Search Results

Search found 88027 results on 3522 pages for 'code composer'.

Page 542/3522 | < Previous Page | 538 539 540 541 542 543 544 545 546 547 548 549  | Next Page >

  • Getting Started Plugging into the "Find in Projects" Dialog

    - by Geertjan
    In case you missed it amidst all the code in yesterday's blog entry, the "Find in Projects" dialog is now pluggable. I think that's really cool. The code yesterday gives you a complete example, but let's break it down a bit and deconstruct down to a very simple hello world scenario. We'll end up with as many extra tabs in the "Find in Projects" dialog as we need, for example, three in this case:  And clicking on any of those extra tabs will, in this simple example, simply show us this: Once we have that, we'll be able to continue adding small bits of code over the next few blog entries until we have something more useful. So, in this blog entry, you'll literally be able to display "Hello World" within a new tab in the "Find in Projects" dialog: import javax.swing.JComponent; import javax.swing.JLabel; import org.netbeans.spi.search.provider.SearchComposition; import org.netbeans.spi.search.provider.SearchProvider; import org.netbeans.spi.search.provider.SearchProvider.Presenter; import org.openide.NotificationLineSupport; import org.openide.util.lookup.ServiceProvider; @ServiceProvider(service = SearchProvider.class) public class ExampleSearchProvider1 extends SearchProvider { @Override public Presenter createPresenter(boolean replaceMode) { return new ExampleSearchPresenter(this); } @Override public boolean isReplaceSupported() { return false; } @Override public boolean isEnabled() { return true; } @Override public String getTitle() { return "Demo Extension 1"; } public class ExampleSearchPresenter extends SearchProvider.Presenter { private ExampleSearchPresenter(ExampleSearchProvider1 sp) { super(sp, true); } @Override public JComponent getForm() { return new JLabel("Hello World"); } @Override public SearchComposition composeSearch() { return null; } @Override public boolean isUsable(NotificationLineSupport nls) { return true; } } } That's it, not much code, works fine in NetBeans IDE 7.2 Beta, and is easier to digest than the big chunk from yesterday. If you make three classes like the above in a NetBeans module, and you install it, you'll have three new tabs in the "Find in Projects" dialog. The only required dependencies are Dialogs API, Lookup API, and Search in Projects API. Read the javadoc linked above and then in next blog entries we'll continue to build out something like the sample you saw in yesterday's blog entry.

    Read the article

  • Conditional Gridview Text - Checkboxes

    This code sample shows how to either show or make invisible, a checkbox in each row of the Gridview, along with making text conditional, based on certain criteria. In this case, if the Postal code starts with a non-numeric character, we change it to "Alt Text", and we set the Visible property of the checkbox in that row to "False"

    Read the article

  • Chrome Apps Office Hours - the WebView Control

    Chrome Apps Office Hours - the WebView Control Join Renato Mangini and Pete LePage as we discuss the WebView, a HTML tag that provides Chrome packaged app developers a way to insert a safe and controlled "browser in an element" DOM node. Learn the differences between the WebView and the Sandboxed pages, the WebView's automation API and some suggested use cases. From: GoogleDevelopers Views: 0 1 ratings Time: 01:00:00 More in Science & Technology

    Read the article

  • How to manage a Closed Source High-Risk Project?

    - by abel
    I am currently planning to develop a J2EE website and wish to bring in 1 developer and 1 web designer to assist me. The project is a financial app with a niche market. I plan to keep the source closed . However, I fear that my would-be employees could easily copy the codebase and use it /sell it to a third party especially when they switch jobs. The app development will take 4-6months and perhaps more and I may have to bring in people after the app goes live. How do I keep the source to myself. Are there techniques companies use to guard their source. I foresee disabling pendrives and dvd writers on my development machines, but uploading data or attaching the code in one's mail would still be possible. My question is incomplete. But programmers who have been in my situation, please advice. How should I go about this? Building a team, maintaining code-secrecy,etc. I am looking forward to sign a secrecy contract with the employees if needed too. (Please add relevant tags) Update Thank you for all the answers. I certainly won't be disabling all USB ports and DVD writers now. But I think I should be logging activity(How exactly should I do that?) I am wary of scalpers who would join and then run off with the existing code. I haven't met any, but I have been advised to be wary of them. I would include a secrecy clause, but given this is a startup with almost no funding and in a highly competitive business niche with bigger players in the field, I doubt I would be able to detect or pursue any scalpers. How do I hire people I trust, when I don't know them personally. Their resume will be helpful but otherwise trust will develop only with time. But finally even if they do run away with the code, it is service that matters after the sale is made. So I am not really worried for the long term.

    Read the article

  • Google I/O 2012 - App Engine Overview

    Google I/O 2012 - App Engine Overview Doug Orr, Jesse Jiang, Alexander Power Be the first to hear about the exciting new platform products which you can use to work better in the cloud. Discover how the Google Cloud Platform is expanding to meet your current and future needs. Learn how the over 150k developers in startups and businesses building mobile, games and modern web apps are already enjoying the benefits of the platform. For all I/O 2012 sessions, go to developers.google.com From: GoogleDevelopers Views: 1781 16 ratings Time: 54:04 More in Science & Technology

    Read the article

  • Running C++ AMP kernels on the CPU

    - by Daniel Moth
    One of the FAQs we receive is whether C++ AMP can be used to target the CPU. For targeting multi-core we have a technology we released with VS2010 called PPL, which has had enhancements for VS 11 – that is what you should be using! FYI, it also has a Linux implementation via Intel's TBB which conforms to the same interface. When you choose to use C++ AMP, you choose to take advantage of massively parallel hardware, through accelerators like the GPU. Having said that, you can always use the accelerator class to check if you are running on a system where the is no hardware with a DirectX 11 driver, and decide what alternative code path you wish to follow.  In fact, if you do nothing in code, if the runtime does not find DX11 hardware to run your code on, it will choose the WARP accelerator which will run your code on the CPU, taking advantage of multi-core and SSE2 (depending on the CPU capabilities WARP also uses SSE3 and SSE 4.1 – it does not currently use AVX and on such systems you hopefully have a DX 11 GPU anyway). A few things to know about WARP It is our fallback CPU solution, not intended as a primary target of C++ AMP. WARP stands for Windows Advanced Rasterization Platform and you can read old info on this MSDN page on WARP. What is new in Windows 8 Developer Preview is that WARP now supports DirectCompute, which is what C++ AMP builds on. It is not currently clear if we will have a CPU fallback solution for non-Windows 8 platforms when we ship. When you create a WARP accelerator, its is_emulated property returns true. WARP does not currently support double precision.   BTW, when we refer to WARP, we refer to this accelerator described above. If we use lower case "warp", that refers to a bunch of threads that run concurrently in lock step and share the same instruction. In the VS 11 Developer Preview, the size of warp in our Ref emulator is 4 – Ref is another emulator that runs on the CPU, but it is extremely slow not intended for production, just for debugging. Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • More Blogginess

    Hello everyone, and welcome to a rare (in this space) blog about blogging. My name is Tim Bray, and I’m the new editor of this Android Developers’ Blog...

    Read the article

  • Detecting Installed .NET Framework Versions

    - by João Angelo
    A new year is upon us and it’s also time for me to end my blogging vacations and get back to the blogosphere. However, let’s start simple… and short. More specifically with a quick way to detect the installed .NET Framework versions on a machine. You just need to fire up Internet Explorer, write the following in the address bar and press enter: javascript:alert(navigator.userAgent) If for any reason you need to copy/paste the resulting information then use the next command instead: javascript:document.write(navigator.userAgent)

    Read the article

  • Methodology to understanding JQuery plugin & API's developed by third parties

    - by Taoist
    I have a question about third party created JQuery plug ins and API's and the methodology for understanding them. Recently I downloaded the JQuery Masonry/Infinite scroll plug in and I couldn't figure out how to configure it based on the instructions. So I downloaded a fully developed demo, then manually deleted everything that wouldn't break the functionality. The code that was left allowed me to understand the plug in much greater detail than the documentation. I'm now having a similar issue with a plug in called JQuery knob. http://anthonyterrien.com/knob/ If you look at the JQuery Knob readme file it says this is working code: $(function() { $('.dial') .trigger( 'configure', { "min":10, "max":40, "fgColor":"#FF0000", "skin":"tron", "cursor":true } ); }); But as far as I can tell it isn't at all. The read me also says the Plug in uses Canvas. I am wondering if I am suppose to wrap this code in a canvas context or if this functionality is already part of the plug in. I know this kind of "question" might not fit in here but I'm a bit confused on the assumptions around reading these kinds of documentation and thought I would post the query regardless. Curious to see if this is due to my "newbi" programming experience or if this is something seasoned coders also fight with. Thank you. Edit In response to Tyanna's reply. I modified the code and it still doesn't work. I posted it below. I made sure that I checked the Google Console to insure the basics were taken care of, such as not getting a read-error on the library. <!DOCTYPE html> <meta charset="UTF-8"> <title>knob</title> <link rel="stylesheet" href="http://ajax.googleapis.com/ajax/libs/jqueryui/1.7.2/themes/hot-sneaks/jquery-ui.css" type="text/css" /> <script type="text/javascript" src="https://ajax.googleapis.com/ajax/libs/jquery/1.7.2/jquery.js" charset="utf-8"></script> <script src="https://ajax.googleapis.com/ajax/libs/jqueryui/1.8.21/jquery-ui.min.js"></script> <script src="js/jquery.knob.js"></script> <div id="button1">test </div> <script> $(function() { $("#button1").click(function () { $('.dial').trigger( 'configure', { "min":10, "max":40, "fgColor":"#FF0000", "skin":"tron", "cursor":true } ); }); }); </script>

    Read the article

  • parallel_for_each from amp.h – part 1

    - by Daniel Moth
    This posts assumes that you've read my other C++ AMP posts on index<N> and extent<N>, as well as about the restrict modifier. It also assumes you are familiar with C++ lambdas (if not, follow my links to C++ documentation). Basic structure and parameters Now we are ready for part 1 of the description of the new overload for the concurrency::parallel_for_each function. The basic new parallel_for_each method signature returns void and accepts two parameters: a grid<N> (think of it as an alias to extent) a restrict(direct3d) lambda, whose signature is such that it returns void and accepts an index of the same rank as the grid So it looks something like this (with generous returns for more palatable formatting) assuming we are dealing with a 2-dimensional space: // some_code_A parallel_for_each( g, // g is of type grid<2> [ ](index<2> idx) restrict(direct3d) { // kernel code } ); // some_code_B The parallel_for_each will execute the body of the lambda (which must have the restrict modifier), on the GPU. We also call the lambda body the "kernel". The kernel will be executed multiple times, once per scheduled GPU thread. The only difference in each execution is the value of the index object (aka as the GPU thread ID in this context) that gets passed to your kernel code. The number of GPU threads (and the values of each index) is determined by the grid object you pass, as described next. You know that grid is simply a wrapper on extent. In this context, one way to think about it is that the extent generates a number of index objects. So for the example above, if your grid was setup by some_code_A as follows: extent<2> e(2,3); grid<2> g(e); ...then given that: e.size()==6, e[0]==2, and e[1]=3 ...the six index<2> objects it generates (and hence the values that your lambda would receive) are:    (0,0) (1,0) (0,1) (1,1) (0,2) (1,2) So what the above means is that the lambda body with the algorithm that you wrote will get executed 6 times and the index<2> object you receive each time will have one of the values just listed above (of course, each one will only appear once, the order is indeterminate, and they are likely to call your code at the same exact time). Obviously, in real GPU programming, you'd typically be scheduling thousands if not millions of threads, not just 6. If you've been following along you should be thinking: "that is all fine and makes sense, but what can I do in the kernel since I passed nothing else meaningful to it, and it is not returning any values out to me?" Passing data in and out It is a good question, and in data parallel algorithms indeed you typically want to pass some data in, perform some operation, and then typically return some results out. The way you pass data into the kernel, is by capturing variables in the lambda (again, if you are not familiar with them, follow the links about C++ lambdas), and the way you use data after the kernel is done executing is simply by using those same variables. In the example above, the lambda was written in a fairly useless way with an empty capture list: [ ](index<2> idx) restrict(direct3d), where the empty square brackets means that no variables were captured. If instead I write it like this [&](index<2> idx) restrict(direct3d), then all variables in the some_code_A region are made available to the lambda by reference, but as soon as I try to use any of those variables in the lambda, I will receive a compiler error. This has to do with one of the direct3d restrictions, where only one type can be capture by reference: objects of the new concurrency::array class that I'll introduce in the next post (suffice for now to think of it as a container of data). If I write the lambda line like this [=](index<2> idx) restrict(direct3d), all variables in the some_code_A region are made available to the lambda by value. This works for some types (e.g. an integer), but not for all, as per the restrictions for direct3d. In particular, no useful data classes work except for one new type we introduce with C++ AMP: objects of the new concurrency::array_view class, that I'll introduce in the post after next. Also note that if you capture some variable by value, you could use it as input to your algorithm, but you wouldn’t be able to observe changes to it after the parallel_for_each call (e.g. in some_code_B region since it was passed by value) – the exception to this rule is the array_view since (as we'll see in a future post) it is a wrapper for data, not a container. Finally, for completeness, you can write your lambda, e.g. like this [av, &ar](index<2> idx) restrict(direct3d) where av is a variable of type array_view and ar is a variable of type array - the point being you can be very specific about what variables you capture and how. So it looks like from a large data perspective you can only capture array and array_view objects in the lambda (that is how you pass data to your kernel) and then use the many threads that call your code (each with a unique index) to perform some operation. You can also capture some limited types by value, as input only. When the last thread completes execution of your lambda, the data in the array_view or array are ready to be used in the some_code_B region. We'll talk more about all this in future posts… (a)synchronous Please note that the parallel_for_each executes as if synchronous to the calling code, but in reality, it is asynchronous. I.e. once the parallel_for_each call is made and the kernel has been passed to the runtime, the some_code_B region continues to execute immediately by the CPU thread, while in parallel the kernel is executed by the GPU threads. However, if you try to access the (array or array_view) data that you captured in the lambda in the some_code_B region, your code will block until the results become available. Hence the correct statement: the parallel_for_each is as-if synchronous in terms of visible side-effects, but asynchronous in reality.   That's all for now, we'll revisit the parallel_for_each description, once we introduce properly array and array_view – coming next. Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • Load Balance and Parallel Performance

    Load balancing an application workload among threads is critical to performance. However, achieving perfect load balance is non-trivial, and it depends on the parallelism within the application, workload, the number of threads, load balancing policy, and the threading implementation.

    Read the article

< Previous Page | 538 539 540 541 542 543 544 545 546 547 548 549  | Next Page >