Search Results

Search found 258388 results on 10336 pages for 'technology stack'.

Page 60/10336 | < Previous Page | 56 57 58 59 60 61 62 63 64 65 66 67  | Next Page >

  • Performing a Depth First Search iteratively using async/parallel processing?

    - by Prabhu
    Here is a method that does a DFS search and returns a list of all items given a top level item id. How could I modify this to take advantage of parallel processing? Currently, the call to get the sub items is made one by one for each item in the stack. It would be nice if I could get the sub items for multiple items in the stack at the same time, and populate my return list faster. How could I do this (either using async/await or TPL, or anything else) in a thread safe manner? private async Task<IList<Item>> GetItemsAsync(string topItemId) { var items = new List<Item>(); var topItem = await GetItemAsync(topItemId); Stack<Item> stack = new Stack<Item>(); stack.Push(topItem); while (stack.Count > 0) { var item = stack.Pop(); items.Add(item); var subItems = await GetSubItemsAsync(item.SubId); foreach (var subItem in subItems) { stack.Push(subItem); } } return items; } I was thinking of something along these lines, but it's not coming together: var tasks = stack.Select(async item => { items.Add(item); var subItems = await GetSubItemsAsync(item.SubId); foreach (var subItem in subItems) { stack.Push(subItem); } }).ToList(); if (tasks.Any()) await Task.WhenAll(tasks); The language I'm using is C#.

    Read the article

  • What is the fastest, most efficient way to get up to speed on a new technology?

    - by SLC
    My current job involves working with a huge number of technologies, most of which are very niche and unheard of. In some cases I have to write something about the technology, or with the technology, such as some lessons, examples, or tutorials, on behalf of the developer of that technology or someone that is backing it. When I get told to learn about a new technology, my first port of call is to check our internal library, and then look on amazon for a book on the subject. Failing that, or if the project is too small to warrant a purchase, I hit up google and youtube. However the results of randomly googling what I want to learn are hit and miss. Some days, I can find everything I want to know in a series of lessons or videos, and it's no problem. Other times, I can find almost nothing, and I really have to piece together things from sites. The result is that there are various resources out there, videos, interactive lessons, tutorials, books etc. but when I need to learn something fast, I often don't know the best way to go about it. It's not about fun, because I don't always have the luxury of working my way through a 600 page textbook named "A Complete Guide To Technology X", I have to deliver results quickly. One of the examples I'd like to use is ASP.NET MVC 2 which is something I have been told to learn. I grabbed a book on MVC 1 to refresh my knowledge, but googling it does't produce much useful information. I've seen a ton of ScottGu's tutorials on it, but they are mostly feature presentations, and some date back almost a year. The same applies to channel 9 and there are no books out yet on amazon. My question therefore has two parts, the first asks, "Where are the best places to look to get the information needed to learn a new technology?" and the second asks "What is the most efficient way to use such resources to learn a new technology?"

    Read the article

  • i386 assembly question: why do I need to meddle with the stack pointer?

    - by zneak
    Hello everyone, I decided it would be fun to learn x86 assembly during the summer break. So I started with a very simple hello world program, borrowing on free examples gcc -S could give me. I ended up with this: HELLO: .ascii "Hello, world!\12\0" .text .globl _main _main: pushl %ebp # 1. puts the base stack address on the stack movl %esp, %ebp # 2. puts the base stack address in the stack address register subl $20, %esp # 3. ??? pushl $HELLO # 4. push HELLO's address on the stack call _puts # 5. call puts xorl %eax, %eax # 6. zero %eax, probably not necessary since we didn't do anything with it leave # 7. clean up ret # 8. return # PROFIT! It compiles and even works! And I think I understand most of it. Though, magic happens at step 3. Would I remove this line, my program would die between the call to puts and the xor from a misaligned stack error. And would I change $20 to another value, it'd crash too. So I came to the conclusion that this value is very important. Problem is, I don't know what it does and why it's needed. Can anyone explain me? (I'm on Mac OS, would it ever matter.)

    Read the article

  • How to devise instruction set of a stack based machine?

    - by Anindya Chatterjee
    Stack based virtual machines like CLR and JVM has different set of instructions. Is there any theory behind devising the instruction set while creating a virtual machine? e.g. there are JVM instruction sets to load constants from 0-5 onto the stack iconst_0 iconst_1 iconst_2 iconst_3 iconst_4 iconst_5 whereas in CLR there are instruction set to load number from 0 to 8 onto the stack as follows ldc.i4.0 ldc.i4.1 ldc.i4.2 ldc.i4.3 ldc.i4.4 ldc.i4.5 ldc.i4.6 ldc.i4.7 ldc.i4.8 why there is no ldc.i4.9 and if ldc.i4 is there why we need the above opcodes? And there are others like these. I am eager to know what is the reason behind this difference between opcodes of different VMs? Is there any specific theory to devise these opcodes or it is totally driven by the characteristics of the VM itself or depends on the high-level language constructs?

    Read the article

  • How can I install the Play! framework using typesafe-stack? [migrated]

    - by lhk
    I'd like to create a new project with the Play! framework. My system is Mint 12 64bit. Since the newest version of Play! is already bundled with the typesafe-stack, I thought installation would be easy. I added the typesafe repo, then I apt-get updated and apt-get installed typesafe-stack with the command g8 typesafehub/play-scala. I successfully created a new project in my home folder. Now the problems begin: I don't know how to access Play! with this installation. After creating the project, I tried to convert it into an Eclipse project, it but there's no play command available in the terminal. How can I get a "standard" Play! installation on Linux? What happens to the tools bundled in the typesafe stack - Where do they go?

    Read the article

  • Beginner learning assembly preserving esp after function calls

    - by Daniel
    I'm a beginner learning some assembly, when preserving the ESP register before a function call does it matter if you do it by adding or subtracting? hard to explain, consider the following mov esi, esp sub esp, 12 // on 32bit OS this would mean that there are 3 arguments to the function // push, function call etc cmp esi, esp // should be the same or mov esi, esp // push, function call etc add esp, 12 cmp esi, esp // should be the same Also if for some reason the cmp fails, is it safe to do mov esp, esi to re-align the stack? Thanks EDIT: Also how come i need to do this for a call like sprintf, but MessageBox seems to fix ESP for me? How am i to know what function needs this and what doesn't?

    Read the article

  • can anyone explain this code to me???

    - by Abed
    //shellcode.c char shellcode[] = "\x31\xc0\x31\xdb\xb0\x17\xcd\x80" "\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b" "\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd" "\x80\xe8\xdc\xff\xff\xff/bin/sh"; int main() { int *ret; //ret pointer for manipulating saved return. ret = (int *)&ret + 2; //setret to point to the saved return //value on the stack. (*ret) = (int)shellcode; //change the saved return value to the //address of the shellcode, so it executes. } can anyone give me a better explanation

    Read the article

  • Unable to locate the Bug

    - by tzenes
    I was recently on The Daily WTF when I came across this old post. In it the author mentions that one of the programmers changed this code: int main (int argc, char **argv) { int x; char data_string[15]; ... x = 2; strcpy(data_string,"data data data"); ... } To this code: int main (int argc, char **argv) { int x = 2; char data_string[15] = "data data data"; ... } The author goes on to mention: [the coder] changed every single variable to be initiated on the stack For the life of me I cannot see how this change could be harmful, and I am worried that it is a lapse in my C knowledge. What is the WTF?

    Read the article

  • Primary reasons why programming language runtimes use stacks?

    - by manuel aldana
    Many programming language runtime environments use stacks as their primary storage structure (e.g. see JVM bytecode to runtime example). Quickly recalling I see following advantages: Simple structure (pop/push), trivial to implement Most processors are anyway optimized for stack operations, so it is very fast Less problems with memory fragmentation, it is always about moving memory-pointer up and down for allocation and freeing complete blocks of memory by resetting the pointer to the last entry offset. Is the list complete or did I miss something? Are there programming language runtime environments which are not using stacks for storage at all?

    Read the article

  • C++ memory management of reference types

    - by Russel
    Hello, I'm still a fairly novice programmer and I have a question about c++ memory management with refence types. First of all, my understanding of reference types: A pointer is put on the stack and the actual data that the pointer points to is created and placed on the heap. Standard arrays and user defined classes are refence types. Is this correct? Second, my main question is do c and c++'s memory management mechanisms (malloc, free and new, delete) always handle this properly and free the memory that a class or array is pointing to? Does everything still work if those pointers get reassigned somehow to other objects of the same size/type on the heap? What if a class has a pointer member that points to another object? I am assuming that delete/freeing the class object doesn't free what it's member pointer points to, is that correct? Thanks all! -R

    Read the article

  • Are tags considered requirements? [closed]

    - by krunk
    I'm new to stack overflow, made a few responses. I responded to a question that was something like: "I need to do X, I found a sed one liner that almost does it, but not quite" And was tagged 'sed'. I assumed the user just wanted a solution and tagged it with sed because it was a possible answer. So I suggested an alternate way using another tool that was more concise and didn't involve regex (another one-liner). I received a down vote for not meeting the requirement of the user. Since I'd like to make sure I conform to good forum etiquette, my question is: Are tags considered hard requirements that should limit the scope of responses? (within reason of course, a .NET question with a .NET tag obviously shouldn't receive a ruby answer).

    Read the article

  • Initialization of array on heap

    - by Radek Šimko
    How do i manually initiate values in array on heap? If the array is local variable (in stack), it can be done very elegant and easy way, like this: int myArray[3] = {1,2,3}; Unfortunately, following code int * myArray = new int[3]; myArray = {1,2,3}; outputs an error by compiling error: expected primary-expression before ‘{’ token error: expected `;' before ‘{’ token Do i have to use cycle, or not-so-much-elegant way like this? myArray[0] = 1; myArray[1] = 2; myArray[2] = 3;

    Read the article

  • how does memory stacks work in javascript

    - by user227353
    When we have code like: function a(){ var x =0; this.add=function(){ alert(x++); } } var test = new a(); test.add(); // alert 0 test.add(); // alert 1 test.add(); // alert 2 How does this work? Doesn't that the value of 'x' in a() should be 'gone' as soon as test = new a() is complete? The stack contains x should also be gone as well, right? Or, does javascript always keep all the stacks ever created in case they will be referenced in future? But that wouldn't be nice, would it...?

    Read the article

  • Stacking Dialogs in Android

    - by ChaimKut
    Is there a way to control the relative stacking of Dialogs produced by your own Activity? For instance, there are some more important Dialogs which I would like to ensure are on top and if another Dialog wants to pop up I would want it to pop under the important Dialogs. Example: I want to present to the user an important dialog, Dialog A. The activity realizes that there is a dialog, Dialog B, of lesser importance to display to the user. Is it possible to specify Dialog B to be under Dialog A so that when Dialog A is cleared, Dialog B will be seen by the user? I know that the onDismiss interface exists, but this necessarily ties Dialog A and Dialog B together. I want the Dialogs to be independent and would prefer to use a higher level abstraction like the window stack responsible for ordering the Dialogs.

    Read the article

  • Are destructors of automatic objects invoked when terminate is called?

    - by nbolton
    I'm pondering a question on Brainbench. I actually realised that I could answer my question easily by compiling the code, but it's an interesting question nonetheless, so I'll ask the question anyway and answer it myself shortly. Take a look at this snippet: The question considers what happens when we throw from a destructor (which causes terminate() to be called). It's become clear to me by asking the question that the memory is indeed freed and the destructor is called, but, is this before or after throw is called from foo? Perhaps the issue here is that throw is used while the stack is unwinding that is the problem... Actually this is slightly confusing.

    Read the article

  • why does it use the movl instead of push ?!

    - by user554403
    hi all. pay attention to this code : #include <stdio.h> void a(int a, int b, int c) { char buffer1[5]; char buffer2[10]; } int main() { a(1,2,3); } after that : gcc -S a.c that command shows our source code in assembly. now we can see in the main function, we never use "push" command to push the arguments of the a function into the stack. and it used "movel" instead of that main: pushl %ebp movl %esp, %ebp andl $-16, %esp subl $16, %esp movl $3, 8(%esp) movl $2, 4(%esp) movl $1, (%esp) call a leave why does it happen? what's difference between them?

    Read the article

  • Trying to convert simple midlet application to Android application but running into problems.

    - by chobo2
    Hi I am trying to do some threading in Android so I took an old threading assignment I had done fora midlet and took out the midlet code and replaced it with android code(such as textview). package com.assignment1; import android.app.Activity; import android.os.Bundle; import android.widget.TextView; public class Threading extends Activity { private TextView tortose; private TextView hare; private Thread hareThread; private Thread torotoseThread; private int num = 0; private int num2 = 0; public Threading() { } /** Called when the activity is first created. */ @Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.main); tortose = (TextView) findViewById(R.id.TextView01); hare = (TextView) findViewById(R.id.TextView02); Hare newHare = new Hare(); hareThread = new Thread(newHare); hareThread.start(); Torotose newTortose = new Torotose(); torotoseThread = new Thread(newTortose); torotoseThread.start(); //updateDisplay(); } private synchronized void check(int value1, int value2) { if((value1-value2) >= 10) { try { wait(); } catch(Exception ex) { System.out.println(ex); } } } private synchronized void getGoing(int value1, int value2) { if((value1-value2) == 0) { try { notify(); } catch(Exception ex) { System.out.println(ex); } } } private class Hare extends Thread { public void run() { while(true) { num++; hare.setText(Integer.toString(num)); check(num, num2); try { // are threads different in andriod apps? Thread.sleep(100); // hareThread.sleep(100); } catch(Exception ex) { System.out.println(ex); } } } } private class Torotose extends Thread { public void run() { while(true) { num2++; tortose.setText(Integer.toString(num2)); getGoing(num,num2); try { Thread.sleep(200); //torotoseThread.sleep(200); } catch(Exception ex) { System.out.println(ex); } } } } } First it wanted me to change my threads to like static threads.So is this just how Android does it? Next when I run this code it just crashes with some unexpected error. I am not sure what the error is but when I try to debug it and goes to like to create a new "hare" object it shows me this. // Compiled from ClassLoader.java (version 1.5 : 49.0, super bit) public abstract class java.lang.ClassLoader { // Method descriptor #8 ()V // Stack: 3, Locals: 1 protected ClassLoader(); 0 aload_0 [this] 1 invokespecial java.lang.Object() [1] 4 new java.lang.RuntimeException [2] 7 dup 8 ldc <String "Stub!"> [3] 10 invokespecial java.lang.RuntimeException(java.lang.String) [4] 13 athrow Line numbers: [pc: 0, line: 4] Local variable table: [pc: 0, pc: 14] local: this index: 0 type: java.lang.ClassLoader // Method descriptor #14 (Ljava/lang/ClassLoader;)V // Stack: 3, Locals: 2 protected ClassLoader(java.lang.ClassLoader parentLoader); 0 aload_0 [this] 1 invokespecial java.lang.Object() [1] 4 new java.lang.RuntimeException [2] 7 dup 8 ldc <String "Stub!"> [3] 10 invokespecial java.lang.RuntimeException(java.lang.String) [4] 13 athrow Line numbers: [pc: 0, line: 5] Local variable table: [pc: 0, pc: 14] local: this index: 0 type: java.lang.ClassLoader [pc: 0, pc: 14] local: parentLoader index: 1 type: java.lang.ClassLoader // Method descriptor #17 ()Ljava/lang/ClassLoader; // Stack: 3, Locals: 0 public static java.lang.ClassLoader getSystemClassLoader(); 0 new java.lang.RuntimeException [2] 3 dup 4 ldc <String "Stub!"> [3] 6 invokespecial java.lang.RuntimeException(java.lang.String) [4] 9 athrow Line numbers: [pc: 0, line: 6] // Method descriptor #19 (Ljava/lang/String;)Ljava/net/URL; // Stack: 3, Locals: 1 public static java.net.URL getSystemResource(java.lang.String resName); 0 new java.lang.RuntimeException [2] 3 dup 4 ldc <String "Stub!"> [3] 6 invokespecial java.lang.RuntimeException(java.lang.String) [4] 9 athrow Line numbers: [pc: 0, line: 7] Local variable table: [pc: 0, pc: 10] local: resName index: 0 type: java.lang.String // Method descriptor #23 (Ljava/lang/String;)Ljava/util/Enumeration; // Signature: (Ljava/lang/String;)Ljava/util/Enumeration<Ljava/net/URL;>; // Stack: 3, Locals: 1 public static java.util.Enumeration getSystemResources(java.lang.String resName) throws java.io.IOException; 0 new java.lang.RuntimeException [2] 3 dup 4 ldc <String "Stub!"> [3] 6 invokespecial java.lang.RuntimeException(java.lang.String) [4] 9 athrow Line numbers: [pc: 0, line: 8] Local variable table: [pc: 0, pc: 10] local: resName index: 0 type: java.lang.String // Method descriptor #29 (Ljava/lang/String;)Ljava/io/InputStream; // Stack: 3, Locals: 1 public static java.io.InputStream getSystemResourceAsStream(java.lang.String resName); 0 new java.lang.RuntimeException [2] 3 dup 4 ldc <String "Stub!"> [3] 6 invokespecial java.lang.RuntimeException(java.lang.String) [4] 9 athrow Line numbers: [pc: 0, line: 9] Local variable table: [pc: 0, pc: 10] local: resName index: 0 type: java.lang.String // Method descriptor #31 ([BII)Ljava/lang/Class; // Signature: ([BII)Ljava/lang/Class<*>; // Stack: 3, Locals: 4 protected final java.lang.Class defineClass(byte[] classRep, int offset, int length) throws java.lang.ClassFormatError; 0 new java.lang.RuntimeException [2] 3 dup 4 ldc <String "Stub!"> [3] 6 invokespecial java.lang.RuntimeException(java.lang.String) [4] 9 athrow Line numbers: [pc: 0, line: 10] Local variable table: [pc: 0, pc: 10] local: this index: 0 type: java.lang.ClassLoader [pc: 0, pc: 10] local: classRep index: 1 type: byte[] [pc: 0, pc: 10] local: offset index: 2 type: int [pc: 0, pc: 10] local: length index: 3 type: int // Method descriptor #39 (Ljava/lang/String;[BII)Ljava/lang/Class; // Signature: (Ljava/lang/String;[BII)Ljava/lang/Class<*>; // Stack: 3, Locals: 5 protected final java.lang.Class defineClass(java.lang.String className, byte[] classRep, int offset, int length) throws java.lang.ClassFormatError; 0 new java.lang.RuntimeException [2] 3 dup 4 ldc <String "Stub!"> [3] 6 invokespecial java.lang.RuntimeException(java.lang.String) [4] 9 athrow Line numbers: [pc: 0, line: 11] Local variable table: [pc: 0, pc: 10] local: this index: 0 type: java.lang.ClassLoader [pc: 0, pc: 10] local: className index: 1 type: java.lang.String [pc: 0, pc: 10] local: classRep index: 2 type: byte[] [pc: 0, pc: 10] local: offset index: 3 type: int [pc: 0, pc: 10] local: length index: 4 type: int // Method descriptor #42 (Ljava/lang/String;[BIILjava/security/ProtectionDomain;)Ljava/lang/Class; // Signature: (Ljava/lang/String;[BIILjava/security/ProtectionDomain;)Ljava/lang/Class<*>; // Stack: 3, Locals: 6 protected final java.lang.Class defineClass(java.lang.String className, byte[] classRep, int offset, int length, java.security.ProtectionDomain protectionDomain) throws java.lang.ClassFormatError; 0 new java.lang.RuntimeException [2] 3 dup 4 ldc <String "Stub!"> [3] 6 invokespecial java.lang.RuntimeException(java.lang.String) [4] 9 athrow Line numbers: [pc: 0, line: 12] Local variable table: [pc: 0, pc: 10] local: this index: 0 type: java.lang.ClassLoader [pc: 0, pc: 10] local: className index: 1 type: java.lang.String [pc: 0, pc: 10] local: classRep index: 2 type: byte[] [pc: 0, pc: 10] local: offset index: 3 type: int [pc: 0, pc: 10] local: length index: 4 type: int [pc: 0, pc: 10] local: protectionDomain index: 5 type: java.security.ProtectionDomain // Method descriptor #46 (Ljava/lang/String;Ljava/nio/ByteBuffer;Ljava/security/ProtectionDomain;)Ljava/lang/Class; // Signature: (Ljava/lang/String;Ljava/nio/ByteBuffer;Ljava/security/ProtectionDomain;)Ljava/lang/Class<*>; // Stack: 3, Locals: 4 protected final java.lang.Class defineClass(java.lang.String name, java.nio.ByteBuffer b, java.security.ProtectionDomain protectionDomain) throws java.lang.ClassFormatError; 0 new java.lang.RuntimeException [2] 3 dup 4 ldc <String "Stub!"> [3] 6 invokespecial java.lang.RuntimeException(java.lang.String) [4] 9 athrow Line numbers: [pc: 0, line: 13] Local variable table: [pc: 0, pc: 10] local: this index: 0 type: java.lang.ClassLoader [pc: 0, pc: 10] local: name index: 1 type: java.lang.String [pc: 0, pc: 10] local: b index: 2 type: java.nio.ByteBuffer [pc: 0, pc: 10] local: protectionDomain index: 3 type: java.security.ProtectionDomain // Method descriptor #52 (Ljava/lang/String;)Ljava/lang/Class; // Signature: (Ljava/lang/String;)Ljava/lang/Class<*>; // Stack: 3, Locals: 2 protected java.lang.Class findClass(java.lang.String className) throws java.lang.ClassNotFoundException; 0 new java.lang.RuntimeException [2] 3 dup 4 ldc <String "Stub!"> [3] 6 invokespecial java.lang.RuntimeException(java.lang.String) [4] 9 athrow Line numbers: [pc: 0, line: 14] Local variable table: [pc: 0, pc: 10] local: this index: 0 type: java.lang.ClassLoader [pc: 0, pc: 10] local: className index: 1 type: java.lang.String // Method descriptor #52 (Ljava/lang/String;)Ljava/lang/Class; // Signature: (Ljava/lang/String;)Ljava/lang/Class<*>; // Stack: 3, Locals: 2 protected final java.lang.Class findLoadedClass(java.lang.String className); 0 new java.lang.RuntimeException [2] 3 dup 4 ldc <String "Stub!"> [3] 6 invokespecial java.lang.RuntimeException(java.lang.String) [4] 9 athrow Line numbers: [pc: 0, line: 15] Local variable table: [pc: 0, pc: 10] local: this index: 0 type: java.lang.ClassLoader [pc: 0, pc: 10] local: className index: 1 type: java.lang.String // Method descriptor #52 (Ljava/lang/String;)Ljava/lang/Class; // Signature: (Ljava/lang/String;)Ljava/lang/Class<*>; // Stack: 3, Locals: 2 protected final java.lang.Class findSystemClass(java.lang.String className) throws java.lang.ClassNotFoundException; 0 new java.lang.RuntimeException [2] 3 dup 4 ldc <String "Stub!"> [3] 6 invokespecial java.lang.RuntimeException(java.lang.String) [4] 9 athrow Line numbers: [pc: 0, line: 16] Local variable table: [pc: 0, pc: 10] local: this index: 0 type: java.lang.ClassLoader [pc: 0, pc: 10] local: className index: 1 type: java.lang.String // Method descriptor #17 ()Ljava/lang/ClassLoader; // Stack: 3, Locals: 1 public final java.lang.ClassLoader getParent(); 0 new java.lang.RuntimeException [2] 3 dup 4 ldc <String "Stub!"> [3] 6 invokespecial java.lang.RuntimeException(java.lang.String) [4] 9 athrow Line numbers: [pc: 0, line: 17] Local variable table: [pc: 0, pc: 10] local: this index: 0 type: java.lang.ClassLoader // Method descriptor #19 (Ljava/lang/String;)Ljava/net/URL; // Stack: 3, Locals: 2 public java.net.URL getResource(java.lang.String resName); 0 new java.lang.RuntimeException [2] 3 dup 4 ldc <String "Stub!"> [3] 6 invokespecial java.lang.RuntimeException(java.lang.String) [4] 9 athrow Line numbers: [pc: 0, line: 18] Local variable table: [pc: 0, pc: 10] local: this index: 0 type: java.lang.ClassLoader [pc: 0, pc: 10] local: resName index: 1 type: java.lang.String // Method descriptor #23 (Ljava/lang/String;)Ljava/util/Enumeration; // Signature: (Ljava/lang/String;)Ljava/util/Enumeration<Ljava/net/URL;>; // Stack: 3, Locals: 2 public java.util.Enumeration getResources(java.lang.String resName) throws java.io.IOException; 0 new java.lang.RuntimeException [2] 3 dup 4 ldc <String "Stub!"> [3] 6 invokespecial java.lang.RuntimeException(java.lang.String) [4] 9 athrow Line numbers: [pc: 0, line: 19] Local variable table: [pc: 0, pc: 10] local: this index: 0 type: java.lang.ClassLoader [pc: 0, pc: 10] local: resName index: 1 type: java.lang.String // Method descriptor #29 (Ljava/lang/String;)Ljava/io/InputStream; // Stack: 3, Locals: 2 public java.io.InputStream getResourceAsStream(java.lang.String resName); 0 new java.lang.RuntimeException [2] 3 dup 4 ldc <String "Stub!"> [3] 6 invokespecial java.lang.RuntimeException(java.lang.String) [4] 9 athrow Line numbers: [pc: 0, line: 20] Local variable table: [pc: 0, pc: 10] local: this index: 0 type: java.lang.ClassLoader [pc: 0, pc: 10] local: resName index: 1 type: java.lang.String // Method descriptor #52 (Ljava/lang/String;)Ljava/lang/Class; // Signature: (Ljava/lang/String;)Ljava/lang/Class<*>; // Stack: 3, Locals: 2 public java.lang.Class loadClass(java.lang.String className) throws java.lang.ClassNotFoundException; 0 new java.lang.RuntimeException [2] 3 dup 4 ldc <String "Stub!"> [3] 6 invokespecial java.lang.RuntimeException(java.lang.String) [4] 9 athrow Line numbers: [pc: 0, line: 21] Local variable table: [pc: 0, pc: 10] local: this index: 0 type: java.lang.ClassLoader [pc: 0, pc: 10] local: className index: 1 type: java.lang.String // Method descriptor #62 (Ljava/lang/String;Z)Ljava/lang/Class; // Signature: (Ljava/lang/String;Z)Ljava/lang/Class<*>; // Stack: 3, Locals: 3 protected java.lang.Class loadClass(java.lang.String className, boolean resolve) throws java.lang.ClassNotFoundException; 0 new java.lang.RuntimeException [2] 3 dup 4 ldc <String "Stub!"> [3] 6 invokespecial java.lang.RuntimeException(java.lang.String) [4] 9 athrow Line numbers: [pc: 0, line: 22] Local variable table: [pc: 0, pc: 10] local: this index: 0 type: java.lang.ClassLoader [pc: 0, pc: 10] local: className index: 1 type: java.lang.String [pc: 0, pc: 10] local: resolve index: 2 type: boolean // Method descriptor #67 (Ljava/lang/Class;)V // Signature: (Ljava/lang/Class<*>;)V // Stack: 3, Locals: 2 protected final void resolveClass(java.lang.Class clazz); 0 new java.lang.RuntimeException [2] 3 dup 4 ldc <String "Stub!"> [3] 6 invokespecial java.lang.RuntimeException(java.lang.String) [4] 9 athrow Line numbers: [pc: 0, line: 23] Local variable table: [pc: 0, pc: 10] local: this index: 0 type: java.lang.ClassLoader [pc: 0, pc: 10] local: clazz index: 1 type: java.lang.Class Local variable type table: [pc: 0, pc: 10] local: clazz index: 1 type: java.lang.Class<?> // Method descriptor #19 (Ljava/lang/String;)Ljava/net/URL; // Stack: 3, Locals: 2 protected java.net.URL findResource(java.lang.String resName); 0 new java.lang.RuntimeException [2] 3 dup 4 ldc <String "Stub!"> [3] 6 invokespecial java.lang.RuntimeException(java.lang.String) [4] 9 athrow Line numbers: [pc: 0, line: 24] Local variable table: [pc: 0, pc: 10] local: this index: 0 type: java.lang.ClassLoader [pc: 0, pc: 10] local: resName index: 1 type: java.lang.String // Method descriptor #23 (Ljava/lang/String;)Ljava/util/Enumeration; // Signature: (Ljava/lang/String;)Ljava/util/Enumeration<Ljava/net/URL;>; // Stack: 3, Locals: 2 protected java.util.Enumeration findResources(java.lang.String resName) throws java.io.IOException; 0 new java.lang.RuntimeException [2] 3 dup 4 ldc <String "Stub!"> [3] 6 invokespecial java.lang.RuntimeException(java.lang.String) [4] 9 athrow Line numbers: [pc: 0, line: 25] Local variable table: [pc: 0, pc: 10] local: this index: 0 type: java.lang.ClassLoader [pc: 0, pc: 10] local: resName index: 1 type: java.lang.String // Method descriptor #76 (Ljava/lang/String;)Ljava/lang/String; // Stack: 3, Locals: 2 protected java.lang.String findLibrary(java.lang.String libName); 0 new java.lang.RuntimeException [2] 3 dup 4 ldc <String "Stub!"> [3] 6 invokespecial java.lang.RuntimeException(java.lang.String) [4] 9 athrow Line numbers: [pc: 0, line: 26] Local variable table: [pc: 0, pc: 10] local: this index: 0 type: java.lang.ClassLoader [pc: 0, pc: 10] local: libName index: 1 type: java.lang.String // Method descriptor #79 (Ljava/lang/String;)Ljava/lang/Package; // Stack: 3, Locals: 2 protected java.lang.Package getPackage(java.lang.String name); 0 new java.lang.RuntimeException [2] 3 dup 4 ldc <String "Stub!"> [3] 6 invokespecial java.lang.RuntimeException(java.lang.String) [4] 9 athrow Line numbers: [pc: 0, line: 27] Local variable table: [pc: 0, pc: 10] local: this index: 0 type: java.lang.ClassLoader [pc: 0, pc: 10] local: name index: 1 type: java.lang.String // Method descriptor #81 ()[Ljava/lang/Package; // Stack: 3, Locals: 1 protected java.lang.Package[] getPackages(); 0 new java.lang.RuntimeException [2] 3 dup 4 ldc <String "Stub!"> [3] 6 invokespecial java.lang.RuntimeException(java.lang.String) [4] 9 athrow Line numbers: [pc: 0, line: 28] Local variable table: [pc: 0, pc: 10] local: this index: 0 type: java.lang.ClassLoader // Method descriptor #83 (Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;Ljava/net/URL;)Ljava/lang/Package; // Stack: 3, Locals: 9 protected java.lang.Package definePackage(java.lang.String name, java.lang.String specTitle, java.lang.String specVersion, java.lang.String specVendor, java.lang.String implTitle, java.lang.String implVersion, java.lang.String implVendor, java.net.URL sealBase) throws java.lang.IllegalArgumentException; 0 new java.lang.RuntimeException [2] 3 dup 4 ldc <String "Stub!"> [3] 6 invokespecial java.lang.RuntimeException(java.lang.String) [4] 9 athrow Line numbers: [pc: 0, line: 29] Local variable table: [pc: 0, pc: 10] local: this index: 0 type: java.lang.ClassLoader [pc: 0, pc: 10] local: name index: 1 type: java.lang.String [pc: 0, pc: 10] local: specTitle index: 2 type: java.lang.String [pc: 0, pc: 10] local: specVersion index: 3 type: java.lang.String [pc: 0, pc: 10] local: specVendor index: 4 type: java.lang.String [pc: 0, pc: 10] local: implTitle index: 5 type: java.lang.String [pc: 0, pc: 10] local: implVersion index: 6 type: java.lang.String [pc: 0, pc: 10] local: implVendor index: 7 type: java.lang.String [pc: 0, pc: 10] local: sealBase index: 8 type: java.net.URL // Method descriptor #94 (Ljava/lang/Class;[Ljava/lang/Object;)V // Signature: (Ljava/lang/Class<*>;[Ljava/lang/Object;)V // Stack: 3, Locals: 3 protected final void setSigners(java.lang.Class c, java.lang.Object[] signers); 0 new java.lang.RuntimeException [2] 3 dup 4 ldc <String "Stub!"> [3] 6 invokespecial java.lang.RuntimeException(java.lang.String) [4] 9 athrow Line numbers: [pc: 0, line: 30] Local variable table: [pc: 0, pc: 10] local: this index: 0 type: java.lang.ClassLoader [pc: 0, pc: 10] local: c index: 1 type: java.lang.Class [pc: 0, pc: 10] local: signers index: 2 type: java.lang.Object[] Local variable type table: [pc: 0, pc: 10] local: c index: 1 type: java.lang.Class<?> // Method descriptor #100 (Ljava/lang/String;Z)V // Stack: 3, Locals: 3 public void setClassAssertionStatus(java.lang.String cname, boolean enable); 0 new java.lang.RuntimeException [2] 3 dup 4 ldc <String "Stub!"> [3] 6 invokespecial java.lang.RuntimeException(java.lang.String) [4] 9 athrow Line numbers: [pc: 0, line: 31] Local variable table: [pc: 0, pc: 10] local: this index: 0 type: java.lang.ClassLoader [pc: 0, pc: 10] local: cname index: 1 type: java.lang.String [pc: 0, pc: 10] local: enable index: 2 type: boolean // Method descriptor #100 (Ljava/lang/String;Z)V // Stack: 3, Locals: 3 public void setPackageAssertionStatus(java.lang.String pname, boolean enable); 0 new java.lang.RuntimeException [2] 3 dup 4 ldc <String "Stub!"> [3] 6 invokespecial java.lang.RuntimeException(java.lang.String) [4] 9 athrow Line numbers: [pc: 0, line: 32] Local variable table: [pc: 0, pc: 10] local: this index: 0 type: java.lang.ClassLoader [pc: 0, pc: 10] local: pname index: 1 type: java.lang.String [pc: 0, pc: 10] local: enable index: 2 type: boolean // Method descriptor #106 (Z)V // Stack: 3, Locals: 2 public void setDefaultAssertionStatus(boolean enable); 0 new java.lang.RuntimeException [2] 3 dup 4 ldc <String "Stub!"> [3] 6 invokespecial java.lang.RuntimeException(java.lang.String) [4] 9 athrow Line numbers: [pc: 0, line: 33] Local variable table: [pc: 0, pc: 10] local: this index: 0 type: java.lang.ClassLoader [pc: 0, pc: 10] local: enable index: 1 type: boolean // Method descriptor #8 ()V // Stack: 3, Locals: 1 public void clearAssertionStatus(); 0 new java.lang.RuntimeException [2] 3 dup 4 ldc <String "Stub!"> [3] 6 invokespecial java.lang.RuntimeException(java.lang.String) [4] 9 athrow Line numbers: [pc: 0, line: 34] Local variable table: [pc: 0, pc: 10] local: this index: 0 type: java.lang.ClassLoader } So I am not sure where I went wrong. Thanks

    Read the article

  • How do you get your self focused with so many distractions around? (which you can't or don't want to

    - by Teja Kantamneni
    This question is definitely for a programmer and is centric towards a programmer. But if somebody feels it should not belong here I would not mind deleting it. I don't think this need to go as a WIKI, but if feel like it is a WIKI, I can do that too. The Question is: As a programmer you have to keep yourself up to date with the latest technologies and for that every programmer will generally follow some technology blogs and some social networking sites like (twitter, FB, SO, DZONE etc), how to keep your self focused on the things and still want to follow the technology trends? No Subjective or argumentative answers, Just want to know what practices other fellow programmers do for this...

    Read the article

  • Will VC++ MFC become obsolete in near future?

    - by AKN
    Normally people say MFC is little clumsy. It makes UI development slightly difficult to maintain since it has lot of auto generated code. It has good architecture (doc/view) but is not transparent like Win32 programming to understand how window program works in the background. So with this situation, is it good to extend the exposure on MFC programming or better to switch to .NET since for faster UI design with ease in maintenance. Is it good to continue as MFC developer or good to know .NET as well? How globally companies are looking into MFC as a technology for UI developments. Are they comfortable in supporting their developers to continue with MFC or looking for changing their development technology.

    Read the article

  • Is it good to continue as MFC developer or good to know .NET as well?

    - by AKN
    Normally people say MFC is little clumsy. It makes UI developement slightly difficult to maintain since it has lot of auto generated code. It has good architecture (doc/view) but is not transparent like Win32 programming to understand how window program works in the background. So with this situation, is it good to extend the exposure on MFC programming or better to switch to .NET since for faster UI design with ease in maintenance. How globally companies are looking into MFC as a technology for UI developments. Are they comfortable in supporting their developers to continue with MFC or looking for changing their development technology.

    Read the article

  • Tulsa SharePoint Interest Group – SharePoint 2010 Mini-Launch Event - Review

    - by dmccollough
    The Tulsa SharePoint Interest Group set a record for attendance last night at our SharePoint 2010 Mini-Launch Event. Approximately 40+ people showed up to listen to SharePoint MVP Eric Shupps, The SharePoint Cowboy to discuss all of the new features for both administrators and developers. All of the Tulsa SharePoint Interest Group Officers worked very hard to ensure that this event happened. We hosted our event at our local Dave & Busters and it was a great location with good food and great service. All of the officers of the Tulsa SharePoint Interest Group would like to extend a big Thank You to all of our sponsor that helped us in making our SharePoint 2010 Mini-Launch Event a reality.

    Read the article

< Previous Page | 56 57 58 59 60 61 62 63 64 65 66 67  | Next Page >