Search Results

Search found 35343 results on 1414 pages for 'development tools'.

Page 548/1414 | < Previous Page | 544 545 546 547 548 549 550 551 552 553 554 555  | Next Page >

  • Annoying flickering of vertices and edges (possible z-fighting)

    - by Belgin
    I'm trying to make a software z-buffer implementation, however, after I generate the z-buffer and proceed with the vertex culling, I get pretty severe discrepancies between the vertex depth and the depth of the buffer at their projected coordinates on the screen (i.e. zbuffer[v.xp][v.yp] != v.z, where xp and yp are the projected x and y coordinates of the vertex v), sometimes by a small fraction of a unit and sometimes by 2 or 3 units. Here's what I think is happening: Each triangle's data structure holds the plane's (that is defined by the triangle) coefficients (a, b, c, d) computed from its three vertices from their normal: void computeNormal(Vertex *v1, Vertex *v2, Vertex *v3, double *a, double *b, double *c) { double a1 = v1 -> x - v2 -> x; double a2 = v1 -> y - v2 -> y; double a3 = v1 -> z - v2 -> z; double b1 = v3 -> x - v2 -> x; double b2 = v3 -> y - v2 -> y; double b3 = v3 -> z - v2 -> z; *a = a2*b3 - a3*b2; *b = -(a1*b3 - a3*b1); *c = a1*b2 - a2*b1; } void computePlane(Poly *p) { double x = p -> verts[0] -> x; double y = p -> verts[0] -> y; double z = p -> verts[0] -> z; computeNormal(p -> verts[0], p -> verts[1], p -> verts[2], &p -> a, &p -> b, &p -> c); p -> d = p -> a * x + p -> b * y + p -> c * z; } The z-buffer just holds the smallest depth at the respective xy coordinate by somewhat casting rays to the polygon (I haven't quite got interpolation right yet so I'm using this slower method until I do) and determining the z coordinate from the reversed perspective projection formulas (which I got from here: double z = -(b*Ez*y + a*Ez*x - d*Ez)/(b*y + a*x + c*Ez - b*Ey - a*Ex); Where x and y are the pixel's coordinates on the screen; a, b, c, and d are the planes coefficients; Ex, Ey, and Ez are the eye's (camera's) coordinates. This last formula does not accurately give the exact vertices' z coordinate at their projected x and y coordinates on the screen, probably because of some floating point inaccuracy (i.e. I've seen it return something like 3.001 when the vertex's z-coordinate was actually 2.998). Here is the portion of code that hides the vertices that shouldn't be visible: for(i = 0; i < shape.nverts; ++i) { double dist = shape.verts[i].z; if(z_buffer[shape.verts[i].yp][shape.verts[i].xp].z < dist) shape.verts[i].visible = 0; else shape.verts[i].visible = 1; } How do I solve this issue? EDIT I've implemented the near and far planes of the frustum, with 24 bit accuracy, and now I have some questions: Is this what I have to do this in order to resolve the flickering? When I compare the z value of the vertex with the z value in the buffer, do I have to convert the z value of the vertex to z' using the formula, or do I convert the value in the buffer back to the original z, and how do I do that? What are some decent values for near and far? Thanks in advance.

    Read the article

  • Where to start learning OpenGL with C++?

    - by NERDcustard
    I'm 16 years old and my name is Norbert. I have learnt C++ and made some cool text based games and such but I would love to start graphic's programming. I'm a decent artiest (I will have some of my work bellow) I know the base of C++ but I really would like to get into OpenGL. I need someone to show me some good tutorials for OpenGl with C++ so I can really get into game dev. My goal is to be able to program a simple 2d game by the end of the year and I have lots of time to do so. I'm en-rolled in a game dev next year and really need some help with starting off. http://imgur.com/QZjKX http://imgur.com/3CZy7

    Read the article

  • Basic game architechture best practices in Cocos2D on iOS

    - by MrDatabase
    Consider the following simple game: 20 squares floating around an iPhone's screen. Tapping a square causes that square to disappear. What's the "best practices" way to set this up in Cocos2D? Here's my plan so far: One Objective-c GameState singleton class (maintains list of active squares) One CCScene (since there's no menus etc) One CCLayer (child node of the scene) Many CCSprite nodes (one for each square, all child nodes of the layer) Each sprite listens for a tap on itself. Receive tap = remove from GameState Since I'm relatively new to Cocos2D I'd like some feedback on this design. For example I'm unsure of the GameState singleton. Perhaps it's unnecessary.

    Read the article

  • Register Game Object Components in Game Subsystems? (Component-based Game Object design)

    - by topright
    I'm creating a component-based game object system. Some tips: GameObject is simply a list of Components. There are GameSubsystems. For example, rendering, physics etc. Each GameSubsystem contains pointers to some of Components. GameSubsystem is a very powerful and flexible abstraction: it represents any slice (or aspect) of the game world. There is a need in a mechanism of registering Components in GameSubsystems (when GameObject is created and composed). There are 4 approaches: 1: Chain of responsibility pattern. Every Component is offered to every GameSubsystem. GameSubsystem makes a decision which Components to register (and how to organize them). For example, GameSubsystemRender can register Renderable Components. pro. Components know nothing about how they are used. Low coupling. A. We can add new GameSubsystem. For example, let's add GameSubsystemTitles that registers all ComponentTitle and guarantees that every title is unique and provides interface to quering objects by title. Of course, ComponentTitle should not be rewrited or inherited in this case. B. We can reorganize existing GameSubsystems. For example, GameSubsystemAudio, GameSubsystemRender, GameSubsystemParticleEmmiter can be merged into GameSubsystemSpatial (to place all audio, emmiter, render Components in the same hierarchy and use parent-relative transforms). con. Every-to-every check. Very innefficient. con. Subsystems know about Components. 2: Each Subsystem searches for Components of specific types. pro. Better performance than in Approach 1. con. Subsystems still know about Components. 3: Component registers itself in GameSubsystem(s). We know at compile-time that there is a GameSubsystemRenderer, so let's ComponentImageRender will call something like GameSubsystemRenderer::register(ComponentRenderBase*). pro. Performance. No unnecessary checks as in Approach 1. con. Components are badly coupled with GameSubsystems. 4: Mediator pattern. GameState (that contains GameSubsystems) can implement registerComponent(Component*). pro. Components and GameSubystems know nothing about each other. con. In C++ it would look like ugly and slow typeid-switch. Questions: Which approach is better and mostly used in component-based design? What Practice says? Any suggestions about implementation of Approach 4? Thank you.

    Read the article

  • Biome Transition in a Grid & Borderless World

    - by API-Beast
    I have a universe: a list of "Systems", each with their own center, type and radius. A small part of such a universe could look like this: Systems: Can be very close to a different system, e.g. overlap Can be inside another, much bigger system Can be very far away from any other systems Spawn system specific entities and particles inside the system radius Have some properties like background color So far so good. However, the player can fly around freely, inside and outside of systems, in real time. How do I interpolate and determine things like the background color now, depending on camera position? E.g. if you are halfway between a green and a red system you should see a background halfway between red and green, or if you are inside a lilac system near the center and at the border of a green system you should get a mostly lilac background etc.

    Read the article

  • How to follow object on CatmullRomSplines at constant speed (e.g. train and train carriage)?

    - by Simon
    I have a CatmullRomSpline, and using the very good example at https://github.com/libgdx/libgdx/wiki/Path-interface-%26-Splines I have my object moving at an even pace over the spline. Using a simple train and carriage example, I now want to have the carriage follow the train at the same speed as the train (not jolting along as it does with my code below). This leads into my main questions: How can I make the carriage have the same constant speed as the train and make it non jerky (it has something to do with the derivative I think, I don't understand how that part works)? Why do I need to divide by the line length to convert to metres per second, and is that correct? It wasn't done in the linked examples? I have used the example I linked to above, and modified for my specific example: private void process(CatmullRomSpline catmullRomSpline) { // Render path with precision of 1000 points renderPath(catmullRomSpline, 1000); float length = catmullRomSpline.approxLength(catmullRomSpline.spanCount * 1000); // Render the "train" Vector2 trainDerivative = new Vector2(); Vector2 trainLocation = new Vector2(); catmullRomSpline.derivativeAt(trainDerivative, current); // For some reason need to divide by length to convert from pixel speed to metres per second but I do not // really understand why I need it, it wasn't done in the examples??????? current += (Gdx.graphics.getDeltaTime() * speed / length) / trainDerivative.len(); catmullRomSpline.valueAt(trainLocation, current); renderCircleAtLocation(trainLocation); if (current >= 1) { current -= 1; } // Render the "carriage" Vector2 carriageLocation = new Vector2(); float carriagePercentageCovered = (((current * length) - 1f) / length); // I would like it to follow at 1 metre behind carriagePercentageCovered = Math.max(carriagePercentageCovered, 0); catmullRomSpline.valueAt(carriageLocation, carriagePercentageCovered); renderCircleAtLocation(carriageLocation); } private void renderPath(CatmullRomSpline catmullRomSpline, int k) { // catMulPoints would normally be cached when initialising, but for sake of example... Vector2[] catMulPoints = new Vector2[k]; for (int i = 0; i < k; ++i) { catMulPoints[i] = new Vector2(); catmullRomSpline.valueAt(catMulPoints[i], ((float) i) / ((float) k - 1)); } SHAPE_RENDERER.begin(ShapeRenderer.ShapeType.Line); SHAPE_RENDERER.setColor(Color.NAVY); for (int i = 0; i < k - 1; ++i) { SHAPE_RENDERER.line((Vector2) catMulPoints[i], (Vector2) catMulPoints[i + 1]); } SHAPE_RENDERER.end(); } private void renderCircleAtLocation(Vector2 location) { SHAPE_RENDERER.begin(ShapeRenderer.ShapeType.Filled); SHAPE_RENDERER.setColor(Color.YELLOW); SHAPE_RENDERER.circle(location.x, location.y, .5f); SHAPE_RENDERER.end(); } To create a decent sized CatmullRomSpline for testing this out: Vector2[] controlPoints = makeControlPointsArray(); CatmullRomSpline myCatmull = new CatmullRomSpline(controlPoints, false); .... private Vector2[] makeControlPointsArray() { Vector2[] pointsArray = new Vector2[78]; pointsArray[0] = new Vector2(1.681817f, 10.379999f); pointsArray[1] = new Vector2(2.045455f, 10.379999f); pointsArray[2] = new Vector2(2.663636f, 10.479999f); pointsArray[3] = new Vector2(3.027272f, 10.700000f); pointsArray[4] = new Vector2(3.663636f, 10.939999f); pointsArray[5] = new Vector2(4.245455f, 10.899999f); pointsArray[6] = new Vector2(4.736363f, 10.720000f); pointsArray[7] = new Vector2(4.754545f, 10.339999f); pointsArray[8] = new Vector2(4.518181f, 9.860000f); pointsArray[9] = new Vector2(3.790908f, 9.340000f); pointsArray[10] = new Vector2(3.172727f, 8.739999f); pointsArray[11] = new Vector2(3.300000f, 8.340000f); pointsArray[12] = new Vector2(3.700000f, 8.159999f); pointsArray[13] = new Vector2(4.227272f, 8.520000f); pointsArray[14] = new Vector2(4.681818f, 8.819999f); pointsArray[15] = new Vector2(5.081817f, 9.200000f); pointsArray[16] = new Vector2(5.463636f, 9.460000f); pointsArray[17] = new Vector2(5.972727f, 9.300000f); pointsArray[18] = new Vector2(6.063636f, 8.780000f); pointsArray[19] = new Vector2(6.027272f, 8.259999f); pointsArray[20] = new Vector2(5.700000f, 7.739999f); pointsArray[21] = new Vector2(5.300000f, 7.440000f); pointsArray[22] = new Vector2(4.645454f, 7.179999f); pointsArray[23] = new Vector2(4.136363f, 6.940000f); pointsArray[24] = new Vector2(3.427272f, 6.720000f); pointsArray[25] = new Vector2(2.572727f, 6.559999f); pointsArray[26] = new Vector2(1.900000f, 7.100000f); pointsArray[27] = new Vector2(2.336362f, 7.440000f); pointsArray[28] = new Vector2(2.590908f, 7.940000f); pointsArray[29] = new Vector2(2.318181f, 8.500000f); pointsArray[30] = new Vector2(1.663636f, 8.599999f); pointsArray[31] = new Vector2(1.209090f, 8.299999f); pointsArray[32] = new Vector2(1.118181f, 7.700000f); pointsArray[33] = new Vector2(1.045455f, 6.880000f); pointsArray[34] = new Vector2(1.154545f, 6.100000f); pointsArray[35] = new Vector2(1.281817f, 5.580000f); pointsArray[36] = new Vector2(1.700000f, 5.320000f); pointsArray[37] = new Vector2(2.190908f, 5.199999f); pointsArray[38] = new Vector2(2.900000f, 5.100000f); pointsArray[39] = new Vector2(3.700000f, 5.100000f); pointsArray[40] = new Vector2(4.372727f, 5.220000f); pointsArray[41] = new Vector2(4.827272f, 5.220000f); pointsArray[42] = new Vector2(5.463636f, 5.160000f); pointsArray[43] = new Vector2(5.554545f, 4.700000f); pointsArray[44] = new Vector2(5.245453f, 4.340000f); pointsArray[45] = new Vector2(4.445455f, 4.280000f); pointsArray[46] = new Vector2(3.609091f, 4.260000f); pointsArray[47] = new Vector2(2.718181f, 4.160000f); pointsArray[48] = new Vector2(1.990908f, 4.140000f); pointsArray[49] = new Vector2(1.427272f, 3.980000f); pointsArray[50] = new Vector2(1.609090f, 3.580000f); pointsArray[51] = new Vector2(2.136363f, 3.440000f); pointsArray[52] = new Vector2(3.227272f, 3.280000f); pointsArray[53] = new Vector2(3.972727f, 3.340000f); pointsArray[54] = new Vector2(5.027272f, 3.360000f); pointsArray[55] = new Vector2(5.718181f, 3.460000f); pointsArray[56] = new Vector2(6.100000f, 4.240000f); pointsArray[57] = new Vector2(6.209091f, 4.500000f); pointsArray[58] = new Vector2(6.118181f, 5.320000f); pointsArray[59] = new Vector2(5.772727f, 5.920000f); pointsArray[60] = new Vector2(4.881817f, 6.140000f); pointsArray[61] = new Vector2(5.318181f, 6.580000f); pointsArray[62] = new Vector2(6.263636f, 7.020000f); pointsArray[63] = new Vector2(6.645453f, 7.420000f); pointsArray[64] = new Vector2(6.681817f, 8.179999f); pointsArray[65] = new Vector2(6.627272f, 9.080000f); pointsArray[66] = new Vector2(6.572727f, 9.699999f); pointsArray[67] = new Vector2(6.263636f, 10.820000f); pointsArray[68] = new Vector2(5.754546f, 11.479999f); pointsArray[69] = new Vector2(4.536363f, 11.599998f); pointsArray[70] = new Vector2(3.572727f, 11.700000f); pointsArray[71] = new Vector2(2.809090f, 11.660000f); pointsArray[72] = new Vector2(1.445455f, 11.559999f); pointsArray[73] = new Vector2(0.936363f, 11.280000f); pointsArray[74] = new Vector2(0.754545f, 10.879999f); pointsArray[75] = new Vector2(0.700000f, 9.939999f); pointsArray[76] = new Vector2(0.918181f, 9.620000f); pointsArray[77] = new Vector2(1.463636f, 9.600000f); return pointsArray; } Disclaimer: My math is very rusty, so please explain in lay mans terms....

    Read the article

  • Unity3D Android - Move your character to a specific x position

    - by user3666251
    Im making a new game for android and I wanted to move my character (which is a cube for now) to a specific x location (on top of a flying floor/ground thingy) but I've been having some troubles with it.I've been using this script : var jumpSpeed: float = 3.5; var distToGround: float; function Start(){ // get the distance to ground distToGround = collider.bounds.extents.y; } function IsGrounded(): boolean { return Physics.Raycast(transform.position, -Vector3.up, distToGround + 0.1); } function Update () { // Move the object to the right relative to the camera 1 unit/second. transform.Translate(Vector3.forward * Time.deltaTime); if (Input.anyKeyDown && IsGrounded()){ rigidbody.velocity.x = jumpSpeed; } } And this is the result (which is not what I want) : https://www.youtube.com/watch?v=Fj8B6eI4dbE&feature=youtu.be Anyone has any idea how to do this ? Im new in unity and scripting.Im using java btw. Ty.

    Read the article

  • Strange and erratic transformations when using OpenGL VBOs to render scene

    - by janoside
    I have an existing iOS game with fairly simple scenes (all textured quads) and I'm using Apple's "Texture2D" class. I'm trying to convert this class to use VBOs since the vertices of my objects basically never change so I may as well not re-create them for every object every frame. I have the scene rendering using VBOs but the sizes and orientations of all rendered objects are strange and erratic - though locations seem generally correct. I've been toying with this code for a few days now, and I've found something odd: if I re-create all of my VBOs each frame, everything looks correct, even though I'm almost certain my vertices are not changing. Other notes I'm basing my work on this tutorial, and therefore am also using "IBOs" I create my buffers before rendering begins My buffers include vertex and texture data I'm using OpenGL ES 1.1 Fearing some strange effect of the current matrix GL state at the time of buffer creation I've also tried wrapping my buffer-setup code in a "pushMatrix-loadIdentity-popMatrix" block which (as expected) had no effect I'm aware that various articles have been published demonstrating that VBOs may not help performance, but I want to understand this problem and at least have the option to use them. I realize this is a shot in the dark, but has anyone else experienced this type of strange behavior? What might I be doing to result in this behavior? It's rather difficult for me to isolate the problem since I'm working in an existing, moderately complex project, so suggestions about how to approach the problem are also quite welcome.

    Read the article

  • Delaying a Foreach loop half a second

    - by Sigh-AniDe
    I have created a game that has a ghost that mimics the movement of the player after 10 seconds. The movements are stored in a list and i use a foreach loop to go through the commands. The ghost mimics the movements but it does the movements way too fast, in split second from spawn time it catches up to my current movement. How do i slow down the foreach so that it only does a command every half a second? I don't know how else to do it. Please help this is what i tried : The foreach runs inside the update method DateTime dt = DateTime.Now; foreach ( string commandDirection in ghostMovements ) { int mapX = ( int )( ghostPostition.X / scalingFactor ); int mapY = ( int )( ghostPostition.Y / scalingFactor ); // If the dt is the same as current time if ( dt == DateTime.Now ) { if ( commandDirection == "left" ) { switch ( ghostDirection ) { case ghostFacingUp: angle = 1.6f; ghostDirection = ghostFacingRight; Program.form.direction = ""; dt.AddMilliseconds( 500 );// add half a second to dt break; case ghostFacingRight: angle = 3.15f; ghostDirection = ghostFacingDown; Program.form.direction = ""; dt.AddMilliseconds( 500 ); break; case ghostFacingDown: angle = -1.6f; ghostDirection = ghostFacingLeft; Program.form.direction = ""; dt.AddMilliseconds( 500 ); break; case ghostFacingLeft: angle = 0.0f; ghostDirection = ghostFacingUp; Program.form.direction = ""; dt.AddMilliseconds( 500 ); break; } } } }

    Read the article

  • Calculate the intersection depth between a rectangle and a right triangle

    - by Celarix
    all. I'm working on a 2D platformer built in C#/XNA, and I'm having a lot of problems calculating the intersection depth between a standard rectangle (used for sprites) and a right triangle (used for sloping tiles). Ideally, the rectangle will collide with the solid edges of the triangle, and its bottom-center point will collide with the sloped edge. I've been fighting with this for a couple of days now, and I can't make sense of it. So far, the method detects intersections (somewhat), but it reports wildly wrong depths. How does one properly calculate the depth? Is there something I'm missing? Thanks!

    Read the article

  • Checking for alternate keys with XNA IsKeyDown

    - by jocull
    I'm working on picking up XNA and this was a confusing point for me. KeyboardState keyState = Keyboard.GetState(); if (keyState.IsKeyDown(Keys.Left) || keyState.IsKeyDown(Keys.A)) { //Do stuff... } The book I'm using (Learning XNA 4.0, O'Rielly) says that this method accepts a bitwise OR series of keys, which I think should look like this... KeyboardState keyState = Keyboard.GetState(); if (keyState.IsKeyDown(Keys.Left | Keys.A)) { //Do stuff... } But I can't get it work. I also tried using !IsKeyUp(... | ...) as it said that all keys had to be down for it to be true, but had no luck with that either. Ideas? Thanks.

    Read the article

  • Interpolating between two networked states?

    - by Vaughan Hilts
    I have many entities on the client side that are simulated (their velocities are added to their positions on a per frame basis) and I let them dead reckon themselves. They send updates about where they were last seen and their velocity changes. This works great and other players see this work find. However, after a while these players begin to desync after some time. This is because of latency. I'd like to know how I can interpolate between states so they appear to be in the correct position. I know where the player was LAST seen and their current velocity but interpolating to the last seen state causes the player to actually move -backwards-. I could not use velocity at all for other clients and simply 'lerp' them towards the appropriate direction but I feel this would cause jaggy movement. What are the alternatives?

    Read the article

  • How to get location of sprite placed on rotating circle in cocos2d android?

    - by Real_steel4819
    I am developing a game using cocos2d and i got stuck here when finding location of sprite placed on rotating circle on background, so that when i hit at certain position on circle its not getting hit at wanted position,but its going away from it and placing target there.I tried printing the position of hit on spriteMoveFinished() and ccTouchesEnded(). Its giving initial position and not rotated position. CGPoint location = CCDirector.sharedDirector().convertToGL(CGPoint.ccp(event.getX(), event.getY())); This is what i am using to get location.

    Read the article

  • How to convert from wav or mp3 to raw PCM [on hold]

    - by Komyg
    I am developing a game using Cocos2d-X and Marmalade SDK, and I am looking for any recommendations of programs that can convert audio files in mp3 or wav format to raw PCM 16 format. The problem is that I am using the SimpleAudioEngine class to play sounds in my game and in Marmalade it only supports files that are encoded as raw PCM 16. Unfortunately I've been having a very hard time finding a program that can do this type of conversion, so I am looking for a recommendation.

    Read the article

  • Pixmaps, ByteBuffers, and Textures....Oh my

    - by odaymichael
    My ultimate goal is to take a specific region of the screen, and redraw it somewhere else. For example, take a square from the upper left hand corner of the screen and redraw it on the lower right hand corner, so that it is basically a copy of that screen section; kind of like a minimap, but at the same scale as the original. I have looked in to pixmaps and bytebuffers. Also maybe copying that region from the backbuffer somehow. Wondering the best way to go about this. Any help is appreciated. I am using opengl es and libgdx for what it's worth.

    Read the article

  • Getting isometric grid coordinates from standard X,Y coordinates

    - by RoryHarvey
    I'm currently trying to add sprites to an isometric Tiled TMX map using Objects in cocos2d. The problem is the X and Y metadata from TMX object are in standard 2d format (pixels x, pixels y), instead of isometric grid X and Y format. Usually you would just divide them by the tile size, but isometric needs some sort of transform. For example on a 64x32 isometric tilemap of size 40 tiles by 40 tiles an object at (20,21)'s coordinates come out as (640,584) So the question really is what formula gets (20,21) from (640,584)?

    Read the article

  • 2D basic map system

    - by Cyril
    i'm currently coding a 2D game in Java, and I would like to have some clues on how-to build this system : the screen is moving on a grander map, for instance, the screen represent 800*600 units on a 100K*100K map. When you command your unit to go to another position, the screen move on this map AND when you move your mouse on a side or another of the screen, you move the screen on the map. Not sure that i'm clear, but we can retrieve this system in most RTS games (warcraft/starcraft for example). I'm currently using Slick 2D. Any idea ? Thanks.

    Read the article

  • Strategies to Defeat Memory Editors for Cheating - Desktop Games

    - by ashes999
    I'm assuming we're talking about desktop games -- something the player downloads and runs on their local computer. Many are the memory editors that allow you to detect and freeze values, like your player's health. How do you prevent cheating? What strategies are effective to combat this kind of cheating? I'm looking for some good ones. Two I use that are mediocre are: Displaying values as a percentage instead of the number (eg. 46/50 = 92% health) A low-level class that holds values in an array and moves them with each change

    Read the article

  • Alternatives to multiple sprite batches for achieving 2D particle system depth

    - by Ergwun
    In my 2D XNA game, I render all my sprites with a single sprite batch using SpriteSortMode.BackToFront and BlendState.AlphaBlend. I'm adding a particle system based on the App Hub particles sample. Since this uses SpriteSortMode.Deferred and BlendState.Additive, I will need to have two SpriteBatch.Begin / SpriteBatch.End pairs: one for 'regular' sprites, and one for particles. In my top-down shooter, If I want to have explosions appear under planes, but above the ground, then I believe I will have to have three Begin/End pairs, first to draw everything under the explosions, then to draw the explosions, then to draw everything above the explosions. If I want to have particle effects at multiple different depths, then I'm going to need even more Begin/Endpairs. This is all easy to code, but I'm wondering if there is an alternative way to handle this?

    Read the article

  • Bounding volume hierarchy - linked nodes (linear model)

    - by teodron
    The scenario A chain of points: (Pi)i=0,N where Pi is linked to its direct neighbours (Pi-1 and Pi+1). The goal: perform efficient collision detection between any two, non-adjacent links: (PiPi+1) vs. (PjPj+1). The question: it's highly recommended in all works treating this subject of collision detection to use a broad phase and to implement it via a bounding volume hierarchy. For a chain made out of Pi nodes, it can look like this: I imagine the big blue sphere to contain all links, the green half of them, the reds a quarter and so on (the picture is not accurate, but it's there to help understand the question). What I do not understand is: How can such a hierarchy speed up computations between segments collision pairs if one has to update it for a deformable linear object such as a chain/wire/etc. each frame? More clearly, what is the actual principle of collision detection broad phases in this particular case/ how can it work when the actual computation of bounding spheres is in itself a time consuming task and has to be done (since the geometry changes) in each frame update? I think I am missing a key point - if we look at the picture where the chain is in a spiral pose, we see that most spheres are already contained within half of others or do intersect them.. it's odd if this is the way it should work.

    Read the article

  • Collision within a poly

    - by G1i1ch
    For an html5 engine I'm making, for speed I'm using a path poly. I'm having trouble trying to find ways to get collision with the walls of the poly. To make it simple I just have a vector for the object and an array of vectors for the poly. I'm using Cartesian vectors and they're 2d. Say poly = [[550,0],[169,523],[-444,323],[-444,-323],[169,-523]], it's just a pentagon I generated. The object that will collide is object, object.pos is it's position and object.vel is it's velocity. They're both 2d vectors too. I've had some success to get it to find a collision, but it's just black box code I ripped from a c++ example. It's very obscure inside and all it does though is return true/false and doesn't return what vertices are collided or collision point, I'd really like to be able to understand this and make my own so I can have more meaningful collision. I'll tackle that later though. Again the question is just how does one find a collision to walls of a poly given you know the poly vertices and the object's position + velocity? If more info is needed please let me know. And if all anyone can do is point me to the right direction that's great.

    Read the article

  • How to do directional per fragment lighting in world space?

    - by user
    I am attempting to create a GLSL shader for simple, per-fragment directional light. So far, after following many tutorials, I have continually ran into the issue: my light is specified in world coordinates, however, the shader treats the light's position as being in eye space, thus, the light direction changes when I move the camera. My question is, how to I transform a directional light position such as (50, 50, 50, 0) into eye space, or, would doing things this way be the incorrect approach to the problem?

    Read the article

  • How to resolve concurrent ramp collisions in 2d platformer?

    - by Shaun Inman
    A bit about the physics engine: Bodies are all rectangles. Bodies are sorted at the beginning of every update loop based on the body-in-motion's horizontal and vertical velocity (to avoid sticky walls/floors). Solid bodies are resolved by testing the body-in-motion's new X with the old Y and adjusting if necessary before testing the new X with the new Y, again adjusting if necessary. Works great. Ramps (rectangles with a flag set indicating bottom-left, bottom-right, etc) are resolved by calculating the ratio of penetration along the x-axis and setting a new Y accordingly (with some checks to make sure the body-in-motion isn't attacking from the tall or flat side, in which case the ramp is treated as a normal rectangle). This also works great. Side-by-side ramps, eg. \/ and /\, work fine but things get jittery and unpredictable when a top-down ramp is directly above a bottom-up ramp, eg. < or > or when a bottom-up ramp runs right up to the ceiling/top-down ramp runs right down to the floor. I've been able to lock it down somewhat by detecting whether the body-in-motion hadFloor when also colliding with a top-down ramp or hadCeiling when also colliding with a bottom-up ramp then resolving by calculating the ratio of penetration along the y-axis and setting the new X accordingly (the opposite of the normal behavior). But as soon as the body-in-motion jumps the hasFloor flag becomes false, the first ramp resolution pushes the body into collision with the second ramp and collision resolution becomes jittery again for a few frames. I'm sure I'm making this more complicated than it needs to be. Can anyone recommend a good resource that outlines the best way to address this problem? (Please don't recommend I use something like Box2d or Chipmunk. Also, "redesign your levels" isn't an answer; the body-in-motion may at times be riding another body-in-motion, eg. a platform, that pushes it into a ramp so I'd like to be able to resolve this properly.) Thanks!

    Read the article

  • What is causing these visual artifacts on my OpenGL sprites?

    - by Amplify91
    What could be the cause of the defects in my characters sprite? I am using OpenGL ES 2.0. I draw my sprites in a sprite batch that uses UV coordinates from one large texture atlas. If you look around the character' edges, you'll see two noticeable problems: The invisible alpha background is not invisible, but shows a strange static-like background. There are unwanted streaks where the character nears the edge of the frame (but only in some frames of the animation, this happened to be one of them). Any idea what could be causing these? I will provide related code if asked for, but I'll try to avoid just dumping the entire project and expecting someone to look through it all. EDIT: Here's a bit of code: This is how I generate my UV coordinates: private float[] createFrameUV(int frameWidth, int frameHeight, int x, int y){ float[] uv = new float[4]; if(numberOfFrames>1){ float width = (float)frameWidth / (float)mBitmap.getWidth(); float height = (float)frameHeight / (float)mBitmap.getHeight(); float u = (float)x / (float)mBitmap.getWidth(); float v = (float)y / (float)mBitmap.getHeight(); uv[0] = u; uv[1] = v; uv[2] = u + width; uv[3] = v + height; }else{ uv[0] = 0f; uv[1] = 0f; uv[2] = 1f; uv[3] = 1f; } return uv; } These are some OpenGL settings: GLES20.glTexParameterf(GLES20.GL_TEXTURE_2D, GLES20.GL_TEXTURE_MIN_FILTER, GLES20.GL_LINEAR); GLES20.glTexParameterf(GLES20.GL_TEXTURE_2D, GLES20.GL_TEXTURE_MAG_FILTER, GLES20.GL_LINEAR); GLES20.glTexParameterf(GLES20.GL_TEXTURE_2D, GLES20.GL_TEXTURE_WRAP_S, GLES20.GL_CLAMP_TO_EDGE); GLES20.glTexParameterf(GLES20.GL_TEXTURE_2D, GLES20.GL_TEXTURE_WRAP_T, GLES20.GL_CLAMP_TO_EDGE);

    Read the article

  • Camera movement and threshold not working

    - by irish guy mcconagheh
    I have a platformer that is in progress, part of this has a camera which I only want to move when the character moves out of a certain threshold, to try to accomplish this I have the following if statement: if(((Mathf.Abs(target.transform.position.x))-(Mathf.Abs(transform.position.x)))>thres){ x = moveTo(transform.position.x, target.position.x, trackSpeed); } in unity/c#. In pseudocode it means if((absolute value of player x) - (absolute value of camera x) is greater than the threshold){ move { however this does not seem to work correctly. it appears to work for the first couple of times the threshold is reached, however the distance between the camera and the player has to increase every time for the camera to move. I do not believe the movement of the camera is the problem, however the code for it is as follows: private float moveTo(float n, float target, float accel) { if (n == target) { return n; } else { float dir = Mathf.Sign(target - n); n += accel * Time.deltaTime * dir; return (dir == Mathf.Sign(target-n))? n: target; } } }

    Read the article

< Previous Page | 544 545 546 547 548 549 550 551 552 553 554 555  | Next Page >