Search Results

Search found 20663 results on 827 pages for 'multiple inheritance'.

Page 497/827 | < Previous Page | 493 494 495 496 497 498 499 500 501 502 503 504  | Next Page >

  • populate href of link for next and previous

    - by sea_1987
    Hi There, I am struggling alot with some PHP I am needing to implement a next and previous link, basically I have a search function on my site, that returns multiple results and click on a result navigates to that results page, I want to then be able to click next on that page, and be taken to the next result in the sequence that was returned by the users original search? Is this possible, and how? I have no clue.

    Read the article

  • DocumentCompleted event when the page is fully loaded in WebBrowser form (Windows Forms C#)

    - by Tolga E
    I use the DocumentCompleted but this gets fired multiple times. Now I've seen this example if (e.Url.AbsolutePath != this.webBrowser.Url.AbsolutePath) which is used to confirm that the requested file is completed loading but this gets fired before anything else (like images) on the page is loaded. Thus I'm still not able to tell when a webpage is fully loaded. Is there a way to ensure that the webpage has fully loaded and there's nothing being loaded?

    Read the article

  • Will AJAX cause my site to have a high bounce % and hurt my search ratings?

    - by Cryo
    I'm building an art gallery website that updates its images via AJAX, for those who have javascript enabled, rather than request multiple page loads. I assume this will appear as though my site has a high bounce percentage. I understand that search engines will not be able to index dynamic content, but will such a misinterpreted bounce rate hurt my search engine ratings, even if I have many return visitors?

    Read the article

  • How to create many div's with 100% height?

    - by ChrisBenyamin
    I need a html document, that contains multiple div's with 100% height (screen filling) one below the other. I have tried to apply every element a height of 100%, but that won't work seamless nor clean. Maybe there is a option with JavaScript? I don't have an idea. Please suggest me your solutions. chris

    Read the article

  • Capturing and Transforming ASP.NET Output with Response.Filter

    - by Rick Strahl
    During one of my Handlers and Modules session at DevConnections this week one of the attendees asked a question that I didn’t have an immediate answer for. Basically he wanted to capture response output completely and then apply some filtering to the output – effectively injecting some additional content into the page AFTER the page had completely rendered. Specifically the output should be captured from anywhere – not just a page and have this code injected into the page. Some time ago I posted some code that allows you to capture ASP.NET Page output by overriding the Render() method, capturing the HtmlTextWriter() and reading its content, modifying the rendered data as text then writing it back out. I’ve actually used this approach on a few occasions and it works fine for ASP.NET pages. But this obviously won’t work outside of the Page class environment and it’s not really generic – you have to create a custom page class in order to handle the output capture. [updated 11/16/2009 – updated ResponseFilterStream implementation and a few additional notes based on comments] Enter Response.Filter However, ASP.NET includes a Response.Filter which can be used – well to filter output. Basically Response.Filter is a stream through which the OutputStream is piped back to the Web Server (indirectly). As content is written into the Response object, the filter stream receives the appropriate Stream commands like Write, Flush and Close as well as read operations although for a Response.Filter that’s uncommon to be hit. The Response.Filter can be programmatically replaced at runtime which allows you to effectively intercept all output generation that runs through ASP.NET. A common Example: Dynamic GZip Encoding A rather common use of Response.Filter hooking up code based, dynamic  GZip compression for requests which is dead simple by applying a GZipStream (or DeflateStream) to Response.Filter. The following generic routines can be used very easily to detect GZip capability of the client and compress response output with a single line of code and a couple of library helper routines: WebUtils.GZipEncodePage(); which is handled with a few lines of reusable code and a couple of static helper methods: /// <summary> ///Sets up the current page or handler to use GZip through a Response.Filter ///IMPORTANT:  ///You have to call this method before any output is generated! /// </summary> public static void GZipEncodePage() {     HttpResponse Response = HttpContext.Current.Response;     if(IsGZipSupported())     {         stringAcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"];         if(AcceptEncoding.Contains("deflate"))         {             Response.Filter = newSystem.IO.Compression.DeflateStream(Response.Filter,                                        System.IO.Compression.CompressionMode.Compress);             Response.AppendHeader("Content-Encoding", "deflate");         }         else        {             Response.Filter = newSystem.IO.Compression.GZipStream(Response.Filter,                                       System.IO.Compression.CompressionMode.Compress);             Response.AppendHeader("Content-Encoding", "gzip");                            }     }     // Allow proxy servers to cache encoded and unencoded versions separately    Response.AppendHeader("Vary", "Content-Encoding"); } /// <summary> /// Determines if GZip is supported /// </summary> /// <returns></returns> public static bool IsGZipSupported() { string AcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"]; if (!string.IsNullOrEmpty(AcceptEncoding) && (AcceptEncoding.Contains("gzip") || AcceptEncoding.Contains("deflate"))) return true; return false; } GZipStream and DeflateStream are streams that are assigned to Response.Filter and by doing so apply the appropriate compression on the active Response. Response.Filter content is chunked So to implement a Response.Filter effectively requires only that you implement a custom stream and handle the Write() method to capture Response output as it’s written. At first blush this seems very simple – you capture the output in Write, transform it and write out the transformed content in one pass. And that indeed works for small amounts of content. But you see, the problem is that output is written in small buffer chunks (a little less than 16k it appears) rather than just a single Write() statement into the stream, which makes perfect sense for ASP.NET to stream data back to IIS in smaller chunks to minimize memory usage en route. Unfortunately this also makes it a more difficult to implement any filtering routines since you don’t directly get access to all of the response content which is problematic especially if those filtering routines require you to look at the ENTIRE response in order to transform or capture the output as is needed for the solution the gentleman in my session asked for. So in order to address this a slightly different approach is required that basically captures all the Write() buffers passed into a cached stream and then making the stream available only when it’s complete and ready to be flushed. As I was thinking about the implementation I also started thinking about the few instances when I’ve used Response.Filter implementations. Each time I had to create a new Stream subclass and create my custom functionality but in the end each implementation did the same thing – capturing output and transforming it. I thought there should be an easier way to do this by creating a re-usable Stream class that can handle stream transformations that are common to Response.Filter implementations. Creating a semi-generic Response Filter Stream Class What I ended up with is a ResponseFilterStream class that provides a handful of Events that allow you to capture and/or transform Response content. The class implements a subclass of Stream and then overrides Write() and Flush() to handle capturing and transformation operations. By exposing events it’s easy to hook up capture or transformation operations via single focused methods. ResponseFilterStream exposes the following events: CaptureStream, CaptureString Captures the output only and provides either a MemoryStream or String with the final page output. Capture is hooked to the Flush() operation of the stream. TransformStream, TransformString Allows you to transform the complete response output with events that receive a MemoryStream or String respectively and can you modify the output then return it back as a return value. The transformed output is then written back out in a single chunk to the response output stream. These events capture all output internally first then write the entire buffer into the response. TransformWrite, TransformWriteString Allows you to transform the Response data as it is written in its original chunk size in the Stream’s Write() method. Unlike TransformStream/TransformString which operate on the complete output, these events only see the current chunk of data written. This is more efficient as there’s no caching involved, but can cause problems due to searched content splitting over multiple chunks. Using this implementation, creating a custom Response.Filter transformation becomes as simple as the following code. To hook up the Response.Filter using the MemoryStream version event: ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformStream += filter_TransformStream; Response.Filter = filter; and the event handler to do the transformation: MemoryStream filter_TransformStream(MemoryStream ms) { Encoding encoding = HttpContext.Current.Response.ContentEncoding; string output = encoding.GetString(ms.ToArray()); output = FixPaths(output); ms = new MemoryStream(output.Length); byte[] buffer = encoding.GetBytes(output); ms.Write(buffer,0,buffer.Length); return ms; } private string FixPaths(string output) { string path = HttpContext.Current.Request.ApplicationPath; // override root path wonkiness if (path == "/") path = ""; output = output.Replace("\"~/", "\"" + path + "/").Replace("'~/", "'" + path + "/"); return output; } The idea of the event handler is that you can do whatever you want to the stream and return back a stream – either the same one that’s been modified or a brand new one – which is then sent back to as the final response. The above code can be simplified even more by using the string version events which handle the stream to string conversions for you: ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformString += filter_TransformString; Response.Filter = filter; and the event handler to do the transformation calling the same FixPaths method shown above: string filter_TransformString(string output) { return FixPaths(output); } The events for capturing output and capturing and transforming chunks work in a very similar way. By using events to handle the transformations ResponseFilterStream becomes a reusable component and we don’t have to create a new stream class or subclass an existing Stream based classed. By the way, the example used here is kind of a cool trick which transforms “~/” expressions inside of the final generated HTML output – even in plain HTML controls not HTML controls – and transforms them into the appropriate application relative path in the same way that ResolveUrl would do. So you can write plain old HTML like this: <a href=”~/default.aspx”>Home</a>  and have it turned into: <a href=”/myVirtual/default.aspx”>Home</a>  without having to use an ASP.NET control like Hyperlink or Image or having to constantly use: <img src=”<%= ResolveUrl(“~/images/home.gif”) %>” /> in MVC applications (which frankly is one of the most annoying things about MVC especially given the path hell that extension-less and endpoint-less URLs impose). I can’t take credit for this idea. While discussing the Response.Filter issues on Twitter a hint from Dylan Beattie who pointed me at one of his examples which does something similar. I thought the idea was cool enough to use an example for future demos of Response.Filter functionality in ASP.NET next I time I do the Modules and Handlers talk (which was great fun BTW). How practical this is is debatable however since there’s definitely some overhead to using a Response.Filter in general and especially on one that caches the output and the re-writes it later. Make sure to test for performance anytime you use Response.Filter hookup and make sure it' doesn’t end up killing perf on you. You’ve been warned :-}. How does ResponseFilterStream work? The big win of this implementation IMHO is that it’s a reusable  component – so for implementation there’s no new class, no subclassing – you simply attach to an event to implement an event handler method with a straight forward signature to retrieve the stream or string you’re interested in. The implementation is based on a subclass of Stream as is required in order to handle the Response.Filter requirements. What’s different than other implementations I’ve seen in various places is that it supports capturing output as a whole to allow retrieving the full response output for capture or modification. The exception are the TransformWrite and TransformWrite events which operate only active chunk of data written by the Response. For captured output, the Write() method captures output into an internal MemoryStream that is cached until writing is complete. So Write() is called when ASP.NET writes to the Response stream, but the filter doesn’t pass on the Write immediately to the filter’s internal stream. The data is cached and only when the Flush() method is called to finalize the Stream’s output do we actually send the cached stream off for transformation (if the events are hooked up) and THEN finally write out the returned content in one big chunk. Here’s the implementation of ResponseFilterStream: /// <summary> /// A semi-generic Stream implementation for Response.Filter with /// an event interface for handling Content transformations via /// Stream or String. /// <remarks> /// Use with care for large output as this implementation copies /// the output into a memory stream and so increases memory usage. /// </remarks> /// </summary> public class ResponseFilterStream : Stream { /// <summary> /// The original stream /// </summary> Stream _stream; /// <summary> /// Current position in the original stream /// </summary> long _position; /// <summary> /// Stream that original content is read into /// and then passed to TransformStream function /// </summary> MemoryStream _cacheStream = new MemoryStream(5000); /// <summary> /// Internal pointer that that keeps track of the size /// of the cacheStream /// </summary> int _cachePointer = 0; /// <summary> /// /// </summary> /// <param name="responseStream"></param> public ResponseFilterStream(Stream responseStream) { _stream = responseStream; } /// <summary> /// Determines whether the stream is captured /// </summary> private bool IsCaptured { get { if (CaptureStream != null || CaptureString != null || TransformStream != null || TransformString != null) return true; return false; } } /// <summary> /// Determines whether the Write method is outputting data immediately /// or delaying output until Flush() is fired. /// </summary> private bool IsOutputDelayed { get { if (TransformStream != null || TransformString != null) return true; return false; } } /// <summary> /// Event that captures Response output and makes it available /// as a MemoryStream instance. Output is captured but won't /// affect Response output. /// </summary> public event Action<MemoryStream> CaptureStream; /// <summary> /// Event that captures Response output and makes it available /// as a string. Output is captured but won't affect Response output. /// </summary> public event Action<string> CaptureString; /// <summary> /// Event that allows you transform the stream as each chunk of /// the output is written in the Write() operation of the stream. /// This means that that it's possible/likely that the input /// buffer will not contain the full response output but only /// one of potentially many chunks. /// /// This event is called as part of the filter stream's Write() /// operation. /// </summary> public event Func<byte[], byte[]> TransformWrite; /// <summary> /// Event that allows you to transform the response stream as /// each chunk of bytep[] output is written during the stream's write /// operation. This means it's possibly/likely that the string /// passed to the handler only contains a portion of the full /// output. Typical buffer chunks are around 16k a piece. /// /// This event is called as part of the stream's Write operation. /// </summary> public event Func<string, string> TransformWriteString; /// <summary> /// This event allows capturing and transformation of the entire /// output stream by caching all write operations and delaying final /// response output until Flush() is called on the stream. /// </summary> public event Func<MemoryStream, MemoryStream> TransformStream; /// <summary> /// Event that can be hooked up to handle Response.Filter /// Transformation. Passed a string that you can modify and /// return back as a return value. The modified content /// will become the final output. /// </summary> public event Func<string, string> TransformString; protected virtual void OnCaptureStream(MemoryStream ms) { if (CaptureStream != null) CaptureStream(ms); } private void OnCaptureStringInternal(MemoryStream ms) { if (CaptureString != null) { string content = HttpContext.Current.Response.ContentEncoding.GetString(ms.ToArray()); OnCaptureString(content); } } protected virtual void OnCaptureString(string output) { if (CaptureString != null) CaptureString(output); } protected virtual byte[] OnTransformWrite(byte[] buffer) { if (TransformWrite != null) return TransformWrite(buffer); return buffer; } private byte[] OnTransformWriteStringInternal(byte[] buffer) { Encoding encoding = HttpContext.Current.Response.ContentEncoding; string output = OnTransformWriteString(encoding.GetString(buffer)); return encoding.GetBytes(output); } private string OnTransformWriteString(string value) { if (TransformWriteString != null) return TransformWriteString(value); return value; } protected virtual MemoryStream OnTransformCompleteStream(MemoryStream ms) { if (TransformStream != null) return TransformStream(ms); return ms; } /// <summary> /// Allows transforming of strings /// /// Note this handler is internal and not meant to be overridden /// as the TransformString Event has to be hooked up in order /// for this handler to even fire to avoid the overhead of string /// conversion on every pass through. /// </summary> /// <param name="responseText"></param> /// <returns></returns> private string OnTransformCompleteString(string responseText) { if (TransformString != null) TransformString(responseText); return responseText; } /// <summary> /// Wrapper method form OnTransformString that handles /// stream to string and vice versa conversions /// </summary> /// <param name="ms"></param> /// <returns></returns> internal MemoryStream OnTransformCompleteStringInternal(MemoryStream ms) { if (TransformString == null) return ms; //string content = ms.GetAsString(); string content = HttpContext.Current.Response.ContentEncoding.GetString(ms.ToArray()); content = TransformString(content); byte[] buffer = HttpContext.Current.Response.ContentEncoding.GetBytes(content); ms = new MemoryStream(); ms.Write(buffer, 0, buffer.Length); //ms.WriteString(content); return ms; } /// <summary> /// /// </summary> public override bool CanRead { get { return true; } } public override bool CanSeek { get { return true; } } /// <summary> /// /// </summary> public override bool CanWrite { get { return true; } } /// <summary> /// /// </summary> public override long Length { get { return 0; } } /// <summary> /// /// </summary> public override long Position { get { return _position; } set { _position = value; } } /// <summary> /// /// </summary> /// <param name="offset"></param> /// <param name="direction"></param> /// <returns></returns> public override long Seek(long offset, System.IO.SeekOrigin direction) { return _stream.Seek(offset, direction); } /// <summary> /// /// </summary> /// <param name="length"></param> public override void SetLength(long length) { _stream.SetLength(length); } /// <summary> /// /// </summary> public override void Close() { _stream.Close(); } /// <summary> /// Override flush by writing out the cached stream data /// </summary> public override void Flush() { if (IsCaptured && _cacheStream.Length > 0) { // Check for transform implementations _cacheStream = OnTransformCompleteStream(_cacheStream); _cacheStream = OnTransformCompleteStringInternal(_cacheStream); OnCaptureStream(_cacheStream); OnCaptureStringInternal(_cacheStream); // write the stream back out if output was delayed if (IsOutputDelayed) _stream.Write(_cacheStream.ToArray(), 0, (int)_cacheStream.Length); // Clear the cache once we've written it out _cacheStream.SetLength(0); } // default flush behavior _stream.Flush(); } /// <summary> /// /// </summary> /// <param name="buffer"></param> /// <param name="offset"></param> /// <param name="count"></param> /// <returns></returns> public override int Read(byte[] buffer, int offset, int count) { return _stream.Read(buffer, offset, count); } /// <summary> /// Overriden to capture output written by ASP.NET and captured /// into a cached stream that is written out later when Flush() /// is called. /// </summary> /// <param name="buffer"></param> /// <param name="offset"></param> /// <param name="count"></param> public override void Write(byte[] buffer, int offset, int count) { if ( IsCaptured ) { // copy to holding buffer only - we'll write out later _cacheStream.Write(buffer, 0, count); _cachePointer += count; } // just transform this buffer if (TransformWrite != null) buffer = OnTransformWrite(buffer); if (TransformWriteString != null) buffer = OnTransformWriteStringInternal(buffer); if (!IsOutputDelayed) _stream.Write(buffer, offset, buffer.Length); } } The key features are the events and corresponding OnXXX methods that handle the event hookups, and the Write() and Flush() methods of the stream implementation. All the rest of the members tend to be plain jane passthrough stream implementation code without much consequence. I do love the way Action<t> and Func<T> make it so easy to create the event signatures for the various events – sweet. A few Things to consider Performance Response.Filter is not great for performance in general as it adds another layer of indirection to the ASP.NET output pipeline, and this implementation in particular adds a memory hit as it basically duplicates the response output into the cached memory stream which is necessary since you may have to look at the entire response. If you have large pages in particular this can cause potentially serious memory pressure in your server application. So be careful of wholesale adoption of this (or other) Response.Filters. Make sure to do some performance testing to ensure it’s not killing your app’s performance. Response.Filter works everywhere A few questions came up in comments and discussion as to capturing ALL output hitting the site and – yes you can definitely do that by assigning a Response.Filter inside of a module. If you do this however you’ll want to be very careful and decide which content you actually want to capture especially in IIS 7 which passes ALL content – including static images/CSS etc. through the ASP.NET pipeline. So it is important to filter only on what you’re looking for – like the page extension or maybe more effectively the Response.ContentType. Response.Filter Chaining Originally I thought that filter chaining doesn’t work at all due to a bug in the stream implementation code. But it’s quite possible to assign multiple filters to the Response.Filter property. So the following actually works to both compress the output and apply the transformed content: WebUtils.GZipEncodePage(); ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformString += filter_TransformString; Response.Filter = filter; However the following does not work resulting in invalid content encoding errors: ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformString += filter_TransformString; Response.Filter = filter; WebUtils.GZipEncodePage(); In other words multiple Response filters can work together but it depends entirely on the implementation whether they can be chained or in which order they can be chained. In this case running the GZip/Deflate stream filters apparently relies on the original content length of the output and chokes when the content is modified. But if attaching the compression first it works fine as unintuitive as that may seem. Resources Download example code Capture Output from ASP.NET Pages © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  

    Read the article

  • Service Discovery in WCF 4.0 &ndash; Part 1

    - by Shaun
    When designing a service oriented architecture (SOA) system, there will be a lot of services with many service contracts, endpoints and behaviors. Besides the client calling the service, in a large distributed system a service may invoke other services. In this case, one service might need to know the endpoints it invokes. This might not be a problem in a small system. But when you have more than 10 services this might be a problem. For example in my current product, there are around 10 services, such as the user authentication service, UI integration service, location service, license service, device monitor service, event monitor service, schedule job service, accounting service, player management service, etc..   Benefit of Discovery Service Since almost all my services need to invoke at least one other service. This would be a difficult task to make sure all services endpoints are configured correctly in every service. And furthermore, it would be a nightmare when a service changed its endpoint at runtime. Hence, we need a discovery service to remove the dependency (configuration dependency). A discovery service plays as a service dictionary which stores the relationship between the contracts and the endpoints for every service. By using the discovery service, when service X wants to invoke service Y, it just need to ask the discovery service where is service Y, then the discovery service will return all proper endpoints of service Y, then service X can use the endpoint to send the request to service Y. And when some services changed their endpoint address, all need to do is to update its records in the discovery service then all others will know its new endpoint. In WCF 4.0 Discovery it supports both managed proxy discovery mode and ad-hoc discovery mode. In ad-hoc mode there is no standalone discovery service. When a client wanted to invoke a service, it will broadcast an message (normally in UDP protocol) to the entire network with the service match criteria. All services which enabled the discovery behavior will receive this message and only those matched services will send their endpoint back to the client. The managed proxy discovery service works as I described above. In this post I will only cover the managed proxy mode, where there’s a discovery service. For more information about the ad-hoc mode please refer to the MSDN.   Service Announcement and Probe The main functionality of discovery service should be return the proper endpoint addresses back to the service who is looking for. In most cases the consume service (as a client) will send the contract which it wanted to request to the discovery service. And then the discovery service will find the endpoint and respond. Sometimes the contract and endpoint are not enough. It also contains versioning, extensions attributes. This post I will only cover the case includes contract and endpoint. When a client (or sometimes a service who need to invoke another service) need to connect to a target service, it will firstly request the discovery service through the “Probe” method with the criteria. Basically the criteria contains the contract type name of the target service. Then the discovery service will search its endpoint repository by the criteria. The repository might be a database, a distributed cache or a flat XML file. If it matches, the discovery service will grab the endpoint information (it’s called discovery endpoint metadata in WCF) and send back. And this is called “Probe”. Finally the client received the discovery endpoint metadata and will use the endpoint to connect to the target service. Besides the probe, discovery service should take the responsible to know there is a new service available when it goes online, as well as stopped when it goes offline. This feature is named “Announcement”. When a service started and stopped, it will announce to the discovery service. So the basic functionality of a discovery service should includes: 1, An endpoint which receive the service online message, and add the service endpoint information in the discovery repository. 2, An endpoint which receive the service offline message, and remove the service endpoint information from the discovery repository. 3, An endpoint which receive the client probe message, and return the matches service endpoints, and return the discovery endpoint metadata. WCF 4.0 discovery service just covers all these features in it's infrastructure classes.   Discovery Service in WCF 4.0 WCF 4.0 introduced a new assembly named System.ServiceModel.Discovery which has all necessary classes and interfaces to build a WS-Discovery compliant discovery service. It supports ad-hoc and managed proxy modes. For the case mentioned in this post, what we need to build is a standalone discovery service, which is the managed proxy discovery service mode. To build a managed discovery service in WCF 4.0 just create a new class inherits from the abstract class System.ServiceModel.Discovery.DiscoveryProxy. This class implemented and abstracted the procedures of service announcement and probe. And it exposes 8 abstract methods where we can implement our own endpoint register, unregister and find logic. These 8 methods are asynchronized, which means all invokes to the discovery service are asynchronously, for better service capability and performance. 1, OnBeginOnlineAnnouncement, OnEndOnlineAnnouncement: Invoked when a service sent the online announcement message. We need to add the endpoint information to the repository in this method. 2, OnBeginOfflineAnnouncement, OnEndOfflineAnnouncement: Invoked when a service sent the offline announcement message. We need to remove the endpoint information from the repository in this method. 3, OnBeginFind, OnEndFind: Invoked when a client sent the probe message that want to find the service endpoint information. We need to look for the proper endpoints by matching the client’s criteria through the repository in this method. 4, OnBeginResolve, OnEndResolve: Invoked then a client sent the resolve message. Different from the find method, when using resolve method the discovery service will return the exactly one service endpoint metadata to the client. In our example we will NOT implement this method.   Let’s create our own discovery service, inherit the base System.ServiceModel.Discovery.DiscoveryProxy. We also need to specify the service behavior in this class. Since the build-in discovery service host class only support the singleton mode, we must set its instance context mode to single. 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.ServiceModel.Discovery; 6: using System.ServiceModel; 7:  8: namespace Phare.Service 9: { 10: [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single, ConcurrencyMode = ConcurrencyMode.Multiple)] 11: public class ManagedProxyDiscoveryService : DiscoveryProxy 12: { 13: protected override IAsyncResult OnBeginFind(FindRequestContext findRequestContext, AsyncCallback callback, object state) 14: { 15: throw new NotImplementedException(); 16: } 17:  18: protected override IAsyncResult OnBeginOfflineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 19: { 20: throw new NotImplementedException(); 21: } 22:  23: protected override IAsyncResult OnBeginOnlineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 24: { 25: throw new NotImplementedException(); 26: } 27:  28: protected override IAsyncResult OnBeginResolve(ResolveCriteria resolveCriteria, AsyncCallback callback, object state) 29: { 30: throw new NotImplementedException(); 31: } 32:  33: protected override void OnEndFind(IAsyncResult result) 34: { 35: throw new NotImplementedException(); 36: } 37:  38: protected override void OnEndOfflineAnnouncement(IAsyncResult result) 39: { 40: throw new NotImplementedException(); 41: } 42:  43: protected override void OnEndOnlineAnnouncement(IAsyncResult result) 44: { 45: throw new NotImplementedException(); 46: } 47:  48: protected override EndpointDiscoveryMetadata OnEndResolve(IAsyncResult result) 49: { 50: throw new NotImplementedException(); 51: } 52: } 53: } Then let’s implement the online, offline and find methods one by one. WCF discovery service gives us full flexibility to implement the endpoint add, remove and find logic. For the demo purpose we will use an internal dictionary to store the services’ endpoint metadata. In the next post we will see how to serialize and store these information in database. Define a concurrent dictionary inside the service class since our it will be used in the multiple threads scenario. 1: [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single, ConcurrencyMode = ConcurrencyMode.Multiple)] 2: public class ManagedProxyDiscoveryService : DiscoveryProxy 3: { 4: private ConcurrentDictionary<EndpointAddress, EndpointDiscoveryMetadata> _services; 5:  6: public ManagedProxyDiscoveryService() 7: { 8: _services = new ConcurrentDictionary<EndpointAddress, EndpointDiscoveryMetadata>(); 9: } 10: } Then we can simply implement the logic of service online and offline. 1: protected override IAsyncResult OnBeginOnlineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 2: { 3: _services.AddOrUpdate(endpointDiscoveryMetadata.Address, endpointDiscoveryMetadata, (key, value) => endpointDiscoveryMetadata); 4: return new OnOnlineAnnouncementAsyncResult(callback, state); 5: } 6:  7: protected override void OnEndOnlineAnnouncement(IAsyncResult result) 8: { 9: OnOnlineAnnouncementAsyncResult.End(result); 10: } 11:  12: protected override IAsyncResult OnBeginOfflineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 13: { 14: EndpointDiscoveryMetadata endpoint = null; 15: _services.TryRemove(endpointDiscoveryMetadata.Address, out endpoint); 16: return new OnOfflineAnnouncementAsyncResult(callback, state); 17: } 18:  19: protected override void OnEndOfflineAnnouncement(IAsyncResult result) 20: { 21: OnOfflineAnnouncementAsyncResult.End(result); 22: } Regards the find method, the parameter FindRequestContext.Criteria has a method named IsMatch, which can be use for us to evaluate which service metadata is satisfied with the criteria. So the implementation of find method would be like this. 1: protected override IAsyncResult OnBeginFind(FindRequestContext findRequestContext, AsyncCallback callback, object state) 2: { 3: _services.Where(s => findRequestContext.Criteria.IsMatch(s.Value)) 4: .Select(s => s.Value) 5: .All(meta => 6: { 7: findRequestContext.AddMatchingEndpoint(meta); 8: return true; 9: }); 10: return new OnFindAsyncResult(callback, state); 11: } 12:  13: protected override void OnEndFind(IAsyncResult result) 14: { 15: OnFindAsyncResult.End(result); 16: } As you can see, we checked all endpoints metadata in repository by invoking the IsMatch method. Then add all proper endpoints metadata into the parameter. Finally since all these methods are asynchronized we need some AsyncResult classes as well. Below are the base class and the inherited classes used in previous methods. 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.Threading; 6:  7: namespace Phare.Service 8: { 9: abstract internal class AsyncResult : IAsyncResult 10: { 11: AsyncCallback callback; 12: bool completedSynchronously; 13: bool endCalled; 14: Exception exception; 15: bool isCompleted; 16: ManualResetEvent manualResetEvent; 17: object state; 18: object thisLock; 19:  20: protected AsyncResult(AsyncCallback callback, object state) 21: { 22: this.callback = callback; 23: this.state = state; 24: this.thisLock = new object(); 25: } 26:  27: public object AsyncState 28: { 29: get 30: { 31: return state; 32: } 33: } 34:  35: public WaitHandle AsyncWaitHandle 36: { 37: get 38: { 39: if (manualResetEvent != null) 40: { 41: return manualResetEvent; 42: } 43: lock (ThisLock) 44: { 45: if (manualResetEvent == null) 46: { 47: manualResetEvent = new ManualResetEvent(isCompleted); 48: } 49: } 50: return manualResetEvent; 51: } 52: } 53:  54: public bool CompletedSynchronously 55: { 56: get 57: { 58: return completedSynchronously; 59: } 60: } 61:  62: public bool IsCompleted 63: { 64: get 65: { 66: return isCompleted; 67: } 68: } 69:  70: object ThisLock 71: { 72: get 73: { 74: return this.thisLock; 75: } 76: } 77:  78: protected static TAsyncResult End<TAsyncResult>(IAsyncResult result) 79: where TAsyncResult : AsyncResult 80: { 81: if (result == null) 82: { 83: throw new ArgumentNullException("result"); 84: } 85:  86: TAsyncResult asyncResult = result as TAsyncResult; 87:  88: if (asyncResult == null) 89: { 90: throw new ArgumentException("Invalid async result.", "result"); 91: } 92:  93: if (asyncResult.endCalled) 94: { 95: throw new InvalidOperationException("Async object already ended."); 96: } 97:  98: asyncResult.endCalled = true; 99:  100: if (!asyncResult.isCompleted) 101: { 102: asyncResult.AsyncWaitHandle.WaitOne(); 103: } 104:  105: if (asyncResult.manualResetEvent != null) 106: { 107: asyncResult.manualResetEvent.Close(); 108: } 109:  110: if (asyncResult.exception != null) 111: { 112: throw asyncResult.exception; 113: } 114:  115: return asyncResult; 116: } 117:  118: protected void Complete(bool completedSynchronously) 119: { 120: if (isCompleted) 121: { 122: throw new InvalidOperationException("This async result is already completed."); 123: } 124:  125: this.completedSynchronously = completedSynchronously; 126:  127: if (completedSynchronously) 128: { 129: this.isCompleted = true; 130: } 131: else 132: { 133: lock (ThisLock) 134: { 135: this.isCompleted = true; 136: if (this.manualResetEvent != null) 137: { 138: this.manualResetEvent.Set(); 139: } 140: } 141: } 142:  143: if (callback != null) 144: { 145: callback(this); 146: } 147: } 148:  149: protected void Complete(bool completedSynchronously, Exception exception) 150: { 151: this.exception = exception; 152: Complete(completedSynchronously); 153: } 154: } 155: } 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.ServiceModel.Discovery; 6: using Phare.Service; 7:  8: namespace Phare.Service 9: { 10: internal sealed class OnOnlineAnnouncementAsyncResult : AsyncResult 11: { 12: public OnOnlineAnnouncementAsyncResult(AsyncCallback callback, object state) 13: : base(callback, state) 14: { 15: this.Complete(true); 16: } 17:  18: public static void End(IAsyncResult result) 19: { 20: AsyncResult.End<OnOnlineAnnouncementAsyncResult>(result); 21: } 22:  23: } 24:  25: sealed class OnOfflineAnnouncementAsyncResult : AsyncResult 26: { 27: public OnOfflineAnnouncementAsyncResult(AsyncCallback callback, object state) 28: : base(callback, state) 29: { 30: this.Complete(true); 31: } 32:  33: public static void End(IAsyncResult result) 34: { 35: AsyncResult.End<OnOfflineAnnouncementAsyncResult>(result); 36: } 37: } 38:  39: sealed class OnFindAsyncResult : AsyncResult 40: { 41: public OnFindAsyncResult(AsyncCallback callback, object state) 42: : base(callback, state) 43: { 44: this.Complete(true); 45: } 46:  47: public static void End(IAsyncResult result) 48: { 49: AsyncResult.End<OnFindAsyncResult>(result); 50: } 51: } 52:  53: sealed class OnResolveAsyncResult : AsyncResult 54: { 55: EndpointDiscoveryMetadata matchingEndpoint; 56:  57: public OnResolveAsyncResult(EndpointDiscoveryMetadata matchingEndpoint, AsyncCallback callback, object state) 58: : base(callback, state) 59: { 60: this.matchingEndpoint = matchingEndpoint; 61: this.Complete(true); 62: } 63:  64: public static EndpointDiscoveryMetadata End(IAsyncResult result) 65: { 66: OnResolveAsyncResult thisPtr = AsyncResult.End<OnResolveAsyncResult>(result); 67: return thisPtr.matchingEndpoint; 68: } 69: } 70: } Now we have finished the discovery service. The next step is to host it. The discovery service is a standard WCF service. So we can use ServiceHost on a console application, windows service, or in IIS as usual. The following code is how to host the discovery service we had just created in a console application. 1: static void Main(string[] args) 2: { 3: using (var host = new ServiceHost(new ManagedProxyDiscoveryService())) 4: { 5: host.Opened += (sender, e) => 6: { 7: host.Description.Endpoints.All((ep) => 8: { 9: Console.WriteLine(ep.ListenUri); 10: return true; 11: }); 12: }; 13:  14: try 15: { 16: // retrieve the announcement, probe endpoint and binding from configuration 17: var announcementEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["announcementEndpointAddress"]); 18: var probeEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["probeEndpointAddress"]); 19: var binding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 20: var announcementEndpoint = new AnnouncementEndpoint(binding, announcementEndpointAddress); 21: var probeEndpoint = new DiscoveryEndpoint(binding, probeEndpointAddress); 22: probeEndpoint.IsSystemEndpoint = false; 23: // append the service endpoint for announcement and probe 24: host.AddServiceEndpoint(announcementEndpoint); 25: host.AddServiceEndpoint(probeEndpoint); 26:  27: host.Open(); 28:  29: Console.WriteLine("Press any key to exit."); 30: Console.ReadKey(); 31: } 32: catch (Exception ex) 33: { 34: Console.WriteLine(ex.ToString()); 35: } 36: } 37:  38: Console.WriteLine("Done."); 39: Console.ReadKey(); 40: } What we need to notice is that, the discovery service needs two endpoints for announcement and probe. In this example I just retrieve them from the configuration file. I also specified the binding of these two endpoints in configuration file as well. 1: <?xml version="1.0"?> 2: <configuration> 3: <startup> 4: <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/> 5: </startup> 6: <appSettings> 7: <add key="announcementEndpointAddress" value="net.tcp://localhost:10010/announcement"/> 8: <add key="probeEndpointAddress" value="net.tcp://localhost:10011/probe"/> 9: <add key="bindingType" value="System.ServiceModel.NetTcpBinding, System.ServiceModel, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> 10: </appSettings> 11: </configuration> And this is the console screen when I ran my discovery service. As you can see there are two endpoints listening for announcement message and probe message.   Discoverable Service and Client Next, let’s create a WCF service that is discoverable, which means it can be found by the discovery service. To do so, we need to let the service send the online announcement message to the discovery service, as well as offline message before it shutdown. Just create a simple service which can make the incoming string to upper. The service contract and implementation would be like this. 1: [ServiceContract] 2: public interface IStringService 3: { 4: [OperationContract] 5: string ToUpper(string content); 6: } 1: public class StringService : IStringService 2: { 3: public string ToUpper(string content) 4: { 5: return content.ToUpper(); 6: } 7: } Then host this service in the console application. In order to make the discovery service easy to be tested the service address will be changed each time it’s started. 1: static void Main(string[] args) 2: { 3: var baseAddress = new Uri(string.Format("net.tcp://localhost:11001/stringservice/{0}/", Guid.NewGuid().ToString())); 4:  5: using (var host = new ServiceHost(typeof(StringService), baseAddress)) 6: { 7: host.Opened += (sender, e) => 8: { 9: Console.WriteLine("Service opened at {0}", host.Description.Endpoints.First().ListenUri); 10: }; 11:  12: host.AddServiceEndpoint(typeof(IStringService), new NetTcpBinding(), string.Empty); 13:  14: host.Open(); 15:  16: Console.WriteLine("Press any key to exit."); 17: Console.ReadKey(); 18: } 19: } Currently this service is NOT discoverable. We need to add a special service behavior so that it could send the online and offline message to the discovery service announcement endpoint when the host is opened and closed. WCF 4.0 introduced a service behavior named ServiceDiscoveryBehavior. When we specified the announcement endpoint address and appended it to the service behaviors this service will be discoverable. 1: var announcementAddress = new EndpointAddress(ConfigurationManager.AppSettings["announcementEndpointAddress"]); 2: var announcementBinding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 3: var announcementEndpoint = new AnnouncementEndpoint(announcementBinding, announcementAddress); 4: var discoveryBehavior = new ServiceDiscoveryBehavior(); 5: discoveryBehavior.AnnouncementEndpoints.Add(announcementEndpoint); 6: host.Description.Behaviors.Add(discoveryBehavior); The ServiceDiscoveryBehavior utilizes the service extension and channel dispatcher to implement the online and offline announcement logic. In short, it injected the channel open and close procedure and send the online and offline message to the announcement endpoint.   On client side, when we have the discovery service, a client can invoke a service without knowing its endpoint. WCF discovery assembly provides a class named DiscoveryClient, which can be used to find the proper service endpoint by passing the criteria. In the code below I initialized the DiscoveryClient, specified the discovery service probe endpoint address. Then I created the find criteria by specifying the service contract I wanted to use and invoke the Find method. This will send the probe message to the discovery service and it will find the endpoints back to me. The discovery service will return all endpoints that matches the find criteria, which means in the result of the find method there might be more than one endpoints. In this example I just returned the first matched one back. In the next post I will show how to extend our discovery service to make it work like a service load balancer. 1: static EndpointAddress FindServiceEndpoint() 2: { 3: var probeEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["probeEndpointAddress"]); 4: var probeBinding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 5: var discoveryEndpoint = new DiscoveryEndpoint(probeBinding, probeEndpointAddress); 6:  7: EndpointAddress address = null; 8: FindResponse result = null; 9: using (var discoveryClient = new DiscoveryClient(discoveryEndpoint)) 10: { 11: result = discoveryClient.Find(new FindCriteria(typeof(IStringService))); 12: } 13:  14: if (result != null && result.Endpoints.Any()) 15: { 16: var endpointMetadata = result.Endpoints.First(); 17: address = endpointMetadata.Address; 18: } 19: return address; 20: } Once we probed the discovery service we will receive the endpoint. So in the client code we can created the channel factory from the endpoint and binding, and invoke to the service. When creating the client side channel factory we need to make sure that the client side binding should be the same as the service side. WCF discovery service can be used to find the endpoint for a service contract, but the binding is NOT included. This is because the binding was not in the WS-Discovery specification. In the next post I will demonstrate how to add the binding information into the discovery service. At that moment the client don’t need to create the binding by itself. Instead it will use the binding received from the discovery service. 1: static void Main(string[] args) 2: { 3: Console.WriteLine("Say something..."); 4: var content = Console.ReadLine(); 5: while (!string.IsNullOrWhiteSpace(content)) 6: { 7: Console.WriteLine("Finding the service endpoint..."); 8: var address = FindServiceEndpoint(); 9: if (address == null) 10: { 11: Console.WriteLine("There is no endpoint matches the criteria."); 12: } 13: else 14: { 15: Console.WriteLine("Found the endpoint {0}", address.Uri); 16:  17: var factory = new ChannelFactory<IStringService>(new NetTcpBinding(), address); 18: factory.Opened += (sender, e) => 19: { 20: Console.WriteLine("Connecting to {0}.", factory.Endpoint.ListenUri); 21: }; 22: var proxy = factory.CreateChannel(); 23: using (proxy as IDisposable) 24: { 25: Console.WriteLine("ToUpper: {0} => {1}", content, proxy.ToUpper(content)); 26: } 27: } 28:  29: Console.WriteLine("Say something..."); 30: content = Console.ReadLine(); 31: } 32: } Similarly, the discovery service probe endpoint and binding were defined in the configuration file. 1: <?xml version="1.0"?> 2: <configuration> 3: <startup> 4: <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/> 5: </startup> 6: <appSettings> 7: <add key="announcementEndpointAddress" value="net.tcp://localhost:10010/announcement"/> 8: <add key="probeEndpointAddress" value="net.tcp://localhost:10011/probe"/> 9: <add key="bindingType" value="System.ServiceModel.NetTcpBinding, System.ServiceModel, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> 10: </appSettings> 11: </configuration> OK, now let’s have a test. Firstly start the discovery service, and then start our discoverable service. When it started it will announced to the discovery service and registered its endpoint into the repository, which is the local dictionary. And then start the client and type something. As you can see the client asked the discovery service for the endpoint and then establish the connection to the discoverable service. And more interesting, do NOT close the client console but terminate the discoverable service but press the enter key. This will make the service send the offline message to the discovery service. Then start the discoverable service again. Since we made it use a different address each time it started, currently it should be hosted on another address. If we enter something in the client we could see that it asked the discovery service and retrieve the new endpoint, and connect the the service.   Summary In this post I discussed the benefit of using the discovery service and the procedures of service announcement and probe. I also demonstrated how to leverage the WCF Discovery feature in WCF 4.0 to build a simple managed discovery service. For test purpose, in this example I used the in memory dictionary as the discovery endpoint metadata repository. And when finding I also just return the first matched endpoint back. I also hard coded the bindings between the discoverable service and the client. In next post I will show you how to solve the problem mentioned above, as well as some additional feature for production usage. You can download the code here.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Custom ASP.NET Routing to an HttpHandler

    - by Rick Strahl
    As of version 4.0 ASP.NET natively supports routing via the now built-in System.Web.Routing namespace. Routing features are automatically integrated into the HtttpRuntime via a few custom interfaces. New Web Forms Routing Support In ASP.NET 4.0 there are a host of improvements including routing support baked into Web Forms via a RouteData property available on the Page class and RouteCollection.MapPageRoute() route handler that makes it easy to route to Web forms. To map ASP.NET Page routes is as simple as setting up the routes with MapPageRoute:protected void Application_Start(object sender, EventArgs e) { RegisterRoutes(RouteTable.Routes); } void RegisterRoutes(RouteCollection routes) { routes.MapPageRoute("StockQuote", "StockQuote/{symbol}", "StockQuote.aspx"); routes.MapPageRoute("StockQuotes", "StockQuotes/{symbolList}", "StockQuotes.aspx"); } and then accessing the route data in the page you can then use the new Page class RouteData property to retrieve the dynamic route data information:public partial class StockQuote1 : System.Web.UI.Page { protected StockQuote Quote = null; protected void Page_Load(object sender, EventArgs e) { string symbol = RouteData.Values["symbol"] as string; StockServer server = new StockServer(); Quote = server.GetStockQuote(symbol); // display stock data in Page View } } Simple, quick and doesn’t require much explanation. If you’re using WebForms most of your routing needs should be served just fine by this simple mechanism. Kudos to the ASP.NET team for putting this in the box and making it easy! How Routing Works To handle Routing in ASP.NET involves these steps: Registering Routes Creating a custom RouteHandler to retrieve an HttpHandler Attaching RouteData to your HttpHandler Picking up Route Information in your Request code Registering routes makes ASP.NET aware of the Routes you want to handle via the static RouteTable.Routes collection. You basically add routes to this collection to let ASP.NET know which URL patterns it should watch for. You typically hook up routes off a RegisterRoutes method that fires in Application_Start as I did in the example above to ensure routes are added only once when the application first starts up. When you create a route, you pass in a RouteHandler instance which ASP.NET caches and reuses as routes are matched. Once registered ASP.NET monitors the routes and if a match is found just prior to the HttpHandler instantiation, ASP.NET uses the RouteHandler registered for the route and calls GetHandler() on it to retrieve an HttpHandler instance. The RouteHandler.GetHandler() method is responsible for creating an instance of an HttpHandler that is to handle the request and – if necessary – to assign any additional custom data to the handler. At minimum you probably want to pass the RouteData to the handler so the handler can identify the request based on the route data available. To do this you typically add  a RouteData property to your handler and then assign the property from the RouteHandlers request context. This is essentially how Page.RouteData comes into being and this approach should work well for any custom handler implementation that requires RouteData. It’s a shame that ASP.NET doesn’t have a top level intrinsic object that’s accessible off the HttpContext object to provide route data more generically, but since RouteData is directly tied to HttpHandlers and not all handlers support it it might cause some confusion of when it’s actually available. Bottom line is that if you want to hold on to RouteData you have to assign it to a custom property of the handler or else pass it to the handler via Context.Items[] object that can be retrieved on an as needed basis. It’s important to understand that routing is hooked up via RouteHandlers that are responsible for loading HttpHandler instances. RouteHandlers are invoked for every request that matches a route and through this RouteHandler instance the Handler gains access to the current RouteData. Because of this logic it’s important to understand that Routing is really tied to HttpHandlers and not available prior to handler instantiation, which is pretty late in the HttpRuntime’s request pipeline. IOW, Routing works with Handlers but not with earlier in the pipeline within Modules. Specifically ASP.NET calls RouteHandler.GetHandler() from the PostResolveRequestCache HttpRuntime pipeline event. Here’s the call stack at the beginning of the GetHandler() call: which fires just before handler resolution. Non-Page Routing – You need to build custom RouteHandlers If you need to route to a custom Http Handler or other non-Page (and non-MVC) endpoint in the HttpRuntime, there is no generic mapping support available. You need to create a custom RouteHandler that can manage creating an instance of an HttpHandler that is fired in response to a routed request. Depending on what you are doing this process can be simple or fairly involved as your code is responsible based on the route data provided which handler to instantiate, and more importantly how to pass the route data on to the Handler. Luckily creating a RouteHandler is easy by implementing the IRouteHandler interface which has only a single GetHttpHandler(RequestContext context) method. In this method you can pick up the requestContext.RouteData, instantiate the HttpHandler of choice, and assign the RouteData to it. Then pass back the handler and you’re done.Here’s a simple example of GetHttpHandler() method that dynamically creates a handler based on a passed in Handler type./// <summary> /// Retrieves an Http Handler based on the type specified in the constructor /// </summary> /// <param name="requestContext"></param> /// <returns></returns> IHttpHandler IRouteHandler.GetHttpHandler(RequestContext requestContext) { IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; // If we're dealing with a Callback Handler // pass the RouteData for this route to the Handler if (handler is CallbackHandler) ((CallbackHandler)handler).RouteData = requestContext.RouteData; return handler; } Note that this code checks for a specific type of handler and if it matches assigns the RouteData to this handler. This is optional but quite a common scenario if you want to work with RouteData. If the handler you need to instantiate isn’t under your control but you still need to pass RouteData to Handler code, an alternative is to pass the RouteData via the HttpContext.Items collection:IHttpHandler IRouteHandler.GetHttpHandler(RequestContext requestContext) { IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; requestContext.HttpContext.Items["RouteData"] = requestContext.RouteData; return handler; } The code in the handler implementation can then pick up the RouteData from the context collection as needed:RouteData routeData = HttpContext.Current.Items["RouteData"] as RouteData This isn’t as clean as having an explicit RouteData property, but it does have the advantage that the route data is visible anywhere in the Handler’s code chain. It’s definitely preferable to create a custom property on your handler, but the Context work-around works in a pinch when you don’t’ own the handler code and have dynamic code executing as part of the handler execution. An Example of a Custom RouteHandler: Attribute Based Route Implementation In this post I’m going to discuss a custom routine implementation I built for my CallbackHandler class in the West Wind Web & Ajax Toolkit. CallbackHandler can be very easily used for creating AJAX, REST and POX requests following RPC style method mapping. You can pass parameters via URL query string, POST data or raw data structures, and you can retrieve results as JSON, XML or raw string/binary data. It’s a quick and easy way to build service interfaces with no fuss. As a quick review here’s how CallbackHandler works: You create an Http Handler that derives from CallbackHandler You implement methods that have a [CallbackMethod] Attribute and that’s it. Here’s an example of an CallbackHandler implementation in an ashx.cs based handler:// RestService.ashx.cs public class RestService : CallbackHandler { [CallbackMethod] public StockQuote GetStockQuote(string symbol) { StockServer server = new StockServer(); return server.GetStockQuote(symbol); } [CallbackMethod] public StockQuote[] GetStockQuotes(string symbolList) { StockServer server = new StockServer(); string[] symbols = symbolList.Split(new char[2] { ',',';' },StringSplitOptions.RemoveEmptyEntries); return server.GetStockQuotes(symbols); } } CallbackHandler makes it super easy to create a method on the server, pass data to it via POST, QueryString or raw JSON/XML data, and then retrieve the results easily back in various formats. This works wonderful and I’ve used these tools in many projects for myself and with clients. But one thing missing has been the ability to create clean URLs. Typical URLs looked like this: http://www.west-wind.com/WestwindWebToolkit/samples/Rest/StockService.ashx?Method=GetStockQuote&symbol=msfthttp://www.west-wind.com/WestwindWebToolkit/samples/Rest/StockService.ashx?Method=GetStockQuotes&symbolList=msft,intc,gld,slw,mwe&format=xml which works and is clear enough, but also clearly very ugly. It would be much nicer if URLs could look like this: http://www.west-wind.com//WestwindWebtoolkit/Samples/StockQuote/msfthttp://www.west-wind.com/WestwindWebtoolkit/Samples/StockQuotes/msft,intc,gld,slw?format=xml (the Virtual Root in this sample is WestWindWebToolkit/Samples and StockQuote/{symbol} is the route)(If you use FireFox try using the JSONView plug-in make it easier to view JSON content) So, taking a clue from the WCF REST tools that use RouteUrls I set out to create a way to specify RouteUrls for each of the endpoints. The change made basically allows changing the above to: [CallbackMethod(RouteUrl="RestService/StockQuote/{symbol}")] public StockQuote GetStockQuote(string symbol) { StockServer server = new StockServer(); return server.GetStockQuote(symbol); } [CallbackMethod(RouteUrl = "RestService/StockQuotes/{symbolList}")] public StockQuote[] GetStockQuotes(string symbolList) { StockServer server = new StockServer(); string[] symbols = symbolList.Split(new char[2] { ',',';' },StringSplitOptions.RemoveEmptyEntries); return server.GetStockQuotes(symbols); } where a RouteUrl is specified as part of the Callback attribute. And with the changes made with RouteUrls I can now get URLs like the second set shown earlier. So how does that work? Let’s find out… How to Create Custom Routes As mentioned earlier Routing is made up of several steps: Creating a custom RouteHandler to create HttpHandler instances Mapping the actual Routes to the RouteHandler Retrieving the RouteData and actually doing something useful with it in the HttpHandler In the CallbackHandler routing example above this works out to something like this: Create a custom RouteHandler that includes a property to track the method to call Set up the routes using Reflection against the class Looking for any RouteUrls in the CallbackMethod attribute Add a RouteData property to the CallbackHandler so we can access the RouteData in the code of the handler Creating a Custom Route Handler To make the above work I created a custom RouteHandler class that includes the actual IRouteHandler implementation as well as a generic and static method to automatically register all routes marked with the [CallbackMethod(RouteUrl="…")] attribute. Here’s the code:/// <summary> /// Route handler that can create instances of CallbackHandler derived /// callback classes. The route handler tracks the method name and /// creates an instance of the service in a predictable manner /// </summary> /// <typeparam name="TCallbackHandler">CallbackHandler type</typeparam> public class CallbackHandlerRouteHandler : IRouteHandler { /// <summary> /// Method name that is to be called on this route. /// Set by the automatically generated RegisterRoutes /// invokation. /// </summary> public string MethodName { get; set; } /// <summary> /// The type of the handler we're going to instantiate. /// Needed so we can semi-generically instantiate the /// handler and call the method on it. /// </summary> public Type CallbackHandlerType { get; set; } /// <summary> /// Constructor to pass in the two required components we /// need to create an instance of our handler. /// </summary> /// <param name="methodName"></param> /// <param name="callbackHandlerType"></param> public CallbackHandlerRouteHandler(string methodName, Type callbackHandlerType) { MethodName = methodName; CallbackHandlerType = callbackHandlerType; } /// <summary> /// Retrieves an Http Handler based on the type specified in the constructor /// </summary> /// <param name="requestContext"></param> /// <returns></returns> IHttpHandler IRouteHandler.GetHttpHandler(RequestContext requestContext) { IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; // If we're dealing with a Callback Handler // pass the RouteData for this route to the Handler if (handler is CallbackHandler) ((CallbackHandler)handler).RouteData = requestContext.RouteData; return handler; } /// <summary> /// Generic method to register all routes from a CallbackHandler /// that have RouteUrls defined on the [CallbackMethod] attribute /// </summary> /// <typeparam name="TCallbackHandler">CallbackHandler Type</typeparam> /// <param name="routes"></param> public static void RegisterRoutes<TCallbackHandler>(RouteCollection routes) { // find all methods var methods = typeof(TCallbackHandler).GetMethods(BindingFlags.Instance | BindingFlags.Public); foreach (var method in methods) { var attrs = method.GetCustomAttributes(typeof(CallbackMethodAttribute), false); if (attrs.Length < 1) continue; CallbackMethodAttribute attr = attrs[0] as CallbackMethodAttribute; if (string.IsNullOrEmpty(attr.RouteUrl)) continue; // Add the route routes.Add(method.Name, new Route(attr.RouteUrl, new CallbackHandlerRouteHandler(method.Name, typeof(TCallbackHandler)))); } } } The RouteHandler implements IRouteHandler, and its responsibility via the GetHandler method is to create an HttpHandler based on the route data. When ASP.NET calls GetHandler it passes a requestContext parameter which includes a requestContext.RouteData property. This parameter holds the current request’s route data as well as an instance of the current RouteHandler. If you look at GetHttpHandler() you can see that the code creates an instance of the handler we are interested in and then sets the RouteData property on the handler. This is how you can pass the current request’s RouteData to the handler. The RouteData object also has a  RouteData.RouteHandler property that is also available to the Handler later, which is useful in order to get additional information about the current route. In our case here the RouteHandler includes a MethodName property that identifies the method to execute in the handler since that value no longer comes from the URL so we need to figure out the method name some other way. The method name is mapped explicitly when the RouteHandler is created and here the static method that auto-registers all CallbackMethods with RouteUrls sets the method name when it creates the routes while reflecting over the methods (more on this in a minute). The important point here is that you can attach additional properties to the RouteHandler and you can then later access the RouteHandler and its properties later in the Handler to pick up these custom values. This is a crucial feature in that the RouteHandler serves in passing additional context to the handler so it knows what actions to perform. The automatic route registration is handled by the static RegisterRoutes<TCallbackHandler> method. This method is generic and totally reusable for any CallbackHandler type handler. To register a CallbackHandler and any RouteUrls it has defined you simple use code like this in Application_Start (or other application startup code):protected void Application_Start(object sender, EventArgs e) { // Register Routes for RestService CallbackHandlerRouteHandler.RegisterRoutes<RestService>(RouteTable.Routes); } If you have multiple CallbackHandler style services you can make multiple calls to RegisterRoutes for each of the service types. RegisterRoutes internally uses reflection to run through all the methods of the Handler, looking for CallbackMethod attributes and whether a RouteUrl is specified. If it is a new instance of a CallbackHandlerRouteHandler is created and the name of the method and the type are set. routes.Add(method.Name,           new Route(attr.RouteUrl, new CallbackHandlerRouteHandler(method.Name, typeof(TCallbackHandler) )) ); While the routing with CallbackHandlerRouteHandler is set up automatically for all methods that use the RouteUrl attribute, you can also use code to hook up those routes manually and skip using the attribute. The code for this is straightforward and just requires that you manually map each individual route to each method you want a routed: protected void Application_Start(objectsender, EventArgs e){    RegisterRoutes(RouteTable.Routes);}void RegisterRoutes(RouteCollection routes) { routes.Add("StockQuote Route",new Route("StockQuote/{symbol}",                     new CallbackHandlerRouteHandler("GetStockQuote",typeof(RestService) ) ) );     routes.Add("StockQuotes Route",new Route("StockQuotes/{symbolList}",                     new CallbackHandlerRouteHandler("GetStockQuotes",typeof(RestService) ) ) );}I think it’s clearly easier to have CallbackHandlerRouteHandler.RegisterRoutes() do this automatically for you based on RouteUrl attributes, but some people have a real aversion to attaching logic via attributes. Just realize that the option to manually create your routes is available as well. Using the RouteData in the Handler A RouteHandler’s responsibility is to create an HttpHandler and as mentioned earlier, natively IHttpHandler doesn’t have any support for RouteData. In order to utilize RouteData in your handler code you have to pass the RouteData to the handler. In my CallbackHandlerRouteHandler when it creates the HttpHandler instance it creates the instance and then assigns the custom RouteData property on the handler:IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; if (handler is CallbackHandler) ((CallbackHandler)handler).RouteData = requestContext.RouteData; return handler; Again this only works if you actually add a RouteData property to your handler explicitly as I did in my CallbackHandler implementation:/// <summary> /// Optionally store RouteData on this handler /// so we can access it internally /// </summary> public RouteData RouteData {get; set; } and the RouteHandler needs to set it when it creates the handler instance. Once you have the route data in your handler you can access Route Keys and Values and also the RouteHandler. Since my RouteHandler has a custom property for the MethodName to retrieve it from within the handler I can do something like this now to retrieve the MethodName (this example is actually not in the handler but target is an instance pass to the processor): // check for Route Data method name if (target is CallbackHandler) { var routeData = ((CallbackHandler)target).RouteData; if (routeData != null) methodToCall = ((CallbackHandlerRouteHandler)routeData.RouteHandler).MethodName; } When I need to access the dynamic values in the route ( symbol in StockQuote/{symbol}) I can retrieve it easily with the Values collection (RouteData.Values["symbol"]). In my CallbackHandler processing logic I’m basically looking for matching parameter names to Route parameters: // look for parameters in the routeif(routeData != null){    string parmString = routeData.Values[parameter.Name] as string;    adjustedParms[parmCounter] = ReflectionUtils.StringToTypedValue(parmString, parameter.ParameterType);} And with that we’ve come full circle. We’ve created a custom RouteHandler() that passes the RouteData to the handler it creates. We’ve registered our routes to use the RouteHandler, and we’ve utilized the route data in our handler. For completeness sake here’s the routine that executes a method call based on the parameters passed in and one of the options is to retrieve the inbound parameters off RouteData (as well as from POST data or QueryString parameters):internal object ExecuteMethod(string method, object target, string[] parameters, CallbackMethodParameterType paramType, ref CallbackMethodAttribute callbackMethodAttribute) { HttpRequest Request = HttpContext.Current.Request; object Result = null; // Stores parsed parameters (from string JSON or QUeryString Values) object[] adjustedParms = null; Type PageType = target.GetType(); MethodInfo MI = PageType.GetMethod(method, BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic); if (MI == null) throw new InvalidOperationException("Invalid Server Method."); object[] methods = MI.GetCustomAttributes(typeof(CallbackMethodAttribute), false); if (methods.Length < 1) throw new InvalidOperationException("Server method is not accessible due to missing CallbackMethod attribute"); if (callbackMethodAttribute != null) callbackMethodAttribute = methods[0] as CallbackMethodAttribute; ParameterInfo[] parms = MI.GetParameters(); JSONSerializer serializer = new JSONSerializer(); RouteData routeData = null; if (target is CallbackHandler) routeData = ((CallbackHandler)target).RouteData; int parmCounter = 0; adjustedParms = new object[parms.Length]; foreach (ParameterInfo parameter in parms) { // Retrieve parameters out of QueryString or POST buffer if (parameters == null) { // look for parameters in the route if (routeData != null) { string parmString = routeData.Values[parameter.Name] as string; adjustedParms[parmCounter] = ReflectionUtils.StringToTypedValue(parmString, parameter.ParameterType); } // GET parameter are parsed as plain string values - no JSON encoding else if (HttpContext.Current.Request.HttpMethod == "GET") { // Look up the parameter by name string parmString = Request.QueryString[parameter.Name]; adjustedParms[parmCounter] = ReflectionUtils.StringToTypedValue(parmString, parameter.ParameterType); } // POST parameters are treated as methodParameters that are JSON encoded else if (paramType == CallbackMethodParameterType.Json) //string newVariable = methodParameters.GetValue(parmCounter) as string; adjustedParms[parmCounter] = serializer.Deserialize(Request.Params["parm" + (parmCounter + 1).ToString()], parameter.ParameterType); else adjustedParms[parmCounter] = SerializationUtils.DeSerializeObject( Request.Params["parm" + (parmCounter + 1).ToString()], parameter.ParameterType); } else if (paramType == CallbackMethodParameterType.Json) adjustedParms[parmCounter] = serializer.Deserialize(parameters[parmCounter], parameter.ParameterType); else adjustedParms[parmCounter] = SerializationUtils.DeSerializeObject(parameters[parmCounter], parameter.ParameterType); parmCounter++; } Result = MI.Invoke(target, adjustedParms); return Result; } The code basically uses Reflection to loop through all the parameters available on the method and tries to assign the parameters from RouteData, QueryString or POST variables. The parameters are converted into their appropriate types and then used to eventually make a Reflection based method call. What’s sweet is that the RouteData retrieval is just another option for dealing with the inbound data in this scenario and it adds exactly two lines of code plus the code to retrieve the MethodName I showed previously – a seriously low impact addition that adds a lot of extra value to this endpoint callback processing implementation. Debugging your Routes If you create a lot of routes it’s easy to run into Route conflicts where multiple routes have the same path and overlap with each other. This can be difficult to debug especially if you are using automatically generated routes like the routes created by CallbackHandlerRouteHandler.RegisterRoutes. Luckily there’s a tool that can help you out with this nicely. Phill Haack created a RouteDebugging tool you can download and add to your project. The easiest way to do this is to grab and add this to your project is to use NuGet (Add Library Package from your Project’s Reference Nodes):   which adds a RouteDebug assembly to your project. Once installed you can easily debug your routes with this simple line of code which needs to be installed at application startup:protected void Application_Start(object sender, EventArgs e) { CallbackHandlerRouteHandler.RegisterRoutes<StockService>(RouteTable.Routes); // Debug your routes RouteDebug.RouteDebugger.RewriteRoutesForTesting(RouteTable.Routes); } Any routed URL then displays something like this: The screen shows you your current route data and all the routes that are mapped along with a flag that displays which route was actually matched. This is useful – if you have any overlap of routes you will be able to see which routes are triggered – the first one in the sequence wins. This tool has saved my ass on a few occasions – and with NuGet now it’s easy to add it to your project in a few seconds and then remove it when you’re done. Routing Around Custom routing seems slightly complicated on first blush due to its disconnected components of RouteHandler, route registration and mapping of custom handlers. But once you understand the relationship between a RouteHandler, the RouteData and how to pass it to a handler, utilizing of Routing becomes a lot easier as you can easily pass context from the registration to the RouteHandler and through to the HttpHandler. The most important thing to understand when building custom routing solutions is to figure out how to map URLs in such a way that the handler can figure out all the pieces it needs to process the request. This can be via URL routing parameters and as I did in my example by passing additional context information as part of the RouteHandler instance that provides the proper execution context. In my case this ‘context’ was the method name, but it could be an actual static value like an enum identifying an operation or category in an application. Basically user supplied data comes in through the url and static application internal data can be passed via RouteHandler property values. Routing can make your application URLs easier to read by non-techie types regardless of whether you’re building Service type or REST applications, or full on Web interfaces. Routing in ASP.NET 4.0 makes it possible to create just about any extensionless URLs you can dream up and custom RouteHanmdler References Sample ProjectIncludes the sample CallbackHandler service discussed here along with compiled versionsof the Westwind.Web and Westwind.Utilities assemblies.  (requires .NET 4.0/VS 2010) West Wind Web Toolkit includes full implementation of CallbackHandler and the Routing Handler West Wind Web Toolkit Source CodeContains the full source code to the Westwind.Web and Westwind.Utilities assemblies usedin these samples. Includes the source described in the post.(Latest build in the Subversion Repository) CallbackHandler Source(Relevant code to this article tree in Westwind.Web assembly) JSONView FireFoxPluginA simple FireFox Plugin to easily view JSON data natively in FireFox.For IE you can use a registry hack to display JSON as raw text.© Rick Strahl, West Wind Technologies, 2005-2011Posted in ASP.NET  AJAX  HTTP  

    Read the article

  • Red Gate Coder interviews: Alex Davies

    - by Michael Williamson
    Alex Davies has been a software engineer at Red Gate since graduating from university, and is currently busy working on .NET Demon. We talked about tackling parallel programming with his actors framework, a scientific approach to debugging, and how JavaScript is going to affect the programming languages we use in years to come. So, if we start at the start, how did you get started in programming? When I was seven or eight, I was given a BBC Micro for Christmas. I had asked for a Game Boy, but my dad thought it would be better to give me a proper computer. For a year or so, I only played games on it, but then I found the user guide for writing programs in it. I gradually started doing more stuff on it and found it fun. I liked creating. As I went into senior school I continued to write stuff on there, trying to write games that weren’t very good. I got a real computer when I was fourteen and found ways to write BASIC on it. Visual Basic to start with, and then something more interesting than that. How did you learn to program? Was there someone helping you out? Absolutely not! I learnt out of a book, or by experimenting. I remember the first time I found a loop, I was like “Oh my God! I don’t have to write out the same line over and over and over again any more. It’s amazing!” When did you think this might be something that you actually wanted to do as a career? For a long time, I thought it wasn’t something that you would do as a career, because it was too much fun to be a career. I thought I’d do chemistry at university and some kind of career based on chemical engineering. And then I went to a careers fair at school when I was seventeen or eighteen, and it just didn’t interest me whatsoever. I thought “I could be a programmer, and there’s loads of money there, and I’m good at it, and it’s fun”, but also that I shouldn’t spoil my hobby. Now I don’t really program in my spare time any more, which is a bit of a shame, but I program all the rest of the time, so I can live with it. Do you think you learnt much about programming at university? Yes, definitely! I went into university knowing how to make computers do anything I wanted them to do. However, I didn’t have the language to talk about algorithms, so the algorithms course in my first year was massively important. Learning other language paradigms like functional programming was really good for breadth of understanding. Functional programming influences normal programming through design rather than actually using it all the time. I draw inspiration from it to write imperative programs which I think is actually becoming really fashionable now, but I’ve been doing it for ages. I did it first! There were also some courses on really odd programming languages, a bit of Prolog, a little bit of C. Having a little bit of each of those is something that I would have never done on my own, so it was important. And then there are knowledge-based courses which are about not programming itself but things that have been programmed like TCP. Those are really important for examples for how to approach things. Did you do any internships while you were at university? Yeah, I spent both of my summers at the same company. I thought I could code well before I went there. Looking back at the crap that I produced, it was only surpassed in its crappiness by all of the other code already in that company. I’m so much better at writing nice code now than I used to be back then. Was there just not a culture of looking after your code? There was, they just didn’t hire people for their abilities in that area. They hired people for raw IQ. The first indicator of it going wrong was that they didn’t have any computer scientists, which is a bit odd in a programming company. But even beyond that they didn’t have people who learnt architecture from anyone else. Most of them had started straight out of university, so never really had experience or mentors to learn from. There wasn’t the experience to draw from to teach each other. In the second half of my second internship, I was being given tasks like looking at new technologies and teaching people stuff. Interns shouldn’t be teaching people how to do their jobs! All interns are going to have little nuggets of things that you don’t know about, but they shouldn’t consistently be the ones who know the most. It’s not a good environment to learn. I was going to ask how you found working with people who were more experienced than you… When I reached Red Gate, I found some people who were more experienced programmers than me, and that was difficult. I’ve been coding since I was tiny. At university there were people who were cleverer than me, but there weren’t very many who were more experienced programmers than me. During my internship, I didn’t find anyone who I classed as being a noticeably more experienced programmer than me. So, it was a shock to the system to have valid criticisms rather than just formatting criticisms. However, Red Gate’s not so big on the actual code review, at least it wasn’t when I started. We did an entire product release and then somebody looked over all of the UI of that product which I’d written and say what they didn’t like. By that point, it was way too late and I’d disagree with them. Do you think the lack of code reviews was a bad thing? I think if there’s going to be any oversight of new people, then it should be continuous rather than chunky. For me I don’t mind too much, I could go out and get oversight if I wanted it, and in those situations I felt comfortable without it. If I was managing the new person, then maybe I’d be keener on oversight and then the right way to do it is continuously and in very, very small chunks. Have you had any significant projects you’ve worked on outside of a job? When I was a teenager I wrote all sorts of stuff. I used to write games, I derived how to do isomorphic projections myself once. I didn’t know what the word was so I couldn’t Google for it, so I worked it out myself. It was horrifically complicated. But it sort of tailed off when I started at university, and is now basically zero. If I do side-projects now, they tend to be work-related side projects like my actors framework, NAct, which I started in a down tools week. Could you explain a little more about NAct? It is a little C# framework for writing parallel code more easily. Parallel programming is difficult when you need to write to shared data. Sometimes parallel programming is easy because you don’t need to write to shared data. When you do need to access shared data, you could just have your threads pile in and do their work, but then you would screw up the data because the threads would trample on each other’s toes. You could lock, but locks are really dangerous if you’re using more than one of them. You get interactions like deadlocks, and that’s just nasty. Actors instead allows you to say this piece of data belongs to this thread of execution, and nobody else can read it. If you want to read it, then ask that thread of execution for a piece of it by sending a message, and it will send the data back by a message. And that avoids deadlocks as long as you follow some obvious rules about not making your actors sit around waiting for other actors to do something. There are lots of ways to write actors, NAct allows you to do it as if it was method calls on other objects, which means you get all the strong type-safety that C# programmers like. Do you think that this is suitable for the majority of parallel programming, or do you think it’s only suitable for specific cases? It’s suitable for most difficult parallel programming. If you’ve just got a hundred web requests which are all independent of each other, then I wouldn’t bother because it’s easier to just spin them up in separate threads and they can proceed independently of each other. But where you’ve got difficult parallel programming, where you’ve got multiple threads accessing multiple bits of data in multiple ways at different times, then actors is at least as good as all other ways, and is, I reckon, easier to think about. When you’re using actors, you presumably still have to write your code in a different way from you would otherwise using single-threaded code. You can’t use actors with any methods that have return types, because you’re not allowed to call into another actor and wait for it. If you want to get a piece of data out of another actor, then you’ve got to use tasks so that you can use “async” and “await” to await asynchronously for it. But other than that, you can still stick things in classes so it’s not too different really. Rather than having thousands of objects with mutable state, you can use component-orientated design, where there are only a few mutable classes which each have a small number of instances. Then there can be thousands of immutable objects. If you tend to do that anyway, then actors isn’t much of a jump. If I’ve already built my system without any parallelism, how hard is it to add actors to exploit all eight cores on my desktop? Usually pretty easy. If you can identify even one boundary where things look like messages and you have components where some objects live on one side and these other objects live on the other side, then you can have a granddaddy object on one side be an actor and it will parallelise as it goes across that boundary. Not too difficult. If we do get 1000-core desktop PCs, do you think actors will scale up? It’s hard. There are always in the order of twenty to fifty actors in my whole program because I tend to write each component as actors, and I tend to have one instance of each component. So this won’t scale to a thousand cores. What you can do is write data structures out of actors. I use dictionaries all over the place, and if you need a dictionary that is going to be accessed concurrently, then you could build one of those out of actors in no time. You can use queuing to marshal requests between different slices of the dictionary which are living on different threads. So it’s like a distributed hash table but all of the chunks of it are on the same machine. That means that each of these thousand processors has cached one small piece of the dictionary. I reckon it wouldn’t be too big a leap to start doing proper parallelism. Do you think it helps if actors get baked into the language, similarly to Erlang? Erlang is excellent in that it has thread-local garbage collection. C# doesn’t, so there’s a limit to how well C# actors can possibly scale because there’s a single garbage collected heap shared between all of them. When you do a global garbage collection, you’ve got to stop all of the actors, which is seriously expensive, whereas in Erlang garbage collections happen per-actor, so they’re insanely cheap. However, Erlang deviated from all the sensible language design that people have used recently and has just come up with crazy stuff. You can definitely retrofit thread-local garbage collection to .NET, and then it’s quite well-suited to support actors, even if it’s not baked into the language. Speaking of language design, do you have a favourite programming language? I’ll choose a language which I’ve never written before. I like the idea of Scala. It sounds like C#, only with some of the niggles gone. I enjoy writing static types. It means you don’t have to writing tests so much. When you say it doesn’t have some of the niggles? C# doesn’t allow the use of a property as a method group. It doesn’t have Scala case classes, or sum types, where you can do a switch statement and the compiler checks that you’ve checked all the cases, which is really useful in functional-style programming. Pattern-matching, in other words. That’s actually the major niggle. C# is pretty good, and I’m quite happy with C#. And what about going even further with the type system to remove the need for tests to something like Haskell? Or is that a step too far? I’m quite a pragmatist, I don’t think I could deal with trying to write big systems in languages with too few other users, especially when learning how to structure things. I just don’t know anyone who can teach me, and the Internet won’t teach me. That’s the main reason I wouldn’t use it. If I turned up at a company that writes big systems in Haskell, I would have no objection to that, but I wouldn’t instigate it. What about things in C#? For instance, there’s contracts in C#, so you can try to statically verify a bit more about your code. Do you think that’s useful, or just not worthwhile? I’ve not really tried it. My hunch is that it needs to be built into the language and be quite mathematical for it to work in real life, and that doesn’t seem to have ended up true for C# contracts. I don’t think anyone who’s tried them thinks they’re any good. I might be wrong. On a slightly different note, how do you like to debug code? I think I’m quite an odd debugger. I use guesswork extremely rarely, especially if something seems quite difficult to debug. I’ve been bitten spending hours and hours on guesswork and not being scientific about debugging in the past, so now I’m scientific to a fault. What I want is to see the bug happening in the debugger, to step through the bug happening. To watch the program going from a valid state to an invalid state. When there’s a bug and I can’t work out why it’s happening, I try to find some piece of evidence which places the bug in one section of the code. From that experiment, I binary chop on the possible causes of the bug. I suppose that means binary chopping on places in the code, or binary chopping on a stage through a processing cycle. Basically, I’m very stupid about how I debug. I won’t make any guesses, I won’t use any intuition, I will only identify the experiment that’s going to binary chop most effectively and repeat rather than trying to guess anything. I suppose it’s quite top-down. Is most of the time then spent in the debugger? Absolutely, if at all possible I will never debug using print statements or logs. I don’t really hold much stock in outputting logs. If there’s any bug which can be reproduced locally, I’d rather do it in the debugger than outputting logs. And with SmartAssembly error reporting, there’s not a lot that can’t be either observed in an error report and just fixed, or reproduced locally. And in those other situations, maybe I’ll use logs. But I hate using logs. You stare at the log, trying to guess what’s going on, and that’s exactly what I don’t like doing. You have to just look at it and see does this look right or wrong. We’ve covered how you get to grip with bugs. How do you get to grips with an entire codebase? I watch it in the debugger. I find little bugs and then try to fix them, and mostly do it by watching them in the debugger and gradually getting an understanding of how the code works using my process of binary chopping. I have to do a lot of reading and watching code to choose where my slicing-in-half experiment is going to be. The last time I did it was SmartAssembly. The old code was a complete mess, but at least it did things top to bottom. There wasn’t too much of some of the big abstractions where flow of control goes all over the place, into a base class and back again. Code’s really hard to understand when that happens. So I like to choose a little bug and try to fix it, and choose a bigger bug and try to fix it. Definitely learn by doing. I want to always have an aim so that I get a little achievement after every few hours of debugging. Once I’ve learnt the codebase I might be able to fix all the bugs in an hour, but I’d rather be using them as an aim while I’m learning the codebase. If I was a maintainer of a codebase, what should I do to make it as easy as possible for you to understand? Keep distinct concepts in different places. And name your stuff so that it’s obvious which concepts live there. You shouldn’t have some variable that gets set miles up the top of somewhere, and then is read miles down to choose some later behaviour. I’m talking from a very much SmartAssembly point of view because the old SmartAssembly codebase had tons and tons of these things, where it would read some property of the code and then deal with it later. Just thousands of variables in scope. Loads of things to think about. If you can keep concepts separate, then it aids me in my process of fixing bugs one at a time, because each bug is going to more or less be understandable in the one place where it is. And what about tests? Do you think they help at all? I’ve never had the opportunity to learn a codebase which has had tests, I don’t know what it’s like! What about when you’re actually developing? How useful do you find tests in finding bugs or regressions? Finding regressions, absolutely. Running bits of code that would be quite hard to run otherwise, definitely. It doesn’t happen very often that a test finds a bug in the first place. I don’t really buy nebulous promises like tests being a good way to think about the spec of the code. My thinking goes something like “This code works at the moment, great, ship it! Ah, there’s a way that this code doesn’t work. Okay, write a test, demonstrate that it doesn’t work, fix it, use the test to demonstrate that it’s now fixed, and keep the test for future regressions.” The most valuable tests are for bugs that have actually happened at some point, because bugs that have actually happened at some point, despite the fact that you think you’ve fixed them, are way more likely to appear again than new bugs are. Does that mean that when you write your code the first time, there are no tests? Often. The chance of there being a bug in a new feature is relatively unaffected by whether I’ve written a test for that new feature because I’m not good enough at writing tests to think of bugs that I would have written into the code. So not writing regression tests for all of your code hasn’t affected you too badly? There are different kinds of features. Some of them just always work, and are just not flaky, they just continue working whatever you throw at them. Maybe because the type-checker is particularly effective around them. Writing tests for those features which just tend to always work is a waste of time. And because it’s a waste of time I’ll tend to wait until a feature has demonstrated its flakiness by having bugs in it before I start trying to test it. You can get a feel for whether it’s going to be flaky code as you’re writing it. I try to write it to make it not flaky, but there are some things that are just inherently flaky. And very occasionally, I’ll think “this is going to be flaky” as I’m writing, and then maybe do a test, but not most of the time. How do you think your programming style has changed over time? I’ve got clearer about what the right way of doing things is. I used to flip-flop a lot between different ideas. Five years ago I came up with some really good ideas and some really terrible ideas. All of them seemed great when I thought of them, but they were quite diverse ideas, whereas now I have a smaller set of reliable ideas that are actually good for structuring code. So my code is probably more similar to itself than it used to be back in the day, when I was trying stuff out. I’ve got more disciplined about encapsulation, I think. There are operational things like I use actors more now than I used to, and that forces me to use immutability more than I used to. The first code that I wrote in Red Gate was the memory profiler UI, and that was an actor, I just didn’t know the name of it at the time. I don’t really use object-orientation. By object-orientation, I mean having n objects of the same type which are mutable. I want a constant number of objects that are mutable, and they should be different types. I stick stuff in dictionaries and then have one thing that owns the dictionary and puts stuff in and out of it. That’s definitely a pattern that I’ve seen recently. I think maybe I’m doing functional programming. Possibly. It’s plausible. If you had to summarise the essence of programming in a pithy sentence, how would you do it? Programming is the form of art that, without losing any of the beauty of architecture or fine art, allows you to produce things that people love and you make money from. So you think it’s an art rather than a science? It’s a little bit of engineering, a smidgeon of maths, but it’s not science. Like architecture, programming is on that boundary between art and engineering. If you want to do it really nicely, it’s mostly art. You can get away with doing architecture and programming entirely by having a good engineering mind, but you’re not going to produce anything nice. You’re not going to have joy doing it if you’re an engineering mind. Architects who are just engineering minds are not going to enjoy their job. I suppose engineering is the foundation on which you build the art. Exactly. How do you think programming is going to change over the next ten years? There will be an unfortunate shift towards dynamically-typed languages, because of JavaScript. JavaScript has an unfair advantage. JavaScript’s unfair advantage will cause more people to be exposed to dynamically-typed languages, which means other dynamically-typed languages crop up and the best features go into dynamically-typed languages. Then people conflate the good features with the fact that it’s dynamically-typed, and more investment goes into dynamically-typed languages. They end up better, so people use them. What about the idea of compiling other languages, possibly statically-typed, to JavaScript? It’s a reasonable idea. I would like to do it, but I don’t think enough people in the world are going to do it to make it pick up. The hordes of beginners are the lifeblood of a language community. They are what makes there be good tools and what makes there be vibrant community websites. And any particular thing which is the same as JavaScript only with extra stuff added to it, although it might be technically great, is not going to have the hordes of beginners. JavaScript is always to be quickest and easiest way for a beginner to start programming in the browser. And dynamically-typed languages are great for beginners. Compilers are pretty scary and beginners don’t write big code. And having your errors come up in the same place, whether they’re statically checkable errors or not, is quite nice for a beginner. If someone asked me to teach them some programming, I’d teach them JavaScript. If dynamically-typed languages are great for beginners, when do you think the benefits of static typing start to kick in? The value of having a statically typed program is in the tools that rely on the static types to produce a smooth IDE experience rather than actually telling me my compile errors. And only once you’re experienced enough a programmer that having a really smooth IDE experience makes a blind bit of difference, does static typing make a blind bit of difference. So it’s not really about size of codebase. If I go and write up a tiny program, I’m still going to get value out of writing it in C# using ReSharper because I’m experienced with C# and ReSharper enough to be able to write code five times faster if I have that help. Any other visions of the future? Nobody’s going to use actors. Because everyone’s going to be running on single-core VMs connected over network-ready protocols like JSON over HTTP. So, parallelism within one operating system is going to die. But until then, you should use actors. More Red Gater Coder interviews

    Read the article

  • MySQL Connector/Net 6.4.6 Maintenance Release has been released

    - by fernando
    MySQL Connector/Net 6.4.6, a new version of the all-managed .NET driver for MySQL has been released.  This is a maintenance release and is recommended for use in production environments. It is appropriate for use with MySQL server versions 5.0-5.6. This is intended to be the final release for Connector/NET 6.4. It is now available in source and binary form from http://dev.mysql.com/downloads/connector/net/#downloads and mirror sites (note that not all mirror sites may be up to date at this point-if you can't find this version on some mirror, please try again later or choose another download site.) The 6.4.6 version of MySQL Connector/Net brings the following fixes: - Fix for List.Contains generates a bunch of ORs instead of more efficient IN clause in   LINQ to Entities (Oracle bug #14016344, MySql bug #64934). - Fix for error when trying to change the name of an Index on the Indexes/Keys editor; along with this fix now users can change the Index type of a new Index which could not be done   in previous versions, and when changing the Index name the change is reflected on the list view at the left side of the Index/Keys editor (Oracle bug #13613801). - Fix for stored procedure call using only its name with EF code first (MySql bug #64999, Oracle bug #14008699). - Fix for performance issue in generated EF query: .NET StartsWith/Contains/EndsWith produces MySql's locate instead of Like (MySql bug #64935, Oracle bug #14009363). - Fix for script generated for code first contains wrong alter table and wrong declaration for byte[] (MySql bug #64216, Oracle bug #13900091). - Fix for Exception thrown when using cascade delete in an EDM Model-First in Entity Framework (Oracle bug #14008752, MySql bug #64779). - Fix for Session locking issue with MySqlSessionStateStore (MySql bug #63997, Oracble bug #13733054). - Fixed deleting a user profile using Profile provider (MySQL bug #64409, Oracle bug #13790123). - Fix for bug Cannot Create an Entity with a Key of Type String (MySQL bug #65289, Oracle bug #14540202). This fix checks if the type has a FixedLength facet set in order to create a char otherwise should create varchar, mediumtext or longtext types when using a String CLR type in Code First or Model First also tested in Database First. Unit tests added for Code First and ProviderManifest. - Fix for bug "CacheServerProperties can cause 'Packet too large' error" (MySQL Bug #66578 Orabug #14593547). - Fix for handling unnamed parameter in MySQLCommand. This fix allows the mysqlcommand to handle parameters without requiring naming (e.g. INSERT INTO Test (id,name) VALUES (?, ?) ) (MySQL Bug #66060, Oracle bug #14499549). - Fixed inheritance on Entity Framework Code First scenarios. Discriminator column is created using its correct type as varchar(128) (MySql bug #63920 and Oracle bug #13582335). - Fixed "Trying to customize column precision in Code First does not work" (MySql bug #65001, Oracle bug #14469048). - Fixed bug ASP.NET Membership database fails on MySql database UTF32 (MySQL bug #65144, Oracle bug #14495292). - Fix for MySqlCommand.LastInsertedId holding only 32 bit values (MySql bug #65452, Oracle bug #14171960) by changing   several internal declaration of lastinsertid from int to long. - Fixed "Decimal type should have digits at right of decimal point", now default is 2, but user's changes in   EDM designer are recognized (MySql bug #65127, Oracle bug #14474342). - Fix for NullReferenceException when saving an uninitialized row in Entity Framework (MySql bug #66066, Oracle bug #14479715). - Fix for error when calling RoleProvider.RemoveUserFromRole(): causes an exception due to a wrong table being used (MySql bug #65805, Oracle bug #14405338). - Fix for "Memory Leak on MySql.Data.MySqlClient.MySqlCommand", too many MemoryStream's instances created (MySql bug #65696, Oracle bug #14468204). - Small improvement on MySqlPoolManager CleanIdleConnections for better mysqlpoolmanager idlecleanuptimer at startup (MySql bug #66472 and Oracle bug #14652624). - Fix for bug TIMESTAMP values are mistakenly represented as DateTime with Kind = Local (Mysql bug #66964, Oracle bug #14740705). - Fix for bug Keyword not supported. Parameter name: AttachDbFilename (Mysql bug #66880, Oracle bug #14733472). - Added support to MySql script file to retrieve data when using "SHOW" statements. - Fix for Package Load Failure in Visual Studio 2005 (MySql bug #63073, Oracle bug #13491674). - Fix for bug "Unable to connect using IPv6 connections" (MySQL bug #67253, Oracle bug #14835718). - Added auto-generated values for Guid identity columns (MySql bug #67450, Oracle bug #15834176). - Fix for method FirstOrDefault not supported in some LINQ to Entities queries (MySql bug #67377, Oracle bug #15856964). The release is available to download at http://dev.mysql.com/downloads/connector/net/6.4.html Documentation ------------------------------------- You can view current Connector/Net documentation at http://dev.mysql.com/doc/refman/5.5/en/connector-net.html You can find our team blog at http://blogs.oracle.com/MySQLOnWindows. You can also post questions on our forums at http://forums.mysql.com/. Enjoy and thanks for the support!

    Read the article

  • Integrating Code Metrics in TFS 2010 Build

    - by Jakob Ehn
    The build process template and custom activity described in this post is available here: http://cid-ee034c9f620cd58d.office.live.com/self.aspx/BlogSamples/CodeMetricsSample.zip Running code metrics has been available since VS 2008, but only from inside the IDE. Yesterday Microsoft finally releases a Visual Studio Code Metrics Power Tool 10.0, a command line tool that lets you run code metrics on your applications.  This means that it is now possible to perform code metrics analysis on the build server as part of your nightly/QA builds (for example). In this post I will show how you can run the metrics command line tool, and also a custom activity that reads the output and appends the results to the build log, and also fails he build if the metric values exceeds certain (configurable) treshold values. The code metrics tool analyzes all the methods in the assemblies, measuring cyclomatic complexity, class coupling, depth of inheritance and lines of code. Then it calculates a Maintainability Index from these values that is a measure f how maintanable this method is, between 0 (worst) and 100 (best). For information on hwo this value is calculated, see http://blogs.msdn.com/b/codeanalysis/archive/2007/11/20/maintainability-index-range-and-meaning.aspx. After this it aggregates the information and present it at the class, namespace and module level as well. Running Metrics.exe in a build definition Running the actual tool is easy, just use a InvokeProcess activity last in the Compile the Project sequence, reference the metrics.exe file and pass the correct arguments and you will end up with a result XML file in the drop directory. Here is how it is done in the attached build process template: In the above sequence I first assign the path to the code metrics result file ([BinariesDirectory]\result.xml) to a variable called MetricsResultFile, which is then sent to the InvokeProcess activity in the Arguments property. Here are the arguments for the InvokeProcess activity: Note that we tell metrics.exe to analyze all assemblies located in the Binaries folder. You might want to do some more intelligent filtering here, you probably don’t want to analyze all 3rd party assemblies for example. Note also the path to the metrics.exe, this is the default location when you install the Code Metrics power tool. You must of course install the power tool on all build servers. Using the standard output logging (in the Handle Standard Output/Handle Error Output sections), we get the following output when running the build: Integrating Code Metrics into the build Having the results available next to the build result is nice, but we want to have results integrated in the build result itself, and also to affect the outcome of the build. The point of having QA builds that measure, for example, code metrics is to make it very clear how the code being built measures up to the standards of the project/company. Just having a XML file available in the drop location will not cause the developers to improve their code, but a (partially) failing build will! To do this, we need to write a custom activity that parses the metrics result file, logs it to the build log and fails the build if the values frfom the metrics is below/above some predefined treshold values. The custom activity performs the following steps Parses the XML. I’m using Linq 2 XSD for this, since the XML schema for the result file is available, it is vey easy to generate code that lets you query the structure using standard Linq operators. Runs through the metric result hierarchy and logs the metrics for each level and also verifies maintainability index and the cyclomatic complexity with the treshold values. The treshold values are defined in the build process template are are sent in as arguments to the custom activity If the treshold values are exceeded, the activity either fails or partially fails the current build. For more information about the structure of the code metrics result file, read Cameron Skinner's post about it. It is very simpe and easy to understand. I won’t go through the code of the custom activity here, since there is nothing special about it and it is available for download so you can look at it and play with it yourself. The treshold values for Maintainability Index and Cyclomatic Complexity is defined in the build process template, and can be modified per build definition: I have taken the default value for these settings from my colleague Terje Sandström post on Code Metrics - suggestions for approriate limits. You’ll notice that this is quite an improvement compared to using code metrics inside the IDE, where Red/Yellow/Green limits are fixed (and the default values are somewaht strange, see Terjes post for a discussion on this) This is the first version of the code metrics integration with TFS 2010 Build, I will proabably enhance the functionality and the logging (the “tree view” structure in the log becomes quite hard to read) soon. I will also consider adding it to the Community TFS Build Extensions site when it becomes a bit more mature. Another obvious improvement is to extend the data warehouse of TFS and push the metric results back to the warehouse and make it visible in the reports.

    Read the article

  • MySQL Connector/Net 6.5.5 Maintenance Release has been released

    - by fernando
    MySQL Connector/Net 6.5.5, a new maintenance release of our 6.5 series, has been released.  This release is GA quality and is appropriate for use in production environments.  Please note that 6.6 is our latest driver series and is the recommended product for development. It is now available in source and binary form from http://dev.mysql.com/downloads/connector/net/#downloads and mirror sites (note that not all mirror sites may be up to date at this point-if you can't find this version on some mirror, please try again later or choose another download site.) The 6.5.5 version of MySQL Connector/Net brings the following fixes: - Fix for ArgumentNull exception when using Take().Count() in a LINQ to Entities query (bug MySql #64749, Oracle bug #13913047). - Fix for type varchar changed to bit when saving in Table Designer (Oracle bug #13916560). - Fix for error when trying to change the name of an Index on the Indexes/Keys editor; along with this fix now users can change the Index type of a new Index which could not be done   in previous versions, and when changing the Index name the change is reflected on the list view at the left side of the Index/Keys editor (Oracle bug #13613801). - Fix for stored procedure call using only its name with EF code first (MySql bug #64999, Oracle bug #14008699). - Fix for List.Contains generates a bunch of ORs instead of more efficient IN clause in   LINQ to Entities (Oracle bug #14016344, MySql bug #64934). - Fix for performance issue in generated EF query: .NET StartsWith/Contains/EndsWith produces MySql's locate instead of Like (MySql bug #64935, Oracle bug #14009363). - Fix for script generated for code first contains wrong alter table and wrong declaration for byte[] (MySql bug #64216, Oracle bug #13900091). - Fix and code contribution for bug Timed out sessions are removed without notification which allow to enable the Expired CallBack when Session Provider times out any session (bug MySql #62266 Oracle bug # 13354935) - Fix for Exception thrown when using cascade delete in an EDM Model-First in Entity Framework (Oracle bug #14008752, MySql bug #64779). - Fix for Session locking issue with MySqlSessionStateStore (MySql bug #63997, Oracble bug #13733054). - Fixed deleting a user profile using Profile provider (MySQL bug #64470, Oracle bug #13790123) - Fix for bug Cannot Create an Entity with a Key of Type String (MySQL bug #65289, Oracle bug #14540202). This fix checks if the type has a FixedLength facet set in order to create a char otherwise should create varchar, mediumtext or longtext types when using a String CLR type in Code First or Model First also tested in Database First. Unit tests added for Code First and ProviderManifest. - Fix for bug "CacheServerProperties can cause 'Packet too large' error". The issue was due to a missing reading of Max_allowed_packet server property when CacheServerProperties is in true, since the value was read only in the first connection but the following pooled connections had a wrong value causing a Packet too large error. Including also a unit test for this scenario. All unit test passed. MySQL Bug #66578 Orabug #14593547. - Fix for handling unnamed parameter in MySQLCommand. This fix allows the mysqlcommand to handle parameters without requiring naming (e.g. INSERT INTO Test (id,name) VALUES (?, ?) ) (MySQL Bug #66060, Oracle bug #14499549). - Fixed inheritance on Entity Framework Code First scenarios. Discriminator column is created using its correct type as varchar(128) (MySql bug #63920 and Oracle bug #13582335). - Fixed "Trying to customize column precision in Code First does not work" (MySql bug #65001, Oracle bug #14469048). - Fixed bug ASP.NET Membership database fails on MySql database UTF32 (MySQL bug #65144, Oracle bug #14495292). - Fix for MySqlCommand.LastInsertedId holding only 32 bit values (MySql bug #65452, Oracle bug #14171960) by changing   several internal declaration of lastinsertid from int to long. - Fixed "Decimal type should have digits at right of decimal point", now default is 2, but user's changes in   EDM designer are recognized (MySql bug #65127, Oracle bug #14474342). - Fix for NullReferenceException when saving an uninitialized row in Entity Framework (MySql bug #66066, Oracle bug #14479715). - Fix for error when calling RoleProvider.RemoveUserFromRole(): causes an exception due to a wrong table being used (MySql bug #65805, Oracle bug #14405338). - Fix for "Memory Leak on MySql.Data.MySqlClient.MySqlCommand", too many MemoryStream's instances created (MySql bug #65696, Oracle bug #14468204). - Added ANTLR attribution notice (Oracle bug #14379162). - Fixed Entity Framework + mysql connector/net in partial trust throws exceptions (MySql bug #65036, Oracle bug #14668820). - Added support in Parser for Datetime and Time types with precision when using Server 5.6 (No bug Number). - Small improvement on MySqlPoolManager CleanIdleConnections for better mysqlpoolmanager idlecleanuptimer at startup (MySql bug #66472 and Oracle bug #14652624). - Fix for bug TIMESTAMP values are mistakenly represented as DateTime with Kind = Local (Mysql bug #66964, Oracle bug #14740705). - Fix for bug Keyword not supported. Parameter name: AttachDbFilename (Mysql bug #66880, Oracle bug #14733472). - Added support to MySql script file to retrieve data when using "SHOW" statements. - Fix for Package Load Failure in Visual Studio 2005 (MySql bug #63073, Oracle bug #13491674). - Fix for bug "Unable to connect using IPv6 connections" (MySQL bug #67253, Oracle bug #14835718). - Added auto-generated values for Guid identity columns (MySql bug #67450, Oracle bug #15834176). - Fix for method FirstOrDefault not supported in some LINQ to Entities queries (MySql bug #67377, Oracle bug #15856964). The release is available to download at http://dev.mysql.com/downloads/connector/net/6.5.html Documentation ------------------------------------- You can view current Connector/Net documentation at http://dev.mysql.com/doc/refman/5.5/en/connector-net.html You can find our team blog at http://blogs.oracle.com/MySQLOnWindows. You can also post questions on our forums at http://forums.mysql.com/. Enjoy and thanks for the support! 

    Read the article

  • Liskov Substitution Principle and the Oft Forgot Third Wheel

    - by Stacy Vicknair
    Liskov Substitution Principle (LSP) is a principle of object oriented programming that many might be familiar with from the SOLID principles mnemonic from Uncle Bob Martin. The principle highlights the relationship between a type and its subtypes, and, according to Wikipedia, is defined by Barbara Liskov and Jeanette Wing as the following principle:   Let be a property provable about objects of type . Then should be provable for objects of type where is a subtype of .   Rectangles gonna rectangulate The iconic example of this principle is illustrated with the relationship between a rectangle and a square. Let’s say we have a class named Rectangle that had a property to set width and a property to set its height. 1: Public Class Rectangle 2: Overridable Property Width As Integer 3: Overridable Property Height As Integer 4: End Class   We all at some point here that inheritance mocks an “IS A” relationship, and by gosh we all know square IS A rectangle. So let’s make a square class that inherits from rectangle. However, squares do maintain the same length on every side, so let’s override and add that behavior. 1: Public Class Square 2: Inherits Rectangle 3:  4: Private _sideLength As Integer 5:  6: Public Overrides Property Width As Integer 7: Get 8: Return _sideLength 9: End Get 10: Set(value As Integer) 11: _sideLength = value 12: End Set 13: End Property 14:  15: Public Overrides Property Height As Integer 16: Get 17: Return _sideLength 18: End Get 19: Set(value As Integer) 20: _sideLength = value 21: End Set 22: End Property 23: End Class   Now, say we had the following test: 1: Public Sub SetHeight_DoesNotAffectWidth(rectangle As Rectangle) 2: 'arrange 3: Dim expectedWidth = 4 4: rectangle.Width = 4 5:  6: 'act 7: rectangle.Height = 7 8:  9: 'assert 10: Assert.AreEqual(expectedWidth, rectangle.Width) 11: End Sub   If we pass in a rectangle, this test passes just fine. What if we pass in a square?   This is where we see the violation of Liskov’s Principle! A square might "IS A” to a rectangle, but we have differing expectations on how a rectangle should function than how a square should! Great expectations Here’s where we pat ourselves on the back and take a victory lap around the office and tell everyone about how we understand LSP like a boss. And all is good… until we start trying to apply it to our work. If I can’t even change functionality on a simple setter without breaking the expectations on a parent class, what can I do with subtyping? Did Liskov just tell me to never touch subtyping again? The short answer: NO, SHE DIDN’T. When I first learned LSP, and from those I’ve talked with as well, I overlooked a very important but not appropriately stressed quality of the principle: our expectations. Our inclination is to want a logical catch-all, where we can easily apply this principle and wipe our hands, drop the mic and exit stage left. That’s not the case because in every different programming scenario, our expectations of the parent class or type will be different. We have to set reasonable expectations on the behaviors that we expect out of the parent, then make sure that those expectations are met by the child. Any expectations not explicitly expected of the parent aren’t expected of the child either, and don’t register as a violation of LSP that prevents implementation. You can see the flexibility mentioned in the Wikipedia article itself: A typical example that violates LSP is a Square class that derives from a Rectangle class, assuming getter and setter methods exist for both width and height. The Square class always assumes that the width is equal with the height. If a Square object is used in a context where a Rectangle is expected, unexpected behavior may occur because the dimensions of a Square cannot (or rather should not) be modified independently. This problem cannot be easily fixed: if we can modify the setter methods in the Square class so that they preserve the Square invariant (i.e., keep the dimensions equal), then these methods will weaken (violate) the postconditions for the Rectangle setters, which state that dimensions can be modified independently. Violations of LSP, like this one, may or may not be a problem in practice, depending on the postconditions or invariants that are actually expected by the code that uses classes violating LSP. Mutability is a key issue here. If Square and Rectangle had only getter methods (i.e., they were immutable objects), then no violation of LSP could occur. What this means is that the above situation with a rectangle and a square can be acceptable if we do not have the expectation for width to leave height unaffected, or vice-versa, in our application. Conclusion – the oft forgot third wheel Liskov Substitution Principle is meant to act as a guidance and warn us against unexpected behaviors. Objects can be stateful and as a result we can end up with unexpected situations if we don’t code carefully. Specifically when subclassing, make sure that the subclass meets the expectations held to its parent. Don’t let LSP think you cannot deviate from the behaviors of the parent, but understand that LSP is meant to highlight the importance of not only the parent and the child class, but also of the expectations WE set for the parent class and the necessity of meeting those expectations in order to help prevent sticky situations.   Code examples, in both VB and C# Technorati Tags: LSV,Liskov Substitution Principle,Uncle Bob,Robert Martin,Barbara Liskov,Liskov

    Read the article

  • C# async and actors

    - by Alex.Davies
    If you read my last post about async, you might be wondering what drove me to write such odd code in the first place. The short answer is that .NET Demon is written using NAct Actors. Actors are an old idea, which I believe deserve a renaissance under C# 5. The idea is to isolate each stateful object so that only one thread has access to its state at any point in time. That much should be familiar, it's equivalent to traditional lock-based synchronization. The different part is that actors pass "messages" to each other rather than calling a method and waiting for it to return. By doing that, each thread can only ever be holding one lock. This completely eliminates deadlocks, my least favourite concurrency problem. Most people who use actors take this quite literally, and there are plenty of frameworks which help you to create message classes and loops which can receive the messages, inspect what type of message they are, and process them accordingly. But I write C# for a reason. Do I really have to choose between using actors and everything I love about object orientation in C#? Type safety Interfaces Inheritance Generics As it turns out, no. You don't need to choose between messages and method calls. A method call makes a perfectly good message, as long as you don't wait for it to return. This is where asynchonous methods come in. I have used NAct for a while to wrap my objects in a proxy layer. As long as I followed the rule that methods must always return void, NAct queued up the call for later, and immediately released my thread. When I needed to get information out of other actors, I could use EventHandlers and callbacks (continuation passing style, for any CS geeks reading), and NAct would call me back in my isolated thread without blocking the actor that raised the event. Using callbacks looks horrible though. To remind you: m_BuildControl.FilterEnabledForBuilding(    projects,    enabledProjects = m_OutOfDateProjectFinder.FilterNeedsBuilding(        enabledProjects,             newDirtyProjects =             {                 ....... Which is why I'm really happy that NAct now supports async methods. Now, methods are allowed to return Task rather than just void. I can await those methods, and C# 5 will turn the rest of my method into a continuation for me. NAct will run the other method in the other actor's context, but will make sure that when my method resumes, we're back in my context. Neither actor was ever blocked waiting for the other one. Apart from when they were actually busy doing something, they were responsive to concurrent messages from other sources. To be fair, you could use async methods with lock statements to achieve exactly the same thing, but it's ugly. Here's a realistic example of an object that has a queue of data that gets passed to another object to be processed: class QueueProcessor {    private readonly ItemProcessor m_ItemProcessor = ...     private readonly object m_Sync = new object();    private Queue<object> m_DataQueue = ...    private List<object> m_Results = ...     public async Task ProcessOne() {         object data = null;         lock (m_Sync)         {             data = m_DataQueue.Dequeue();         }         var processedData = await m_ItemProcessor.ProcessData(data); lock (m_Sync)         {             m_Results.Add(processedData);         }     } } We needed to write two lock blocks, one to get the data to process, one to store the result. The worrying part is how easily we could have forgotten one of the locks. Compare that to the version using NAct: class QueueProcessorActor : IActor { private readonly ItemProcessor m_ItemProcessor = ... private Queue<object> m_DataQueue = ... private List<object> m_Results = ... public async Task ProcessOne()     {         // We are an actor, it's always thread-safe to access our private fields         var data = m_DataQueue.Dequeue();         var processedData = await m_ItemProcessor.ProcessData(data);         m_Results.Add(processedData);     } } You don't have to explicitly lock anywhere, NAct ensures that your code will only ever run on one thread, because it's an actor. Either way, async is definitely better than traditional synchronous code. Here's a diagram of what a typical synchronous implementation might do: The left side shows what is running on the thread that has the lock required to access the QueueProcessor's data. The red section is where that lock is held, but doesn't need to be. Contrast that with the async version we wrote above: Here, the lock is released in the middle. The QueueProcessor is free to do something else. Most importantly, even if the ItemProcessor sometimes calls the QueueProcessor, they can never deadlock waiting for each other. So I thoroughly recommend you use async for all code that has to wait a while for things. And if you find yourself writing lots of lock statements, think about using actors as well. Using actors and async together really takes the misery out of concurrent programming.

    Read the article

  • Goto for the Java Programming Language

    - by darcy
    Work on JDK 8 is well-underway, but we thought this late-breaking JEP for another language change for the platform couldn't wait another day before being published. Title: Goto for the Java Programming Language Author: Joseph D. Darcy Organization: Oracle. Created: 2012/04/01 Type: Feature State: Funded Exposure: Open Component: core/lang Scope: SE JSR: 901 MR Discussion: compiler dash dev at openjdk dot java dot net Start: 2012/Q2 Effort: XS Duration: S Template: 1.0 Reviewed-by: Duke Endorsed-by: Edsger Dijkstra Funded-by: Blue Sun Corporation Summary Provide the benefits of the time-testing goto control structure to Java programs. The Java language has a history of adding new control structures over time, the assert statement in 1.4, the enhanced for-loop in 1.5,and try-with-resources in 7. Having support for goto is long-overdue and simple to implement since the JVM already has goto instructions. Success Metrics The goto statement will allow inefficient and verbose recursive algorithms and explicit loops to be replaced with more compact code. The effort will be a success if at least twenty five percent of the JDK's explicit loops are replaced with goto's. Coordination with IDE vendors is expected to help facilitate this goal. Motivation The goto construct offers numerous benefits to the Java platform, from increased expressiveness, to more compact code, to providing new programming paradigms to appeal to a broader demographic. In JDK 8, there is a renewed focus on using the Java platform on embedded devices with more modest resources than desktop or server environments. In such contexts, static and dynamic memory footprint is a concern. One significant component of footprint is the code attribute of class files and certain classes of important algorithms can be expressed more compactly using goto than using other constructs, saving footprint. For example, to implement state machines recursively, some parties have asked for the JVM to support tail calls, that is, to perform a complex transformation with security implications to turn a method call into a goto. Such complicated machinery should not be assumed for an embedded context. A better solution is just to expose to the programmer the desired functionality, goto. The web has familiarized users with a model of traversing links among different HTML pages in a free-form fashion with some state being maintained on the side, such as login credentials, to effect behavior. This is exactly the programming model of goto and code. While in the past this has been derided as leading to "spaghetti code," spaghetti is a tasty and nutritious meal for programmers, unlike quiche. The invokedynamic instruction added by JSR 292 exposes the JVM's linkage operation to programmers. This is a low-level operation that can be leveraged by sophisticated programmers. Likewise, goto is a also a low-level operation that should not be hidden from programmers who can use more efficient idioms. Some may object that goto was consciously excluded from the original design of Java as one of the removed feature from C and C++. However, the designers of the Java programming languages have revisited these removals before. The enum construct was also left out only to be added in JDK 5 and multiple inheritance was left out, only to be added back by the virtual extension method methods of Project Lambda. As a living language, the needs of the growing Java community today should be used to judge what features are needed in the platform tomorrow; the language should not be forever bound by the decisions of the past. Description From its initial version, the JVM has had two instructions for unconditional transfer of control within a method, goto (0xa7) and goto_w (0xc8). The goto_w instruction is used for larger jumps. All versions of the Java language have supported labeled statements; however, only the break and continue statements were able to specify a particular label as a target with the onerous restriction that the label must be lexically enclosing. The grammar addition for the goto statement is: GotoStatement: goto Identifier ; The new goto statement similar to break except that the target label can be anywhere inside the method and the identifier is mandatory. The compiler simply translates the goto statement into one of the JVM goto instructions targeting the right offset in the method. Therefore, adding the goto statement to the platform is only a small effort since existing compiler and JVM functionality is reused. Other language changes to support goto include obvious updates to definite assignment analysis, reachability analysis, and exception analysis. Possible future extensions include a computed goto as found in gcc, which would replace the identifier in the goto statement with an expression having the type of a label. Testing Since goto will be implemented using largely existing facilities, only light levels of testing are needed. Impact Compatibility: Since goto is already a keyword, there are no source compatibility implications. Performance/scalability: Performance will improve with more compact code. JVMs already need to handle irreducible flow graphs since goto is a VM instruction.

    Read the article

  • Is this how dynamic language copes with dynamic requirement?

    - by Amumu
    The question is in the title. I want to have my thinking verified by experienced people. You can add more or disregard my opinion, but give me a reason. Here is an example requirement: Suppose you are required to implement a fighting game. Initially, the game only includes fighters, who can attack each other. Each fighter can punch, kick or block incoming attacks. Fighters can have various fighting styles: Karate, Judo, Kung Fu... That's it for the simple universe of the game. In an OO like Java, it can be implemented similar to this way: abstract class Fighter { int hp, attack; void punch(Fighter otherFighter); void kick(Fighter otherFighter); void block(Figther otherFighter); }; class KarateFighter extends Fighter { //...implementation...}; class JudoFighter extends Fighter { //...implementation... }; class KungFuFighter extends Fighter { //...implementation ... }; This is fine if the game stays like this forever. But, somehow the game designers decide to change the theme of the game: instead of a simple fighting game, the game evolves to become a RPG, in which characters can not only fight but perform other activities, i.e. the character can be a priest, an accountant, a scientist etc... At this point, to make it more generic, we have to change the structure of our original design: Fighter is not used to refer to a person anymore; it refers to a profession. The specialized classes of Fighter (KaraterFighter, JudoFighter, KungFuFighter) . Now we have to create a generic class named Person. However, to adapt this change, I have to change the method signatures of the original operations: class Person { int hp, attack; List<Profession> skillSet; }; abstract class Profession {}; class Fighter extends Profession { void punch(Person otherFighter); void kick(Person otherFighter); void block(Person otherFighter); }; class KarateFighter extends Fighter { //...implementation...}; class JudoFighter extends Fighter { //...implementation... }; class KungFuFighter extends Fighter { //...implementation ... }; class Accountant extends Profession { void calculateTax(Person p) { //...implementation...}; void calculateTax(Company c) { //...implementation...}; }; //... more professions... Here are the problems: To adapt to the method changes, I have to fix the places where the changed methods are called (refactoring). Every time a new requirement is introduced, the current structural design has to be broken to adapt the changes. This leads to the first problem. Rigid structure makes it hard for code reuse. A function can only accept the predefined types, but it cannot accept future unknown types. A written function is bound to its current universe and has no way to accommodate to the new types, without modifications or rewrite from scratch. I see Java has a lot of deprecated methods. OO is an extreme case because it has inheritance to add up the complexity, but in general for statically typed language, types are very strict. In contrast, a dynamic language can handle the above case as follow: ;;fighter1 punch fighter2 (defun perform-punch (fighter1 fighter2) ...implementation... ) ;;fighter1 kick fighter2 (defun perform-kick (fighter1 fighter2) ...implementation... ) ;;fighter1 blocks attacks from fighter2 (defun perform-block (fighter1 fighter2) ...implementation... ) fighter1 and fighter2 can be anything as long as it has the required data for calculation; or methods (duck typing). You don't have to change from the type Fighter to Person. In the case of Lisp, because Lisp only has a single data structure: list, it's even easier to adapt to changes. However, other dynamic languages can have similar behaviors as well. I work primarily with static languages (mainly C and Java, but working with Java was a long time ago). I started learning Lisp and some other dynamic languages this year. I can see how it helps improving my productivity.

    Read the article

  • MySQL Connector/Net 6.6.3 Beta 2 has been released

    - by fernando
    MySQL Connector/Net 6.6.3, a new version of the all-managed .NET driver for MySQL has been released.  This is the second of two beta releases intended to introduce users to the new features in the release. This release is feature complete it should be stable enough for users to understand the new features and how we expect them to work.  As is the case with all non-GA releases, it should not be used in any production environment.  It is appropriate for use with MySQL server versions 5.0-5.6. It is now available in source and binary form from http://dev.mysql.com/downloads/connector/net/#downloads and mirror sites (note that not all mirror sites may be up to date at this point-if you can't find this version on some mirror, please try again later or choose another download site.) The 6.6 version of MySQL Connector/Net brings the following new features:   * Stored routine debugging   * Entity Framework 4.3 Code First support   * Pluggable authentication (now third parties can plug new authentications mechanisms into the driver).   * Full Visual Studio 2012 support: everything from Server Explorer to Intellisense&   the Stored Routine debugger. Stored Procedure Debugging ------------------------------------------- We are very excited to introduce stored procedure debugging into our Visual Studio integration.  It works in a very intuitive manner by simply clicking 'Debug Routine' from Server Explorer. You can debug stored routines, functions&   triggers. These release contains fixes specific of the debugger as well as other fixes specific of other areas of Connector/NET:   * Added feature to define initial values for InOut stored procedure arguments.   * Debugger: Fixed Visual Studio locked connection after debugging a routine.   * Fix for bug Cannot Create an Entity with a Key of Type String (MySQL bug #65289, Oracle bug #14540202).   * Fix for bug "CacheServerProperties can cause 'Packet too large' error". MySQL Bug #66578 Orabug #14593547.   * Fix for handling unnamed parameter in MySQLCommand. This fix allows the mysqlcommand to handle parameters without requiring naming (e.g. INSERT INTO Test (id,name) VALUES (?, ?) ) (MySQL Bug #66060, Oracle bug #14499549).   * Fixed end of line issue when debugging a routine.   * Added validation to avoid overwriting a routine backup file when it hasn't changed.   * Fixed inheritance on Entity Framework Code First scenarios. (MySql bug #63920 and Oracle bug #13582335).   * Fixed "Trying to customize column precision in Code First does not work" (MySql bug #65001, Oracle bug #14469048).   * Fixed bug ASP.NET Membership database fails on MySql database UTF32 (MySQL bug #65144, Oracle bug #14495292).   * Fix for MySqlCommand.LastInsertedId holding only 32 bit values (MySql bug #65452, Oracle bug #14171960).   * Fixed "Decimal type should have digits at right of decimal point", now default is 2, and user's changes in     EDM designer are recognized (MySql bug #65127, Oracle bug #14474342).   * Fix for NullReferenceException when saving an uninitialized row in Entity Framework (MySql bug #66066, Oracle bug #14479715).   * Fix for error when calling RoleProvider.RemoveUserFromRole(): causes an exception due to a wrong table being used (MySql bug #65805, Oracle bug #14405338).   * Fix for "Memory Leak on MySql.Data.MySqlClient.MySqlCommand", too many MemoryStream's instances created (MySql bug #65696, Oracle bug #14468204).   * Added ANTLR attribution notice (Oracle bug #14379162).   * Fix for debugger failing when having a routine with an if-elseif-else.   * Also the programming interface for authentication plugins has been redefined. Some limitations remains, due to the current debugger architecture:   * Some MySQL functions cannot be debugged currently (get_lock, release_lock, begin, commit, rollback, set transaction level)..   * Only one debug session may be active on a given server. The Debugger is feature complete at this point. We look forward to your feedback. Documentation ------------------------------------- You can view current Connector/Net documentation at http://dev.mysql.com/doc/refman/5.5/en/connector-net.html You can find our team blog at http://blogs.oracle.com/MySQLOnWindows. You can also post questions on our forums at http://forums.mysql.com/. Enjoy and thanks for the support!

    Read the article

  • A first look at ConfORM - Part 1

    - by thangchung
    All source codes for this post can be found at here.Have you ever heard of ConfORM is not? I have read it three months ago when I wrote an post about NHibernate and Autofac. At that time, this project really has just started and still in beta version, so I still do not really care much. But recently when reading a book by Jason Dentler NHibernate 3.0 Cookbook, I started to pay attention to it. Author have mentioned quite a lot of OSS in his book. And now again I have reviewed ConfORM once again. I have been involved in ConfORM development group on google and read some articles about it. Fabio Maulo spent a lot of work for the OSS, and I hope it will adapt a great way for NHibernate (because he contributed to NHibernate that). So what is ConfORM? It is stand for Configuration ORM, and it was trying to use a lot of heuristic model for identifying entities from C# code. Today, it's mostly Model First Driven development, so the first thing is to build the entity model. This is really important and we can see it is the heart of business software. Then we have to tell DB about the entity of this model. We often will use Inversion Engineering here, Database Schema is will create based on recently Entity Model. From now we will absolutely not interested in the DB again, only focus on the Entity Model.Fluent NHibenate really good, I liked this OSS. Sharp Architecture and has done so well in Fluent NHibernate integration with applications. A Multiple Database technical in Sharp Architecture is truly awesome. It can receive configuration, a connection string and a dll containing entity model, which would then create a SessionFactory, finally caching inside the computer memory. As the number of SessionFactory can be very large and will full of the memory, it has also devised a way of caching SessionFactory in the file. This post I hope this will not completely explain about and building a model of multiple databases. I just tried to mount a number of posts from the community and apply some of my knowledge to build a management model Session for ConfORM.As well as Fluent NHibernate, ConfORM also supported on the interface mapping, see this to understand it. So the first thing we will build the Entity Model for it, and here is what I will use the model for this article. A simple model for managing news and polls, it will be too easy for a number of people, but I hope not to bring complexity to this post.I will then have some code to build super type for the Entity Model. public interface IEntity<TId>    {        TId Id { get; set; }    } public abstract class EntityBase<TId> : IEntity<TId>    {        public virtual TId Id { get; set; }         public override bool Equals(object obj)        {            return Equals(obj as EntityBase<TId>);        }         private static bool IsTransient(EntityBase<TId> obj)        {            return obj != null &&            Equals(obj.Id, default(TId));        }         private Type GetUnproxiedType()        {            return GetType();        }         public virtual bool Equals(EntityBase<TId> other)        {            if (other == null)                return false;            if (ReferenceEquals(this, other))                return true;            if (!IsTransient(this) &&            !IsTransient(other) &&            Equals(Id, other.Id))            {                var otherType = other.GetUnproxiedType();                var thisType = GetUnproxiedType();                return thisType.IsAssignableFrom(otherType) ||                otherType.IsAssignableFrom(thisType);            }            return false;        }         public override int GetHashCode()        {            if (Equals(Id, default(TId)))                return base.GetHashCode();            return Id.GetHashCode();        }    } Database schema will be created as:The next step is to build the ConORM builder to create a NHibernate Configuration. Patrick have a excellent article about it at here. Contract of it below: public interface IConfigBuilder    {        Configuration BuildConfiguration(string connectionString, string sessionFactoryName);    } The idea here is that I will pass in a connection string and a set of the DLL containing the Entity Model and it makes me a NHibernate Configuration (shame that I stole this ideas of Sharp Architecture). And here is its code: public abstract class ConfORMConfigBuilder : RootObject, IConfigBuilder    {        private static IConfigurator _configurator;         protected IEnumerable<Type> DomainTypes;         private readonly IEnumerable<string> _assemblies;         protected ConfORMConfigBuilder(IEnumerable<string> assemblies)            : this(new Configurator(), assemblies)        {            _assemblies = assemblies;        }         protected ConfORMConfigBuilder(IConfigurator configurator, IEnumerable<string> assemblies)        {            _configurator = configurator;            _assemblies = assemblies;        }         public abstract void GetDatabaseIntegration(IDbIntegrationConfigurationProperties dBIntegration, string connectionString);         protected abstract HbmMapping GetMapping();         public Configuration BuildConfiguration(string connectionString, string sessionFactoryName)        {            Contract.Requires(!string.IsNullOrEmpty(connectionString), "ConnectionString is null or empty");            Contract.Requires(!string.IsNullOrEmpty(sessionFactoryName), "SessionFactory name is null or empty");            Contract.Requires(_configurator != null, "Configurator is null");             return CatchExceptionHelper.TryCatchFunction(                () =>                {                    DomainTypes = GetTypeOfEntities(_assemblies);                     if (DomainTypes == null)                        throw new Exception("Type of domains is null");                     var configure = new Configuration();                    configure.SessionFactoryName(sessionFactoryName);                     configure.Proxy(p => p.ProxyFactoryFactory<ProxyFactoryFactory>());                    configure.DataBaseIntegration(db => GetDatabaseIntegration(db, connectionString));                     if (_configurator.GetAppSettingString("IsCreateNewDatabase").ConvertToBoolean())                    {                        configure.SetProperty("hbm2ddl.auto", "create-drop");                    }                     configure.Properties.Add("default_schema", _configurator.GetAppSettingString("DefaultSchema"));                    configure.AddDeserializedMapping(GetMapping(),                                                     _configurator.GetAppSettingString("DocumentFileName"));                     SchemaMetadataUpdater.QuoteTableAndColumns(configure);                     return configure;                }, Logger);        }         protected IEnumerable<Type> GetTypeOfEntities(IEnumerable<string> assemblies)        {            var type = typeof(EntityBase<Guid>);            var domainTypes = new List<Type>();             foreach (var assembly in assemblies)            {                var realAssembly = Assembly.LoadFrom(assembly);                 if (realAssembly == null)                    throw new NullReferenceException();                 domainTypes.AddRange(realAssembly.GetTypes().Where(                    t =>                    {                        if (t.BaseType != null)                            return string.Compare(t.BaseType.FullName,                                          type.FullName) == 0;                        return false;                    }));            }             return domainTypes;        }    } I do not want to dependency on any RDBMS, so I made a builder as an abstract class, and so I will create a concrete instance for SQL Server 2008 as follows: public class SqlServerConfORMConfigBuilder : ConfORMConfigBuilder    {        public SqlServerConfORMConfigBuilder(IEnumerable<string> assemblies)            : base(assemblies)        {        }         public override void GetDatabaseIntegration(IDbIntegrationConfigurationProperties dBIntegration, string connectionString)        {            dBIntegration.Dialect<MsSql2008Dialect>();            dBIntegration.Driver<SqlClientDriver>();            dBIntegration.KeywordsAutoImport = Hbm2DDLKeyWords.AutoQuote;            dBIntegration.IsolationLevel = IsolationLevel.ReadCommitted;            dBIntegration.ConnectionString = connectionString;            dBIntegration.LogSqlInConsole = true;            dBIntegration.Timeout = 10;            dBIntegration.LogFormatedSql = true;            dBIntegration.HqlToSqlSubstitutions = "true 1, false 0, yes 'Y', no 'N'";        }         protected override HbmMapping GetMapping()        {            var orm = new ObjectRelationalMapper();             orm.Patterns.PoidStrategies.Add(new GuidPoidPattern());             var patternsAppliers = new CoolPatternsAppliersHolder(orm);            //patternsAppliers.Merge(new DatePropertyByNameApplier()).Merge(new MsSQL2008DateTimeApplier());            patternsAppliers.Merge(new ManyToOneColumnNamingApplier());            patternsAppliers.Merge(new OneToManyKeyColumnNamingApplier(orm));             var mapper = new Mapper(orm, patternsAppliers);             var entities = new List<Type>();             DomainDefinition(orm);            Customize(mapper);             entities.AddRange(DomainTypes);             return mapper.CompileMappingFor(entities);        }         private void DomainDefinition(IObjectRelationalMapper orm)        {            orm.TablePerClassHierarchy(new[] { typeof(EntityBase<Guid>) });            orm.TablePerClass(DomainTypes);             orm.OneToOne<News, Poll>();            orm.ManyToOne<Category, News>();             orm.Cascade<Category, News>(Cascade.All);            orm.Cascade<News, Poll>(Cascade.All);            orm.Cascade<User, Poll>(Cascade.All);        }         private static void Customize(Mapper mapper)        {            CustomizeRelations(mapper);            CustomizeTables(mapper);            CustomizeColumns(mapper);        }         private static void CustomizeRelations(Mapper mapper)        {        }         private static void CustomizeTables(Mapper mapper)        {        }         private static void CustomizeColumns(Mapper mapper)        {            mapper.Class<Category>(                cm =>                {                    cm.Property(x => x.Name, m => m.NotNullable(true));                    cm.Property(x => x.CreatedDate, m => m.NotNullable(true));                });             mapper.Class<News>(                cm =>                {                    cm.Property(x => x.Title, m => m.NotNullable(true));                    cm.Property(x => x.ShortDescription, m => m.NotNullable(true));                    cm.Property(x => x.Content, m => m.NotNullable(true));                });             mapper.Class<Poll>(                cm =>                {                    cm.Property(x => x.Value, m => m.NotNullable(true));                    cm.Property(x => x.VoteDate, m => m.NotNullable(true));                    cm.Property(x => x.WhoVote, m => m.NotNullable(true));                });             mapper.Class<User>(                cm =>                {                    cm.Property(x => x.UserName, m => m.NotNullable(true));                    cm.Property(x => x.Password, m => m.NotNullable(true));                });        }    } As you can see that we can do so many things in this class, such as custom entity relationships, custom binding on the columns, custom table name, ... Here I only made two so-Appliers for OneToMany and ManyToOne relationships, you can refer to it here public class ManyToOneColumnNamingApplier : IPatternApplier<PropertyPath, IManyToOneMapper>    {        #region IPatternApplier<PropertyPath,IManyToOneMapper> Members         public void Apply(PropertyPath subject, IManyToOneMapper applyTo)        {            applyTo.Column(subject.ToColumnName() + "Id");        }         #endregion         #region IPattern<PropertyPath> Members         public bool Match(PropertyPath subject)        {            return subject != null;        }         #endregion    } public class OneToManyKeyColumnNamingApplier : OneToManyPattern, IPatternApplier<PropertyPath, ICollectionPropertiesMapper>    {        public OneToManyKeyColumnNamingApplier(IDomainInspector domainInspector) : base(domainInspector) { }         #region Implementation of IPattern<PropertyPath>         public bool Match(PropertyPath subject)        {            return Match(subject.LocalMember);        }         #endregion Implementation of IPattern<PropertyPath>         #region Implementation of IPatternApplier<PropertyPath,ICollectionPropertiesMapper>         public void Apply(PropertyPath subject, ICollectionPropertiesMapper applyTo)        {            applyTo.Key(km => km.Column(GetKeyColumnName(subject)));        }         #endregion Implementation of IPatternApplier<PropertyPath,ICollectionPropertiesMapper>         protected virtual string GetKeyColumnName(PropertyPath subject)        {            Type propertyType = subject.LocalMember.GetPropertyOrFieldType();            Type childType = propertyType.DetermineCollectionElementType();            var entity = subject.GetContainerEntity(DomainInspector);            var parentPropertyInChild = childType.GetFirstPropertyOfType(entity);            var baseName = parentPropertyInChild == null ? subject.PreviousPath == null ? entity.Name : entity.Name + subject.PreviousPath : parentPropertyInChild.Name;            return GetKeyColumnName(baseName);        }         protected virtual string GetKeyColumnName(string baseName)        {            return string.Format("{0}Id", baseName);        }    } Everyone also can download the ConfORM source at google code and see example inside it. Next part I will write about multiple database factory. Hope you enjoy about it. happy coding and see you next part.

    Read the article

  • The design of a generic data synchronizer, or, an [object] that does [actions] with the aid of [helpers]

    - by acheong87
    I'd like to create a generic data-source "synchronizer," where data-source "types" may include MySQL databases, Google Spreadsheets documents, CSV files, among others. I've been trying to figure out how to structure this in terms of classes and interfaces, keeping in mind (what I've read about) composition vs. inheritance and is-a vs. has-a, but each route I go down seems to violate some principle. For simplicity, assume that all data-sources have a header-row-plus-data-rows format. For example, assume that the first rows of Google Spreadsheets documents and CSV files will have column headers, a.k.a. "fields" (to parallel database fields). Also, eventually, I would like to implement this in PHP, but avoiding language-specific discussion would probably be more productive. Here's an overview of what I've tried. Part 1/4: ISyncable class CMySQL implements ISyncable GetFields() // sql query, pdo statement, whatever AddFields() RemFields() ... _dbh class CGoogleSpreadsheets implements ISyncable GetFields() // zend gdata api AddFields() RemFields() ... _spreadsheetKey _worksheetId class CCsvFile implements ISyncable GetFields() // read from buffer AddFields() RemFields() ... _buffer interface ISyncable GetFields() AddFields($field1, $field2, ...) RemFields($field1, $field2, ...) ... CanAddFields() // maybe the spreadsheet is locked for write, or CanRemFields() // maybe no permission to alter a database table ... AddRow() ModRow() RemRow() ... Open() Close() ... First Question: Does it make sense to use an interface, as above? Part 2/4: CSyncer Next, the thing that does the syncing. class CSyncer __construct(ISyncable $A, ISyncable $B) Push() // sync A to B Pull() // sync B to A Sync() // Push() and Pull() only differ in direction; factor. // Sync()'s job is to make sure that the fields on each side // match, to add fields where appropriate and possible, to // account for different column-orderings, etc., and of // course, to add and remove rows as necessary to sync. ... _A _B Second Question: Does it make sense to define such a class, or am I treading dangerously close to the "Kingdom of Nouns"? Part 3/4: CTranslator? ITranslator? Now, here's where I actually get lost, assuming the above is passable. Sometimes, two ISyncables speak different "dialects." For example, believe it or not, Google Spreadsheets (accessed through the Google Data API "list feed") returns column headers lower-cased and stripped of all spaces and symbols! That is, sys_TIMESTAMP is systimestamp, as far as my code can tell. (Yes, I am aware that the "cell feed" does not strip the name so; however cell-by-cell manipulation is too slow for what I'm doing.) One can imagine other hypothetical examples. Perhaps even the data itself can be in different "dialects." But let's take it as given for now, and not argue this if possible. Third Question: How would you implement "translation"? Note: Taking all this as an exercise, I'm more interested in the "idealized" design, rather than the practical one. (God knows that shipped sailed when I began this project.) Part 4/4: Further Thought Here's my train of thought to demonstrate I've thunk, albeit unfruitfully: First, I thought, primitively, "I'll just modify CMySQL::GetFields() to lower-case and strip field names so they're compatible with Google Spreadsheets." But of course, then my class should really be called, CMySQLForGoogleSpreadsheets, and that can't be right. So, the thing which translates must exist outside of an ISyncable implementor. And surely it can't be right to make each translation a method in CSyncer. If it exists outside of both ISyncable and CSyncer, then what is it? (Is it even an "it"?) Is it an abstract class, i.e. abstract CTranslator? Is it an interface, since a translator only does, not has, i.e. interface ITranslator? Does it even require instantiation? e.g. If it's an ITranslator, then should its translation methods be static? (I learned what "late static binding" meant, today.) And, dear God, whatever it is, how should a CSyncer use it? Does it "have" it? Is it, "it"? Who am I? ...am I, "I"? I've attempted to break up the question into sub-questions, but essentially my question is singular: How does one implement an object A that conceptually "links" (has) two objects b1 and b2 that share a common interface B, where certain pairs of b1 and b2 require a helper, e.g. a translator, to be handled by A? Something tells me that I've overcomplicated this design, or violated a principle much higher up. Thank you all very much for your time and any advice you can provide.

    Read the article

  • Deep Cloning C++ class that inherits CCNode in Cocos2dx

    - by A Devanney
    I stuck with something in Cocos2dx ... I'm trying to deep clone one of my classes that inherits CCNode. Basically i have.... GameItem* pTemp = new GameItem(*_actualItem); // loops through all the blocks in gameitem and updates their position pTemp->moveDown(); // if in boundary or collision etc... if (_gameBoard->isValidMove(pTemp)) { _actualItem = pTemp; // display the position CCLog("pos (1) --- (X : %d,Y : %d)", _actualItem->getGridX(),_actualItem->getGridY()); } Then doesn't work, because the gameitem inherits CCNode and has the collection of another class that also inherits CCNode. its just creating a shallow copy and when you look at children of the gameitem node in the copy, just point to the original? class GameItem : public CCNode { // maps to the actual grid position of the shape CCPoint* _rawPosition; // tracks the current grid position int _gridX, _gridY; // tracks the change if the item has moved CCPoint _offset; public: //constructors GameItem& operator=(const GameItem& item); GameItem(Shape shape); ... } then in the implementation.... GameItem& GameItem::operator=(const GameItem& item) { _gridX = item.getGridX(); _gridY = item.getGridY(); _offset = item.getOffSet(); _rawPosition = item.getRawPosition(); // how do i copy the node? return *this; } // shape contains an array of position for the game character GameItem::GameItem(Shape shape) { _rawPosition = shape.getShapePositions(); //loop through all blocks in position for (int i = 0; i < 7; i++) { // get the position of the first block in the shape and add to the position of the first block int x = (int) (getRawPosition()[i].x + getGridX()); int y = (int) (getRawPosition()[i].y + getGridY()); //instantiate a block with the position and type Block* block = Block::blockWithFile(x,y,(i+1), shape); // add the block to the this node this->addChild(block); } } And for clarity here is the block class class Block : public CCNode{ private: // using composition over inheritance CCSprite* _sprite; // tracks the current grid position int _gridX, _gridY; // used to store actual image number int _blockNo; public: Block(void); Block(int gridX, int gridY, int blockNo); Block& operator=(const Block& block); // static constructor for the creation of a block static Block* blockWithFile(int gridX, int gridY,int blockNo, Shape shape); ... } The blocks implementation..... Block& Block::operator=(const Block& block) { _sprite = new CCSprite(*block._sprite); _gridX = block._gridX; _gridY = block._gridY; _blockNo = block._blockNo; //again how to clone CCNode? return *this; } Block* Block::blockWithFile(int gridX, int gridY,int blockNo, Shape shape) { Block* block = new Block(); if (block && block->initBlockWithFile(gridX, gridY,blockNo, shape)) { block->autorelease(); return block; } CC_SAFE_DELETE(block); return NULL; } bool Block::initBlockWithFile(int gridX, int gridY,int blockNo, Shape shape) { setGridX(gridX); setGridY(gridY); setBlockNo(blockNo); const char* characterImg = helperFunctions::Format(shape.getFileName(),blockNo); // add to the spritesheet CCTexture2D* gameArtTexture = CCTextureCache::sharedTextureCache()->addImage("Character.pvr.ccz"); CCSpriteBatchNode::createWithTexture(gameArtTexture); // block settings _sprite = CCSprite::createWithSpriteFrameName(characterImg); // set the position of the block and add it to the layer this->setPosition(CONVERTGRIDTOACTUALPOS_X_Y(gridX,gridY)); this->addChild(_sprite); return true; } Any ideas are welcome at this point!! thanks

    Read the article

  • Apache 2.2 and FastCGI stops responding, warnings, crashes

    - by Brett
    I've seen this question posted a few times using a Google search, with no real answers. I have a multi-threaded FastCGI application running with Apache 2.2 on FreeBSD 7.2. There are a few issues with it, and I am unable to really figure out the source of the problem even after poking through a bunch of the mod_fastcgi source code. My FastCGI application gets anywhere from 2 to 15 or so hits per second, and mostly services a back-end API (the majority of web server usage is for this, and not actually serving content). Everything seems to work ok under normal conditions, but recently this problem has been becoming worse. It starts out with the FastCGI process manager apparently trying to close unneeded processes, sending them a SIGTERM signal. I catch the signal, clean up some stuff, and exit (by calling exit()) with status code 0. This process seems to result in three log messages in my httpd error log: [Tue Jun 01 14:03:31 2010] [warn] FastCGI: (dynamic) server "/home/program/wwwroot/domains/www.mydomain.com/cgi-bin/program.cgi" (pid 98182) termination signaled [Tue Jun 01 14:03:31 2010] [warn] FastCGI: (dynamic) server "/home/program/wwwroot/domains/www.mydomain.com/cgi-bin/program.cgi" (pid 98182) terminated by calling exit with status '0' [Tue Jun 01 14:03:31 2010] [warn] FastCGI: (dynamic) server "/home/program/wwwroot/domains/www.mydomain.com/cgi-bin/program.cgi" restarted (pid 98294) I am not sure why it says it is restarting the process, but in any case no core dump is ever generated so I do believe it is the FastCGI process manager doing it's thing. This makes sense because it begins to happen after the initial load increase from restarting Apache. Since it's down for a few seconds, it gets hit with a couple of hundred requests over the first few seconds it's running again (sometimes even hitting the upper limit of MAXCLIENTS in Apache), and this seems to be the process manager doing the work of spawning more processes to handle the increased load. So this all seems fine, but here is where things get weird. There are really two problems that I see. First, my multithreaded FastCGI process spawns 25 worker threads, and all seem to be used according to my internal log files (multiple processes are clearly using multiple threads to do work). However it seems that 3 or 4 FastCGI processes is not enough to handle the 5 to 15 hit per second load, even though the requests take about .02s or so to process internally. In order to be at all responsive, it seems I need 50 or more FastCGI processes, leading me to believe that FastCGI does not realize that my program is multithreaded. I've read the documentation at http://www.fastcgi.com/mod_fastcgi/docs/mod_fastcgi.html and do not see any option pertaining to multithreaded-ness, and my internal code is more or less set up just like the examples provided by the FastCGI library. The second problem I am having is that once process termination has happened a bunch of times as above (and seemingly at random), I begin getting a lot of these messages in my error log: [Tue Jun 01 14:06:22 2010] [warn] (32)Broken pipe: FastCGI: write() to PM failed (ignore if a restart or shutdown is pending) The messages occur for about half the hits I get to the server, and it completely kills the responsiveness of my application - it seems FastCGI will look for a working "pipe" until it finds one, and fail to realize that whatever application it is trying to contact is dead. It does still work though, it's just incredibly unresponsive - sometimes taking up to 40 or so seconds to process a request. I recompiled mod_fastcgi with some extra debugging around the point of the error message, and it appears that the error happens when it tries to write() to the application. The call to write() fails with a -1 return code, and sets errno to EPIPE. I am noticing that the issue happens mostly when either a crash occurs in one of the FastCGI processes, or a bunch of them are seemingly terminated by the process manager. I haven't had any core dumps though, except for one, where the backtrace outputted by gdb is just a single call to free() at address 0x0000000000000000 with nothing else in the stack trace, so I don't really know what to make of that. I'm thinking it happens sometime after the SIGTERM signal is caught, maybe some global variable not being cleaned up properly or something.

    Read the article

  • httpd.conf configuration - for internal/external access

    - by tom smith
    hey. after a lot of trail/error/research, i've decided to post here in the hopes that i can get clarification on what i've screwed up... i've got a situation where i have multiple servers behind a router/firewall. i want to be able to access the sites i have from an internal and external url/address, and get the same site. i have to use portforwarding on the router, so i need to be able to use proxyreverse to redirect the user to the approriate server, running the apache/web app... my setup the external urls joomla.gotdns.com forge.gotdns.com both of these point to my router's external ip address (67.168.2.2) (not really) the router forwards port 80 to my server lserver6 192.168.1.56 lserver6 - 192.168.1.56 lserver9 - 192.168.1.59 lserver6 - joomla app lserver9 - forge app i want to be able to have the httpd process (httpd.conf) configured on lserver6 to be able to allow external users accessing the system (foo.gotdns.com) be able to access the joomla app on lserver6 and the same for the forge app running on lserver9 at the same time, i would also like to be able to access the apps from the internal servers, so i'd need to be able to somehow configure the vhost setup/proxyreverse setup to handle the internal access... i've tried setting up multiple vhosts with no luck.. i've looked at the different examples online.. so there must be something subtle that i'm missing... the section of my httpd.conf file that deals with the vhost is below... if there's something else that's needed, let me know and i can post it as well.. thanks -tom ##joomla - file /etc/httpd/conf.d/joomla.conf Alias /joomla /var/www/html/joomla <Directory /var/www/html/joomla> </Directory> # Use name-based virtual hosting. #NameVirtualHost *:80 # NOTE: NameVirtualHost cannot be used without a port specifier # (e.g. :80) if mod_ssl is being used, due to the nature of the # SSL protocol. # VirtualHost example: # Almost any Apache directive may go into a VirtualHost container. # The first VirtualHost section is used for requests without a known # server name. #<VirtualHost *:80> # ServerAdmin [email protected] # DocumentRoot /www/docs/dummy-host.example.com # ServerName dummy-host.example.com # ErrorLog logs/dummy-host.example.com-error_log # CustomLog logs/dummy-host.example.com-access_log common #</VirtualHost> NameVirtualHost 192.168.1.56:80 <VirtualHost 192.168.1.56:80> #ServerAdmin [email protected] #DocumentRoot /var/www/html #ServerName lserver6.tmesa.com #ServerName fforge.tmesa.com ServerName fforge.gotdns.com:80 #ErrorLog logs/dummy-host.example.com-error_log #CustomLog logs/dummy-host.example.com-access_log common #ProxyRequests Off ProxyPass / http://192.168.1.81:80/ ProxyPassReverse / http://192.168.1.81:80/ </VirtualHost> <VirtualHost 192.168.1.56:80> #ServerAdmin [email protected] DocumentRoot /var/www/html/joomla #ServerName lserver6.tmesa.com #ServerName fforge.tmesa.com ServerName 192.168.1.56:80 #ErrorLog logs/dummy-host.example.com-error_log #CustomLog logs/dummy-host.example.com-access_log common #ProxyRequests Off </VirtualHost>

    Read the article

  • disk-to-disk backup without costly backup redundancy?

    - by AaronLS
    A good backup strategy involves a combination of 1) disconnected backups/snapshots that will not be affected by bugs, viruses, and/or security breaches 2) geographically distributed backups to protect against local disasters 3) testing backups to ensure that they can be restored as needed Generally I take an onsite backup daily, and an offsite backup weekly, and do test restores periodically. In the rare circumstance that I need to restore files, I do some from the local backup. Should a catastrophic event destroy the servers and local backups, then the offsite weekly tape backup would be used to restore the files. I don't need multiple offsite backups with redundancy. I ALREADY HAVE REDUNDANCY THROUGH THE USE OF BOTH LOCAL AND REMOTE BACKUPS. I have recovery blocks and par files with the backups, so I already have protection against a small percentage of corrupt bits. I perform test restores to ensure the backups function properly. Should the remote backups experience a dataloss, I can replace them with one of the local backups. There are historical offsite backups as well, so if a dataloss was not noticed for a few weeks(such as a bug/security breach/virus), the data could be restored from an older backup. By doing this, the only scenario that poses a risk to complete data loss would be one where both the local, remote, and servers all experienced a data loss in the same time period. I'm willing to risk that happening since the odds of that trifecta negligibly small, and the data isn't THAT valuable to me. So I hope I have emphasized that I don't need redundancy in my offsite backups because I have covered all the bases. I know this exact technique is employed by numerous businesses. Of course there are some that take multiple offsite backups, because the data is so incredibly valuable that they don't even want to risk that trifecta disaster, but in the majority of cases the trifecta disaster is an accepted risk. I HAD TO COVER ALL THIS BECAUSE SOME PEOPLE DON'T READ!!! I think I have justified my backup strategy and the majority of businesses who use offsite tape backups do not have any additional redundancy beyond what is mentioned above(recovery blocks, par files, historical snapshots). Now I would like to eliminate the use of tapes for offsite backups, and instead use a backup service. Most however are extremely costly for $/gb/month storage. I don't mind paying for transfer bandwidth, but the cost of storage is way to high. All of them advertise that they maintain backups of the data, and I imagine they use RAID as well. Obviously if you were using them to host servers this would all be necessary, but for my scenario, I am simply replacing my offsite backups with such a service. So there is no need for RAID, and absolutely no value in another layer of backups of backups. My one and only question: "Are there online data-storage/backup services that do not use redundancy or offer backups(backups of my backups) as part of their packages, and thus are more reasonably priced?" NOT my question: "Is this a flawed strategy?" I don't care if you think this is a good strategy or not. I know it pretty standard. Very few people make an extra copy of their offsite backups. They already have local backups that they can use to replace the remote backups if something catastrophic happens at the remote site. Please limit your responses to the question posed. Sorry if I seem a little abrasive, but I had some trolls in my last post who didn't read my requirements nor my question, and were trying to go off answering a totally different question. I made it pretty clear, but didn't try to justify my strategy, because I didn't ask about whether my strategy was justifyable. So I apologize if this was lengthy, as it really didn't need to be, but since there are so many trolls here who try to sidetrack questions by responding without addressing the question at hand.

    Read the article

  • Apache outputs all urls of a second domain as a subfolder of the primary domain name

    - by s_rathbone
    Hi all, would anyone be able to possibly give me some guidance.. Basically, i have a 'shared hosting' account with a large internet hosting provider, and my account lets me have multiple seperate domains within this folder structure.(note: not aliased domains and not sub domains). so, my goal is to have 2 domains set up. i have already purchased the two domain names i need: The first domain is the 'primary' domain name for the root folder(eg. www.example1.com) and the second domain name is set for one of its sub folders(eg. www.example2.com is set to the folder www.example1.com/sites/music). The problem is that when apache returns a page of the second domain back to the browser, apache writes the hyperlinks as if it's a sub folder of the first domain ( eg. www.example2.com/index.html. comes out as http://www.example1.com/sites/music/index.html). Now, I have done some reading on this, looking though "Apache: the definitive guide"(o'reilly), and although it was useful, couldn't really find the answer. i'm guessing this issue is most likely an apache setup issue in http.conf, rather than an issue with the hosting company itself (which is why im posting it here) and I have also been to the official documentation for apache site, and i am guessing i might need to use something like the rewritebase directive in htaccess files.. but im really not sure, im more of a java programmer guy, and have been struggling with this for a couple of days. Any guidance would be REALLY appreciated. If it helps, my hosting company is godaddy, and my sites are hosted on linux. My problem was originally with wordpress which i reinstalled a number of times in various ways to correct the problem, but ive just done a test with a very simple static html, and it still has the same issue with relative urls like this: <html> <head></head><body><a href="images/dog.html">Pictures of Dogs</a></body> </html> However, it is fine if i hardcode the urls like this: <html> <head></head><body><a href="http://www.example2.com/images/dog.html">Pictures of Dogs</a></body> </html> Thanks heaps, Steve R NOW FIXED Ok, the problem has now been fixed, and i didn't need to modify any .conf or .htaccess files. The problem was, that when I went to install the second application into a second domain from the godaddy site, one of the setup questions is that it asks you which site you want it installed to. after that it asks for the desired folder path. However, the problem was that the second domain name was already pointing to the correct subfolder of the primary domain. So when I started installing wordpress again and came to the menu to select which site it was for, and it listed only the primary domain as an option, i assumed that this was like a label of "which hosting account?", or "which primary domain will your application will be installed under?" because I already knew that in the next step i was specifiying the folder. In order to correct this, you must make sure that your second domain is added to your domain list so that it will be listed as an option during the installation process. For further details please read tystips.com/archives/52/how2-save-money-host-multiple-wordpress-blogs-on-a-single-godaddy-hosting-account/

    Read the article

< Previous Page | 493 494 495 496 497 498 499 500 501 502 503 504  | Next Page >