Search Results

Search found 54338 results on 2174 pages for 'asp net webpages'.

Page 620/2174 | < Previous Page | 616 617 618 619 620 621 622 623 624 625 626 627  | Next Page >

  • C# 4.0: Alternative To Optional Arguments

    - by Paulo Morgado
    Like I mentioned in my last post, exposing publicly methods with optional arguments is a bad practice (that’s why C# has resisted to having it, until now). You might argument that your method or constructor has to many variants and having ten or more overloads is a maintenance nightmare, and you’re right. But the solution has been there for ages: have an arguments class. The arguments class pattern is used in the .NET Framework is used by several classes, like XmlReader and XmlWriter that use such pattern in their Create methods, since version 2.0: XmlReaderSettings settings = new XmlReaderSettings(); settings.ValidationType = ValidationType.Auto; XmlReader.Create("file.xml", settings); With this pattern, you don’t have to maintain a long list of overloads and any default values for properties of XmlReaderSettings (or XmlWriterSettings for XmlWriter.Create) can be changed or new properties added in future implementations that won’t break existing compiled code. You might now argue that it’s too much code to write, but, with object initializers added in C# 3.0, the same code can be written like this: XmlReader.Create("file.xml", new XmlReaderSettings { ValidationType = ValidationType.Auto }); Looks almost like named and optional arguments, doesn’t it? And, who knows, in a future version of C#, it might even look like this: XmlReader.Create("file.xml", new { ValidationType = ValidationType.Auto });

    Read the article

  • Dotfuscator Deep Dive with WP7

    - by Bil Simser
    I thought I would share some experience with code obfuscation (specifically the Dotfuscator product) and Windows Phone 7 apps. These days twitter is a buzz with black hat and white operations coming out about how the marketplace is insecure and Microsoft failed, blah, blah, blah. So it’s that much more important to protect your intellectual property. You should protect it no matter what when releasing apps into the wild but more so when someone is paying for them. You want to protect the time and effort that went into your code and have some comfort that the casual hacker isn’t going to usurp your next best thing. Enter code obfuscation. Code obfuscation is one tool that can help protect your IP. Basically it goes into your compiled assemblies, rewrites things at an IL level (like renaming methods and classes and hiding logic flow) and rewrites it back so that the assembly or executable is still fully functional but prying eyes using a tool like ILDASM or Reflector can’t see what’s going on.  You can read more about code obfuscation here on Wikipedia. A word to the wise. Code obfuscation isn’t 100% secure. More so on the WP7 platform where the OS expects certain things to be as they were meant to be. So don’t expect 100% obfuscation of every class and every method and every property. It’s just not going to happen. What this does do is give you some level of protection but don’t put all your eggs in one basket and call it done. Like I said, this is just one step in the process. There are a few tools out there that provide code obfuscation and support the Windows Phone 7 platform (see links to other tools at the end of this post). One such tool is Dotfuscator from PreEmptive solutions. The thing about Dotfuscator is that they’ve struck a deal with Microsoft to provide a *free* copy of their commercial product for Windows Phone 7. The only drawback is that it only runs until March 31, 2010. However it’s a good place to start and the focus of this article. Getting Started When you fire up Dotfuscator you’re presented with a dialog to start a new project or load a previous one. We’ll start with a new project. You’re then looking at a somewhat blank screen that shows an Input tab (among others) and you’re probably wondering what to do? Click on the folder icon (first one) and browse to where your xap file is. At this point you can save the project and click on the arrow to start the process. Bam! You’re done. Right? Think again. The program did indeed run and create a new version of your xap (doing it’s thing and rewriting back your *obfuscated* assemblies) but let’s take a look at the assembly in Reflector to see the end result. Remember a xap file is really just a glorified zip file (or cab file if you prefer). When you ran Dotfuscator for the first time with the default settings you’ll see it created a new version of your xap in a folder under “My Documents” called “Dotfuscated” (you can configure the output directory in settings). Here’s the new xap file. Since a xap is just a zip, rename it to .cab or .zip or something and open it with your favorite unarchive program (I use WinRar but it doesn’t matter as long as it can unzip files). If you already have the xap file associated with your unarchive tool the rename isn’t needed. Once renamed extract the contents of the xap to your hard drive: Now you’ll have a folder with the contents of the xap file extracted: Double click or load up your assembly (WindowsPhoneDataBoundApplication1.dll in the example) in Reflector and let’s see the results: Hmm. That doesn’t look right. I can see all the methods and the code is all there for my LoadData method I wanted to protect. Product failure. Let’s return it for a refund. Hold your horses. We need to check out the settings in the program first. Remember when we loaded up our xap file. It started us on the Input tab but there was a settings tab before that. Wonder what it does? Here’s the default settings: Renaming Taking a closer look, all of the settings in Feature are disabled. WTF? Yeah, it leaves me scratching my head why an obfuscator by default doesn’t obfuscate. However it’s a simple fix to change these settings. Let’s enable Renaming as it sounds like a good start. Renaming obscures code by renaming methods and fields to names that are not understandable. Great. Run the tool again and go through the process of unzipping the updated xap and let’s take a look in Reflector again at our project. This looks a lot better. Lots of methods named a, b, c, d, etc. That’ll help slow hackers down a bit. What about our logic that we spent days weeks on? Let’s take a look at the LoadData method: What gives? We have renaming enabled but all of our code is still there. If you look through all your methods you’ll find it’s still sitting there out in the open. Control Flow Back to the settings page again. Let’s enable Control Flow now. Control Flow obfuscation synthesizes branching, conditional, and iterative constructs (such as if, for, and while) that produce valid executable logic, but yield non-deterministic semantic results when decompilation is attempted. In other words, the code runs as before, but decompilers cannot reproduce the original code. Do the dance again and let’s see the results in Reflector. Ahh, that’s better. Methods renamed *and* nobody can look at our LoadData method now. Life is good. More than Minimum This is the bare minimum to obfuscate your xap to at least a somewhat comfortable level. However I did find that while this worked in my Hello World demo, it didn’t work on one of my real world apps. I had to do some extra tweaking with that. Below are the screens that I used on one app that worked. I’m not sure what it was about the app that the approach above didn’t work with (maybe the extra assembly?) but it works and I’m happy with it. YMMV. Remember to test your obfuscated app on your device first before submitting to ensure you haven’t obfuscated the obfuscator. settings tab: rename tab: string encryption tab: premark tab: A few final notes Play with the settings and keep bumping up the bar to try to get as much obfuscation as you can. The more the better but remember you can overdo it. Always (always, always, always) deploy your obfuscated xap to your device and test it before submitting to the marketplace. I didn’t and got rejected because I had gone overboard with the obfuscation so the app wouldn’t launch at all. Not everything is going to be obfuscated. Specifically I don’t see a way to obfuscate auto properties and a few other language features. Again, if you crank the settings up you might hide these but I haven’t spent a lot of time optimizing the process. Some people might say to obfuscate your xaml using string encryption but again, test, test, test. Xaml is picky so too much obfuscation (or any) might disable your app or produce odd rendering effets. Remember, obfuscation is not 100% secure! Don’t rely on it as a sole way of protecting your assets. Other Tools Dotfuscator is one just product and isn’t the end-all be-all to obfuscation so check out others below. For example, Crypto can make it so Reflector doesn’t even recognize the app as a .NET one and won’t open it. Others can encrypt resources and Xaml markup files. Here are some other obfuscators that support the Windows Phone 7 platform. Feel free to give them a try and let people know your experience with them! Dotfuscator Windows Phone Edition Crypto Obfuscator for .NET DeepSea Obfuscation

    Read the article

  • Putting a base in the middle

    - by PSteele
    From Eric Lippert's Blog: Here’s a crazy-seeming but honest-to-goodness real customer scenario that got reported to me recently. There are three DLLs involved, Alpha.DLL, Bravo.DLL and Charlie.DLL. The classes in each are: public class Alpha // In Alpha.DLL {   public virtual void M()   {     Console.WriteLine("Alpha");   } } public class Bravo: Alpha // In Bravo.DLL { } public class Charlie : Bravo // In Charlie.DLL {   public override void M()   {     Console.WriteLine("Charlie");     base.M();   } } Perfectly sensible. You call M on an instance of Charlie and it says “Charlie / Alpha”. Now the vendor who supplies Bravo.DLL ships a new version which has this code: public class Bravo: Alpha {   public override void M()   {     Console.WriteLine("Bravo");     base.M();   } } The question is: what happens if you call Charlie.M without recompiling Charlie.DLL, but you are loading the new version of Bravo.DLL? The customer was quite surprised that the output is still “Charlie / Alpha”, not “Charlie / Bravo / Alpha”. Read the full post for a very interesting discussion of the design of C#, the CLR, method resolution and more. Technorati Tags: .NET,C#,CLR

    Read the article

  • Announcing Sesame Data Browser

    - by Fabrice Marguerie
    At the occasion of MIX10, which is currently taking place in Las Vegas, I'd like to announce Sesame Data Browser.Sesame will be a suite of tools for dealing with data, and Sesame Data Browser will be the first tool from that suite.Today, during the second MIX10 keynote, Microsoft demonstrated how they are pushing hard to get OData adopted. If you don't know about OData, you can visit the just revamped dedicated website: http://odata.org. There you'll find about the OData protocol, which allows you to publish and consume data on the web, the OData SDK (with client libraries for .NET, Java, Javascript, PHP, iPhone, and more), a list of OData producers, and a list of OData consumers.This is where Sesame Data Browser comes into play. It's one of the tools you can use today to consume OData.I'll let you have a look, but be aware that this is just a preview and many additional features are coming soon.Sesame Data Browser is part of a bigger picture than just OData that will take shape over the coming months. Sesame is a project I've been working on for many months now, so what you see now is just a start :-)I hope you'll enjoy what you see. Let me know what you think.

    Read the article

  • TFS 2010–Bridging the gap between developers and testers

    - by guybarrette
    Last fall, the Montreal .NET Community presented a full day on ALM with a session called “Bridging the gap between developers and testers”. It was a huge success. TFS experts Etienne Tremblay and Vincent Grondin presented again this session at the Ottawa user group in January and this time, the event was recorded by DevTeach in collaboration with Microsoft.  This 7 hours training is broken in 13 videos that you can watch online for free on the DevTeach Website.  If you’re interested in TFS, how to migrate from VSS, the TFS testing tools, how to set the TFS testing lab, how to test a UI and how to automate the tests, this is a must see series.   Here’s the segments list: Intro Migrating from VSS to TFS Automating the build Where’s our backlog? Adding a tester to the team Tester at work Bridging the gap Stop, we have a problem! Let’s get back on track Multi-environment testing Testing in the lab UI Automation Validating UI automation Look boss, no hands! http://www.devteach.com/ALM-TFS2010-Bridgingthegap.aspx var addthis_pub="guybarrette";

    Read the article

  • C# 4.0: Covariance And Contravariance In Generics Made Easy

    - by Paulo Morgado
    In my last post, I went through what is variance in .NET 4.0 and C# 4.0 in a rather theoretical way. Now, I’m going to try to make it a bit more down to earth. Given: class Base { } class Derived : Base { } Such that: Trace.Assert(typeof(Base).IsClass && typeof(Derived).IsClass && typeof(Base).IsGreaterOrEqualTo(typeof(Derived))); Covariance interface ICovariantIn<out T> { } Trace.Assert(typeof(ICovariantIn<Base>).IsGreaterOrEqualTo(typeof(ICovariantIn<Derived>))); Contravariance interface ICovariantIn<out T> { } Trace.Assert(typeof(IContravariantIn<Derived>).IsGreaterOrEqualTo(typeof(IContravariantIn<Base>))); Invariance interface IInvariantIn<T> { } Trace.Assert(!typeof(IInvariantIn<Base>).IsGreaterOrEqualTo(typeof(IInvariantIn<Derived>)) && !typeof(IInvariantIn<Derived>).IsGreaterOrEqualTo(typeof(IInvariantIn<Base>))); Where: public static class TypeExtensions { public static bool IsGreaterOrEqualTo(this Type self, Type other) { return self.IsAssignableFrom(other); } }

    Read the article

  • Visual Studio Talk Show #114 is now online - Le responsable de projet est-il mort? (French)

    - by guybarrette
    http://www.visualstudiotalkshow.com Bernard Fedotoff: Le responsable de projet est-il mort? Nous discutons avec Bernard Fedotoff sur comment jumeler la gestion de projet et les méthodes de développement agile. Entre autres, avec les méthodes agiles on se demande où est la place du responsable de projet. Bernard Fedotoff est Microsoft Regional Director depuis 1996 ; il a animé les Devdays et Techdays en Suisse et en France depuis 1997. Il a été fondateur et PDG de PSEngineering depuis 1990, société qu’il a revendue en 2004. En 2005, il a fondé la société Agilcom. Bernard a mené auprès de clients français, suisses, et d'afrique du nord de nombreuses missions en technologie .Net, d'architecture et de coaching d'équipes de dévoppement. Son passé de Pdg et son expertise technologique apportent aux projets qu'il accompagne deux points de vue riches d'expériences et de convictions. Il a aussi accompagné la mise en place de plateaux offshores vers la Tunisie, en implémentant des approches Agile avec Team Foundation Server. Enfin, il est aussi co-auteur de nombreux ateliers des coachs publiés sur le site MSDN de Microsoft France. Bernard est titulaire d’un diplôme d’ingénieur ainsi que d’un troisième cycle universitaire en robotique. Il consacre ses quelques minutes de temps libre à la montagne Télécharger l'émission Si vous désirez un accès direct au fichier audio en format MP3, nous vous invitons à télécharger le fichier en utilisant un des boutons ci-dessous. Si vous désirez utiliser le feed RSS pour télécharger l'émission, nous vous invitons à vous abonnez en utilisant le bouton ci-dessous. Si vous désirez utiliser le répertoire iTunes Podcast pour télécharger l'émission, nous vous encourageons à vous abonnez en utilisant le bouton ci-dessous. var addthis_pub="guybarrette";

    Read the article

  • Visual Studio Talk Show #114 is now online - Le responsable de projet est-il mort? (French)

    - by guybarrette
    http://www.visualstudiotalkshow.com Bernard Fedotoff: Le responsable de projet est-il mort? Nous discutons avec Bernard Fedotoff sur comment jumeler la gestion de projet et les méthodes de développement agile. Entre autres, avec les méthodes agiles on se demande où est la place du responsable de projet. Bernard Fedotoff est Microsoft Regional Director depuis 1996 ; il a animé les Devdays et Techdays en Suisse et en France depuis 1997. Il a été fondateur et PDG de PSEngineering depuis 1990, société qu’il a revendue en 2004. En 2005, il a fondé la société Agilcom. Bernard a mené auprès de clients français, suisses, et d'afrique du nord de nombreuses missions en technologie .Net, d'architecture et de coaching d'équipes de dévoppement. Son passé de Pdg et son expertise technologique apportent aux projets qu'il accompagne deux points de vue riches d'expériences et de convictions. Il a aussi accompagné la mise en place de plateaux offshores vers la Tunisie, en implémentant des approches Agile avec Team Foundation Server. Enfin, il est aussi co-auteur de nombreux ateliers des coachs publiés sur le site MSDN de Microsoft France. Bernard est titulaire d’un diplôme d’ingénieur ainsi que d’un troisième cycle universitaire en robotique. Il consacre ses quelques minutes de temps libre à la montagne Télécharger l'émission Si vous désirez un accès direct au fichier audio en format MP3, nous vous invitons à télécharger le fichier en utilisant un des boutons ci-dessous. Si vous désirez utiliser le feed RSS pour télécharger l'émission, nous vous invitons à vous abonnez en utilisant le bouton ci-dessous. Si vous désirez utiliser le répertoire iTunes Podcast pour télécharger l'émission, nous vous encourageons à vous abonnez en utilisant le bouton ci-dessous. var addthis_pub="guybarrette";

    Read the article

  • Understanding C# async / await (2) Awaitable / Awaiter Pattern

    - by Dixin
    What is awaitable Part 1 shows that any Task is awaitable. Actually there are other awaitable types. Here is an example: Task<int> task = new Task<int>(() => 0); int result = await task.ConfigureAwait(false); // Returns a ConfiguredTaskAwaitable<TResult>. The returned ConfiguredTaskAwaitable<TResult> struct is awaitable. And it is not Task at all: public struct ConfiguredTaskAwaitable<TResult> { private readonly ConfiguredTaskAwaiter m_configuredTaskAwaiter; internal ConfiguredTaskAwaitable(Task<TResult> task, bool continueOnCapturedContext) { this.m_configuredTaskAwaiter = new ConfiguredTaskAwaiter(task, continueOnCapturedContext); } public ConfiguredTaskAwaiter GetAwaiter() { return this.m_configuredTaskAwaiter; } } It has one GetAwaiter() method. Actually in part 1 we have seen that Task has GetAwaiter() method too: public class Task { public TaskAwaiter GetAwaiter() { return new TaskAwaiter(this); } } public class Task<TResult> : Task { public new TaskAwaiter<TResult> GetAwaiter() { return new TaskAwaiter<TResult>(this); } } Task.Yield() is a another example: await Task.Yield(); // Returns a YieldAwaitable. The returned YieldAwaitable is not Task either: public struct YieldAwaitable { public YieldAwaiter GetAwaiter() { return default(YieldAwaiter); } } Again, it just has one GetAwaiter() method. In this article, we will look at what is awaitable. The awaitable / awaiter pattern By observing different awaitable / awaiter types, we can tell that an object is awaitable if It has a GetAwaiter() method (instance method or extension method); Its GetAwaiter() method returns an awaiter. An object is an awaiter if: It implements INotifyCompletion or ICriticalNotifyCompletion interface; It has an IsCompleted, which has a getter and returns a Boolean; it has a GetResult() method, which returns void, or a result. This awaitable / awaiter pattern is very similar to the iteratable / iterator pattern. Here is the interface definitions of iteratable / iterator: public interface IEnumerable { IEnumerator GetEnumerator(); } public interface IEnumerator { object Current { get; } bool MoveNext(); void Reset(); } public interface IEnumerable<out T> : IEnumerable { IEnumerator<T> GetEnumerator(); } public interface IEnumerator<out T> : IDisposable, IEnumerator { T Current { get; } } In case you are not familiar with the out keyword, please find out the explanation in Understanding C# Covariance And Contravariance (2) Interfaces. The “missing” IAwaitable / IAwaiter interfaces Similar to IEnumerable and IEnumerator interfaces, awaitable / awaiter can be visualized by IAwaitable / IAwaiter interfaces too. This is the non-generic version: public interface IAwaitable { IAwaiter GetAwaiter(); } public interface IAwaiter : INotifyCompletion // or ICriticalNotifyCompletion { // INotifyCompletion has one method: void OnCompleted(Action continuation); // ICriticalNotifyCompletion implements INotifyCompletion, // also has this method: void UnsafeOnCompleted(Action continuation); bool IsCompleted { get; } void GetResult(); } Please notice GetResult() returns void here. Task.GetAwaiter() / TaskAwaiter.GetResult() is of such case. And this is the generic version: public interface IAwaitable<out TResult> { IAwaiter<TResult> GetAwaiter(); } public interface IAwaiter<out TResult> : INotifyCompletion // or ICriticalNotifyCompletion { bool IsCompleted { get; } TResult GetResult(); } Here the only difference is, GetResult() return a result. Task<TResult>.GetAwaiter() / TaskAwaiter<TResult>.GetResult() is of this case. Please notice .NET does not define these IAwaitable / IAwaiter interfaces at all. As an UI designer, I guess the reason is, IAwaitable interface will constraint GetAwaiter() to be instance method. Actually C# supports both GetAwaiter() instance method and GetAwaiter() extension method. Here I use these interfaces only for better visualizing what is awaitable / awaiter. Now, if looking at above ConfiguredTaskAwaitable / ConfiguredTaskAwaiter, YieldAwaitable / YieldAwaiter, Task / TaskAwaiter pairs again, they all “implicitly” implement these “missing” IAwaitable / IAwaiter interfaces. In the next part, we will see how to implement awaitable / awaiter. Await any function / action In C# await cannot be used with lambda. This code: int result = await (() => 0); will cause a compiler error: Cannot await 'lambda expression' This is easy to understand because this lambda expression (() => 0) may be a function or a expression tree. Obviously we mean function here, and we can tell compiler in this way: int result = await new Func<int>(() => 0); It causes an different error: Cannot await 'System.Func<int>' OK, now the compiler is complaining the type instead of syntax. With the understanding of the awaitable / awaiter pattern, Func<TResult> type can be easily made into awaitable. GetAwaiter() instance method, using IAwaitable / IAwaiter interfaces First, similar to above ConfiguredTaskAwaitable<TResult>, a FuncAwaitable<TResult> can be implemented to wrap Func<TResult>: internal struct FuncAwaitable<TResult> : IAwaitable<TResult> { private readonly Func<TResult> function; public FuncAwaitable(Func<TResult> function) { this.function = function; } public IAwaiter<TResult> GetAwaiter() { return new FuncAwaiter<TResult>(this.function); } } FuncAwaitable<TResult> wrapper is used to implement IAwaitable<TResult>, so it has one instance method, GetAwaiter(), which returns a IAwaiter<TResult>, which wraps that Func<TResult> too. FuncAwaiter<TResult> is used to implement IAwaiter<TResult>: public struct FuncAwaiter<TResult> : IAwaiter<TResult> { private readonly Task<TResult> task; public FuncAwaiter(Func<TResult> function) { this.task = new Task<TResult>(function); this.task.Start(); } bool IAwaiter<TResult>.IsCompleted { get { return this.task.IsCompleted; } } TResult IAwaiter<TResult>.GetResult() { return this.task.Result; } void INotifyCompletion.OnCompleted(Action continuation) { new Task(continuation).Start(); } } Now a function can be awaited in this way: int result = await new FuncAwaitable<int>(() => 0); GetAwaiter() extension method As IAwaitable shows, all that an awaitable needs is just a GetAwaiter() method. In above code, FuncAwaitable<TResult> is created as a wrapper of Func<TResult> and implements IAwaitable<TResult>, so that there is a  GetAwaiter() instance method. If a GetAwaiter() extension method  can be defined for Func<TResult>, then FuncAwaitable<TResult> is no longer needed: public static class FuncExtensions { public static IAwaiter<TResult> GetAwaiter<TResult>(this Func<TResult> function) { return new FuncAwaiter<TResult>(function); } } So a Func<TResult> function can be directly awaited: int result = await new Func<int>(() => 0); Using the existing awaitable / awaiter - Task / TaskAwaiter Remember the most frequently used awaitable / awaiter - Task / TaskAwaiter. With Task / TaskAwaiter, FuncAwaitable / FuncAwaiter are no longer needed: public static class FuncExtensions { public static TaskAwaiter<TResult> GetAwaiter<TResult>(this Func<TResult> function) { Task<TResult> task = new Task<TResult>(function); task.Start(); return task.GetAwaiter(); // Returns a TaskAwaiter<TResult>. } } Similarly, with this extension method: public static class ActionExtensions { public static TaskAwaiter GetAwaiter(this Action action) { Task task = new Task(action); task.Start(); return task.GetAwaiter(); // Returns a TaskAwaiter. } } an action can be awaited as well: await new Action(() => { }); Now any function / action can be awaited: await new Action(() => HelperMethods.IO()); // or: await new Action(HelperMethods.IO); If function / action has parameter(s), closure can be used: int arg0 = 0; int arg1 = 1; int result = await new Action(() => HelperMethods.IO(arg0, arg1)); Using Task.Run() The above code is used to demonstrate how awaitable / awaiter can be implemented. Because it is a common scenario to await a function / action, so .NET provides a built-in API: Task.Run(): public class Task2 { public static Task Run(Action action) { // The implementation is similar to: Task task = new Task(action); task.Start(); return task; } public static Task<TResult> Run<TResult>(Func<TResult> function) { // The implementation is similar to: Task<TResult> task = new Task<TResult>(function); task.Start(); return task; } } In reality, this is how we await a function: int result = await Task.Run(() => HelperMethods.IO(arg0, arg1)); and await a action: await Task.Run(() => HelperMethods.IO());

    Read the article

  • Sorting and Paging a Grid of Data in ASP.NET MVC

    This article is the fifth installment in an ongoing series on displaying a grid of data in an ASP.NET MVC application. Previous articles in this series examined how to sort, page, and filter a grid of data, but none have looked at combining one or more of these features in a single grid. This article and the next one show how to merge these features into a single grid. In particular, this article looks at displaying a grid that can handle both sorting and paging. The subsequent article will examine combining sorting, paging and filtering. Like with its predecessors, this article offers step-by-step instructions and includes a complete, working demo available for download at the end of the article. Read on to learn more! Read More >

    Read the article

  • Hex Dump using LINQ (in 7 lines of code)

    - by Fabrice Marguerie
    Eric White has posted an interesting LINQ query on his blog that shows how to create a Hex Dump in something like 7 lines of code.Of course, this is not production grade code, but it's another good example that demonstrates the expressiveness of LINQ.Here is the code:byte[] ba = File.ReadAllBytes("test.xml");int bytesPerLine = 16;string hexDump = ba.Select((c, i) => new { Char = c, Chunk = i / bytesPerLine })    .GroupBy(c => c.Chunk)    .Select(g => g.Select(c => String.Format("{0:X2} ", c.Char))        .Aggregate((s, i) => s + i))    .Select((s, i) => String.Format("{0:d6}: {1}", i * bytesPerLine, s))    .Aggregate("", (s, i) => s + i + Environment.NewLine);Console.WriteLine(hexDump); Here is a sample output:000000: FF FE 3C 00 3F 00 78 00 6D 00 6C 00 20 00 76 00000016: 65 00 72 00 73 00 69 00 6F 00 6E 00 3D 00 22 00000032: 31 00 2E 00 30 00 22 00 20 00 65 00 6E 00 63 00000048: 6F 00 64 00 69 00 6E 00 67 00 3D 00 22 00 75 00000064: 3E 00Eric White reports that he typically notices that declarative code is only 20% as long as imperative code. Cross-posted from http://linqinaction.net

    Read the article

  • advertising servers / advert delivery solutions for C#/Asp.Net

    - by Karl Cassar
    We have a website which we want to show adverts in - However, these are custom adverts uploaded by the webmaster, not the Google adverts, or any adverts the network chooses. Ideally, there would be both options. We were considering developing our own advert-management system, but looking at the big picture, it might be better to consider other alternatives. Website is currently developed in C# / ASP.Net (Web Forms) Are there any recommendations to some open-source delivery networks and/or external hosted advert delivery networks? Personally I've used Google's DFP, however sometimes it is not so easy to get a Google AdSense account approved, especially while developing a new website and it not yet being launched. Not sure if this is the best place to ask this kind of question!

    Read the article

  • Architecting multi-model multi-DB ASP.NET MVC solution

    - by A. Murray
    I have an ASP.NET MVC 4 solution that I'm putting together, leveraging IoC and the repository pattern using Entity Framework 5. I have a new requirement to be able to pull data from a second database (from another internal application) which I don't have control over. There is no API available unfortunately for the second application and the general pattern at my place of work is to go direct to the database. I want to maintain a consistent approach to modeling the domain and use entity framework to pull the data out, so thus far I have used Entity Framework's database first approach to generate a domain model and database context over the top of this. However, I've become a little stuck on how to include the second domain model in the application. I have a generic repository which I've now moved out to a common DataAccess project, but short of creating two distinct wrappers for the generic repository (so each can identify with a specific database context), I'm struggling to see how I can elegantly include multiple models?

    Read the article

  • A better way to encourage contributions to OSS

    - by Daniel Cazzulino
    Currently in the .NET world, most OSS projects are available via a NuGet package. Users have a very easy path towards *using* the project right away. But let’s say they encounter some isssue (maybe a bug, maybe a potential improvement) with the library. At this point, going from user to contributor (of a fix, or a good bug repro or even a spike for a new feature) is a very steep and non trivial multi-step process of registering with some open source hosting site (codeplex, github, bitbucket, etc.), learning how to grab the latest sources, build the project, formulate a patch (or fork the code), learn the source control software they use (mercurial, git, svn, tfs), install whatever tools are needed for it, read about the contributors workflow for the project (do you fork &amp; send pull requests? do you just send a patch file? do you just send a snippet? a unit test? etc.), and on, and on, and on. Granted, you may be lucky and already know the source control system the project uses, but in really, I’d say the chances are pretty low. I believe most developers *using* OSS are far from familiar with them, much less with contributing back to various projects. We OSS devs like to be on the cutting edge all the time, ya’ know, always jumping on the new SCC system, the new hosting site, the new agile way of managing work items, bug tracking, code reviews, etc. etc. etc.. But most of our OSS users are largely the “... Read full article

    Read the article

  • Building a Store Locator ASP.NET Application Using Google Maps API (Part 1)

    Over the past couple of months I've been working on a couple of projects that have used the free <a href="http://code.google.com/apis/maps/">Google Maps API</a> to add interactive maps and <a href="http://en.wikipedia.org/wiki/Geocoding">geocoding</a> capabilities to ASP.NET websites. In a nutshell, the Google Maps API allow you to display maps on your website, to add markers onto the map, and to compute the latitude and longitude of an address, among many other tasks.With some Google Maps API experience under my belt, I decided it would be fun to implement a store locator feature and share it here on 4Guys. A store locator lets a visitor enter an address or postal code and then shows the nearby stores. Typically, store locators display the

    Read the article

  • Installing FASTCGI Mono for running ASP.NET on NGINX

    - by Ali Haideri
    I am a novice at Ubuntu and I've been given the task of installing and configuring NGINX to run ASP.NET applications. This is probably a stupid question but I'm using this tutorial as a starting guide and I'm stuck with where I have to set a socket with this command fastcgi-mono-server4 /applications=/:/var/www/www.domain1.xyz/ /socket=tcp:127.0.0.1:9000 What path am I supposed to replace '/var/www/www.domain1.xyz/' with? If I run the command as is I get an error saying Error creating the socket: Address already in use root@ubuntu:~# kill 9000; Please help.

    Read the article

  • adverising servers / advert delivery solutions for C#/Asp.Net

    - by Karl Cassar
    We have a website which we want to show adverts in - However, these are custom adverts uploaded by the webmaster, not the Google adverts, or any adverts the network chooses. Ideally, there would be both options. We were considering developing our own advert-management system, but looking at the big picture, it might be better to consider other alternatives. Website is currently developed in C# / ASP.Net (Web Forms) Are there any recommendations to some open-source delivery networks and/or external hosted advert delivery networks? Personally I've used Google's DFP, however sometimes it is not so easy to get a Google AdSense account approved, especially while developing a new website and it not yet being launched. Not sure if this is the best place to ask this kind of question!

    Read the article

  • Creating your First Crystal Report for Use in a .NET Application

    Have you ever had to create a custom report within an application you have written for a customer? Most developers have, and there are two schools of thought on how developers normally perform this task. Some choose to create the report using the same technology that the application was created in (ASP, WinFrom, WPF) while others choose to use a reporting package such as Crystal Reports. Using a reporting package will help create reports rapidly. This article walk you through the creation of your first report using Crystal Reports.

    Read the article

  • Tweaking log4net Settings Programmatically

    - by PSteele
    A few months ago, I had to dynamically add a log4net appender at runtime.  Now I find myself in another log4net situation.  I need to modify the configuration of my appenders at runtime. My client requires all files generated by our applications to be saved to a specific location.  This location is determined at runtime.  Therefore, I want my FileAppenders to log their data to this specific location – but I won't know the location until runtime so I can't add it to the XML configuration file I'm using. No problem.  Bing is my new friend and returned a couple of hits.  I made a few tweaks to their LINQ queries and created a generic extension method for ILoggerRepository (just a hunch that I might want this functionality somewhere else in the future – sorry YAGNI fans): public static void ModifyAppenders<T>(this ILoggerRepository repository, Action<T> modify) where T:log4net.Appender.AppenderSkeleton { var appenders = from appender in log4net.LogManager.GetRepository().GetAppenders() where appender is T select appender as T;   foreach (var appender in appenders) { modify(appender); appender.ActivateOptions(); } } Now I can easily add the proper directory prefix to all of my FileAppenders at runtime: log4net.LogManager.GetRepository().ModifyAppenders<FileAppender>(a => { a.File = Path.Combine(settings.ConfigDirectory, Path.GetFileName(a.File)); }); Thanks beefycode and Wil Peck. Technorati Tags: .NET,log4net,LINQ

    Read the article

  • Visual Studio Talk Show #119 is now online - Quand et dans quel contexte est-ce que adéquat est adéq

    - by guybarrette
    http://www.visualstudiotalkshow.com Joel Quimper: Quand et dans quel contexte est-ce que «adéquat» est «adéquat»? Nous discutons avec Joel Quimper des pratiques de développement et de la mauvaise habitude qui consiste à vouloir tout abstraire et tout généraliser. Un application offre une valeur réelle seulement lorsqu’elle est utilisée par des utilisateurs. Alors ou tracer la limite entre le sur-design, l'extensibilité et la réutilisabilité. Joel Quimper est un conseiller en architecture chez Microsoft Canada. Il travaille essentiellement avec les architectes des grandes entreprises de l'Est du Canada pour aider leur organisation à réaliser leur plein potentiel. Joel possède une vaste expérience dans la conception de solutions orientées service en utilisant les services web. Il est passionné par l'interopérabilité avec la plateforme .NET. Avant de rejoindre Microsoft, il a travaillé 10 ans pour IBM Canada dans plusieurs rôles. Plus récemment, il a travaillé comme architecte d'intégration WebSphere. Il a travaillé avec plusieurs clients dans la mise en œuvre réussie de solutions SOA. var addthis_pub="guybarrette";

    Read the article

  • Java web UI framework like ASP.NET MVC?

    - by Ethel Evans
    I'm doing some web apps for personal projects that might be shared out with my friends. I'm trying to use skills that will help me at work, but don't have $$ to spend on Visual Studio right now and don't want to try to cobble something together with Express Editions. Since I've been sort of wanting to bring my Java skills up to date and the main skills I want to work on are design and architecture skills, this isn't a big deal - except that I have no idea how to track down the right UI framework. I know I want something based on MVC, to get more practice with frameworks for that design pattern (we're using ASP .NET MVC2 at work). The UIs that I'll be making will be pretty simple - data entry, buttons, text, images. They will need AJAX. Any thoughts about which frameworks to look at? I'll be watching the comments, if anyone wants additional clarification on what I'm looking for.

    Read the article

  • Creating a Sandboxed Instance

    - by Ricardo Peres
    In .NET 4.0 the policy APIs have changed a bit. Here's how you can create a sandboxed instance of a type, which must inherit from MarshalByRefObject: static T CreateRestrictedType<T>(SecurityZone zone, params Assembly [] fullTrustAssemblies) where T : MarshalByRefObject, new() { return(CreateRestrictedType<T>(zone, fullTrustAssemblies, new IPermission [0]); } static T CreateRestrictedType<T>(SecurityZone zone, params IPermission [] additionalPermissions) where T : MarshalByRefObject, new() { return(CreateRestrictedType<T>(zone, new Assembly [0], additionalPermissions); } static T CreateRestrictedType<T>(SecurityZone zone, Assembly [] fullTrustAssemblies, IPermission [] additionalPermissions) where T : MarshalByRefObject, new() { Evidence evidence = new Evidence(); evidence.AddHostEvidence(new Zone(zone)); PermissionSet evidencePermissionSet = SecurityManager.GetStandardSandbox(evidence); foreach (IPermission permission in additionalPermissions ?? new IPermission[ 0 ]) { evidencePermissionSet.AddPermission(permission); } StrongName [] strongNames = (fullTrustAssemblies ?? new Assembly[0]).Select(a = a.Evidence.GetHostEvidence<StrongName>()).ToArray(); AppDomainSetup adSetup = new AppDomainSetup(); adSetup.ApplicationBase = Path.GetDirectoryName(typeof(T).Assembly.Location); AppDomain newDomain = AppDomain.CreateDomain("Sandbox", evidence, adSetup, evidencePermissionSet, strongNames); ObjectHandle handle = Activator.CreateInstanceFrom(newDomain, typeof(T).Assembly.ManifestModule.FullyQualifiedName, typeof(T).FullName); return (handle.Unwrap() as T); } SyntaxHighlighter.config.clipboardSwf = 'http://alexgorbatchev.com/pub/sh/2.0.320/scripts/clipboard.swf'; SyntaxHighlighter.brushes.CSharp.aliases = ['c#', 'c-sharp', 'csharp']; SyntaxHighlighter.all();

    Read the article

  • Registration free hosting for ASP.NET web service

    - by Andrew
    I've built a simple ASP.NET web service, tested it locally and would like to test it when externally hosted. Are there free hosting services available where I can just upload the assembly and service description file and test it straight away. Without registering the account, etc. My service does not do anything malicious and I am ok to run it in a restricted (security sandbox, bandwith, calls per second, etc) environment? I have heard about appharbor.com but it looks like an overkill to test a simple web service.

    Read the article

  • Mixing Forms and Token Authentication in a single ASP.NET Application (the Details)

    - by Your DisplayName here!
    The scenario described in my last post works because of the design around HTTP modules in ASP.NET. Authentication related modules (like Forms authentication and WIF WS-Fed/Sessions) typically subscribe to three events in the pipeline – AuthenticateRequest/PostAuthenticateRequest for pre-processing and EndRequest for post-processing (like making redirects to a login page). In the pre-processing stage it is the modules’ job to determine the identity of the client based on incoming HTTP details (like a header, cookie, form post) and set HttpContext.User and Thread.CurrentPrincipal. The actual page (in the ExecuteHandler event) “sees” the identity that the last module has set. So in our case there are three modules in effect: FormsAuthenticationModule (AuthenticateRequest, EndRequest) WSFederationAuthenticationModule (AuthenticateRequest, PostAuthenticateRequest, EndRequest) SessionAuthenticationModule (AuthenticateRequest, PostAuthenticateRequest) So let’s have a look at the different scenario we have when mixing Forms auth and WS-Federation. Anoymous request to unprotected resource This is the easiest case. Since there is no WIF session cookie or a FormsAuth cookie, these modules do nothing. The WSFed module creates an anonymous ClaimsPrincipal and calls the registered ClaimsAuthenticationManager (if any) to transform it. The result (by default an anonymous ClaimsPrincipal) gets set. Anonymous request to FormsAuth protected resource This is the scenario where an anonymous user tries to access a FormsAuth protected resource for the first time. The principal is anonymous and before the page gets rendered, the Authorize attribute kicks in. The attribute determines that the user needs authentication and therefor sets a 401 status code and ends the request. Now execution jumps to the EndRequest event, where the FormsAuth module takes over. The module then converts the 401 to a redirect (302) to the forms login page. If authentication is successful, the login page sets the FormsAuth cookie.   FormsAuth authenticated request to a FormsAuth protected resource Now a FormsAuth cookie is present, which gets validated by the FormsAuth module. This cookie gets turned into a GenericPrincipal/FormsIdentity combination. The WS-Fed module turns the principal into a ClaimsPrincipal and calls the registered ClaimsAuthenticationManager. The outcome of that gets set on the context. Anonymous request to STS protected resource This time the anonymous user tries to access an STS protected resource (a controller decorated with the RequireTokenAuthentication attribute). The attribute determines that the user needs STS authentication by checking the authentication type on the current principal. If this is not Federation, the redirect to the STS will be made. After successful authentication at the STS, the STS posts the token back to the application (using WS-Federation syntax). Postback from STS authentication After the postback, the WS-Fed module finds the token response and validates the contained token. If successful, the token gets transformed by the ClaimsAuthenticationManager, and the outcome is a) stored in a session cookie, and b) set on the context. STS authenticated request to an STS protected resource This time the WIF Session authentication module kicks in because it can find the previously issued session cookie. The module re-hydrates the ClaimsPrincipal from the cookie and sets it.     FormsAuth and STS authenticated request to a protected resource This is kind of an odd case – e.g. the user first authenticated using Forms and after that using the STS. This time the FormsAuth module does its work, and then afterwards the session module stomps over the context with the session principal. In other words, the STS identity wins.   What about roles? A common way to set roles in ASP.NET is to use the role manager feature. There is a corresponding HTTP module for that (RoleManagerModule) that handles PostAuthenticateRequest. Does this collide with the above combinations? No it doesn’t! When the WS-Fed module turns existing principals into a ClaimsPrincipal (like it did with the FormsIdentity), it also checks for RolePrincipal (which is the principal type created by role manager), and turns the roles in role claims. Nice! But as you can see in the last scenario above, this might result in unnecessary work, so I would rather recommend consolidating all role work (and other claims transformations) into the ClaimsAuthenticationManager. In there you can check for the authentication type of the incoming principal and act accordingly. HTH

    Read the article

  • .NET Code Evolution

    - by Alois Kraus
    Originally posted on: http://geekswithblogs.net/akraus1/archive/2013/07/24/153504.aspxAt my day job I do look at a lot of code written by other people. Most of the code is quite good and some is even a masterpiece. And there is also code which makes you think WTF… oh it was written by me. Hm not so bad after all. There are many excuses reasons for bad code. Most often it is time pressure followed by not enough ambition (who cares) or insufficient training. Normally I do care about code quality quite a lot which makes me a (perceived) slow worker who does write many tests and refines the code quite a lot because of the design deficiencies. Most of the deficiencies I do find by putting my design under stress while checking for invariants. It does also help a lot to step into the code with a debugger (sometimes also Windbg). I do this much more often when my tests are red. That way I do get a much better understanding what my code really does and not what I think it should be doing. This time I do want to show you how code can evolve over the years with different .NET Framework versions. Once there was  time where .NET 1.1 was new and many C++ programmers did switch over to get rid of not initialized pointers and memory leaks. There were also nice new data structures available such as the Hashtable which is fast lookup table with O(1) time complexity. All was good and much code was written since then. At 2005 a new version of the .NET Framework did arrive which did bring many new things like generics and new data structures. The “old” fashioned way of Hashtable were coming to an end and everyone used the new Dictionary<xx,xx> type instead which was type safe and faster because the object to type conversion (aka boxing) was no longer necessary. I think 95% of all Hashtables and dictionaries use string as key. Often it is convenient to ignore casing to make it easy to look up values which the user did enter. An often followed route is to convert the string to upper case before putting it into the Hashtable. Hashtable Table = new Hashtable(); void Add(string key, string value) { Table.Add(key.ToUpper(), value); } This is valid and working code but it has problems. First we can pass to the Hashtable a custom IEqualityComparer to do the string matching case insensitive. Second we can switch over to the now also old Dictionary type to become a little faster and we can keep the the original keys (not upper cased) in the dictionary. Dictionary<string, string> DictTable = new Dictionary<string, string>(StringComparer.OrdinalIgnoreCase); void AddDict(string key, string value) { DictTable.Add(key, value); } Many people do not user the other ctors of Dictionary because they do shy away from the overhead of writing their own comparer. They do not know that .NET has for strings already predefined comparers at hand which you can directly use. Today in the many core area we do use threads all over the place. Sometimes things break in subtle ways but most of the time it is sufficient to place a lock around the offender. Threading has become so mainstream that it may sound weird that in the year 2000 some guy got a huge incentive for the idea to reduce the time to process calibration data from 12 hours to 6 hours by using two threads on a dual core machine. Threading does make it easy to become faster at the expense of correctness. Correct and scalable multithreading can be arbitrarily hard to achieve depending on the problem you are trying to solve. Lets suppose we want to process millions of items with two threads and count the processed items processed by all threads. A typical beginners code might look like this: int Counter; void IJustLearnedToUseThreads() { var t1 = new Thread(ThreadWorkMethod); t1.Start(); var t2 = new Thread(ThreadWorkMethod); t2.Start(); t1.Join(); t2.Join(); if (Counter != 2 * Increments) throw new Exception("Hmm " + Counter + " != " + 2 * Increments); } const int Increments = 10 * 1000 * 1000; void ThreadWorkMethod() { for (int i = 0; i < Increments; i++) { Counter++; } } It does throw an exception with the message e.g. “Hmm 10.222.287 != 20.000.000” and does never finish. The code does fail because the assumption that Counter++ is an atomic operation is wrong. The ++ operator is just a shortcut for Counter = Counter + 1 This does involve reading the counter from a memory location into the CPU, incrementing value on the CPU and writing the new value back to the memory location. When we do look at the generated assembly code we will see only inc dword ptr [ecx+10h] which is only one instruction. Yes it is one instruction but it is not atomic. All modern CPUs have several layers of caches (L1,L2,L3) which try to hide the fact how slow actual main memory accesses are. Since cache is just another word for redundant copy it can happen that one CPU does read a value from main memory into the cache, modifies it and write it back to the main memory. The problem is that at least the L1 cache is not shared between CPUs so it can happen that one CPU does make changes to values which did change in meantime in the main memory. From the exception you can see we did increment the value 20 million times but half of the changes were lost because we did overwrite the already changed value from the other thread. This is a very common case and people do learn to protect their  data with proper locking.   void Intermediate() { var time = Stopwatch.StartNew(); Action acc = ThreadWorkMethod_Intermediate; var ar1 = acc.BeginInvoke(null, null); var ar2 = acc.BeginInvoke(null, null); ar1.AsyncWaitHandle.WaitOne(); ar2.AsyncWaitHandle.WaitOne(); if (Counter != 2 * Increments) throw new Exception(String.Format("Hmm {0:N0} != {1:N0}", Counter, 2 * Increments)); Console.WriteLine("Intermediate did take: {0:F1}s", time.Elapsed.TotalSeconds); } void ThreadWorkMethod_Intermediate() { for (int i = 0; i < Increments; i++) { lock (this) { Counter++; } } } This is better and does use the .NET Threadpool to get rid of manual thread management. It does give the expected result but it can result in deadlocks because you do lock on this. This is in general a bad idea since it can lead to deadlocks when other threads use your class instance as lock object. It is therefore recommended to create a private object as lock object to ensure that nobody else can lock your lock object. When you read more about threading you will read about lock free algorithms. They are nice and can improve performance quite a lot but you need to pay close attention to the CLR memory model. It does make quite weak guarantees in general but it can still work because your CPU architecture does give you more invariants than the CLR memory model. For a simple counter there is an easy lock free alternative present with the Interlocked class in .NET. As a general rule you should not try to write lock free algos since most likely you will fail to get it right on all CPU architectures. void Experienced() { var time = Stopwatch.StartNew(); Task t1 = Task.Factory.StartNew(ThreadWorkMethod_Experienced); Task t2 = Task.Factory.StartNew(ThreadWorkMethod_Experienced); t1.Wait(); t2.Wait(); if (Counter != 2 * Increments) throw new Exception(String.Format("Hmm {0:N0} != {1:N0}", Counter, 2 * Increments)); Console.WriteLine("Experienced did take: {0:F1}s", time.Elapsed.TotalSeconds); } void ThreadWorkMethod_Experienced() { for (int i = 0; i < Increments; i++) { Interlocked.Increment(ref Counter); } } Since time does move forward we do not use threads explicitly anymore but the much nicer Task abstraction which was introduced with .NET 4 at 2010. It is educational to look at the generated assembly code. The Interlocked.Increment method must be called which does wondrous things right? Lets see: lock inc dword ptr [eax] The first thing to note that there is no method call at all. Why? Because the JIT compiler does know very well about CPU intrinsic functions. Atomic operations which do lock the memory bus to prevent other processors to read stale values are such things. Second: This is the same increment call prefixed with a lock instruction. The only reason for the existence of the Interlocked class is that the JIT compiler can compile it to the matching CPU intrinsic functions which can not only increment by one but can also do an add, exchange and a combined compare and exchange operation. But be warned that the correct usage of its methods can be tricky. If you try to be clever and look a the generated IL code and try to reason about its efficiency you will fail. Only the generated machine code counts. Is this the best code we can write? Perhaps. It is nice and clean. But can we make it any faster? Lets see how good we are doing currently. Level Time in s IJustLearnedToUseThreads Flawed Code Intermediate 1,5 (lock) Experienced 0,3 (Interlocked.Increment) Master 0,1 (1,0 for int[2]) That lock free thing is really a nice thing. But if you read more about CPU cache, cache coherency, false sharing you can do even better. int[] Counters = new int[12]; // Cache line size is 64 bytes on my machine with an 8 way associative cache try for yourself e.g. 64 on more modern CPUs void Master() { var time = Stopwatch.StartNew(); Task t1 = Task.Factory.StartNew(ThreadWorkMethod_Master, 0); Task t2 = Task.Factory.StartNew(ThreadWorkMethod_Master, Counters.Length - 1); t1.Wait(); t2.Wait(); Counter = Counters[0] + Counters[Counters.Length - 1]; if (Counter != 2 * Increments) throw new Exception(String.Format("Hmm {0:N0} != {1:N0}", Counter, 2 * Increments)); Console.WriteLine("Master did take: {0:F1}s", time.Elapsed.TotalSeconds); } void ThreadWorkMethod_Master(object number) { int index = (int) number; for (int i = 0; i < Increments; i++) { Counters[index]++; } } The key insight here is to use for each core its own value. But if you simply use simply an integer array of two items, one for each core and add the items at the end you will be much slower than the lock free version (factor 3). Each CPU core has its own cache line size which is something in the range of 16-256 bytes. When you do access a value from one location the CPU does not only fetch one value from main memory but a complete cache line (e.g. 16 bytes). This means that you do not pay for the next 15 bytes when you access them. This can lead to dramatic performance improvements and non obvious code which is faster although it does have many more memory reads than another algorithm. So what have we done here? We have started with correct code but it was lacking knowledge how to use the .NET Base Class Libraries optimally. Then we did try to get fancy and used threads for the first time and failed. Our next try was better but it still had non obvious issues (lock object exposed to the outside). Knowledge has increased further and we have found a lock free version of our counter which is a nice and clean way which is a perfectly valid solution. The last example is only here to show you how you can get most out of threading by paying close attention to your used data structures and CPU cache coherency. Although we are working in a virtual execution environment in a high level language with automatic memory management it does pay off to know the details down to the assembly level. Only if you continue to learn and to dig deeper you can come up with solutions no one else was even considering. I have studied particle physics which does help at the digging deeper part. Have you ever tried to solve Quantum Chromodynamics equations? Compared to that the rest must be easy ;-). Although I am no longer working in the Science field I take pride in discovering non obvious things. This can be a very hard to find bug or a new way to restructure data to make something 10 times faster. Now I need to get some sleep ….

    Read the article

< Previous Page | 616 617 618 619 620 621 622 623 624 625 626 627  | Next Page >