Search Results

Search found 14412 results on 577 pages for 'oracle sqldeveloper'.

Page 493/577 | < Previous Page | 489 490 491 492 493 494 495 496 497 498 499 500  | Next Page >

  • CON6714 - Mixed-Language Development: Leveraging Native Code from Java

    - by Darryl Gove
    Here's the abstract from my JavaOne talk: There are some situations in which it is necessary to call native code (C/C++ compiled code) from Java applications. This session describes how to do this efficiently and how to performance-tune the resulting applications. The objectives for the session are: Explain reasons for using native code in Java applications Describe pitfalls of calling native code from Java Discuss performance-tuning of Java apps that use native code I'll cover how to call native code from Java, debugging native code, and then I'll dig into performance tuning the code. The talk is not going too deep on performance tuning - focusing on the JNI specific topics; I'll do a bit more about performance tuning in my OpenWorld talk later in the day.

    Read the article

  • Netcat I/O enhancements

    - by user13277689
    When Netcat integrated into OpenSolaris it was already clear that there will be couple of enhancements needed. The biggest set of the changes made after Solaris 11 Express was released brings various I/O enhancements to netcat shipped with Solaris 11. Also, since Solaris 11, the netcat package is installed by default in all distribution forms (live CD, text install, ...). Now, let's take a look at the new functionality: /usr/bin/netcat alternative program name (symlink) -b bufsize I/O buffer size -E use exclusive bind for the listening socket -e program program to execute -F no network close upon EOF on stdin -i timeout extension of timeout specification -L timeout linger on close timeout -l -p port addr previously not allowed usage -m byte_count Quit after receiving byte_count bytes -N file pattern for UDP scanning -I bufsize size of input socket buffer -O bufsize size of output socket buffer -R redir_spec port redirection addr/port[/{tcp,udp}] syntax of redir_spec -Z bypass zone boundaries -q timeout timeout after EOF on stdin Obviously, the Swiss army knife of networking tools just got a bit thicker. While by themselves the options are pretty self explanatory, their combination together with other options, context of use or boundary values of option arguments make it possible to construct small but powerful tools. For example: the port redirector allows to convert TCP stream to UDP datagrams. the buffer size specification makes it possible to send one byte TCP segments or to produce IP fragments easily. the socket linger option can be used to produce TCP RST segments by setting the timeout to 0 execute option makes it possible to simulate TCP/UDP servers or clients with shell/python/Perl/whatever script etc. If you find some other helpful ways use please share via comments. Manual page nc(1) contains more details, along with examples on how to use some of these new options.

    Read the article

  • JavaOne 2012 session slides: "Dev Berkeley DB & DB Mobile Server for Java Embedded Tech"

    - by hinkmond
    The latest JavaOne 2012 slides are available on the Web. Here's the presentation that Eric Jensen and I did on "Developing Berkeley DB & DB Mobile Server for Java Embedded Technology". Enjoy! See: Click here for the slides in a new window It was fun to present this talk at JavaOne 2012 with Eric. We had some good questions from the audience. Let me know in the Comments if you have any further questions. I'll pass all the good questions to Eric and keep the bad questions for myself. Hinkmond

    Read the article

  • OSB 11g & SAP – Single Channel/Program ID for Multiple IDOCs

    - by Shub Lahiri, A-Team
    Background This note is a supplement to the blog entry, SOA 11g & SAP – Single Channel/Program ID for Multiple IDOCs by Greg Mally. Greg has shown how a single SOA Suite composite can be used with iWay Adapters to receive multiple IDOC types via a single channel in the adapter, corresponding to a single programID on the SAP system. We will try to address the same requirements within the OSB framework here. Project Built - Design Time The basic build of an OSB project with iWay SAP Adapter, as seen in another entry in this blog, consists of working in OSB Design console and Application Explorer. OSB Design Time - Part 1 We will create a placeholder project first in OSB with a proper directory structure, so that we can export the WSDL, XSD and the JCA binding information from Application Explorer directly into this project. Application Explorer - iWay Design Time Tool Receiving IDOCs is classified as an inbound event within Application Explorer. For setting up events, a channel is first defined (e.g. iDoc_Channel) using the same PROGRAMID (RFC destination), as defined within SAP for the OSB server. Next, the same channel is used to export the JCA Inbound Event artifacts for the candidate IDOC, e.g. DEBMAS06 directly to the pre-created OSB project. Note that the validation for schema has been turned off. As a result, this will allow the adapter, at runtime, to use a single channel to receive multiple IDOC types from SAP and pass them on to the OSB runtime engine without any validation. In other words, we do not have to repeat the above step for each IDOC type. OSB Design Time - Part 2 Create 2 simple XML based Business Services to write to a file, e.g.  SAP_DEBMAS_File and SAP_MATMAS_File. Next, generate a Proxy Service using the JCA binding file exported from Application Explorer in the previous section. In the generated proxy service, edit the message flow and add a route node. Add a routing table in the route node with the following routing function. fn:local-name-from-QName(fn:node-name($body/*[1])) This function takes advantage of the fact that the XML payload at runtime, after translation by adapter, has the IDOC type as the top element. With the routing function in place, build the routing table to add 2 branches to route the IDOCs to the appropriate Business Service for writing the XML payload to files in separate directories. This completes the build of the OSB project. Testing - Run-Time After deployment and activation, the SAP adapter will wait to receive multiple types of IDOCs sent from the SAP system using a single channel. Upon receipt of the IDOCs, the OSB project will route them appropriately to save the corresponding XML payloads for different IDOC types in different directories.

    Read the article

  • Key ATG architecture principles

    - by Glen Borkowski
    Overview The purpose of this article is to describe some of the important foundational concepts of ATG.  This is not intended to cover all areas of the ATG platform, just the most important subset - the ones that allow ATG to be extremely flexible, configurable, high performance, etc.  For more information on these topics, please see the online product manuals. Modules The first concept is called the 'ATG Module'.  Simply put, you can think of modules as the building blocks for ATG applications.  The ATG development team builds the out of the box product using modules (these are the 'out of the box' modules).  Then, when a customer is implementing their site, they build their own modules that sit 'on top' of the out of the box ATG modules.  Modules can be very simple - containing minimal definition, and perhaps a small amount of configuration.  Alternatively, a module can be rather complex - containing custom logic, database schema definitions, configuration, one or more web applications, etc.  Modules generally will have dependencies on other modules (the modules beneath it).  For example, the Commerce Reference Store module (CRS) requires the DCS (out of the box commerce) module. Modules have a ton of value because they provide a way to decouple a customers implementation from the out of the box ATG modules.  This allows for a much easier job when it comes time to upgrade the ATG platform.  Modules are also a very useful way to group functionality into a single package which can be leveraged across multiple ATG applications. One very important thing to understand about modules, or more accurately, ATG as a whole, is that when you start ATG, you tell it what module(s) you want to start.  One of the first things ATG does is to look through all the modules you specified, and for each one, determine a list of modules that are also required to start (based on each modules dependencies).  Once this final, ordered list is determined, ATG continues to boot up.  One of the outputs from the ordered list of modules is that each module can contain it's own classes and configuration.  During boot, the ordered list of modules drives the unified classpath and configpath.  This is what determines which classes override others, and which configuration overrides other configuration.  Think of it as a layered approach. The structure of a module is well defined.  It simply looks like a folder in a filesystem that has certain other folders and files within it.  Here is a list of items that can appear in a module: MyModule: META-INF - this is required, along with a file called MANIFEST.MF which describes certain properties of the module.  One important property is what other modules this module depends on. config - this is typically present in most modules.  It defines a tree structure (folders containing properties files, XML, etc) that maps to ATG components (these are described below). lib - this contains the classes (typically in jarred format) for any code defined in this module j2ee - this is where any web-apps would be stored. src - in case you want to include the source code for this module, it's standard practice to put it here sql - if your module requires any additions to the database schema, you should place that schema here Here's a screenshots of a module: Modules can also contain sub-modules.  A dot-notation is used when referring to these sub-modules (i.e. MyModule.Versioned, where Versioned is a sub-module of MyModule). Finally, it is important to completely understand how modules work if you are going to be able to leverage them effectively.  There are many different ways to design modules you want to create, some approaches are better than others, especially if you plan to share functionality between multiple different ATG applications. Components A component in ATG can be thought of as a single item that performs a certain set of related tasks.  An example could be a ProductViews component - used to store information about what products the current customer has viewed.  Components have properties (also called attributes).  The ProductViews component could have properties like lastProductViewed (stores the ID of the last product viewed) or productViewList (stores the ID's of products viewed in order of their being viewed).  The previous examples of component properties would typically also offer get and set methods used to retrieve and store the property values.  Components typically will also offer other types of useful methods aside from get and set.  In the ProductViewed component, we might want to offer a hasViewed method which will tell you if the customer has viewed a certain product or not. Components are organized in a tree like hierarchy called 'nucleus'.  Nucleus is used to locate and instantiate ATG Components.  So, when you create a new ATG component, it will be able to be found 'within' nucleus.  Nucleus allows ATG components to reference one another - this is how components are strung together to perform meaningful work.  It's also a mechanism to prevent redundant configuration - define it once and refer to it from everywhere. Here is a screenshot of a component in nucleus:  Components can be extremely simple (i.e. a single property with a get method), or can be rather complex offering many properties and methods.  To be an ATG component, a few things are required: a class - you can reference an existing out of the box class or you could write your own a properties file - this is used to define your component the above items must be located 'within' nucleus by placing them in the correct spot in your module's config folder Within the properties file, you will need to point to the class you want to use: $class=com.mycompany.myclass You may also want to define the scope of the class (request, session, or global): $scope=session In summary, ATG Components live in nucleus, generally have links to other components, and provide some meaningful type of work.  You can configure components as well as extend their functionality by writing code. Repositories Repositories (a.k.a. Data Anywhere Architecture) is the mechanism that ATG uses to access data primarily stored in relational databases, but also LDAP or other backend systems.  ATG applications are required to be very high performance, and data access is critical in that if not handled properly, it could create a bottleneck.  ATG's repository functionality has been around for a long time - it's proven to be extremely scalable.  Developers new to ATG need to understand how repositories work as this is a critical aspect of the ATG architecture.   Repositories essentially map relational tables to objects in ATG, as well as handle caching.  ATG defines many repositories out of the box (i.e. user profile, catalog, orders, etc), and this is comprised of both the underlying database schema along with the associated repository definition files (XML).  It is fully expected that implementations will extend / change the out of the box repository definitions, so there is a prescribed approach to doing this.  The first thing to be sure of is to encapsulate your repository definition additions / changes within your own module (as described above).  The other important best practice is to never modify the out of the box schema - in other words, don't add columns to existing ATG tables, just create your own new tables.  These will help ensure you can easily upgrade your application at a later date. xml-combination As mentioned earlier, when you start ATG, the order of the modules will determine the final configpath.  Files within this configpath are 'layered' such that modules on top can override configuration of modules below it.  This is the same concept for repository definition files.  If you want to add a few properties to the out of the box user profile, you simply need to create an XML file containing only your additions, and place it in the correct location in your module.  At boot time, your definition will be combined (hence the term xml-combination) with the lower, out of the box modules, with the result being a user profile that contains everything (out of the box, plus your additions).  Aside from just adding properties, there are also ways to remove and change properties. types of properties Aside from the normal 'database backed' properties, there are a few other interesting types: transient properties - these are properties that are in memory, but not backed by any database column.  These are useful for temporary storage. java-backed properties - by nature, these are transient, but in addition, when you access this property (by called the get method) instead of looking up a piece of data, it performs some logic and returns the results.  'Age' is a good example - if you're storing a birth date on the profile, but your business rules are defined in terms of someones age, you could create a simple java-backed property to look at the birth date and compare it to the current date, and return the persons age. derived properties - this is what allows for inheritance within the repository structure.  You could define a property at the category level, and have the product inherit it's value as well as override it.  This is useful for setting defaults, with the ability to override. caching There are a number of different caching modes which are useful at different times depending on the nature of the data being cached.  For example, the simple cache mode is useful for things like user profiles.  This is because the user profile will typically only be used on a single instance of ATG at one time.  Simple cache mode is also useful for read-only types of data such as the product catalog.  Locked cache mode is useful when you need to ensure that only one ATG instance writes to a particular item at a time - an example would be a customers order.  There are many options in terms of configuring caching which are outside the scope of this article - please refer to the product manuals for more details. Other important concepts - out of scope for this article There are a whole host of concepts that are very important pieces to the ATG platform, but are out of scope for this article.  Here's a brief description of some of them: formhandlers - these are ATG components that handle form submissions by users. pipelines - these are configurable chains of logic that are used for things like handling a request (request pipeline) or checking out an order. special kinds of repositories (versioned, files, secure, ...) - there are a couple different types of repositories that are used in various situations.  See the manuals for more information. web development - JSP/ DSP tag library - ATG provides a traditional approach to developing web applications by providing a tag library called the DSP library.  This library is used throughout your JSP pages to interact with all the ATG components. messaging - a message sub-system used as another way for components to interact. personalization - ability for business users to define a personalized user experience for customers.  See the other blog posts related to personalization.

    Read the article

  • Limitations of User-Defined Customer Events (FA Type Profile)

    - by Rajesh Sharma
    CC&B automatically creates field activities when a specific Customer Event takes place. This depends on the way you have setup your Field Activity Type Profiles, the templates within, and associated SP Condition(s) on the template. CC&B uses the service point type, its state and referenced customer event to determine which field activity type to generate.   Customer events available in the base product include: Cut for Non-payment (CNP) Disconnect Warning (DIWA) Reconnect for Payment (REPY) Reread (RERD) Stop Service (STOP) Start Service (STRT) Start/Stop (STSP)   Note the Field values/codes defined for each event.   CC&B comes with a flexibility to define new set of customer events. These can be defined in the Look Up - CUST_EVT_FLG. Values from the Look Up are used on the Field Activity Type Profile Template page.     So what's the use of having user-defined Customer Events? And how will the system detect such events in order to create field activity(s)?   Well, system can only detect such events when you reference a user-defined customer event on a Severance Event Type for an event type Create Field Activities.     This way you can create additional field activities of a specific field activity type for user-defined customer events.   One of our customers adopted this feature and created a user-defined customer event CNPW - Cut for Non-payment for Water Services. This event was then linked on a Field Activity Type Profile and referenced on a Severance Event - CUT FOR NON PAY-W. The associated Severance Process was configured to trigger a reconnection process if it was cancelled (done by defining a Post Cancel Algorithm). Whenever this Severance Event was executed, a specific type of Field Activity was generated for disconnection purposes. The Field Activity type was determined by the system from the Field Activity Type Profile referenced for the SP Type, SP's state and the referenced user-defined customer event. All was working well until the time when they realized that in spite of the Severance Process getting cancelled (when a payment was made); the Post Cancel Algorithm was not executed to start a Reconnection Severance Process for the purpose of generating a reconnection field activity and reconnecting the service.   Basically, the Post Cancel algorithm (if specified on a Severance Process Template) is triggered when a Severance Process gets cancelled because a credit transaction has affected/relieved a Service Agreement's debt.   So what exactly was happening? Now we come to actual question as to what are limitations in having user-defined customer event.   System defined/base customer events are hard-coded across the entire system. There is an impact even if you remove any customer event entry from the Look Up. User-defined customer events are not recognized by the system anywhere else except in the severance process, as described above.   There are few programs which have routines to first validate the completion of disconnection field activities, which were raised as a result of customer event CNP - Cut for Non-payment in order to perform other associated actions. One such program is the Post Cancel Algorithm, referenced on a Severance Process Template, generally used to reconnect services which were disconnected from other Severance Event, specifically CNP - Cut for Non-Payment. Post cancel algorithm provided by the product - SEV POST CAN does the following (below is the algorithm's description):   This algorithm is called after a severance process has been cancelled (typically because the debt was paid and the SA is no longer eligible to be on the severance process). It checks to see if the process has a completed 'disconnect' event and, if so, starts a reconnect process using the Reconnect Severance Process Template defined in the parameter.    Notice the underlined text. This algorithm implicitly checks for Field Activities having completed status, which were generated from Severance Events as a result of CNP - Cut for Non-payment customer event.   Now if we look back to the customer's issue, we can relate that the Post Cancel algorithm was triggered, but was not able to find any 'Completed' CNP - Cut for Non-payment related field activity. And hence was not able to start a reconnection severance process. This was because a field activity was generated and completed for a customer event CNPW - Cut for Non-payment of Water Services instead.   To conclude, if you introduce new customer events, you should be aware that you don't extend or simulate base customer events, the ones that are included in the base product, as they are further used to provide/validate additional business functions.  

    Read the article

  • RPi and Java Embedded GPIO: Sensor Connections for Java Enabled Interface

    - by hinkmond
    Now we're ready to connect the hardware needed to make a static electricity sensor for the Raspberry Pi and use Java code to access it through a GPIO port. First, very carefully bend the NTE312 (or MPF-102) transistor "gate" pin (see the diagram on the back of the package or refer to the pin diagram on the Web). You can see it in the inset photo on the bottom left corner. I bent the leftmost pin of the NTE312 transistor as I held the flat part toward me. That is going to be your antenna. So, connect one of the jumper wires to the bent pin. I used the dark green jumper wire (looks almost black; coiled at the bottom) in the photo. Then push the other 2 pins of the transistor into your breadboard. Connect one of the pins to Pin # 1 (3.3V) on the GPIO header of your RPi. See the diagram if you need to glance back at it. In the photo, that's the orange jumper wire. And connect the final unconnected transistor pin to Pin # 22 (GPIO25) on the RPi header. That's the blue jumper wire in my photo. For reference, connect the LED anode (long pin on a common anode LED/short pin on a common cathode LED, check your LED pin diagram) to the same breadboard hole that is connecting to Pin # 22 (same row of holes where the blue wire is connected), and connect the other pin of the LED to GROUND (row of holes that connect to the black wire in the photo). Test by blowing up a balloon, rubbing it on your hair (or your co-worker's hair, if you are hair-challenged) to statically charge it, and bringing it near your antenna (green wire in the photo). The LED should light up when it's near and go off when you pull it away. If you need more static charge, find a co-worker with really long hair, or rub the balloon on a piece of silk (which is just as good but not as fun). Next blog post is where we do some Java coding to access this sensor on your RPi. Finally, back to software! Ha! Hinkmond

    Read the article

  • Think Global, Act Regional with Identity Globe Trotters

    - by Tanu Sood
    This month we will be introducing a new section on our blog. Titled “Identity Globe Trotters”, this will be a monthly series that would feature a regional topic the last Friday of every month. We would invite guest contributors from different regions to highlight a region-specific business issue, solution, highlight a customer implementation or a regional discussion of interest. If you have an Identity management topic in mind that you’d like featured in this section, do let us know. We look forward to engaging in meaningful discussions with you on global perspectives, regional solutions.

    Read the article

  • Learn more about SPARC by listening to our newly recorded podcasts

    - by Cinzia Mascanzoni
    Please listen to our newly recorded series of four podcasts focused on SPARC. The topics are: How SPARC T4 Servers Open New Opportunities SPARC Roadmap and SPARC T4 Architecture Highlights SPARC T4 For Installed Base Refresh and Consolidation SPARC T4 – How Does it Stack up Against the Competition? Rob Ludeman, from SPARC Product Management, and Thomas Ressler, WWA&C Alliances Consultant, are your hosts. The intent is to continue to help you understand how to position and sell SPARC/T4 into your customer architecture.Details on how to access these podcasts can be found here.

    Read the article

  • Fuzzing for Security

    - by Sylvain Duloutre
    Yesterday, I attended an internal workshop about ethical hacking. Hacking skills like fuzzing can be used to quantitatively assess and measure security threats in software.  Fuzzing is a software testing technique used to discover coding errors and security loopholes in software, operating systems or networks by injecting massive amounts of random data, called fuzz, to the system in an attempt to make it crash. If the program contains a vulnerability that can leads to an exception, crash or server error (in the case of web apps), it can be determined that a vulnerability has been discovered.A fuzzer is a program that generates and injects random (and in general faulty) input to an application. Its main purpose is to make things easier and automated.There are typically two methods for producing fuzz data that is sent to a target, Generation or Mutation. Generational fuzzers are capable of building the data being sent based on a data model provided by the fuzzer creator. Sometimes this is simple and dumb as sending random bytes, swapping bytes or much smarter by knowing good values and combining them in interesting ways.Mutation on the other hand starts out with a known good "template" which is then modified. However, nothing that is not present in the "template" or "seed" will be produced.Generally fuzzers are good at finding buffer overflow, DoS, SQL Injection, Format String bugs etc. They do a poor job at finding vulnerabilites related to information disclosure, encryption flaws and any other vulnerability that does not cause the program to crash.  Fuzzing is simple and offers a high benefit-to-cost ratio but does not replace other proven testing techniques.What is your computer doing over the week-end ?

    Read the article

  • Gradle Support in NetBeans IDE 7.2

    - by Geertjan
    Russel Winder and Steve Chin spent half an hour, and then gave up, setting up NetBeans IDE to use Gradle, because they couldn't find the NetBeans Gradle plugin, during Steve's NightHacking tour. That need happen no more because Attila Kelemen's NetBeans Gradle plugin is now available in the Plugin Manager in NetBeans IDE 7.2: Aside from opening Gradle-based applications, you can now also create new ones: Details and documentation: https://github.com/kelemen/netbeans-gradle-project

    Read the article

  • Smarty: Configurable Comments and Code Templates

    - by Martin Fousek
    Hello, today we would like to show you few improvements we have prepared in PHP Smarty Framework for NetBeans 7.3. So let's talk about adjustable toggle comment action and code templates. Configurable Comments As some of you requested we implemented toggle comment action with adjustable behavior. In NetBeans 7.3 you can choose in Options between commenting as a "Smarty comments everywhere" or "Language sensitive comments" in Smarty Templates. Toggle comment language sensitive: Toggle comment as Smarty comment everywhere: Code Templates In NetBeans 7.3 we will provide by default many code templates inside Smarty templates or directly inside Smarty tags. Available should be code templates for all built-in or custom functions and modifiers of Smarty 3.x. Besides that you should be able to define additional custom templates easily in Options -> Editor -> Code Templates for "Smarty Templates" or directly for "Smarty Markup" (which means code templates inside Smarty tag). You can also take advantage of selection's template which are able to wrap your code with chosen Smarty tag. That's all for today. As always, please test it and report all the issues or enhancements you find in NetBeans BugZilla (component php, subcomponent Smarty).

    Read the article

  • Polite busy-waiting with WRPAUSE on SPARC

    - by Dave
    Unbounded busy-waiting is an poor idea for user-space code, so we typically use spin-then-block strategies when, say, waiting for a lock to be released or some other event. If we're going to spin, even briefly, then we'd prefer to do so in a manner that minimizes performance degradation for other sibling logical processors ("strands") that share compute resources. We want to spin politely and refrain from impeding the progress and performance of other threads — ostensibly doing useful work and making progress — that run on the same core. On a SPARC T4, for instance, 8 strands will share a core, and that core has its own L1 cache and 2 pipelines. On x86 we have the PAUSE instruction, which, naively, can be thought of as a hardware "yield" operator which temporarily surrenders compute resources to threads on sibling strands. Of course this helps avoid intra-core performance interference. On the SPARC T2 our preferred busy-waiting idiom was "RD %CCR,%G0" which is a high-latency no-nop. The T4 provides a dedicated and extremely useful WRPAUSE instruction. The processor architecture manuals are the authoritative source, but briefly, WRPAUSE writes a cycle count into the the PAUSE register, which is ASR27. Barring interrupts, the processor then delays for the requested period. There's no need for the operating system to save the PAUSE register over context switches as it always resets to 0 on traps. Digressing briefly, if you use unbounded spinning then ultimately the kernel will preempt and deschedule your thread if there are other ready threads than are starving. But by using a spin-then-block strategy we can allow other ready threads to run without resorting to involuntary time-slicing, which operates on a long-ish time scale. Generally, that makes your application more responsive. In addition, by blocking voluntarily we give the operating system far more latitude regarding power management. Finally, I should note that while we have OS-level facilities like sched_yield() at our disposal, yielding almost never does what you'd want or naively expect. Returning to WRPAUSE, it's natural to ask how well it works. To help answer that question I wrote a very simple C/pthreads benchmark that launches 8 concurrent threads and binds those threads to processors 0..7. The processors are numbered geographically on the T4, so those threads will all be running on just one core. Unlike the SPARC T2, where logical CPUs 0,1,2 and 3 were assigned to the first pipeline, and CPUs 4,5,6 and 7 were assigned to the 2nd, there's no fixed mapping between CPUs and pipelines in the T4. And in some circumstances when the other 7 logical processors are idling quietly, it's possible for the remaining logical processor to leverage both pipelines. Some number T of the threads will iterate in a tight loop advancing a simple Marsaglia xor-shift pseudo-random number generator. T is a command-line argument. The main thread loops, reporting the aggregate number of PRNG steps performed collectively by those T threads in the last 10 second measurement interval. The other threads (there are 8-T of these) run in a loop busy-waiting concurrently with the T threads. We vary T between 1 and 8 threads, and report on various busy-waiting idioms. The values in the table are the aggregate number of PRNG steps completed by the set of T threads. The unit is millions of iterations per 10 seconds. For the "PRNG step" busy-waiting mode, the busy-waiting threads execute exactly the same code as the T worker threads. We can easily compute the average rate of progress for individual worker threads by dividing the aggregate score by the number of worker threads T. I should note that the PRNG steps are extremely cycle-heavy and access almost no memory, so arguably this microbenchmark is not as representative of "normal" code as it could be. And for the purposes of comparison I included a row in the table that reflects a waiting policy where the waiting threads call poll(NULL,0,1000) and block in the kernel. Obviously this isn't busy-waiting, but the data is interesting for reference. _table { border:2px black dotted; margin: auto; width: auto; } _tr { border: 2px red dashed; } _td { border: 1px green solid; } _table { border:2px black dotted; margin: auto; width: auto; } _tr { border: 2px red dashed; } td { background-color : #E0E0E0 ; text-align : right ; } th { text-align : left ; } td { background-color : #E0E0E0 ; text-align : right ; } th { text-align : left ; } Aggregate progress T = #worker threads Wait Mechanism for 8-T threadsT=1T=2T=3T=4T=5T=6T=7T=8 Park thread in poll() 32653347334833483348334833483348 no-op 415 831 124316482060249729303349 RD %ccr,%g0 "pause" 14262429269228623013316232553349 PRNG step 412 829 124616702092251029303348 WRPause(8000) 32443361333133483349334833483348 WRPause(4000) 32153308331533223347334833473348 WRPause(1000) 30853199322432513310334833483348 WRPause(500) 29173070315032223270330933483348 WRPause(250) 26942864294930773205338833483348 WRPause(100) 21552469262227902911321433303348

    Read the article

  • Isis Finally Rolls Out

    - by David Dorf
    Google has rolled their wallet out for several chains; I see the NFC readers in Walgreen's when I'm sent their for milk.  But Isis has been relatively quiet until now.  As of last week they have finally launched in their two test cities: Austin, and Salt Lake City.  Below are the supported carriers and phones as of now, but more phones will be added later. Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} AT&T supports: HTC One™ X, LG Escape™, Samsung Galaxy Exhilarate™, Samsung Galaxy S® III, Samsung Galaxy Rugby Pro™ T-Mobile supports: Samsung Galaxy S® II, Samsung Galaxy S® III, Samsung Galaxy S® Relay 4G Verizon supports: Droid Incredible 4G LTE. Of course iPhone owners have no wallet since Apple didn't included an NFC chip. To start using Isis, you have to take your NFC-capable phone to your carrier's store to get the SIM replaced with a more sophisticated one that has a secure element configured for Isis.  The "secure element" is the cryptographic logic that secures mobile payments.  Carriers like the secure element in the SIM while non-carriers (like Google) prefer the secure element in the phone's electronics. (I'm not entirely sure if you could support both Isis and Google Wallet on the same phone.  Anybody know?) Then you can download the Isis app from Google Play and load your cards.  Most credit cards are supported, and there's a process to verify the credit cards are valid.  Then you can select from the list of participating retailers to "follow."  Selecting a retailer allows that retailer to give you offers via the app. The app is well done and easy to use.  You can select a default payment type and also switch between them easily.  When the phone is tapped on the reader, there are two exchanges of information.  The payment information is transferred, and then the Isis "SmartTap" information which includes optional loyalty number and digital coupons.  Of course the value of mobile wallets comes from the ease of handling all three data types (i.e. payment, loyalty, offers). There are several advertisements for Isis running now, and my favorite is below.

    Read the article

  • What does "general purpose system" mean for Java SE Embedded?

    - by Majid Azimi
    The Oracle website says this about Java SE Embedded license: development is free, but royalties are required upon deployment on anything other than general purpose systems What does "general purpose system" mean here? We have a sensor network around the country. On each box we have installed, there is a micro controller based board that gets data from the environment and send data on serial port to a ARM based embedded board. On this board system there is a Java process which reads and submits data to our central server using JMS. Is this categorized as general purpose system? Sorry I'm asking this here. We are in Iran, there is no Oracle office here to ask.

    Read the article

  • Changes to File Store Provider in UCM PS3

    - by Kevin Smith
    In the recent PS3 release of UCM (11.1.1.4.0) there are some significant changes to the File Store Provider (FSP) configuration. For new PS3 installs (not upgrades from PS2) the FSP default storage rule includes a dispersion rule that will change the web-layout and vault paths by adding dispersion directories to the paths to limit the number of files in the vault and web-layout directories. What that means is that if you install a new PS3 UCM instance and migrate content in from a previous version of UCM the web URL will change. That is a critical problem for web sites and just general document management. See below for some details on the FSP configuration in PS3 and how you can change the default behavior. use the link below to read the rest of this post where I describe the issue in detaill and provide instructions for how to modify a PS3 instance to use the old format for the web-layout path.

    Read the article

  • Parallel Classloading Revisited: Fully Concurrent Loading

    - by davidholmes
    Java 7 introduced support for parallel classloading. A description of that project and its goals can be found here: http://openjdk.java.net/groups/core-libs/ClassLoaderProposal.html The solution for parallel classloading was to add to each class loader a ConcurrentHashMap, referenced through a new field, parallelLockMap. This contains a mapping from class names to Objects to use as a classloading lock for that class name. This was then used in the following way: protected Class loadClass(String name, boolean resolve) throws ClassNotFoundException { synchronized (getClassLoadingLock(name)) { // First, check if the class has already been loaded Class c = findLoadedClass(name); if (c == null) { long t0 = System.nanoTime(); try { if (parent != null) { c = parent.loadClass(name, false); } else { c = findBootstrapClassOrNull(name); } } catch (ClassNotFoundException e) { // ClassNotFoundException thrown if class not found // from the non-null parent class loader } if (c == null) { // If still not found, then invoke findClass in order // to find the class. long t1 = System.nanoTime(); c = findClass(name); // this is the defining class loader; record the stats sun.misc.PerfCounter.getParentDelegationTime().addTime(t1 - t0); sun.misc.PerfCounter.getFindClassTime().addElapsedTimeFrom(t1); sun.misc.PerfCounter.getFindClasses().increment(); } } if (resolve) { resolveClass(c); } return c; } } Where getClassLoadingLock simply does: protected Object getClassLoadingLock(String className) { Object lock = this; if (parallelLockMap != null) { Object newLock = new Object(); lock = parallelLockMap.putIfAbsent(className, newLock); if (lock == null) { lock = newLock; } } return lock; } This approach is very inefficient in terms of the space used per map and the number of maps. First, there is a map per-classloader. As per the code above under normal delegation the current classloader creates and acquires a lock for the given class, checks if it is already loaded, then asks its parent to load it; the parent in turn creates another lock in its own map, checks if the class is already loaded and then delegates to its parent and so on till the boot loader is invoked for which there is no map and no lock. So even in the simplest of applications, you will have two maps (in the system and extensions loaders) for every class that has to be loaded transitively from the application's main class. If you knew before hand which loader would actually load the class the locking would only need to be performed in that loader. As it stands the locking is completely unnecessary for all classes loaded by the boot loader. Secondly, once loading has completed and findClass will return the class, the lock and the map entry is completely unnecessary. But as it stands, the lock objects and their associated entries are never removed from the map. It is worth understanding exactly what the locking is intended to achieve, as this will help us understand potential remedies to the above inefficiencies. Given this is the support for parallel classloading, the class loader itself is unlikely to need to guard against concurrent load attempts - and if that were not the case it is likely that the classloader would need a different means to protect itself rather than a lock per class. Ultimately when a class file is located and the class has to be loaded, defineClass is called which calls into the VM - the VM does not require any locking at the Java level and uses its own mutexes for guarding its internal data structures (such as the system dictionary). The classloader locking is primarily needed to address the following situation: if two threads attempt to load the same class, one will initiate the request through the appropriate loader and eventually cause defineClass to be invoked. Meanwhile the second attempt will block trying to acquire the lock. Once the class is loaded the first thread will release the lock, allowing the second to acquire it. The second thread then sees that the class has now been loaded and will return that class. Neither thread can tell which did the loading and they both continue successfully. Consider if no lock was acquired in the classloader. Both threads will eventually locate the file for the class, read in the bytecodes and call defineClass to actually load the class. In this case the first to call defineClass will succeed, while the second will encounter an exception due to an attempted redefinition of an existing class. It is solely for this error condition that the lock has to be used. (Note that parallel capable classloaders should not need to be doing old deadlock-avoidance tricks like doing a wait() on the lock object\!). There are a number of obvious things we can try to solve this problem and they basically take three forms: Remove the need for locking. This might be achieved by having a new version of defineClass which acts like defineClassIfNotPresent - simply returning an existing Class rather than triggering an exception. Increase the coarseness of locking to reduce the number of lock objects and/or maps. For example, using a single shared lockMap instead of a per-loader lockMap. Reduce the lifetime of lock objects so that entries are removed from the map when no longer needed (eg remove after loading, use weak references to the lock objects and cleanup the map periodically). There are pros and cons to each of these approaches. Unfortunately a significant "con" is that the API introduced in Java 7 to support parallel classloading has essentially mandated that these locks do in fact exist, and they are accessible to the application code (indirectly through the classloader if it exposes them - which a custom loader might do - and regardless they are accessible to custom classloaders). So while we can reason that we could do parallel classloading with no locking, we can not implement this without breaking the specification for parallel classloading that was put in place for Java 7. Similarly we might reason that we can remove a mapping (and the lock object) because the class is already loaded, but this would again violate the specification because it can be reasoned that the following assertion should hold true: Object lock1 = loader.getClassLoadingLock(name); loader.loadClass(name); Object lock2 = loader.getClassLoadingLock(name); assert lock1 == lock2; Without modifying the specification, or at least doing some creative wordsmithing on it, options 1 and 3 are precluded. Even then there are caveats, for example if findLoadedClass is not atomic with respect to defineClass, then you can have concurrent calls to findLoadedClass from different threads and that could be expensive (this is also an argument against moving findLoadedClass outside the locked region - it may speed up the common case where the class is already loaded, but the cost of re-executing after acquiring the lock could be prohibitive. Even option 2 might need some wordsmithing on the specification because the specification for getClassLoadingLock states "returns a dedicated object associated with the specified class name". The question is, what does "dedicated" mean here? Does it mean unique in the sense that the returned object is only associated with the given class in the current loader? Or can the object actually guard loading of multiple classes, possibly across different class loaders? So it seems that changing the specification will be inevitable if we wish to do something here. In which case lets go for something that more cleanly defines what we want to be doing: fully concurrent class-loading. Note: defineClassIfNotPresent is already implemented in the VM as find_or_define_class. It is only used if the AllowParallelDefineClass flag is set. This gives us an easy hook into existing VM mechanics. Proposal: Fully Concurrent ClassLoaders The proposal is that we expand on the notion of a parallel capable class loader and define a "fully concurrent parallel capable class loader" or fully concurrent loader, for short. A fully concurrent loader uses no synchronization in loadClass and the VM uses the "parallel define class" mechanism. For a fully concurrent loader getClassLoadingLock() can return null (or perhaps not - it doesn't matter as we won't use the result anyway). At present we have not made any changes to this method. All the parallel capable JDK classloaders become fully concurrent loaders. This doesn't require any code re-design as none of the mechanisms implemented rely on the per-name locking provided by the parallelLockMap. This seems to give us a path to remove all locking at the Java level during classloading, while retaining full compatibility with Java 7 parallel capable loaders. Fully concurrent loaders will still encounter the performance penalty associated with concurrent attempts to find and prepare a class's bytecode for definition by the VM. What this penalty is depends on the number of concurrent load attempts possible (a function of the number of threads and the application logic, and dependent on the number of processors), and the costs associated with finding and preparing the bytecodes. This obviously has to be measured across a range of applications. Preliminary webrevs: http://cr.openjdk.java.net/~dholmes/concurrent-loaders/webrev.hotspot/ http://cr.openjdk.java.net/~dholmes/concurrent-loaders/webrev.jdk/ Please direct all comments to the mailing list [email protected].

    Read the article

  • E.T. Phone "Home" - Hey I've discovered a leak..!

    - by Martin Deh
    Being a member of the WebCenter ATEAM, we are often asked to performance tune a WebCenter custom portal application or a WebCenter Spaces deployment.  Most of the time, the process is pretty much the same.  For example, we often use tools like httpWatch and FireBug to monitor the application, and then perform load tests using JMeter or Selenium.  In addition, there are the fine tuning of the different performance based tuning parameters that are outlined in the documentation and by blogs that have been written by my fellow ATEAMers (click on the "performance" tag in this ATEAM blog).  While performing the load test where the outcome produces a significant reduction in the systems resources (memory), one of the causes that plays a role in memory "leakage" is due to the implementation of the navigation menu UI.  OOTB in both JDeveloper and WebCenter Spaces, there are sample (page) templates that include a "default" navigation menu.  In WebCenter Spaces, this is through the SpacesNavigationModel taskflow region, and in a custom portal (i.e. pageTemplate_globe.jspx) the menu UI is contructed using standard ADF components.  These sample menu UI's basically enable the underlying navigation model to visualize itself to some extent.  However, due to certain limitations of these sample menu implementations (i.e. deeper sub-level of navigations items, look-n-feel, .etc), many customers have developed their own custom navigation menus using a combination of HTML, CSS and JQuery.  While this is supported somewhat by the framework, it is important to know what are some of the best practices in ensuring that the navigation menu does not leak.  In addition, in this blog I will point out a leak (BUG) that is in the sample templates.  OK, E.T. the suspence is killing me, what is this leak? Note: for those who don't know, info on E.T. can be found here In both of the included templates, the example given for handling the navigation back to the "Home" page, will essentially provide a nice little memory leak every time the link is clicked. Let's take a look a simple example, which uses the default template in Spaces. The outlined section below is the "link", which is used to enable a user to navigation back quickly to the Group Space Home page. When you (mouse) hover over the link, the browser displays the target URL. From looking initially at the proposed URL, this is the intended destination.  Note: "home" in this case is the navigation model reference (id), that enables the display of the "pretty URL". Next, notice the current URL, which is displayed in the browser.  Remember, that PortalSiteHome = home.  The other highlighted item adf.ctrl-state, is very important to the framework.  This item is basically a persistent query parameter, which is used by the (ADF) framework to managing the current session and page instance.  Without this parameter present, among other things, the browser back-button navigation will fail.  In this example, the value for this parameter is currently 95K25i7dd_4.  Next, through the navigation menu item, I will click on the Page2 link. Inspecting the URL again, I can see that it reports that indeed the navigation is successful and the adf.ctrl-state is also in the URL.  For those that are wondering why the URL displays Page3.jspx, instead of Page2.jspx. Basically the (file) naming convention for pages created ar runtime in Spaces start at Page1, and then increment as you create additional pages.  The name of the actual link (i.e. Page2) is the page "title" attribute.  So the moral of the story is, unlike design time created pages, run time created pages the name of the file will 99% never match the name that appears in the link. Next, is to click on the quick link for navigating back to the Home page. Quick investigation yields that the navigation was indeed successful.  In the browser's URL there is a home (pretty URL) reference, and there is also a reference to the adf.ctrl-state parameter.  So what's the issue?  Can you remember what the value was for the adf.ctrl-state?  The current value is 3D95k25i7dd_149.  However, the previous value was 95k25i7dd_4.  Here is what happened.  Remember when (mouse) hovering over the link produced the following target URL: http://localhost:8888/webcenter/spaces/NavigationTest/home This is great for the browser as this URL will navigate to the intended targer.  However, what is missing is the adf.ctrl-state parameter.  Since this parameter was not present upon navigation "within" the framework, the ADF framework produced another adf.ctrl-state (object).  The previous adf.ctrl-state basically is orphaned while continuing to be alive in memory.  Note: the auto-creation of the adf.ctrl state does happen initially when you invoke the Spaces application  for the first time.  The following is the line of code which produced the issue: <af:goLink destination="#{boilerBean.globalLogoURIInSpace} ... Here the boilerBean is responsible for returning the "string" url, which in this case is /spaces/NavigationTest/home. Unfortunately, again what is missing is adf.ctrl-state. Note: there are more than one instance of the goLinks in the sample templates. So E.T. how can I correct this? There are 2 simple fixes.  For the goLink's destination, use the navigation model to return the actually "node" value, then use the goLinkPrettyUrl method to add the current adf.ctrl-state: <af:goLink destination="#{navigationContext.defaultNavigationModel.node['home'].goLinkPrettyUrl}"} ... />  Note: the node value is the [navigation model id]  Using a goLink does solve the main issue.  However, since the link basically does a redirect, some browsers like IE will produce a somewhat significant "flash".  In a Spaces application, this may be an annoyance to the users.  Another way to solve the leakage problem, and also remove the flash between navigations is to use a af:commandLink.  For example, here is the code example for this scenario: <af:commandLink id="pt_cl2asf" actionListener="#{navigationContext.processAction}" action="pprnav">    <f:attribute name="node" value="#{navigationContext.defaultNavigationModel.node['home']}"/> </af:commandLink> Here, the navigation node to where home is located is delivered by way of the attribute to the commandLink.  The actual navigation is performed by the processAction, which is needing the "node" value. E.T. OK, you solved the OOTB sample BUG, what about my custom navigation code? I have seen many implementations of creating a navigation menu through custom code.  In addition, there are some blog sites that also give detailed examples.  The majority of these implementations are very similar.  The code usually involves using standard HTML tags (i.e. DIVS, UL, LI, .,etc) and either CSS or JavaScript (JQuery) to produce the flyout/drop-down effect.  The navigation links in these cases are standard <a href... > tags.  Although, this type of approach is not fully accepted by the ADF community, it does work.  The important thing to note here is that the <a> tag value must use the goLinkPrettyURL method of contructing the target URL.  For example: <a href="${contextRoot}${menu.goLinkPrettyUrl}"> The main reason why this type of approach is popular is that links that are created this way (also with using af:goLinks), the pages become crawlable by search engines.  CommandLinks are currently not search friendly.  However, in the case of a Spaces instance this may be acceptable.  So in this use-case, af:commandLinks, which would replace the <a>  (or goLink) tags. The example code given of the af:commandLink above is still valid. One last important item.  If you choose to use af:commandLinks, special attention must be given to the scenario in which java script has been used to produce the flyout effect in the custom menu UI.  In many cases that I have seen, the commandLink can only be invoked once, since there is a conflict between the custom java script with the ADF frameworks own scripting to control the view.  The recommendation here, would be to use a pure CSS approach to acheive the dropdown effects. One very important thing to note.  Due to another BUG, the WebCenter environement must be patched to BP3 (patch  p14076906).  Otherwise the leak is still present using the goLinkPrettyUrl method.  Thanks E.T.!  Now I can phone home and not worry about my application running out of resources due to my custom navigation! 

    Read the article

  • LDoms and Maintenance Mode

    - by Owen Allen
     I got a few questions about how maintenance mode works with LDoms. "I have a Control Domain that I need to do maintenance on. What does being put in maintenance mode actually do for a Control Domain?" Maintenance mode is what you use when you're going to be shutting a system down, or otherwise tinkering with it, and you don't want Ops Center to generate incidents and notification of incidents. Maintenance mode stops new incidents from being generated, but it doesn't stop polling, or monitoring, the system and it doesn't prevent alerts. "What does maintenance mode do with the guests on a Control Domain?" If you have auto recovery set and the Control Domain is a member of a server pool of eligible systems, putting the Control Domain in maintenance mode automatically migrates guests to an available Control Domain.  When a Control Domain is in maintenance mode, it is not eligible to receive guests and the placement policies for guest creation and for automatic recovery won't select this server as a possible destination. If there isn't a server pool or there aren't any eligible systems in the pool, the guests are shut down. You can select a logical domain from the Assets section to view the Dashboard for the virtual machine and the Automatic Recovery status, either Enabled or Disabled. To change the status, click the action in the Actions pane. "If I have to do maintenance on a system and I do not want to initiate auto-recovery, what do I have to do so that I can manually bring down the Control Domain (and all its Guest domains)?" Use the Disable Automatic Recovery action. "If I put a Control Domain into maintenance mode, does that also put the OS into maintenance mode?" No, just the Control Domain server. You have to put the OS into maintenance mode separately. "Also, is there an easy way to see what assets are in maintenance mode? Can we put assets into, or take them out of, maintenance mode on some sort of group level?" You can create a user-defined group that will automatically include assets in maintenance mode. The docs here explain how to set up these groups. You'll use a group rule that looks like this:

    Read the article

  • Beyond S&OP: Integrated Business Planning

    - by Paul Homchick
    In most corporations, planning is done at the department level — leaving disconnects and gaps across different departments. Finance sets revenue and profit goals with minimum validation from Manufacturing that the company has the resources, material, capacity, or demand to reach these goals. On the operations side, Manufacturing is developing plans to balance demand and supply but seldom knows if the resulting "plan" will meet the budgets on which the company's revenue and profit goals are based. The Sales department agrees to quotas that meet Finance's revenue goals without a complete understanding of what manufacturing can deliver. Integrated Business Planning (IBP) bridges these gaps in corporate planning systems. Integrated Business Planning integrates the financial planning provided by EPM systems with operations planning provided by Sales and Operations Planning solutions. This means that revenue goals and budgets are validated against a bottom-up operating plan, and that the operating plan is reconciled against financial goals. When detailed changes are made to the operations plan, planners can immediately see the big picture impact of the changes. IBP also addresses one the CFO's big concerns—the reliability of the revenue forecast. Operating plans are updated daily or weekly from a precise forecast based on current market conditions. These updated plans are then made available so that financial analysts are working with data that best represents what is going to happen - not what they projected would happen based on last quarter's data. For a discussion in more depth, see my article: Improve Reliability of Financial Forecasts with Integrated Business Planning in Supply & Demand Chain-Executive Magazine.

    Read the article

  • Beyond S&OP: Integrated Business Planning

    - by Paul Homchick
    In most corporations, planning is done at the department level — leaving disconnects and gaps across different departments. Finance sets revenue and profit goals with minimum validation from Manufacturing that the company has the resources, material, capacity, or demand to reach these goals. On the operations side, Manufacturing is developing plans to balance demand and supply but seldom knows if the resulting "plan" will meet the budgets on which the company's revenue and profit goals are based. The Sales department agrees to quotas that meet Finance's revenue goals without a complete understanding of what manufacturing can deliver. Integrated Business Planning (IBP) bridges these gaps in corporate planning systems. Integrated Business Planning integrates the financial planning provided by EPM systems with operations planning provided by Sales and Operations Planning solutions. This means that revenue goals and budgets are validated against a bottom-up operating plan, and that the operating plan is reconciled against financial goals. When detailed changes are made to the operations plan, planners can immediately see the big picture impact of the changes. IBP also addresses one the CFO's big concerns—the reliability of the revenue forecast. Operating plans are updated daily or weekly from a precise forecast based on current market conditions. These updated plans are then made available so that financial analysts are working with data that best represents what is going to happen - not what they projected would happen based on last quarter's data. For a discussion in more depth, see my article: Improve Reliability of Financial Forecasts with Integrated Business Planning in Supply & Demand Chain-Executive Magazine.

    Read the article

  • "Yes, but that's niche."

    - by Geertjan
    JavaOne 2012 has come to an end though it feels like it hasn't even started yet! What happened, time is a weird thing. Too many things to report on. James Gosling's appearance at the JavaOne community keynote was seen, by everyone (which is quite a lot) of people I talked to, as the highlight of the conference. It was interesting that the software for the Duke's Choice Award winning Liquid Robotics that James Gosling is now part of and came to talk about is a Swing application that uses the WorldWind libraries. It was also interesting that James Gosling pointed out to the conference: "There are things you can't do using HTML." That brings me to the wonderful counter argument to the above, which I spend my time running into a lot: "Yes, but that's niche." It's a killer argument, i.e., it kills all discussions completely in one fell swoop. Kind of when you're talking about someone and then this sentence drops into the conversation: "Yes, but she's got cancer now." Here's one implementation of "Yes, but that's niche": Person A: All applications are moving to the web, tablet, and mobile phone. That's especially true now with HTML5, which is going to wipe away everything everywhere and all applications are going to be browser based. Person B: What about air traffic control applications? Will they run on mobile phones too? And do you see defence applications running in a browser? Don't you agree that there are multiple scenarios imaginable where the Java desktop is the optimal platform for running applications? Person A: Yes, but that's niche. Here's another implementation, though it contradicts the above [despite often being used by the same people], since JavaFX is a Java desktop technology: Person A: Swing is dead. Everyone is going to be using purely JavaFX and nothing else. Person B: Does JavaFX have a docking framework and a module system? Does it have a plugin system?  These are some of the absolutely basic requirements of Java desktop software once you get to high end systems, e.g., banks, defence force, oil/gas services. Those kinds of applications need a web browser and so they love the JavaFX WebView component and they also love the animated JavaFX charting components. But they need so much more than that, i.e., an application framework. Aren't there requirements that JavaFX isn't meeting since it is a UI toolkit, just like Swing is a UI toolkit, and what they have in common is their lack, i.e., natively, of any kind of application framework? Don't people need more than a single window and a monolithic application structure? Person A: Yes, but that's niche. In other words, anything that doesn't fit within the currently dominant philosophy is "niche", for no other reason than that it doesn't fit within the currently dominant philosophy... regardless of the actual needs of real developers. Saying "Yes, but that's niche", kills the discussion completely, because it relegates one side of the conversation to the arcane and irrelevant corners of the universe. You're kind of like Cobol now, as soon as "Yes, but that's niche" is said. What's worst about "Yes, but that's niche" is that it doesn't enter into any discussion about user requirements, i.e., there's so few that need this particular solution that we don't even need to talk about them anymore. Note, of course, that I'm not referring specifically or generically to anyone or anything in particular. Just picking up from conversations I've picked up on as I was scurrying around the Hilton's corridors while looking for the location of my next presentation over the past few days. It does, however, mean that there were people thinking "Yes, but that's niche" while listening to James Gosling pointing out that HTML is not the be-all and end-all of absolutely everything. And so this all leaves me wondering: How many applications must be part of a niche for the niche to no longer be a niche? And what if there are multiple small niches that have the same requirements? Don't all those small niches together form a larger whole, one that should be taken seriously, i.e., a whole that is not a niche?

    Read the article

  • APEX 4.2: Neue Features für interaktive Berichte

    - by carstenczarski
    Seit Oktober 2012 steht APEX 4.2 zum Download zur Verfügung. Dass der Schwerpunkt dieses Releases auf der Entwicklung von APEX-Anwendungen für Smartphones - auf Basis von jQuery Mobile und HTML5-Charts - liegt, dürfte mittlerweile nahezu überall bekannt sein. Doch das ist nicht alles. APEX 4.2 bringt noch mehr neue Features mit: Im Bereich der interaktiven Berichte hat sich sehr viel getan: Zwar ist auch weiterhin nur ein interaktiver Bericht pro Seite möglich, es gibt aber dennoch einige, interessante Neuerungen - dieser Tipp stellt sie im Detail vor. Interaktive Berichtsspalten formatieren: HTML-Ausdruck Email-Abonnements: Absenderadresse und einfache Abmeldung PL/SQL-Zugriff auf interaktive Berichte: APEX_IR Linguistische Suche in einem interaktiven Bericht Weitere neue Features

    Read the article

  • Java EE 7 JSR Submitted

    - by Tori Wieldt
    Java EE 7 has been filed as JSR 342 in the JCP program. This JSR (Java Specification Request) will develop Java EE 7, the next version of the Java Platform, Enterprise Edition. It is an "umbrella JSR" because the specification includes a collection of several other JSRs. The proposal suggests the addition of two new JSRs: Concurrency Utilities for Java EE (JSR-236) and JCache (JSR-107) as well as updates to JPA, JAX-RS, JSF, Servlets, EJB, JSP, EL, JMS, JAX-WS, CDI, Bean Validation, JSR-330, JSR-250, and Java Connector Architecture. There are also two new APIs under discussion: a Java Web Sockets API and a Java JSON API. These are the new JSRs that are currently up for ballot:• JSR 342: Java Platform, Enterprise Edition 7 Specification• JSR 340: Java Servlet 3.1 Specification• JSR 341: Expression Language 3.0• JSR 343: Java Message Service 2.0• JSR 344: JavaServer Faces 2.2All 5 JSRs are now up for Executive Committee voting with ballots closing on 14 March, and slated for inclusion in Java EE  7.  All of these JSRs are also open for Expert Group nominations. Any JCP member can nominate themself to serve on the Expert Groups for these JSRs. Details on how to become a JCP member are on jcp.org. The JCP gives you a chance to have your own work become an official component of the Java platform and to offer suggestions for improving and growing the technology. Either way, everyone in the Java community benefits from your participation.There's a nice discussion about Java EE 7 in this podcast with Java EE spec lead Robert Chinnici and more information in this blog post on the Aquarium. It's exciting to see so much activity currently underway.

    Read the article

< Previous Page | 489 490 491 492 493 494 495 496 497 498 499 500  | Next Page >