Search Results

Search found 20172 results on 807 pages for 'oracle forms to adf'.

Page 586/807 | < Previous Page | 582 583 584 585 586 587 588 589 590 591 592 593  | Next Page >

  • 64-bit Archives Needed

    - by user9154181
    A little over a year ago, we received a question from someone who was trying to build software on Solaris. He was getting errors from the ar command when creating an archive. At that time, the ar command on Solaris was a 32-bit command. There was more than 2GB of data, and the ar command was hitting the file size limit for a 32-bit process that doesn't use the largefile APIs. Even in 2011, 2GB is a very large amount of code, so we had not heard this one before. Most of our toolchain was extended to handle 64-bit sized data back in the 1990's, but archives were not changed, presumably because there was no perceived need for it. Since then of course, programs have continued to get larger, and in 2010, the time had finally come to investigate the issue and find a way to provide for larger archives. As part of that process, I had to do a deep dive into the archive format, and also do some Unix archeology. I'm going to record what I learned here, to document what Solaris does, and in the hope that it might help someone else trying to solve the same problem for their platform. Archive Format Details Archives are hardly cutting edge technology. They are still used of course, but their basic form hasn't changed in decades. Other than to fix a bug, which is rare, we don't tend to touch that code much. The archive file format is described in /usr/include/ar.h, and I won't repeat the details here. Instead, here is a rough overview of the archive file format, implemented by System V Release 4 (SVR4) Unix systems such as Solaris: Every archive starts with a "magic number". This is a sequence of 8 characters: "!<arch>\n". The magic number is followed by 1 or more members. A member starts with a fixed header, defined by the ar_hdr structure in/usr/include/ar.h. Immediately following the header comes the data for the member. Members must be padded at the end with newline characters so that they have even length. The requirement to pad members to an even length is a dead giveaway as to the age of the archive format. It tells you that this format dates from the 1970's, and more specifically from the era of 16-bit systems such as the PDP-11 that Unix was originally developed on. A 32-bit system would have required 4 bytes, and 64-bit systems such as we use today would probably have required 8 bytes. 2 byte alignment is a poor choice for ELF object archive members. 32-bit objects require 4 byte alignment, and 64-bit objects require 64-bit alignment. The link-editor uses mmap() to process archives, and if the members have the wrong alignment, we have to slide (copy) them to the correct alignment before we can access the ELF data structures inside. The archive format requires 2 byte padding, but it doesn't prohibit more. The Solaris ar command takes advantage of this, and pads ELF object members to 8 byte boundaries. Anything else is padded to 2 as required by the format. The archive header (ar_hdr) represents all numeric values using an ASCII text representation rather than as binary integers. This means that an archive that contains only text members can be viewed using tools such as cat, more, or a text editor. The original designers of this format clearly thought that archives would be used for many file types, and not just for objects. Things didn't turn out that way of course — nearly all archives contain relocatable objects for a single operating system and machine, and are used primarily as input to the link-editor (ld). Archives can have special members that are created by the ar command rather than being supplied by the user. These special members are all distinguished by having a name that starts with the slash (/) character. This is an unambiguous marker that says that the user could not have supplied it. The reason for this is that regular archive members are given the plain name of the file that was inserted to create them, and any path components are stripped off. Slash is the delimiter character used by Unix to separate path components, and as such cannot occur within a plain file name. The ar command hides the special members from you when you list the contents of an archive, so most users don't know that they exist. There are only two possible special members: A symbol table that maps ELF symbols to the object archive member that provides it, and a string table used to hold member names that exceed 15 characters. The '/' convention for tagging special members provides room for adding more such members should the need arise. As I will discuss below, we took advantage of this fact to add an alternate 64-bit symbol table special member which is used in archives that are larger than 4GB. When an archive contains ELF object members, the ar command builds a special archive member known as the symbol table that maps all ELF symbols in the object to the archive member that provides it. The link-editor uses this symbol table to determine which symbols are provided by the objects in that archive. If an archive has a symbol table, it will always be the first member in the archive, immediately following the magic number. Unlike member headers, symbol tables do use binary integers to represent offsets. These integers are always stored in big-endian format, even on a little endian host such as x86. The archive header (ar_hdr) provides 15 characters for representing the member name. If any member has a name that is longer than this, then the real name is written into a special archive member called the string table, and the member's name field instead contains a slash (/) character followed by a decimal representation of the offset of the real name within the string table. The string table is required to precede all normal archive members, so it will be the second member if the archive contains a symbol table, and the first member otherwise. The archive format is not designed to make finding a given member easy. Such operations move through the archive from front to back examining each member in turn, and run in O(n) time. This would be bad if archives were commonly used in that manner, but in general, they are not. Typically, the ar command is used to build an new archive from scratch, inserting all the objects in one operation, and then the link-editor accesses the members in the archive in constant time by using the offsets provided by the symbol table. Both of these operations are reasonably efficient. However, listing the contents of a large archive with the ar command can be rather slow. Factors That Limit Solaris Archive Size As is often the case, there was more than one limiting factor preventing Solaris archives from growing beyond the 32-bit limits of 2GB (32-bit signed) and 4GB (32-bit unsigned). These limits are listed in the order they are hit as archive size grows, so the earlier ones mask those that follow. The original Solaris archive file format can handle sizes up to 4GB without issue. However, the ar command was delivered as a 32-bit executable that did not use the largefile APIs. As such, the ar command itself could not create a file larger than 2GB. One can solve this by building ar with the largefile APIs which would allow it to reach 4GB, but a simpler and better answer is to deliver a 64-bit ar, which has the ability to scale well past 4GB. Symbol table offsets are stored as 32-bit big-endian binary integers, which limits the maximum archive size to 4GB. To get around this limit requires a different symbol table format, or an extension mechanism to the current one, similar in nature to the way member names longer than 15 characters are handled in member headers. The size field in the archive member header (ar_hdr) is an ASCII string capable of representing a 32-bit unsigned value. This places a 4GB size limit on the size of any individual member in an archive. In considering format extensions to get past these limits, it is important to remember that very few archives will require the ability to scale past 4GB for many years. The old format, while no beauty, continues to be sufficient for its purpose. This argues for a backward compatible fix that allows newer versions of Solaris to produce archives that are compatible with older versions of the system unless the size of the archive exceeds 4GB. Archive Format Differences Among Unix Variants While considering how to extend Solaris archives to scale to 64-bits, I wanted to know how similar archives from other Unix systems are to those produced by Solaris, and whether they had already solved the 64-bit issue. I've successfully moved archives between different Unix systems before with good luck, so I knew that there was some commonality. If it turned out that there was already a viable defacto standard for 64-bit archives, it would obviously be better to adopt that rather than invent something new. The archive file format is not formally standardized. However, the ar command and archive format were part of the original Unix from Bell Labs. Other systems started with that format, extending it in various often incompatible ways, but usually with the same common shared core. Most of these systems use the same magic number to identify their archives, despite the fact that their archives are not always fully compatible with each other. It is often true that archives can be copied between different Unix variants, and if the member names are short enough, the ar command from one system can often read archives produced on another. In practice, it is rare to find an archive containing anything other than objects for a single operating system and machine type. Such an archive is only of use on the type of system that created it, and is only used on that system. This is probably why cross platform compatibility of archives between Unix variants has never been an issue. Otherwise, the use of the same magic number in archives with incompatible formats would be a problem. I was able to find information for a number of Unix variants, described below. These can be divided roughly into three tribes, SVR4 Unix, BSD Unix, and IBM AIX. Solaris is a SVR4 Unix, and its archives are completely compatible with those from the other members of that group (GNU/Linux, HP-UX, and SGI IRIX). AIX AIX is an exception to rule that Unix archive formats are all based on the original Bell labs Unix format. It appears that AIX supports 2 formats (small and big), both of which differ in fundamental ways from other Unix systems: These formats use a different magic number than the standard one used by Solaris and other Unix variants. They include support for removing archive members from a file without reallocating the file, marking dead areas as unused, and reusing them when new archive items are inserted. They have a special table of contents member (File Member Header) which lets you find out everything that's in the archive without having to actually traverse the entire file. Their symbol table members are quite similar to those from other systems though. Their member headers are doubly linked, containing offsets to both the previous and next members. Of the Unix systems described here, AIX has the only format I saw that will have reasonable insert/delete performance for really large archives. Everyone else has O(n) performance, and are going to be slow to use with large archives. BSD BSD has gone through 4 versions of archive format, which are described in their manpage. They use the same member header as SVR4, but their symbol table format is different, and their scheme for long member names puts the name directly after the member header rather than into a string table. GNU/Linux The GNU toolchain uses the SVR4 format, and is compatible with Solaris. HP-UX HP-UX seems to follow the SVR4 model, and is compatible with Solaris. IRIX IRIX has 32 and 64-bit archives. The 32-bit format is the standard SVR4 format, and is compatible with Solaris. The 64-bit format is the same, except that the symbol table uses 64-bit integers. IRIX assumes that an archive contains objects of a single ELFCLASS/MACHINE, and any archive containing ELFCLASS64 objects receives a 64-bit symbol table. Although they only use it for 64-bit objects, nothing in the archive format limits it to ELFCLASS64. It would be perfectly valid to produce a 64-bit symbol table in an archive containing 32-bit objects, text files, or anything else. Tru64 Unix (Digital/Compaq/HP) Tru64 Unix uses a format much like ours, but their symbol table is a hash table, making specific symbol lookup much faster. The Solaris link-editor uses archives by examining the entire symbol table looking for unsatisfied symbols for the link, and not by looking up individual symbols, so there would be no benefit to Solaris from such a hash table. The Tru64 ld must use a different approach in which the hash table pays off for them. Widening the existing SVR4 archive symbol tables rather than inventing something new is the simplest path forward. There is ample precedent for this approach in the ELF world. When ELF was extended to support 64-bit objects, the approach was largely to take the existing data structures, and define 64-bit versions of them. We called the old set ELF32, and the new set ELF64. My guess is that there was no need to widen the archive format at that time, but had there been, it seems obvious that this is how it would have been done. The Implementation of 64-bit Solaris Archives As mentioned earlier, there was no desire to improve the fundamental nature of archives. They have always had O(n) insert/delete behavior, and for the most part it hasn't mattered. AIX made efforts to improve this, but those efforts did not find widespread adoption. For the purposes of link-editing, which is essentially the only thing that archives are used for, the existing format is adequate, and issues of backward compatibility trump the desire to do something technically better. Widening the existing symbol table format to 64-bits is therefore the obvious way to proceed. For Solaris 11, I implemented that, and I also updated the ar command so that a 64-bit version is run by default. This eliminates the 2 most significant limits to archive size, leaving only the limit on an individual archive member. We only generate a 64-bit symbol table if the archive exceeds 4GB, or when the new -S option to the ar command is used. This maximizes backward compatibility, as an archive produced by Solaris 11 is highly likely to be less than 4GB in size, and will therefore employ the same format understood by older versions of the system. The main reason for the existence of the -S option is to allow us to test the 64-bit format without having to construct huge archives to do so. I don't believe it will find much use outside of that. Other than the new ability to create and use extremely large archives, this change is largely invisible to the end user. When reading an archive, the ar command will transparently accept either form of symbol table. Similarly, the ELF library (libelf) has been updated to understand either format. Users of libelf (such as the link-editor ld) do not need to be modified to use the new format, because these changes are encapsulated behind the existing functions provided by libelf. As mentioned above, this work did not lift the limit on the maximum size of an individual archive member. That limit remains fixed at 4GB for now. This is not because we think objects will never get that large, for the history of computing says otherwise. Rather, this is based on an estimation that single relocatable objects of that size will not appear for a decade or two. A lot can change in that time, and it is better not to overengineer things by writing code that will sit and rot for years without being used. It is not too soon however to have a plan for that eventuality. When the time comes when this limit needs to be lifted, I believe that there is a simple solution that is consistent with the existing format. The archive member header size field is an ASCII string, like the name, and as such, the overflow scheme used for long names can also be used to handle the size. The size string would be placed into the archive string table, and its offset in the string table would then be written into the archive header size field using the same format "/ddd" used for overflowed names.

    Read the article

  • Usability enhancements for Users and Administrators in 11gR2 with Rex Thexton from PwC

    - by Darin Pendergraft
    In addition to the inviting customers to participate in the 11gR2 BETA program, a select number of partners were invited as well.  Rex Thexton, Managing Director of PwC's Advisory/Technology practice and his team were part of the BETA program.  I caught up with Rex recently to ask him about the new features that he liked most in the latest release.  Listen to our interview here:  podcast link

    Read the article

  • Best Of 2010

    - by Mike Dietrich
    Hi there, in Australia, Japan, Singapore and many other countries it's already 2011 - but Germany and the US is still some time until midnight :-) To round up the year you'll find a few off-topic pictures from 2010. You might click on the pictures to get a better resolution. Enjoy ... Moscow - Red Square Tokyo Train - Cell Phone Mania Great Chinese Wall near Beijing Hong Kong by Night Yearing Station Winery, Yarra - Victoria, Australia Dublin, Ireland - during the ash cloud - no comment - Liberty It's sometime foggy in SF Singapore Opera Stockholm - Gamla Stan Unbelievable white beach at Camps Bay, Clifton, Capetown Words fail me ... Mike

    Read the article

  • Cluster Node Recovery Using Second Node in Solaris Cluster

    - by Onur Bingul
    Assumptions:Node 0a is the cluster node that has crashed and could not boot anymore.Node 0b is the node in cluster and in production with services active.Both nodes have their boot disk mirrored via SDS/SVM.We have many options to clone the boot disk from node 0b:- make a copy via network using the ufsdump command and pipe to ufsrestore - make a copy inserting the disk locally on node 0b and creating the third mirror with SDS- make a copy inserting the disk locally on node 0b using dd commandIn this procedure we are going to use dd command (from my experience this is the best option).Bare in mind that in the examples provided we work on Sun Fire V240 systems which have SCSI internal disks. In the case of Fibre Channel (FC) internal disks you must pay attention to the unique identifier, or World Wide Name (WWN), associated with each FC disk (in this case take a look at infodoc #40133 in order to recreate the device tree correctly).Procedure:On node 0b the boot disk is c1t0d0 (c1t1d0 mirror) and this is the VTOC:* Partition  Tag  Flags    Sector     Count    Sector  Mount Directory      0      2    00          0   2106432   2106431      1      3    01    2106432  74630784  76737215      2      5    00          0 143349312 143349311      4      7    00   76737216  50340672 127077887      5      4    00  127077888  14683968 141761855      6      0    00  141761856   1058304 142820159      7      0    00  142820160    529152 143349311We will insert the new disk on node 0b and it will be seen as c1t2d0.1) On node 0b we make a copy via dd from disk c1t0d0s2 to disk c1t2d0s2# dd if=/dev/rdsk/c1t0d0s2 of=/dev/rdsk/c1t2d0s2 bs=8192kA copy of a 72GB disk will take approximately about 45 minutes.Note: as an alternative to make identical copy of root over network follow Document ID: 47498Title: Sun[TM] Cluster 3.0: How to Rebuild a node with Veritas Volume Manager2) Perform an fsck on disk c1t2d0 data slices:   1.  fsck -o f /dev/rdsk/c1t2d0s0 (root)   2.  fsck -o f /dev/rdsk/c1t2d0s4 (/var)   3.  fsck -o f /dev/rdsk/c1t2d0s5 (/usr)   4.  fsck -o f /dev/rdsk/c1t2d0s6 (/globaldevices)3) Mount the root file system in order to edit following files for changing the node name:# mount /dev/dsk/c1t2d0s0 /mntChange the hostname from 0b to 0a:# cd /mnt/etc# vi hosts # vi hostname.bge0 # vi hostname.bge2 # vi nodename 4) Change the /mnt/etc/vfstab from the actual:/dev/md/dsk/d201        -       -       swap    -       no      -/dev/md/dsk/d200        /dev/md/rdsk/d200       /       ufs     1       no      -/dev/md/dsk/d205        /dev/md/rdsk/d205       /usr    ufs     1       no      logging/dev/md/dsk/d204        /dev/md/rdsk/d204       /var    ufs     1       no      logging#/dev/md/dsk/d206       /dev/md/rdsk/d206       /globaldevices  ufs     2       yes     loggingswap    -       /tmp    tmpfs   -       yes     -/dev/md/dsk/d206        /dev/md/rdsk/d206       /global/.devices/node@2 ufs     2       noglobalto this (unencapsulate disk from SDS/SVM):/dev/dsk/c1t0d0s1        -       -       swap    -       no      -/dev/dsk/c1t0d0s0       /dev/rdsk/c1t0d0s0       /       ufs     1       no      -/dev/dsk/c1t0d0s5       /dev/rdsk/c1t0d0s5       /usr    ufs     1       no      logging/dev/dsk/c1t0d0s4       /dev/rdsk/c1t0d0s4       /var    ufs     1       no      logging#/dev/md/dsk/d206       /dev/md/rdsk/d206       /globaldevices  ufs     2       yes     loggingswap    -       /tmp    tmpfs   -       yes     -/dev/dsk/c1t0d0s6       /dev/rdsk/c1t0d0s6       /global/.devices/node@1 ufs     2       no globalIt is important that global device partition (slice 6) in the new vfstab will point to the physical partition of the disk (in our case slice 6).Be careful with the name you use for the new disk. In this case we define it as c1t0d0 because we will insert it as target 0 in node 0a.But this could be different based on the configuration you are working on.5) Remove following entry from /mnt/etc/system (part of unencapsulation procedure):rootdev:/pseudo/md@0:0,200,blk6) Correct the link shared -> ../../global/.devices/node@2/dev/md/shared in order to point to the nodeid of node 0a (in our case nodeid 1):# cd /mnt/dev/mdhow it is now.... node 0b has nodeid 2lrwxrwxrwx   1 root     root          42 Mar 10  2005 shared ->../../global/.devices/node@2/dev/md/shared# rm shared# ln -s ../../global/.devices/node@1/dev/md/shared sharedhow is going to be... with nodeid 1 for node 0alrwxrwxrwx   1 root     root          42 Mar 10  2005 shared ->../../global/.devices/node@1/dev/md/shared7) Change nodeid (in our case from 2 to 1):# cd /mnt/etc/cluster# vi nodeid8) Change the file /mnt/etc/path_to_inst in order to reflect the correct nodeid for node 0a:# cd /mnt/etc# vi path_to_instChange entries from node@2 to node@1 with the vi command ":%s/node@2/node@1/g"9) Write the bootblock to the disk... just in case:# /usr/sbin/installboot /usr/platform/sun4u/lib/fs/ufs/bootblk /dev/rdsk/c1t2d0s0Now the disk is ready to be inserted in node 0a in order to bootup the node.10) Bootup node 0a with command "boot -sx"... this is becasue we need to make some changes in ccr files in order to recreate did environment.11) Modify cluster ccr:# cd /etc/cluster/ccr# rm did_instances# rm did_instances.bak# vi directory - remove the did_instances line.# /usr/cluster/lib/sc/ccradm -i /etc/cluster/ccr/directory # grep ccr_gennum /etc/cluster/ccr/directory ccr_gennum -1 # /usr/cluster/lib/sc/ccradm -i /etc/cluster/ccr/infrastructure # grep ccr_gennum /etc/cluster/ccr/infrastructure ccr_gennum -112) Bring the node 0a down again to the ok prompt and then issue the command "boot -r"Now the node will join the cluster and from scstat and metaset command you can verify functionality. Next step is to encapsulate the boot disk in SDS/SVM and create the mirrors.In our case node 0b has metadevice name starting from d200. For this reason on node 0a we need to create metadevice starting from d100. This is just an example, you can have different names.The important thing to remember is that metadevice boot disks have different names on each node.13) Remove metadevice pointing to the boot and mirror disks (inherit from node 0b):# metaclear -r -f d200# metaclear -r -f d201# metaclear -r -f d204# metaclear -r -f d205# metaclear -r -f d206verify from metastat that no metadevices are set for boot and mirror disks.14) Encapsulate the boot disk:# metainit -f d110 1 1 c1t0d0s0# metainit d100 -m d110# metaroot d10015) Reboot node 0a.16) Create all the metadevice for slices remaining on boot disk# metainit -f d111 1 1 c1t0d0s1# metainit d101 -m d111# metainit -f d114 1 1 c1t0d0s4# metainit d104 -m d114# metainit -f d115 1 1 c1t0d0s5# metainit d105 -m d115# metainit -f d116 1 1 c1t0d0s6# metainit d106 -m d11617) Edit the vfstab in order to specifiy metadevices created:old:/dev/dsk/c1t0d0s1        -       -       swap    -       no      -/dev/md/dsk/d100        /dev/md/rdsk/d100       /       ufs     1       no      -/dev/dsk/c1t0d0s5       /dev/rdsk/c1t0d0s5       /usr    ufs     1       no      logging/dev/dsk/c1t0d0s4       /dev/rdsk/c1t0d0s4       /var    ufs     1       no      logging#/dev/md/dsk/d206       /dev/md/rdsk/d206       /globaldevices  ufs     2       yes     loggingswap    -       /tmp    tmpfs   -       yes     -/dev/dsk/c1t0d0s6       /dev/rdsk/c1t0d0s6       /global/.devices/node@1 ufs      2       no  globalnew:/dev/md/dsk/d101        -       -       swap    -       no      -/dev/md/dsk/d100        /dev/md/rdsk/d100       /       ufs     1       no      -/dev/md/dsk/d105        /dev/md/rdsk/d105       /usr    ufs     1       no      logging/dev/md/dsk/d104        /dev/md/rdsk/d104       /var    ufs     1       no      logging#/dev/md/dsk/106       /dev/md/rdsk/d106       /globaldevices  ufs     2       yes     loggingswap    -       /tmp    tmpfs   -       yes     -/dev/md/dsk/d106        /dev/md/rdsk/d106       /global/.devices/node@1 ufs     2       noglobal18) Reboot node 0a in order to check new SDS/SVM boot configuration.19) Label the mirror disk c1t1d0 with the VTOC of boot disk c1t0d0:# prtvtoc /dev/dsk/c1t0d0s2 > /var/tmp/VTOC_c1t0d0 # fmthard -s /var/tmp/VTOC_c1t0d0 /dev/rdsk/c1t1d0s220) Put DB replica on slice 7 of disk c1t1d0:# metadb -a -c 3 /dev/dsk/c1t1d0s721) Create metadevice for mirror disk c1t1d0 and attach the new mirror side:# metainit d120 1 1 c1t1d0s0# metattach d100 d120# metainit d121 1 1 c1t1d0s1# metattach d101 d121# metainit d124 1 1 c1t1d0s4# metattach d104 d124# metainit d125 1 1 c1t1d0s5# metattach d105 d125# metainit d126 1 1 c1t1d0s6# metattach d106 d126

    Read the article

  • Spotlight on mkyong

    - by MarkH
    Occasionally, I'd like to share a blog I've discovered or that someone has passed along to me. Criteria are few, but in a nutshell, it must be: Java-related. (Doh!) Interesting. A good blog is exciting to read at some level, whether due to perspective, eye-catching writing, or technical insight. It doesn't have to read like a Stephen King novel, but it should grab you somehow. Technically deep or technically broad. A site that dives deeply, quickly is a great reference for particular topics/tasks. On the other hand, one that covers a lot of ground at a high-but-still-technical level can be a handy site to visit occasionally as well. Both are what I consider "bookmarkable", but for different reasons. Drumroll, please... With that in mind, this Blog Spotlight is cast upon mkyong.com, a site I stumbled across that offers a little bit of everything for various Java dev audiences. The title indicates the site is for "Java web development tutorials", and indeed it does have these: JSF, Spring, Struts, Hibernate, JAX-WS, JAX-RS, and numerous other topics are addressed to varying degrees. The site isn't devoted exclusively to server-side tutorials, though. Recent posts include mobile development topics, and the links at the bottom of the page connect you to reference pages and other useful sites. I've poked around through a couple of the tutorials and, while they won't take you from "zero to hero", they do seem to provide a nice overview of the subject at hand. They also offer an occasional explanatory comment that is missing from far too many texts, sites, and doc pages. It's not a perfect site, but I like it. The Bottom Line mkyong.com offers a nice "summary site" of server-side tutorials, mobile dev posts, and reference links. Check it out! All the best,Mark 

    Read the article

  • Notes for a NetBeans IDE 7.4 HTML5 Screencast

    - by Geertjan
    I'm making a screencast that intends to thoroughly introduce NetBeans IDE 7.4 as a tool for HTML, JavaScript, and CSS developers. Here's the current outline, additions and other suggestions are welcome. Getting Started Downloading NetBeans IDE for HTML5 and PHP Examining the NetBeans installation directory, especially netbeans.conf Examining the NetBeans user directory Command line options for starting NetBeans IDE Exploring NetBeans IDE Menus and toolbars Versioning tools Options Window Go through whole Options window Change look and feels Adding themes Syntax coloring Code templates Plugin Manager and Plugin Portal Dark Look and Feel Themes Toggle line wrap Emmet HTML Tidy NetBeans Cheat Sheets Creating HTML5 projects From scratch From online template, e.g., Twitter Bootstrap From ZIP file From folder on disk From sample Editing Useful shortcuts Alt-Enter: see the current hints Alt-Shift-DOT/COMMA: expand selection (CTRL instead of Alt on Mac) Ctrl-Shift-Up/Down: copy up/down Alt-Shift-Up/Down: move up/down Alt-Insert: generate code (Lorum Ipsum) View menu | Show Non-printable Characters Source menu Show keyboard shortcut card Useful hints Surround with Tag Remove Surrounding Tag Useful code completion Link tag for CSS, show completion Script tag for JavaScript, show completion Create code templates in Options window Useful HTML Palette items Unordered List Link Useful code navigation Navigator Navigate menu Useful project settings Project-level deployment settings CSS Preprocessors (SASS/LESS) Cordova support Useful window management Dragging, minimizing, undocking Ctrl-Shift-Enter: distraction-free mode Alt-Shift Enter: maximization Debugging JavaScript debugger Deploying Embedded browser Responsive design Inspect in NetBeans mode Chrome browser with NetBeans plugin Android and iOS browsers Cordova makes native packages On device debugging On device styling Documentation PHP and HTML5 Learning Trail: https://netbeans.org/kb/trails/php.html Contributing Social Media: Twitter, Facebook, blogs Plugin Portal Planning to complete the above screencast this week, will continue editing this page as more useful features arise in my mind or hopefully in the comments in this blog entry!

    Read the article

  • Java Spotlight Episode 111: Bruno Souza @brjavaman and Fabiane Nardon @fabianenardonon StoryTroop @storytroop

    - by Roger Brinkley
    Interview with Bruno Souza and Fabiane Nardon on StoryTroop. Right-click or Control-click to download this MP3 file. You can also subscribe to the Java Spotlight Podcast Feed to get the latest podcast automatically. If you use iTunes you can open iTunes and subscribe with this link:  Java Spotlight Podcast in iTunes. Show Notes News End of Puplic Updates for JDK 6 Bean Valdiation 1.1 public review approved Two key JSRs accepted in time for JavaEE7 Public_JCP EC_meeting_audio_and materials posted Devoxx UK and Devoxx France CFP open JPA 2.1 Schema Generation WebSocket, Java EE 7, and GlassFish Events Dec 3-5, jDays, Göteborg, Sweden Dec 4-6, JavaOne Latin America, Sao Paolo, Brazil Dec 14-15, IndicThreads, Pune, India JCP Spec Lead Call December on Developing a TCK JCP EC Face to Face Meeting, January 15-16, West Coast USA Feature InterviewBruno Souza is a Java Developer and Open Source Evangelist at Summa Technologies, and a Cloud Expert at ToolsCloud. Nurturing developer communities is a personal passion, and Bruno worked actively with Java, NetBeans, Open Solaris, OFBiz, and many other open source communities. As founder and coordinator of SouJava (The Java Users Society), one of the world's largest Java User Groups, Bruno leaded the expansion of the Java movement in Brazil. Founder of the Worldwide Java User Groups Community, Bruno helped the creation and organization of hundreds of JUGs worldwide. A Java Developer since the early days, Bruno participated in some of the largest Java projects in Brazil.Fabiane Nardon is a computer scientist who is passionate about creating software that will positively change the world we live in. She was the architect of the Brazilian Healthcare Information System, considered the largest JavaEE application in the world and winner of the 2005 Duke's Choice Award. She leaded several communities, including the JavaTools Community at java.net, where 800+ open source projects were born. She is a frequent speaker at conferences in Brazil and abroad, including JavaOne, OSCON, Jfokus, JustJava and more. She’s also the author of several technical articles and member of the program committee of several conferences as JavaOne, OSCON, TDC. She was chosen a Java Champion by Sun Microsystems as a recognition of her contribution to the Java ecosystem. Currently, she works as a tools expert at ToolsCloud and in companies she co-founded, where she is helping to shape new disruptive Internet based services.StoryTroop is a space where we combine multiple perspectives about a story. This creates an understanding of that story like never seen before. Pieces of a story are organized in time and space and anyone can add a different perspective.What’s Cool Geek Bike Ride at JavaOne LAD Devoxx UK (Mar 26, 27) and FR (Mar 27 - 29) CFP jFokus schedule is firming up Nashorn Blog 1,500 @JavaSpotlight Twitter followers

    Read the article

  • libjpcap.so on Ubuntu for AT&T ARO

    - by Geertjan
    I now have AT&T ARO also running on Ubuntu, in addition to the Windows scenario I blogged about earlier: I managed to get it up and running thanks again to Doug Sillars, who pointed me here: http://developer.att.com/developer/forward.jsp?passedItemId=14100207&passedItemId=14100207 My plan is to make a screencast soon on HOW to port something like ARO, i.e., as an example of how to do something similar yourself, to a plugin for NetBeans IDE, as a follow up to Five Simple Ways to Extend NetBeans IDE. Thanks again, Doug.

    Read the article

  • Where are my sub templates?

    - by Tim Dexter
    This one is for standalone/BIEE uses of Publisher. All the ERP/CRM/HCM folks are already catered for and can tuck into a nut cutlet and arugala salad. Sorry, I have just watched Food Inc and even if only half of it is true; Im still on a crusade in my house against mass produced food. Wake up World! If you have ventured into the world of sub templating, you'll be reaping some development benefit. In terms of shared report components and calculations they are very useful. Just exporting all of your report headers and footers to a single sub template can potentially save you hours and hours of work and make you look like a star. If someone in management gets it into their head that they would like Comic San Serif font rather than Arial in their report headers, its a 10 min job rather than 100 hours! What about the rest of the report content? I hear you cry. Its coming in 11g, full master template support. Your management wants bright blue borders with yellow backgrounds for all the tables in your reports, 5 minute job! Getting back to sub templates and my comment about all the ERP/CRM/HCM folks be catered for. In the standalone release there is no out of the box directory for you to drop your sub templates. Dropping them into the main report directory would make sense but they are not accessible there via a URL. An oversight on our part and something that will be addressed in 11g. Sub templates are now a first class citizen in the world of BIP, you can upload them and BIP will know what to do with them. But what do you do right now? The easiest place to put them where BIP can 'see' them is to create a directory under the xmlpserver install directory in the J2EE container e.g. $J2EE_HOME/xmlpserver/xmlpserver/subtemplates You can call it whatever you want but when the server is started up, that directory is accessible via a URL i.e. http://tdexter:9704/xmlpserver/subtemplates/mysub.rtf. You can therefore put it into the top of your main templates and call the sub template. <?import: http://tdexter:9704/xmlpserver/subtemplates/mysub.rtf?> Of course, you can drop them anywhere you want, they just need to be in a web server mountable directory. Enjoy the arugala!

    Read the article

  • Neighboring Siblings?

    - by Ramkumar Menon
    Found an Interesting observation on C.M.Spielberg McQueen’s Blog – XPath 1.0 describes, amongst other axes, ones that allow access to immediate parent and immediate child nodes, as well as access to ancestor and descendant node-sets, but does not provide for immediate siblings – The only way to access these are via predicates – preceding-sibling::*[1] or following-sibling::*[1], and not explicit next-sibling and a previous-sibling axes.

    Read the article

  • iPack -The iOS Application Packager

    - by user13277780
    iOS applications are distributed in .ipa archive files. These files are regular zip files which contain application resources and executable-s. To protect them from unauthorized modifications and to provide identification of their sources, the content of the archives is signed. The signature is included in the application executable of an.ipa archive and protects the executable file itself and the associated resource files. Apple provides native Mac OS tools for signing iOS executable-s (which are actually generic Mach-O code signing tools), but these tools are not generally available on other platforms. To provide a multi-platform development environment for JavaFX based iOS applications, we ported iOS signing and packaging to Java and created a dedicated ipack tool for it. The iPack tool can be used as a last step of creating .ipa package on various operating systems. Prototype has been tested by creating a final distributable for JavaFX application that runs on iPad, all done on Windows 7. Source Code The source code of iPac tool is in OpenJFX project repository. You can find it in: <openjfx root>/rt/tools/ios/Maven/ipack To build the iPack tool use: rt/tools/ios/Maven/ipack$ mvn package After building, you can run the tool: java -jar <path to ipack.jar> <arguments>  Signing keystore The tool uses a java key store to read the signing certificate and the associated private key. To prepare such keystore users can use keytool from JDK. One possible scenario is to import an existing private key and the certificate from a key store used on Mac OS: To list the content of an existing key store and identify the source alias: keytool -list -keystore <src keystore>.p12 -storetype pkcs12 -storepass <src keystore password> To create Java key store and import the private key with its certificate to the keys store: keytool -importkeystore \ -destkeystore <dst keystore> -deststorepass <dst keystore password> \ -srckeystore <src keystore>.p12 -srcstorepass <src keystore password> -srcstoretype pkcs12 \ -srcalias <src alias> -destalias <dst alias> -destkeypass <dst key password> Another scenario would be to generate a private / public key pair directly in a Java key store and create a certificate request from it. After sending the request to Apple one can then import the certificate response back to the Java key store and complete the signing certificate entry. In both scenarios the resulting alias in the Java key store will contain only a single (leaf) certificate. This can be verified with the following command: keytool -list -v -keystore <ipack keystore> -storepass <keystore password> When looking at the Certificate chain length entry, the number next to it is 1. When an executable file is signed on Mac OS, the resulting signature (in CMS format) includes the whole certificate chain up to the Apple Root CA. The ipack tool includes only the chain which is stored under the alias specified on the command line. So to have the whole chain in the signature we need to replace the single certificate entry under the alias with the corresponding full certificate chain. To do that we need first to create the chain in a separate file. It is easy to create such chain when working with certificates in Base-64 encoded PEM format. A certificate chain can be created by concatenating PEM certificates, which should form the chain, into a single file. For iOS signing we need the following certificates in our chain: Apple Root CA Apple Worldwide Developer Relations CA Our signing leaf certificate To convert a certificate from the binary DER format (.der, .cer) to PEM format: keytool -importcert -noprompt -keystore temp.ks -storepass temppwd -alias tempcert -file <certificate>.cer keytool -exportcert -keystore temp.ks -storepass temppwd -alias tempcert -rfc -file <certificate>.pem To export the signing certificate into PEM format: keytool -exportcert -keystore <ipack keystore> -storepass <keystore password> -alias <signing alias> -rfc -file SigningCert.pem After constructing a chain from AppleIncRootCertificate.pem, AppleWWDRCA.pem andSigningCert.pem, it can be imported back into the keystore with: keytool -importcert -noprompt -keystore <ipack keystore> -storepass <keystore password> -alias <signing alias> -keypass <key password> -file SigningCertChain.pem To summarize, the following example shows the full certificate chain replacement process: keytool -importcert -noprompt -keystore temp.ks -storepass temppwd -alias tempcert1 -file AppleIncRootCertificate.cer keytool -exportcert -keystore temp.ks -storepass temppwd -alias tempcert1 -rfc -file AppleIncRootCertificate.pem keytool -importcert -noprompt -keystore temp.ks -storepass temppwd -alias tempcert2 -file AppleWWDRCA.cer keytool -exportcert -keystore temp.ks -storepass temppwd -alias tempcert2 -rfc -file AppleWWDRCA.pem keytool -exportcert -keystore ipack.ks -storepass keystorepwd -alias mycert -rfc -file SigningCert.pem cat SigningCert.pem AppleWWDRCA.pem AppleIncRootCertificate.pem >SigningCertChain.pem keytool -importcert -noprompt -keystore ipack.ks -storepass keystorepwd -alias mycert -keypass keypwd -file SigningCertChain.pem keytool -list -v -keystore ipack.ks -storepass keystorepwd Usage When the ipack tool is started with no arguments it prints the following usage information: -appname MyApplication -appid com.myorg.MyApplication     Usage: ipack <archive> <signing opts> <application opts> [ <application opts> ... ] Signing options: -keystore <keystore> keystore to use for signing -storepass <password> keystore password -alias <alias> alias for the signing certificate chain and the associated private key -keypass <password> password for the private key Application options: -basedir <directory> base directory from which to derive relative paths -appdir <directory> directory with the application executable and resources -appname <file> name of the application executable -appid <id> application identifier Example: ipack MyApplication.ipa -keystore ipack.ks -storepass keystorepwd -alias mycert -keypass keypwd -basedir mysources/MyApplication/dist -appdir Payload/MyApplication.app -appname MyApplication -appid com.myorg.MyApplication    

    Read the article

  • Transparent Technology from Amazon

    - by David Dorf
    Amazon has been making some interesting moves again, this time in the augmented humanity area.  Augmented humanity is about helping humans overcome their shortcomings using technology.  Putting a powerful smartphone in your pocket helps you in many ways like navigating streets, communicating with far off friends, and accessing information.  But the interface for smartphones is somewhat limiting and unnatural, so companies have been looking for ways to make the technology more transparent and therefore easier to use. When Apple helped us drop the stylus, we took a giant leap forward in simplicity.  Using touchscreens with intuitive gestures was part of the iPhone's original appeal.  People don't want to know that technology is there -- they just want the benefits.  So what's the next leap beyond the touchscreen to make smartphones even easier to use? Two natural ways we interact with the world around us is by using sight and voice.  Google and Apple have been using both in their mobile platforms for limited uses cases.  Nobody actually wants to type a text message, so why not just speak it?  Any if you want more information about a book, why not just snap a picture of the cover?  That's much more accurate than trying to key the title and/or author. So what's Amazon been doing?  First, Amazon released a new iPhone app called Flow that allows iPhone users to see information about products in context.  Yes, its an augmented reality app that uses the phone's camera to view products, and overlays data about the products on the screen.  For the most part it requires the barcode to be visible to correctly identify the product, but I believe it can also recognize certain logos as well.  Download the app and try it out but don't expect perfection.  Its good enough to demonstrate the concept, but its far from accurate enough.  (MobileBeat did a pretty good review.)  Extrapolate to the future and we might just have a heads-up display in our eyeglasses. The second interesting area is voice response, for which Siri is getting lots of attention.  Amazon may have purchased a voice recognition company called Yap, although the deal is not confirmed.  But it would make perfect sense, especially with the Kindle Fire in Amazon's lineup. I believe over the next 3-5 years the way in which we interact with smartphones will mature, and they will become more transparent yet more important to our daily lives.  This will, of course, impact the way we shop, making information more readily accessible than it already is.  Amazon seems to be positioning itself to be at the forefront of this trend, so we should be watching them carefully.

    Read the article

  • QCon SF 2011

    - by user12607987
    To San Francisco for QCon SF 2011, where I spoke on Java SE: Where We've Been, Where We're Going. QCon is much further "up the stack" than JavaOne, so has far fewer talks about the "foundation", Java SE. I thought it was important to review the features delivered in Java SE 7 before discussing what's planned for Java SE 8. This worked out well, as most of the audience were using Java SE 6. The language changes in SE 7 look small, but examining merely two of them - precise rethrow and suppressed exceptions - reveals a new exception handling idiom applicable to many thousands of Java classes. And thumbs up to the QCon organizers for the instant feedback mechanism!

    Read the article

  • User Experience Guidance for Developers: Anti-Patterns

    - by ultan o'broin
    Picked this up from a recent Dublin Google Technology User Group meeting: Android App Mistakes: Avoiding the Anti-Patterns by Mark Murphy, CommonsWare Interesting approach of "anti-patterns" aimed at mobile developers (in this case Android), looking at the best way to use code and what's in the SDK while combining it with UX guidance (the premise being the developer does the lot). Interestingly, the idea came through that developers need to stop trying to make one O/S behave like another--on UX grounds. Also, pretty clear that a web-based paradigm is being promoting for Android (translators tell me that translating an Android app reminded them of translating web pages too). Haven't see the "anti"-approach before, developer cookbooks and design patterns sure. Check out the slideshare presentation.

    Read the article

  • Protecting PDF files and XDO.CFG

    - by Greg Kelly
    Protecting PDF files and XDO.CFG Security related properties can be overridden at runtime through PeopleCode as all other XMLP properties using the SetRuntimeProperties() method on the ReportDefn class. This is documented in PeopleBooks. Basically this method need to be called right before calling the processReport() method: . . &asPropName = CreateArrayRept("", 0); &asPropValue = CreateArrayRept("", 0); &asPropName.Push("pdf-open-password"); &asPropValue.Push("test"); &oRptDefn.SetRuntimeProperties(&asPropName, &asPropValue); &oRptDefn.ProcessReport(&sTemplateId, %Language_User, &dAsOfDate, &sOutputFormat); Of course users should not hardcode the password value in the code, instead, if password is stored encrypted in the database or somewhere else, they can use Decrypt() api

    Read the article

  • WebSocket Applications using Java: JSR 356 Early Draft Now Available (TOTD #183)

    - by arungupta
    WebSocket provide a full-duplex and bi-directional communication protocol over a single TCP connection. JSR 356 is defining a standard API for creating WebSocket applications in the Java EE 7 Platform. This Tip Of The Day (TOTD) will provide an introduction to WebSocket and how the JSR is evolving to support the programming model. First, a little primer on WebSocket! WebSocket is a combination of IETF RFC 6455 Protocol and W3C JavaScript API (still a Candidate Recommendation). The protocol defines an opening handshake and data transfer. The API enables Web pages to use the WebSocket protocol for two-way communication with the remote host. Unlike HTTP, there is no need to create a new TCP connection and send a chock-full of headers for every message exchange between client and server. The WebSocket protocol defines basic message framing, layered over TCP. Once the initial handshake happens using HTTP Upgrade, the client and server can send messages to each other, independent from the other. There are no pre-defined message exchange patterns of request/response or one-way between client and and server. These need to be explicitly defined over the basic protocol. The communication between client and server is pretty symmetric but there are two differences: A client initiates a connection to a server that is listening for a WebSocket request. A client connects to one server using a URI. A server may listen to requests from multiple clients on the same URI. Other than these two difference, the client and server behave symmetrically after the opening handshake. In that sense, they are considered as "peers". After a successful handshake, clients and servers transfer data back and forth in conceptual units referred as "messages". On the wire, a message is composed of one or more frames. Application frames carry payload intended for the application and can be text or binary data. Control frames carry data intended for protocol-level signaling. Now lets talk about the JSR! The Java API for WebSocket is worked upon as JSR 356 in the Java Community Process. This will define a standard API for building WebSocket applications. This JSR will provide support for: Creating WebSocket Java components to handle bi-directional WebSocket conversations Initiating and intercepting WebSocket events Creation and consumption of WebSocket text and binary messages The ability to define WebSocket protocols and content models for an application Configuration and management of WebSocket sessions, like timeouts, retries, cookies, connection pooling Specification of how WebSocket application will work within the Java EE security model Tyrus is the Reference Implementation for JSR 356 and is already integrated in GlassFish 4.0 Promoted Builds. And finally some code! The API allows to create WebSocket endpoints using annotations and interface. This TOTD will show a simple sample using annotations. A subsequent blog will show more advanced samples. A POJO can be converted to a WebSocket endpoint by specifying @WebSocketEndpoint and @WebSocketMessage. @WebSocketEndpoint(path="/hello")public class HelloBean {     @WebSocketMessage    public String sayHello(String name) {         return "Hello " + name + "!";     }} @WebSocketEndpoint marks this class as a WebSocket endpoint listening at URI defined by the path attribute. The @WebSocketMessage identifies the method that will receive the incoming WebSocket message. This first method parameter is injected with payload of the incoming message. In this case it is assumed that the payload is text-based. It can also be of the type byte[] in case the payload is binary. A custom object may be specified if decoders attribute is specified in the @WebSocketEndpoint. This attribute will provide a list of classes that define how a custom object can be decoded. This method can also take an optional Session parameter. This is injected by the runtime and capture a conversation between two endpoints. The return type of the method can be String, byte[] or a custom object. The encoders attribute on @WebSocketEndpoint need to define how a custom object can be encoded. The client side is an index.jsp with embedded JavaScript. The JSP body looks like: <div style="text-align: center;"> <form action="">     <input onclick="say_hello()" value="Say Hello" type="button">         <input id="nameField" name="name" value="WebSocket" type="text"><br>    </form> </div> <div id="output"></div> The code is relatively straight forward. It has an HTML form with a button that invokes say_hello() method and a text field named nameField. A div placeholder is available for displaying the output. Now, lets take a look at some JavaScript code: <script language="javascript" type="text/javascript"> var wsUri = "ws://localhost:8080/HelloWebSocket/hello";     var websocket = new WebSocket(wsUri);     websocket.onopen = function(evt) { onOpen(evt) };     websocket.onmessage = function(evt) { onMessage(evt) };     websocket.onerror = function(evt) { onError(evt) };     function init() {         output = document.getElementById("output");     }     function say_hello() {      websocket.send(nameField.value);         writeToScreen("SENT: " + nameField.value);     } This application is deployed as "HelloWebSocket.war" (download here) on GlassFish 4.0 promoted build 57. So the WebSocket endpoint is listening at "ws://localhost:8080/HelloWebSocket/hello". A new WebSocket connection is initiated by specifying the URI to connect to. The JavaScript API defines callback methods that are invoked when the connection is opened (onOpen), closed (onClose), error received (onError), or a message from the endpoint is received (onMessage). The client API has several send methods that transmit data over the connection. This particular script sends text data in the say_hello method using nameField's value from the HTML shown earlier. Each click on the button sends the textbox content to the endpoint over a WebSocket connection and receives a response based upon implementation in the sayHello method shown above. How to test this out ? Download the entire source project here or just the WAR file. Download GlassFish4.0 build 57 or later and unzip. Start GlassFish as "asadmin start-domain". Deploy the WAR file as "asadmin deploy HelloWebSocket.war". Access the application at http://localhost:8080/HelloWebSocket/index.jsp. After clicking on "Say Hello" button, the output would look like: Here are some references for you: WebSocket - Protocol and JavaScript API JSR 356: Java API for WebSocket - Specification (Early Draft) and Implementation (already integrated in GlassFish 4 promoted builds) Subsequent blogs will discuss the following topics (not necessary in that order) ... Binary data as payload Custom payloads using encoder/decoder Error handling Interface-driven WebSocket endpoint Java client API Client and Server configuration Security Subprotocols Extensions Other topics from the API Capturing WebSocket on-the-wire messages

    Read the article

  • SOA Suite 11g Releases

    - by antony.reynolds
    A few years ago Mars renamed one of the most popular chocolate bars in England from Marathon to Snickers.  Even today there are still some people confused by the name change and refer to them as marathons. Well last week we released SOA Suite 11.1.1.3 and BPM Suite 11.1.1.3 as well as OSB 11.1.1.3.  Seems that some people are a little confused by the naming and how to install these new versions, probably the same Brits who call Snickers a Marathon :-).  Seems that calling all the revisions 11g Release 1 has caused confusion.  To help these people I have created a little diagram to show how you can get the latest version onto your machine.  The dotted lines indicate dependencies. Note that SOA Suite 11.1.1.3 and BPM 11.1.1.3 are provided as a patch that is applied to SOA Suite 11.1.1.2.  For a new install there is no need to run the 11.1.1.2 RCU, you can run the 11.1.1.3 RCU directly. All SOA & BPM Suite 11g installations are built on a WebLogic Server base.  The WebLogic 11g Release 1 version is 10.3 with an additional number indicating the revision.  Similarly the 11g Release 1 SOA Suite, Service Bus and BPM Suite have a version 11.1.1 with an additional number indicating the revision.  The final revision number should match the final revision in the WebLogic Server version.  The products are also sometimes identified by a Patch Set number, indicating whether this is the 11gR1 product with the first or second patch set.  The table below show the different revisions with their alias. Product Version Base WebLogic Alias SOA Suite 11gR1 11.1.1.1 10.3.1 Release 1 or R1 SOA Suite 11gR1 11.1.1.2 10.3.2 Patch Set 1 or PS1 SOA Suite 11gR1 11.1.1.3 10.3.3 Patch Set 2 or PS2 BPM Suite 11gR1 11.1.1.3 10.3.3 Release 1 or R1 OSB 11gR1 11.1.1.3 10.3.3 Release 1 or R1 Hope this helps some people, if you find it useful you could always send me a Marathon bar, sorry Snickers!

    Read the article

  • JDK bug migration: components and subcomponents

    - by darcy
    One subtask of the JDK migration from the legacy bug tracking system to JIRA was reclassifying bugs from a three-level taxonomy in the legacy system, (product, category, subcategory), to a fundamentally two-level scheme in our customized JIRA instance, (component, subcomponent). In the JDK JIRA system, there is technically a third project-level classification, but by design a large majority of JDK-related bugs were migrated into a single "JDK" project. In the end, over 450 legacy subcategories were simplified into about 120 subcomponents in JIRA. The 120 subcomponents are distributed among 17 components. A rule of thumb used was that a subcategory had to have at least 50 bugs in it for it to be retained. Below is a listing the component / subcomponent classification of the JDK JIRA project along with some notes and guidance on which OpenJDK email addresses cover different areas. Eventually, a separate incidents project to host new issues filed at bugs.sun.com will use a slightly simplified version of this scheme. The preponderance of bugs and subcomponents for the JDK are in library-related areas, with components named foo-libs and subcomponents primarily named after packages. While there was an overall condensation of subcomponents in the migration, in some cases long-standing informal divisions in core libraries based on naming conventions in the description were promoted to formal subcomponents. For example, hundreds of bugs in the java.util subcomponent whose descriptions started with "(coll)" were moved into java.util:collections. Likewise, java.lang bugs starting with "(reflect)" and "(proxy)" were moved into java.lang:reflect. client-libs (Predominantly discussed on 2d-dev and awt-dev and swing-dev.) 2d demo java.awt java.awt:i18n java.beans (See beans-dev.) javax.accessibility javax.imageio javax.sound (See sound-dev.) javax.swing core-libs (See core-libs-dev.) java.io java.io:serialization java.lang java.lang.invoke java.lang:class_loading java.lang:reflect java.math java.net java.nio (Discussed on nio-dev.) java.nio.charsets java.rmi java.sql java.sql:bridge java.text java.util java.util.concurrent java.util.jar java.util.logging java.util.regex java.util:collections java.util:i18n javax.annotation.processing javax.lang.model javax.naming (JNDI) javax.script javax.script:javascript javax.sql org.openjdk.jigsaw (See jigsaw-dev.) security-libs (See security-dev.) java.security javax.crypto (JCE: includes SunJCE/MSCAPI/UCRYPTO/ECC) javax.crypto:pkcs11 (JCE: PKCS11 only) javax.net.ssl (JSSE, includes javax.security.cert) javax.security javax.smartcardio javax.xml.crypto org.ietf.jgss org.ietf.jgss:krb5 other-libs corba corba:idl corba:orb corba:rmi-iiop javadb other (When no other subcomponent is more appropriate; use judiciously.) Most of the subcomponents in the xml component are related to jaxp. xml jax-ws jaxb javax.xml.parsers (JAXP) javax.xml.stream (JAXP) javax.xml.transform (JAXP) javax.xml.validation (JAXP) javax.xml.xpath (JAXP) jaxp (JAXP) org.w3c.dom (JAXP) org.xml.sax (JAXP) For OpenJDK, most JVM-related bugs are connected to the HotSpot Java virtual machine. hotspot (See hotspot-dev.) build compiler (See hotspot-compiler-dev.) gc (garbage collection, see hotspot-gc-dev.) jfr (Java Flight Recorder) jni (Java Native Interface) jvmti (JVM Tool Interface) mvm (Multi-Tasking Virtual Machine) runtime (See hotspot-runtime-dev.) svc (Servicability) test core-svc (See serviceability-dev.) debugger java.lang.instrument java.lang.management javax.management tools The full JDK bug database contains entries related to legacy virtual machines that predate HotSpot as well as retired APIs. vm-legacy jit (Sun Exact VM) jit_symantec (Symantec VM, before Exact VM) jvmdi (JVM Debug Interface ) jvmpi (JVM Profiler Interface ) runtime (Exact VM Runtime) Notable command line tools in the $JDK/bin directory have corresponding subcomponents. tools appletviewer apt (See compiler-dev.) hprof jar javac (See compiler-dev.) javadoc(tool) (See compiler-dev.) javah (See compiler-dev.) javap (See compiler-dev.) jconsole launcher updaters (Timezone updaters, etc.) visualvm Some aspects of JDK infrastructure directly affect JDK Hg repositories, but other do not. infrastructure build (See build-dev and build-infra-dev.) licensing (Covers updates to the third party readme, licenses, and similar files.) release_eng (Release engineering) staging (Staging of web pages related to JDK releases.) The specification subcomponent encompasses the formal language and virtual machine specifications. specification language (The Java Language Specification) vm (The Java Virtual Machine Specification) The code for the deploy and install areas is not currently included in OpenJDK. deploy deployment_toolkit plugin webstart install auto_update install servicetags In the JDK, there are a number of cross-cutting concerns whose organization is essentially orthogonal to other areas. Since these areas generally have dedicated teams working on them, it is easier to find bugs of interest if these bugs are grouped first by their cross-cutting component rather than by the affected technology. docs doclet guides hotspot release_notes tools tutorial embedded build hotspot libraries globalization locale-data translation performance hotspot libraries The list of subcomponents will no doubt grow over time, but my inclination is to resist that growth since the addition of each subcomponent makes the system as a whole more complicated and harder to use. When the system gets closer to being externalized, I plan to post more blog entries describing recommended use of various custom fields in the JDK project.

    Read the article

  • Copy Formatting in Word

    - by Ahamad Patan
    Many a times you may need to copy the "Format" in Word. The "Copy Format" feature lets you quickly and easily "copy" all the formatting characteristics from one group of selected text to another. This is helpful when you have several headings that you want consistent formatting. Here are steps on how to Copy Formatting: 1. Select, or highlight, the item of text containing the format you wish to copy. 2. Office 2003 - Click on the Format Painter Button in the Standard Toolbar (looks like Paintbrush). Office 2007 - Format Painter Button is located on the Home tab (looks like a Paintbrush). Office 2003 - An I-beam with a small cross to the left will appear as you move your mouse. Office 2007 - An I-beam with a small paintbrush will appear as you move your mouse. 3. Select the text you wish to copy the formatting to. 4. Formatting of the selected text will automatically change. For multiple formatting changes, double-click on the Format Painter button in Step 2. Remember, you'll have to click it again to deselect it or press Esc.

    Read the article

  • Games Localization: Cultural Points

    - by ultan o'broin
    Great article about localization considerations, this times in the games space. Well worth checking out. It's rare to see such all-encompassing articles about localization considerations aimed at designers. That's a shame. The industry assumes all these things are known. The evidence from practice is that they're not and also need constant reinforcement. We're not in the games space in enterprise applications yet. However, there may be a role for them in the training space but also in CRM, building relationships and contacts. Beyond the obvious considerations, check out the cultural aspects of games localization too. For example, Zygna's offerings, which you might have played on Facebook: Zynga, which can lay claim to the two most popular social games on Facebook - FarmVille and CityVille - has recently localized both games for international audiences, and while CityVille has seen only localization for European languages, FarmVille has been localized for China, which involved rebuilding the game from the ground up. This localization process involved taking into account cultural considerations including changing the color palette to be brighter and increasing the size of the farm plots, to appeal to Chinese aesthetics and cultural experience. All the more reason to conduct research in your target markets, worldwide.

    Read the article

  • Morgan Stanley chooses Solaris 11 to run cloud file services

    - by Frederic Pariente
    At the EAKC2012 Conference last week in Edinburg, Robert Milkowski, Unix engineer at Morgan Stanley, presented on deploying OpenAFS on Solaris 11. It makes a great proofpoint on how ZFS and DTrace gives a definite advantage to Solaris over Linux to run AFS distributed file system services, the "cloud file system" as it calls it in his blog. Mike used ZFS to achieve a 2-3x compression ratio on data and greatly lower the TCA and TCO of the storage subsystem, and DTrace to root-cause scalability bottlenecks and improve performance. As future ideas, Mike is looking at leveraging more Solaris features like Zones, ZFS Dedup, SSD for ZFS, etc.

    Read the article

  • JMSContext, @JMSDestinationDefintion, DefaultJMSConnectionFactory with simplified JMS API: TOTD #213

    - by arungupta
    "What's New in JMS 2.0" Part 1 and Part 2 provide comprehensive introduction to new messaging features introduced in JMS 2.0. The biggest improvement in JMS 2.0 is introduction of the "new simplified API". This was explained in the Java EE 7 Launch Technical Keynote. You can watch a complete replay here. Sending and Receiving a JMS message using JMS 1.1 requires lot of boilerplate code, primarily because the API was designed 10+ years ago. Here is a code that shows how to send a message using JMS 1.1 API: @Statelesspublic class ClassicMessageSender { @Resource(lookup = "java:comp/DefaultJMSConnectionFactory") ConnectionFactory connectionFactory; @Resource(mappedName = "java:global/jms/myQueue") Queue demoQueue; public void sendMessage(String payload) { Connection connection = null; try { connection = connectionFactory.createConnection(); connection.start(); Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE); MessageProducer messageProducer = session.createProducer(demoQueue); TextMessage textMessage = session.createTextMessage(payload); messageProducer.send(textMessage); } catch (JMSException ex) { ex.printStackTrace(); } finally { if (connection != null) { try { connection.close(); } catch (JMSException ex) { ex.printStackTrace(); } } } }} There are several issues with this code: A JMS ConnectionFactory needs to be created in a application server-specific way before this application can run. Application-specific destination needs to be created in an application server-specific way before this application can run. Several intermediate objects need to be created to honor the JMS 1.1 API, e.g. ConnectionFactory -> Connection -> Session -> MessageProducer -> TextMessage. Everything is a checked exception and so try/catch block must be specified. Connection need to be explicitly started and closed, and that bloats even the finally block. The new JMS 2.0 simplified API code looks like: @Statelesspublic class SimplifiedMessageSender { @Inject JMSContext context; @Resource(mappedName="java:global/jms/myQueue") Queue myQueue; public void sendMessage(String message) { context.createProducer().send(myQueue, message); }} The code is significantly improved from the previous version in the following ways: The JMSContext interface combines in a single object the functionality of both the Connection and the Session in the earlier JMS APIs.  You can obtain a JMSContext object by simply injecting it with the @Inject annotation.  No need to explicitly specify a ConnectionFactory. A default ConnectionFactory under the JNDI name of java:comp/DefaultJMSConnectionFactory is used if no explicit ConnectionFactory is specified. The destination can be easily created using newly introduced @JMSDestinationDefinition as: @JMSDestinationDefinition(name = "java:global/jms/myQueue",        interfaceName = "javax.jms.Queue") It can be specified on any Java EE component and the destination is created during deployment. JMSContext, Session, Connection, JMSProducer and JMSConsumer objects are now AutoCloseable. This means that these resources are automatically closed when they go out of scope. This also obviates the need to explicitly start the connection JMSException is now a runtime exception. Method chaining on JMSProducers allows to use builder patterns. No need to create separate Message object, you can specify the message body as an argument to the send() method instead. Want to try this code ? Download source code! Download Java EE 7 SDK and install. Start GlassFish: bin/asadmin start-domain Build the WAR (in the unzipped source code directory): mvn package Deploy the WAR: bin/asadmin deploy <source-code>/jms/target/jms-1.0-SNAPSHOT.war And access the application at http://localhost:8080/jms-1.0-SNAPSHOT/index.jsp to send and receive a message using classic and simplified API. A replay of JMS 2.0 session from Java EE 7 Launch Webinar provides complete details on what's new in this specification: Enjoy!

    Read the article

  • My integer overfloweth

    - by darcy
    While certain classes like java.lang.Integer and java.lang.Math have been in the platform since the beginning, that doesn't mean there aren't more enhancements to be made in such places! For example, earlier in JDK 8, library support was added for unsigned integer arithmetic. More recently, my colleague Roger Riggs pushed a changeset to support integer overflow, that is, to provide methods which throw an ArithmeticException on overflow instead of returning a wrapped result. Besides being helpful for various programming tasks in Java, methods like the those for integer overflow can be used to implement runtimes supporting other languages, as has been requested at a past JVM language summit. This year's language summit is coming up in July and I hope to get some additional suggestions there for helpful library additions as part of the general discussions of the JVM and Java libraries as a platform.

    Read the article

  • Real Excel Templates 1.5

    - by Tim Dexter
    Not the next installment quite yet, just an update from what I knew yesterday. Right after I posted the Real Excel Templates I. Mike from the PM team got in touch to say he and Shirley had just had a meeting with a customer about the Excel Templates and all the fab features. He included BIPs extended functions, data pre-processing, sub templates and other functionality which was great new news. One caveat, much of the really new stuff, is not quite out in the wild yet. Will let you know as soon as I know more. Shirley and I shared a conversation around being able to re-group data in the templates. It's one of the most powerful features of the RTF template. Providing the ultimate flexibility in layouts. As I wrote yesterday, you need hierarchical data for Excel templates. I stand corrected, 'Of course you can do that in Excel, here's an example' said Shirley 'Very cunning Shirley, very cunning' says I. You can basically use the hidden sheet to re-group the data using native XSL. I'll cover the 'how' later. As you can see Excel templates are the new 'black' with lots of attention and more importantly development cycles to take them forward. Looks like we are going to have a great weekend weather wise here in Colorado. The yard work and pond are beckoning. Maybe the trout will be rising and I can give my rusty fly casting skills a run for their money. I need some stupid fish thou :0) See ya'll next week!

    Read the article

  • Enabling SSL Requests on Jdev's Integrated Weblogic

    - by Christian David Straub
    Often times you will want to enable SSL access for such things as secure login or secure signup. By default, the integrated WLS that ships with JDev does not listen to SSL requests. However, this is easily fixed.Just navigate to http://127.0.0.1:7101/console. This will deploy the console app where you can configure WLS. By default the login credentials are:username: weblogicpassword: weblogic1Then go to Environment -> Servers -> DefaultServer. Check the "SSL Listen Port Enabled" box and your server will now listen to SSL requests (just make sure to use the listen port that is specified).For added security, you can always check while processing your request that it is going through an SSL connection by first checking HttpServletRequest.isSecure().

    Read the article

< Previous Page | 582 583 584 585 586 587 588 589 590 591 592 593  | Next Page >