the FX files.  But that's not the whole story.  Upon further examination, the FX Script source files had a disproportionate number of blank characters.  Why?  Because of the nature of how one develops JavaFX Script code.  The object literal dominates FX Script code.  Its not uncommon to see object literals indented halfway across the page, consuming lots of meaningless space characters. RAM consumption Not the most scientific analysis, memory usage for the application was examined on a Windows Vista system by running the Windows Task Manager and viewing how much memory was being consumed by the Sudoku version in question. Roughly speaking, the FX script version, after startup, had a RAM footprint of about 90MB and remained pretty much the same size. The Java version started out at about 55MB and maintained that size throughout its execution. What About Binding? Arguably, the most striking observation about the conversion from JavaFX Script to JavaFX 2.0 concerned the need for data synchronization, or lack thereof. In JavaFX Script, the primary means to synchronize data is via the bind expression (using the “bind” keyword), and perhaps to a lesser extent it’s “on replace” cousin. The bind keyword does not exist in Java, so for JavaFX 2.0 a Data Binding API has been introduced as a replacement. To give a feel for the difference between the two versions of the Sudoku program, the table that follows indicates how many binds were required for each source file. For JavaFX Script files, this was ascertained by simply counting the number of occurrences of the bind keyword. As can be seen, binding had been used frequently in the JavaFX Script version (and does not take into consideration an additional half dozen or so “on replace” triggers). The JavaFX 2.0 program achieves the same functionality as the original JavaFX Script version, yet the equivalent of binding was only needed twice throughout the Java version of the source code. JavaFX Script source file Number of Binds JavaFX Next Java source file Number of “Binds” ArrowKey.java 0 Board.fx 1 Board.java 0 BoardNode.fx 7 BoardNode.java 0 ChooseNumberNode.fx 11 ChooseNumberNode.java 0 CloseButtonNode.fx 6 CloseButton.java 0 CustomNodeWithKeyTraversal.java 0 FunctionPtr.java 0 Globals.java 0 Grouping.fx 0 HowToPlayNode.fx 7 HowToPlayNode.java 0 IconButtonNode.fx 9 IconButtonNode.java 0 Main.fx 1 Main.java 0 Main_Mobile.fx 1 SliderNode.fx 6 SliderNode.java 1 Space.fx 0 Space.java 0 SpaceNode.fx 9 SpaceNode.java 1 TraversalHelper.fx 0 Total 58 2 Conclusions As the JavaFX 2.0 technology is so new, and experience with the platform is the same, it is possible and indeed probable that some of the observations noted in the preceding article may not apply across other attempts at migrating applications. That being said, this first experience indicates that the migrated Java code will likely be larger, though not extensively so, than the original Java FX Script source. Furthermore, although very important, it appears that the requirements for data synchronization via binding, may be significantly less with the new platform.

    Read the article

  • Pie Charts Just Don't Work When Comparing Data - Number 10 of Top 10 Reasons to Never Ever Use a Pie

    - by Tony Wolfram
    When comparing data, which is what a pie chart is for, people have a hard time judging the angles and areas of the multiple pie slices in order to calculate how much bigger one slice is than the others. Pie Charts Don't Work A slice of pie is good for serving up a portion of desert. It's not good for making a judgement about how big the slice is, what percentage of 100 it is, or how it compares to other slices. People have trouble comparing angles and areas to each other. Controlled studies show that people will overestimate the percentage that a pie slice area represents. This is because we have trouble calculating the area based on the space between the two angles that define the slice. This picture shows how a pie chart is useless in determing the largest value when you have to compare pie slices.   You can't compare angles and slice areas to each other. Human perception and cognition is poor when viewing angles and areas and trying to make a mental comparison. Pie charts overload the working memory, forcing the person to make complicated calculations, and at the same time make a decision based on those comparisons. What's the point of showing a pie chart when you want to compare data, except to say, "well, the slices are almost the same, but I'm not really sure which one is bigger, or by how much, or what order they are from largest to smallest. But the colors sure are pretty. Plus, I like round things. Oh,was I suppose to make some important business decision? Sorry." Bad Choices and Bad Decisions Interaction Designers, Graphic Artists, Report Builders, Software Developers, and Executives have all made the decision to use pie charts in their reports, software applications, and dashboards. It was a bad decision. It was a poor choice. There are always better options and choices, yet the designer still made the decision to use a pie chart. I'll expore why people make such poor choices in my upcoming blog entires. (Hint: It has more to do with emotions than with analytical thinking.) I've outlined my opinions and arguments about the evils of using pie charts in "Countdown of Top 10 Reasons to Never Ever Use a Pie Chart." Each of my next 10 blog entries will support these arguments with illustrations, examples, and references to studies. But my goal is not to continuously and endlessly rage against the evils of using pie charts. This blog is not about pie charts. This blog is about understanding why designers choose to use a pie chart. Why, when give better alternatives, and acknowledging the shortcomings of pie charts, do designers over and over again still freely choose to place a pie chart in a report? As an extra treat and parting shot, check out the nice pie chart that Wikipedia uses to illustrate the United States population by state.   Remember, somebody chose to use this pie chart, with all its glorious colors, and post it on Wikipedia for all the world to see. My next blog will give you a better alternative for displaying comparable data - the sorted bar chart.

    Read the article

  • OWB 11gR2 &ndash; Degenerate Dimensions

    - by David Allan
    Ever wondered how to build degenerate dimensions in OWB and get the benefits of slowly changing dimensions and cube loading? Now its possible through some changes in 11gR2 to make the dimension and cube loading much more flexible. This will let you get the benefits of OWB's surrogate key handling and slowly changing dimension reference when loading the fact table and need degenerate dimensions (see Ralph Kimball's degenerate dimensions design tip). Here we will see how to use the cube operator to load slowly changing, regular and degenerate dimensions. The cube and cube operator can now work with dimensions which have no surrogate key as well as dimensions with surrogates, so you can get the benefit of the cube loading and incorporate the degenerate dimension loading. What you need to do is create a dimension in OWB that is purely used for ETL metadata; the dimension itself is never deployed (its table is, but has not data) it has no surrogate keys has a single level with a business attribute the degenerate dimension data and a dummy attribute, say description just to pass the OWB validation. When this degenerate dimension is added into a cube, you will need to configure the fact table created and set the 'Deployable' flag to FALSE for the foreign key generated to the degenerate dimension table. The degenerate dimension reference will then be in the cube operator and used when matching. Create the degenerate dimension using the regular wizard. Delete the Surrogate ID attribute, this is not needed. Define a level name for the dimension member (any name). After the wizard has completed, in the editor delete the hierarchy STANDARD that was automatically generated, there is only a single level, no need for a hierarchy and this shouldn't really be created. Deploy the implementing table DD_ORDERNUMBER_TAB, this needs to be deployed but with no data (the mapping here will do a left outer join of the source data with the empty degenerate dimension table). Now, go ahead and build your cube, use the regular TIMES dimension for example and your degenerate dimension DD_ORDERNUMBER, can add in SCD dimensions etc. Configure the fact table created and set Deployable to false, so the foreign key does not get generated. Can now use the cube in a mapping and load data into the fact table via the cube operator, this will look after surrogate lookups and slowly changing dimension references.   If you generate the SQL you will see the ON clause for matching includes the columns representing the degenerate dimension columns. Here we have seen how this use case for loading fact tables using degenerate dimensions becomes a whole lot simpler using OWB 11gR2. I'm sure there are other use cases where using this mix of dimensions with surrogate and regular identifiers is useful, Fact tables partitioned by date columns is another classic example that this will greatly help and make the cube operator much more useful. Good to hear any comments.

    Read the article

  • JPA/EclipseLink multitenancy screencast

    - by alexismp
    I find JPA and in particular EclipseLink 2.3 to be particularly well suited to illustrate the concept of multitenancy, one of the key PaaS features en route for Java EE 7. Here's a short (5-minute) screencast showing GlassFish 3.1.1 (due out real soon now) and its EclipseLink 2.3 JPA provider showing multitenancy in action. In short, it adds EclipseLink annotations to a JPA entity and deploys two identical applications with different tenant-id properties defined in the persistence.xml descriptor. Each application only sees its own data, yet everything is stored in the same table which was augmented with a discriminator column. For more advanced uses such as tenant property being set on the @PersistenceContext, XML configuration of multitenant JPA entities, and more check out the nicely written wiki page.

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

  • Delegation of Solaris Zone Administration

    - by darrenm
    In Solaris 11 'Zone Delegation' is a built in feature. The Zones system now uses finegrained RBAC authorisations to allow delegation of management of distinct zones, rather than all zones which is what the 'Zone Management' RBAC profile did in Solaris 10.The data for this can be stored with the Zone or you could also create RBAC profiles (that can even be stored in NIS or LDAP) for granting access to specific lists of Zones to administrators.For example lets say we have zones named zoneA through zoneF and we have three admins alice, bob, carl.  We want to grant a subset of the zone management to each of them.We could do that either by adding the admin resource to the appropriate zones via zonecfg(1M) or we could do something like this with RBAC data directly: First lets look at an example of storing the data with the zone. # zonecfg -z zoneA zonecfg:zoneA> add admin zonecfg:zoneA> set user=alice zonecfg:zoneA> set auths=manage zonecfg:zoneA> end zonecfg:zoneA> commit zonecfg:zoneA> exit Now lets look at the alternate method of storing this directly in the RBAC database, but we will show all our admins and zones for this example: # usermod -P +Zone Management -A +solaris.zone.manage/zoneA alice # usermod -A +solaris.zone.login/zoneB alice # usermod -P +Zone Management-A +solaris.zone.manage/zoneB bob # usermod -A +solaris.zone.manage/zoneC bob # usermod -P +Zone Management-A +solaris.zone.manage/zoneC carl # usermod -A +solaris.zone.manage/zoneD carl # usermod -A +solaris.zone.manage/zoneE carl # usermod -A +solaris.zone.manage/zoneF carl In the above alice can only manage zoneA, bob can manage zoneB and zoneC and carl can manage zoneC through zoneF.  The user alice can also login on the console to zoneB but she can't do the operations that require the solaris.zone.manage authorisation on it.Or if you have a large number of zones and/or admins or you just want to provide a layer of abstraction you can collect the authorisation lists into an RBAC profile and grant that to the admins, for example lets great an RBAC profile for the things that alice and carl can do. # profiles -p 'Zone Group 1' profiles:Zone Group 1> set desc="Zone Group 1" profiles:Zone Group 1> add profile="Zone Management" profiles:Zone Group 1> add auths=solaris.zone.manage/zoneA profiles:Zone Group 1> add auths=solaris.zone.login/zoneB profiles:Zone Group 1> commit profiles:Zone Group 1> exit # profiles -p 'Zone Group 3' profiles:Zone Group 1> set desc="Zone Group 3" profiles:Zone Group 1> add profile="Zone Management" profiles:Zone Group 1> add auths=solaris.zone.manage/zoneD profiles:Zone Group 1> add auths=solaris.zone.manage/zoneE profiles:Zone Group 1> add auths=solaris.zone.manage/zoneF profiles:Zone Group 1> commit profiles:Zone Group 1> exit Now instead of granting carl  and aliace the 'Zone Management' profile and the authorisations directly we can just give them the appropriate profile. # usermod -P +'Zone Group 3' carl # usermod -P +'Zone Group 1' alice If we wanted to store the profile data and the profiles granted to the users in LDAP just add '-S ldap' to the profiles and usermod commands. For a documentation overview see the description of the "admin" resource in zonecfg(1M), profiles(1) and usermod(1M)

    Read the article

  • EPM 11.1.2 - Configure a data source to support Essbase failover in active-passive clustering mode

    - by Ahmed A
    To configure a data source to support Essbase fail-over in active-passive clustering mode, replace the Essbase Server name value with the APS URL followed by the Essbase cluster name; for example, if the APS URL is http://<hostname>:13090/aps and the Essbase cluster name is EssbaseCluster-1, then the value in the Essbase Server name field would be:http://<hostname>:13090/aps/Essbase?clusterName=EssbaseCluster-1Note: Entering the Essbase cluster name without the APS URL in the Essbase Server name field is not supported in this release.

    Read the article

< Previous Page | 476 477 478 479 480 481 482 483 484 485 486 487  | Next Page >