Search Results

Search found 56661 results on 2267 pages for 'class library'.

Page 570/2267 | < Previous Page | 566 567 568 569 570 571 572 573 574 575 576 577  | Next Page >

  • Generic list/sublist handling

    - by user628661
    Let's say we have a class class ComplexCls { public int Fld1; public string Fld2; //could be more fields } class Cls { public int SomeField; } and then some code class ComplexClsList: List<ComplexCls>; ComplexClsList myComplexList; // fill myComplexList // same for Cls class ClsList : List<Cls>; ClsList myClsList; We want to populate myClsList from myComplexList, something like (pseudocode): foreach Complexitem in myComplexList { Cls ClsItem = new Cls(); ClsItem.SomeField = ComplexItem.Fld1; } The code to do this is easy and will be put in some method in myClsList. However I'd like to design this as generic as possible, for generic ComplexCls. Note that the exact ComplexCls is known at the moment of using this code, only the algorithm shd be generic. I know it can be done using (direct) reflection but is there other solution? Let me know if the question is not clear enough. (probably isn't). [EDIT] Basically, what I need is this: having myClsList, I need to specify a DataSource (ComplexClsList) and a field from that DataSource (Fld1) that will be used to populate my SomeField

    Read the article

  • how to declare object variable name in loop

    - by user3717895
    public class Node{ Node p,l,r; int height; String s; { /** class body**/ } } String[] S=new String[5000]; int i=0; while (i<5000){ Node x=new Node(); x=S[i]; } I want to make 5000 Node object. above code assign same variable name x every time but i want different variable name . then how to declare 5000 class variable name without declaring it manually. is there something by which i can create 5000 Node class object with ease.

    Read the article

  • Capturing and Transforming ASP.NET Output with Response.Filter

    - by Rick Strahl
    During one of my Handlers and Modules session at DevConnections this week one of the attendees asked a question that I didn’t have an immediate answer for. Basically he wanted to capture response output completely and then apply some filtering to the output – effectively injecting some additional content into the page AFTER the page had completely rendered. Specifically the output should be captured from anywhere – not just a page and have this code injected into the page. Some time ago I posted some code that allows you to capture ASP.NET Page output by overriding the Render() method, capturing the HtmlTextWriter() and reading its content, modifying the rendered data as text then writing it back out. I’ve actually used this approach on a few occasions and it works fine for ASP.NET pages. But this obviously won’t work outside of the Page class environment and it’s not really generic – you have to create a custom page class in order to handle the output capture. [updated 11/16/2009 – updated ResponseFilterStream implementation and a few additional notes based on comments] Enter Response.Filter However, ASP.NET includes a Response.Filter which can be used – well to filter output. Basically Response.Filter is a stream through which the OutputStream is piped back to the Web Server (indirectly). As content is written into the Response object, the filter stream receives the appropriate Stream commands like Write, Flush and Close as well as read operations although for a Response.Filter that’s uncommon to be hit. The Response.Filter can be programmatically replaced at runtime which allows you to effectively intercept all output generation that runs through ASP.NET. A common Example: Dynamic GZip Encoding A rather common use of Response.Filter hooking up code based, dynamic  GZip compression for requests which is dead simple by applying a GZipStream (or DeflateStream) to Response.Filter. The following generic routines can be used very easily to detect GZip capability of the client and compress response output with a single line of code and a couple of library helper routines: WebUtils.GZipEncodePage(); which is handled with a few lines of reusable code and a couple of static helper methods: /// <summary> ///Sets up the current page or handler to use GZip through a Response.Filter ///IMPORTANT:  ///You have to call this method before any output is generated! /// </summary> public static void GZipEncodePage() {     HttpResponse Response = HttpContext.Current.Response;     if(IsGZipSupported())     {         stringAcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"];         if(AcceptEncoding.Contains("deflate"))         {             Response.Filter = newSystem.IO.Compression.DeflateStream(Response.Filter,                                        System.IO.Compression.CompressionMode.Compress);             Response.AppendHeader("Content-Encoding", "deflate");         }         else        {             Response.Filter = newSystem.IO.Compression.GZipStream(Response.Filter,                                       System.IO.Compression.CompressionMode.Compress);             Response.AppendHeader("Content-Encoding", "gzip");                            }     }     // Allow proxy servers to cache encoded and unencoded versions separately    Response.AppendHeader("Vary", "Content-Encoding"); } /// <summary> /// Determines if GZip is supported /// </summary> /// <returns></returns> public static bool IsGZipSupported() { string AcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"]; if (!string.IsNullOrEmpty(AcceptEncoding) && (AcceptEncoding.Contains("gzip") || AcceptEncoding.Contains("deflate"))) return true; return false; } GZipStream and DeflateStream are streams that are assigned to Response.Filter and by doing so apply the appropriate compression on the active Response. Response.Filter content is chunked So to implement a Response.Filter effectively requires only that you implement a custom stream and handle the Write() method to capture Response output as it’s written. At first blush this seems very simple – you capture the output in Write, transform it and write out the transformed content in one pass. And that indeed works for small amounts of content. But you see, the problem is that output is written in small buffer chunks (a little less than 16k it appears) rather than just a single Write() statement into the stream, which makes perfect sense for ASP.NET to stream data back to IIS in smaller chunks to minimize memory usage en route. Unfortunately this also makes it a more difficult to implement any filtering routines since you don’t directly get access to all of the response content which is problematic especially if those filtering routines require you to look at the ENTIRE response in order to transform or capture the output as is needed for the solution the gentleman in my session asked for. So in order to address this a slightly different approach is required that basically captures all the Write() buffers passed into a cached stream and then making the stream available only when it’s complete and ready to be flushed. As I was thinking about the implementation I also started thinking about the few instances when I’ve used Response.Filter implementations. Each time I had to create a new Stream subclass and create my custom functionality but in the end each implementation did the same thing – capturing output and transforming it. I thought there should be an easier way to do this by creating a re-usable Stream class that can handle stream transformations that are common to Response.Filter implementations. Creating a semi-generic Response Filter Stream Class What I ended up with is a ResponseFilterStream class that provides a handful of Events that allow you to capture and/or transform Response content. The class implements a subclass of Stream and then overrides Write() and Flush() to handle capturing and transformation operations. By exposing events it’s easy to hook up capture or transformation operations via single focused methods. ResponseFilterStream exposes the following events: CaptureStream, CaptureString Captures the output only and provides either a MemoryStream or String with the final page output. Capture is hooked to the Flush() operation of the stream. TransformStream, TransformString Allows you to transform the complete response output with events that receive a MemoryStream or String respectively and can you modify the output then return it back as a return value. The transformed output is then written back out in a single chunk to the response output stream. These events capture all output internally first then write the entire buffer into the response. TransformWrite, TransformWriteString Allows you to transform the Response data as it is written in its original chunk size in the Stream’s Write() method. Unlike TransformStream/TransformString which operate on the complete output, these events only see the current chunk of data written. This is more efficient as there’s no caching involved, but can cause problems due to searched content splitting over multiple chunks. Using this implementation, creating a custom Response.Filter transformation becomes as simple as the following code. To hook up the Response.Filter using the MemoryStream version event: ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformStream += filter_TransformStream; Response.Filter = filter; and the event handler to do the transformation: MemoryStream filter_TransformStream(MemoryStream ms) { Encoding encoding = HttpContext.Current.Response.ContentEncoding; string output = encoding.GetString(ms.ToArray()); output = FixPaths(output); ms = new MemoryStream(output.Length); byte[] buffer = encoding.GetBytes(output); ms.Write(buffer,0,buffer.Length); return ms; } private string FixPaths(string output) { string path = HttpContext.Current.Request.ApplicationPath; // override root path wonkiness if (path == "/") path = ""; output = output.Replace("\"~/", "\"" + path + "/").Replace("'~/", "'" + path + "/"); return output; } The idea of the event handler is that you can do whatever you want to the stream and return back a stream – either the same one that’s been modified or a brand new one – which is then sent back to as the final response. The above code can be simplified even more by using the string version events which handle the stream to string conversions for you: ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformString += filter_TransformString; Response.Filter = filter; and the event handler to do the transformation calling the same FixPaths method shown above: string filter_TransformString(string output) { return FixPaths(output); } The events for capturing output and capturing and transforming chunks work in a very similar way. By using events to handle the transformations ResponseFilterStream becomes a reusable component and we don’t have to create a new stream class or subclass an existing Stream based classed. By the way, the example used here is kind of a cool trick which transforms “~/” expressions inside of the final generated HTML output – even in plain HTML controls not HTML controls – and transforms them into the appropriate application relative path in the same way that ResolveUrl would do. So you can write plain old HTML like this: <a href=”~/default.aspx”>Home</a>  and have it turned into: <a href=”/myVirtual/default.aspx”>Home</a>  without having to use an ASP.NET control like Hyperlink or Image or having to constantly use: <img src=”<%= ResolveUrl(“~/images/home.gif”) %>” /> in MVC applications (which frankly is one of the most annoying things about MVC especially given the path hell that extension-less and endpoint-less URLs impose). I can’t take credit for this idea. While discussing the Response.Filter issues on Twitter a hint from Dylan Beattie who pointed me at one of his examples which does something similar. I thought the idea was cool enough to use an example for future demos of Response.Filter functionality in ASP.NET next I time I do the Modules and Handlers talk (which was great fun BTW). How practical this is is debatable however since there’s definitely some overhead to using a Response.Filter in general and especially on one that caches the output and the re-writes it later. Make sure to test for performance anytime you use Response.Filter hookup and make sure it' doesn’t end up killing perf on you. You’ve been warned :-}. How does ResponseFilterStream work? The big win of this implementation IMHO is that it’s a reusable  component – so for implementation there’s no new class, no subclassing – you simply attach to an event to implement an event handler method with a straight forward signature to retrieve the stream or string you’re interested in. The implementation is based on a subclass of Stream as is required in order to handle the Response.Filter requirements. What’s different than other implementations I’ve seen in various places is that it supports capturing output as a whole to allow retrieving the full response output for capture or modification. The exception are the TransformWrite and TransformWrite events which operate only active chunk of data written by the Response. For captured output, the Write() method captures output into an internal MemoryStream that is cached until writing is complete. So Write() is called when ASP.NET writes to the Response stream, but the filter doesn’t pass on the Write immediately to the filter’s internal stream. The data is cached and only when the Flush() method is called to finalize the Stream’s output do we actually send the cached stream off for transformation (if the events are hooked up) and THEN finally write out the returned content in one big chunk. Here’s the implementation of ResponseFilterStream: /// <summary> /// A semi-generic Stream implementation for Response.Filter with /// an event interface for handling Content transformations via /// Stream or String. /// <remarks> /// Use with care for large output as this implementation copies /// the output into a memory stream and so increases memory usage. /// </remarks> /// </summary> public class ResponseFilterStream : Stream { /// <summary> /// The original stream /// </summary> Stream _stream; /// <summary> /// Current position in the original stream /// </summary> long _position; /// <summary> /// Stream that original content is read into /// and then passed to TransformStream function /// </summary> MemoryStream _cacheStream = new MemoryStream(5000); /// <summary> /// Internal pointer that that keeps track of the size /// of the cacheStream /// </summary> int _cachePointer = 0; /// <summary> /// /// </summary> /// <param name="responseStream"></param> public ResponseFilterStream(Stream responseStream) { _stream = responseStream; } /// <summary> /// Determines whether the stream is captured /// </summary> private bool IsCaptured { get { if (CaptureStream != null || CaptureString != null || TransformStream != null || TransformString != null) return true; return false; } } /// <summary> /// Determines whether the Write method is outputting data immediately /// or delaying output until Flush() is fired. /// </summary> private bool IsOutputDelayed { get { if (TransformStream != null || TransformString != null) return true; return false; } } /// <summary> /// Event that captures Response output and makes it available /// as a MemoryStream instance. Output is captured but won't /// affect Response output. /// </summary> public event Action<MemoryStream> CaptureStream; /// <summary> /// Event that captures Response output and makes it available /// as a string. Output is captured but won't affect Response output. /// </summary> public event Action<string> CaptureString; /// <summary> /// Event that allows you transform the stream as each chunk of /// the output is written in the Write() operation of the stream. /// This means that that it's possible/likely that the input /// buffer will not contain the full response output but only /// one of potentially many chunks. /// /// This event is called as part of the filter stream's Write() /// operation. /// </summary> public event Func<byte[], byte[]> TransformWrite; /// <summary> /// Event that allows you to transform the response stream as /// each chunk of bytep[] output is written during the stream's write /// operation. This means it's possibly/likely that the string /// passed to the handler only contains a portion of the full /// output. Typical buffer chunks are around 16k a piece. /// /// This event is called as part of the stream's Write operation. /// </summary> public event Func<string, string> TransformWriteString; /// <summary> /// This event allows capturing and transformation of the entire /// output stream by caching all write operations and delaying final /// response output until Flush() is called on the stream. /// </summary> public event Func<MemoryStream, MemoryStream> TransformStream; /// <summary> /// Event that can be hooked up to handle Response.Filter /// Transformation. Passed a string that you can modify and /// return back as a return value. The modified content /// will become the final output. /// </summary> public event Func<string, string> TransformString; protected virtual void OnCaptureStream(MemoryStream ms) { if (CaptureStream != null) CaptureStream(ms); } private void OnCaptureStringInternal(MemoryStream ms) { if (CaptureString != null) { string content = HttpContext.Current.Response.ContentEncoding.GetString(ms.ToArray()); OnCaptureString(content); } } protected virtual void OnCaptureString(string output) { if (CaptureString != null) CaptureString(output); } protected virtual byte[] OnTransformWrite(byte[] buffer) { if (TransformWrite != null) return TransformWrite(buffer); return buffer; } private byte[] OnTransformWriteStringInternal(byte[] buffer) { Encoding encoding = HttpContext.Current.Response.ContentEncoding; string output = OnTransformWriteString(encoding.GetString(buffer)); return encoding.GetBytes(output); } private string OnTransformWriteString(string value) { if (TransformWriteString != null) return TransformWriteString(value); return value; } protected virtual MemoryStream OnTransformCompleteStream(MemoryStream ms) { if (TransformStream != null) return TransformStream(ms); return ms; } /// <summary> /// Allows transforming of strings /// /// Note this handler is internal and not meant to be overridden /// as the TransformString Event has to be hooked up in order /// for this handler to even fire to avoid the overhead of string /// conversion on every pass through. /// </summary> /// <param name="responseText"></param> /// <returns></returns> private string OnTransformCompleteString(string responseText) { if (TransformString != null) TransformString(responseText); return responseText; } /// <summary> /// Wrapper method form OnTransformString that handles /// stream to string and vice versa conversions /// </summary> /// <param name="ms"></param> /// <returns></returns> internal MemoryStream OnTransformCompleteStringInternal(MemoryStream ms) { if (TransformString == null) return ms; //string content = ms.GetAsString(); string content = HttpContext.Current.Response.ContentEncoding.GetString(ms.ToArray()); content = TransformString(content); byte[] buffer = HttpContext.Current.Response.ContentEncoding.GetBytes(content); ms = new MemoryStream(); ms.Write(buffer, 0, buffer.Length); //ms.WriteString(content); return ms; } /// <summary> /// /// </summary> public override bool CanRead { get { return true; } } public override bool CanSeek { get { return true; } } /// <summary> /// /// </summary> public override bool CanWrite { get { return true; } } /// <summary> /// /// </summary> public override long Length { get { return 0; } } /// <summary> /// /// </summary> public override long Position { get { return _position; } set { _position = value; } } /// <summary> /// /// </summary> /// <param name="offset"></param> /// <param name="direction"></param> /// <returns></returns> public override long Seek(long offset, System.IO.SeekOrigin direction) { return _stream.Seek(offset, direction); } /// <summary> /// /// </summary> /// <param name="length"></param> public override void SetLength(long length) { _stream.SetLength(length); } /// <summary> /// /// </summary> public override void Close() { _stream.Close(); } /// <summary> /// Override flush by writing out the cached stream data /// </summary> public override void Flush() { if (IsCaptured && _cacheStream.Length > 0) { // Check for transform implementations _cacheStream = OnTransformCompleteStream(_cacheStream); _cacheStream = OnTransformCompleteStringInternal(_cacheStream); OnCaptureStream(_cacheStream); OnCaptureStringInternal(_cacheStream); // write the stream back out if output was delayed if (IsOutputDelayed) _stream.Write(_cacheStream.ToArray(), 0, (int)_cacheStream.Length); // Clear the cache once we've written it out _cacheStream.SetLength(0); } // default flush behavior _stream.Flush(); } /// <summary> /// /// </summary> /// <param name="buffer"></param> /// <param name="offset"></param> /// <param name="count"></param> /// <returns></returns> public override int Read(byte[] buffer, int offset, int count) { return _stream.Read(buffer, offset, count); } /// <summary> /// Overriden to capture output written by ASP.NET and captured /// into a cached stream that is written out later when Flush() /// is called. /// </summary> /// <param name="buffer"></param> /// <param name="offset"></param> /// <param name="count"></param> public override void Write(byte[] buffer, int offset, int count) { if ( IsCaptured ) { // copy to holding buffer only - we'll write out later _cacheStream.Write(buffer, 0, count); _cachePointer += count; } // just transform this buffer if (TransformWrite != null) buffer = OnTransformWrite(buffer); if (TransformWriteString != null) buffer = OnTransformWriteStringInternal(buffer); if (!IsOutputDelayed) _stream.Write(buffer, offset, buffer.Length); } } The key features are the events and corresponding OnXXX methods that handle the event hookups, and the Write() and Flush() methods of the stream implementation. All the rest of the members tend to be plain jane passthrough stream implementation code without much consequence. I do love the way Action<t> and Func<T> make it so easy to create the event signatures for the various events – sweet. A few Things to consider Performance Response.Filter is not great for performance in general as it adds another layer of indirection to the ASP.NET output pipeline, and this implementation in particular adds a memory hit as it basically duplicates the response output into the cached memory stream which is necessary since you may have to look at the entire response. If you have large pages in particular this can cause potentially serious memory pressure in your server application. So be careful of wholesale adoption of this (or other) Response.Filters. Make sure to do some performance testing to ensure it’s not killing your app’s performance. Response.Filter works everywhere A few questions came up in comments and discussion as to capturing ALL output hitting the site and – yes you can definitely do that by assigning a Response.Filter inside of a module. If you do this however you’ll want to be very careful and decide which content you actually want to capture especially in IIS 7 which passes ALL content – including static images/CSS etc. through the ASP.NET pipeline. So it is important to filter only on what you’re looking for – like the page extension or maybe more effectively the Response.ContentType. Response.Filter Chaining Originally I thought that filter chaining doesn’t work at all due to a bug in the stream implementation code. But it’s quite possible to assign multiple filters to the Response.Filter property. So the following actually works to both compress the output and apply the transformed content: WebUtils.GZipEncodePage(); ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformString += filter_TransformString; Response.Filter = filter; However the following does not work resulting in invalid content encoding errors: ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformString += filter_TransformString; Response.Filter = filter; WebUtils.GZipEncodePage(); In other words multiple Response filters can work together but it depends entirely on the implementation whether they can be chained or in which order they can be chained. In this case running the GZip/Deflate stream filters apparently relies on the original content length of the output and chokes when the content is modified. But if attaching the compression first it works fine as unintuitive as that may seem. Resources Download example code Capture Output from ASP.NET Pages © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  

    Read the article

  • Getting Started with Boxee

    - by DigitalGeekery
    Boxee is a free Media PC application that runs on Windows, Mac, and Ubuntu Linux. With Boxee, you can integrate online video, music and pictures, with your own local media and social networking. Today we are going to take a closer look at Boxee and some of it’s features. Note: We used Windows 7 for this tutorial. Your experience on a Mac or Ubuntu Linux build may vary slightly. Hardware Requirements x86 (Intel/AMD processor) based system running at 1.0GHz or greater 512MB system memory (RAM) or more Video card capable of OpenGL 1.4, Direct X 9.0 Software Requirements Mac OS X 10.4+ (Intel based processor) Ubuntu Linux 9.04+ x86 only Windows XP / Vista / 7 (64 bit in Vista or 7) Installing Boxee Before downloading and installing Boxee, you’ll need to register for a free account. (See link below) Once your account is registered and verified, you’ll be able to log in and download the application. Installation is pretty straightforward…just take the defaults. Boxee will open in full screen mode and you’ll be prompted to login with your username and password. Before you login, you may want to take a moment to click on the “Guide” icon and learn a bit about navigating in Boxee. Some basic keyboard navigation is as follows. Move right, left, up, & down with the arrow keys. Hit “Enter” to make a selection, the forward slash key “\” to toggle between full screen and windowed mode, and “Esc” to go back to the previous screen. For Playback, the volume is controlled by plus & minus (+/-) keys, you can Play / Pause using the spacebar, and skip using the arrow keys. Boxee will also work with any infrared remote. If you have an iPhone or iPod Touch you can download software to enable them as a Boxee remote. If you’re using a mouse and keyboard, hover over the username and password boxes to enter your login credentials. If using a a remote, click your OK button and enter credentials with the on screen keyboard. Click “Done” when finished.   When you are ready to login, enter your credentials and click “Login.” On first login, you’ll be prompted to calibrate your screen. If you choose “Skip” you can always calibrate your screen later under Settings > Appearance > Screen. When Boxee opens, you’ll be greeted by the Home screen. To the left will be your Feeds. This will be any recommended content from friends on Boxee, and social networks such as Facebook and Twitter. Although, when you first login, it will mainly be info from the Boxee staff. You’ll have “Featured” content in the center and your Queue on the right. You’ll also have the Menu along the top.   Pop Up Menu The Pop Menu can be accessed by hitting the “Esc” key, or back on your remote. Depending on where you are located in Boxee, you may have to hit it a few time to “back out” to the Pop Up menu. From the Pop Up Menu, you can easily access any of the resources, settings, and favorites. Queue The Queue is your playlist of TV shows, movies, or Internet videos you wish to watch. When you find an offering you’d like to watch, select it and then click “Add to Queue.” The selected item will be added to your Queue and can be accessed at any time from the Menu. TV Show Library The TV Show library can contain files from your local hard drive or streaming content from the Web. Boxee pulls content from a variety of online locations such as Hulu and TV network sites. Click on the show to see which specific episodes are currently available. To search for your favorite shows, click on the yellow arrow to the left, or navigate to the left with your keyboard or remote. Enter your selection into the search box. My Apps By default, the “My Apps” section includes a list of the most popular apps, such as Netflix, Pandora, YouTube, and others. You can remove Apps from “My Apps,” or add new Apps from the Apps Library.   To access all the available Apps, click on the left arrow button, or click on the yellow arrow at the left, then select “App Library.” Choose an App from the Library and click it to open… … and then select “Add to My Apps.” Or, you can click start to play the App if you don’t wish to Add it to your “My Apps.”   Music, Pictures, and Movies Boxee will scan your PC for movies, pictures, and music. You can choose to scan specific folders by clicking on “Scan Media Folders…” … or from the Pop Up Menu, selecting Settings > Media, and then browsing for your media.   Conclusion Boxee to be a great way to integrate your local media with online streaming content. It can be run as an application on your home PC, or as a stand alone media PC. It should also be noted, however, that your access to online content will vary depending on your country. If you are a Windows Media Center user and and want to add the additional features of Boxee, check out our article on integrating Boxee with Windows 7 Media Center. Download Boxee Similar Articles Productive Geek Tips Integrate Boxee with Media Center in Windows 7Disable Fast User Switching on Windows XPOops! Sorry About the Feed ErrorsDisplay a list of Started Services from the Command Line (Windows)Feedburner to Google: Worst Transition Ever. TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 PCmover Professional Discover New Bundled Feeds in Google Reader Play Music in Chrome by Simply Dragging a File 15 Great Illustrations by Chow Hon Lam Easily Sync Files & Folders with Friends & Family Amazon Free Kindle for PC Download Stretch popurls.com with a Stylish Script (Firefox)

    Read the article

  • Stream Music and Video Over the Internet with Windows Media Player 12

    - by DigitalGeekery
    A new feature in Windows Media Player 12, which is included with Windows 7, is being able to stream media over the web to other Windows 7 computers.  Today we will take a look at how to set it up and what you need to begin. Note: You will need to perform this process on each computer that you want to use. What You’ll Need Two computers running Windows 7 Home Premium, Professional, or Ultimate. The host, or home computer that you will be streaming the media from, cannot be on a public network or part of domain. Windows Live ID UPnP or Port Forwarding enabled on your home router Media files added to your Windows Media Player library Windows Live ID Sign up online for a Windows Live ID if you do not already have one. See the link below for a link to Windows Live.   Configuring the Windows 7 Computers Open Windows Media Player and go to the library section. Click on Stream and then “Allow Internet access to home media.”   The Internet Home Media Access pop up window will prompt you to link your Windows Live ID to a user account. Click “Link an online ID.” If you haven’t already installed the Windows Live ID Sign-In Assistant, you will be taken to Microsoft’s website and prompted to download it. Once you have completed the Windows Live download assistant install, you will see Windows Live ID online provider appear in the “Link Online IDs” window. Click on “Link Online ID.” Next, you’ll be prompted for a Windows Live ID and password. Enter your Windows Live ID and password and click “Sign In.” A pop up window will notify you that you have successfully allowed Internet access to home media. Now, you will have to repeat the exact same configuration on the 2nd Windows 7 computer. Once you have completed the same configuration on your 2nd computer, you might also need to configure your home router for port forwarding. If your router supports UPnP, you may not need to manually forward any ports on your router. So, this would be a good time to test your connection. Go to a nearby hotspot, or perhaps a neighbor’s house, and test to see if you can stream your media. If not, you’ll need to manually forward the ports. You can always choose to forward the ports anyway, just in case. Note: We tested on a Linksys WRT54GL router, which supports UPnP, and found we still needed to manually forward the ports. Finding the ports to forward on the router Open Windows Media Player and make sure you are in Library view. Click on “Stream” on the top menu, and select “Allow Internet access to home media.”   On the “Internet Home Media Access” window, click on “Diagnose connections.” The “Internet Streaming Diagnostic Tool” will pop up. Click on “Port forwarding information” near the bottom.   On the “Port Forwarding Information” window you will find both the Internal and External Port numbers you will need to forward on your router. The Internal port number should always be 10245. The external number will be different depending on your computer. Microsoft also recommends forwarding port 443. Configuring the Router Next, you’ll need to configure Port Forwarding on your home router. We will show you the steps for a Linksys WRT54GL router, however, the steps for port forwarding will vary from router to router. On the Linksys configuration page, click on the Administration Tab along the top, click the “Applications & Gaming Tab, and then the “Port Range Forward” tab below it. Under “Application,” type in a name. It can be any name you choose. In both the “Start” and “End” boxes, type the port number. Enter the IP address of your home computer in the IP address column. Click the check box under “Enable.” Do this for both the internal and external port numbers and port 443. When finished, click the “Save Settings” button. Note: It’s highly recommended that you configure your home computer with a static IP address When you’re ready to play your media over the Internet, open up Windows Media Player and look for your host computer and username listed under “Other Libraries.” Click on it expand the list to see your media libraries. Choose a library and a file to play. Now you can enjoy your streaming media over the Internet. Conclusion We found media streaming over the Internet to work fairly well. However, we did see a loss of quality with streaming video. Also, Recorded TV .wtv and dvr-ms files did not play at all. Check out our previous article to see how to stream media share and stream media between Windows 7 computers on your home network. Similar Articles Productive Geek Tips Enable Media Streaming in Windows Home Server to Windows Media PlayerFixing When Windows Media Player Library Won’t Let You Add FilesShare Digital Media With Other Computers on a Home Network with Windows 7Share and Stream Digital Media Between Windows 7 Machines On Your Home NetworkLearning Windows 7: Manage Your Music with Windows Media Player TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 PCmover Professional Stormpulse provides slick, real time weather data Geek Parents – Did you try Parental Controls in Windows 7? Change DNS servers on the fly with DNS Jumper Live PDF Searches PDF Files and Ebooks Converting Mp4 to Mp3 Easily Use Quick Translator to Translate Text in 50 Languages (Firefox)

    Read the article

  • C# Neural Networks with Encog

    - by JoshReuben
    Neural Networks ·       I recently read a book Introduction to Neural Networks for C# , by Jeff Heaton. http://www.amazon.com/Introduction-Neural-Networks-C-2nd/dp/1604390093/ref=sr_1_2?ie=UTF8&s=books&qid=1296821004&sr=8-2-spell. Not the 1st ANN book I've perused, but a nice revision.   ·       Artificial Neural Networks (ANNs) are a mechanism of machine learning – see http://en.wikipedia.org/wiki/Artificial_neural_network , http://en.wikipedia.org/wiki/Category:Machine_learning ·       Problems Not Suited to a Neural Network Solution- Programs that are easily written out as flowcharts consisting of well-defined steps, program logic that is unlikely to change, problems in which you must know exactly how the solution was derived. ·       Problems Suited to a Neural Network – pattern recognition, classification, series prediction, and data mining. Pattern recognition - network attempts to determine if the input data matches a pattern that it has been trained to recognize. Classification - take input samples and classify them into fuzzy groups. ·       As far as machine learning approaches go, I thing SVMs are superior (see http://en.wikipedia.org/wiki/Support_vector_machine ) - a neural network has certain disadvantages in comparison: an ANN can be overtrained, different training sets can produce non-deterministic weights and it is not possible to discern the underlying decision function of an ANN from its weight matrix – they are black box. ·       In this post, I'm not going to go into internals (believe me I know them). An autoassociative network (e.g. a Hopfield network) will echo back a pattern if it is recognized. ·       Under the hood, there is very little maths. In a nutshell - Some simple matrix operations occur during training: the input array is processed (normalized into bipolar values of 1, -1) - transposed from input column vector into a row vector, these are subject to matrix multiplication and then subtraction of the identity matrix to get a contribution matrix. The dot product is taken against the weight matrix to yield a boolean match result. For backpropogation training, a derivative function is required. In learning, hill climbing mechanisms such as Genetic Algorithms and Simulated Annealing are used to escape local minima. For unsupervised training, such as found in Self Organizing Maps used for OCR, Hebbs rule is applied. ·       The purpose of this post is not to mire you in technical and conceptual details, but to show you how to leverage neural networks via an abstraction API - Encog   Encog ·       Encog is a neural network API ·       Links to Encog: http://www.encog.org , http://www.heatonresearch.com/encog, http://www.heatonresearch.com/forum ·       Encog requires .Net 3.5 or higher – there is also a Silverlight version. Third-Party Libraries – log4net and nunit. ·       Encog supports feedforward, recurrent, self-organizing maps, radial basis function and Hopfield neural networks. ·       Encog neural networks, and related data, can be stored in .EG XML files. ·       Encog Workbench allows you to edit, train and visualize neural networks. The Encog Workbench can generate code. Synapses and layers ·       the primary building blocks - Almost every neural network will have, at a minimum, an input and output layer. In some cases, the same layer will function as both input and output layer. ·       To adapt a problem to a neural network, you must determine how to feed the problem into the input layer of a neural network, and receive the solution through the output layer of a neural network. ·       The Input Layer - For each input neuron, one double value is stored. An array is passed as input to a layer. Encog uses the interface INeuralData to hold these arrays. The class BasicNeuralData implements the INeuralData interface. Once the neural network processes the input, an INeuralData based class will be returned from the neural network's output layer. ·       convert a double array into an INeuralData object : INeuralData data = new BasicNeuralData(= new double[10]); ·       the Output Layer- The neural network outputs an array of doubles, wraped in a class based on the INeuralData interface. ·        The real power of a neural network comes from its pattern recognition capabilities. The neural network should be able to produce the desired output even if the input has been slightly distorted. ·       Hidden Layers– optional. between the input and output layers. very much a “black box”. If the structure of the hidden layer is too simple it may not learn the problem. If the structure is too complex, it will learn the problem but will be very slow to train and execute. Some neural networks have no hidden layers. The input layer may be directly connected to the output layer. Further, some neural networks have only a single layer. A single layer neural network has the single layer self-connected. ·       connections, called synapses, contain individual weight matrixes. These values are changed as the neural network learns. Constructing a Neural Network ·       the XOR operator is a frequent “first example” -the “Hello World” application for neural networks. ·       The XOR Operator- only returns true when both inputs differ. 0 XOR 0 = 0 1 XOR 0 = 1 0 XOR 1 = 1 1 XOR 1 = 0 ·       Structuring a Neural Network for XOR  - two inputs to the XOR operator and one output. ·       input: 0.0,0.0 1.0,0.0 0.0,1.0 1.0,1.0 ·       Expected output: 0.0 1.0 1.0 0.0 ·       A Perceptron - a simple feedforward neural network to learn the XOR operator. ·       Because the XOR operator has two inputs and one output, the neural network will follow suit. Additionally, the neural network will have a single hidden layer, with two neurons to help process the data. The choice for 2 neurons in the hidden layer is arbitrary, and often comes down to trial and error. ·       Neuron Diagram for the XOR Network ·       ·       The Encog workbench displays neural networks on a layer-by-layer basis. ·       Encog Layer Diagram for the XOR Network:   ·       Create a BasicNetwork - Three layers are added to this network. the FinalizeStructure method must be called to inform the network that no more layers are to be added. The call to Reset randomizes the weights in the connections between these layers. var network = new BasicNetwork(); network.AddLayer(new BasicLayer(2)); network.AddLayer(new BasicLayer(2)); network.AddLayer(new BasicLayer(1)); network.Structure.FinalizeStructure(); network.Reset(); ·       Neural networks frequently start with a random weight matrix. This provides a starting point for the training methods. These random values will be tested and refined into an acceptable solution. However, sometimes the initial random values are too far off. Sometimes it may be necessary to reset the weights again, if training is ineffective. These weights make up the long-term memory of the neural network. Additionally, some layers have threshold values that also contribute to the long-term memory of the neural network. Some neural networks also contain context layers, which give the neural network a short-term memory as well. The neural network learns by modifying these weight and threshold values. ·       Now that the neural network has been created, it must be trained. Training a Neural Network ·       construct a INeuralDataSet object - contains the input array and the expected output array (of corresponding range). Even though there is only one output value, we must still use a two-dimensional array to represent the output. public static double[][] XOR_INPUT ={ new double[2] { 0.0, 0.0 }, new double[2] { 1.0, 0.0 }, new double[2] { 0.0, 1.0 }, new double[2] { 1.0, 1.0 } };   public static double[][] XOR_IDEAL = { new double[1] { 0.0 }, new double[1] { 1.0 }, new double[1] { 1.0 }, new double[1] { 0.0 } };   INeuralDataSet trainingSet = new BasicNeuralDataSet(XOR_INPUT, XOR_IDEAL); ·       Training is the process where the neural network's weights are adjusted to better produce the expected output. Training will continue for many iterations, until the error rate of the network is below an acceptable level. Encog supports many different types of training. Resilient Propagation (RPROP) - general-purpose training algorithm. All training classes implement the ITrain interface. The RPROP algorithm is implemented by the ResilientPropagation class. Training the neural network involves calling the Iteration method on the ITrain class until the error is below a specific value. The code loops through as many iterations, or epochs, as it takes to get the error rate for the neural network to be below 1%. Once the neural network has been trained, it is ready for use. ITrain train = new ResilientPropagation(network, trainingSet);   for (int epoch=0; epoch < 10000; epoch++) { train.Iteration(); Debug.Print("Epoch #" + epoch + " Error:" + train.Error); if (train.Error > 0.01) break; } Executing a Neural Network ·       Call the Compute method on the BasicNetwork class. Console.WriteLine("Neural Network Results:"); foreach (INeuralDataPair pair in trainingSet) { INeuralData output = network.Compute(pair.Input); Console.WriteLine(pair.Input[0] + "," + pair.Input[1] + ", actual=" + output[0] + ",ideal=" + pair.Ideal[0]); } ·       The Compute method accepts an INeuralData class and also returns a INeuralData object. Neural Network Results: 0.0,0.0, actual=0.002782538818034049,ideal=0.0 1.0,0.0, actual=0.9903741937121177,ideal=1.0 0.0,1.0, actual=0.9836807956566187,ideal=1.0 1.0,1.0, actual=0.0011646072586172778,ideal=0.0 ·       the network has not been trained to give the exact results. This is normal. Because the network was trained to 1% error, each of the results will also be within generally 1% of the expected value.

    Read the article

  • CodePlex Daily Summary for Sunday, September 30, 2012

    CodePlex Daily Summary for Sunday, September 30, 2012Popular ReleasesCAPTCHA Solver: Initial Release: This is the initial Release :) Still very much a WIP.MCEBuddy 2.x: MCEBuddy 2.2.17: Reccomended update to 2.2.16 Changelog for 2.2.17 (32bit and 64bit) 1. Fixed bugs around thread synchronization with new remote model (fixes cause the app to crash or hang) 2. Updated UPnP code base, faster and more reliable now 3. Now you can get audio/video properties for multiple files on main page. Selected multiple files and right click, all selected files properties will be shown. 4. Fix a bug, not able to enter a conversion task name in the GUIAggravation: Version 1.0: This version 1.0 release is pretty stable. You need the Silverlight 4 runtime, developer tools, and Experssion Blend 4 installed.Readable Passphrase Generator: KeePass Plugin 0.7.1: See the KeePass Plugin Step By Step Guide for instructions on how to install the plugin. Changes Built against KeePass 2.20Windows 8 Toolkit - Charts and More: Beta 1.0: The First Compiled Version of my LibraryPDF.NET: PDF.NET.Ver4.5-OpenSourceCode: PDF.NET Ver4.5 ????,????Web??????。 PDF.NET Ver4.5 Open Source Code,include a sample Web application project.D3 Loot Tracker: 1.4: Session name is displayed in the UI. Changes data directory for clickonce deployment so that sessions files are persisted between versions. Added a delete button in the sessions list window. Allow opening of the sessions local folder from the session list widow. Display the session name in the main window Ability to select which diablo process to hook up to when pressing new () function BUT only if multi-process support is selected in the generals settings tab menu. Session picker...CRM 2011 Visual Ribbon Editor: Visual Ribbon Editor 1.1 Beta: Visual Ribbon Editor 1.1 Beta What's New: Fixed scrolling issue in UnHide dialog Added support for connecting via ADFS / IFD Added support for more than one action for a button Added support for empty StringParameter for Javascript functions Fixed bug in rule CrmClientTypeRule when selecting Outlook option Extended Prefix field in New Button dialogVisual Studio Icon Patcher: Version 1.5.2: This version contains no new images from v1.5.1 Contains the following improvements: Better support for detecting the installed languages The extract & inject commands won’t run if Visual Studio is running You may now run in extract or inject mode The p/invoke code was cleaned up based on Code Analysis recommendations When a p/invoke method fails the Win32 error message is now displayed Error messages use red text Status messages use green textZXing.Net: ZXing.Net 0.9.0.0: On the way to a release 1.0 the API should be stable now with this version. sync with rev. 2393 of the java version improved api better Unity support Windows RT binaries Windows CE binaries new Windows Service demo new WPF demo WindowsCE Hotfix: Fixes an error with ISO8859-1 encoding and scannning of QR-Codes. The hotfix is only needed for the WindowsCE platform.C.B.R. : Comic Book Reader: CBR 0.7: Synthesis since 0.6 : ePUB : Complete refactoring Add a new dedicated feed viewer for opds stream PDF conversion : improved with image merge Make all backstage panel scrollable Integrate the new AvalonDock 2 library. Support multi-document. Library explorer and Table of content are now toolboxes Designer for dynamic books is now mvvm and much better New BrowserForControl Customized xps viewer to suppress toolbars and bind it to cbr commands Add quick start manual and button ...menu4web: menu4web 1.0 - free javascript menu for web sites: menu4web 1.0 has been tested with all major browsers: Firefox, Chrome, IE, Opera and Safari. Minified m4w.js library is less than 9K. Includes 21 menu examples of different styles. Can be freely distributed under The MIT License (MIT).Rawr: Rawr 5.0.0: This is the Downloadable WPF version of Rawr!For web-based version see http://elitistjerks.com/rawr.php You can find the version notes at: http://rawr.codeplex.com/wikipage?title=VersionNotes Rawr Addon (NOT UPDATED YET FOR MOP)We now have a Rawr Official Addon for in-game exporting and importing of character data hosted on Curse. The Addon does not perform calculations like Rawr, it simply shows your exported Rawr data in wow tooltips and lets you export your character to Rawr (including ba...Coevery - Free CRM: Coevery 1.0.0.26: The zh-CN issue has been solved. We also add a project management module.VidCoder: 1.4.1 Beta: Updated to HandBrake 4971. This should fix some issues with stuck PGS subtitles. Fixed build break which prevented pre-compiled XML serializers from showing up. Fixed problem where a preset would get errantly marked as modified when re-opening the encode settings window or importing a new preset.Snake!: Snake 1.0: Version 1 StablePaging SharePoint ListItems using listitems position: Paginglistitems V1.0: This is a console application which has two methods both on CSOM and SOM to display the listitems in a paged manner.SharePoint Move Discussion Threads: SharePoint Move Discussion Threads ver 0.1: ver 0.1NTCPMSG: V1.1.1.0: increase the performance. Support .net framework 4.0.BlackJumboDog: Ver5.7.2: 2012.09.23 Ver5.7.2 (1)InetTest?? (2)HTTP?????????????????100???????????New Projects2D Sprite Editor: This is a 2d sprite editor. Import your sprite sheet, trace your animations frame and export the coordinates points in a simple txt file, ready to import.caifenweb1: test project.CatchThatException: This is a small logging library We created at developerpath.com to help us log exceptions. It write it to a text file and you can easilay open that txt.FsxWs - WebServices for Microsoft FSX: WebServices for MS Flight Simulator. Get flights data as JSON, KML. !! Still in SetUp phase - be patient !!GetTPB: Some training in downloading and parsing web pages, with multithreading too.JSON-RPC Client Generator (for XBMC): The goal of this project is to provide a .Net client for the XBMC JSONRPC API. The main part is not XBMC dependent and may be used for any JSON-RPC client.matlab-silhouette-pose-wtf: Whatevermfp: this is random codeMVC Grid: MVC Grid ExampleMyWebSocketTry: sssssssssssssssssssssssssssssssssssssssNetduino Console: Netduino Console is an interface with built in messaging layers that allows you as a developer to dynamically create plugins following a provided interface to iSharePoint ASP.NET Verifier: Project will allow to verify SharePoint 2010 components using ASP.NET web applicationSharepoint Custom Upload: This is a SharePoint solution that allows an administrator to customize the upload page individually for each document library in a site.. It allows you to makeWinWeb Browser Deluxe: WinWeb Browser Deluxe es un navegador web de código abierto basado en Internet Explorer hecho en Visual Basic .NET. Descargalo ya!writethatoutput: This is the official release page for WriteThatOutPut from developerpath.com

    Read the article

  • TOTD #166: Using NoSQL database in your Java EE 6 Applications on GlassFish - MongoDB for now!

    - by arungupta
    The Java EE 6 platform includes Java Persistence API to work with RDBMS. The JPA specification defines a comprehensive API that includes, but not restricted to, how a database table can be mapped to a POJO and vice versa, provides mechanisms how a PersistenceContext can be injected in a @Stateless bean and then be used for performing different operations on the database table and write typesafe queries. There are several well known advantages of RDBMS but the NoSQL movement has gained traction over past couple of years. The NoSQL databases are not intended to be a replacement for the mainstream RDBMS. As Philosophy of NoSQL explains, NoSQL database was designed for casual use where all the features typically provided by an RDBMS are not required. The name "NoSQL" is more of a category of databases that is more known for what it is not rather than what it is. The basic principles of NoSQL database are: No need to have a pre-defined schema and that makes them a schema-less database. Addition of new properties to existing objects is easy and does not require ALTER TABLE. The unstructured data gives flexibility to change the format of data any time without downtime or reduced service levels. Also there are no joins happening on the server because there is no structure and thus no relation between them. Scalability and performance is more important than the entire set of functionality typically provided by an RDBMS. This set of databases provide eventual consistency and/or transactions restricted to single items but more focus on CRUD. Not be restricted to SQL to access the information stored in the backing database. Designed to scale-out (horizontal) instead of scale-up (vertical). This is important knowing that databases, and everything else as well, is moving into the cloud. RBDMS can scale-out using sharding but requires complex management and not for the faint of heart. Unlike RBDMS which require a separate caching tier, most of the NoSQL databases comes with integrated caching. Designed for less management and simpler data models lead to lower administration as well. There are primarily three types of NoSQL databases: Key-Value stores (e.g. Cassandra and Riak) Document databases (MongoDB or CouchDB) Graph databases (Neo4J) You may think NoSQL is panacea but as I mentioned above they are not meant to replace the mainstream databases and here is why: RDBMS have been around for many years, very stable, and functionally rich. This is something CIOs and CTOs can bet their money on without much worry. There is a reason 98% of Fortune 100 companies run Oracle :-) NoSQL is cutting edge, brings excitement to developers, but enterprises are cautious about them. Commercial databases like Oracle are well supported by the backing enterprises in terms of providing support resources on a global scale. There is a full ecosystem built around these commercial databases providing training, performance tuning, architecture guidance, and everything else. NoSQL is fairly new and typically backed by a single company not able to meet the scale of these big enterprises. NoSQL databases are good for CRUDing operations but business intelligence is extremely important for enterprises to stay competitive. RDBMS provide extensive tooling to generate this data but that was not the original intention of NoSQL databases and is lacking in that area. Generating any meaningful information other than CRUDing require extensive programming. Not suited for complex transactions such as banking systems or other highly transactional applications requiring 2-phase commit. SQL cannot be used with NoSQL databases and writing simple queries can be involving. Enough talking, lets take a look at some code. This blog has published multiple blogs on how to access a RDBMS using JPA in a Java EE 6 application. This Tip Of The Day (TOTD) will show you can use MongoDB (a document-oriented database) with a typical 3-tier Java EE 6 application. Lets get started! The complete source code of this project can be downloaded here. Download MongoDB for your platform from here (1.8.2 as of this writing) and start the server as: arun@ArunUbuntu:~/tools/mongodb-linux-x86_64-1.8.2/bin$./mongod./mongod --help for help and startup optionsSun Jun 26 20:41:11 [initandlisten] MongoDB starting : pid=11210port=27017 dbpath=/data/db/ 64-bit Sun Jun 26 20:41:11 [initandlisten] db version v1.8.2, pdfile version4.5Sun Jun 26 20:41:11 [initandlisten] git version:433bbaa14aaba6860da15bd4de8edf600f56501bSun Jun 26 20:41:11 [initandlisten] build sys info: Linuxbs-linux64.10gen.cc 2.6.21.7-2.ec2.v1.2.fc8xen #1 SMP Fri Nov 2017:48:28 EST 2009 x86_64 BOOST_LIB_VERSION=1_41Sun Jun 26 20:41:11 [initandlisten] waiting for connections on port 27017Sun Jun 26 20:41:11 [websvr] web admin interface listening on port 28017 The default directory for the database is /data/db and needs to be created as: sudo mkdir -p /data/db/sudo chown `id -u` /data/db You can specify a different directory using "--dbpath" option. Refer to Quickstart for your specific platform. Using NetBeans, create a Java EE 6 project and make sure to enable CDI and add JavaServer Faces framework. Download MongoDB Java Driver (2.6.3 of this writing) and add it to the project library by selecting "Properties", "LIbraries", "Add Library...", creating a new library by specifying the location of the JAR file, and adding the library to the created project. Edit the generated "index.xhtml" such that it looks like: <h1>Add a new movie</h1><h:form> Name: <h:inputText value="#{movie.name}" size="20"/><br/> Year: <h:inputText value="#{movie.year}" size="6"/><br/> Language: <h:inputText value="#{movie.language}" size="20"/><br/> <h:commandButton actionListener="#{movieSessionBean.createMovie}" action="show" title="Add" value="submit"/></h:form> This page has a simple HTML form with three text boxes and a submit button. The text boxes take name, year, and language of a movie and the submit button invokes the "createMovie" method of "movieSessionBean" and then render "show.xhtml". Create "show.xhtml" ("New" -> "Other..." -> "Other" -> "XHTML File") such that it looks like: <head> <title><h1>List of movies</h1></title> </head> <body> <h:form> <h:dataTable value="#{movieSessionBean.movies}" var="m" > <h:column><f:facet name="header">Name</f:facet>#{m.name}</h:column> <h:column><f:facet name="header">Year</f:facet>#{m.year}</h:column> <h:column><f:facet name="header">Language</f:facet>#{m.language}</h:column> </h:dataTable> </h:form> This page shows the name, year, and language of all movies stored in the database so far. The list of movies is returned by "movieSessionBean.movies" property. Now create the "Movie" class such that it looks like: import com.mongodb.BasicDBObject;import com.mongodb.BasicDBObject;import com.mongodb.DBObject;import javax.enterprise.inject.Model;import javax.validation.constraints.Size;/** * @author arun */@Modelpublic class Movie { @Size(min=1, max=20) private String name; @Size(min=1, max=20) private String language; private int year; // getters and setters for "name", "year", "language" public BasicDBObject toDBObject() { BasicDBObject doc = new BasicDBObject(); doc.put("name", name); doc.put("year", year); doc.put("language", language); return doc; } public static Movie fromDBObject(DBObject doc) { Movie m = new Movie(); m.name = (String)doc.get("name"); m.year = (int)doc.get("year"); m.language = (String)doc.get("language"); return m; } @Override public String toString() { return name + ", " + year + ", " + language; }} Other than the usual boilerplate code, the key methods here are "toDBObject" and "fromDBObject". These methods provide a conversion from "Movie" -> "DBObject" and vice versa. The "DBObject" is a MongoDB class that comes as part of the mongo-2.6.3.jar file and which we added to our project earlier.  The complete javadoc for 2.6.3 can be seen here. Notice, this class also uses Bean Validation constraints and will be honored by the JSF layer. Finally, create "MovieSessionBean" stateless EJB with all the business logic such that it looks like: package org.glassfish.samples;import com.mongodb.BasicDBObject;import com.mongodb.DB;import com.mongodb.DBCollection;import com.mongodb.DBCursor;import com.mongodb.DBObject;import com.mongodb.Mongo;import java.net.UnknownHostException;import java.util.ArrayList;import java.util.List;import javax.annotation.PostConstruct;import javax.ejb.Stateless;import javax.inject.Inject;import javax.inject.Named;/** * @author arun */@Stateless@Namedpublic class MovieSessionBean { @Inject Movie movie; DBCollection movieColl; @PostConstruct private void initDB() throws UnknownHostException { Mongo m = new Mongo(); DB db = m.getDB("movieDB"); movieColl = db.getCollection("movies"); if (movieColl == null) { movieColl = db.createCollection("movies", null); } } public void createMovie() { BasicDBObject doc = movie.toDBObject(); movieColl.insert(doc); } public List<Movie> getMovies() { List<Movie> movies = new ArrayList(); DBCursor cur = movieColl.find(); System.out.println("getMovies: Found " + cur.size() + " movie(s)"); for (DBObject dbo : cur.toArray()) { movies.add(Movie.fromDBObject(dbo)); } return movies; }} The database is initialized in @PostConstruct. Instead of a working with a database table, NoSQL databases work with a schema-less document. The "Movie" class is the document in our case and stored in the collection "movies". The collection allows us to perform query functions on all movies. The "getMovies" method invokes "find" method on the collection which is equivalent to the SQL query "select * from movies" and then returns a List<Movie>. Also notice that there is no "persistence.xml" in the project. Right-click and run the project to see the output as: Enter some values in the text box and click on enter to see the result as: If you reached here then you've successfully used MongoDB in your Java EE 6 application, congratulations! Some food for thought and further play ... SQL to MongoDB mapping shows mapping between traditional SQL -> Mongo query language. Tutorial shows fun things you can do with MongoDB. Try the interactive online shell  The cookbook provides common ways of using MongoDB In terms of this project, here are some tasks that can be tried: Encapsulate database management in a JPA persistence provider. Is it even worth it because the capabilities are going to be very different ? MongoDB uses "BSonObject" class for JSON representation, add @XmlRootElement on a POJO and how a compatible JSON representation can be generated. This will make the fromXXX and toXXX methods redundant.

    Read the article

  • TOTD #166: Using NoSQL database in your Java EE 6 Applications on GlassFish - MongoDB for now!

    - by arungupta
    The Java EE 6 platform includes Java Persistence API to work with RDBMS. The JPA specification defines a comprehensive API that includes, but not restricted to, how a database table can be mapped to a POJO and vice versa, provides mechanisms how a PersistenceContext can be injected in a @Stateless bean and then be used for performing different operations on the database table and write typesafe queries. There are several well known advantages of RDBMS but the NoSQL movement has gained traction over past couple of years. The NoSQL databases are not intended to be a replacement for the mainstream RDBMS. As Philosophy of NoSQL explains, NoSQL database was designed for casual use where all the features typically provided by an RDBMS are not required. The name "NoSQL" is more of a category of databases that is more known for what it is not rather than what it is. The basic principles of NoSQL database are: No need to have a pre-defined schema and that makes them a schema-less database. Addition of new properties to existing objects is easy and does not require ALTER TABLE. The unstructured data gives flexibility to change the format of data any time without downtime or reduced service levels. Also there are no joins happening on the server because there is no structure and thus no relation between them. Scalability and performance is more important than the entire set of functionality typically provided by an RDBMS. This set of databases provide eventual consistency and/or transactions restricted to single items but more focus on CRUD. Not be restricted to SQL to access the information stored in the backing database. Designed to scale-out (horizontal) instead of scale-up (vertical). This is important knowing that databases, and everything else as well, is moving into the cloud. RBDMS can scale-out using sharding but requires complex management and not for the faint of heart. Unlike RBDMS which require a separate caching tier, most of the NoSQL databases comes with integrated caching. Designed for less management and simpler data models lead to lower administration as well. There are primarily three types of NoSQL databases: Key-Value stores (e.g. Cassandra and Riak) Document databases (MongoDB or CouchDB) Graph databases (Neo4J) You may think NoSQL is panacea but as I mentioned above they are not meant to replace the mainstream databases and here is why: RDBMS have been around for many years, very stable, and functionally rich. This is something CIOs and CTOs can bet their money on without much worry. There is a reason 98% of Fortune 100 companies run Oracle :-) NoSQL is cutting edge, brings excitement to developers, but enterprises are cautious about them. Commercial databases like Oracle are well supported by the backing enterprises in terms of providing support resources on a global scale. There is a full ecosystem built around these commercial databases providing training, performance tuning, architecture guidance, and everything else. NoSQL is fairly new and typically backed by a single company not able to meet the scale of these big enterprises. NoSQL databases are good for CRUDing operations but business intelligence is extremely important for enterprises to stay competitive. RDBMS provide extensive tooling to generate this data but that was not the original intention of NoSQL databases and is lacking in that area. Generating any meaningful information other than CRUDing require extensive programming. Not suited for complex transactions such as banking systems or other highly transactional applications requiring 2-phase commit. SQL cannot be used with NoSQL databases and writing simple queries can be involving. Enough talking, lets take a look at some code. This blog has published multiple blogs on how to access a RDBMS using JPA in a Java EE 6 application. This Tip Of The Day (TOTD) will show you can use MongoDB (a document-oriented database) with a typical 3-tier Java EE 6 application. Lets get started! The complete source code of this project can be downloaded here. Download MongoDB for your platform from here (1.8.2 as of this writing) and start the server as: arun@ArunUbuntu:~/tools/mongodb-linux-x86_64-1.8.2/bin$./mongod./mongod --help for help and startup optionsSun Jun 26 20:41:11 [initandlisten] MongoDB starting : pid=11210port=27017 dbpath=/data/db/ 64-bit Sun Jun 26 20:41:11 [initandlisten] db version v1.8.2, pdfile version4.5Sun Jun 26 20:41:11 [initandlisten] git version:433bbaa14aaba6860da15bd4de8edf600f56501bSun Jun 26 20:41:11 [initandlisten] build sys info: Linuxbs-linux64.10gen.cc 2.6.21.7-2.ec2.v1.2.fc8xen #1 SMP Fri Nov 2017:48:28 EST 2009 x86_64 BOOST_LIB_VERSION=1_41Sun Jun 26 20:41:11 [initandlisten] waiting for connections on port 27017Sun Jun 26 20:41:11 [websvr] web admin interface listening on port 28017 The default directory for the database is /data/db and needs to be created as: sudo mkdir -p /data/db/sudo chown `id -u` /data/db You can specify a different directory using "--dbpath" option. Refer to Quickstart for your specific platform. Using NetBeans, create a Java EE 6 project and make sure to enable CDI and add JavaServer Faces framework. Download MongoDB Java Driver (2.6.3 of this writing) and add it to the project library by selecting "Properties", "LIbraries", "Add Library...", creating a new library by specifying the location of the JAR file, and adding the library to the created project. Edit the generated "index.xhtml" such that it looks like: <h1>Add a new movie</h1><h:form> Name: <h:inputText value="#{movie.name}" size="20"/><br/> Year: <h:inputText value="#{movie.year}" size="6"/><br/> Language: <h:inputText value="#{movie.language}" size="20"/><br/> <h:commandButton actionListener="#{movieSessionBean.createMovie}" action="show" title="Add" value="submit"/></h:form> This page has a simple HTML form with three text boxes and a submit button. The text boxes take name, year, and language of a movie and the submit button invokes the "createMovie" method of "movieSessionBean" and then render "show.xhtml". Create "show.xhtml" ("New" -> "Other..." -> "Other" -> "XHTML File") such that it looks like: <head> <title><h1>List of movies</h1></title> </head> <body> <h:form> <h:dataTable value="#{movieSessionBean.movies}" var="m" > <h:column><f:facet name="header">Name</f:facet>#{m.name}</h:column> <h:column><f:facet name="header">Year</f:facet>#{m.year}</h:column> <h:column><f:facet name="header">Language</f:facet>#{m.language}</h:column> </h:dataTable> </h:form> This page shows the name, year, and language of all movies stored in the database so far. The list of movies is returned by "movieSessionBean.movies" property. Now create the "Movie" class such that it looks like: import com.mongodb.BasicDBObject;import com.mongodb.BasicDBObject;import com.mongodb.DBObject;import javax.enterprise.inject.Model;import javax.validation.constraints.Size;/** * @author arun */@Modelpublic class Movie { @Size(min=1, max=20) private String name; @Size(min=1, max=20) private String language; private int year; // getters and setters for "name", "year", "language" public BasicDBObject toDBObject() { BasicDBObject doc = new BasicDBObject(); doc.put("name", name); doc.put("year", year); doc.put("language", language); return doc; } public static Movie fromDBObject(DBObject doc) { Movie m = new Movie(); m.name = (String)doc.get("name"); m.year = (int)doc.get("year"); m.language = (String)doc.get("language"); return m; } @Override public String toString() { return name + ", " + year + ", " + language; }} Other than the usual boilerplate code, the key methods here are "toDBObject" and "fromDBObject". These methods provide a conversion from "Movie" -> "DBObject" and vice versa. The "DBObject" is a MongoDB class that comes as part of the mongo-2.6.3.jar file and which we added to our project earlier.  The complete javadoc for 2.6.3 can be seen here. Notice, this class also uses Bean Validation constraints and will be honored by the JSF layer. Finally, create "MovieSessionBean" stateless EJB with all the business logic such that it looks like: package org.glassfish.samples;import com.mongodb.BasicDBObject;import com.mongodb.DB;import com.mongodb.DBCollection;import com.mongodb.DBCursor;import com.mongodb.DBObject;import com.mongodb.Mongo;import java.net.UnknownHostException;import java.util.ArrayList;import java.util.List;import javax.annotation.PostConstruct;import javax.ejb.Stateless;import javax.inject.Inject;import javax.inject.Named;/** * @author arun */@Stateless@Namedpublic class MovieSessionBean { @Inject Movie movie; DBCollection movieColl; @PostConstruct private void initDB() throws UnknownHostException { Mongo m = new Mongo(); DB db = m.getDB("movieDB"); movieColl = db.getCollection("movies"); if (movieColl == null) { movieColl = db.createCollection("movies", null); } } public void createMovie() { BasicDBObject doc = movie.toDBObject(); movieColl.insert(doc); } public List<Movie> getMovies() { List<Movie> movies = new ArrayList(); DBCursor cur = movieColl.find(); System.out.println("getMovies: Found " + cur.size() + " movie(s)"); for (DBObject dbo : cur.toArray()) { movies.add(Movie.fromDBObject(dbo)); } return movies; }} The database is initialized in @PostConstruct. Instead of a working with a database table, NoSQL databases work with a schema-less document. The "Movie" class is the document in our case and stored in the collection "movies". The collection allows us to perform query functions on all movies. The "getMovies" method invokes "find" method on the collection which is equivalent to the SQL query "select * from movies" and then returns a List<Movie>. Also notice that there is no "persistence.xml" in the project. Right-click and run the project to see the output as: Enter some values in the text box and click on enter to see the result as: If you reached here then you've successfully used MongoDB in your Java EE 6 application, congratulations! Some food for thought and further play ... SQL to MongoDB mapping shows mapping between traditional SQL -> Mongo query language. Tutorial shows fun things you can do with MongoDB. Try the interactive online shell  The cookbook provides common ways of using MongoDB In terms of this project, here are some tasks that can be tried: Encapsulate database management in a JPA persistence provider. Is it even worth it because the capabilities are going to be very different ? MongoDB uses "BSonObject" class for JSON representation, add @XmlRootElement on a POJO and how a compatible JSON representation can be generated. This will make the fromXXX and toXXX methods redundant.

    Read the article

  • CodePlex Daily Summary for Sunday, April 04, 2010

    CodePlex Daily Summary for Sunday, April 04, 2010New ProjectsAcervo 2 - Gerenciador de coleções: Acervo 2 is a web application developed in ASP.NET 3.5 with Entity Framework, Coolite UI web controls and MySQL database that helps to catalog and ...AssemblyInfo Editor: AssemblyInfo Editor is a small Visual Studio 2010 extension I developed for my personal use mainly for automatically incrementing AssemblyVersion a...CommLine: It's a Command Line Interpreter. At the moment, it's a beta version, so I wait for developers that wanna help meFlowgraph Viewer: The flowgraph viewer enables users to view, build and share flowgraphs for the Crysis-franchise. It's built on Silverlight4, using MEF and Mvvmlight.Hash Calculator: WPF Windows 7 program to compute SHA1 & MD5 hash functions.MediaRSS library for .NET: This is a small set of libraries that allow you to create, read, and write MediaRSS files. By leveraging the syndication model object in .NET this...MEF Visualizer Tool: Helps to see what is going on inside the CompositionContainerone framework for developing asp.net project more elegent、flexible、and testable: if you are familiar with jsf、cdi、scoped javabean and work under asp.net, you may want to support aop and max flexibility and testability , all of ...Picasa Manager: A Silverlight Out Of Browser Application that Helps you manage your PicasaWeb albums in the easyest way possible.SharePhone: Windows Phone 7 library for connecting to SharePoint 2007/2010. Lets you work with SPWeb, SPList, reading/writing strong typed list items, user ...Silverlight Resource Extension: Silverlight Resource Extension. Extension silverlight project for use ResX resources and localize satellite dll.Silverlight Streamgraph: Streamgraph component for SilverlightTFTP Server: Managed TFTP server implementation, written in C#. Supports: - IPv4 and IPv6 - correct retry behavior. - TFTP options: block size, transfer size, a...Virtual UserGroup Video Helpers: This is a project that holds all the tools used by the C4MVC Virtual Usergroup. Tools written in C# and Powershell to automate, Live Meeting, Expr...xBlog: xBlog is a project to build a simple and extensible Blog Engine based on xml and linqXmlCodeEditor: XmlCodeEditor is a Silverlight 4 control based on RichTextControl that creates coloring and intellisense similar to the one in Visual Studio for ed...Zinc Launcher: Zinc Launcher is a simple Windows Media Center plugin that launches Zinc and attempts to manage the windows as seamlessly as possible. In addition ...New ReleasesAcervo 2 - Gerenciador de coleções: Acervo 2 - v1.0: Arquivos para implantação do sistema Acervo2 Aplicação web Web service Smart ClientAssemblyInfo Editor: Beta 1: Initial release of Assembly Info Editor. At this point, it is feature-complete and is relatively stable. There are undoubtedly some bugs to work o...Box2D.XNA: Box2D.XNA r70 Source Code and Solution: This version is synced to changeset 44697. This represents our official port of the C Box2D up to r70 on the Google Code project. With this versi...Boxee Launcher: Boxee Launcher Release 1.0.1.2: Will now stop Media Center playback before launching BoxeeBoxee Launcher: Boxee Launcher Release 1.0.1.3: Added a background window that attempts to display over the desktop and taskbar, and below Boxee and Media Center so that the desktop and taskbar a...CommLine: Beta Version 0.1: First Beta Of the AppCommLine: Source v0.1 Beta: Source Code C of 0.1 beta versionEncrypted Notes: Encrypted Notes 1.6.2: This is the latest version of Encrypted Notes (1.6.2), with general changes and improved randomness for the key generator. It has an installer that...Hash Calculator: HashCalculator: HashCalculator 1.0Hash Calculator: HashCalculator Source code: HashCalculator 1.0Hulu Launcher: Hulu Launcher 1.0.1.3: Added a background window that attempts to display over the desktop and taskbar, and below Hulu and Media Center so that the desktop and taskbar ar...Hulu Launcher: Hulu Launcher Release 1.0.1.2: Hulu Launcher will now stop playback in Media Center before launching Hulu Desktop.Innovative Games: 4.3 - Sprite Effects: Source code download for chapter 4.3 - "Sprite Effects"MediaRSS library for .NET: 0.1: Alpha release. Majority of MediaRSS spec is supported. A small set of unit test / sample code are included. A lightly tested CustomFormatter object...MEF Visualizer Tool: MEF Visualizer Tool 0.1: Help to see what going on in side CompositionContainer Container = new CompositionContainer( new AggregateCatalog( ...Ncqrs Framework - A CQRS framework for .NET: Ncqrs with sample application: This is the first release of the Ncqrs Framework. It contains the Ncqrs source code and a runnable sample application. All the code in this release...Rubik Cube's 3D Silverlight 3.0 Animated Solution: Rubik Cube 3D with Animated Solution: This project is a realization of Silverlight 3.0 Rubik Cube 3D with Animated Solution. The Solution is available for 3x3x3 cube, other features are...Scrabler: scrabler release 0.6.2.5: fixed a bug that werent executed some scriptsSharePhone: SharePhone: Initial release with basic functionality: Open SharePoint webs and subwebs Retrieve lists on SPWeb objects Read metadata/properties on lists ...SharePhone: SharePhone v.1.0.1: Fixed a bug that prevented saving list items to SharePointSharePoint Labs: SPLab4001A-FRA-Level100: SPLab4001A-FRA-Level100 This SharePoint Lab will teach you the first best practice you should apply when writing code with the SharePoint API. Lab ...Silverlight Resource Extension: ResourceExtension (alpha): Alpha version is not stable. Only for review.Silverlight Streamgraph: Port from processing.org: A port from the processing.org streamgraph. Code-heavy with very little XAML involved at this point.Theocratic Ministry School System: TMSS - Ver 1.1.1: What’s New! Added Menu Options 2010 Schedule Access 2007 Runtime There are still many uncompleted items so this is still a conceptual release....Theocratic Ministry School System: TMSS - Ver 1.1.2: Fixed the Schedule Import. Need needs to be tested. Click import button and make sure you can get the 2010 Schedule from the internet.thinktecture Starter STS (Community Edition): StarterSTS v1.0 RTW: Version 1.0 RTWTribe.Cache: Tribe.Cache Alpha - 0.2.0.0: Tribe.Cache Alpha - 0.2.0.0 - Now has sliding and absolute expiration on cache entries. Functional Alpha Release - But do not use in productionTwitterVB - A .NET Twitter Library: TwitterVB-2.3.1: This is mostly a minor release that adds br.st URL shortening to the menu (API key from http://br.st required)Virtu: Virtu 0.8.1: Source Requirements.NET Framework 3.5 with Service Pack 1 Visual Studio 2008 with Service Pack 1, or Visual C# 2008 Express Edition with Service Pa...Visual Studio DSite: Advanced C++ Calculator: An advanced visual c 2008 calculator that can do all your basic operations, plus some advanced mathematical functions. Source Code Only.xnaWebcam: xnaWebcam 0.3: xnaWebcam 0.3 Version 0.3: -ResolutionSet: 400x300 (Default), 800x600, 1024x720 -Settings Window got Icon -Settings Window Changes -DevConsole.cs ...Most Popular ProjectsRawrWBFS ManagerMicrosoft SQL Server Product Samples: DatabaseASP.NET Ajax LibrarySilverlight ToolkitAJAX Control ToolkitWindows Presentation Foundation (WPF)ASP.NETMicrosoft SQL Server Community & SamplesDotNetNuke® Community EditionMost Active ProjectsGraffiti CMSnopCommerce. Open Source online shop e-commerce solution.RawrFacebook Developer ToolkitjQuery Library for SharePoint Web ServicesLINQ to TwitterBlogEngine.NETN2 CMSBase Class LibrariesFarseer Physics Engine

    Read the article

  • Windows Azure AppFabric: ServiceBus Queue WPF Sample

    - by xamlnotes
    The latest version of the AppFabric ServiceBus now has support for queues and topics. Today I will show you a bit about using queues and also talk about some of the best practices in using them. If you are just getting started, you can check out this site for more info on Windows Azure. One of the 1st things I thought if when Azure was announced back when was how we handle fault tolerance. Web sites hosted in Azure are no much of an issue unless they are using SQL Azure and then you must account for potential fault or latency issues. Today I want to talk a bit about ServiceBus and how to handle fault tolerance.  And theres stuff like connecting to the servicebus and so on you have to take care of. To demonstrate some of the things you can do, let me walk through this sample WPF app that I am posting for you to download. To start off, the application is going to need things like the servicenamespace, issuer details and so forth to make everything work.  To facilitate this I created settings in the wpf app for all of these items. Then I mapped a static class to them and set the values when the program loads like so: StaticElements.ServiceNamespace = Convert.ToString(Properties.Settings.Default["ServiceNamespace"]); StaticElements.IssuerName = Convert.ToString(Properties.Settings.Default["IssuerName"]); StaticElements.IssuerKey = Convert.ToString(Properties.Settings.Default["IssuerKey"]); StaticElements.QueueName = Convert.ToString(Properties.Settings.Default["QueueName"]);   Now I can get to each of these elements plus some other common values or instances directly from the StaticElements class. Now, lets look at the application.  The application looks like this when it starts:   The blue graphic represents the queue we are going to use.  The next figure shows the form after items were added and the queue stats were updated . You can see how the queue has grown: To add an item to the queue, click the Add Order button which displays the following dialog: After you fill in the form and press OK, the order is published to the ServiceBus queue and the form closes. The application also allows you to read the queued items by clicking the Process Orders button. As you can see below, the form shows the queued items in a list and the  queue has disappeared as its now empty. In real practice we normally would use a Windows Service or some other automated process to subscribe to the queue and pull items from it. I created a class named ServiceBusQueueHelper that has the core queue features we need. There are three public methods: * GetOrCreateQueue – Gets an instance of the queue description if the queue exists. if not, it creates the queue and returns a description instance. * SendMessageToQueue = This method takes an order instance and sends it to the queue. The call to the queue is wrapped in the ExecuteAction method from the Transient Fault Tolerance Framework and handles all the retry logic for the queue send process. * GetOrderFromQueue – Grabs an order from the queue and returns a typed order from the queue. It also marks the message complete so the queue can remove it.   Now lets turn to the WPF window code (MainWindow.xaml.cs). The constructor contains the 4 lines shown about to setup the static variables and to perform other initialization tasks. The next few lines setup certain features we need for the ServiceBus: TokenProvider credentials = TokenProvider.CreateSharedSecretTokenProvider(StaticElements.IssuerName, StaticElements.IssuerKey); Uri serviceUri = ServiceBusEnvironment.CreateServiceUri("sb", StaticElements.ServiceNamespace, string.Empty); StaticElements.CurrentNamespaceManager = new NamespaceManager(serviceUri, credentials); StaticElements.CurrentMessagingFactory = MessagingFactory.Create(serviceUri, credentials); The next two lines update the queue name label and also set the timer to 20 seconds.             QueueNameLabel.Content = StaticElements.QueueName;             _timer.Interval = TimeSpan.FromSeconds(20);             Next I call the UpdateQueueStats to initialize the UI for the queue:             UpdateQueueStats();             _timer.Tick += new EventHandler(delegate(object s, EventArgs a)                         {                      UpdateQueueStats();                  });             _timer.Start();         } The UpdateQueueStats method shown below. You can see that it uses the GetOrCreateQueue method mentioned earlier to grab the queue description, then it can get the MessageCount property.         private void UpdateQueueStats()         {             _queueDescription = _serviceBusQueueHelper.GetOrCreateQueue();             QueueCountLabel.Content = "(" + _queueDescription.MessageCount + ")";             long count = _queueDescription.MessageCount;             long queueWidth = count * 20;             QueueRectangle.Width = queueWidth;             QueueTickCount += 1;             TickCountlabel.Content = QueueTickCount.ToString();         }   The ReadQueueItemsButton_Click event handler calls the GetOrderFromQueue method and adds the order to the listbox. If you look at the SendQueueMessageController, you can see the SendMessage method that sends an order to the queue. Its pretty simple as it just creates a new CustomerOrderEntity instance,fills it and then passes it to the SendMessageToQueue. As you can see, all of our interaction with the queue is done through the helper class (ServiceBusQueueHelper). Now lets dig into the helper class. First, before you create anything like this, download the Transient Fault Handling Framework. Microsoft provides this free and they also provide the C# source. Theres a great article that shows how to use this framework with ServiceBus. I included the entire ServiceBusQueueHelper class in List 1. Notice the using statements for TransientFaultHandling: using Microsoft.AzureCAT.Samples.TransientFaultHandling; using Microsoft.AzureCAT.Samples.TransientFaultHandling.ServiceBus; The SendMessageToQueue in Listing 1 shows how to use the async send features of ServiceBus with them wrapped in the Transient Fault Handling Framework.  It is not much different than plain old ServiceBus calls but it sure makes it easy to have the fault tolerance added almost for free. The GetOrderFromQueue uses the standard synchronous methods to access the queue. The best practices article walks through using the async approach for a receive operation also.  Notice that this method makes a call to Receive to get the message then makes a call to GetBody to get a new strongly typed instance of CustomerOrderEntity to return. Listing 1 using System; using System.Collections.Generic; using System.Linq; using System.Text; using Microsoft.AzureCAT.Samples.TransientFaultHandling; using Microsoft.AzureCAT.Samples.TransientFaultHandling.ServiceBus; using Microsoft.ServiceBus; using Microsoft.ServiceBus.Messaging; using System.Xml.Serialization; using System.Diagnostics; namespace WPFServicebusPublishSubscribeSample {     class ServiceBusQueueHelper     {         RetryPolicy currentPolicy = new RetryPolicy<ServiceBusTransientErrorDetectionStrategy>(RetryPolicy.DefaultClientRetryCount);         QueueClient currentQueueClient;         public QueueDescription GetOrCreateQueue()         {                        QueueDescription queue = null;             bool createNew = false;             try             {                 // First, let's see if a queue with the specified name already exists.                 queue = currentPolicy.ExecuteAction<QueueDescription>(() => { return StaticElements.CurrentNamespaceManager.GetQueue(StaticElements.QueueName); });                 createNew = (queue == null);             }             catch (MessagingEntityNotFoundException)             {                 // Looks like the queue does not exist. We should create a new one.                 createNew = true;             }             // If a queue with the specified name doesn't exist, it will be auto-created.             if (createNew)             {                 try                 {                     var newqueue = new QueueDescription(StaticElements.QueueName);                     queue = currentPolicy.ExecuteAction<QueueDescription>(() => { return StaticElements.CurrentNamespaceManager.CreateQueue(newqueue); });                 }                 catch (MessagingEntityAlreadyExistsException)                 {                     // A queue under the same name was already created by someone else,                     // perhaps by another instance. Let's just use it.                     queue = currentPolicy.ExecuteAction<QueueDescription>(() => { return StaticElements.CurrentNamespaceManager.GetQueue(StaticElements.QueueName); });                 }             }             currentQueueClient = StaticElements.CurrentMessagingFactory.CreateQueueClient(StaticElements.QueueName);             return queue;         }         public void SendMessageToQueue(CustomerOrderEntity Order)         {             BrokeredMessage msg = null;             GetOrCreateQueue();             // Use a retry policy to execute the Send action in an asynchronous and reliable fashion.             currentPolicy.ExecuteAction             (                 (cb) =>                 {                     // A new BrokeredMessage instance must be created each time we send it. Reusing the original BrokeredMessage instance may not                     // work as the state of its BodyStream cannot be guaranteed to be readable from the beginning.                     msg = new BrokeredMessage(Order);                     // Send the event asynchronously.                     currentQueueClient.BeginSend(msg, cb, null);                 },                 (ar) =>                 {                     try                     {                         // Complete the asynchronous operation.                         // This may throw an exception that will be handled internally by the retry policy.                         currentQueueClient.EndSend(ar);                     }                     finally                     {                         // Ensure that any resources allocated by a BrokeredMessage instance are released.                         if (msg != null)                         {                             msg.Dispose();                             msg = null;                         }                     }                 },                 (ex) =>                 {                     // Always dispose the BrokeredMessage instance even if the send                     // operation has completed unsuccessfully.                     if (msg != null)                     {                         msg.Dispose();                         msg = null;                     }                     // Always log exceptions.                     Trace.TraceError(ex.Message);                 }             );         }                 public CustomerOrderEntity GetOrderFromQueue()         {             CustomerOrderEntity Order = new CustomerOrderEntity();             QueueClient myQueueClient = StaticElements.CurrentMessagingFactory.CreateQueueClient(StaticElements.QueueName, ReceiveMode.PeekLock);             BrokeredMessage message;             ServiceBusQueueHelper serviceBusQueueHelper = new ServiceBusQueueHelper();             QueueDescription queueDescription;             queueDescription = serviceBusQueueHelper.GetOrCreateQueue();             if (queueDescription.MessageCount > 0)             {                 message = myQueueClient.Receive(TimeSpan.FromSeconds(90));                 if (message != null)                 {                     try                     {                         Order = message.GetBody<CustomerOrderEntity>();                         message.Complete();                     }                     catch (Exception ex)                     {                         throw ex;                     }                 }                 else                 {                     throw new Exception("Did not receive the messages");                 }             }             return Order;         }     } } I will post a link to the download demo in a separate post soon.

    Read the article

  • Demystifying Silverlight Dependency Properties

    - by dwahlin
    I have the opportunity to teach a lot of people about Silverlight (amongst other technologies) and one of the topics that definitely confuses people initially is the concept of dependency properties. I confess that when I first heard about them my initial thought was “Why do we need a specialized type of property?” While you can certainly use standard CLR properties in Silverlight applications, Silverlight relies heavily on dependency properties for just about everything it does behind the scenes. In fact, dependency properties are an essential part of the data binding, template, style and animation functionality available in Silverlight. They simply back standard CLR properties. In this post I wanted to put together a (hopefully) simple explanation of dependency properties and why you should care about them if you’re currently working with Silverlight or looking to move to it.   What are Dependency Properties? XAML provides a great way to define layout controls, user input controls, shapes, colors and data binding expressions in a declarative manner. There’s a lot that goes on behind the scenes in order to make XAML work and an important part of that magic is the use of dependency properties. If you want to bind data to a property, style it, animate it or transform it in XAML then the property involved has to be a dependency property to work properly. If you’ve ever positioned a control in a Canvas using Canvas.Left or placed a control in a specific Grid row using Grid.Row then you’ve used an attached property which is a specialized type of dependency property. Dependency properties play a key role in XAML and the overall Silverlight framework. Any property that you bind, style, template, animate or transform must be a dependency property in Silverlight applications. You can programmatically bind values to controls and work with standard CLR properties, but if you want to use the built-in binding expressions available in XAML (one of my favorite features) or the Binding class available through code then dependency properties are a necessity. Dependency properties aren’t needed in every situation, but if you want to customize your application very much you’ll eventually end up needing them. For example, if you create a custom user control and want to expose a property that consumers can use to change the background color, you have to define it as a dependency property if you want bindings, styles and other features to be available for use. Now that the overall purpose of dependency properties has been discussed let’s take a look at how you can create them. Creating Dependency Properties When .NET first came out you had to write backing fields for each property that you defined as shown next: Brush _ScheduleBackground; public Brush ScheduleBackground { get { return _ScheduleBackground; } set { _ScheduleBackground = value; } } Although .NET 2.0 added auto-implemented properties (for example: public Brush ScheduleBackground { get; set; }) where the compiler would automatically generate the backing field used by get and set blocks, the concept is still the same as shown in the above code; a property acts as a wrapper around a field. Silverlight dependency properties replace the _ScheduleBackground field shown in the previous code and act as the backing store for a standard CLR property. The following code shows an example of defining a dependency property named ScheduleBackgroundProperty: public static readonly DependencyProperty ScheduleBackgroundProperty = DependencyProperty.Register("ScheduleBackground", typeof(Brush), typeof(Scheduler), null);   Looking through the code the first thing that may stand out is that the definition for ScheduleBackgroundProperty is marked as static and readonly and that the property appears to be of type DependencyProperty. This is a standard pattern that you’ll use when working with dependency properties. You’ll also notice that the property explicitly adds the word “Property” to the name which is another standard you’ll see followed. In addition to defining the property, the code also makes a call to the static DependencyProperty.Register method and passes the name of the property to register (ScheduleBackground in this case) as a string. The type of the property, the type of the class that owns the property and a null value (more on the null value later) are also passed. In this example a class named Scheduler acts as the owner. The code handles registering the property as a dependency property with the call to Register(), but there’s a little more work that has to be done to allow a value to be assigned to and retrieved from the dependency property. The following code shows the complete code that you’ll typically use when creating a dependency property. You can find code snippets that greatly simplify the process of creating dependency properties out on the web. The MVVM Light download available from http://mvvmlight.codeplex.com comes with built-in dependency properties snippets as well. public static readonly DependencyProperty ScheduleBackgroundProperty = DependencyProperty.Register("ScheduleBackground", typeof(Brush), typeof(Scheduler), null); public Brush ScheduleBackground { get { return (Brush)GetValue(ScheduleBackgroundProperty); } set { SetValue(ScheduleBackgroundProperty, value); } } The standard CLR property code shown above should look familiar since it simply wraps the dependency property. However, you’ll notice that the get and set blocks call GetValue and SetValue methods respectively to perform the appropriate operation on the dependency property. GetValue and SetValue are members of the DependencyObject class which is another key component of the Silverlight framework. Silverlight controls and classes (TextBox, UserControl, CompositeTransform, DataGrid, etc.) ultimately derive from DependencyObject in their inheritance hierarchy so that they can support dependency properties. Dependency properties defined in Silverlight controls and other classes tend to follow the pattern of registering the property by calling Register() and then wrapping the dependency property in a standard CLR property (as shown above). They have a standard property that wraps a registered dependency property and allows a value to be assigned and retrieved. If you need to expose a new property on a custom control that supports data binding expressions in XAML then you’ll follow this same pattern. Dependency properties are extremely useful once you understand why they’re needed and how they’re defined. Detecting Changes and Setting Defaults When working with dependency properties there will be times when you want to assign a default value or detect when a property changes so that you can keep the user interface in-sync with the property value. Silverlight’s DependencyProperty.Register() method provides a fourth parameter that accepts a PropertyMetadata object instance. PropertyMetadata can be used to hook a callback method to a dependency property. The callback method is called when the property value changes. PropertyMetadata can also be used to assign a default value to the dependency property. By assigning a value of null for the final parameter passed to Register() you’re telling the property that you don’t care about any changes and don’t have a default value to apply. Here are the different constructor overloads available on the PropertyMetadata class: PropertyMetadata Constructor Overload Description PropertyMetadata(Object) Used to assign a default value to a dependency property. PropertyMetadata(PropertyChangedCallback) Used to assign a property changed callback method. PropertyMetadata(Object, PropertyChangedCalback) Used to assign a default property value and a property changed callback.   There are many situations where you need to know when a dependency property changes or where you want to apply a default. Performing either task is easily accomplished by creating a new instance of the PropertyMetadata class and passing the appropriate values to its constructor. The following code shows an enhanced version of the initial dependency property code shown earlier that demonstrates these concepts: public Brush ScheduleBackground { get { return (Brush)GetValue(ScheduleBackgroundProperty); } set { SetValue(ScheduleBackgroundProperty, value); } } public static readonly DependencyProperty ScheduleBackgroundProperty = DependencyProperty.Register("ScheduleBackground", typeof(Brush), typeof(Scheduler), new PropertyMetadata(new SolidColorBrush(Colors.LightGray), ScheduleBackgroundChanged)); private static void ScheduleBackgroundChanged(DependencyObject d, DependencyPropertyChangedEventArgs e) { var scheduler = d as Scheduler; scheduler.Background = e.NewValue as Brush; } The code wires ScheduleBackgroundProperty to a property change callback method named ScheduleBackgroundChanged. What’s interesting is that this callback method is static (as is the dependency property) so it gets passed the instance of the object that owns the property that has changed (otherwise we wouldn’t be able to get to the object instance). In this example the dependency object is cast to a Scheduler object and its Background property is assigned to the new value of the dependency property. The code also handles assigning a default value of LightGray to the dependency property by creating a new instance of a SolidColorBrush. To Sum Up In this post you’ve seen the role of dependency properties and how they can be defined in code. They play a big role in XAML and the overall Silverlight framework. You can think of dependency properties as being replacements for fields that you’d normally use with standard CLR properties. In addition to a discussion on how dependency properties are created, you also saw how to use the PropertyMetadata class to define default dependency property values and hook a dependency property to a callback method. The most important thing to understand with dependency properties (especially if you’re new to Silverlight) is that they’re needed if you want a property to support data binding, animations, transformations and styles properly. Any time you create a property on a custom control or user control that has these types of requirements you’ll want to pick a dependency property over of a standard CLR property with a backing field. There’s more that can be covered with dependency properties including a related property called an attached property….more to come.

    Read the article

  • Solaris X86 AESNI OpenSSL Engine

    - by danx
    Solaris X86 AESNI OpenSSL Engine Cryptography is a major component of secure e-commerce. Since cryptography is compute intensive and adds a significant load to applications, such as SSL web servers (https), crypto performance is an important factor. Providing accelerated crypto hardware greatly helps these applications and will help lead to a wider adoption of cryptography, and lower cost, in e-commerce and other applications. The Intel Westmere microprocessor has six new instructions to acclerate AES encryption. They are called "AESNI" for "AES New Instructions". These are unprivileged instructions, so no "root", other elevated access, or context switch is required to execute these instructions. These instructions are used in a new built-in OpenSSL 1.0 engine available in Solaris 11, the aesni engine. Previous Work Previously, AESNI instructions were introduced into the Solaris x86 kernel and libraries. That is, the "aes" kernel module (used by IPsec and other kernel modules) and the Solaris pkcs11 library (for user applications). These are available in Solaris 10 10/09 (update 8) and above, and Solaris 11. The work here is to add the aesni engine to OpenSSL. X86 AESNI Instructions Intel's Xeon 5600 is one of the processors that support AESNI. This processor is used in the Sun Fire X4170 M2 As mentioned above, six new instructions acclerate AES encryption in processor silicon. The new instructions are: aesenc performs one round of AES encryption. One encryption round is composed of these steps: substitute bytes, shift rows, mix columns, and xor the round key. aesenclast performs the final encryption round, which is the same as above, except omitting the mix columns (which is only needed for the next encryption round). aesdec performs one round of AES decryption aesdeclast performs the final AES decryption round aeskeygenassist Helps expand the user-provided key into a "key schedule" of keys, one per round aesimc performs an "inverse mixed columns" operation to convert the encryption key schedule into a decryption key schedule pclmulqdq Not a AESNI instruction, but performs "carryless multiply" operations to acclerate AES GCM mode. Since the AESNI instructions are implemented in hardware, they take a constant number of cycles and are not vulnerable to side-channel timing attacks that attempt to discern some bits of data from the time taken to encrypt or decrypt the data. Solaris x86 and OpenSSL Software Optimizations Having X86 AESNI hardware crypto instructions is all well and good, but how do we access it? The software is available with Solaris 11 and is used automatically if you are running Solaris x86 on a AESNI-capable processor. AESNI is used internally in the kernel through kernel crypto modules and is available in user space through the PKCS#11 library. For OpenSSL on Solaris 11, AESNI crypto is available directly with a new built-in OpenSSL 1.0 engine, called the "aesni engine." This is in lieu of the extra overhead of going through the Solaris OpenSSL pkcs11 engine, which accesses Solaris crypto and digest operations. Instead, AESNI assembly is included directly in the new aesni engine. Instead of including the aesni engine in a separate library in /lib/openssl/engines/, the aesni engine is "built-in", meaning it is included directly in OpenSSL's libcrypto.so.1.0.0 library. This reduces overhead and the need to manually specify the aesni engine. Since the engine is built-in (that is, in libcrypto.so.1.0.0), the openssl -engine command line flag or API call is not needed to access the engine—the aesni engine is used automatically on AESNI hardware. Ciphers and Digests supported by OpenSSL aesni engine The Openssl aesni engine auto-detects if it's running on AESNI hardware and uses AESNI encryption instructions for these ciphers: AES-128-CBC, AES-192-CBC, AES-256-CBC, AES-128-CFB128, AES-192-CFB128, AES-256-CFB128, AES-128-CTR, AES-192-CTR, AES-256-CTR, AES-128-ECB, AES-192-ECB, AES-256-ECB, AES-128-OFB, AES-192-OFB, and AES-256-OFB. Implementation of the OpenSSL aesni engine The AESNI assembly language routines are not a part of the regular Openssl 1.0.0 release. AESNI is a part of the "HEAD" ("development" or "unstable") branch of OpenSSL, for future release. But AESNI is also available as a separate patch provided by Intel to the OpenSSL project for OpenSSL 1.0.0. A minimal amount of "glue" code in the aesni engine works between the OpenSSL libcrypto.so.1.0.0 library and the assembly functions. The aesni engine code is separate from the base OpenSSL code and requires patching only a few source files to use it. That means OpenSSL can be more easily updated to future versions without losing the performance from the built-in aesni engine. OpenSSL aesni engine Performance Here's some graphs of aesni engine performance I measured by running openssl speed -evp $algorithm where $algorithm is aes-128-cbc, aes-192-cbc, and aes-256-cbc. These are using the 64-bit version of openssl on the same AESNI hardware, a Sun Fire X4170 M2 with a Intel Xeon E5620 @2.40GHz, running Solaris 11 FCS. "Before" is openssl without the aesni engine and "after" is openssl with the aesni engine. The numbers are MBytes/second. OpenSSL aesni engine performance on Sun Fire X4170 M2 (Xeon E5620 @2.40GHz) (Higher is better; "before"=OpenSSL on AESNI without AESNI engine software, "after"=OpenSSL AESNI engine) As you can see the speedup is dramatic for all 3 key lengths and for data sizes from 16 bytes to 8 Kbytes—AESNI is about 7.5-8x faster over hand-coded amd64 assembly (without aesni instructions). Verifying the OpenSSL aesni engine is present The easiest way to determine if you are running the aesni engine is to type "openssl engine" on the command line. No configuration, API, or command line options are needed to use the OpenSSL aesni engine. If you are running on Intel AESNI hardware with Solaris 11 FCS, you'll see this output indicating you are using the aesni engine: intel-westmere $ openssl engine (aesni) Intel AES-NI engine (no-aesni) (dynamic) Dynamic engine loading support (pkcs11) PKCS #11 engine support If you are running on Intel without AESNI hardware you'll see this output indicating the hardware can't support the aesni engine: intel-nehalem $ openssl engine (aesni) Intel AES-NI engine (no-aesni) (dynamic) Dynamic engine loading support (pkcs11) PKCS #11 engine support For Solaris on SPARC or older Solaris OpenSSL software, you won't see any aesni engine line at all. Third-party OpenSSL software (built yourself or from outside Oracle) will not have the aesni engine either. Solaris 11 FCS comes with OpenSSL version 1.0.0e. The output of typing "openssl version" should be "OpenSSL 1.0.0e 6 Sep 2011". 64- and 32-bit OpenSSL OpenSSL comes in both 32- and 64-bit binaries. 64-bit executable is now the default, at /usr/bin/openssl, and OpenSSL 64-bit libraries at /lib/amd64/libcrypto.so.1.0.0 and libssl.so.1.0.0 The 32-bit executable is at /usr/bin/i86/openssl and the libraries are at /lib/libcrytpo.so.1.0.0 and libssl.so.1.0.0. Availability The OpenSSL AESNI engine is available in Solaris 11 x86 for both the 64- and 32-bit versions of OpenSSL. It is not available with Solaris 10. You must have a processor that supports AESNI instructions, otherwise OpenSSL will fallback to the older, slower AES implementation without AESNI. Processors that support AESNI include most Westmere and Sandy Bridge class processor architectures. Some low-end processors (such as for mobile/laptop platforms) do not support AESNI. The easiest way to determine if the processor supports AESNI is with the isainfo -v command—look for "amd64" and "aes" in the output: $ isainfo -v 64-bit amd64 applications pclmulqdq aes sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov amd_sysc cx8 tsc fpu Conclusion The Solaris 11 OpenSSL aesni engine provides easy access to powerful Intel AESNI hardware cryptography, in addition to Solaris userland PKCS#11 libraries and Solaris crypto kernel modules.

    Read the article

  • Solaris X86 AESNI OpenSSL Engine

    - by danx
    Solaris X86 AESNI OpenSSL Engine Cryptography is a major component of secure e-commerce. Since cryptography is compute intensive and adds a significant load to applications, such as SSL web servers (https), crypto performance is an important factor. Providing accelerated crypto hardware greatly helps these applications and will help lead to a wider adoption of cryptography, and lower cost, in e-commerce and other applications. The Intel Westmere microprocessor has six new instructions to acclerate AES encryption. They are called "AESNI" for "AES New Instructions". These are unprivileged instructions, so no "root", other elevated access, or context switch is required to execute these instructions. These instructions are used in a new built-in OpenSSL 1.0 engine available in Solaris 11, the aesni engine. Previous Work Previously, AESNI instructions were introduced into the Solaris x86 kernel and libraries. That is, the "aes" kernel module (used by IPsec and other kernel modules) and the Solaris pkcs11 library (for user applications). These are available in Solaris 10 10/09 (update 8) and above, and Solaris 11. The work here is to add the aesni engine to OpenSSL. X86 AESNI Instructions Intel's Xeon 5600 is one of the processors that support AESNI. This processor is used in the Sun Fire X4170 M2 As mentioned above, six new instructions acclerate AES encryption in processor silicon. The new instructions are: aesenc performs one round of AES encryption. One encryption round is composed of these steps: substitute bytes, shift rows, mix columns, and xor the round key. aesenclast performs the final encryption round, which is the same as above, except omitting the mix columns (which is only needed for the next encryption round). aesdec performs one round of AES decryption aesdeclast performs the final AES decryption round aeskeygenassist Helps expand the user-provided key into a "key schedule" of keys, one per round aesimc performs an "inverse mixed columns" operation to convert the encryption key schedule into a decryption key schedule pclmulqdq Not a AESNI instruction, but performs "carryless multiply" operations to acclerate AES GCM mode. Since the AESNI instructions are implemented in hardware, they take a constant number of cycles and are not vulnerable to side-channel timing attacks that attempt to discern some bits of data from the time taken to encrypt or decrypt the data. Solaris x86 and OpenSSL Software Optimizations Having X86 AESNI hardware crypto instructions is all well and good, but how do we access it? The software is available with Solaris 11 and is used automatically if you are running Solaris x86 on a AESNI-capable processor. AESNI is used internally in the kernel through kernel crypto modules and is available in user space through the PKCS#11 library. For OpenSSL on Solaris 11, AESNI crypto is available directly with a new built-in OpenSSL 1.0 engine, called the "aesni engine." This is in lieu of the extra overhead of going through the Solaris OpenSSL pkcs11 engine, which accesses Solaris crypto and digest operations. Instead, AESNI assembly is included directly in the new aesni engine. Instead of including the aesni engine in a separate library in /lib/openssl/engines/, the aesni engine is "built-in", meaning it is included directly in OpenSSL's libcrypto.so.1.0.0 library. This reduces overhead and the need to manually specify the aesni engine. Since the engine is built-in (that is, in libcrypto.so.1.0.0), the openssl -engine command line flag or API call is not needed to access the engine—the aesni engine is used automatically on AESNI hardware. Ciphers and Digests supported by OpenSSL aesni engine The Openssl aesni engine auto-detects if it's running on AESNI hardware and uses AESNI encryption instructions for these ciphers: AES-128-CBC, AES-192-CBC, AES-256-CBC, AES-128-CFB128, AES-192-CFB128, AES-256-CFB128, AES-128-CTR, AES-192-CTR, AES-256-CTR, AES-128-ECB, AES-192-ECB, AES-256-ECB, AES-128-OFB, AES-192-OFB, and AES-256-OFB. Implementation of the OpenSSL aesni engine The AESNI assembly language routines are not a part of the regular Openssl 1.0.0 release. AESNI is a part of the "HEAD" ("development" or "unstable") branch of OpenSSL, for future release. But AESNI is also available as a separate patch provided by Intel to the OpenSSL project for OpenSSL 1.0.0. A minimal amount of "glue" code in the aesni engine works between the OpenSSL libcrypto.so.1.0.0 library and the assembly functions. The aesni engine code is separate from the base OpenSSL code and requires patching only a few source files to use it. That means OpenSSL can be more easily updated to future versions without losing the performance from the built-in aesni engine. OpenSSL aesni engine Performance Here's some graphs of aesni engine performance I measured by running openssl speed -evp $algorithm where $algorithm is aes-128-cbc, aes-192-cbc, and aes-256-cbc. These are using the 64-bit version of openssl on the same AESNI hardware, a Sun Fire X4170 M2 with a Intel Xeon E5620 @2.40GHz, running Solaris 11 FCS. "Before" is openssl without the aesni engine and "after" is openssl with the aesni engine. The numbers are MBytes/second. OpenSSL aesni engine performance on Sun Fire X4170 M2 (Xeon E5620 @2.40GHz) (Higher is better; "before"=OpenSSL on AESNI without AESNI engine software, "after"=OpenSSL AESNI engine) As you can see the speedup is dramatic for all 3 key lengths and for data sizes from 16 bytes to 8 Kbytes—AESNI is about 7.5-8x faster over hand-coded amd64 assembly (without aesni instructions). Verifying the OpenSSL aesni engine is present The easiest way to determine if you are running the aesni engine is to type "openssl engine" on the command line. No configuration, API, or command line options are needed to use the OpenSSL aesni engine. If you are running on Intel AESNI hardware with Solaris 11 FCS, you'll see this output indicating you are using the aesni engine: intel-westmere $ openssl engine (aesni) Intel AES-NI engine (no-aesni) (dynamic) Dynamic engine loading support (pkcs11) PKCS #11 engine support If you are running on Intel without AESNI hardware you'll see this output indicating the hardware can't support the aesni engine: intel-nehalem $ openssl engine (aesni) Intel AES-NI engine (no-aesni) (dynamic) Dynamic engine loading support (pkcs11) PKCS #11 engine support For Solaris on SPARC or older Solaris OpenSSL software, you won't see any aesni engine line at all. Third-party OpenSSL software (built yourself or from outside Oracle) will not have the aesni engine either. Solaris 11 FCS comes with OpenSSL version 1.0.0e. The output of typing "openssl version" should be "OpenSSL 1.0.0e 6 Sep 2011". 64- and 32-bit OpenSSL OpenSSL comes in both 32- and 64-bit binaries. 64-bit executable is now the default, at /usr/bin/openssl, and OpenSSL 64-bit libraries at /lib/amd64/libcrypto.so.1.0.0 and libssl.so.1.0.0 The 32-bit executable is at /usr/bin/i86/openssl and the libraries are at /lib/libcrytpo.so.1.0.0 and libssl.so.1.0.0. Availability The OpenSSL AESNI engine is available in Solaris 11 x86 for both the 64- and 32-bit versions of OpenSSL. It is not available with Solaris 10. You must have a processor that supports AESNI instructions, otherwise OpenSSL will fallback to the older, slower AES implementation without AESNI. Processors that support AESNI include most Westmere and Sandy Bridge class processor architectures. Some low-end processors (such as for mobile/laptop platforms) do not support AESNI. The easiest way to determine if the processor supports AESNI is with the isainfo -v command—look for "amd64" and "aes" in the output: $ isainfo -v 64-bit amd64 applications pclmulqdq aes sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov amd_sysc cx8 tsc fpu Conclusion The Solaris 11 OpenSSL aesni engine provides easy access to powerful Intel AESNI hardware cryptography, in addition to Solaris userland PKCS#11 libraries and Solaris crypto kernel modules.

    Read the article

  • Routing to a Controller with no View in Angular

    - by Rick Strahl
    I've finally had some time to put Angular to use this week in a small project I'm working on for fun. Angular's routing is great and makes it real easy to map URL routes to controllers and model data into views. But what if you don't actually need a view, if you effectively need a headless controller that just runs code, but doesn't render a view?Preserve the ViewWhen Angular navigates a route and and presents a new view, it loads the controller and then renders the view from scratch. Views are not cached or stored, but displayed and then removed. So if you have routes configured like this:'use strict'; // Declare app level module which depends on filters, and services window.myApp = angular.module('myApp', ['myApp.filters', 'myApp.services', 'myApp.directives', 'myApp.controllers']). config(['$routeProvider', function($routeProvider) { $routeProvider.when('/map', { template: "partials/map.html ", controller: 'mapController', reloadOnSearch: false, animation: 'slide' }); … $routeProvider.otherwise({redirectTo: '/map'}); }]); Angular routes to the mapController and then re-renders the map.html template with the new data from the $scope filled in.But, but… I don't want a new View!Now in most cases this works just fine. If I'm rendering plain DOM content, or textboxes in a form interface that is all fine and dandy - it's perfectly fine to completely re-render the UI.But in some cases, the UI that's being managed has state and shouldn't be redrawn. In this case the main page in question has a Google Map on it. The map is  going to be manipulated throughout the lifetime of the application and the rest of the pages. In my application I have a toolbar on the bottom and the rest of the content is replaced/switched out by the Angular Views:The problem is that the map shouldn't be redrawn each time the Location view is activated. It should maintain its state, such as the current position selected (which can move), and shouldn't redraw due to the overhead of re-rendering the initial map.Originally I set up the map, exactly like all my other views - as a partial, that is rendered with a separate file, but that didn't work.The Workaround - Controller Only RoutesThe workaround for this goes decidedly against Angular's way of doing things:Setting up a Template-less RouteIn-lining the map view directly into the main pageHiding and showing the map view manuallyLet's see how this works.Controller Only RouteThe template-less route is basically a route that doesn't have any template to render. This is not directly supported by Angular, but thankfully easy to fake. The end goal here is that I want to simply have the Controller fire and then have the controller manage the display of the already active view by hiding and showing the map and any other view content, in effect bypassing Angular's view display management.In short - I want a controller action, but no view rendering.The controller-only or template-less route looks like this: $routeProvider.when('/map', { template: " ", // just fire controller controller: 'mapController', animation: 'slide' });Notice I'm using the template property rather than templateUrl (used in the first example above), which allows specifying a string template, and leaving it blank. The template property basically allows you to provide a templated string using Angular's HandleBar like binding syntax which can be useful at times. You can use plain strings or strings with template code in the template, or as I'm doing here a blank string to essentially fake 'just clear the view'. In-lined ViewSo if there's no view where does the HTML go? Because I don't want Angular to manage the view the map markup is in-lined directly into the page. So instead of rendering the map into the Angular view container, the content is simply set up as inline HTML to display as a sibling to the view container.<div id="MapContent" data-icon="LocationIcon" ng-controller="mapController" style="display:none"> <div class="headerbar"> <div class="right-header" style="float:right"> <a id="btnShowSaveLocationDialog" class="iconbutton btn btn-sm" href="#/saveLocation" style="margin-right: 2px;"> <i class="icon-ok icon-2x" style="color: lightgreen; "></i> Save Location </a> </div> <div class="left-header">GeoCrumbs</div> </div> <div class="clearfix"></div> <div id="Message"> <i id="MessageIcon"></i> <span id="MessageText"></span> </div> <div id="Map" class="content-area"> </div> </div> <div id="ViewPlaceholder" ng-view></div>Note that there's the #MapContent element and the #ViewPlaceHolder. The #MapContent is my static map view that is always 'live' and is initially hidden. It is initially hidden and doesn't get made visible until the MapController controller activates it which does the initial rendering of the map. After that the element is persisted with the map data already loaded and any future access only updates the map with new locations/pins etc.Note that default route is assigned to the mapController, which means that the mapController is fired right as the page loads, which is actually a good thing in this case, as the map is the cornerstone of this app that is manipulated by some of the other controllers/views.The Controller handles some UISince there's effectively no view activation with the template-less route, the controller unfortunately has to take over some UI interaction directly. Specifically it has to swap the hidden state between the map and any of the other views.Here's what the controller looks like:myApp.controller('mapController', ["$scope", "$routeParams", "locationData", function($scope, $routeParams, locationData) { $scope.locationData = locationData.location; $scope.locationHistory = locationData.locationHistory; if ($routeParams.mode == "currentLocation") { bc.getCurrentLocation(false); } bc.showMap(false,"#LocationIcon"); }]);bc.showMap is responsible for a couple of display tasks that hide/show the views/map and for activating/deactivating icons. The code looks like this:this.showMap = function (hide,selActiveIcon) { if (!hide) $("#MapContent").show(); else { $("#MapContent").hide(); } self.fitContent(); if (selActiveIcon) { $(".iconbutton").removeClass("active"); $(selActiveIcon).addClass("active"); } };Each of the other controllers in the app also call this function when they are activated to basically hide the map and make the View Content area visible. The map controller makes the map.This is UI code and calling this sort of thing from controllers is generally not recommended, but I couldn't figure out a way using directives to make this work any more easily than this. It'd be easy to hide and show the map and view container using a flag an ng-show, but it gets tricky because of scoping of the $scope. I would have to resort to storing this setting on the $rootscope which I try to avoid. The same issues exists with the icons.It sure would be nice if Angular had a way to explicitly specify that a View shouldn't be destroyed when another view is activated, so currently this workaround is required. Searching around, I saw a number of whacky hacks to get around this, but this solution I'm using here seems much easier than any of that I could dig up even if it doesn't quite fit the 'Angular way'.Angular nice, until it's notOverall I really like Angular and the way it works although it took me a bit of time to get my head around how all the pieces fit together. Once I got the idea how the app/routes, the controllers and views snap together, putting together Angular pages becomes fairly straightforward. You can get quite a bit done never going beyond those basics. For most common things Angular's default routing and view presentation works very well.But, when you do something a bit more complex, where there are multiple dependencies or as in this case where Angular doesn't appear to support a feature that's absolutely necessary, you're on your own. Finding information on more advanced topics is not trivial especially since versions are changing so rapidly and the low level behaviors are changing frequently so finding something that works is often an exercise in trial and error. Not that this is surprising. Angular is a complex piece of kit as are all the frameworks that try to hack JavaScript into submission to do something that it was really never designed to. After all everything about a framework like Angular is an elaborate hack. A lot of shit has to happen to make this all work together and at that Angular (and Ember, Durandel etc.) are pretty amazing pieces of JavaScript code. So no harm, no foul, but I just can't help feeling like working in toy sandbox at times :-)© Rick Strahl, West Wind Technologies, 2005-2013Posted in Angular  JavaScript   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • How to Avoid Your Next 12-Month Science Project

    - by constant
    While most customers immediately understand how the magic of Oracle's Hybrid Columnar Compression, intelligent storage servers and flash memory make Exadata uniquely powerful against home-grown database systems, some people think that Exalogic is nothing more than a bunch of x86 servers, a storage appliance and an InfiniBand (IB) network, built into a single rack. After all, isn't this exactly what the High Performance Computing (HPC) world has been doing for decades? On the surface, this may be true. And some people tried exactly that: They tried to put together their own version of Exalogic, but then they discover there's a lot more to building a system than buying hardware and assembling it together. IT is not Ikea. Why is that so? Could it be there's more going on behind the scenes than merely putting together a bunch of servers, a storage array and an InfiniBand network into a rack? Let's explore some of the special sauce that makes Exalogic unique and un-copyable, so you can save yourself from your next 6- to 12-month science project that distracts you from doing real work that adds value to your company. Engineering Systems is Hard Work! The backbone of Exalogic is its InfiniBand network: 4 times better bandwidth than even 10 Gigabit Ethernet, and only about a tenth of its latency. What a potential for increased scalability and throughput across the middleware and database layers! But InfiniBand is a beast that needs to be tamed: It is true that Exalogic uses a standard, open-source Open Fabrics Enterprise Distribution (OFED) InfiniBand driver stack. Unfortunately, this software has been developed by the HPC community with fastest speed in mind (which is good) but, despite the name, not many other enterprise-class requirements are included (which is less good). Here are some of the improvements that Oracle's InfiniBand development team had to add to the OFED stack to make it enterprise-ready, simply because typical HPC users didn't have the need to implement them: More than 100 bug fixes in the pieces that were not related to the Message Passing Interface Protocol (MPI), which is the protocol that HPC users use most of the time, but which is less useful in the enterprise. Performance optimizations and tuning across the whole IB stack: From Switches, Host Channel Adapters (HCAs) and drivers to low-level protocols, middleware and applications. Yes, even the standard HPC IB stack could be improved in terms of performance. Ethernet over IB (EoIB): Exalogic uses InfiniBand internally to reach high performance, but it needs to play nicely with datacenters around it. That's why Oracle added Ethernet over InfiniBand technology to it that allows for creating many virtual 10GBE adapters inside Exalogic's nodes that are aggregated and connected to Exalogic's IB gateway switches. While this is an open standard, it's up to the vendor to implement it. In this case, Oracle integrated the EoIB stack with Oracle's own IB to 10GBE gateway switches, and made it fully virtualized from the beginning. This means that Exalogic customers can completely rewire their server infrastructure inside the rack without having to physically pull or plug a single cable - a must-have for every cloud deployment. Anybody who wants to match this level of integration would need to add an InfiniBand switch development team to their project. Or just buy Oracle's gateway switches, which are conveniently shipped with a whole server infrastructure attached! IPv6 support for InfiniBand's Sockets Direct Protocol (SDP), Reliable Datagram Sockets (RDS), TCP/IP over IB (IPoIB) and EoIB protocols. Because no IPv6 = not very enterprise-class. HA capability for SDP. High Availability is not a big requirement for HPC, but for enterprise-class application servers it is. Every node in Exalogic's InfiniBand network is connected twice for redundancy. If any cable or port or HCA fails, there's always a replacement link ready to take over. This requires extra magic at the protocol level to work. So in addition to Weblogic's failover capabilities, Oracle implemented IB automatic path migration at the SDP level to avoid unnecessary failover operations at the middleware level. Security, for example spoof-protection. Another feature that is less important for traditional users of InfiniBand, but very important for enterprise customers. InfiniBand Partitioning and Quality-of-Service (QoS): One of the first questions we get from customers about Exalogic is: “How can we implement multi-tenancy?” The answer is to partition your IB network, which effectively creates many networks that work independently and that are protected at the lowest networking layer possible. In addition to that, QoS allows administrators to prioritize traffic flow in multi-tenancy environments so they can keep their service levels where it matters most. Resilient IB Fabric Management: InfiniBand is a self-managing network, so a lot of the magic lies in coming up with the right topology and in teaching the subnet manager how to properly discover and manage the network. Oracle's Infiniband switches come with pre-integrated, highly available fabric management with seamless integration into Oracle Enterprise Manager Ops Center. In short: Oracle elevated the OFED InfiniBand stack into an enterprise-class networking infrastructure. Many years and multiple teams of manpower went into the above improvements - this is something you can only get from Oracle, because no other InfiniBand vendor can give you these features across the whole stack! Exabus: Because it's not About the Size of Your Network, it's How You Use it! So let's assume that you somehow were able to get your hands on an enterprise-class IB driver stack. Or maybe you don't care and are just happy with the standard OFED one? Anyway, the next step is to actually leverage that InfiniBand performance. Here are the choices: Use traditional TCP/IP on top of the InfiniBand stack, Develop your own integration between your middleware and the lower-level (but faster) InfiniBand protocols. While more bandwidth is always a good thing, it's actually the low latency that enables superior performance for your applications when running on any networking infrastructure: The lower the latency, the faster the response travels through the network and the more transactions you can close per second. The reason why InfiniBand is such a low latency technology is that it gets rid of most if not all of your traditional networking protocol stack: Data is literally beamed from one region of RAM in one server into another region of RAM in another server with no kernel/drivers/UDP/TCP or other networking stack overhead involved! Which makes option 1 a no-go: Adding TCP/IP on top of InfiniBand is like adding training wheels to your racing bike. It may be ok in the beginning and for development, but it's not quite the performance IB was meant to deliver. Which only leaves option 2: Integrating your middleware with fast, low-level InfiniBand protocols. And this is what Exalogic's "Exabus" technology is all about. Here are a few Exabus features that help applications leverage the performance of InfiniBand in Exalogic: RDMA and SDP integration at the JDBC driver level (SDP), for Oracle Weblogic (SDP), Oracle Coherence (RDMA), Oracle Tuxedo (RDMA) and the new Oracle Traffic Director (RDMA) on Exalogic. Using these protocols, middleware can communicate a lot faster with each other and the Oracle database than by using standard networking protocols, Seamless Integration of Ethernet over InfiniBand from Exalogic's Gateway switches into the OS, Oracle Weblogic optimizations for handling massive amounts of parallel transactions. Because if you have an 8-lane Autobahn, you also need to improve your ramps so you can feed it with many cars in parallel. Integration of Weblogic with Oracle Exadata for faster performance, optimized session management and failover. As you see, “Exabus” is Oracle's word for describing all the InfiniBand enhancements Oracle put into Exalogic: OFED stack enhancements, protocols for faster IB access, and InfiniBand support and optimizations at the virtualization and middleware level. All working together to deliver the full potential of InfiniBand performance. Who else has 100% control over their middleware so they can develop their own low-level protocol integration with InfiniBand? Even if you take an open source approach, you're looking at years of development work to create, test and support a whole new networking technology in your middleware! The Extras: Less Hassle, More Productivity, Faster Time to Market And then there are the other advantages of Engineered Systems that are true for Exalogic the same as they are for every other Engineered System: One simple purchasing process: No headaches due to endless RFPs and no “Will X work with Y?” uncertainties. Everything has been engineered together: All kinds of bugs and problems have been already fixed at the design level that would have only manifested themselves after you have built the system from scratch. Everything is built, tested and integrated at the factory level . Less integration pain for you, faster time to market. Every Exalogic machine world-wide is identical to Oracle's own machines in the lab: Instant replication of any problems you may encounter, faster time to resolution. Simplified patching, management and operations. One throat to choke: Imagine finger-pointing hell for systems that have been put together using several different vendors. Oracle's Engineered Systems have a single phone number that customers can call to get their problems solved. For more business-centric values, read The Business Value of Engineered Systems. Conclusion: Buy Exalogic, or get ready for a 6-12 Month Science Project And here's the reason why it's not easy to "build your own Exalogic": There's a lot of work required to make such a system fly. In fact, anybody who is starting to "just put together a bunch of servers and an InfiniBand network" is really looking at a 6-12 month science project. And the outcome is likely to not be very enterprise-class. And it won't have Exalogic's performance either. Because building an Engineered System is literally rocket science: It takes a lot of time, effort, resources and many iterations of design/test/analyze/fix to build such a system. That's why InfiniBand has been reserved for HPC scientists for such a long time. And only Oracle can bring the power of InfiniBand in an enterprise-class, ready-to use, pre-integrated version to customers, without the develop/integrate/support pain. For more details, check the new Exalogic overview white paper which was updated only recently. P.S.: Thanks to my colleagues Ola, Paul, Don and Andy for helping me put together this article! var flattr_uid = '26528'; var flattr_tle = 'How to Avoid Your Next 12-Month Science Project'; var flattr_dsc = 'While most customers immediately understand how the magic of Oracle's Hybrid Columnar Compression, intelligent storage servers and flash memory make Exadata uniquely powerful against home-grown database systems, some people think that Exalogic is nothing more than a bunch of x86 servers, a storage appliance and an InfiniBand (IB) network, built into a single rack.After all, isn't this exactly what the High Performance Computing (HPC) world has been doing for decades?On the surface, this may be true. And some people tried exactly that: They tried to put together their own version of Exalogic, but then they discover there's a lot more to building a system than buying hardware and assembling it together. IT is not Ikea.Why is that so? Could it be there's more going on behind the scenes than merely putting together a bunch of servers, a storage array and an InfiniBand network into a rack? Let's explore some of the special sauce that makes Exalogic unique and un-copyable, so you can save yourself from your next 6- to 12-month science project that distracts you from doing real work that adds value to your company.'; var flattr_tag = 'Engineered Systems,Engineered Systems,Infiniband,Integration,latency,Oracle,performance'; var flattr_cat = 'text'; var flattr_url = 'http://constantin.glez.de/blog/2012/04/how-avoid-your-next-12-month-science-project'; var flattr_lng = 'en_GB'

    Read the article

  • CodePlex Daily Summary for Saturday, March 27, 2010

    CodePlex Daily Summary for Saturday, March 27, 2010New ProjectsAlter gear SQL index Management: SQL Index management displays a list of indexes available for the chosen database and allows you to select an individual / group of indexes to be r...ASP League Ladder System: An ASP ladder / league system for online gaming league or real life leagues also.Augmented Reality Strategy Simulator: Augmented Reality Strategy Simulator is a software suite to promote computer aided strategy planning. Sports team can visualize their strategy usin...Boo syntax highlighting for Visual Studio 2010: Simple syntax hightlighting VSX add-in for Boo language in Visual Studio 2010.easySan: easySan zur einfachen Mitgliedsverwaltung im BRKFsUnit: FsUnit makes unit-testing with F# more enjoyable. It adds a special syntax to your favorite .NET testing framework.Laughing Dog XNA Framework: Laughing Dog is a simple to use, component based 2D framework for XNA game development. At present it is very early in development and as such is f...miniTodo: WPFでMVVMの練習にてきとうに作ったTODOアプリ 実用は無理です。My Common Library on .NET with CSharp: My Common Library on .NET with CSharp, it conclude database assecc, encrypt string, data caching, StringUtility, thank you for your view.Native code wrapping using c# : fsutil sparse commands: Ever thought about creating HUGE FILES for future use but felt bad for the wasted memory? Well, SPARSE FILES are the ANSWER! This FSUTIL SPARSE CO...Open SOA Platform: A centralized system for administering applications throught a SOA Enterprise Service Bus: Runtime environment (PROD, DEV, ...) , application and s...P-DBMS: Network and Database ProjectPraiseSight: PraiseSight is supposed to become a practical tool for churches to catalog an present their songs, lyrics and presentations on a beamer. The soluti...Pretty Good Frontend: Pretty Good Frontend is a sample frontend for ConfigMgr (SCCM) 2007 and MDT 2010 Zero Touch. S3Appender (Appender for Log4Net that Uses Amazon S3 For Storing Log Files): The S3Appender is a log4net appender that stores log events in either a MemoryStream or FileStream and sends them to S3 based on time intervals and...sEmit: sEmit (sms emitter) is an application written in C# which was built to send text messages. The project was founded in May 2009 by cansik. It works ...Silverlight RIA Tools: A tool set that generates a full RIA Solutions in Silverlightthommo cannon: Cannon for shooting down ThommosTianjin Polytechnic University Online Judge: Online Judge System Built on Microsoft technologies. Vision & Scope: A distributed OJ Solution on Windows and Cloud. Technologies used or planed...Tinare: Tinare is an byte encryption and decryption alogrithm. The input key is a string password.TinyPlug: Small Plugin Manager, written in C# Allows a project to define supported interfaces, and at runtime add plugins which support (inherit) these in...Utility niconv helps to convert text from one encoding to another: .NET implementation of GUN iconv console converter utility. The niconv program converts text from one encoding to another encoding. In the future r...WareFeed - Software Business Analytics: WareFeed is a simple but effective Software Business Analytics tool written in PHP and compatible others languages such as .NET, Java or Python. It...Y36API1: Semestralni projekt na Y36APINew ReleasesAlter gear SQL index Management: Setup 1.0.0: setup for first alpha releaseASP League Ladder System: ASPLeagueRelease_0_4_1: Release v 0.41Augmented Reality Strategy Simulator: Augmented Reality Strategy Simulator: Version 1.0 InstallerAutoAudit: AutoAudit 1.10e: Version 1.10e will be the final iteration of version 1 development. Version 2 will begin adding switches and options. Pleae email your suggestio...Boo syntax highlighting for Visual Studio 2010: Boo syntax VS 2010 - alpha: First release TODO: Multiline comments!Chargify.NET: Chargify.NET 0.6: Updated library, using Metered Components and updated Product information.Composer: V1.0.326.1000 Alpha: Initial Alpha release. Should be stable, with minor issues.CoNatural Components: CoNatural Components 1.6: Code fixes: Created helper classes to generate source code for type mapper/materializer. Fixed issue in optimized type materializer when loading ...CRM External View: 1.2: New Features in v1.2 release Password protected views. No more using Web Data Access role from v1. Filtering capabilities Caching for performan...Designit Video Embed Package: Release 1.1.0 beta1: You can now either have the video embeded directly in the template or have a preview in template that opens the video in a lightbox window.FsUnit: FsUnit 0.9.0 for NUnit: This release is for F# 2.0 and NUnit 2.5+.Laughing Dog XNA Framework: Laughing Dog 0.0.1: Laughing Dog - Alpla - v 0.0.1 First released version of the Laughing Dog framework.LiveUpload to Facebook: LiveUpload to Facebook 3.2: Version 3.2Become a fan on Facebook! Features Quickly and easily upload your photos and videos to Facebook, including any people tags added in Win...MapWindow6: MapWindow 6.0 msi March 26: This version adds the Join feature for creating a new "featureset" with attributes that are joined with attributes from a Excel data label named 'D...Mobile Broadband Logging Monitor: Mobile Broadband Logging Monitor 1.2.2: This edition supports: Newer and older editions of Birdstep Technology's EasyConnect HUAWEI Mobile Partner MWConn User defined location for s...Multiplayer Quiz: Release 1_6_351_0: A beta release of the next version. Please leave any errors in discussions or comments.Native code wrapping using c# : fsutil sparse commands: Fsutil sparse file native code - c sharp wrapper: Project Description A C# code wrapping a native code-Sparse files1 The code is about SPARSE files- the abillity to create huge files (for future us...Nice Libraries: 1.30 build 50325.01: Release 1.30 build 50325.01Pretty Good Frontend: Pretty Good Frontend binaries v1.0: This is the first public release of the Pretty Good Frontend binariesPylor: Pylor 0.1 alpha: This is the very first published version. I hope I can put a sample project soon.Quick Performance Monitor: Version 1.1 refresh: There was a typo or two in the sample batch file. Corrected now.Rapidshare Episode Downloader: RED v0.8.3: 0.8.1 introduced the ability to advance to the next episode. In 0.8.2 a bug was found that if episode number is less then 10, then the preceding 0...RapidWebDev - .NET Enterprise Software Development Infrastructure: RapidWebDev 1.52: RapidWebDev is an infrastructure helps to develop enterprise software solutions in Microsoft .NET easily and productively. This is the release vers...thommo cannon: game: gamethommo cannon: setup: setupthommo cannon: test: testTinare: Tinare DLL: Tinare DLL is a dynamic-link library written in C# which provides the functions to encrypt and decrypt a byte stream with tinare.WeatherBar: WeatherBar 2.1 [No Installation]: Minor changes to release 2.0 (http://weatherbar.codeplex.com/releases/view/42490). Fixed the bug that caused an exception to be thrown if the user...Most Popular ProjectsMetaSharpRawrWBFS ManagerASP.NET Ajax LibrarySilverlight ToolkitMicrosoft SQL Server Product Samples: DatabaseAJAX Control ToolkitLiveUpload to FacebookWindows Presentation Foundation (WPF)ASP.NETMost Active ProjectsRawrjQuery Library for SharePoint Web ServicesBlogEngine.NETMicrosoft Biology FoundationFarseer Physics Enginepatterns & practices: Composite WPF and SilverlightLINQ to TwitterTable2ClassFluent Ribbon Control SuiteNB_Store - Free DotNetNuke Ecommerce Catalog Module

    Read the article

  • UndoRedo on Nodes

    - by Geertjan
    When a change is made to the property in the Properties Window, below, the undo/redo functionality becomes enabled: When undo/redo are invoked, e.g., via the buttons in the toolbar, the display name of the node changes accordingly. The only problem I have is that the buttons only become enabled when the Person Window is selected, not when the Properties Window is selected, which would be desirable. Here's the Person object: public class Person implements PropertyChangeListener {     private String name;     public static final String PROP_NAME = "name";     public Person(String name) {         this.name = name;     }     public String getName() {         return name;     }     public void setName(String name) {         String oldName = this.name;         this.name = name;         propertyChangeSupport.firePropertyChange(PROP_NAME, oldName, name);     }     private transient final PropertyChangeSupport propertyChangeSupport = new PropertyChangeSupport(this);     public void addPropertyChangeListener(PropertyChangeListener listener) {         propertyChangeSupport.addPropertyChangeListener(listener);     }     public void removePropertyChangeListener(PropertyChangeListener listener) {         propertyChangeSupport.removePropertyChangeListener(listener);     }     @Override     public void propertyChange(PropertyChangeEvent evt) {         propertyChangeSupport.firePropertyChange(evt);     } } And here's the Node with UndoRedo enablement: public class PersonNode extends AbstractNode implements UndoRedo.Provider, PropertyChangeListener {     private UndoRedo.Manager manager = new UndoRedo.Manager();     private boolean undoRedoEvent;     public PersonNode(Person person) {         super(Children.LEAF, Lookups.singleton(person));         person.addPropertyChangeListener(this);         setDisplayName(person.getName());     }     @Override     protected Sheet createSheet() {         Sheet sheet = Sheet.createDefault();         Sheet.Set set = Sheet.createPropertiesSet();         set.put(new NameProperty(getLookup().lookup(Person.class)));         sheet.put(set);         return sheet;     }     @Override     public void propertyChange(PropertyChangeEvent evt) {         if (evt.getPropertyName().equals(Person.PROP_NAME)) {             firePropertyChange(evt.getPropertyName(), evt.getOldValue(), evt.getNewValue());         }     }     public void fireUndoableEvent(String property, Person source, Object oldValue, Object newValue) {         manager.addEdit(new MyAbstractUndoableEdit(source, oldValue, newValue));     }     @Override     public UndoRedo getUndoRedo() {         return manager;     }     @Override     public String getDisplayName() {         Person p = getLookup().lookup(Person.class);         if (p != null) {             return p.getName();         }         return super.getDisplayName();     }     private class NameProperty extends PropertySupport.ReadWrite<String> {         private Person p;         public NameProperty(Person p) {             super("name", String.class, "Name", "Name of Person");             this.p = p;         }         @Override         public String getValue() throws IllegalAccessException, InvocationTargetException {             return p.getName();         }         @Override         public void setValue(String newValue) throws IllegalAccessException, IllegalArgumentException, InvocationTargetException {             String oldValue = p.getName();             p.setName(newValue);             if (!undoRedoEvent) {                 fireUndoableEvent("name", p, oldValue, newValue);                 fireDisplayNameChange(oldValue, newValue);             }         }     }     class MyAbstractUndoableEdit extends AbstractUndoableEdit {         private final String oldValue;         private final String newValue;         private final Person source;         private MyAbstractUndoableEdit(Person source, Object oldValue, Object newValue) {             this.oldValue = oldValue.toString();             this.newValue = newValue.toString();             this.source = source;         }         @Override         public boolean canRedo() {             return true;         }         @Override         public boolean canUndo() {             return true;         }         @Override         public void undo() throws CannotUndoException {             undoRedoEvent = true;             source.setName(oldValue.toString());             fireDisplayNameChange(oldValue, newValue);             undoRedoEvent = false;         }         @Override         public void redo() throws CannotUndoException {             undoRedoEvent = true;             source.setName(newValue.toString());             fireDisplayNameChange(oldValue, newValue);             undoRedoEvent = false;         }     } } Does anyone out there know how to have the Undo/Redo functionality enabled when the Properties Window is selected?

    Read the article

  • Custom Gesture in cocos2d

    - by Lewis
    I've found a little tutorial that would be useful for my game: http://blog.mellenthin.de/archives/2012/02/13/an-one-finger-rotation-gesture-recognizer/ But I can't work out how to convert that gesture to work with cocos2d, I have found examples of pre made gestures in cocos2d, but no custom ones, is it possible? EDIT STILL HAVING PROBLEMS WITH THIS: I've added the code from Sentinel below (from SO), the Gesture and RotateGesture have both been added to my solution and are compiling. Although In the rotation class now I only see selectors, how do I set those up? As the custom gesture found in that project above looks like: header file for custom gesture: #import <Foundation/Foundation.h> #import <UIKit/UIGestureRecognizerSubclass.h> @protocol OneFingerRotationGestureRecognizerDelegate <NSObject> @optional - (void) rotation: (CGFloat) angle; - (void) finalAngle: (CGFloat) angle; @end @interface OneFingerRotationGestureRecognizer : UIGestureRecognizer { CGPoint midPoint; CGFloat innerRadius; CGFloat outerRadius; CGFloat cumulatedAngle; id <OneFingerRotationGestureRecognizerDelegate> target; } - (id) initWithMidPoint: (CGPoint) midPoint innerRadius: (CGFloat) innerRadius outerRadius: (CGFloat) outerRadius target: (id) target; - (void)reset; - (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event; - (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event; - (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event; - (void)touchesCancelled:(NSSet *)touches withEvent:(UIEvent *)event; @end .m for custom gesture file: #include <math.h> #import "OneFingerRotationGestureRecognizer.h" @implementation OneFingerRotationGestureRecognizer // private helper functions CGFloat distanceBetweenPoints(CGPoint point1, CGPoint point2); CGFloat angleBetweenLinesInDegrees(CGPoint beginLineA, CGPoint endLineA, CGPoint beginLineB, CGPoint endLineB); - (id) initWithMidPoint: (CGPoint) _midPoint innerRadius: (CGFloat) _innerRadius outerRadius: (CGFloat) _outerRadius target: (id <OneFingerRotationGestureRecognizerDelegate>) _target { if ((self = [super initWithTarget: _target action: nil])) { midPoint = _midPoint; innerRadius = _innerRadius; outerRadius = _outerRadius; target = _target; } return self; } /** Calculates the distance between point1 and point 2. */ CGFloat distanceBetweenPoints(CGPoint point1, CGPoint point2) { CGFloat dx = point1.x - point2.x; CGFloat dy = point1.y - point2.y; return sqrt(dx*dx + dy*dy); } CGFloat angleBetweenLinesInDegrees(CGPoint beginLineA, CGPoint endLineA, CGPoint beginLineB, CGPoint endLineB) { CGFloat a = endLineA.x - beginLineA.x; CGFloat b = endLineA.y - beginLineA.y; CGFloat c = endLineB.x - beginLineB.x; CGFloat d = endLineB.y - beginLineB.y; CGFloat atanA = atan2(a, b); CGFloat atanB = atan2(c, d); // convert radiants to degrees return (atanA - atanB) * 180 / M_PI; } #pragma mark - UIGestureRecognizer implementation - (void)reset { [super reset]; cumulatedAngle = 0; } - (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event { [super touchesBegan:touches withEvent:event]; if ([touches count] != 1) { self.state = UIGestureRecognizerStateFailed; return; } } - (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event { [super touchesMoved:touches withEvent:event]; if (self.state == UIGestureRecognizerStateFailed) return; CGPoint nowPoint = [[touches anyObject] locationInView: self.view]; CGPoint prevPoint = [[touches anyObject] previousLocationInView: self.view]; // make sure the new point is within the area CGFloat distance = distanceBetweenPoints(midPoint, nowPoint); if ( innerRadius <= distance && distance <= outerRadius) { // calculate rotation angle between two points CGFloat angle = angleBetweenLinesInDegrees(midPoint, prevPoint, midPoint, nowPoint); // fix value, if the 12 o'clock position is between prevPoint and nowPoint if (angle > 180) { angle -= 360; } else if (angle < -180) { angle += 360; } // sum up single steps cumulatedAngle += angle; // call delegate if ([target respondsToSelector: @selector(rotation:)]) { [target rotation:angle]; } } else { // finger moved outside the area self.state = UIGestureRecognizerStateFailed; } } - (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event { [super touchesEnded:touches withEvent:event]; if (self.state == UIGestureRecognizerStatePossible) { self.state = UIGestureRecognizerStateRecognized; if ([target respondsToSelector: @selector(finalAngle:)]) { [target finalAngle:cumulatedAngle]; } } else { self.state = UIGestureRecognizerStateFailed; } cumulatedAngle = 0; } - (void)touchesCancelled:(NSSet *)touches withEvent:(UIEvent *)event { [super touchesCancelled:touches withEvent:event]; self.state = UIGestureRecognizerStateFailed; cumulatedAngle = 0; } @end Then its initialised like this: // calculate center and radius of the control CGPoint midPoint = CGPointMake(image.frame.origin.x + image.frame.size.width / 2, image.frame.origin.y + image.frame.size.height / 2); CGFloat outRadius = image.frame.size.width / 2; // outRadius / 3 is arbitrary, just choose something >> 0 to avoid strange // effects when touching the control near of it's center gestureRecognizer = [[OneFingerRotationGestureRecognizer alloc] initWithMidPoint: midPoint innerRadius: outRadius / 3 outerRadius: outRadius target: self]; [self.view addGestureRecognizer: gestureRecognizer]; The selector below is also in the same file where the initialisation of the gestureRecogonizer: - (void) rotation: (CGFloat) angle { // calculate rotation angle imageAngle += angle; if (imageAngle > 360) imageAngle -= 360; else if (imageAngle < -360) imageAngle += 360; // rotate image and update text field image.transform = CGAffineTransformMakeRotation(imageAngle * M_PI / 180); [self updateTextDisplay]; } I can't seem to get this working in the RotateGesture class can anyone help me please I've been stuck on this for days now. SECOND EDIT: Here is the users code from SO that was suggested to me: Here is projec on GitHub: SFGestureRecognizers It uses builded in iOS UIGestureRecognizer, and don't needs to be integrated into cocos2d sources. Using it, You can make any gestures, just like you could, if you whould work with UIGestureRecognizer. For example: I made a base class Gesture, and subclassed it for any new gesture: //Gesture.h @interface Gesture : NSObject <UIGestureRecognizerDelegate> { UIGestureRecognizer *gestureRecognizer; id delegate; SEL preSolveSelector; SEL possibleSelector; SEL beganSelector; SEL changedSelector; SEL endedSelector; SEL cancelledSelector; SEL failedSelector; BOOL preSolveAvailable; CCNode *owner; } - (id)init; - (void)addGestureRecognizerToNode:(CCNode*)node; - (void)removeGestureRecognizerFromNode:(CCNode*)node; -(void)recognizer:(UIGestureRecognizer*)recognizer; @end //Gesture.m #import "Gesture.h" @implementation Gesture - (id)init { if (!(self = [super init])) return self; preSolveAvailable = YES; return self; } - (BOOL)gestureRecognizer:(UIGestureRecognizer *)gestureRecognizer shouldRecognizeSimultaneouslyWithGestureRecognizer:(UIGestureRecognizer *)otherGestureRecognizer { return YES; } - (BOOL)gestureRecognizer:(UIGestureRecognizer *)recognizer shouldReceiveTouch:(UITouch *)touch { //! For swipe gesture recognizer we want it to be executed only if it occurs on the main layer, not any of the subnodes ( main layer is higher in hierarchy than children so it will be receiving touch by default ) if ([recognizer class] == [UISwipeGestureRecognizer class]) { CGPoint pt = [touch locationInView:touch.view]; pt = [[CCDirector sharedDirector] convertToGL:pt]; for (CCNode *child in owner.children) { if ([child isNodeInTreeTouched:pt]) { return NO; } } } return YES; } - (void)addGestureRecognizerToNode:(CCNode*)node { [node addGestureRecognizer:gestureRecognizer]; owner = node; } - (void)removeGestureRecognizerFromNode:(CCNode*)node { [node removeGestureRecognizer:gestureRecognizer]; } #pragma mark - Private methods -(void)recognizer:(UIGestureRecognizer*)recognizer { CCNode *node = recognizer.node; if (preSolveSelector && preSolveAvailable) { preSolveAvailable = NO; [delegate performSelector:preSolveSelector withObject:recognizer withObject:node]; } UIGestureRecognizerState state = [recognizer state]; if (state == UIGestureRecognizerStatePossible && possibleSelector) { [delegate performSelector:possibleSelector withObject:recognizer withObject:node]; } else if (state == UIGestureRecognizerStateBegan && beganSelector) [delegate performSelector:beganSelector withObject:recognizer withObject:node]; else if (state == UIGestureRecognizerStateChanged && changedSelector) [delegate performSelector:changedSelector withObject:recognizer withObject:node]; else if (state == UIGestureRecognizerStateEnded && endedSelector) { preSolveAvailable = YES; [delegate performSelector:endedSelector withObject:recognizer withObject:node]; } else if (state == UIGestureRecognizerStateCancelled && cancelledSelector) { preSolveAvailable = YES; [delegate performSelector:cancelledSelector withObject:recognizer withObject:node]; } else if (state == UIGestureRecognizerStateFailed && failedSelector) { preSolveAvailable = YES; [delegate performSelector:failedSelector withObject:recognizer withObject:node]; } } @end Subclass example: //RotateGesture.h #import "Gesture.h" @interface RotateGesture : Gesture - (id)initWithTarget:(id)target preSolveSelector:(SEL)preSolve possibleSelector:(SEL)possible beganSelector:(SEL)began changedSelector:(SEL)changed endedSelector:(SEL)ended cancelledSelector:(SEL)cancelled failedSelector:(SEL)failed; @end //RotateGesture.m #import "RotateGesture.h" @implementation RotateGesture - (id)initWithTarget:(id)target preSolveSelector:(SEL)preSolve possibleSelector:(SEL)possible beganSelector:(SEL)began changedSelector:(SEL)changed endedSelector:(SEL)ended cancelledSelector:(SEL)cancelled failedSelector:(SEL)failed { if (!(self = [super init])) return self; preSolveSelector = preSolve; delegate = target; possibleSelector = possible; beganSelector = began; changedSelector = changed; endedSelector = ended; cancelledSelector = cancelled; failedSelector = failed; gestureRecognizer = [[UIRotationGestureRecognizer alloc] initWithTarget:self action:@selector(recognizer:)]; gestureRecognizer.delegate = self; return self; } @end Use example: - (void)addRotateGesture { RotateGesture *rotateRecognizer = [[RotateGesture alloc] initWithTarget:self preSolveSelector:@selector(rotateGesturePreSolveWithRecognizer:node:) possibleSelector:nil beganSelector:@selector(rotateGestureStateBeganWithRecognizer:node:) changedSelector:@selector(rotateGestureStateChangedWithRecognizer:node:) endedSelector:@selector(rotateGestureStateEndedWithRecognizer:node:) cancelledSelector:@selector(rotateGestureStateCancelledWithRecognizer:node:) failedSelector:@selector(rotateGestureStateFailedWithRecognizer:node:)]; [rotateRecognizer addGestureRecognizerToNode:movableAreaSprite]; } I dont understand how to implement the custom gesture code at the start of this post into the rotateGesture class which is a subclass of the gesture class written by the SO user. Any ideas please? When I get 6 more rep I'll add a bounty to this.

    Read the article

  • Scrolling an HTML 5 page using JQuery

    - by nikolaosk
    In this post I will show you how to use JQuery to scroll through an HTML 5 page.I had to help a friend of mine to implement this functionality and I thought it would be a good idea to write a post.I will not use any JQuery scrollbar plugin,I will just use the very popular JQuery Library. Please download the library (minified version) from http://jquery.com/download.Please find here all my posts regarding JQuery.Also have a look at my posts regarding HTML 5.In order to be absolutely clear this is not (and could not be) a detailed tutorial on HTML 5. There are other great resources for that.Navigate to the excellent interactive tutorials of W3School.Another excellent resource is HTML 5 Doctor.Two very nice sites that show you what features and specifications are implemented by various browsers and their versions are http://caniuse.com/ and http://html5test.com/. At this times Chrome seems to support most of HTML 5 specifications.Another excellent way to find out if the browser supports HTML 5 and CSS 3 features is to use the Javascript lightweight library Modernizr.In this hands-on example I will be using Expression Web 4.0.This application is not a free application. You can use any HTML editor you like.You can use Visual Studio 2012 Express edition. You can download it here. Let me move on to the actual example.This is the sample HTML 5 page<!DOCTYPE html><html lang="en">  <head>    <title>Liverpool Legends</title>        <meta http-equiv="Content-Type" content="text/html;charset=utf-8" >        <link rel="stylesheet" type="text/css" href="style.css">        <script type="text/javascript" src="jquery-1.8.2.min.js"> </script>     <script type="text/javascript" src="scroll.js">     </script>       </head>  <body>    <header>        <h1>Liverpool Legends</h1>    </header>        <div id="main">        <table>        <caption>Liverpool Players</caption>        <thead>            <tr>                <th>Name</th>                <th>Photo</th>                <th>Position</th>                <th>Age</th>                <th>Scroll</th>            </tr>        </thead>        <tfoot class="footnote">            <tr>                <td colspan="4">We will add more photos soon</td>            </tr>        </tfoot>    <tbody>        <tr class="maintop">        <td>Alan Hansen</td>            <td>            <figure>            <img src="images\Alan-hansen-large.jpg" alt="Alan Hansen">            <figcaption>The best Liverpool Defender <a href="http://en.wikipedia.org/wiki/Alan_Hansen">Alan Hansen</a></figcaption>            </figure>            </td>            <td>Defender</td>            <td>57</td>            <td class="top">Middle</td>        </tr>        <tr>        <td>Graeme Souness</td>            <td>            <figure>            <img src="images\graeme-souness-large.jpg" alt="Graeme Souness">            <figcaption>Souness was the captain of the successful Liverpool team of the early 1980s <a href="http://en.wikipedia.org/wiki/Graeme_Souness">Graeme Souness</a></figcaption>            </figure>            </td>            <td>MidFielder</td>            <td>59</td>        </tr>        <tr>        <td>Ian Rush</td>            <td>            <figure>            <img src="images\ian-rush-large.jpg" alt="Ian Rush">            <figcaption>The deadliest Liverpool Striker <a href="http://it.wikipedia.org/wiki/Ian_Rush">Ian Rush</a></figcaption>            </figure>            </td>            <td>Striker</td>            <td>51</td>        </tr>        <tr class="mainmiddle">        <td>John Barnes</td>            <td>            <figure>            <img src="images\john-barnes-large.jpg" alt="John Barnes">            <figcaption>The best Liverpool Defender <a href="http://en.wikipedia.org/wiki/John_Barnes_(footballer)">John Barnes</a></figcaption>            </figure>            </td>            <td>MidFielder</td>            <td>49</td>            <td class="middle">Bottom</td>        </tr>                <tr>        <td>Kenny Dalglish</td>            <td>            <figure>            <img src="images\kenny-dalglish-large.jpg" alt="Kenny Dalglish">            <figcaption>King Kenny <a href="http://en.wikipedia.org/wiki/Kenny_Dalglish">Kenny Dalglish</a></figcaption>            </figure>            </td>            <td>Midfielder</td>            <td>61</td>        </tr>        <tr>            <td>Michael Owen</td>            <td>            <figure>            <img src="images\michael-owen-large.jpg" alt="Michael Owen">            <figcaption>Michael was Liverpool's top goal scorer from 1997–2004 <a href="http://www.michaelowen.com/">Michael Owen</a></figcaption>            </figure>            </td>            <td>Striker</td>            <td>33</td>        </tr>        <tr>            <td>Robbie Fowler</td>            <td>            <figure>            <img src="images\robbie-fowler-large.jpg" alt="Robbie Fowler">            <figcaption>Fowler scored 183 goals in total for Liverpool <a href="http://en.wikipedia.org/wiki/Robbie_Fowler">Robbie Fowler</a></figcaption>            </figure>            </td>            <td>Striker</td>            <td>38</td>        </tr>        <tr class="mainbottom">            <td>Steven Gerrard</td>            <td>            <figure>            <img src="images\steven-gerrard-large.jpg" alt="Steven Gerrard">            <figcaption>Liverpool's captain <a href="http://en.wikipedia.org/wiki/Steven_Gerrard">Steven Gerrard</a></figcaption>            </figure>            </td>            <td>Midfielder</td>            <td>32</td>            <td class="bottom">Top</td>        </tr>    </tbody></table>          </div>            <footer>        <p>All Rights Reserved</p>      </footer>     </body>  </html>  The markup is very easy to follow and understand. You do not have to type all the code,simply copy and paste it.For those that you are not familiar with HTML 5, please take a closer look at the new tags/elements introduced with HTML 5.When I view the HTML 5 page with Firefox I see the following result. I have also an external stylesheet (style.css). body{background-color:#efefef;}h1{font-size:2.3em;}table { border-collapse: collapse;font-family: Futura, Arial, sans-serif; }caption { font-size: 1.2em; margin: 1em auto; }th, td {padding: .65em; }th, thead { background: #000; color: #fff; border: 1px solid #000; }tr:nth-child(odd) { background: #ccc; }tr:nth-child(even) { background: #404040; }td { border-right: 1px solid #777; }table { border: 1px solid #777;  }.top, .middle, .bottom {    cursor: pointer;    font-size: 22px;    font-weight: bold;    text-align: center;}.footnote{text-align:center;font-family:Tahoma;color:#EB7515;}a{color:#22577a;text-decoration:none;}     a:hover {color:#125949; text-decoration:none;}  footer{background-color:#505050;width:1150px;}These are just simple CSS Rules that style the various HTML 5 tags,classes. The jQuery code that makes it all possible resides inside the scroll.js file.Make sure you type everything correctly.$(document).ready(function() {                 $('.top').click(function(){                     $('html, body').animate({                         scrollTop: $(".mainmiddle").offset().top                     },4000 );                  });                 $('.middle').click(function(){                     $('html, body').animate({                         scrollTop: $(".mainbottom").offset().top                     },4000);                  });                     $('.bottom').click(function(){                     $('html, body').animate({                         scrollTop: $(".maintop").offset().top                     },4000);                  }); });  Let me explain what I am doing here.When I click on the Middle word (  $('.top').click(function(){ ) this relates to the top class that is clicked.Then we declare the elements that we want to participate in the scrolling. In this case is html,body ( $('html, body').animate).These elements will be part of the vertical scrolling.In the next line of code we simply move (navigate) to the element (class mainmiddle that is attached to a tr element.)      scrollTop: $(".mainmiddle").offset().top  Make sure you type all the code correctly and try it for yourself. I have tested this solution will all 4-5 major browsers.Hope it helps!!!

    Read the article

  • CodePlex Daily Summary for Sunday, September 02, 2012

    CodePlex Daily Summary for Sunday, September 02, 2012Popular ReleasesThisismyusername's codeplex page.: HTML5 Multitouch Example - Fruit Ninja in HTML5: This is an example of how you could create a game such as Fruit Ninja using HTML5's multitouch capabilities. This example isn't responsive enough, so I will be working on that, and it doesn't have great graphics, either. If I had my own webpage, I could store some graphics and upload the game there and it might look halfway decent, but here the fruits are just circles. I hope you enjoy reading the source code anyway.GmailDefaultMaker: GmailDefaultMaker 3.0.0.2: Add QQ Mail BugfixRuminate XNA 4.0 GUI: Release 1.1.1: Fixed bugs with Slider and TextBox. Added ComboBox.Confuser: Confuser build 76542: This is a build of changeset 76542.SharePoint Column & View Permission: SharePoint Column and View Permission v1.2: Version 1.2 of this project. If you will find any bugs please let me know at enti@zoznam.sk or post your findings in Issue TrackerMihmojsos OS: Mihmojsos OS 3 (Smart Rabbit): !Mihmojsos OS 3 Smart Rabbit Mihmojsos Smart Rabbit is now availableDotNetNuke Translator: 01.00.00 Beta: First release of the project.YNA: YNA 0.2 alpha: Wath's new since 0.1 alpha ? A lot of changes but there are the most interresting : StateManager is now better and faster Mouse events for all YnObjects (Sprites, Images, texts) A really big improvement for YnGroup Gamepad support And the news : Tiled Map support (need refactoring) Isometric tiled map support (need refactoring) Transition effect like "FadeIn" and "FadeOut" (YnTransition) Timers (YnTimer) Path management (YnPath, need more refactoring) Downloads All downloads...Audio Pitch & Shift: Audio Pitch And Shift 5.1.0.2: fixed several issues with streaming modeUrlPager: UrlPager 1.2: Fixed bug in which url parameters will lost after paging; ????????url???bug;Sofire Suite: Sofire v1.5.0.0: Sofire v1.5.0.0 ?? ???????? ?????: 1、?? 2、????EntLib.com????????: EntLib.com???????? v3.0: EntLib eCommerce Solution ???Microsoft .Net Framework?????????????????????。Coevery - Free CRM: Coevery 1.0.0.24: Add a sample database, and installation instructions.Math.NET Numerics: Math.NET Numerics v2.2.1: Major linear algebra rework since v2.1, now available on Codeplex as well (previous versions were only available via NuGet). Since v2.2.0: Student-T density more robust for very large degrees of freedom Sparse Kronecker product much more efficient (now leverages sparsity) Direct access to raw matrix storage implementations for advanced extensibility Now also separate package for signed core library with a strong name (we dropped strong names in v2.2.0) Also available as NuGet packages...Microsoft SQL Server Product Samples: Database: AdventureWorks Databases – 2012, 2008R2 and 2008: About this release This release consolidates AdventureWorks databases for SQL Server 2012, 2008R2 and 2008 versions to one page. Each zip file contains an mdf database file and ldf log file. This should make it easier to find and download AdventureWorks databases since all OLTP versions are on one page. There are no database schema changes. For each release of the product, there is a light-weight and full version of the AdventureWorks sample database. The light-weight version is denoted by ...Christoc's DotNetNuke Module Development Template: DotNetNuke Project Templates V1.1 for VS2012: This release is specifically for Visual Studio 2012 Support, distributed through the Visual Studio Extensions gallery at http://visualstudiogallery.msdn.microsoft.com/ After you build in Release mode the installable packages (source/install) can be found in the INSTALL folder now, within your module's folder, not the packages folder anymore Check out the blog post for all of the details about this release. http://www.dotnetnuke.com/Resources/Blogs/EntryId/3471/New-Visual-Studio-2012-Projec...Home Access Plus+: v8.0: v8.0.0901.1830 RELEASE CHANGED TO BETA Any issues, please log them on http://www.edugeek.net/forums/home-access-plus/ This is full release, NO upgrade ZIP will be provided as most files require replacing. To upgrade from a previous version, delete everything but your AppData folder, extract all but the AppData folder and run your HAP+ install Documentation is supplied in the Web Zip The Quota Services require executing a script to register the service, this can be found in there install ...Phalanger - The PHP Language Compiler for the .NET Framework: 3.0.0.3406 (September 2012): New features: Extended ReflectionClass libxml error handling, constants DateTime::modify(), DateTime::getOffset() TreatWarningsAsErrors MSBuild option OnlyPrecompiledCode configuration option; allows to use only compiled code Fixes: ArgsAware exception fix accessing .NET properties bug fix ASP.NET session handler fix for OutOfProc mode DateTime methods (WordPress posting fix) Phalanger Tools for Visual Studio: Visual Studio 2010 & 2012 New debugger engine, PHP-like debugging ...MabiCommerce: MabiCommerce 1.0.1: What's NewSetup now creates shortcuts Fix spelling errors Minor enhancement to the Map window.ScintillaNET: ScintillaNET 2.5.2: This release has been built from the 2.5 branch. Version 2.5.2 is functionally identical to the 2.5.1 release but also includes the XML documentation comments file generated by Visual Studio. It is not 100% comprehensive but it will give you Visual Studio IntelliSense for a large part of the API. Just make sure the ScintillaNET.xml file is in the same folder as the ScintillaNET.dll reference you're using in your projects. (The XML file does not need to be distributed with your application)....New ProjectsATSV: this is a student project for making a new silverlight UI Bookmark Collector: This project is a best practice example of how to use content items in DotNetNuke. It allows you to quickly and easily manage a listing of external links.BPVotingmachine: BP Vote SystemClean My Space: Sort your files in a fun and fast! With Clean My Space you can!CutePlatform: CutePlatform is a platform game based around the PlanetCute graphics pack from Daniel cook, make him a visit in www.lostgardem.comDancTeX: This project is targeting the integration of LaTeX into VisusalStudio. Epi Info™ Companion for Android: A mobile companion to the Epi Info™ 7 desktop tool for epidemiologic data collection and analysis.Flucene: Object Document Mapper for Lucene.Netfluentserializer: FluentSerializer is a library for .NET usable to create serialize/deserialize data through its fluent interface. The methods it creates are compiled.hongjiapp: hongjiappidealthings educational comprehensive administration system: ?????????????????????????????????????????????.Java Accounting Library: The project aims at providing a Financial Accounting Java Library which may be integrated to any other Java Application independent of its Backend Database.mycnblogs: mycnblogsNETPack: Lightweight and flexible packer for .NETRandom Useful Code: This project is where I will store various useful classes I have built over time. Only the code will be provided, no Library or the like.Suleymaniye Tavimi: Namaz vakitleri hesaplama uygulamasidir. Istenilen yer için hesaplama yapar.

    Read the article

  • 10 tape technology features that make you go hmm.

    - by Karoly Vegh
    A week ago an Oracle/StorageTek Tape Specialist, Christian Vanden Balck, visited Vienna, and agreed to visit customers to do techtalks and update them about the technology boom going around tape. I had the privilege to attend some of his sessions and noted the information and features that took the customers by surprise and made them think. Allow me to share the top 10: I. StorageTek as a brand: StorageTek is one of he strongest names in the Tape field. The brand itself was valued so much by customers that even after Sun Microsystems acquiring StorageTek and the Oracle acquiring Sun the brand lives on with all the Oracle tapelibraries are officially branded StorageTek.See http://www.oracle.com/us/products/servers-storage/storage/tape-storage/overview/index.html II. Disk information density limitations: Disk technology struggles with information density. You haven't seen the disk sizes exploding lately, have you? That's partly because there are physical limits on a disk platter. The size is given, the number of platters is limited, they just can't grow, and are running out of physical area to write to. Now, in a T10000C tape cartridge we have over 1000m long tape. There you go, you have got your physical space and don't need to stuff all that data crammed together. You can write in a reliable pattern, and have space to grow too. III. Oracle has a market share of 62% worldwide in recording head manufacturing. That's right. If you are running LTO drives, with a good chance you rely on StorageTek production. That's two out of three LTO recording heads produced worldwide.  IV. You can store 1 Exabyte data in a single tape library. Yes, an Exabyte. That is 1000 Petabytes. Or, a million Terabytes. A thousand million GigaBytes. You can store that in a stacked StorageTek SL8500 tapelibrary. In one SL8500 you can put 10.000 T10000C cartridges, that store 10TB data (compressed). You can stack 10 of these SL8500s together. Boom. 1000.000 TB.(n.b.: stacking means interconnecting the libraries. Yes, cartridges are moved between the stacked libraries automatically.)  V. EMC: 'Tape doesn't suck after all. We moved on.': Do you remember the infamous 'Tape sucks, move on' Datadomain slogan? Of course they had to put it that way, having only had disk products. But here's a fun fact: on the EMCWorld 2012 there was a major presence of a Tape-tech company - EMC, in a sudden burst of sanity is embracing tape again. VI. The miraculous T10000C: Oracle StorageTek has developed an enterprise-grade tapedrive and cartridge, the T10000C. With awesome numbers: The Cartridge: Native 5TB capacity, 10TB with compression Over a kilometer long tape within the cartridge. And it's locked when unmounted, no rattling of your data.  Replaced the metalparticles datalayer with BaFe (bariumferrite) - metalparticles lose around 7% of magnetism within 30 days. BaFe does not. Yes we employ solid-state physicists doing R&D on demagnetisation in our labs. Can be partitioned, storage tiering within the cartridge!  The Drive: 2GB Cache Encryption implemented in HW - no performance hit 252 MB/s native sustained data rate, beats disk technology by far. Not to mention peak throughput.  Leading the tape while never touching the data side of it, protecting your data physically too Data integritiy checking (CRC recalculation) on tape within the drive without having to read it back to the server reordering data from tape-order, delivering it back in application-order  writing 32 tracks at once, reading them back for CRC check at once VII. You only use 20% of your data on a regular basis. The rest 80% is just lying around for years. On continuously spinning disks. Doubly consuming energy (power+cooling), blocking diskstorage capacity. There is a solution called SAM (Storage Archive Manager) that provides you a filesystem unifying disk and tape, moving data on-demand and for clients transparently between the different storage tiers. You can share these filesystems with NFS or CIFS for clients, and enjoy the low TCO of tape. Tapes don't spin. They sit quietly in their slots, storing 10TB data, using no energy, producing no heat, automounted when a client accesses their data.See: http://www.oracle.com/us/products/servers-storage/storage/storage-software/storage-archive-manager/overview/index.html VIII. HW supported for three decades: Did you know that the original PowderHorn library was released in '87 and has been only discontinued in 2010? That is over two decades of supported operation. Tape libraries are - just like the data carrying on tapecartridges - built for longevity. Oh, and the T10000C cartridge has 30-year archival life for long-term retention.  IX. Tape is easy to manage: Have you heard of Tape Storage Analytics? It is a central graphical tool to summarize, monitor, analyze dataflow, health and performance of drives and libraries, see: http://www.oracle.com/us/products/servers-storage/storage/tape-storage/tape-analytics/overview/index.html X. The next generation: The T10000B drives were able to reuse the T10000A cartridges and write on them even more data. On the same cartridges. We call this investment protection, and this is very important for Oracle for the future too. We usually support two generations of cartridges together. The current drive is a T10000C. (...I know I promised to enlist 10, but I got still two more I really want to mention. Allow me to work around the problem: ) X++. The TallBots, the robots moving around the cartridges in the StorageTek library from tapeslots to the drives are cableless. Cables, belts, chains running to moving parts in a library cause maintenance downtimes. So StorageTek eliminated them. The TallBots get power, commands, even firmwareupgrades through the rails they are running on. Also, the TallBots don't just hook'n'pull the tapes out of their slots, they actually grip'n'lift them out. No friction, no scratches, no zillion little plastic particles floating around in the library, in the drives, on your data. (X++)++: Tape beats SSDs and Disks. In terms of throughput (252 MB/s), in terms of TCO: disks cause around 290x more power and cooling, in terms of capacity: 10TB on a single media and soon more.  So... do you need to store large amounts of data? Are you legally bound to archive it for dozens of years? Would you benefit from automatic storage tiering? Have you got large mediachunks to be streamed at times? Have you got power and cooling issues in the growing datacenters? Do you find EMC's 180° turn of tape attitude interesting, but appreciate it at the same time? With all that, you aren't alone. The most data on this planet is stored on tape. Tape is coming. Big time.

    Read the article

  • External File Upload Optimizations for Windows Azure

    - by rgillen
    [Cross posted from here: http://rob.gillenfamily.net/post/External-File-Upload-Optimizations-for-Windows-Azure.aspx] I’m wrapping up a bit of the work we’ve been doing on data movement optimizations for cloud computing and the latest set of data yielded some interesting points I thought I’d share. The work done here is not really rocket science but may, in some ways, be slightly counter-intuitive and therefore seemed worthy of posting. Summary: for those who don’t like to read detailed posts or don’t have time, the synopsis is that if you are uploading data to Azure, block your data (even down to 1MB) and upload in parallel. Set your block size based on your source file size, but if you must choose a fixed value, use 1MB. Following the above will result in significant performance gains… upwards of 10x-24x and a reduction in overall file transfer time of upwards of 90% (eg, uploading a 1GB file averaged 46.37 minutes prior to optimizations and averaged 1.86 minutes afterwards). Detail: For those of you who want more detail, or think that the claims at the end of the preceding paragraph are over-reaching, what follows is information and code supporting these claims. As the title would indicate, these tests were run from our research facility pointing to the Azure cloud (specifically US North Central as it is physically closest to us) and do not represent intra-cloud results… we have performed intra-cloud tests and the overall results are similar in notion but the data rates are significantly different as well as the tipping points for the various block sizes… this will be detailed separately). We started by building a very simple console application that would loop through a directory and upload each file to Azure storage. This application used the shipping storage client library from the 1.1 version of the azure tools. The only real variation from the client library is that we added code to collect and record the duration (in ms) and size (in bytes) for each file transferred. The code is available here. We then created a directory that had a collection of files for the following sizes: 2KB, 32KB, 64KB, 128KB, 512KB, 1MB, 5MB, 10MB, 25MB, 50MB, 100MB, 250MB, 500MB, 750MB, and 1GB (50 files for each size listed). These files contained randomly-generated binary data and do not benefit from compression (a separate discussion topic). Our file generation tool is available here. The baseline was established by running the application described above against the directory containing all of the data files. This application uploads the files in a random order so as to avoid transferring all of the files of a given size sequentially and thereby spreading the affects of periodic Internet delays across the collection of results.  We then ran some scripts to split the resulting data and generate some reports. The raw data collected for our non-optimized tests is available via the links in the Related Resources section at the bottom of this post. For each file size, we calculated the average upload time (and standard deviation) and the average transfer rate (and standard deviation). As you likely are aware, transferring data across the Internet is susceptible to many transient delays which can cause anomalies in the resulting data. It is for this reason that we randomized the order of source file processing as well as executed the tests 50x for each file size. We expect that these steps will yield a sufficiently balanced set of results. Once the baseline was collected and analyzed, we updated the test harness application with some methods to split the source file into user-defined block sizes and then to upload those blocks in parallel (using the PutBlock() method of Azure storage). The parallelization was handled by simply relying on the Parallel Extensions to .NET to provide a Parallel.For loop (see linked source for specific implementation details in Program.cs, line 173 and following… less than 100 lines total). Once all of the blocks were uploaded, we called PutBlockList() to assemble/commit the file in Azure storage. For each block transferred, the MD5 was calculated and sent ensuring that the bits that arrived matched was was intended. The timer for the blocked/parallelized transfer method wraps the entire process (source file splitting, block transfer, MD5 validation, file committal). A diagram of the process is as follows: We then tested the affects of blocking & parallelizing the transfers by running the updated application against the same source set and did a parameter sweep on the block size including 256KB, 512KB, 1MB, 2MB, and 4MB (our assumption was that anything lower than 256KB wasn’t worth the trouble and 4MB is the maximum size of a block supported by Azure). The raw data for the parallel tests is available via the links in the Related Resources section at the bottom of this post. This data was processed and then compared against the single-threaded / non-optimized transfer numbers and the results were encouraging. The Excel version of the results is available here. Two semi-obvious points need to be made prior to reviewing the data. The first is that if the block size is larger than the source file size you will end up with a “negative optimization” due to the overhead of attempting to block and parallelize. The second is that as the files get smaller, the clock-time cost of blocking and parallelizing (overhead) is more apparent and can tend towards negative optimizations. For this reason (and is supported in the raw data provided in the linked worksheet) the charts and dialog below ignore source file sizes less than 1MB. (click chart for full size image) The chart above illustrates some interesting points about the results: When the block size is smaller than the source file, performance increases but as the block size approaches and then passes the source file size, you see decreasing benefit to the point of negative gains (see the values for the 1MB file size) For some of the moderately-sized source files, small blocks (256KB) are best As the size of the source file gets larger (see values for 50MB and up), the smallest block size is not the most efficient (presumably due, at least in part, to the increased number of blocks, increased number of individual transfer requests, and reassembly/committal costs). Once you pass the 250MB source file size, the difference in rate for 1MB to 4MB blocks is more-or-less constant The 1MB block size gives the best average improvement (~16x) but the optimal approach would be to vary the block size based on the size of the source file.    (click chart for full size image) The above is another view of the same data as the prior chart just with the axis changed (x-axis represents file size and plotted data shows improvement by block size). It again highlights the fact that the 1MB block size is probably the best overall size but highlights the benefits of some of the other block sizes at different source file sizes. This last chart shows the change in total duration of the file uploads based on different block sizes for the source file sizes. Nothing really new here other than this view of the data highlights the negative affects of poorly choosing a block size for smaller files.   Summary What we have found so far is that blocking your file uploads and uploading them in parallel results in significant performance improvements. Further, utilizing extension methods and the Task Parallel Library (.NET 4.0) make short work of altering the shipping client library to provide this functionality while minimizing the amount of change to existing applications that might be using the client library for other interactions.   Related Resources Source code for upload test application Source code for random file generator ODatas feed of raw data from non-optimized transfer tests Experiment Metadata Experiment Datasets 2KB Uploads 32KB Uploads 64KB Uploads 128KB Uploads 256KB Uploads 512KB Uploads 1MB Uploads 5MB Uploads 10MB Uploads 25MB Uploads 50MB Uploads 100MB Uploads 250MB Uploads 500MB Uploads 750MB Uploads 1GB Uploads Raw Data OData feeds of raw data from blocked/parallelized transfer tests Experiment Metadata Experiment Datasets Raw Data 256KB Blocks 512KB Blocks 1MB Blocks 2MB Blocks 4MB Blocks Excel worksheet showing summarizations and comparisons

    Read the article

  • evaluating a code of a graph [migrated]

    - by mazen.r.f
    This is relatively a long code,if you have the tolerance and the will to find out how to make this code work then take a look please, i will appreciate your feed back. i have spent two days trying to come up with a code to represent a graph , then calculate the shortest path using dijkastra algorithm , but i am not able to get the right result , even the code runs without errors , but the result is not correct , always i am getting 0. briefly,i have three classes , Vertex, Edge, Graph , the Vertex class represents the nodes in the graph and it has id and carried ( which carry the weight of the links connected to it while using dijkastra algorithm ) and a vector of the ids belong to other nodes the path will go through before arriving to the node itself , this vector is named previous_nodes. the Edge class represents the edges in the graph it has two vertices ( one in each side ) and a wight ( the distance between the two vertices ). the Graph class represents the graph , it has two vectors one is the vertices included in this graph , and the other is the edges included in the graph. inside the class Graph there is a method its name shortest takes the sources node id and the destination and calculates the shortest path using dijkastra algorithm, and i think that it is the most important part of the code. my theory about the code is that i will create two vectors one for the vertices in the graph i will name it vertices and another vector its name is ver_out it will include the vertices out of calculation in the graph, also i will have two vectors of type Edge , one its name edges for all the edges in the graph and the other its name is track to contain temporarily the edges linked to the temporarily source node in every round , after the calculation of every round the vector track will be cleared. in main() i created five vertices and 10 edges to simulate a graph , the result of the shortest path supposedly to be 4 , but i am always getting 0 , that means i am having something wrong in my code , so if you are interesting in helping me find my mistake and how to make the code work , please take a look. the way shortest work is as follow at the beginning all the edges will be included in the vector edges , we select the edges related to the source and put them in the vector track , then we iterate through track and add the wight of every edge to the vertex (node ) related to it ( not the source vertex ) , then after we clear track and remove the source vertex from the vector vertices and select a new source , and start over again select the edges related to the new source , put them in track , iterate over edges in tack , adding the weights to the corresponding vertices then remove this vertex from the vector vertices, and clear track , and select a new source , and so on . here is the code. #include<iostream> #include<vector> #include <stdlib.h> // for rand() using namespace std; class Vertex { private: unsigned int id; // the name of the vertex unsigned int carried; // the weight a vertex may carry when calculating shortest path vector<unsigned int> previous_nodes; public: unsigned int get_id(){return id;}; unsigned int get_carried(){return carried;}; void set_id(unsigned int value) {id = value;}; void set_carried(unsigned int value) {carried = value;}; void previous_nodes_update(unsigned int val){previous_nodes.push_back(val);}; void previous_nodes_erase(unsigned int val){previous_nodes.erase(previous_nodes.begin() + val);}; Vertex(unsigned int init_val = 0, unsigned int init_carried = 0) :id (init_val), carried(init_carried) // constructor { } ~Vertex() {}; // destructor }; class Edge { private: Vertex first_vertex; // a vertex on one side of the edge Vertex second_vertex; // a vertex on the other side of the edge unsigned int weight; // the value of the edge ( or its weight ) public: unsigned int get_weight() {return weight;}; void set_weight(unsigned int value) {weight = value;}; Vertex get_ver_1(){return first_vertex;}; Vertex get_ver_2(){return second_vertex;}; void set_first_vertex(Vertex v1) {first_vertex = v1;}; void set_second_vertex(Vertex v2) {second_vertex = v2;}; Edge(const Vertex& vertex_1 = 0, const Vertex& vertex_2 = 0, unsigned int init_weight = 0) : first_vertex(vertex_1), second_vertex(vertex_2), weight(init_weight) { } ~Edge() {} ; // destructor }; class Graph { private: std::vector<Vertex> vertices; std::vector<Edge> edges; public: Graph(vector<Vertex> ver_vector, vector<Edge> edg_vector) : vertices(ver_vector), edges(edg_vector) { } ~Graph() {}; vector<Vertex> get_vertices(){return vertices;}; vector<Edge> get_edges(){return edges;}; void set_vertices(vector<Vertex> vector_value) {vertices = vector_value;}; void set_edges(vector<Edge> vector_ed_value) {edges = vector_ed_value;}; unsigned int shortest(unsigned int src, unsigned int dis) { vector<Vertex> ver_out; vector<Edge> track; for(unsigned int i = 0; i < edges.size(); ++i) { if((edges[i].get_ver_1().get_id() == vertices[src].get_id()) || (edges[i].get_ver_2().get_id() == vertices[src].get_id())) { track.push_back (edges[i]); edges.erase(edges.begin()+i); } }; for(unsigned int i = 0; i < track.size(); ++i) { if(track[i].get_ver_1().get_id() != vertices[src].get_id()) { track[i].get_ver_1().set_carried((track[i].get_weight()) + track[i].get_ver_2().get_carried()); track[i].get_ver_1().previous_nodes_update(vertices[src].get_id()); } else { track[i].get_ver_2().set_carried((track[i].get_weight()) + track[i].get_ver_1().get_carried()); track[i].get_ver_2().previous_nodes_update(vertices[src].get_id()); } } for(unsigned int i = 0; i < vertices.size(); ++i) if(vertices[i].get_id() == src) vertices.erase(vertices.begin() + i); // removing the sources vertex from the vertices vector ver_out.push_back (vertices[src]); track.clear(); if(vertices[0].get_id() != dis) {src = vertices[0].get_id();} else {src = vertices[1].get_id();} for(unsigned int i = 0; i < vertices.size(); ++i) if((vertices[i].get_carried() < vertices[src].get_carried()) && (vertices[i].get_id() != dis)) src = vertices[i].get_id(); //while(!edges.empty()) for(unsigned int round = 0; round < vertices.size(); ++round) { for(unsigned int k = 0; k < edges.size(); ++k) { if((edges[k].get_ver_1().get_id() == vertices[src].get_id()) || (edges[k].get_ver_2().get_id() == vertices[src].get_id())) { track.push_back (edges[k]); edges.erase(edges.begin()+k); } }; for(unsigned int n = 0; n < track.size(); ++n) if((track[n].get_ver_1().get_id() != vertices[src].get_id()) && (track[n].get_ver_1().get_carried() > (track[n].get_ver_2().get_carried() + track[n].get_weight()))) { track[n].get_ver_1().set_carried((track[n].get_weight()) + track[n].get_ver_2().get_carried()); track[n].get_ver_1().previous_nodes_update(vertices[src].get_id()); } else if(track[n].get_ver_2().get_carried() > (track[n].get_ver_1().get_carried() + track[n].get_weight())) { track[n].get_ver_2().set_carried((track[n].get_weight()) + track[n].get_ver_1().get_carried()); track[n].get_ver_2().previous_nodes_update(vertices[src].get_id()); } for(unsigned int t = 0; t < vertices.size(); ++t) if(vertices[t].get_id() == src) vertices.erase(vertices.begin() + t); track.clear(); if(vertices[0].get_id() != dis) {src = vertices[0].get_id();} else {src = vertices[1].get_id();} for(unsigned int tt = 0; tt < edges.size(); ++tt) { if(vertices[tt].get_carried() < vertices[src].get_carried()) { src = vertices[tt].get_id(); } } } return vertices[dis].get_carried(); } }; int main() { cout<< "Hello, This is a graph"<< endl; vector<Vertex> vers(5); vers[0].set_id(0); vers[1].set_id(1); vers[2].set_id(2); vers[3].set_id(3); vers[4].set_id(4); vector<Edge> eds(10); eds[0].set_first_vertex(vers[0]); eds[0].set_second_vertex(vers[1]); eds[0].set_weight(5); eds[1].set_first_vertex(vers[0]); eds[1].set_second_vertex(vers[2]); eds[1].set_weight(9); eds[2].set_first_vertex(vers[0]); eds[2].set_second_vertex(vers[3]); eds[2].set_weight(4); eds[3].set_first_vertex(vers[0]); eds[3].set_second_vertex(vers[4]); eds[3].set_weight(6); eds[4].set_first_vertex(vers[1]); eds[4].set_second_vertex(vers[2]); eds[4].set_weight(2); eds[5].set_first_vertex(vers[1]); eds[5].set_second_vertex(vers[3]); eds[5].set_weight(5); eds[6].set_first_vertex(vers[1]); eds[6].set_second_vertex(vers[4]); eds[6].set_weight(7); eds[7].set_first_vertex(vers[2]); eds[7].set_second_vertex(vers[3]); eds[7].set_weight(1); eds[8].set_first_vertex(vers[2]); eds[8].set_second_vertex(vers[4]); eds[8].set_weight(8); eds[9].set_first_vertex(vers[3]); eds[9].set_second_vertex(vers[4]); eds[9].set_weight(3); unsigned int path; Graph graf(vers, eds); path = graf.shortest(2, 4); cout<< path << endl; return 0; }

    Read the article

  • ASP.Net MVC Interview Questions and Answers

    - by Samir R. Bhogayta
    About ASP.Net MVC The ASP.Net MVC is the framework provided by Microsoft that lets you develop the applications that follows the principles of Model-View-Controller (MVC) design pattern. The .Net programmers new to MVC thinks that it is similar to WebForms Model (Normal ASP.Net), but it is far different from the WebForms programming.  This article will tell you how to quick learn the basics of MVC along with some frequently asked interview questions and answers on ASP.Net MVC 1. What is ASP.Net MVC The ASP.Net MVC is the framework provided by Microsoft to achieve     separation of concerns that leads to easy maintainability of the     application. Model is supposed to handle data related activity View deals with user interface related work Controller is meant for managing the application flow by communicating between Model and View. Normal 0 false false false EN-US X-NONE X-NONE 2. Why to use ASP.Net MVC The strength of MVC (i.e. ASP.Net MVC) listed below will answer this question MVC reduces the dependency between the components; this makes your code more testable. MVC does not recommend use of server controls, hence the processing time required to generate HTML response is drastically reduced. The integration of java script libraries like jQuery, Microsoft MVC becomes easy as compared to Webforms approach. 3. What do you mean by Razor The Razor is the new View engine introduced in MVC 3.0. The View engine is responsible for processing the view files [e.g. .aspx, .cshtml] in order to generate HTML response. The previous versions of MVC were dependent on ASPX view engine.  4. Can we use ASPX view engine in latest versions of MVC Yes. The Recommended way is to prefer Razor View 5. What are the benefits of Razor View?      The syntax for server side code is simplified      The length of code is drastically reduced      Razor syntax is easy to learn and reduces the complexity Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin;} 6. What is the extension of Razor View file? .cshtml (for c#) and .vbhtml (for vb) 7. How to create a Controller in MVC Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin;} Create a simple class and extend it from Controller class. The bare minimum requirement for a class to become a controller is to inherit it from ControllerBase is the class that is required to inherit to create the controller but Controller class inherits from ControllerBase. 8. How to create an Action method in MVC Add a simple method inside a controller class with ActionResult return type. 9. How to access a view on the server    The browser generates the request in which the information like Controller name, Action Name and Parameters are provided, when server receives this URL it resolves the Name of Controller and Action, after that it calls the specified action with provided parameters. Action normally does some processing and returns the ViewResult by specifying the view name (blank name searches according to naming conventions).   10. What is the default Form method (i.e. GET, POST) for an action method GET. To change this you can add an action level attribute e.g [HttpPost] Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin;} 11. What is a Filter in MVC? When user (browser) sends a request to server an action method of a controller gets invoked; sometimes you may require executing a custom code before or after action method gets invoked, this custom code is called as Filter. 12. What are the different types of Filters in MVC? a. Authorization filter b. Action filter c. Result filter d. Exception filter [Do not forget the order mentioned above as filters gets executed as per above mentioned sequence] 13. Explain the use of Filter with an example? Suppose you are working on a MVC application where URL is sent in an encrypted format instead of a plain text, once encrypted URL is received by server it will ignore action parameters because of URL encryption. To solve this issue you can create global action filter by overriding OnActionExecuting method of controller class, in this you can extract the action parameters from the encrypted URL and these parameters can be set on filterContext to send plain text parameters to the actions.     14. What is a HTML helper? A HTML helper is a method that returns string; return string usually is the HTML tag. The standard HTML helpers (e.g. Html.BeginForm(),Html.TextBox()) available in MVC are lightweight as it does not rely on event model or view state as that of in ASP.Net server controls.

    Read the article

< Previous Page | 566 567 568 569 570 571 572 573 574 575 576 577  | Next Page >