Search Results

Search found 45901 results on 1837 pages for 'class diagram'.

Page 481/1837 | < Previous Page | 477 478 479 480 481 482 483 484 485 486 487 488  | Next Page >

  • How do you dive into large code bases?

    - by miku
    What tools and techniques do you use for exploring and learning an unknown code base? I am thinking of tools like grep, ctags, unit-tests, functional test, class-diagram generators, call graphs, code metrics like sloccount and so on. I'd be interested in your experiences, the helpers you used or wrote yourself and the size of the codebase, with which you worked with. I realize, that this is also a process (happening over time) and that learning can mean "can give a ten minute intro" to "can refactor and shrink this to 30% of the size". Let's leave that open for now.

    Read the article

  • How to design application for scaling the application?

    - by Muhammad
    I have one application which handles hardware events connected on the same computer's PCIe slots. The maximum number of PCIe slots on motherboard are two. I have utilized both slots. Now for scaling the application I need either more PCIe slots in same computer or I use another computer. So consider I am using another computer with same application and hardware connected on the PCIe Slots. Now my problem is that I want to design application over it which can access both computers hardware devices and does the process on it. The processed data should be send back to the respective PC's hardware. Please refer the attached diagram for expansion.

    Read the article

  • Default Parameters vs Method Overloading

    - by João Angelo
    With default parameters introduced in C# 4.0 one might be tempted to abandon the old approach of providing method overloads to simulate default parameters. However, you must take in consideration that both techniques are not interchangeable since they show different behaviors in certain scenarios. For me the most relevant difference is that default parameters are a compile time feature while method overloading is a runtime feature. To illustrate these concepts let’s take a look at a complete, although a bit long, example. What you need to retain from the example is that static method Foo uses method overloading while static method Bar uses C# 4.0 default parameters. static void CreateCallerAssembly(string name) { // Caller class - Invokes Example.Foo() and Example.Bar() string callerCode = String.Concat( "using System;", "public class Caller", "{", " public void Print()", " {", " Console.WriteLine(Example.Foo());", " Console.WriteLine(Example.Bar());", " }", "}"); var parameters = new CompilerParameters(new[] { "system.dll", "Common.dll" }, name); new CSharpCodeProvider().CompileAssemblyFromSource(parameters, callerCode); } static void Main() { // Example class - Foo uses overloading while Bar uses C# 4.0 default parameters string exampleCode = String.Concat( "using System;", "public class Example", "{{", " public static string Foo() {{ return Foo(\"{0}\"); }}", " public static string Foo(string key) {{ return \"FOO-\" + key; }}", " public static string Bar(string key = \"{0}\") {{ return \"BAR-\" + key; }}", "}}"); var compiler = new CSharpCodeProvider(); var parameters = new CompilerParameters(new[] { "system.dll" }, "Common.dll"); // Build Common.dll with default value of "V1" compiler.CompileAssemblyFromSource(parameters, String.Format(exampleCode, "V1")); // Caller1 built against Common.dll that uses a default of "V1" CreateCallerAssembly("Caller1.dll"); // Rebuild Common.dll with default value of "V2" compiler.CompileAssemblyFromSource(parameters, String.Format(exampleCode, "V2")); // Caller2 built against Common.dll that uses a default of "V2" CreateCallerAssembly("Caller2.dll"); dynamic caller1 = Assembly.LoadFrom("Caller1.dll").CreateInstance("Caller"); dynamic caller2 = Assembly.LoadFrom("Caller2.dll").CreateInstance("Caller"); Console.WriteLine("Caller1.dll:"); caller1.Print(); Console.WriteLine("Caller2.dll:"); caller2.Print(); } And if you run this code you will get the following output: // Caller1.dll: // FOO-V2 // BAR-V1 // Caller2.dll: // FOO-V2 // BAR-V2 You see that even though Caller1.dll runs against the current Common.dll assembly where method Bar defines a default value of “V2″ the output show us the default value defined at the time Caller1.dll compiled against the first version of Common.dll. This happens because the compiler will copy the current default value to each method call, much in the same way a constant value (const keyword) is copied to a calling assembly and changes to it’s value will only be reflected if you rebuild the calling assembly again. The use of default parameters is also discouraged by Microsoft in public API’s as stated in (CA1026: Default parameters should not be used) code analysis rule.

    Read the article

  • Oracle GoldenGate 12c - Leading Enterprise Replication

    - by Doug Reid
    Oracle GoldenGate 12c released  on October 17th and includes several new cutting edge features that firmly establishes GoldenGate's leader position in the data replication space.   In fact, this release more than doubles the performance of data delivery, supports Oracle's new multitenant database feature,  it's more secure, has more options for high availability, and has made great strides to simplify the configuration and deployment of the product.     Read through the press release if you haven't already and do not miss the quote from Cern's Eva Dafonte Perez, regarding Oracle GoldenGate 12c "….performs five times faster compared to previous GoldenGate versions and simplifies the management of a multi-tier environment" There are a variety of new and improved features in the Oracle GoldenGate 12c.  Here are the highlights: Optimized for Oracle Database 12c -  GoldenGate 12c is custom tailored to the unique capabilities of Oracle database 12c and out of the box GoldenGate 12c supports multitenant (pluggable database (PDB)) and non-consolidated deployments of Oracle Database 12c.   The naming convention used by database 12c is now in three parts (PDB-name, schema-name, and object name).  We have made changes to the GoldenGate capture process to support the new naming convention and streamlined the whole process so a single GoldenGate capture process is being used at the container level rather than at each individual PDB.  By having the capture process at the container level resource usage and the number of processes are reduced. To view a conceptual architecture diagram click here. Integrated Delivery for the Oracle Database - Leveraging a lightweight streaming API built exclusively for Oracle GoldenGate 12c, this process distributes load, auto tunes the degree of parallelism, scales better, and delivers blinding rates of changed data delivery to the Oracle database.  One of the goals for Oracle GoldenGate 12c was to reduce IT costs by simplifying the configuration and reduce the time to manage complex infrastructures.  In previous versions of Oracle GoldenGate, customers would split transaction loads by grouping tables into multiple different delivery processes (click here to view the previous method). Each delivery process executed independently and without any interaction or knowledge of other delivery processes.  This setup was complicated to configure and time consuming as the developer needed in-depth knowledge of the source and target schemas and the transaction profile. With GoldenGate 12c and Integrated Delivery we have made it easier to configure and faster to deploy.  To view a conceptual architecture diagram of integrated delivery click here Coordinated Delivery for Non-Oracle Databases - Coordinated Delivery orchestrates high-speed apply processes and simplifies the configuration of GoldenGate for non-Oracle targets. In Oracle GoldenGate 12c a single delivery process is used with multiple threads (click here) and key events, such as primary key updates, event markers, DDL, etc, are coordinated between the various threads to insure that the transactions are applied in the same sequence as they were captured, all while delivery improved performance.  Replication Between On-Premises and Cloud-Based systems. - The trend for business to utilize both on-premises and cloud-based systems is rising and businesses need to replicate data back and forth.   GoldenGate 12c can be configured in a variety of ways to provide real-time replication when unrestricted or restricted (limited ports or HTTP tunneling) networks are between on-premises and cloud-based systems.    Expanded Heterogeneity - It wouldn't be a GoldenGate release without new and improved platform support.   Release 1 includes support for MySQL 5.6 and Sybase 15.7.   Upcoming in the next release GoldenGate, support will be expanded for MS SQL Server, DB2, and Teradata. Tighter Security - Oracle GoldenGate 12c is integrated with the Oracle wallet to shield usernames and passwords using strong encryption and aliases.   Customers accustomed to using the Oracle Wallet with other Oracle products will instantly be familiar with how to use this great new feature Expanded Oracle Application and Technology Support -   GoldenGate can be used along with Oracle Coherence to enable real-time changed data feeds to the Coherence cache using Toplink and the Oracle GoldenGate JMS adapter.     Plus,  Oracle Advanced Customer Services (ACS) now offers a low downtime E-Business Suite platform and database migrations using GoldenGate as the enabling technology.  Keep tuned for more blogs on the new features and the upcoming launch webcast where we will go into these new features in more detail.   In the mean time make sure to read through our white paper "Oracle GoldenGate 12c Release 1 New Features Overview"

    Read the article

  • How to Open Any Folder as a Project in the NetBeans Platform

    - by Geertjan
    Typically, as described in the NetBeans Project Type Tutorial, you'll define a project type based on the presence of a file (e.g., "project.xml" or "customer.txt" or something like that) in a folder. I.e., if the file is there, then its parent, i.e., the folder that contains the file, is a project and should be opened in your application. However, in some scenarios (as with the HTML5 project type introduced in NetBeans IDE 7.3), the user should be able to open absolutely any folder at all into the application. How to create a project type that is that liberal? Here you go, the only condition that needs to be true is that the selected item in the "Open Project" dialog is a folder, as defined in the "isProject" method below. Nothing else. That's it. If you select a folder, it will be opened in your application, displaying absolutely everything as-is (since below there's no ProjectLogicalView defined): import java.beans.PropertyChangeListener; import java.io.IOException; import javax.swing.Icon; import org.netbeans.api.project.Project; import org.netbeans.api.project.ProjectInformation; import org.netbeans.spi.project.ProjectFactory; import org.netbeans.spi.project.ProjectState; import org.openide.filesystems.FileObject; import org.openide.loaders.DataFolder; import org.openide.loaders.DataObjectNotFoundException; import org.openide.nodes.FilterNode; import org.openide.util.Exceptions; import org.openide.util.ImageUtilities; import org.openide.util.Lookup; import org.openide.util.lookup.Lookups; import org.openide.util.lookup.ServiceProvider; @ServiceProvider(service = ProjectFactory.class) public class FolderProjectFactory implements ProjectFactory { @Override public boolean isProject(FileObject projectDirectory) { return DataFolder.findFolder(projectDirectory) != null; } @Override public Project loadProject(FileObject dir, ProjectState state) throws IOException { return isProject(dir) ? new FolderProject(dir) : null; } @Override public void saveProject(Project prjct) throws IOException, ClassCastException { // leave unimplemented for the moment } private class FolderProject implements Project { private final FileObject projectDir; private Lookup lkp; private FolderProject(FileObject dir) { this.projectDir = dir; } @Override public FileObject getProjectDirectory() { return projectDir; } @Override public Lookup getLookup() { if (lkp == null) { lkp = Lookups.fixed(new Object[]{ new Info(), }); } return lkp; } private final class Info implements ProjectInformation { @Override public Icon getIcon() { Icon icon = null; try { icon = ImageUtilities.image2Icon( new FilterNode(DataFolder.find( getProjectDirectory()).getNodeDelegate()).getIcon(1)); } catch (DataObjectNotFoundException ex) { Exceptions.printStackTrace(ex); } return icon; } @Override public String getName() { return getProjectDirectory().getName(); } @Override public String getDisplayName() { return getName(); } @Override public void addPropertyChangeListener(PropertyChangeListener pcl) { //do nothing, won't change } @Override public void removePropertyChangeListener(PropertyChangeListener pcl) { //do nothing, won't change } @Override public Project getProject() { return FolderProject.this; } } } } Even the ProjectInformation implementation really isn't needed at all, since it provides nothing more than the icon in the "Open Project" dialog, the rest (i.e., the display name in the "Open Project" dialog) is provided by default regardless of whether you have a ProjectInformation implementation or not.

    Read the article

  • Hybrid wireless network repeating

    - by Oli
    Summary: I'd like to use two Ubuntu computers to extend/compliment an existing wireless access point. I have a network which currently looks a bit like this: What the diagram doesn't show is the interference caused by our house. It's a wifi-blocking robot sent here from the past. The two wired computers are in areas where the signal is most blocked (not by design, just a happy co-incidence). Both wired computers have fairly good network cards. They're both Ubuntu machines and I would like to turn them into additional base stations. I know I could throw more networking hardware at this (network extenders or cable in additional, pure wireless access points) but I've got two Linux machines sitting in ideal places and I feel like they should be able to help me out. I've tried ad-hoc networks but I need something that is a lot more transparent (eg you can migrate from base to base without a connection dropping); it should look like one network to clients.

    Read the article

  • Reading train stop display names from a resource bundle

    - by Frank Nimphius
    v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VML);} .shape {behavior:url(#default#VML);} Normal 0 false false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman","serif";} In Oracle JDeveloper 11g R1, you set the display name of a train stop of an ADF bounded task flow train model by using the Oracle JDeveloper Structure Window. To do so Double-click onto the bounded task flow configuration file (XML) located in the Application Navigator so the task flow diagram open In the task flow diagram, select the view activity node for which you want to define the display name. In the Structure Window., expand the view activity node and then the train-stop node therein Add the display name element by using the right-click context menu on the train-stop node, selecting Insert inside train-stop > Display Name Edit the Display Name value with the Property Inspector Following the steps outlined above, you can define static display names – like "PF1" for page fragment 1 shown in the image below - for train stops to show at runtime. In the following, I explain how you can change the static display string to a dynamic string that reads the display label from a resource bundle so train stop labels can be internationalized. There are different strategies available for managing message bundles within an Oracle JDeveloper project. In this blog entry, I decided to build and configure the default properties file as indicated by the projects properties. To learn about the suggested file name and location, open the JDeveloper project properties (use a right mouse click on the project node in the Application Navigator and choose Project Properties. Select the Resource Bundle node to see the suggested name and location for the default message bundle. Note that this is the resource bundle that Oracle JDeveloper would automatically create when you assign a text resource to an ADF Faces component in a page. For the train stop display name, we need to create the message bundle manually as there is no context menu help available in Oracle JDeveloper. For this, use a right mouse click on the JDeveloper project and choose New | General | File from the menu and in the opened dialog. Specify the message bundle file name as the name looked up before in the project properties Resource Bundle option. Also, ensure that the file is saved in a directory structure that matches the package structure shown in the Resource Bundle dialog. For example, you would save the properties file in the View Project's src > adf > sample directory if the package structure was "adf.sample" (adf.sample.ViewControllerBundle). Edit the properties file and define key – values pairs for the train stop component. In the sample, such key value pairs are TrainStop1=Train Stop 1 TrainStop2=Train Stop 2 TrainStop3=Train Stop 3 Next, double click the faces-config.xml file and switch the opened editor to the Overview tab. Select the Application category and press the green plus icon next to the Resource Bundle section. Define the resource bundle Base Name as the package and properties file name, for example adf.sample.ViewControllerBundle Finally, define a variable name for the message bundle so the bundle can be accessed from Expression Language. For this blog example, the name is chosen as "messageBundle". <resource-bundle>   <base-name>adf.sample.ViewControllerBundle</base-name>   <var>messageBundle</var> </resource-bundle> Next, select the display-name element in the train stop node (similar to when creating the display name) and use the Property Inspector to change the static display string to an EL expression referencing the message bundle. For example: #{messageBundle.TrainStop1} At runtime, the train stops now show display names read from a message bundle (the properties file).

    Read the article

  • Node.js Lockstep Multiplayer Architecture

    - by Wakaka
    Background I'm using the lockstep model for a multiplayer Node.js/Socket.IO game in a client-server architecture. User input (mouse or keypress) is parsed into commands like 'attack' and 'move' on the client, which are sent to the server and scheduled to be executed on a certain tick. This is in contrast to sending state data to clients, which I don't wish to use due to bandwidth issues. Each tick, the server will send the list of commands on that tick (possibly empty) to each client. The server and all clients will then process the commands and simulate that tick in exactly the same way. With Node.js this is actually quite simple due to possibility of code sharing between server and client. I'll just put the deterministic simulator in the /shared folder which can be run by both server and client. The server simulation is required so that there is an authoritative version of the simulation which clients cannot alter. Problem Now, the game has many entity classes, like Unit, Item, Tree etc. Entities are created in the simulator. However, for each class, it has some methods that are shared and some that are client-specific. For instance, the Unit class has addHp method which is shared. It also has methods like getSprite (gets the image of the entity), isVisible (checks if unit can be seen by the client), onDeathInClient (does a bunch of stuff when it dies only on the client like adding announcements) and isMyUnit (quick function to check if the client owns the unit). Up till now, I have been piling all the client functions into the shared Unit class, and adding a this.game.isServer() check when necessary. For instance, when the unit dies, it will call if (!this.game.isServer()) { this.onDeathInClient(); }. This approach has worked pretty fine so far, in terms of functionality. But as the codebase grew bigger, this style of coding seems a little strange. Firstly, the client code is clearly not shared, and yet is placed under the /shared folder. Secondly, client-specific variables for each entity are also instantiated on the server entity (like unit.sprite) and can run into problems when the server cannot instantiate the variable (it doesn't have Image class like on browsers). So my question is, is there a better way to organize the client code, or is this a common way of doing things for lockstep multiplayer games? I can think of a possible workaround, but it does have its own problems. Possible workaround (with problems) I could use Javascript mixins that are only added when in a browser. Thus, in the /shared/unit.js file in the /shared folder, I would have this code at the end: if (typeof exports !== 'undefined') module.exports = Unit; else mixin(Unit, LocalUnit); Then I would have /client/localunit.js store an object LocalUnit of client-side methods for Unit. Now, I already have a publish-subscribe system in place for events in the simulator. To remove the this.game.isServer() checks, I could publish entity-specific events whenever I want the client to do something. For instance, I would do this.publish('Death') in /shared/unit.js and do this.subscribe('Death', this.onDeathInClient) in /client/localunit.js. But this would make the simulator's event listeners list on the server and the client different. Now if I want to clear all subscribed events only from the shared simulator, I can't. Of course, it is possible to create two event subscription systems - one client-specific and one shared - but now the publish() method would have to do if (!this.game.isServer()) { this.publishOnClient(event); }. All in all, the workaround off the top of my head seems pretty complicated for something as simple as separating the client and shared code. Thus, I wonder if there is an established and simpler method for better code organization, hopefully specific to Node.js games.

    Read the article

  • Simple MVVM Walkthrough – Refactored

    - by Sean Feldman
    JR has put together a good introduction post into MVVM pattern. I love kick start examples that serve the purpose well. And even more than that I love examples that also can pass the real world projects check. So I took the sample code and refactored it slightly for a few aspects that a lot of developers might raise a brow. Michael has mentioned model (entity) visibility from view. I agree on that. A few other items that don’t settle are using property names as string (magical strings) and Saver class internal casting of a parameter (custom code for each Saver command). Fixing a property names usage is a straight forward exercise – leverage expressions. Something simple like this would do the initial job: class PropertyOf<T> { public static string Resolve(Expression<Func<T, object>> expression) { var member = expression.Body as MemberExpression; return member.Member.Name; } } With this, refactoring of properties names becomes an easy task, with confidence that an old property name string will not get left behind. An updated Invoice would look like this: public class Invoice : INotifyPropertyChanged { private int id; private string receiver; public event PropertyChangedEventHandler PropertyChanged; private void OnPropertyChanged(string propertyName) { if (PropertyChanged != null) { PropertyChanged(this, new PropertyChangedEventArgs(propertyName)); } } public int Id { get { return id; } set { if (id != value) { id = value; OnPropertyChanged(PropertyOf<Invoice>.Resolve(x => x.Id)); } } } public string Receiver { get { return receiver; } set { receiver = value; OnPropertyChanged(PropertyOf<Invoice>.Resolve(x => x.Receiver)); } } } For the saver, I decided to change it a little so now it becomes a “view-model agnostic” command, one that can be used for multiple commands/view-models. Updated Saver code now accepts an action at construction time and executes that action. No more black magic internal class Command : ICommand { private readonly Action executeAction; public Command(Action executeAction) { this.executeAction = executeAction; } public bool CanExecute(object parameter) { return true; } public event EventHandler CanExecuteChanged; public void Execute(object parameter) { // no more black magic executeAction(); } } Change in InvoiceViewModel is instantiation of Saver command and execution action for the specific command. public ICommand SaveCommand { get { if (saveCommand == null) saveCommand = new Command(ExecuteAction); return saveCommand; } set { saveCommand = value; } } private void ExecuteAction() { DisplayMessage = string.Format("Thanks for creating invoice: {0} {1}", Invoice.Id, Invoice.Receiver); } This way internal knowledge of InvoiceViewModel remains in InvoiceViewModel and Command (ex-Saver) is view-model agnostic. Now the sample is not only a good introduction, but also has some practicality in it. My 5 cents on the subject. Sample code MvvmSimple2.zip

    Read the article

  • Server-side Input

    - by Thomas
    Currently in my game, the client is nothing but a renderer. When input state is changed, the client sends a packet to the server and moves the player as if it were processing the input, but the server has the final say on the position. This generally works really well, except for one big problem: falling off edges. Basically, if a player is walking towards an edge, say a cliff, and stops right before going off the edge, sometimes a second later, he'll be teleported off of the edge. This is because the "I stopped pressing W" packet is sent after the server processes the information. Here's a lag diagram to help you understand what I mean: http://i.imgur.com/Prr8K.png I could just send a "W Pressed" packet each frame for the server to process, but that would seem to be a bandwidth-costly solution. Any help is appreciated!

    Read the article

  • How do I get my character to move after adding to JFrame?

    - by A.K.
    So this is kind of a follow up on my other JPanel question that got resolved by playing around with the Layout... Now my MouseListener allows me to add a new Board(); object from its class, which is the actual game map and animator itself. But since my Board() takes Key Events from a Player Object inside the Board Class, I'm not sure if they are being started. Here's my Frame Class, where SideScroller S is the player object: package OurPackage; //Made By A.K. 5/24/12 //Contains Frame. import java.awt.BorderLayout; import java.awt.Button; import java.awt.CardLayout; import java.awt.Color; import java.awt.Container; import java.awt.Dimension; import java.awt.Graphics; import java.awt.Graphics2D; import java.awt.GridBagLayout; import java.awt.GridLayout; import java.awt.Image; import java.awt.Rectangle; import java.awt.event.ActionEvent; import java.awt.event.ActionListener; import java.awt.event.KeyEvent; import java.awt.event.MouseAdapter; import java.awt.event.MouseEvent; import java.awt.event.MouseListener; import javax.swing.*; import javax.swing.plaf.basic.BasicOptionPaneUI.ButtonActionListener; public class Frame implements MouseListener { public static boolean StartGame = false; JFrame frm = new JFrame("Action-Packed Jack"); ImageIcon img = new ImageIcon(getClass().getResource("/Images/ActionJackTitle.png")); ImageIcon StartImg = new ImageIcon(getClass().getResource("/Images/JackStart.png")); public Image Title; JLabel TitleL = new JLabel(img); public JPanel TitlePane = new JPanel(); public JPanel BoardPane = new JPanel(); JPanel cards; JButton StartB = new JButton(StartImg); Board nBoard = new Board(); static Sound nSound; public Frame() { frm.setLayout(new GridBagLayout()); cards = new JPanel(new CardLayout()); nSound = new Sound("/Sounds/BunchaJazz.wav"); TitleL.setPreferredSize(new Dimension(970, 420)); frm.add(TitleL); frm.add(cards); cards.setSize(new Dimension(150, 45)); cards.setLayout(new GridBagLayout ()); cards.add(StartB); StartB.addMouseListener(this); StartB.setPreferredSize(new Dimension(150, 45)); frm.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); frm.setSize(1200, 420); frm.setVisible(true); frm.setResizable(false); frm.setLocationRelativeTo(null); frm.pack(); } public static void main(String[] args) { SwingUtilities.invokeLater(new Runnable() { public void run() { new Frame(); } }); } public void mouseClicked(MouseEvent e) { nSound.play(); StartB.setContentAreaFilled(false); cards.remove(StartB); frm.remove(TitleL); frm.remove(cards); frm.setLayout(new GridLayout(1, 1)); frm.add(nBoard); //Add Game "Tiles" Or Content. x = 1200 nBoard.setPreferredSize(new Dimension(1200, 420)); cards.revalidate(); frm.validate(); } @Override public void mouseEntered(MouseEvent arg0) { // TODO Auto-generated method stub } @Override public void mouseExited(MouseEvent arg0) { // TODO Auto-generated method stub } @Override public void mousePressed(MouseEvent arg0) { // TODO Auto-generated method stub } @Override public void mouseReleased(MouseEvent arg0) { // TODO Auto-generated method stub } }

    Read the article

  • How would I handle input with a Game Component?

    - by Aufziehvogel
    I am currently having problems from finding my way into the component-oriented XNA design. I read an overview over the general design pattern and googled a lot of XNA examples. However, they seem to be right on the opposite site. In the general design pattern, an object (my current player) is passed to InputComponent::update(Player). This means the class will know what to do and how this will affect the game (e.g. move person vs. scroll text in a menu). Yet, in XNA GameComponent::update(GameTime) is called automatically without a reference to the current player. The only XNA examples I found built some sort of higher-level Keyboard engine into the game component like this: class InputComponent: GameComponent { public void keyReleased(Keys); public void keyPressed(Keys); public bool keyDown(Keys); public void override update(GameTime gameTime) { // compare previous state with current state and // determine if released, pressed, down or nothing } } Some others went a bit further making it possible to use a Service Locator by a design like this: interface IInputComponent { public void downwardsMovement(Keys); public void upwardsMovement(Keys); public bool pausedGame(Keys); // determine which keys pressed and what that means // can be done for different inputs in different implementations public void override update(GameTime); } Yet, then I am wondering if it is possible to design an input class to resolve all possible situations. Like in a menu a mouse click can mean "click that button", but in game play it can mean "shoot that weapon". So if I am using such a modular design with game components for input, how much logic is to be put into the InputComponent / KeyboardComponent / GamepadComponent and where is the rest handled? What I had in mind, when I heard about Game Components and Service Locator in XNA was something like this: use Game Components to run the InputHandler automatically in the loop use Service Locator to be able to switch input at runtime (i.e. let player choose if he wants to use a gamepad or a keyboard; or which shall be player 1 and which player 2). However, now I cannot see how this can be done. First code example does not seem flexible enough, as on a game pad you could require some combination of buttons for something that is possible on keyboard with only one button or with the mouse) The second code example seems really hard to implement, because the InputComponent has to know in which context we are currently. Moreover, you could imagine your application to be multi-layered and let the key-stroke go through all layers to the bottom-layer which requires a different behaviour than the InputComponent would have guessed from the top-layer. The general design pattern with passing the Player to update() does not have a representation in XNA and I also cannot see how and where to decide which class should be passed to update(). At most time of course the player, but sometimes there could be menu items you have to or can click I see that the question in general is already dealt with here, but probably from a more elobate point-of-view. At least, I am not smart enough in game development to understand it. I am searching for a rather code-based example directly for XNA. And the answer there leaves (a noob like) me still alone in how the object that should receive the detected event is chosen. Like if I have a key-up event, should it go to the text box or to the player?

    Read the article

  • Sprinkle Some Magik on that Java Virtual Machine

    - by Jim Connors
    GE Energy, through its Smallworld subsidiary, has been providing geospatial software solutions to the utility and telco markets for over 20 years.  One of the fundamental building blocks of their technology is a dynamically-typed object oriented programming language called Magik.  Like Java, Magik source code is compiled down to bytecodes that run on a virtual machine -- in this case the Magik Virtual Machine. Throughout the years, GE has invested considerable engineering talent in the support and maintenance of this virtual machine.  At the same time vast energy and resources have been invested in the Java Virtual Machine. The question for GE has been whether to continue to make that investment on its own or to leverage massive effort provided by the Java community? Utilizing the Java Virtual Machine instead of maintaining its own virtual machine would give GE more opportunity to focus on application solutions.   At last count, there are dozens, perhaps hundreds of examples of programming languages that have been hosted atop the Java Virtual Machine.  Prior to the release of Java 7, that effort, although certainly possible, was generally less than optimal for languages like Magik because of its dynamic nature.  Java, as a statically typed language had little use for this capability.  In the quest to be a more universal virtual machine, Java 7, via JSR-292, introduced a new bytecode called invokedynamic.  In short, invokedynamic affords a more flexible method call mechanism needed by dynamic languages like Magik. With this new capability GE Energy has succeeded in hosting their Magik environment on top of the Java Virtual Machine.  So you may ask, why would GE wish to do such a thing?  The benefits are many: Competitors to GE Energy claimed that the Magik environment was proprietary.  By utilizing the Java Virtual Machine, that argument gets put to bed.  JVM development is done in open source, where contributions are made world-wide by all types of organizations and individuals. The unprecedented wealth of class libraries and applications written for the Java platform are now opened up to Magik/JVM platform as first class citizens. In addition, the Magik/JVM solution vastly increases the developer pool to include the 9 million Java developers -- the largest developer community on the planet. Applications running on the JVM showed substantial performance gains, in some cases as much as a 5x speed up over the original Magik platform. Legacy Magik applications can still run on the original platform.  They can be seamlessly migrated to run on the JVM by simply recompiling the source code. GE can now leverage the huge Java community.  Undeniably the best virtual machine ever created, hundreds if not thousands of world class developers continually improve, poke, prod and scrutinize all aspects of the Java platform.  As enhancements are made, GE automatically gains access to these. As Magik has little in the way of support for multi-threading, GE will benefit from current and future Java offerings (e.g. lambda expressions) that aim to further facilitate multi-core/multi-threaded application development. As the JVM is available for many more platforms, it broadens the reach of Magik, including the potential to run on a class devices never envisioned just a few short years ago.  For example, Java SE compatible runtime environments are available for popular embedded ARM/Intel/PowerPC configurations that could theoretically host this software too. As compared to other JVM language projects, the Magik integration differs in that it represents a serious commercial entity betting a sizable part of its business on the success of this effort.  Expect to see announcements not only from General Electric, but other organizations as they realize the benefits of utilizing the Java Virtual Machine.

    Read the article

  • Automated architecture validation

    - by P.Brian.Mackey
    I am aware of the fact that TFS 2010 ultimate edition can create and validate architecture diagrams. For example, I can create a new modeling project add Layer Diagram Add Layer called View Add BL Layer Add DL layer. Then I can validate this architecture as part of the build process when someone tries to check code into TFS. In other words, if the View references the DL then the compilation process will fail and the checkin will not be allowed. For those without an MSDN ultimate license, can FxCop or some 3rd party utility be used to validate architecture in an automated fashion? I prefer a TFS install-able plugin, but a local VS plugin will do.

    Read the article

  • Logging errors caused by exceptions deep in the application

    - by Kaleb Pederson
    What are best-practices for logging deep within an application's source? Is it bad practice to have multiple event log entries for a single error? For example, let's say that I have an ETL system whose transform step involves: a transformer, pipeline, processing algorithm, and processing engine. In brief, the transformer takes in an input file, parses out records, and sends the records through the pipeline. The pipeline aggregates the results of the processing algorithm (which could do serial or parallel processing). The processing algorithm sends each record through one or more processing engines. So, I have at least four levels: Transformer - Pipeline - Algorithm - Engine. My code might then look something like the following: class Transformer { void Process(InputSource input) { try { var inRecords = _parser.Parse(input.Stream); var outRecords = _pipeline.Transform(inRecords); } catch (Exception ex) { var inner = new ProcessException(input, ex); _logger.Error("Unable to parse source " + input.Name, inner); throw inner; } } } class Pipeline { IEnumerable<Result> Transform(IEnumerable<Record> records) { // NOTE: no try/catch as I have no useful information to provide // at this point in the process var results = _algorithm.Process(records); // examine and do useful things with results return results; } } class Algorithm { IEnumerable<Result> Process(IEnumerable<Record> records) { var results = new List<Result>(); foreach (var engine in Engines) { foreach (var record in records) { try { engine.Process(record); } catch (Exception ex) { var inner = new EngineProcessingException(engine, record, ex); _logger.Error("Engine {0} unable to parse record {1}", engine, record); throw inner; } } } } } class Engine { Result Process(Record record) { for (int i=0; i<record.SubRecords.Count; ++i) { try { Validate(record.subRecords[i]); } catch (Exception ex) { var inner = new RecordValidationException(record, i, ex); _logger.Error( "Validation of subrecord {0} failed for record {1}", i, record ); } } } } There's a few important things to notice: A single error at the deepest level causes three log entries (ugly? DOS?) Thrown exceptions contain all important and useful information Logging only happens when failure to do so would cause loss of useful information at a lower level. Thoughts and concerns: I don't like having so many log entries for each error I don't want to lose important, useful data; the exceptions contain all the important but the stacktrace is typically the only thing displayed besides the message. I can log at different levels (e.g., warning, informational) The higher level classes should be completely unaware of the structure of the lower-level exceptions (which may change as the different implementations are replaced). The information available at higher levels should not be passed to the lower levels. So, to restate the main questions: What are best-practices for logging deep within an application's source? Is it bad practice to have multiple event log entries for a single error?

    Read the article

  • Rotate a vector by given degrees (errors when value over 90)

    - by Ivan
    I created a function to rotate a vector by a given number of degrees. It seems to work fine when given values in the range -90 to +90. Beyond this, the amount of rotation decreases, i.e., I think objects are rotating the same amount for 80 and 100 degrees. I think this diagram might be a clue to my problem, but I don't quite understand what it's showing. Must I use a different trig function depending on the radians value? The programming examples I've been able to find look similar to mine (not varying the trig functions). Vector2D.prototype.rotate = function(angleDegrees) { var radians = angleDegrees * (Math.PI / 180); var ca = Math.cos(radians); var sa = Math.sin(radians); var rx = this.x*ca - this.y*sa; var ry = this.x*sa + this.y*ca; this.x = rx; this.y = ry; };

    Read the article

  • How to Draw Lines on the Screen

    - by Geertjan
    I've seen occasional questions on mailing lists about how to use the NetBeans Visual Library to draw lines, e.g., to make graphs or diagrams of various kinds by drawing on the screen. So, rather than drag/drop causing widgets to be added, you'd want widgets to be added on mouse clicks, and you'd want to be able to connect those widgets together somehow. Via the code below, you'll be able to click on the screen, which causes a dot to appear. When you have multiple dots, you can hold down the Ctrl key and connect them together. A guiding line appears to help you position the dots exactly in line with each other. When you go to File | Print, you'll be able to preview and print the diagram you've created. A picture that speaks 1000 words: Here's the code: public final class PlotterTopComponent extends TopComponent { private final Scene scene; private final LayerWidget baseLayer; private final LayerWidget connectionLayer; private final LayerWidget interactionLayer; public PlotterTopComponent() { initComponents(); setName(Bundle.CTL_PlotterTopComponent()); setToolTipText(Bundle.HINT_PlotterTopComponent()); setLayout(new BorderLayout()); this.scene = new Scene(); this.baseLayer = new LayerWidget(scene); this.interactionLayer = new LayerWidget(scene); this.connectionLayer = new LayerWidget(scene); scene.getActions().addAction(new SceneCreateAction()); scene.addChild(baseLayer); scene.addChild(interactionLayer); scene.addChild(connectionLayer); add(scene.createView(), BorderLayout.CENTER); putClientProperty("print.printable", true); } private class SceneCreateAction extends WidgetAction.Adapter { @Override public WidgetAction.State mousePressed(Widget widget, WidgetAction.WidgetMouseEvent event) { if (event.getClickCount() == 1) { if (event.getButton() == MouseEvent.BUTTON1 || event.getButton() == MouseEvent.BUTTON2) { baseLayer.addChild(new BlackDotWidget(scene, widget, event)); repaint(); return WidgetAction.State.CONSUMED; } } return WidgetAction.State.REJECTED; } } private class BlackDotWidget extends ImageWidget { public BlackDotWidget(Scene scene, Widget widget, WidgetAction.WidgetMouseEvent event) { super(scene); setImage(ImageUtilities.loadImage("org/netbeans/plotter/blackdot.gif")); setPreferredLocation(widget.convertLocalToScene(event.getPoint())); getActions().addAction( ActionFactory.createExtendedConnectAction( connectionLayer, new BlackDotConnectProvider())); getActions().addAction( ActionFactory.createAlignWithMoveAction( baseLayer, interactionLayer, ActionFactory.createDefaultAlignWithMoveDecorator())); } } private class BlackDotConnectProvider implements ConnectProvider { @Override public boolean isSourceWidget(Widget source) { return source instanceof BlackDotWidget && source != null ? true : false; } @Override public ConnectorState isTargetWidget(Widget src, Widget trg) { return src != trg && trg instanceof BlackDotWidget ? ConnectorState.ACCEPT : ConnectorState.REJECT; } @Override public boolean hasCustomTargetWidgetResolver(Scene arg0) { return false; } @Override public Widget resolveTargetWidget(Scene arg0, Point arg1) { return null; } @Override public void createConnection(Widget source, Widget target) { ConnectionWidget conn = new ConnectionWidget(scene); conn.setTargetAnchor(AnchorFactory.createCircularAnchor(target, 10)); conn.setSourceAnchor(AnchorFactory.createCircularAnchor(source, 10)); connectionLayer.addChild(conn); } } ... ... ... Note: The code above was written based on the Visual Library tutorials on the NetBeans Platform Learning Trail, in particular via the "ConnectScene" sample in the "test.connect" package, which is part of the very long list of Visual Library samples referred to in the Visual Library tutorials on the NetBeans Platform Learning Trail. The next steps are to add a reconnect action and an action to delete a dot by double-clicking on it. Would be interesting to change the connecting line so that the length of the line were to be shown, i.e., as you draw a line from one dot to another, you'd see a constantly changing number representing the current distance of the connecting line. Also, once lines are connected to form a rectangle, would be cool to be able to write something within that rectangle. Then one could really create diagrams, which would be pretty cool.

    Read the article

  • What are the disadvantages of self-encapsulation?

    - by Dave Jarvis
    Background Tony Hoare's billion dollar mistake was the invention of null. Subsequently, a lot of code has become riddled with null pointer exceptions (segfaults) when software developers try to use (dereference) uninitialized variables. In 1989, Wirfs-Brock and Wikerson wrote: Direct references to variables severely limit the ability of programmers to re?ne existing classes. The programming conventions described here structure the use of variables to promote reusable designs. We encourage users of all object-oriented languages to follow these conventions. Additionally, we strongly urge designers of object-oriented languages to consider the effects of unrestricted variable references on reusability. Problem A lot of software, especially in Java, but likely in C# and C++, often uses the following pattern: public class SomeClass { private String someAttribute; public SomeClass() { this.someAttribute = "Some Value"; } public void someMethod() { if( this.someAttribute.equals( "Some Value" ) ) { // do something... } } public void setAttribute( String s ) { this.someAttribute = s; } public String getAttribute() { return this.someAttribute; } } Sometimes a band-aid solution is used by checking for null throughout the code base: public void someMethod() { assert this.someAttribute != null; if( this.someAttribute.equals( "Some Value" ) ) { // do something... } } public void anotherMethod() { assert this.someAttribute != null; if( this.someAttribute.equals( "Some Default Value" ) ) { // do something... } } The band-aid does not always avoid the null pointer problem: a race condition exists. The race condition is mitigated using: public void anotherMethod() { String someAttribute = this.someAttribute; assert someAttribute != null; if( someAttribute.equals( "Some Default Value" ) ) { // do something... } } Yet that requires two statements (assignment to local copy and check for null) every time a class-scoped variable is used to ensure it is valid. Self-Encapsulation Ken Auer's Reusability Through Self-Encapsulation (Pattern Languages of Program Design, Addison Wesley, New York, pp. 505-516, 1994) advocated self-encapsulation combined with lazy initialization. The result, in Java, would resemble: public class SomeClass { private String someAttribute; public SomeClass() { setAttribute( "Some Value" ); } public void someMethod() { if( getAttribute().equals( "Some Value" ) ) { // do something... } } public void setAttribute( String s ) { this.someAttribute = s; } public String getAttribute() { String someAttribute = this.someAttribute; if( someAttribute == null ) { setAttribute( createDefaultValue() ); } return someAttribute; } protected String createDefaultValue() { return "Some Default Value"; } } All duplicate checks for null are superfluous: getAttribute() ensures the value is never null at a single location within the containing class. Efficiency arguments should be fairly moot -- modern compilers and virtual machines can inline the code when possible. As long as variables are never referenced directly, this also allows for proper application of the Open-Closed Principle. Question What are the disadvantages of self-encapsulation, if any? (Ideally, I would like to see references to studies that contrast the robustness of similarly complex systems that use and don't use self-encapsulation, as this strikes me as a fairly straightforward testable hypothesis.)

    Read the article

  • Is there a simple, safe way to trigger a GPU lockup on a susceptible computer?

    - by Abe
    Answers to my previous question, Ubuntu 12.04 froze, requiring powercycle. What should I look / grep for in the logs?, have led me to suspect that my computer is experiencing an intermittent GPU lockup. It has been happening about once a week, usually when I am using Chrome. Today it happened when I was creating a diagram on lucidchart I have a Dell Optiplex 755 with an ATI Radeon HD 2400 XT and dual monitors running in Xinerama mode. I am using 12.04 with the proprietary ATI driver installed. When the computer locks-up, I can still ssh in. And I would like to follow the instructions on reporting this provided at https://wiki.ubuntu.com/X/Troubleshooting/Freeze Is there a (safe) way to cause a GPU lockup so that I can go ahead and file a bug, rather than waiting until it happens again?

    Read the article

  • How do you formulate the Domain Model in Domain Driven Design properly (Bounded Contexts, Domains)?

    - by lko
    Say you have a few applications which deal with a few different Core Domains. The examples are made up and it's hard to put a real example with meaningful data together (concisely). In Domain Driven Design (DDD) when you start looking at Bounded Contexts and Domains/Sub Domains, it says that a Bounded Context is a "phase" in a lifecycle. An example of Context here would be within an ecommerce system. Although you could model this as a single system, it would also warrant splitting into separate Contexts. Each of these areas within the application have their own Ubiquitous Language, their own Model, and a way to talk to other Bounded Contexts to obtain the information they need. The Core, Sub, and Generic Domains are the area of expertise and can be numerous in complex applications. Say there is a long process dealing with an Entity for example a Book in a core domain. Now looking at the Bounded Contexts there can be a number of phases in the books life-cycle. Say outline, creation, correction, publish, sale phases. Now imagine a second core domain, perhaps a store domain. The publisher has its own branch of stores to sell books. The store can have a number of Bounded Contexts (life-cycle phases) for example a "Stock" or "Inventory" context. In the first domain there is probably a Book database table with basically just an ID to track the different book Entities in the different life-cycles. Now suppose you have 10+ supporting domains e.g. Users, Catalogs, Inventory, .. (hard to think of relevant examples). For example a DomainModel for the Book Outline phase, the Creation phase, Correction phase, Publish phase, Sale phase. Then for the Store core domain it probably has a number of life-cycle phases. public class BookId : Entity { public long Id { get; set; } } In the creation phase (Bounded Context) the book could be a simple class. public class Book : BookId { public string Title { get; set; } public List<string> Chapters { get; set; } //... } Whereas in the publish phase (Bounded Context) it would have all the text, release date etc. public class Book : BookId { public DateTime ReleaseDate { get; set; } //... } The immediate benefit I can see in separating by "life-cycle phase" is that it's a great way to separate business logic so there aren't mammoth all-encompassing Entities nor Domain Services. A problem I have is figuring out how to concretely define the rules to the physical layout of the Domain Model. A. Does the Domain Model get "modeled" so there are as many bounded contexts (separate projects etc.) as there are life-cycle phases across the core domains in a complex application? Edit: Answer to A. Yes, according to the answer by Alexey Zimarev there should be an entire "Domain" for each bounded context. B. Is the Domain Model typically arranged by Bounded Contexts (or Domains, or both)? Edit: Answer to B. Each Bounded Context should have its own complete "Domain" (Service/Entities/VO's/Repositories) C. Does it mean there can easily be 10's of "segregated" Domain Models and multiple projects can use it (the Entities/Value Objects)? Edit: Answer to C. There is a complete "Domain" for each Bounded Context and the Domain Model (Entity/VO layer/project) isn't "used" by the other Bounded Contexts directly, only via chosen paths (i.e. via Domain Events). The part that I am trying to figure out is how the Domain Model is actually implemented once you start to figure out your Bounded Contexts and Core/Sub Domains, particularly in complex applications. The goal is to establish the definitions which can help to separate Entities between the Bounded Contexts and Domains.

    Read the article

  • Strings in .NET are Enumerable

    - by Scott Dorman
    It seems like there is always some confusion concerning strings in .NET. This is both from developers who are new to the Framework and those that have been working with it for quite some time. Strings in the .NET Framework are represented by the System.String class, which encapsulates the data manipulation, sorting, and searching methods you most commonly perform on string data. In the .NET Framework, you can use System.String (which is the actual type name or the language alias (for C#, string). They are equivalent so use whichever naming convention you prefer but be consistent. Common usage (and my preference) is to use the language alias (string) when referring to the data type and String (the actual type name) when accessing the static members of the class. Many mainstream programming languages (like C and C++) treat strings as a null terminated array of characters. The .NET Framework, however, treats strings as an immutable sequence of Unicode characters which cannot be modified after it has been created. Because strings are immutable, all operations which modify the string contents are actually creating new string instances and returning those. They never modify the original string data. There is one important word in the preceding paragraph which many people tend to miss: sequence. In .NET, strings are treated as a sequence…in fact, they are treated as an enumerable sequence. This can be verified if you look at the class declaration for System.String, as seen below: // Summary:// Represents text as a series of Unicode characters.public sealed class String : IEnumerable, IComparable, IComparable<string>, IEquatable<string> The first interface that String implements is IEnumerable, which has the following definition: // Summary:// Exposes the enumerator, which supports a simple iteration over a non-generic// collection.public interface IEnumerable{ // Summary: // Returns an enumerator that iterates through a collection. // // Returns: // An System.Collections.IEnumerator object that can be used to iterate through // the collection. IEnumerator GetEnumerator();} As a side note, System.Array also implements IEnumerable. Why is that important to know? Simply put, it means that any operation you can perform on an array can also be performed on a string. This allows you to write code such as the following: string s = "The quick brown fox";foreach (var c in s){ System.Diagnostics.Debug.WriteLine(c);}for (int i = 0; i < s.Length; i++){ System.Diagnostics.Debug.WriteLine(s[i]);} If you executed those lines of code in a running application, you would see the following output in the Visual Studio Output window: In the case of a string, these enumerable or array operations return a char (System.Char) rather than a string. That might lead you to believe that you can get around the string immutability restriction by simply treating strings as an array and assigning a new character to a specific index location inside the string, like this: string s = "The quick brown fox";s[2] = 'a';   However, if you were to write such code, the compiler will promptly tell you that you can’t do it: This preserves the notion that strings are immutable and cannot be changed once they are created. (Incidentally, there is no built in way to replace a single character like this. It can be done but it would require converting the string to a character array, changing the appropriate indexed location, and then creating a new string.)

    Read the article

  • The Enterprise Architect (EA) diary - day 22 (from business processes to implemented applications)

    - by nattYGUR
    After spending time on keeping our repository up to date (add new ETRM application and related data flows as well as changing databases to DB clusters), collecting more data for the root cause analysis and spending time for writing proposal to creating new software infrastructure team ( that will help us to clean the table from a pile of problems that just keep on growing due to BAU control over IT dev team resources). I spend time to adapt our EA tool to support a diagram flow from high level business processes to implementation of new applications that will better support the business process. http://www.theeagroup.net/ea/Default.aspx?tabid=1&newsType=ArticleView&articleId=195

    Read the article

  • What's the difference between find and findstr commands in Windows?

    - by Prashant Bhate
    In Windows, what are the differences between find and findstr commands? Both seems to search text in files: find c:\>find /? Searches for a text string in a file or files. FIND [/V] [/C] [/N] [/I] [/OFF[LINE]] "string" [[drive:][path]filename[ ...]] /V Displays all lines NOT containing the specified string. /C Displays only the count of lines containing the string. /N Displays line numbers with the displayed lines. /I Ignores the case of characters when searching for the string. /OFF[LINE] Do not skip files with offline attribute set. "string" Specifies the text string to find. [drive:][path]filename Specifies a file or files to search. If a path is not specified, FIND searches the text typed at the prompt or piped from another command. findstr c:\>findstr /? Searches for strings in files. FINDSTR [/B] [/E] [/L] [/R] [/S] [/I] [/X] [/V] [/N] [/M] [/O] [/P] [/F:file] [/C:string] [/G:file] [/D:dir list] [/A:color attributes] [/OFF[LINE]] strings [[drive:][path]filename[ ...]] /B Matches pattern if at the beginning of a line. /E Matches pattern if at the end of a line. /L Uses search strings literally. /R Uses search strings as regular expressions. /S Searches for matching files in the current directory and all subdirectories. /I Specifies that the search is not to be case-sensitive. /X Prints lines that match exactly. /V Prints only lines that do not contain a match. /N Prints the line number before each line that matches. /M Prints only the filename if a file contains a match. /O Prints character offset before each matching line. /P Skip files with non-printable characters. /OFF[LINE] Do not skip files with offline attribute set. /A:attr Specifies color attribute with two hex digits. See "color /?" /F:file Reads file list from the specified file(/ stands for console). /C:string Uses specified string as a literal search string. /G:file Gets search strings from the specified file(/ stands for console). /D:dir Search a semicolon delimited list of directories strings Text to be searched for. [drive:][path]filename Specifies a file or files to search. Use spaces to separate multiple search strings unless the argument is prefixed with /C. For example, 'FINDSTR "hello there" x.y' searches for "hello" or "there" in file x.y. 'FINDSTR /C:"hello there" x.y' searches for "hello there" in file x.y. Regular expression quick reference: . Wildcard: any character * Repeat: zero or more occurances of previous character or class ^ Line position: beginning of line $ Line position: end of line [class] Character class: any one character in set [^class] Inverse class: any one character not in set [x-y] Range: any characters within the specified range \x Escape: literal use of metacharacter x \<xyz Word position: beginning of word xyz\> Word position: end of word For full information on FINDSTR regular expressions refer to the online Command Reference.

    Read the article

  • Diagramming software with API allowing high customisation of shapes and actions

    - by jenson-button-event
    I am after something like Visio or Lucid. A relatively simple charting/diagramming tool, to build tree-like structures from (my) pre-defined nodes (squares), but with a powerful API. Requirements: limit the type of objects allowed to be dropped on the diagram validate a model (e.g. node of type A must precede node of type B; must enter node Title) export a model import a model Our domain is very specific, and its a tool we'd want to offer to some of our power users. The $500 Visio licence isn't really within the business model. I'll put no constraints on framework or deployment (web or desktop) - is there anything out there?

    Read the article

  • Truly useful UML diagrams

    - by eversor
    UML has a jungle of Diagrams. Profile Diagrams, Class Diagrams, Package Diagrams... However, (IMH-and-not-too-experienced-O) I quite see that doing each and every diagram is overkill. Therefore, which UML Diagrams are more suitable in a web context, more expecificly a blog (we want to build it from scratchs). I understand that just because I used UML Diagrams does not imply that our code would be great and brilliant... but, it certainly would be better than just unplanified code...

    Read the article

< Previous Page | 477 478 479 480 481 482 483 484 485 486 487 488  | Next Page >