Search Results

Search found 163 results on 7 pages for 'voltage'.

Page 5/7 | < Previous Page | 1 2 3 4 5 6 7  | Next Page >

  • UPS for hard drive protection

    - by dimi
    I am in a place where electricity is not ideal (old house, no ground), sometimes it occasionally shuts down and supposedly there are some spikes. I consider using UPS with the goal to increase safety of my personal data. My first priority is the health of my internal and external USB hard drives which can be damaged due to possible power instability. I do not care that much about possible losses of not-saved work, instead I just want to let my system have a minimum time to turn off without any risk of physical damaging my hard drives. Would a cheap offline UPS suit my neads? Or do i need a better one with automatic voltage regulator (AVR)? How critical is AVR for the hard drives? The external ones require their own power supplies and will be plugged directly into UPS.

    Read the article

  • Patriot-2 RAM on ASUS PK5-E not running at PC2-8500?

    - by evan
    I have a P5K-E Motherboard and recently upgraded to 8GB of RAM (4 2GB sticks of PC2-8500 1066 MHz - Patriot Viper 2). When looking at the RAM with PC Wizard 2010 it's showing the RAM being recognized PC2-6500. I've read elsewhere that this is a common problem and requires manually changing the DRAM Voltage in BIOS to 2.2. I've done this and I'm still getting it recognized as PC2-6500. (I also manually set the FSB speed to 1066MHz instead of the AUTO). Any ideas on how to get this memory working properly? Thanks in advance!

    Read the article

  • What are the limitation for the battery for notebook HP HDX18?

    - by theateist
    I have HP HDX X18T-1200 CTO Premium notebook. My battery died and I would like to buy a new one. The specs written on battery itself are: NSTNN-OB75 RATING: 14.4 - 73Wh 3.14.4v, 5000mAh. The specs written on the dock where the battery goes are: NSTNN - Q35C My questions are: How to calculate the number of cells. I've read some post how to calculate but I don't know the nominal voltage. I saw batteries with 8,12 cells and 106Wh and 7000mAh, can I use it on my laptop or it can make damage. In other words, what the max mAh and Wh I can use for battery in my notebook?

    Read the article

  • PC is randomly shutting off

    - by Bobby
    I have a PC which is randomly shutting off (the hard way, like someone pulled the plug). It's no heat problem, because this can happen after 2 minutes of operation or after 4 hours and I checked the temperature. It's also no problem of the operation system, because it will also do that while in BIOS. If it happens once, you can be sure that it will happen within the next hour another two or three times, and then it works again for over a week or even longer. Possible causes I've thought about so far are: Voltage Fluctuation Loose contact (already replugged all cables within the PC, no luck) Faulty PSU Maybe someone has more ideas to this? P.s.: I don't have the hardware specs with me right now, I'll post them as soon as I get them.

    Read the article

  • What is a good program, with PostScript output (for LaTeX), to make circuit diagrams?

    - by Breakthrough
    Hello; I just found out to my dismay that Visio 2007 does not include the ability to output drawings in EPS/PS formats, which makes it unsuitable for my uses. I wish to create various circuit digrams (including some texts for resistor values, voltage sources, etc...) with most electronic components (resistors, logic gates). Visio was a great tool for this, but I need to include these in lab reports which I am typesetting with LaTeX. The recommended format to include images in LaTeX is PostScript, so the fonts can be properly substituted, and the drawings scale properly. So my question: Is there a Windows program which will allow me to create circuit diagrams, add various labels, and export it to PostScript format?

    Read the article

  • Thermal risks to other components when watercooling CPU

    - by B Sharp
    I recently ordered all the components for a new desktop system to replace my old, dying computer. I wanted to have a really quiet desktop, so I got a case rated for being quiet and opted to try a closed-system CPU water cooling kit (Antec Kuhler H2O 620) that was on sale for a very good price over the Thanksgiving weekend. Most of my components are still in transit, but I became somewhat worried when a friend mentioned that abandoning air cooling units can result in heat buildup inside the case due to heat generated by the video card and other components such as RAM, the northbridge, MOSFETs and voltage regulators radiating heat that the CPU fan would normally at least keep circulating around so it doesn't build up in localized areas. Is this a realistic problem? What other precautions should I take to remove heat from other components? Adding more case fans seems like it would get really noisy. Are there quiet alternatives?

    Read the article

  • I'm using a compatible active DisplayPort to DVI adapter with EyeFinity, why does my monitor still flicker?

    - by Christopher Galpin
    I specifically chose an active DisplayPort <- DVI adapter for use with EyeFinity right out of my graphic card vendor's list of confirmed compatible adapters. Yet the screen fails horribly, it blinks on and off constantly, sometimes the graphics go screwy and the appropriate resolutions won't be available. Sometimes the resolution will be available but I'll discover it's only with interlaced refresh rates and bounces up and down. I have to switch the resolution back and forth, again and again, to get it to work correctly, and then it fails again and the process must be repeated the moment the monitor is turned off or I reboot. It's maddening. What is wrong? Is my GFX card supplying insufficient voltage? (Firmware tweaks allegedly help some people, but my card's isn't modifiable.) Could the adapter be defective? Is it not "active" enough for my card and I need an expensive powered adapter? Is this endemic to DisplayPort in general?

    Read the article

  • Any experience with SATA SAS Interposer Cards?

    - by korkman
    Driven by the current price difference between SATA and SAS disks on one side and the potentially bad behaviour of SATA disks in bigger storage arrays on the other side, I have found so-called SATA-to-SAS interposer cards. Advertised as "seamlessly adding SAS capabilities to existing SATA disk drives", I wonder if anyone here has had some experience with these or similar products. The major benefits I can identify are the increased cable voltage (if all drives are SAS connected), the ability to power-cycle the drive and multipath (if desired). Obviously the SATA drive will still have to be RAID edition. The question is: Do these cards indeed increase the overall reliability of a storage system, or will failing SATA disks cause trouble nevertheless? Edit: I'm not asking for hypothetical answers, only actual experience please. I'm well aware that the typical 10k SAS drive is more reliable (and better performing) than 7200 SATA drives. But how does a nearline SAS, which is phyiscally the same disk as its SATA counterpart, compare to the SATA version with interposer?

    Read the article

  • What makes a laptop battery specific to a model?

    - by ryeguy
    I have an old Toshiba laptop (pentium 4) whose battery just crapped out. Looking at the battery, it says it's a PA3251U. Looking online, this thing is going for about $100! I don't want to spend probably 50% of this machine's value on a battery replacement! My question is: what makes a laptop battery specific to a model? Do I really only have this one battery to choose from, or can I look for any battery that matches some certain attributes (like number of cells, voltage, etc)?

    Read the article

  • Asus Rampage III and Corsair DRAM Settings

    - by Glorithm
    Recently I flashed the BIOS of my Asus Rampage III Extreme. But I lost the settings and now only 16GB out of 24GB of DRAM in the system is recognized. Does anyone has the correct DRAM setting for: 2 kits of cmz12gx3m3a1600c9 (Corsair Vengenance 12GB kit) on Asus Rampage III Extreme? Current I have 9-9-9-24 1N at 1.5v, but only 16GB is showing. I even tried to up the voltage to 1.65v, still no joy. Thank you in advance!

    Read the article

  • what to use instead of laptop-mode?

    - by playcat
    hello, i have ubuntu 10.10 64bit on hp 6735s (turion processor). it overheats, and i'm forced to use turion power control in order to keep core temperature to a reasonable level. one more measure that i use is putting my processors to conservative mode. that way, i'm perfectly happy with its performance, and heat is where it should be. however, after my latest upgrade, something happened - cores are back to ondemand by default, and i'm not sure if turionpowercontrol is working any more (ps axu | grep urion shows no process). in addition, i read somewhere that laptop-mode uses hdd spindown for preserving data/energy, and that hdds have only a limited amount of those spindowns, so laptop-mode usage can actually shorten the life of my hdd. i'm wondering if there is a good way to set my cores to automatically go to conservative mode? also, what's the good way to see what is the voltage my cores use? on windows i use cpuz tools. thx and sorry for the long explanation.

    Read the article

  • What are the essential considerations for setting up systems in a location with unreliable power?

    - by dunxd
    I deal with a lot of remote offices located in parts of the world where the local grid power supply is unreliable. Power can go off anytime with no warning, with outages ranging from minutes to days Power fluctuation is wild, with spikes and brown outs Currently the offices will have some or all of the following: A generator, with an inverter, or some sort of manual switch A big UPS or battery array connecting a number of devices Several smaller APC UPS with computers attached Low cost Voltage Regulators sometimes connected between mains and UPS or device. I know that each of these things needs to be appropriately rated for the equipment to which it is connected (although I am not sure how to calculate the correct rating). The offices will generally have the following equipment (in varying quantities): some sort of internet connection device (VSAT router, ADSL modem, WiMax router) Cisco ASA 5505 firewall a bunch of PCs printers one server I don't seek to replace the advice of an electrician, but in some of these locations they only answer the questions you ask them, so I need to make sure I have enough understanding of the essentials to protect equipment from damage, and possibly get through some power cuts.

    Read the article

  • Using wrong adaptor with same V but wrong amps with my laptop

    - by Merve
    I have a Toshiba Satellite A200 1-GH. My sister's old laptop was also a Toshiba. The adaptors were mixed somehow, and I've been using the wrong adaptor for a very long time. I've realized this when my computer could not work without the adaptor plugged in. When I checked out the voltage-amps values, the values on my computer were 19V-4.7A, the values on the adaptor were 19V-3.42A. I bought a new adaptor corresponding to the values written under the computer immediately but I was wondering if the battery should also be replaced? If so, what happened to the battery technically that made it useless anymore? Can anybody help?

    Read the article

  • What power cord does a WD16001032 hard drive use?

    - by llcf
    I have a Western Digital 160GB My Book USB external hard drive (WD16001032), but I can't find its power cord (or, at least, figure out which one it is in my box of cords). It might be that only one power cord would fit, but I'm a bit cautious since I just tried one of the cords with a router and could smell electronics burning when I used an incorrect one. What voltage/amps are needed for this drive? I can't find specs on Western Digital's site. I'm assuming this is due to it being an older drive.

    Read the article

  • The battery indicator& Power setting panel shows wrong battery state

    - by Eastsun
    My laptop is Thinkpad E420 with Ubuntu 12.04 64-bit installed, the kernel version is 3.2.0-33-generic. I have set the battery threshold as 60% via windows7. It seems that the threshold auto effected in Ubuntu. However, there are some problems of the battery indicator's state. I'll list some information of the battery state as following: (Note that in terminal ubuntu says that battery charging state is charged, while the power setting panel shows that the battery state is charging as well as the battery indicator shows.) $ cat /proc/acpi/battery/BAT0/state present: yes capacity state: ok *charging state: charged* present rate: 0 mW remaining capacity: 18200 mWh present voltage: 16103 mV battery indicator state Power Setting Panel Is there any way to fix the problem? Edit Add some result via *sudo fwts battery - battery.log * 3 passed, 4 failed, 0 warnings, 0 aborted, 0 skipped, 0 info only. Test Failure Summary =============================== Critical failures: NONE High failures: 2 battery: Did not detect any ACPI battery events. battery: Could not detect ACPI events for battery BAT0. Medium failures: 1 battery: Battery BAT0 claims it's charging but no charge is added Low failures: 1 battery: System firmware may not support cycle count interface or it reports it incorrectly for battery BAT0. Other failures: NONE Test |Pass |Fail |Abort|Warn |Skip |Info | ---------------+-----+-----+-----+-----+-----+-----+ battery | 3| 4| | | | | ---------------+-----+-----+-----+-----+-----+-----+ Total: | 3| 4| 0| 0| 0| 0| ---------------+-----+-----+-----+-----+-----+-----+ Any help would be appreciated!

    Read the article

  • Glowing Chess Set Combines LEDs, Chess, and DIY Electronics Fun

    - by ETC
    Anyone who says that the centuries old game of Chess cannot be improved upon has obviously never played with a glowing chess board. Today we take a look at a cheap glass chess set modded to glow from within. Instructables user Tetranitrate had a glass chess set he scored on-the-cheap and had always wanted to illuminate it in some way. He ruled out illuminating the board itself (no good way to keep track of the piece colors) and putting a battery in each piece (too big of a pain, over complicates the design). His final solution, the one seen in the photo here, was to build a wood and copper board, run a low voltage across the surface of the chess board, and affix a conductive copper ring to the bottom of each chess piece to power the LED embedded inside. In this manner the pieces would glow on the board and then go dark as soon as they were removed from play. Hit up the link below for additional details on the build and instructions on building your own. LED Chess Set [Instructables] Latest Features How-To Geek ETC How to Get Amazing Color from Photos in Photoshop, GIMP, and Paint.NET Learn To Adjust Contrast Like a Pro in Photoshop, GIMP, and Paint.NET Have You Ever Wondered How Your Operating System Got Its Name? Should You Delete Windows 7 Service Pack Backup Files to Save Space? What Can Super Mario Teach Us About Graphics Technology? Windows 7 Service Pack 1 is Released: But Should You Install It? Save Files Directly from Your Browser to the Cloud in Chrome and Iron The Steve Jobs Chronicles – Charlie and the Apple Factory [Video] Google Chrome Updates; Faster, Cleaner Menus, Encrypted Password Syncing, and More Glowing Chess Set Combines LEDs, Chess, and DIY Electronics Fun Peaceful Alpine River on a Sunny Day [Wallpaper] Fast Society Creates Mini and Mobile Temporary Social Networks

    Read the article

  • How will my Electronic Engineering degree be received in the Canadian Game Development market? [closed]

    - by Harikawashi
    I have a Electronic Engineering with Computer Science Degree from a reputable South African university. The EE with CS degree is basically Electronic Engineering, with some of the high voltage subjects thrown out and replaced with computer science subjects - mostly quite theoretical, but not in too much depth. I went on to earn a Masters Degree in Digital Signal Processing, focussing on Speech Recognition in Educational Applications. I have always loved programming - I taught myself QBASIC when I was in primary school, I learned Java at school, did some low level C at University, and taught myself C# and Python while doing my post graduate degree. C# is currently my strong suit, I think I am pretty capable with it. I have two years work experience in Namibia - working as a consulting electrical engineer (no software content whatsoever) and also developing C# desktop applications for the company I work for. I would like to move to Canada next year and work in the Game Development Industry as programmer or software engineer. My interests in particular are towards the more mathematical applications, like game and physics engines, or statistical disciplines like artificial intelligence. However, these are passions - not areas in which I have any work experience. So the question: How well will my BEngEE&CS and MScEng be received in the game industry? Seeing as it's not a pure software degree and I have no official software development work experience?

    Read the article

  • ?????Exadata????

    - by Liu Maclean(???)
    ??check Exadata Image & OS versions , GI & DB patches sundiag exacheck cellserv ==> imageinfo dbhost ==> /usr/local/bin/imagehistory Also check the version of the switch. Login to Switch and execute the following command [root@myswitch-1 sbin]# version [root@dmorlsw-ib2 sbin]# cd /usr/local/bin [root@dmorlsw-ib2 bin]# ls -lrt version -rwxr-xr-x 1 root root 20356 Apr 4 2011 version Output will look as below. [root@dmorlsw-ib2 ~]# version SUN DCS 36p version: 1.3.3-2 Build time: Apr 4 2011 11:15:19 SP board info: Manufacturing Date: 2009.05.05 Serial Number: "NCD3X0178" Hardware Revision: 0x0006 Firmware Revision: 0x0102 BIOS version: NOW1R112 BIOS date: 04/24/2009 ib8# cat /sys/class/infiniband/is4_0/fw_ver 7.2.300 ib8 # cat /sys/class/dmi/id/bios_version NOW1R112 ib8 # nm2version NM2-36p version: 1.0.1-1 Build time: Sep 14 2009 12:52:51 ComExpress info: Manufacturing Date: 2009.08.19 Serial Number: Hardware Revision: 0x0006 Firmware Revision: 0x0102 { case `uname` in Linux ) ILOM="/usr/bin/ipmitool sunoem cli" ;; SunOS ) ILOM="/opt/ipmitool/bin/ipmitool sunoem cli" ;; esac ; ImageInfo="/opt/oracle.cellos/imageinfo" ; uname -srm ; head -1 /etc/*release ; uptime | cut -d, -f1 ; $ILOM "show /SP system_description system_identifier" | grep = ; $ImageInfo -activated -node -status -ver | grep -v ^$ ; } | tee /tmp/ExaInfo.log $GRID_HOME/OPatch/opatch lsinv -all -oh $GRID_HOME | tee /tmp/OPatchInv.log $ORACLE_HOME/OPatch/opatch lsinv -all | tee -a /tmp/OPatchInv.log cat /tmp/ExaInfo.log Linux 2.6.18-128.1.16.0.1.el5 x86_64 ==> /etc/enterprise-release <== Enterprise Linux Enterprise Linux Server release 5.3 (Carthage) ==> /etc/redhat-release <== Enterprise Linux Enterprise Linux Server release 5.3 (Carthage) 20:37:56 up 458 days system_description = SUN FIRE X4170 SERVER, ILOM v3.0.6.10.b, r52264 system_identifier = Sun Oracle Database Machine Active image version: 11.2.1.2.3 Active image activated: XXXX-XX-XX 12:27:12 +0800 Active image status: success Active node type: COMPUTE Inactive image version: undefined FileName: OPatchInv.log ---------------- ... Oracle Home       : /u01/app/11.2.0/grid Central Inventory : /u01/app/oraInventory   from           : /etc/oraInst.loc OPatch version    : 11.2.0.1.2 OUI version       : 11.2.0.1.0 OUI location      : /u01/app/11.2.0/grid/oui ... -------------------------------------------------------------------------------- List of Oracle Homes:   Name                                       Location   Ora11g_gridinfrahome1         /u01/app/11.2.0/grid   OraDb11g_home1                  /u01/app/oracle/product/11.2.0/dbhome_1 -------------------------------------------------------------------------------- Installed Top-level Products (1): Oracle Grid Infrastructure                                           11.2.0.1.0 ... Interim patches (2) : Patch  9524394      : applied on Thu Jun 03 20:46:05 CST 2010 ... {TRACKING BUG FOR 11.2.0.1 DB MACHINE BUNDLE PATCH 3} Patch  9455587      : applied on Fri Apr 02 18:27:47 CST 2010 ... {MERGE REQUEST ON TOP OF 11.2.0.1.0 FOR BUGS 8483425 8667622 8702731 8730804} Rac system comprising of multiple nodes  Local node = dbserv01  Remote node = dbserv02  Remote node = dbserv03  Remote node = dbserv04 -------------------------------------------------------------------------------- OPatch succeeded. ... Oracle Home       : /u01/app/oracle/product/11.2.0/dbhome_1 ... Oracle Database 11g                                                  11.2.0.1.0 ... Interim patches (5) : Patch  8888434      : applied on Sat Jan 08 00:27:33 CST 2011 ... {AIX-ASM-CF: LMHB TERMINATE INSTANCE WHEN OFFLINE ONE FAILGROUP IN ASM DG} Patch  8730312      : applied on Thu Jun 03 21:30:03 CST 2010 ... {FWD MERGE FOR BASE BUG 8715387 FOR 12G} Patch  9502717      : applied on Thu Jun 03 21:25:54 CST 2010 ... {LMS HIT ORA-600 [KJBLDRMNEXTPKEY:SEEN] AND CRASHED THE INSTANCE} { + same 2 as GI above} ?? cell server Cache Policy cell08# MegaCli64 -LDInfo -Lall -aALL | grep 'Current Cache Policy' Current Cache Policy: WriteThrough, ReadAheadNone, Direct, No Write Cache if Bad BBU cell09# MegaCli64 -LDInfo -Lall -aALL | grep 'Current Cache Policy' Current Cache Policy: WriteBack, ReadAheadNone, Direct, No Write Cache if Bad BBU Default Cache Policy: WriteBack, ReadAheadNone, Direct, No Write Cache if Bad BBU Current Cache Policy: WriteThrough, ReadAheadNone, Direct, No Write Cache if Bad BBU Cache policy is in WB Would recommend proactive  battery repalcement. Example : a. /opt/MegaRAID/MegaCli/MegaCli64 -LDGetProp  -Cache -LALL -aALL ####( Will list the cache policy) b. /opt/MegaRAID/MegaCli/MegaCli64 -LDSetProp  -WB  -LALL -aALL ####( Will try to change teh policy from xx to WB)     So policy Change to WB will not come into effect immediately     Set Write Policy to WriteBack on Adapter 0, VD 0 (target id: 0) success     Battery capacity is below the threshold value ??cell BBU??????: cell08# /opt/MegaRAID/MegaCli/MegaCli64 -AdpBbuCmd -GetBbuStatus -a0 BBU status for Adapter: 0 BatteryType: iBBU Voltage: 4061 mV Current: 0 mA Temperature: 36 C BBU Firmware Status: Charging Status : None Voltage : OK Temperature : OK Learn Cycle Requested : No Learn Cycle Active : No Learn Cycle Status : OK Learn Cycle Timeout : No I2c Errors Detected : No Battery Pack Missing : No Battery Replacement required : No Remaining Capacity Low : Yes Periodic Learn Required : No Battery state: GasGuageStatus: Fully Discharged : No Fully Charged : Yes Discharging : Yes Initialized : Yes Remaining Time Alarm : No Remaining Capacity Alarm: No Discharge Terminated : No Over Temperature : No Charging Terminated : No Over Charged : No Relative State of Charge: 99 % Charger System State: 49168 Charger System Ctrl: 0 Charging current: 0 mA Absolute state of charge: 21 % Max Error: 2 % Exit Code: 0x00 ????BBU ??: dcli -g ~/cell_group -l root -t '{ uname -srm ; head -1 /etc/*release ; uptime | cut -d, -f1 ; imagehistory ; ipmitool sunoem cli "show /SP system_description system_identifier" | grep = ; ipmitool sunoem cli "show /SP/policy FLASH_ACCELERATOR_CARD_INSTALLED /opt/MegaRAID/MegaCli/MegaCli64 -AdpBbuCmd -GetBbuStatus -a0 | egrep -i 'BBU|Battery|Charge:|Fully|Low|Learn' ; }' | tee /tmp/ExaInfo.log Target cells: ['cellserv01', 'cellserv02', 'cellserv03', 'cellserv04', 'cellserv05', 'cellserv06', 'cellserv07'] cellserv01: Linux 2.6.18-128.1.16.0.1.el5 x86_64 cellserv01: ==> /etc/enterprise-release <== cellserv01: Enterprise Linux Enterprise Linux Server release 5.3 (Carthage) cellserv01: cellserv01: ==> /etc/redhat-release <== cellserv01: Enterprise Linux Enterprise Linux Server release 5.3 (Carthage) cellserv01: 01:17:39 up 635 days cellserv01: Version : 11.2.1.2.1 cellserv01: Image activation date : 2011-03-25 11:59:34 -0800 cellserv01: Imaging mode : fresh cellserv01: Imaging status : success cellserv01: cellserv01: Version : 11.2.1.2.3 cellserv01: Image activation date : 2011-04-13 12:15:46 +0800 cellserv01: Imaging mode : patch cellserv01: Imaging status : success cellserv01: cellserv01: Version : 11.2.1.2.6 cellserv01: Image activation date : 2011-05-27 23:08:22 +0800 cellserv01: Imaging mode : patch cellserv01: Imaging status : success cellserv01: cellserv01: system_description = SUN FIRE X4275 SERVER, ILOM v3.0.6.10.b, r52264 cellserv01: system_identifier = Sun Oracle Database Machine cellserv01: Connected. Use ^D to exit. cellserv01: -> show /SP/policy FLASH_ACCELERATOR_CARD_INSTALLED cellserv01: show: No matching properties found. cellserv01: cellserv01: -> Session closed cellserv01: Disconnected cellserv01: BBU status for Adapter: 0 cellserv01: BatteryType: iBBU cellserv01: BBU Firmware Status: cellserv01: Learn Cycle Requested : No cellserv01: Learn Cycle Active : No cellserv01: Learn Cycle Status : OK cellserv01: Learn Cycle Timeout : No cellserv01: Battery Pack Missing : No cellserv01: Battery Replacement required : No cellserv01: Remaining Capacity Low : Yes cellserv01: Periodic Learn Required : No cellserv01: Battery state: cellserv01: Fully Discharged : No cellserv01: Fully Charged : Yes cellserv01: Relative State of Charge: 99 % cellserv01: Absolute state of charge: 21 % dcli -l root -g /root/all_group '/opt/MegaRAID/MegAaCli/MegaCli64 -AdpBbuCmd -a0' > BBU.out check ipmi: dcli -g ~/cell_group -l root -t '{ > ipmitool sunoem cli "show /SP/policy FLASH_ACCELERATOR_CARD_INSTALLED" | grep = ; MegaCli64 -LDInfo -Lall -aALL | grep 'Current Cache Policy' ; }' | tee /tmp/ExaCells.log

    Read the article

  • The Benefits of Smart Grid Business Software

    - by Sylvie MacKenzie, PMP
    Smart Grid Background What Are Smart Grids?Smart Grids use computer hardware and software, sensors, controls, and telecommunications equipment and services to: Link customers to information that helps them manage consumption and use electricity wisely. Enable customers to respond to utility notices in ways that help minimize the duration of overloads, bottlenecks, and outages. Provide utilities with information that helps them improve performance and control costs. What Is Driving Smart Grid Development? Environmental ImpactSmart Grid development is picking up speed because of the widespread interest in reducing the negative impact that energy use has on the environment. Smart Grids use technology to drive efficiencies in transmission, distribution, and consumption. As a result, utilities can serve customers’ power needs with fewer generating plants, fewer transmission and distribution assets,and lower overall generation. With the possible exception of wind farm sprawl, landscape preservation is one obvious benefit. And because most generation today results in greenhouse gas emissions, Smart Grids reduce air pollution and the potential for global climate change.Smart Grids also more easily accommodate the technical difficulties of integrating intermittent renewable resources like wind and solar into the grid, providing further greenhouse gas reductions. CostsThe ability to defer the cost of plant and grid expansion is a major benefit to both utilities and customers. Utilities do not need to use as many internal resources for traditional infrastructure project planning and management. Large T&D infrastructure expansion costs are not passed on to customers.Smart Grids will not eliminate capital expansion, of course. Transmission corridors to connect renewable generation with customers will require major near-term expenditures. Additionally, in the future, electricity to satisfy the needs of population growth and additional applications will exceed the capacity reductions available through the Smart Grid. At that point, expansion will resume—but with greater overall T&D efficiency based on demand response, load control, and many other Smart Grid technologies and business processes. Energy efficiency is a second area of Smart Grid cost saving of particular relevance to customers. The timely and detailed information Smart Grids provide encourages customers to limit waste, adopt energy-efficient building codes and standards, and invest in energy efficient appliances. Efficiency may or may not lower customer bills because customer efficiency savings may be offset by higher costs in generation fuels or carbon taxes. It is clear, however, that bills will be lower with efficiency than without it. Utility Operations Smart Grids can serve as the central focus of utility initiatives to improve business processes. Many utilities have long “wish lists” of projects and applications they would like to fund in order to improve customer service or ease staff’s burden of repetitious work, but they have difficulty cost-justifying the changes, especially in the short term. Adding Smart Grid benefits to the cost/benefit analysis frequently tips the scales in favor of the change and can also significantly reduce payback periods.Mobile workforce applications and asset management applications work together to deploy assets and then to maintain, repair, and replace them. Many additional benefits result—for instance, increased productivity and fuel savings from better routing. Similarly, customer portals that provide customers with near-real-time information can also encourage online payments, thus lowering billing costs. Utilities can and should include these cost and service improvements in the list of Smart Grid benefits. What Is Smart Grid Business Software? Smart Grid business software gathers data from a Smart Grid and uses it improve a utility’s business processes. Smart Grid business software also helps utilities provide relevant information to customers who can then use it to reduce their own consumption and improve their environmental profiles. Smart Grid Business Software Minimizes the Impact of Peak Demand Utilities must size their assets to accommodate their highest peak demand. The higher the peak rises above base demand: The more assets a utility must build that are used only for brief periods—an inefficient use of capital. The higher the utility’s risk profile rises given the uncertainties surrounding the time needed for permitting, building, and recouping costs. The higher the costs for utilities to purchase supply, because generators can charge more for contracts and spot supply during high-demand periods. Smart Grids enable a variety of programs that reduce peak demand, including: Time-of-use pricing and critical peak pricing—programs that charge customers more when they consume electricity during peak periods. Pilot projects indicate that these programs are successful in flattening peaks, thus ensuring better use of existing T&D and generation assets. Direct load control, which lets utilities reduce or eliminate electricity flow to customer equipment (such as air conditioners). Contracts govern the terms and conditions of these turn-offs. Indirect load control, which signals customers to reduce the use of on-premises equipment for contractually agreed-on time periods. Smart Grid business software enables utilities to impose penalties on customers who do not comply with their contracts. Smart Grids also help utilities manage peaks with existing assets by enabling: Real-time asset monitoring and control. In this application, advanced sensors safely enable dynamic capacity load limits, ensuring that all grid assets can be used to their maximum capacity during peak demand periods. Real-time asset monitoring and control applications also detect the location of excessive losses and pinpoint need for mitigation and asset replacements. As a result, utilities reduce outage risk and guard against excess capacity or “over-build”. Better peak demand analysis. As a result: Distribution planners can better size equipment (e.g. transformers) to avoid over-building. Operations engineers can identify and resolve bottlenecks and other inefficiencies that may cause or exacerbate peaks. As above, the result is a reduction in the tendency to over-build. Supply managers can more closely match procurement with delivery. As a result, they can fine-tune supply portfolios, reducing the tendency to over-contract for peak supply and reducing the need to resort to spot market purchases during high peaks. Smart Grids can help lower the cost of remaining peaks by: Standardizing interconnections for new distributed resources (such as electricity storage devices). Placing the interconnections where needed to support anticipated grid congestion. Smart Grid Business Software Lowers the Cost of Field Services By processing Smart Grid data through their business software, utilities can reduce such field costs as: Vegetation management. Smart Grids can pinpoint momentary interruptions and tree-caused outages. Spatial mash-up tools leverage GIS models of tree growth for targeted vegetation management. This reduces the cost of unnecessary tree trimming. Service vehicle fuel. Many utility service calls are “false alarms.” Checking meter status before dispatching crews prevents many unnecessary “truck rolls.” Similarly, crews use far less fuel when Smart Grid sensors can pinpoint a problem and mobile workforce applications can then route them directly to it. Smart Grid Business Software Ensures Regulatory Compliance Smart Grids can ensure compliance with private contracts and with regional, national, or international requirements by: Monitoring fulfillment of contract terms. Utilities can use one-hour interval meters to ensure that interruptible (“non-core”) customers actually reduce or eliminate deliveries as required. They can use the information to levy fines against contract violators. Monitoring regulations imposed on customers, such as maximum use during specific time periods. Using accurate time-stamped event history derived from intelligent devices distributed throughout the smart grid to monitor and report reliability statistics and risk compliance. Automating business processes and activities that ensure compliance with security and reliability measures (e.g. NERC-CIP 2-9). Grid Business Software Strengthens Utilities’ Connection to Customers While Reducing Customer Service Costs During outages, Smart Grid business software can: Identify outages more quickly. Software uses sensors to pinpoint outages and nested outage locations. They also permit utilities to ensure outage resolution at every meter location. Size outages more accurately, permitting utilities to dispatch crews that have the skills needed, in appropriate numbers. Provide updates on outage location and expected duration. This information helps call centers inform customers about the timing of service restoration. Smart Grids also facilitates display of outage maps for customer and public-service use. Smart Grids can significantly reduce the cost to: Connect and disconnect customers. Meters capable of remote disconnect can virtually eliminate the costs of field crews and vehicles previously required to change service from the old to the new residents of a metered property or disconnect customers for nonpayment. Resolve reports of voltage fluctuation. Smart Grids gather and report voltage and power quality data from meters and grid sensors, enabling utilities to pinpoint reported problems or resolve them before customers complain. Detect and resolve non-technical losses (e.g. theft). Smart Grids can identify illegal attempts to reconnect meters or to use electricity in supposedly vacant premises. They can also detect theft by comparing flows through delivery assets with billed consumption. Smart Grids also facilitate outreach to customers. By monitoring and analyzing consumption over time, utilities can: Identify customers with unusually high usage and contact them before they receive a bill. They can also suggest conservation techniques that might help to limit consumption. This can head off “high bill” complaints to the contact center. Note that such “high usage” or “additional charges apply because you are out of range” notices—frequently via text messaging—are already common among mobile phone providers. Help customers identify appropriate bill payment alternatives (budget billing, prepayment, etc.). Help customers find and reduce causes of over-consumption. There’s no waiting for bills in the mail before they even understand there is a problem. Utilities benefit not just through improved customer relations but also through limiting the size of bills from customers who might struggle to pay them. Where permitted, Smart Grids can open the doors to such new utility service offerings as: Monitoring properties. Landlords reduce costs of vacant properties when utilities notify them of unexpected energy or water consumption. Utilities can perform similar services for owners of vacation properties or the adult children of aging parents. Monitoring equipment. Power-use patterns can reveal a need for equipment maintenance. Smart Grids permit utilities to alert owners or managers to a need for maintenance or replacement. Facilitating home and small-business networks. Smart Grids can provide a gateway to equipment networks that automate control or let owners access equipment remotely. They also facilitate net metering, offering some utilities a path toward involvement in small-scale solar or wind generation. Prepayment plans that do not need special meters. Smart Grid Business Software Helps Customers Control Energy Costs There is no end to the ways Smart Grids help both small and large customers control energy costs. For instance: Multi-premises customers appreciate having all meters read on the same day so that they can more easily compare consumption at various sites. Customers in competitive regions can match their consumption profile (detailed via Smart Grid data) with specific offerings from competitive suppliers. Customers seeing inexplicable consumption patterns and power quality problems may investigate further. The result can be discovery of electrical problems that can be resolved through rewiring or maintenance—before more serious fires or accidents happen. Smart Grid Business Software Facilitates Use of Renewables Generation from wind and solar resources is a popular alternative to fossil fuel generation, which emits greenhouse gases. Wind and solar generation may also increase energy security in regions that currently import fossil fuel for use in generation. Utilities face many technical issues as they attempt to integrate intermittent resource generation into traditional grids, which traditionally handle only fully dispatchable generation. Smart Grid business software helps solves many of these issues by: Detecting sudden drops in production from renewables-generated electricity (wind and solar) and automatically triggering electricity storage and smart appliance response to compensate as needed. Supporting industry-standard distributed generation interconnection processes to reduce interconnection costs and avoid adding renewable supplies to locations already subject to grid congestion. Facilitating modeling and monitoring of locally generated supply from renewables and thus helping to maximize their use. Increasing the efficiency of “net metering” (through which utilities can use electricity generated by customers) by: Providing data for analysis. Integrating the production and consumption aspects of customer accounts. During non-peak periods, such techniques enable utilities to increase the percent of renewable generation in their supply mix. During peak periods, Smart Grid business software controls circuit reconfiguration to maximize available capacity. Conclusion Utility missions are changing. Yesterday, they focused on delivery of reasonably priced energy and water. Tomorrow, their missions will expand to encompass sustainable use and environmental improvement.Smart Grids are key to helping utilities achieve this expanded mission. But they come at a relatively high price. Utilities will need to invest heavily in new hardware, software, business process development, and staff training. Customer investments in home area networks and smart appliances will be large. Learning to change the energy and water consumption habits of a lifetime could ultimately prove even more formidable tasks.Smart Grid business software can ease the cost and difficulties inherent in a needed transition to a more flexible, reliable, responsive electricity grid. Justifying its implementation, however, requires a full understanding of the benefits it brings—benefits that can ultimately help customers, utilities, communities, and the world address global issues like energy security and climate change while minimizing costs and maximizing customer convenience. This white paper is available for download here. For further information about Oracle's Primavera Solutions for Utilities, please read our Utilities e-book.

    Read the article

  • micro-SD card initialization using SPI interface

    - by Ron
    I'm using a micro-SD card in an embedded design. The card is connected to a microcontroller using the SPI interface. It worked fine for all cards I've used before, but now my new card will not initialize. The card is a Transcend 2GB micro-SD card (TS2GUSD). After sending the initial clock train to switch to SPI mode I do the following: 1) CMD0 (Argument 0, CRC 0x95) - Response 0x01 - OK 2) CMD8 (Argument 0x000001AA, CRC 0x87) - Response 0x01 0x000001AA - Means it's SDC V2+ card, the Voltage range 2.7V~3.6V is supported - OK Then I should send the ACMD41 command, but when sending the CMD55 (argument 0, CRC 0) that must precede CMD41, I get response 0x05 - Illegal Command. I've also tried to send CMD1 (for MMC cards), but it gives a similar Illegal Command response. The code works fine with my Sandisk 2GB micro-SD card. Does anyone have any idea? Thanks, -Ron-

    Read the article

  • python optparse, how to include additional info in usage output?

    - by CarpeNoctem
    Using python's optparse module I would like to add extra example lines below the regular usage output. My current help_print() output looks like this: usage: check_dell.py [options] options: -h, --help show this help message and exit -s, --storage checks virtual and physical disks -c, --chassis checks specified chassis components I would like it to include usage examples for the less *nix literate users at my work. Something like this: usage: check_dell.py [options] options: -h, --help show this help message and exit -s, --storage checks virtual and physical disks -c, --chassis checks specified chassis components Examples: check_dell -c all check_dell -c fans memory voltage check_dell -s How would I accomplish this? What optparse options allow for such? Current code: import optparse def main(): parser = optparse.OptionParser() parser.add_option('-s', '--storage', action='store_true', default=False, help='checks virtual and physical disks') parser.add_option('-c', '--chassis', action='store_true', default=False, help='checks specified chassis components') (opts, args) = parser.parse_args()

    Read the article

  • Send and receive data trough the power network

    - by luvieere
    I'm not interested in a hardware solution, I want to know about software that may "read" modulated signal received trough the power supply - some sort of a low-level driver that would access the power signal in a convenient place and demodulate it. Is there a way to receive signal from the computer's power supply? I'm interested in an API or library that would allow the computer to be seen as a node in a Power Line Communication network and receive data directly through the power cable, without the need for a converter. Is there any active research in this field? Edit: There is software that reads monitors and displays internal component voltages - DC voltage after being converted and filtered by the power supply - now I need is a method of data encoding that would be invariant to conversion and filtering, the original signal embedded in AC being present in some form within the converted DC signal.

    Read the article

  • Read data from an Android USB attachment

    - by Mark
    Is there anyway to read data from an attachment through the USB port on an Android device? In particular, an EKG. Most the work can be done by the hardware of the device to simplify the output to a single number, a voltage reading. If its not possible, what about modifying an accessory that can already communicate with an android device? Thinking of devices that attach to android phones, what about sending the data as an audio signal to be read as the microphone from a headset and then analyzing the audio signal to convert it to a number that can be used to display a value. Any ideas on how to make this work?

    Read the article

  • How do I get an Enter USB TV Box TV tuner aka Gadmei UTV302 to work?

    - by Subhash
    Has anyone had any success in using the Enter USB TV Box from Enter Multimedia? It comes bundled with software that works in Windows. I have had no luck using it in Ubuntu 10.10. Update 1 Here is the output from lsusb Bus 007 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 006 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 005 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 004 Device 003: ID 093a:2510 Pixart Imaging, Inc. Optical Mouse Bus 004 Device 002: ID 046d:c312 Logitech, Inc. DeLuxe 250 Keyboard Bus 004 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 003 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub Bus 002 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub Bus 001 Device 006: ID 1f71:3301 Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub I can't find the Enter USB TV Box listed in this. In the dmesg tail command, I found something that seems to be related to the card: usb 1-5: new high speed USB device using ehci_hcd and address 6 usb 1-5: config 1 interface 0 altsetting 1 bulk endpoint 0x83 has invalid maxpacket 256 Update 2 From Windows I learned that this USB TV tuner uses some chipset from Gadmei corporation. All computer stores in India sell Enter USB TV Box if you ask for an USB TV tuner. No other brand seems to be interested in this market. Update 3 I learned that this TV tuner is rebranded version of Gadmei UTV302 (USB TV Tuner Box). Update 4 I tried adding em28xx as the chipset (as suggested by user BOBBO below) for the tuner but that did not work. I went back to my Pinnacle PCTV internal card. I don't think the tuner referred by UbuntuForums (Gadmei UTV 330) and the tuner that I have (Gadmei UTV 302) are the same. My USB tuner is several times bigger. My tuner seems to be a newer device with a newer tuner chip. I will submit details of this device to the LinuxTV developers this weekend. Update 5 I opened the tuner box and found that it uses a tuner from a Chinese company - Tenas. Model is TNF 8022-DFA. Update 6 Tuner chip specs (retrived from supplier directory) for Tenas TNF 8022-DFA. Supply voltage: true 5V device(low power dissipation) Control system: I2C bus control of tuning, address selection Tuning system: PLL controlled tuning Receiving system: system PAL D/K,IF(Intermediate Frequency): 38MHz Receiving channels: full frequency range from channel DS1 (49.75MHz) to channel DS57 (863.25MHz); Use Texas Instruments SN761678 IC solution, with mini install size Update 7 Reverse side of the circuit board. Picture of the TV tuner

    Read the article

  • Ubuntu 14.04 Failed to load module udlfb

    - by jar276705
    DisplayLink doesn't load and run. The adapter is recognized and /dev/FB1 is created. USB bus info: Bus 001 Device 006: ID 17e9:0198 DisplayLink Xorg.0.log: X.Org X Server 1.15.1 Release Date: 2014-04-13 [ 44708.386] X Protocol Version 11, Revision 0 [ 44708.389] Build Operating System: Linux 3.2.0-37-generic i686 Ubuntu [ 44708.392] Current Operating System: Linux rrl 3.13.0-24-generic #46-Ubuntu SMP Thu Apr 10 19:08:14 UTC 2014 i686 [ 44708.392] Kernel command line: BOOT_IMAGE=/boot/vmlinuz-3.13.0-24-generic root=UUID=6b719a77-29e0-4668-8f16-57d0d3a73a3f ro quiet splash vt.handoff=7 [ 44708.399] Build Date: 16 April 2014 01:40:08PM [ 44708.402] xorg-server 2:1.15.1-0ubuntu2 (For technical support please see http://www.ubuntu.com/support) [ 44708.405] Current version of pixman: 0.30.2 [ 44708.412] Before reporting problems, check http://wiki.x.org to make sure that you have the latest version. [ 44708.412] Markers: (--) probed, (**) from config file, (==) default setting, (++) from command line, (!!) notice, (II) informational, (WW) warning, (EE) error, (NI) not implemented, (??) unknown. [ 44708.427] (==) Log file: "/var/log/Xorg.0.log", Time: Thu May 1 09:38:27 2014 [ 44708.431] (==) Using config file: "/etc/X11/xorg.conf" [ 44708.434] (==) Using system config directory "/usr/share/X11/xorg.conf.d" [ 44708.435] (==) ServerLayout "X.org Configured" [ 44708.435] (**) |-->Screen "DisplayLinkScreen" (0) [ 44708.435] (**) | |-->Monitor "DisplayLinkMonitor" [ 44708.435] (**) | |-->Device "DisplayLinkDevice" [ 44708.435] (**) |-->Screen "Screen0" (1) [ 44708.435] (**) | |-->Monitor "Monitor0" [ 44708.435] (**) | |-->Device "Card0" [ 44708.435] (**) |-->Input Device "Mouse0" [ 44708.435] (**) |-->Input Device "Keyboard0" [ 44708.435] (==) Automatically adding devices [ 44708.435] (==) Automatically enabling devices [ 44708.435] (==) Automatically adding GPU devices [ 44708.435] (WW) The directory "/usr/share/fonts/X11/cyrillic" does not exist. [ 44708.435] Entry deleted from font path. [ 44708.435] (WW) The directory "/usr/share/fonts/X11/75dpi/" does not exist. [ 44708.435] Entry deleted from font path. [ 44708.435] (WW) The directory "/usr/share/fonts/X11/75dpi" does not exist. [ 44708.435] Entry deleted from font path. [ 44708.435] (WW) The directory "/usr/share/fonts/X11/cyrillic" does not exist. [ 44708.435] Entry deleted from font path. [ 44708.435] (WW) The directory "/usr/share/fonts/X11/75dpi/" does not exist. [ 44708.435] Entry deleted from font path. [ 44708.435] (WW) The directory "/usr/share/fonts/X11/75dpi" does not exist. [ 44708.435] Entry deleted from font path. [ 44708.435] (**) FontPath set to: /usr/share/fonts/X11/misc, /usr/share/fonts/X11/100dpi/:unscaled, /usr/share/fonts/X11/Type1, /usr/share/fonts/X11/100dpi, built-ins, /usr/share/fonts/X11/misc, /usr/share/fonts/X11/100dpi/:unscaled, /usr/share/fonts/X11/Type1, /usr/share/fonts/X11/100dpi, built-ins [ 44708.435] (**) ModulePath set to "/usr/lib/xorg/modules" [ 44708.435] (WW) Hotplugging is on, devices using drivers 'kbd', 'mouse' or 'vmmouse' will be disabled. [ 44708.435] (WW) Disabling Mouse0 [ 44708.435] (WW) Disabling Keyboard0 [ 44708.435] (II) Loader magic: 0xb77106c0 [ 44708.435] (II) Module ABI versions: [ 44708.435] X.Org ANSI C Emulation: 0.4 [ 44708.435] X.Org Video Driver: 15.0 [ 44708.435] X.Org XInput driver : 20.0 [ 44708.435] X.Org Server Extension : 8.0 [ 44708.436] (II) xfree86: Adding drm device (/dev/dri/card0) [ 44708.436] (II) xfree86: Adding drm device (/dev/dri/card1) [ 44708.437] (--) PCI:*(0:1:5:0) 1002:9616:105b:0e26 rev 0, Mem @ 0xf0000000/134217728, 0xfeae0000/65536, 0xfe900000/1048576, I/O @ 0x0000b000/256 [ 44708.441] Initializing built-in extension Generic Event Extension [ 44708.444] Initializing built-in extension SHAPE [ 44708.448] Initializing built-in extension MIT-SHM [ 44708.452] Initializing built-in extension XInputExtension [ 44708.456] Initializing built-in extension XTEST [ 44708.460] Initializing built-in extension BIG-REQUESTS [ 44708.464] Initializing built-in extension SYNC [ 44708.468] Initializing built-in extension XKEYBOARD [ 44708.471] Initializing built-in extension XC-MISC [ 44708.475] Initializing built-in extension SECURITY [ 44708.479] Initializing built-in extension XINERAMA [ 44708.483] Initializing built-in extension XFIXES [ 44708.487] Initializing built-in extension RENDER [ 44708.491] Initializing built-in extension RANDR [ 44708.494] Initializing built-in extension COMPOSITE [ 44708.498] Initializing built-in extension DAMAGE [ 44708.502] Initializing built-in extension MIT-SCREEN-SAVER [ 44708.506] Initializing built-in extension DOUBLE-BUFFER [ 44708.510] Initializing built-in extension RECORD [ 44708.513] Initializing built-in extension DPMS [ 44708.517] Initializing built-in extension Present [ 44708.521] Initializing built-in extension DRI3 [ 44708.525] Initializing built-in extension X-Resource [ 44708.528] Initializing built-in extension XVideo [ 44708.532] Initializing built-in extension XVideo-MotionCompensation [ 44708.535] Initializing built-in extension SELinux [ 44708.539] Initializing built-in extension XFree86-VidModeExtension [ 44708.542] Initializing built-in extension XFree86-DGA [ 44708.546] Initializing built-in extension XFree86-DRI [ 44708.549] Initializing built-in extension DRI2 [ 44708.549] (II) "glx" will be loaded. This was enabled by default and also specified in the config file. [ 44708.549] (WW) "xmir" is not to be loaded by default. Skipping. [ 44708.549] (II) LoadModule: "glx" [ 44708.549] (II) Loading /usr/lib/xorg/modules/extensions/libglx.so [ 44708.550] (II) Module glx: vendor="X.Org Foundation" [ 44708.550] compiled for 1.15.1, module version = 1.0.0 [ 44708.550] ABI class: X.Org Server Extension, version 8.0 [ 44708.550] (==) AIGLX enabled [ 44708.553] Loading extension GLX [ 44708.553] (II) LoadModule: "udlfb" [ 44708.554] (WW) Warning, couldn't open module udlfb [ 44708.554] (II) UnloadModule: "udlfb" [ 44708.554] (II) Unloading udlfb [ 44708.554] (EE) Failed to load module "udlfb" (module does not exist, 0) [ 44708.554] (II) LoadModule: "modesetting" [ 44708.554] (II) Loading /usr/lib/xorg/modules/drivers/modesetting_drv.so [ 44708.554] (II) Module modesetting: vendor="X.Org Foundation" [ 44708.554] compiled for 1.15.0, module version = 0.8.1 [ 44708.554] Module class: X.Org Video Driver [ 44708.554] ABI class: X.Org Video Driver, version 15.0 [ 44708.554] (==) Matched fglrx as autoconfigured driver 0 [ 44708.554] (==) Matched ati as autoconfigured driver 1 [ 44708.554] (==) Matched fglrx as autoconfigured driver 2 [ 44708.554] (==) Matched ati as autoconfigured driver 3 [ 44708.554] (==) Matched modesetting as autoconfigured driver 4 [ 44708.554] (==) Matched fbdev as autoconfigured driver 5 [ 44708.554] (==) Matched vesa as autoconfigured driver 6 [ 44708.554] (==) Assigned the driver to the xf86ConfigLayout [ 44708.554] (II) LoadModule: "fglrx" [ 44708.554] (WW) Warning, couldn't open module fglrx [ 44708.554] (II) UnloadModule: "fglrx" [ 44708.554] (II) Unloading fglrx [ 44708.554] (EE) Failed to load module "fglrx" (module does not exist, 0) [ 44708.554] (II) LoadModule: "ati" [ 44708.554] (II) Loading /usr/lib/xorg/modules/drivers/ati_drv.so [ 44708.554] (II) Module ati: vendor="X.Org Foundation" [ 44708.554] compiled for 1.15.0, module version = 7.3.0 [ 44708.554] Module class: X.Org Video Driver [ 44708.554] ABI class: X.Org Video Driver, version 15.0 [ 44708.554] (II) LoadModule: "radeon" [ 44708.555] (II) Loading /usr/lib/xorg/modules/drivers/radeon_drv.so [ 44708.555] (II) Module radeon: vendor="X.Org Foundation" [ 44708.555] compiled for 1.15.0, module version = 7.3.0 [ 44708.555] Module class: X.Org Video Driver [ 44708.555] ABI class: X.Org Video Driver, version 15.0 [ 44708.555] (II) LoadModule: "modesetting" [ 44708.555] (II) Loading /usr/lib/xorg/modules/drivers/modesetting_drv.so [ 44708.555] (II) Module modesetting: vendor="X.Org Foundation" [ 44708.555] compiled for 1.15.0, module version = 0.8.1 [ 44708.555] Module class: X.Org Video Driver [ 44708.555] ABI class: X.Org Video Driver, version 15.0 [ 44708.555] (II) UnloadModule: "modesetting" [ 44708.555] (II) Unloading modesetting [ 44708.555] (II) Failed to load module "modesetting" (already loaded, 0) [ 44708.555] (II) LoadModule: "fbdev" [ 44708.555] (II) Loading /usr/lib/xorg/modules/drivers/fbdev_drv.so [ 44708.555] (II) Module fbdev: vendor="X.Org Foundation" [ 44708.555] compiled for 1.15.0, module version = 0.4.4 [ 44708.555] Module class: X.Org Video Driver [ 44708.555] ABI class: X.Org Video Driver, version 15.0 [ 44708.555] (II) LoadModule: "vesa" [ 44708.555] (II) Loading /usr/lib/xorg/modules/drivers/vesa_drv.so [ 44708.555] (II) Module vesa: vendor="X.Org Foundation" [ 44708.555] compiled for 1.15.0, module version = 2.3.3 [ 44708.555] Module class: X.Org Video Driver [ 44708.555] ABI class: X.Org Video Driver, version 15.0 [ 44708.555] (II) modesetting: Driver for Modesetting Kernel Drivers: kms [ 44708.555] (II) RADEON: Driver for ATI Radeon chipsets: [ 44708.560] (II) FBDEV: driver for framebuffer: fbdev [ 44708.560] (II) VESA: driver for VESA chipsets: vesa [ 44708.560] (--) using VT number 7 [ 44708.578] (II) modesetting(0): using drv /dev/dri/card0 [ 44708.578] (II) modesetting(G0): using drv /dev/dri/card1 [ 44708.578] (WW) Falling back to old probe method for fbdev [ 44708.578] (II) Loading sub module "fbdevhw" [ 44708.578] (II) LoadModule: "fbdevhw" [ 44708.578] (II) Loading /usr/lib/xorg/modules/libfbdevhw.so [ 44708.578] (II) Module fbdevhw: vendor="X.Org Foundation" [ 44708.578] compiled for 1.15.1, module version = 0.0.2 [ 44708.578] ABI class: X.Org Video Driver, version 15.0 [ 44708.578] (WW) Falling back to old probe method for vesa [ 44708.578] (**) modesetting(0): Depth 16, (--) framebuffer bpp 16 [ 44708.578] (==) modesetting(0): RGB weight 565 [ 44708.578] (==) modesetting(0): Default visual is TrueColor [ 44708.578] (II) modesetting(0): ShadowFB: preferred YES, enabled YES [ 44708.608] (II) modesetting(0): Output VGA-0 using monitor section DisplayLinkMonitor [ 44708.610] (II) modesetting(0): Output DVI-0 has no monitor section [ 44708.640] (II) modesetting(0): EDID for output VGA-0 [ 44708.640] (II) modesetting(0): Manufacturer: ACR Model: 74 Serial#: 2483090993 [ 44708.640] (II) modesetting(0): Year: 2009 Week: 40 [ 44708.640] (II) modesetting(0): EDID Version: 1.3 [ 44708.640] (II) modesetting(0): Analog Display Input, Input Voltage Level: 0.700/0.700 V [ 44708.640] (II) modesetting(0): Sync: Separate [ 44708.640] (II) modesetting(0): Max Image Size [cm]: horiz.: 53 vert.: 29 [ 44708.640] (II) modesetting(0): Gamma: 2.20 [ 44708.640] (II) modesetting(0): DPMS capabilities: StandBy Suspend Off; RGB/Color Display [ 44708.641] (II) modesetting(0): First detailed timing is preferred mode [ 44708.641] (II) modesetting(0): redX: 0.649 redY: 0.338 greenX: 0.289 greenY: 0.609 [ 44708.641] (II) modesetting(0): blueX: 0.146 blueY: 0.070 whiteX: 0.313 whiteY: 0.329 [ 44708.641] (II) modesetting(0): Supported established timings: [ 44708.641] (II) modesetting(0): 720x400@70Hz [ 44708.641] (II) modesetting(0): 640x480@60Hz [ 44708.641] (II) modesetting(0): 640x480@72Hz [ 44708.641] (II) modesetting(0): 640x480@75Hz [ 44708.641] (II) modesetting(0): 800x600@56Hz [ 44708.641] (II) modesetting(0): 800x600@60Hz [ 44708.641] (II) modesetting(0): 800x600@72Hz [ 44708.641] (II) modesetting(0): 800x600@75Hz [ 44708.641] (II) modesetting(0): 1024x768@60Hz [ 44708.641] (II) modesetting(0): 1024x768@70Hz [ 44708.641] (II) modesetting(0): 1024x768@75Hz [ 44708.641] (II) modesetting(0): 1280x1024@75Hz [ 44708.641] (II) modesetting(0): Manufacturer's mask: 0 [ 44708.641] (II) modesetting(0): Supported standard timings: [ 44708.641] (II) modesetting(0): #0: hsize: 1280 vsize 1024 refresh: 60 vid: 32897 [ 44708.641] (II) modesetting(0): #1: hsize: 1152 vsize 864 refresh: 75 vid: 20337 [ 44708.641] (II) modesetting(0): #2: hsize: 1440 vsize 900 refresh: 60 vid: 149 [ 44708.641] (II) modesetting(0): #3: hsize: 1440 vsize 900 refresh: 75 vid: 3989 [ 44708.641] (II) modesetting(0): #4: hsize: 1600 vsize 1200 refresh: 60 vid: 16553 [ 44708.641] (II) modesetting(0): #5: hsize: 1680 vsize 1050 refresh: 60 vid: 179 [ 44708.641] (II) modesetting(0): Supported detailed timing: [ 44708.641] (II) modesetting(0): clock: 138.5 MHz Image Size: 531 x 298 mm [ 44708.641] (II) modesetting(0): h_active: 1920 h_sync: 1968 h_sync_end 2000 h_blank_end 2080 h_border: 0 [ 44708.641] (II) modesetting(0): v_active: 1080 v_sync: 1083 v_sync_end 1088 v_blanking: 1111 v_border: 0 [ 44708.641] (II) modesetting(0): Monitor name: H243H [ 44708.641] (II) modesetting(0): Ranges: V min: 56 V max: 76 Hz, H min: 31 H max: 83 kHz, PixClock max 185 MHz [ 44708.641] (II) modesetting(0): Serial No: LEW0C0044002 [ 44708.641] (II) modesetting(0): EDID (in hex): [ 44708.641] (II) modesetting(0): 00ffffffffffff000472740031f60094 [ 44708.641] (II) modesetting(0): 2813010368351d78ea6085a6564a9c25 [ 44708.641] (II) modesetting(0): 125054afcf008180714f9500950fa940 [ 44708.641] (II) modesetting(0): b300010101011a3680a070381f403020 [ 44708.641] (II) modesetting(0): 3500132a2100001a000000fc00483234 [ 44708.642] (II) modesetting(0): 33480a20202020202020000000fd0038 [ 44708.642] (II) modesetting(0): 4c1f5312000a202020202020000000ff [ 44708.642] (II) modesetting(0): 004c45573043303034343030320a003c [ 44708.642] (II) modesetting(0): Printing probed modes for output VGA-0 [ 44708.642] (II) modesetting(0): Modeline "1280x1024"x75.0 135.00 1280 1296 1440 1688 1024 1025 1028 1066 +hsync +vsync (80.0 kHz UeP) [ 44708.642] (II) modesetting(0): Modeline "1920x1080"x59.9 138.50 1920 1968 2000 2080 1080 1083 1088 1111 +hsync -vsync (66.6 kHz eP) [ 44708.642] (II) modesetting(0): Modeline "1600x1200"x60.0 162.00 1600 1664 1856 2160 1200 1201 1204 1250 +hsync +vsync (75.0 kHz e) [ 44708.642] (II) modesetting(0): Modeline "1680x1050"x60.0 146.25 1680 1784 1960 2240 1050 1053 1059 1089 -hsync +vsync (65.3 kHz e) [ 44708.642] (II) modesetting(0): Modeline "1280x1024"x60.0 108.00 1280 1328 1440 1688 1024 1025 1028 1066 +hsync +vsync (64.0 kHz e) [ 44708.642] (II) modesetting(0): Modeline "1440x900"x75.0 136.75 1440 1536 1688 1936 900 903 909 942 -hsync +vsync (70.6 kHz e) [ 44708.642] (II) modesetting(0): Modeline "1440x900"x59.9 106.50 1440 1520 1672 1904 900 903 909 934 -hsync +vsync (55.9 kHz e) [ 44708.642] (II) modesetting(0): Modeline "1152x864"x75.0 108.00 1152 1216 1344 1600 864 865 868 900 +hsync +vsync (67.5 kHz e) [ 44708.642] (II) modesetting(0): Modeline "1024x768"x75.1 78.80 1024 1040 1136 1312 768 769 772 800 +hsync +vsync (60.1 kHz e) [ 44708.642] (II) modesetting(0): Modeline "1024x768"x70.1 75.00 1024 1048 1184 1328 768 771 777 806 -hsync -vsync (56.5 kHz e) [ 44708.642] (II) modesetting(0): Modeline "1024x768"x60.0 65.00 1024 1048 1184 1344 768 771 777 806 -hsync -vsync (48.4 kHz e) [ 44708.642] (II) modesetting(0): Modeline "800x600"x72.2 50.00 800 856 976 1040 600 637 643 666 +hsync +vsync (48.1 kHz e) [ 44708.642] (II) modesetting(0): Modeline "800x600"x75.0 49.50 800 816 896 1056 600 601 604 625 +hsync +vsync (46.9 kHz e) [ 44708.642] (II) modesetting(0): Modeline "800x600"x60.3 40.00 800 840 968 1056 600 601 605 628 +hsync +vsync (37.9 kHz e) [ 44708.642] (II) modesetting(0): Modeline "800x600"x56.2 36.00 800 824 896 1024 600 601 603 625 +hsync +vsync (35.2 kHz e) [ 44708.642] (II) modesetting(0): Modeline "640x480"x75.0 31.50 640 656 720 840 480 481 484 500 -hsync -vsync (37.5 kHz e) [ 44708.642] (II) modesetting(0): Modeline "640x480"x72.8 31.50 640 664 704 832 480 489 491 520 -hsync -vsync (37.9 kHz e) [ 44708.642] (II) modesetting(0): Modeline "640x480"x60.0 25.20 640 656 752 800 480 490 492 525 -hsync -vsync (31.5 kHz e) [ 44708.642] (II) modesetting(0): Modeline "720x400"x70.1 28.32 720 738 846 900 400 412 414 449 -hsync +vsync (31.5 kHz e) [ 44708.645] (II) modesetting(0): EDID for output DVI-0 [ 44708.645] (II) modesetting(0): Output VGA-0 connected [ 44708.645] (II) modesetting(0): Output DVI-0 disconnected [ 44708.645] (II) modesetting(0): Using user preference for initial modes [ 44708.645] (II) modesetting(0): Output VGA-0 using initial mode 1280x1024 [ 44708.645] (II) modesetting(0): Using default gamma of (1.0, 1.0, 1.0) unless otherwise stated. [ 44708.645] (==) modesetting(0): DPI set to (96, 96) [ 44708.645] (II) Loading sub module "fb" [ 44708.645] (II) LoadModule: "fb" [ 44708.645] (II) Loading /usr/lib/xorg/modules/libfb.so [ 44708.645] (II) Module fb: vendor="X.Org Foundation" [ 44708.645] compiled for 1.15.1, module version = 1.0.0 [ 44708.645] ABI class: X.Org ANSI C Emulation, version 0.4 [ 44708.645] (II) Loading sub module "shadow" [ 44708.645] (II) LoadModule: "shadow" [ 44708.646] (II) Loading /usr/lib/xorg/modules/libshadow.so [ 44708.646] (II) Module shadow: vendor="X.Org Foundation" [ 44708.646] compiled for 1.15.1, module version = 1.1.0 [ 44708.646] ABI class: X.Org ANSI C Emulation, version 0.4 [ 44708.646] (**) modesetting(G0): Depth 16, (--) framebuffer bpp 16 [ 44708.646] (==) modesetting(G0): RGB weight 565 [ 44708.646] (==) modesetting(G0): Default visual is TrueColor [ 44708.646] (II) modesetting(G0): ShadowFB: preferred NO, enabled NO [ 44708.727] (II) modesetting(G0): Output DVI-1-0 using monitor section DisplayLinkMonitor [ 44708.808] (II) modesetting(G0): EDID for output DVI-1-0 [ 44708.808] (II) modesetting(G0): Manufacturer: WDE Model: 1702 Serial#: 0 [ 44708.808] (II) modesetting(G0): Year: 2005 Week: 14 [ 44708.808] (II) modesetting(G0): EDID Version: 1.3 [ 44708.808] (II) modesetting(G0): Analog Display Input, Input Voltage Level: 0.700/0.700 V [ 44708.808] (II) modesetting(G0): Sync: Separate [ 44708.808] (II) modesetting(G0): Max Image Size [cm]: horiz.: 34 vert.: 27 [ 44708.808] (II) modesetting(G0): Gamma: 2.20 [ 44708.808] (II) modesetting(G0): DPMS capabilities: StandBy Suspend Off; RGB/Color Display [ 44708.808] (II) modesetting(G0): Default color space is primary color space [ 44708.808] (II) modesetting(G0): First detailed timing is preferred mode [ 44708.808] (II) modesetting(G0): GTF timings supported [ 44708.808] (II) modesetting(G0): redX: 0.643 redY: 0.352 greenX: 0.283 greenY: 0.608 [ 44708.808] (II) modesetting(G0): blueX: 0.147 blueY: 0.102 whiteX: 0.313 whiteY: 0.329 [ 44708.808] (II) modesetting(G0): Supported established timings: [ 44708.808] (II) modesetting(G0): 720x400@70Hz [ 44708.808] (II) modesetting(G0): 640x480@60Hz [ 44708.808] (II) modesetting(G0): 640x480@67Hz [ 44708.808] (II) modesetting(G0): 640x480@72Hz [ 44708.808] (II) modesetting(G0): 640x480@75Hz [ 44708.808] (II) modesetting(G0): 800x600@56Hz [ 44708.808] (II) modesetting(G0): 800x600@60Hz [ 44708.808] (II) modesetting(G0): 800x600@72Hz [ 44708.808] (II) modesetting(G0): 800x600@75Hz [ 44708.808] (II) modesetting(G0): 832x624@75Hz [ 44708.808] (II) modesetting(G0): 1024x768@60Hz [ 44708.808] (II) modesetting(G0): 1024x768@70Hz [ 44708.808] (II) modesetting(G0): 1024x768@75Hz [ 44708.809] (II) modesetting(G0): 1280x1024@75Hz [ 44708.809] (II) modesetting(G0): Manufacturer's mask: 0 [ 44708.809] (II) modesetting(G0): Supported standard timings: [ 44708.809] (II) modesetting(G0): #0: hsize: 1280 vsize 1024 refresh: 60 vid: 32897 [ 44708.809] (II) modesetting(G0): #1: hsize: 1152 vsize 864 refresh: 75 vid: 20337 [ 44708.809] (II) modesetting(G0): Supported detailed timing: [ 44708.809] (II) modesetting(G0): clock: 108.0 MHz Image Size: 338 x 270 mm [ 44708.809] (II) modesetting(G0): h_active: 1280 h_sync: 1328 h_sync_end 1440 h_blank_end 1688 h_border: 0 [ 44708.809] (II) modesetting(G0): v_active: 1024 v_sync: 1025 v_sync_end 1028 v_blanking: 1066 v_border: 0 [ 44708.809] (II) modesetting(G0): Ranges: V min: 50 V max: 75 Hz, H min: 30 H max: 82 kHz, PixClock max 145 MHz [ 44708.809] (II) modesetting(G0): Monitor name: WDE LCM-17v2 [ 44708.809] (II) modesetting(G0): Serial No: 0 [ 44708.809] (II) modesetting(G0): EDID (in hex): [ 44708.809] (II) modesetting(G0): 00ffffffffffff005c85021700000000 [ 44708.809] (II) modesetting(G0): 0e0f010368221b78ef8bc5a45a489b25 [ 44708.809] (II) modesetting(G0): 1a5054bfef008180714f010101010101 [ 44708.809] (II) modesetting(G0): 010101010101302a009851002a403070 [ 44708.809] (II) modesetting(G0): 1300520e1100001e000000fd00324b1e [ 44708.809] (II) modesetting(G0): 520e000a202020202020000000fc0057 [ 44708.809] (II) modesetting(G0): 4445204c434d2d313776320a000000ff [ 44708.809] (II) modesetting(G0): 00300a202020202020202020202000e7 [ 44708.809] (II) modesetting(G0): Printing probed modes for output DVI-1-0 [ 44708.809] (II) modesetting(G0): Modeline "1280x1024"x60.0 108.00 1280 1328 1440 1688 1024 1025 1028 1066 +hsync +vsync (64.0 kHz UeP) [ 44708.809] (II) modesetting(G0): Modeline "1280x1024"x75.0 135.00 1280 1296 1440 1688 1024 1025 1028 1066 +hsync +vsync (80.0 kHz e) [ 44708.809] (II) modesetting(G0): Modeline "1280x960"x60.0 108.00 1280 1376 1488 1800 960 961 964 1000 +hsync +vsync (60.0 kHz e) [ 44708.809] (II) modesetting(G0): Modeline "1280x800"x74.9 106.50 1280 1360 1488 1696 800 803 809 838 -hsync +vsync (62.8 kHz e) [ 44708.809] (II) modesetting(G0): Modeline "1280x800"x59.8 83.50 1280 1352 1480 1680 800 803 809 831 +hsync -vsync (49.7 kHz e) [ 44708.809] (II) modesetting(G0): Modeline "1152x864"x75.0 108.00 1152 1216 1344 1600 864 865 868 900 +hsync +vsync (67.5 kHz e) [ 44708.809] (II) modesetting(G0): Modeline "1280x768"x74.9 102.25 1280 1360 1488 1696 768 771 778 805 +hsync -vsync (60.3 kHz e) [ 44708.809] (II) modesetting(G0): Modeline "1280x768"x59.9 79.50 1280 1344 1472 1664 768 771 778 798 -hsync +vsync (47.8 kHz e) [ 44708.810] (II) modesetting(G0): Modeline "1024x768"x75.1 78.80 1024 1040 1136 1312 768 769 772 800 +hsync +vsync (60.1 kHz e) [ 44708.810] (II) modesetting(G0): Modeline "1024x768"x70.1 75.00 1024 1048 1184 1328 768 771 777 806 -hsync -vsync (56.5 kHz e) [ 44708.810] (II) modesetting(G0): Modeline "1024x768"x60.0 65.00 1024 1048 1184 1344 768 771 777 806 -hsync -vsync (48.4 kHz e) [ 44708.810] (II) modesetting(G0): Modeline "1024x576"x60.0 46.97 1024 1064 1168 1312 576 577 580 597 -hsync +vsync (35.8 kHz) [ 44708.810] (II) modesetting(G0): Modeline "832x624"x74.6 57.28 832 864 928 1152 624 625 628 667 -hsync -vsync (49.7 kHz e) [ 44708.810] (II) modesetting(G0): Modeline "800x600"x72.2 50.00 800 856 976 1040 600 637 643 666 +hsync +vsync (48.1 kHz e) [ 44708.810] (II) modesetting(G0): Modeline "800x600"x75.0 49.50 800 816 896 1056 600 601 604 625 +hsync +vsync (46.9 kHz e) [ 44708.810] (II) modesetting(G0): Modeline "800x600"x60.3 40.00 800 840 968 1056 600 601 605 628 +hsync +vsync (37.9 kHz e) [ 44708.810] (II) modesetting(G0): Modeline "800x600"x56.2 36.00 800 824 896 1024 600 601 603 625 +hsync +vsync (35.2 kHz e) [ 44708.810] (II) modesetting(G0): Modeline "848x480"x60.0 33.75 848 864 976 1088 480 486 494 517 +hsync +vsync (31.0 kHz e) [ 44708.810] (II) modesetting(G0): Modeline "640x480"x75.0 31.50 640 656 720 840 480 481 484 500 -hsync -vsync (37.5 kHz e) [ 44708.810] (II) modesetting(G0): Modeline "640x480"x72.8 31.50 640 664 704 832 480 489 491 520 -hsync -vsync (37.9 kHz e) [ 44708.810] (II) modesetting(G0): Modeline "640x480"x66.7 30.24 640 704 768 864 480 483 486 525 -hsync -vsync (35.0 kHz e) [ 44708.810] (II) modesetting(G0): Modeline "640x480"x60.0 25.20 640 656 752 800 480 490 492 525 -hsync -vsync (31.5 kHz e) [ 44708.810] (II) modesetting(G0): Modeline "720x400"x70.1 28.32 720 738 846 900 400 412 414 449 -hsync +vsync (31.5 kHz e) [ 44708.810] (II) modesetting(G0): Using default gamma of (1.0, 1.0, 1.0) unless otherwise stated. [ 44708.810] (==) modesetting(G0): DPI set to (96, 96) [ 44708.810] (II) Loading sub module "fb" [ 44708.810] (II) LoadModule: "fb" [ 44708.810] (II) Loading /usr/lib/xorg/modules/libfb.so [ 44708.810] (II) Module fb: vendor="X.Org Foundation" [ 44708.810] compiled for 1.15.1, module version = 1.0.0 [ 44708.811] ABI class: X.Org ANSI C Emulation, version 0.4 [ 44708.811] (II) UnloadModule: "radeon" [ 44708.811] (II) Unloading radeon [ 44708.811] (II) UnloadModule: "fbdev" [ 44708.811] (II) Unloading fbdev [ 44708.811] (II) UnloadSubModule: "fbdevhw" [ 44708.811] (II) Unloading fbdevhw [ 44708.811] (II) UnloadModule: "vesa" [ 44708.811] (II) Unloading vesa [ 44708.811] (==) modesetting(G0): Backing store enabled [ 44708.811] (==) modesetting(G0): Silken mouse enabled [ 44708.812] (II) modesetting(G0): RandR 1.2 enabled, ignore the following RandR disabled message. [ 44708.812] (==) modesetting(G0): DPMS enabled [ 44708.812] (WW) modesetting(G0): Option "fbdev" is not used [ 44708.812] (==) modesetting(0): Backing store enabled [ 44708.812] (==) modesetting(0): Silken mouse enabled [ 44708.812] (II) modesetting(0): RandR 1.2 enabled, ignore the following RandR disabled message. [ 44708.812] (==) modesetting(0): DPMS enabled [ 44708.812] (WW) modesetting(0): Option "fbdev" is not used [ 44708.856] (--) RandR disabled [ 44708.867] (II) SELinux: Disabled on system [ 44708.868] (II) AIGLX: Screen 0 is not DRI2 capable [ 44708.868] (EE) AIGLX: reverting to software rendering [ 44708.878] (II) AIGLX: Loaded and initialized swrast [ 44708.878] (II) GLX: Initialized DRISWRAST GL provider for screen 0 [ 44708.879] (II) modesetting(G0): Damage tracking initialized [ 44708.879] (II) modesetting(0): Damage tracking initialized [ 44708.879] (II) modesetting(0): Setting screen physical size to 338 x 270 [ 44708.900] (II) XKB: generating xkmfile /tmp/server-B20D7FC79C7F597315E3E501AEF10E0D866E8E92.xkm [ 44708.918] (II) config/udev: Adding input device Power Button (/dev/input/event1) [ 44708.918] (**) Power Button: Applying InputClass "evdev keyboard catchall" [ 44708.918] (II) LoadModule: "evdev" [ 44708.918] (II) Loading /usr/lib/xorg/modules/input/evdev_drv.so [ 44708.918] (II) Module evdev: vendor="X.Org Foundation" [ 44708.918] compiled for 1.15.0, module version = 2.8.2 [ 44708.918] Module class: X.Org XInput Driver [ 44708.918] ABI class: X.Org XInput driver, version 20.0 [ 44708.918] (II) Using input driver 'evdev' for 'Power Button' [ 44708.918] (**) Power Button: always reports core events [ 44708.918] (**) evdev: Power Button: Device: "/dev/input/event1" [ 44708.918] (--) evdev: Power Button: Vendor 0 Product 0x1 [ 44708.918] (--) evdev: Power Button: Found keys [ 44708.918] (II) evdev: Power Button: Configuring as keyboard [ 44708.918] (**) Option "config_info" "udev:/sys/devices/LNXSYSTM:00/LNXPWRBN:00/input/input1/event1" [ 44708.918] (II) XINPUT: Adding extended input device "Power Button" (type: KEYBOARD, id 6) [ 44708.918] (**) Option "xkb_rules" "evdev" [ 44708.918] (**) Option "xkb_model" "pc105" [ 44708.918] (**) Option "xkb_layout" "us" [ 44708.919] (II) config/udev: Adding input device Power Button (/dev/input/event0) [ 44708.919] (**) Power Button: Applying InputClass "evdev keyboard catchall" [ 44708.919] (II) Using input driver 'evdev' for 'Power Button' [ 44708.919] (**) Power Button: always reports core events [ 44708.919] (**) evdev: Power Button: Device: "/dev/input/event0" [ 44708.919] (--) evdev: Power Button: Vendor 0 Product 0x1 [ 44708.919] (--) evdev: Power Button: Found keys [ 44708.919] (II) evdev: Power Button: Configuring as keyboard [ 44708.919] (**) Option "config_info" "udev:/sys/devices/LNXSYSTM:00/device:00/PNP0C0C:00/input/input0/event0" Is there anything I can do to fix this problem.

    Read the article

< Previous Page | 1 2 3 4 5 6 7  | Next Page >