Search Results

Search found 51569 results on 2063 pages for 'version number'.

Page 622/2063 | < Previous Page | 618 619 620 621 622 623 624 625 626 627 628 629  | Next Page >

  • .Net 3.5 Asynchronous Socket Server Performance Problem

    - by iBrAaAa
    I'm developing an Asynchronous Game Server using .Net Socket Asynchronous Model( BeginAccept/EndAccept...etc.) The problem I'm facing is described like that: When I have only one client connected, the server response time is very fast but once a second client connects, the server response time increases too much. I've measured the time from a client sends a message to the server until it gets the reply in both cases. I found that the average time in case of one client is about 17ms and in case of 2 clients about 280ms!!! What I really see is that: When 2 clients are connected and only one of them is moving(i.e. requesting service from the server) it is equivalently equal to the case when only one client is connected(i.e. fast response). However, when the 2 clients move at the same time(i.e. requests service from the server at the same time) their motion becomes very slow (as if the server replies each one of them in order i.e. not simultaneously). Basically, what I am doing is that: When a client requests a permission for motion from the server and the server grants him the request, the server then broadcasts the new position of the client to all the players. So if two clients are moving in the same time, the server is eventually trying to broadcast to both clients the new position of each of them at the same time. EX: Client1 asks to go to position (2,2) Client2 asks to go to position (5,5) Server sends to each of Client1 & Client2 the same two messages: message1: "Client1 at (2,2)" message2: "Client2 at (5,5)" I believe that the problem comes from the fact that Socket class is thread safe according MSDN documentation http://msdn.microsoft.com/en-us/library/system.net.sockets.socket.aspx. (NOT SURE THAT IT IS THE PROBLEM) Below is the code for the server: /// /// This class is responsible for handling packet receiving and sending /// public class NetworkManager { /// /// An integer to hold the server port number to be used for the connections. Its default value is 5000. /// private readonly int port = 5000; /// /// hashtable contain all the clients connected to the server. /// key: player Id /// value: socket /// private readonly Hashtable connectedClients = new Hashtable(); /// /// An event to hold the thread to wait for a new client /// private readonly ManualResetEvent resetEvent = new ManualResetEvent(false); /// /// keeps track of the number of the connected clients /// private int clientCount; /// /// The socket of the server at which the clients connect /// private readonly Socket mainSocket = new Socket(AddressFamily.InterNetwork, SocketType.Stream, ProtocolType.Tcp); /// /// The socket exception that informs that a client is disconnected /// private const int ClientDisconnectedErrorCode = 10054; /// /// The only instance of this class. /// private static readonly NetworkManager networkManagerInstance = new NetworkManager(); /// /// A delegate for the new client connected event. /// /// the sender object /// the event args public delegate void NewClientConnected(Object sender, SystemEventArgs e); /// /// A delegate for the position update message reception. /// /// the sender object /// the event args public delegate void PositionUpdateMessageRecieved(Object sender, PositionUpdateEventArgs e); /// /// The event which fires when a client sends a position message /// public PositionUpdateMessageRecieved PositionUpdateMessageEvent { get; set; } /// /// keeps track of the number of the connected clients /// public int ClientCount { get { return clientCount; } } /// /// A getter for this class instance. /// /// only instance. public static NetworkManager NetworkManagerInstance { get { return networkManagerInstance; } } private NetworkManager() {} /// Starts the game server and holds this thread alive /// public void StartServer() { //Bind the mainSocket to the server IP address and port mainSocket.Bind(new IPEndPoint(IPAddress.Any, port)); //The server starts to listen on the binded socket with max connection queue //1024 mainSocket.Listen(1024); //Start accepting clients asynchronously mainSocket.BeginAccept(OnClientConnected, null); //Wait until there is a client wants to connect resetEvent.WaitOne(); } /// /// Receives connections of new clients and fire the NewClientConnected event /// private void OnClientConnected(IAsyncResult asyncResult) { Interlocked.Increment(ref clientCount); ClientInfo newClient = new ClientInfo { WorkerSocket = mainSocket.EndAccept(asyncResult), PlayerId = clientCount }; //Add the new client to the hashtable and increment the number of clients connectedClients.Add(newClient.PlayerId, newClient); //fire the new client event informing that a new client is connected to the server if (NewClientEvent != null) { NewClientEvent(this, System.EventArgs.Empty); } newClient.WorkerSocket.BeginReceive(newClient.Buffer, 0, BasePacket.GetMaxPacketSize(), SocketFlags.None, new AsyncCallback(WaitForData), newClient); //Start accepting clients asynchronously again mainSocket.BeginAccept(OnClientConnected, null); } /// Waits for the upcoming messages from different clients and fires the proper event according to the packet type. /// /// private void WaitForData(IAsyncResult asyncResult) { ClientInfo sendingClient = null; try { //Take the client information from the asynchronous result resulting from the BeginReceive sendingClient = asyncResult.AsyncState as ClientInfo; // If client is disconnected, then throw a socket exception // with the correct error code. if (!IsConnected(sendingClient.WorkerSocket)) { throw new SocketException(ClientDisconnectedErrorCode); } //End the pending receive request sendingClient.WorkerSocket.EndReceive(asyncResult); //Fire the appropriate event FireMessageTypeEvent(sendingClient.ConvertBytesToPacket() as BasePacket); // Begin receiving data from this client sendingClient.WorkerSocket.BeginReceive(sendingClient.Buffer, 0, BasePacket.GetMaxPacketSize(), SocketFlags.None, new AsyncCallback(WaitForData), sendingClient); } catch (SocketException e) { if (e.ErrorCode == ClientDisconnectedErrorCode) { // Close the socket. if (sendingClient.WorkerSocket != null) { sendingClient.WorkerSocket.Close(); sendingClient.WorkerSocket = null; } // Remove it from the hash table. connectedClients.Remove(sendingClient.PlayerId); if (ClientDisconnectedEvent != null) { ClientDisconnectedEvent(this, new ClientDisconnectedEventArgs(sendingClient.PlayerId)); } } } catch (Exception e) { // Begin receiving data from this client sendingClient.WorkerSocket.BeginReceive(sendingClient.Buffer, 0, BasePacket.GetMaxPacketSize(), SocketFlags.None, new AsyncCallback(WaitForData), sendingClient); } } /// /// Broadcasts the input message to all the connected clients /// /// public void BroadcastMessage(BasePacket message) { byte[] bytes = message.ConvertToBytes(); foreach (ClientInfo client in connectedClients.Values) { client.WorkerSocket.BeginSend(bytes, 0, bytes.Length, SocketFlags.None, SendAsync, client); } } /// /// Sends the input message to the client specified by his ID. /// /// /// The message to be sent. /// The id of the client to receive the message. public void SendToClient(BasePacket message, int id) { byte[] bytes = message.ConvertToBytes(); (connectedClients[id] as ClientInfo).WorkerSocket.BeginSend(bytes, 0, bytes.Length, SocketFlags.None, SendAsync, connectedClients[id]); } private void SendAsync(IAsyncResult asyncResult) { ClientInfo currentClient = (ClientInfo)asyncResult.AsyncState; currentClient.WorkerSocket.EndSend(asyncResult); } /// Fires the event depending on the type of received packet /// /// The received packet. void FireMessageTypeEvent(BasePacket packet) { switch (packet.MessageType) { case MessageType.PositionUpdateMessage: if (PositionUpdateMessageEvent != null) { PositionUpdateMessageEvent(this, new PositionUpdateEventArgs(packet as PositionUpdatePacket)); } break; } } } The events fired are handled in a different class, here are the event handling code for the PositionUpdateMessage (Other handlers are irrelevant): private readonly Hashtable onlinePlayers = new Hashtable(); /// /// Constructor that creates a new instance of the GameController class. /// private GameController() { //Start the server server = new Thread(networkManager.StartServer); server.Start(); //Create an event handler for the NewClientEvent of networkManager networkManager.PositionUpdateMessageEvent += OnPositionUpdateMessageReceived; } /// /// this event handler is called when a client asks for movement. /// private void OnPositionUpdateMessageReceived(object sender, PositionUpdateEventArgs e) { Point currentLocation = ((PlayerData)onlinePlayers[e.PositionUpdatePacket.PlayerId]).Position; Point locationRequested = e.PositionUpdatePacket.Position; ((PlayerData)onlinePlayers[e.PositionUpdatePacket.PlayerId]).Position = locationRequested; // Broadcast the new position networkManager.BroadcastMessage(new PositionUpdatePacket { Position = locationRequested, PlayerId = e.PositionUpdatePacket.PlayerId }); }

    Read the article

  • Uneditable file and Unreadable(for further processing) file( WHY? ) after processing it through C++

    - by mgj
    Hi...:) This might look to be a very long question to you I understand, but trust me on this its not long. I am not able to identify why after processing this text is not being able to be read and edited. I tried using the ord() function in python to check if the text contains any Unicode characters( non ascii characters) apart from the ascii ones.. I found quite a number of them. I have a strong feeling that this could be due to the original text itself( The INPUT ). Input-File: Just copy paste it into a file "acle5v1.txt" The objective of this code below is to check for upper case characters and to convert it to lower case and also to remove all punctuations so that these words are taken for further processing for word alignment #include<iostrea> #include<fstream> #include<ctype.h> #include<cstring> using namespace std; ifstream fin2("acle5v1.txt"); ofstream fin3("acle5v1_op.txt"); ofstream fin4("chkcharadded.txt"); ofstream fin5("chkcharntadded.txt"); ofstream fin6("chkprintchar.txt"); ofstream fin7("chknonasci.txt"); ofstream fin8("nonprinchar.txt"); int main() { char ch,ch1; fin2.seekg(0); fin3.seekp(0); int flag = 0; while(!fin2.eof()) { ch1=ch; fin2.get(ch); if (isprint(ch))// if the character is printable flag = 1; if(flag) { fin6<<"Printable character:\t"<<ch<<"\t"<<(int)ch<<endl; flag = 0; } else { fin8<<"Non printable character caught:\t"<<ch<<"\t"<<int(ch)<<endl; } if( isalnum(ch) || ch == '@' || ch == ' ' )// checks for alpha numeric characters { fin4<<"char added: "<<ch<<"\tits ascii value: "<<int(ch)<<endl; if(isupper(ch)) { //tolower(ch); fin3<<(char)tolower(ch); } else { fin3<<ch; } } else if( ( ch=='\t' || ch=='.' || ch==',' || ch=='#' || ch=='?' || ch=='!' || ch=='"' || ch != ';' || ch != ':') && ch1 != ' ' ) { fin3<<' '; } else if( (ch=='\t' || ch=='.' || ch==',' || ch=='#' || ch=='?' || ch=='!' || ch=='"' || ch != ';' || ch != ':') && ch1 == ' ' ) { //fin3<<" '; } else if( !(int(ch)>=0 && int(ch)<=127) ) { fin5<<"Char of ascii within range not added: "<<ch<<"\tits ascii value: "<<int(ch)<<endl; } else { fin7<<"Non ascii character caught(could be a -ve value also)\t"<<ch<<int(ch)<<endl; } } return 0; } I have a similar code as the above written in python which gives me an otput which is again not readable and not editable The code in python looks like this: #!/usr/bin/python # -*- coding: UTF-8 -*- import sys input_file=sys.argv[1] output_file=sys.argv[2] list1=[] f=open(input_file) for line in f: line=line.strip() #line=line.rstrip('.') line=line.replace('.','') line=line.replace(',','') line=line.replace('#','') line=line.replace('?','') line=line.replace('!','') line=line.replace('"','') line=line.replace('?','') line=line.replace('|','') line = line.lower() list1.append(line) f.close() f1=open(output_file,'w') f1.write(' '.join(list1)) f1.close() the file takes ip and op at runtime.. as: python punc_remover.py acle5v1.txt acle5v1_op.txt The output of this file is in "acle5v1_op.txt" now after processing this particular output file is needed for further processing. This particular file "aclee5v1_op.txt" is the UNREADABLE Aand UNEDITABLE File that I am not being able to use for further processing. I need this for Word alignment in NLP. I tried readin this output with the following program #include<iostream> #include<fstream> using namespace std; ifstream fin1("acle5v1_op.txt"); ofstream fout1("chckread_acle5v1_op.txt"); ofstream fout2("chcknotread_acle5v1_op.txt"); int main() { char ch; int flag = 0; long int r = 0; long int nr = 0; while(!(fin1)) { fin1.get(ch); if(ch) { flag = 1; } if(flag) { fout1<<ch; flag = 0; r++; } else { fout2<<"Char not been able to be read from source file\n"; nr++; } } cout<<"Number of characters able to be read: "<<r; cout<<endl<<"Number of characters not been able to be read: "<<nr; return 0; } which prints the character if its readable and if not it doesn't print them but I observed the output of both the file is blank thus I could draw a conclusion that this file "acle5v1_op.txt" is UNREADABLE AND UNEDITABLE. Could you please help me on how to deal with this problem.. To tell you a bit about the statistics wrt the original input file "acle5v1.txt" file it has around 3441 lines in it and around 3 million characters in it. Keeping in mind the number of characters in the file you editor might/might not be able to manage to open the file.. I was able to open the file in gedit of Fedora 10 which I am currently using .. This is just to notify you that opening with a particular editor was not actually an issue at least in my case... Can I use scripting languages like Python and Perl to deal with this problem if Yes how? could please be specific on that regard as I am a novice to Perl and Python. Or could you please tell me how do I solve this problem using C++ itself.. Thank you...:) I am really looking forward to some help or guidance on how to go about this problem....

    Read the article

  • Integrating PayMill: The token filled input field is not created, error "field_invalid_amount"

    - by automatix
    I'm implementing the Credit Card Payment form of PayMill according to the Payment Form docu. So I copied the JS from the Bridge docu page and the form from the Payment Form docu page. But no token is created. When I try to debug the JS and add console.info(error.apierror); into the paymillResponseHandler(...) function, I get the error code: field_invalid_amount. According to the support page There are three possible reasons for this error message: no amount value was provided numbers were rounded wrong delimiter symbol But the amuont is provided and I've already tried different delimiter symbols. What "numbers were rounded" means, is not clear. What can be the problem and how to fix this issue? Code: <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"> <html> <head> <meta name="generator" content="PSPad editor, www.pspad.com"> <script src="https://ajax.googleapis.com/ajax/libs/jquery/1.7.2/jquery.min.js"></script> <title> </title> </head> <body> <!-- PayMill HEAD start --> <link rel="stylesheet" href="https://netdna.bootstrapcdn.com/twitter-bootstrap/2.2.1/css/bootstrap.no-responsive.no-icons.min.css" /> <script type="text/javascript"> var PAYMILL_PUBLIC_KEY = '51668632777bf03b57f861c5a7278a38'; </script> <script type="text/javascript" src="https://bridge.paymill.com/"></script> <!-- PayMill HEAD stop --> <!-- PayMill FORM start --> <form id="payment-form" class="span4" action="payment.php" method="POST"> <p class="payment-errors alert-error span3" style="display:none;"> </p> <div id="payment-form-cc"> <div class="controls controls-row"> <div class="span2"> <label class="card-number-label">Kreditkarte </label> <input class="card-number span2" type="text" size="20" value="4111111111111111"/> </div> <div class="span1"> <label class="card-cvc-label">CVC </label> <input class="card-cvc span1" type="text" size="4" value="111"/> </div> </div> <div class="controls controls-row"> <div class="span3 card-icon"> </div> </div> <div class="controls controls-row"> <div class="span3"> <label class="card-holdername-label">Karteninhaber </label> <input class="card-holdername span3" type="text" size="20" value="lala"/> </div> </div> <div class="controls controls-row"> <div class="span3"> <label class="card-expiry-label">Gültigkeitsdatum (MM/YYYY) </label> <input class="card-expiry-month span1" type="text" size="2" value="12"/> <span style="float:left;"> / </span> <input class="card-expiry-year span1" type="text" size="4" value="2015"/> </div> </div> </div> <div class="controls controls-row"> <div class="span2"> <label class="amount-label">Betrag </label> <input class="amount span2" type="text" size="5" value="9,99" name="amount"/> </div> <div class="span1"> <label class="currency-label">Währung </label> <input class="currency span1" type="text" size="3" value="EUR" name="currency"/> </div> </div> <div class="controls controls-row"> <div class="span4"> <button class="submit-button btn btn-primary" type="submit" >Pay!</button> </div> </div> </form> <!-- PayMill FORM stop --> <!-- PayMill FOOT start --> <script type="text/javascript"> function paymillResponseHandler(error, result) { if (error) { console.info(error.apierror); // Displays the error above the form $(".payment-errors").text(error.apierror); } else { console.info('OK'); var form = $("#payment-form"); // Output token var token = result.token; // Insert token into form in order to submit to server form.append( "<input type='hidden' name='paymillToken' value='"+token+"'/>" ); // Submit form form.get(0).submit(); } } </script> <script type="text/javascript"> paymill.createToken({ number: $('.card-number').val(), // required exp_month: $('.card-expiry-month').val(), // required exp_year: $('.card-expiry-year').val(), // required cvc: $('.card-cvc').val(), // required amount_int: $('.card-amount-int').val(), // required, e.g. "4900" for 49.00 EUR currency: $('.currency').val(), // required cardholder: $('.card-holdername').val() // optional }, paymillResponseHandler); </script> <!-- PayMill FOOT stop --> </body> </html>

    Read the article

  • Can't figure out where race condition is occuring

    - by Nik
    I'm using Valgrind --tool=drd to check my application that uses Boost::thread. Basically, the application populates a set of "Book" values with "Kehai" values based on inputs through a socket connection. On a seperate thread, a user can connect and get the books send to them. Its fairly simple, so i figured using a boost::mutex::scoped_lock on the location that serializes the book and the location that clears out the book data should be suffice to prevent any race conditions. Here is the code: void Book::clear() { boost::mutex::scoped_lock lock(dataMutex); for(int i =NUM_KEHAI-1; i >= 0; --i) { bid[i].clear(); ask[i].clear(); } } int Book::copyChangedKehaiToString(char* dst) const { boost::mutex::scoped_lock lock(dataMutex); sprintf(dst, "%-4s%-13s",market.c_str(),meigara.c_str()); int loc = 17; for(int i = 0; i < Book::NUM_KEHAI; ++i) { if(ask[i].changed > 0) { sprintf(dst+loc,"A%i%-21s%-21s%-21s%-8s%-4s",i,ask[i].price.c_str(),ask[i].volume.c_str(),ask[i].number.c_str(),ask[i].postTime.c_str(),ask[i].status.c_str()); loc += 77; } } for(int i = 0; i < Book::NUM_KEHAI; ++i) { if(bid[i].changed > 0) { sprintf(dst+loc,"B%i%-21s%-21s%-21s%-8s%-4s",i,bid[i].price.c_str(),bid[i].volume.c_str(),bid[i].number.c_str(),bid[i].postTime.c_str(),bid[i].status.c_str()); loc += 77; } } return loc; } The clear() function and the copyChangedKehaiToString() function are called in the datagetting thread and data sending thread,respectively. Also, as a note, the class Book: struct Book { private: Book(const Book&); Book& operator=(const Book&); public: static const int NUM_KEHAI=10; struct Kehai; friend struct Book::Kehai; struct Kehai { private: Kehai& operator=(const Kehai&); public: std::string price; std::string volume; std::string number; std::string postTime; std::string status; int changed; Kehai(); void copyFrom(const Kehai& other); Kehai(const Kehai& other); inline void clear() { price.assign(""); volume.assign(""); number.assign(""); postTime.assign(""); status.assign(""); changed = -1; } }; std::vector<Kehai> bid; std::vector<Kehai> ask; tm recTime; mutable boost::mutex dataMutex; Book(); void clear(); int copyChangedKehaiToString(char * dst) const; }; When using valgrind --tool=drd, i get race condition errors such as the one below: ==26330== Conflicting store by thread 1 at 0x0658fbb0 size 4 ==26330== at 0x653AE68: std::string::_M_mutate(unsigned int, unsigned int, unsigned int) (in /usr/lib/libstdc++.so.6.0.8) ==26330== by 0x653AFC9: std::string::_M_replace_safe(unsigned int, unsigned int, char const*, unsigned int) (in /usr/lib/libstdc++.so.6.0.8) ==26330== by 0x653B064: std::string::assign(char const*, unsigned int) (in /usr/lib/libstdc++.so.6.0.8) ==26330== by 0x653B134: std::string::assign(char const*) (in /usr/lib/libstdc++.so.6.0.8) ==26330== by 0x8055D64: Book::Kehai::clear() (Book.h:50) ==26330== by 0x8094A29: Book::clear() (Book.cpp:78) ==26330== by 0x808537E: RealKernel::start() (RealKernel.cpp:86) ==26330== by 0x804D15A: main (main.cpp:164) ==26330== Allocation context: BSS section of /usr/lib/libstdc++.so.6.0.8 ==26330== Other segment start (thread 2) ==26330== at 0x400BB59: pthread_mutex_unlock (drd_pthread_intercepts.c:633) ==26330== by 0xC59565: pthread_mutex_unlock (in /lib/libc-2.5.so) ==26330== by 0x805477C: boost::mutex::unlock() (mutex.hpp:56) ==26330== by 0x80547C9: boost::unique_lock<boost::mutex>::~unique_lock() (locks.hpp:340) ==26330== by 0x80949BA: Book::copyChangedKehaiToString(char*) const (Book.cpp:134) ==26330== by 0x80937EE: BookSerializer::serializeBook(Book const&, std::string const&) (BookSerializer.cpp:41) ==26330== by 0x8092D05: BookSnapshotManager::getSnaphotDataList() (BookSnapshotManager.cpp:72) ==26330== by 0x8088179: SnapshotServer::getDataList() (SnapshotServer.cpp:246) ==26330== by 0x808870F: SnapshotServer::run() (SnapshotServer.cpp:183) ==26330== by 0x808BAF5: boost::_mfi::mf0<void, RealThread>::operator()(RealThread*) const (mem_fn_template.hpp:49) ==26330== by 0x808BB4D: void boost::_bi::list1<boost::_bi::value<RealThread*> >::operator()<boost::_mfi::mf0<void, RealThread>, boost::_bi::list0>(boost::_bi::type<void>, boost::_mfi::mf0<void, RealThread>&, boost::_bi::list0&, int) (bind.hpp:253) ==26330== by 0x808BB90: boost::_bi::bind_t<void, boost::_mfi::mf0<void, RealThread>, boost::_bi::list1<boost::_bi::value<RealThread*> > >::operator()() (bind_template.hpp:20) ==26330== Other segment end (thread 2) ==26330== at 0x400B62A: pthread_mutex_lock (drd_pthread_intercepts.c:580) ==26330== by 0xC59535: pthread_mutex_lock (in /lib/libc-2.5.so) ==26330== by 0x80546B8: boost::mutex::lock() (mutex.hpp:51) ==26330== by 0x805473B: boost::unique_lock<boost::mutex>::lock() (locks.hpp:349) ==26330== by 0x8054769: boost::unique_lock<boost::mutex>::unique_lock(boost::mutex&) (locks.hpp:227) ==26330== by 0x8094711: Book::copyChangedKehaiToString(char*) const (Book.cpp:113) ==26330== by 0x80937EE: BookSerializer::serializeBook(Book const&, std::string const&) (BookSerializer.cpp:41) ==26330== by 0x808870F: SnapshotServer::run() (SnapshotServer.cpp:183) ==26330== by 0x808BAF5: boost::_mfi::mf0<void, RealThread>::operator()(RealThread*) const (mem_fn_template.hpp:49) ==26330== by 0x808BB4D: void boost::_bi::list1<boost::_bi::value<RealThread*> >::operator()<boost::_mfi::mf0<void, RealThread>, boost::_bi::list0>(boost::_bi::type<void>, boost::_mfi::mf0<void, RealThread>&, boost::_bi::list0&, int) (bind.hpp:253) For the life of me, i can't figure out where the race condition is. As far as I can tell, clearing the kehai is done only after having taken the mutex, and the same holds true with copying it to a string. Does anyone have any ideas what could be causing this, or where I should look? Thank you kindly.

    Read the article

  • php syntax error

    - by Jacksta
    I have 3 files 1) show_createtable.html 2) do_showfielddef.php 3) do_showtble.php 1) First file is for creating a new table for a data base, it is a fom with 2 inputs, Table Name and Number of Fields. THIS WORKS FINE! <html xmlns="http://www.w3.org/1999/xhtml"> <head> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <title>Untitled Document</title> </head> <body> <h1>Step 1: Name and Number</h1> <form method="post" action="do_showfielddef.php" /> <p><strong>Table Name:</strong><br /> <input type="text" name="table_name" size="30" /></p> <p><strong>Number of fields:</strong><br /> <input type="text" name="num_fields" size="30" /></p> <p><input type="submit" name="submit" value="go to step2" /></p> </form> </body> </html> 2) this script validates fields and createa another form to enter all the table rows. This for also WORKS FINE! <?php //validate important input if ((!$_POST[table_name]) || (!$_POST[num_fields])) { header( "location: show_createtable.html"); exit; } //begin creating form for display $form_block = " <form action=\"do_createtable.php\" method=\"post\"> <input name=\"table_name\" type=\"hidden\" value=\"$_POST[table_name]\"> <table cellspacing=\"5\" cellpadding=\"5\"> <tr> <th>Field Name</th><th>Field Type</th><th>Table Length</th> </tr>"; //count from 0 until you reach the number fo fields for ($i = 0; $i <$_POST[num_fields]; $i++) { $form_block .=" <tr> <td align=center><input type=\"texr\" name=\"field name[]\" size=\"30\"></td> <td align=center> <select name=\"field_type[]\"> <option value=\"char\">char</option> <option value=\"date\">date</option> <option value=\"float\">float</option> <option value=\"int\">int</option> <option value=\"text\">text</option> <option value=\"varchar\">varchar</option> </select> </td> <td align=center><input type=\"text\" name=\"field_length[]\" size=\"5\"> </td> </tr>"; } //finish up the form $form_block .= " <tr> <td align=center colspan=3><input type =\"submit\" value=\"create table\"> </td> </tr> </table> </form>"; ?> <html> <head> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <title>Create a database table: Step 2</title> </head> <body> <h1>defnie fields for <? echo "$_POST[table_name]"; ?> </h1> <? echo "$form_block"; ?> </body> </html> Problem is here 3) this form creates the tables and enteres them into the database. I am getting an error on line 37 "Parse error: syntax error, unexpected $end in /home/admin/domains/domaina.com.au/public_html/do_createtable.php on line 37" <? $db_name = "testDB"; $connection = @mysql_connect("localhost", "admin_user", "pass") or die(mysql_error()); $db = @mysql_select_db($db_name, $connection) or die(mysql_error()); $sql = "CREATE TABLE $_POST[table_name]("; for ($i = 0; $i < count($_POST[field_name]); $i++) { $sql .= $_POST[field_name][$i]." ".$_POST[field_type][$i]; if ($_POST[field_length][$i] !="") { $sql .=" (".$_POST[field_length][$i]."),"; } else { $sql .=","; } $sql = substr($sql, 0, -1); $sql .= ")"; $result = mysql_query($sql, $connection) or die(mysql_error()); if ($result) { $msg = "<p>" .$_POST[table_name]." has been created!</p>"; ?> <html> <head> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <title>Create A Database Table: Step 3</title> </head> <body> <h1>Adding table to <? echo "$db_name"; ?>...</h1> <? echo "$msg"; ?> </body> </html>

    Read the article

  • substrings and multiple textfields, AS3

    - by VideoDnd
    How do I get my text fields to populate correctly and show single digits? Description Each textfield receives a substring. This doesn't limit it's input, because the text fields shows extra numbers. The counters are set to 2,200,000.00, just to see if the numbers are populating. Ex A is the one I'm trying to fix. Ex A the one I want to fix //Tweening method 'could substitute code with Tweener' import fl.transitions.Tween; import fl.transitions.easing.*; //Timer that will run a sec and repeat var timer:Timer = new Timer(1000); //Integer values var count:int = +220000000; var fcount:int = 0; //Events and starting timer timer.addEventListener(TimerEvent.TIMER, incrementCounter); addEventListener(Event.ENTER_FRAME, checkOdometerPosition); timer.start(); //Tween Variables var smoothLoop:int = 0; var originalYPosition:Number = 0; var upwardYPosition:Number = -99; //Formatting String function formatCount(i:int):String { var fraction:int = i % 100; var whole:int = i / 100; return ("0000000" + whole).substr(-7, 7) + "." + (fraction < 10 ? "0" + fraction : fraction); } //First Digit function checkOdometerPosition(event:Event):void{ if (seconds9.y <= upwardYPosition){ var toText:String = formatCount(fcount); //seconds9.firstDigit.text = formatCount(fcount); seconds9.firstDigit.text = toText.substr(9, 9); seconds9.y = originalYPosition; seconds8.firstDigit.text = toText.substr(8, 8); seconds8.y = originalYPosition; seconds7dec.firstDigit.text = toText.substr(7, 7); seconds7dec.y = originalYPosition; seconds6.firstDigit.text = toText.substr(6, 6); seconds6.y = originalYPosition; seconds5.firstDigit.text = toText.substr(5, 5); seconds5.y = originalYPosition; seconds5.firstDigit.text = toText.substr(4, 4); seconds5.y = originalYPosition; seconds3.firstDigit.text = toText.substr(3, 3); seconds3.y = originalYPosition; seconds2.firstDigit.text = toText.substr(2, 2); seconds2.y = originalYPosition; seconds1.firstDigit.text = toText.substr(1, 1); seconds1.y = originalYPosition; seconds1.firstDigit.text = toText.substr(1, 1); seconds1.y = originalYPosition; seconds0.firstDigit.text = toText.substr(0, 1); seconds0.y = originalYPosition; } } //Second Digit function incrementCounter(event:TimerEvent):void{ count++; fcount=int(count) if (smoothLoop < 9){ smoothLoop++; } else { smoothLoop = 0; } var lolly:String = formatCount(fcount-1); //seconds9.secondDigit.text = formatCount(fcount); seconds9.secondDigit.text = lolly.substr(9, 9); var addTween9:Tween = new Tween(seconds9, "y", Strong.easeOut,0,-222, .7, true); seconds8.secondDigit.text = lolly.substr(8, 8); var addTween8:Tween = new Tween(seconds8, "y", Strong.easeOut,0,-222, .7, true); seconds7dec.secondDigit.text = lolly.substr(7, 7); var addTween7dec:Tween = new Tween(seconds7dec, "y", Strong.easeOut,0,-222, .7, true); seconds6.secondDigit.text = lolly.substr(6, 6); var addTween6:Tween = new Tween(seconds6, "y", Strong.easeOut,0,-222, .7, true); seconds5.secondDigit.text = lolly.substr(5, 5); var addTween5:Tween = new Tween(seconds5, "y", Strong.easeOut,0,-222, .7, true); seconds4.secondDigit.text = lolly.substr(4, 4); var addTween4:Tween = new Tween(seconds4, "y", Strong.easeOut,0,-222, .7, true); seconds3.secondDigit.text = lolly.substr(3, 3); var addTween3:Tween = new Tween(seconds3, "y", Strong.easeOut,0,-222, .7, true); seconds2.secondDigit.text = lolly.substr(2, 2); var addTween2:Tween = new Tween(seconds2, "y", Strong.easeOut,0,-222, .7, true); seconds1.secondDigit.text = lolly.substr(1, 1); var addTween1:Tween = new Tween(seconds1, "y", Strong.easeOut,0,-222, .7, true); seconds0.secondDigit.text = lolly.substr(0, 1); var addTween0:Tween = new Tween(seconds0, "y", Strong.easeOut,0,-222, .7, true); } Ex A has 10 text objects, each with a pair of text fields. It’s move complex than Ex B, because it has a Y animation and pairs of numbers. The text objects are animated to create a scrolling effect. It moves vertically, and has a lead number and a catch up number contained in each symbol. See illustration for more description. Ex B work fine! for example only //STRING SPLITTER COUNTER with nine individual text fields //Timer settings var delay:uint = 1000/100; var repeat:uint = 0; var timer:Timer; timer = new Timer(delay,repeat); timer.addEventListener(TimerEvent.TIMER, incrementCounter); timer.start(); //Integer values var count:int = 0; var fcount:int = 0; //Format Count function formatCount(i:int):String { var fraction:int = i % 100; var whole:int = i / 100; return ("0000000" + whole).substr(-7, 7) + "." + (fraction < 10 ? "0" + fraction : fraction); } //Split strings off to individual text fields function incrementCounter(event:TimerEvent) { count++; fcount=int(count+220000000) var toText:String = formatCount(fcount); mytext9.text = toText.substr(9, 9); mytext8.text = toText.substr(8, 8); mytext7dec.text = toText.substr(7, 7); mytext6.text = toText.substr(6, 6); mytext5.text = toText.substr(5, 5); mytext4.text = toText.substr(4, 4); mytext3.text = toText.substr(3, 3); mytext2.text = toText.substr(2, 2); mytext1.text = toText.substr(1, 1); mytext0.text = toText.substr(0, 1); }

    Read the article

  • Logic error for Gauss elimination

    - by iwanttoprogram
    Logic error problem with the Gaussian Elimination code...This code was from my Numerical Methods text in 1990's. The code is typed in from the book- not producing correct output... Sample Run: SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS USING GAUSSIAN ELIMINATION This program uses Gaussian Elimination to solve the system Ax = B, where A is the matrix of known coefficients, B is the vector of known constants and x is the column matrix of the unknowns. Number of equations: 3 Enter elements of matrix [A] A(1,1) = 0 A(1,2) = -6 A(1,3) = 9 A(2,1) = 7 A(2,2) = 0 A(2,3) = -5 A(3,1) = 5 A(3,2) = -8 A(3,3) = 6 Enter elements of [b] vector B(1) = -3 B(2) = 3 B(3) = -4 SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS The solution is x(1) = 0.000000 x(2) = -1.#IND00 x(3) = -1.#IND00 Determinant = -1.#IND00 Press any key to continue . . . The code as copied from the text... //Modified Code from C Numerical Methods Text- June 2009 #include <stdio.h> #include <math.h> #define MAXSIZE 20 //function prototype int gauss (double a[][MAXSIZE], double b[], int n, double *det); int main(void) { double a[MAXSIZE][MAXSIZE], b[MAXSIZE], det; int i, j, n, retval; printf("\n \t SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS"); printf("\n \t USING GAUSSIAN ELIMINATION \n"); printf("\n This program uses Gaussian Elimination to solve the"); printf("\n system Ax = B, where A is the matrix of known"); printf("\n coefficients, B is the vector of known constants"); printf("\n and x is the column matrix of the unknowns."); //get number of equations n = 0; while(n <= 0 || n > MAXSIZE) { printf("\n Number of equations: "); scanf ("%d", &n); } //read matrix A printf("\n Enter elements of matrix [A]\n"); for (i = 0; i < n; i++) for (j = 0; j < n; j++) { printf(" A(%d,%d) = ", i + 1, j + 1); scanf("%lf", &a[i][j]); } //read {B} vector printf("\n Enter elements of [b] vector\n"); for (i = 0; i < n; i++) { printf(" B(%d) = ", i + 1); scanf("%lf", &b[i]); } //call Gauss elimination function retval = gauss(a, b, n, &det); //print results if (retval == 0) { printf("\n\t SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS\n"); printf("\n\t The solution is"); for (i = 0; i < n; i++) printf("\n \t x(%d) = %lf", i + 1, b[i]); printf("\n \t Determinant = %lf \n", det); } else printf("\n \t SINGULAR MATRIX \n"); return 0; } /* Solves the system of equations [A]{x} = {B} using */ /* the Gaussian elimination method with partial pivoting. */ /* Parameters: */ /* n - number of equations */ /* a[n][n] - coefficient matrix */ /* b[n] - right-hand side vector */ /* *det - determinant of [A] */ int gauss (double a[][MAXSIZE], double b[], int n, double *det) { double tol, temp, mult; int npivot, i, j, l, k, flag; //initialization *det = 1.0; tol = 1e-30; //initial tolerance value npivot = 0; //mult = 0; //forward elimination for (k = 0; k < n; k++) { //search for max coefficient in pivot row- a[k][k] pivot element for (i = k + 1; i < n; i++) { if (fabs(a[i][k]) > fabs(a[k][k])) { //interchange row with maxium element with pivot row npivot++; for (l = 0; l < n; l++) { temp = a[i][l]; a[i][l] = a[k][l]; a[k][l] = temp; } temp = b[i]; b[i] = b[k]; b[k] = temp; } } //test for singularity if (fabs(a[k][k]) < tol) { //matrix is singular- terminate flag = 1; return flag; } //compute determinant- the product of the pivot elements *det = *det * a[k][k]; //eliminate the coefficients of X(I) for (i = k; i < n; i++) { mult = a[i][k] / a[k][k]; b[i] = b[i] - b[k] * mult; //compute constants for (j = k; j < n; j++) //compute coefficients a[i][j] = a[i][j] - a[k][j] * mult; } } //adjust the sign of the determinant if(npivot % 2 == 1) *det = *det * (-1.0); //backsubstitution b[n] = b[n] / a[n][n]; for(i = n - 1; i > 1; i--) { for(j = n; j > i + 1; j--) b[i] = b[i] - a[i][j] * b[j]; b[i] = b[i] / a[i - 1][i]; } flag = 0; return flag; } The solution should be: 1.058824, 1.823529, 0.882353 with det as -102.000000 Any insight is appreciated...

    Read the article

  • Microbenchmark showing process-switching faster than thread-switching; what's wrong?

    - by Yang
    I have two simple microbenchmarks trying to measure thread- and process-switching overheads, but the process-switching overhead. The code is living here, and r1667 is pasted below: https://assorted.svn.sourceforge.net/svnroot/assorted/sandbox/trunk/src/c/process_switch_bench.c // on zs, ~2.1-2.4us/switch #include <stdlib.h> #include <fcntl.h> #include <stdint.h> #include <stdio.h> #include <semaphore.h> #include <unistd.h> #include <sys/wait.h> #include <sys/types.h> #include <sys/time.h> #include <pthread.h> uint32_t COUNTER; pthread_mutex_t LOCK; pthread_mutex_t START; sem_t *s0, *s1, *s2; void * threads ( void * unused ) { // Wait till we may fire away sem_wait(s2); for (;;) { pthread_mutex_lock(&LOCK); pthread_mutex_unlock(&LOCK); COUNTER++; sem_post(s0); sem_wait(s1); } return 0; } int64_t timeInMS () { struct timeval t; gettimeofday(&t, NULL); return ( (int64_t)t.tv_sec * 1000 + (int64_t)t.tv_usec / 1000 ); } int main ( int argc, char ** argv ) { int64_t start; pthread_t t1; pthread_mutex_init(&LOCK, NULL); COUNTER = 0; s0 = sem_open("/s0", O_CREAT, 0022, 0); if (s0 == 0) { perror("sem_open"); exit(1); } s1 = sem_open("/s1", O_CREAT, 0022, 0); if (s1 == 0) { perror("sem_open"); exit(1); } s2 = sem_open("/s2", O_CREAT, 0022, 0); if (s2 == 0) { perror("sem_open"); exit(1); } int x, y, z; sem_getvalue(s0, &x); sem_getvalue(s1, &y); sem_getvalue(s2, &z); printf("%d %d %d\n", x, y, z); pid_t pid = fork(); if (pid) { pthread_create(&t1, NULL, threads, NULL); pthread_detach(t1); // Get start time and fire away start = timeInMS(); sem_post(s2); sem_post(s2); // Wait for about a second sleep(1); // Stop thread pthread_mutex_lock(&LOCK); // Find out how much time has really passed. sleep won't guarantee me that // I sleep exactly one second, I might sleep longer since even after being // woken up, it can take some time before I gain back CPU time. Further // some more time might have passed before I obtained the lock! int64_t time = timeInMS() - start; // Correct the number of thread switches accordingly COUNTER = (uint32_t)(((uint64_t)COUNTER * 2 * 1000) / time); printf("Number of process switches in about one second was %u\n", COUNTER); printf("roughly %f microseconds per switch\n", 1000000.0 / COUNTER); // clean up kill(pid, 9); wait(0); sem_close(s0); sem_close(s1); sem_unlink("/s0"); sem_unlink("/s1"); sem_unlink("/s2"); } else { if (1) { sem_t *t = s0; s0 = s1; s1 = t; } threads(0); // never return } return 0; } https://assorted.svn.sourceforge.net/svnroot/assorted/sandbox/trunk/src/c/thread_switch_bench.c // From <http://stackoverflow.com/questions/304752/how-to-estimate-the-thread-context-switching-overhead> // on zs, ~4-5us/switch; tried making COUNTER updated only by one thread, but no difference #include <stdlib.h> #include <stdint.h> #include <stdio.h> #include <pthread.h> #include <unistd.h> #include <sys/time.h> uint32_t COUNTER; pthread_mutex_t LOCK; pthread_mutex_t START; pthread_cond_t CONDITION; void * threads ( void * unused ) { // Wait till we may fire away pthread_mutex_lock(&START); pthread_mutex_unlock(&START); int first=1; pthread_mutex_lock(&LOCK); // If I'm not the first thread, the other thread is already waiting on // the condition, thus Ihave to wake it up first, otherwise we'll deadlock if (COUNTER > 0) { pthread_cond_signal(&CONDITION); first=0; } for (;;) { if (first) COUNTER++; pthread_cond_wait(&CONDITION, &LOCK); // Always wake up the other thread before processing. The other // thread will not be able to do anything as long as I don't go // back to sleep first. pthread_cond_signal(&CONDITION); } pthread_mutex_unlock(&LOCK); return 0; } int64_t timeInMS () { struct timeval t; gettimeofday(&t, NULL); return ( (int64_t)t.tv_sec * 1000 + (int64_t)t.tv_usec / 1000 ); } int main ( int argc, char ** argv ) { int64_t start; pthread_t t1; pthread_t t2; pthread_mutex_init(&LOCK, NULL); pthread_mutex_init(&START, NULL); pthread_cond_init(&CONDITION, NULL); pthread_mutex_lock(&START); COUNTER = 0; pthread_create(&t1, NULL, threads, NULL); pthread_create(&t2, NULL, threads, NULL); pthread_detach(t1); pthread_detach(t2); // Get start time and fire away start = timeInMS(); pthread_mutex_unlock(&START); // Wait for about a second sleep(1); // Stop both threads pthread_mutex_lock(&LOCK); // Find out how much time has really passed. sleep won't guarantee me that // I sleep exactly one second, I might sleep longer since even after being // woken up, it can take some time before I gain back CPU time. Further // some more time might have passed before I obtained the lock! int64_t time = timeInMS() - start; // Correct the number of thread switches accordingly COUNTER = (uint32_t)(((uint64_t)COUNTER * 2 * 1000) / time); printf("Number of thread switches in about one second was %u\n", COUNTER); printf("roughly %f microseconds per switch\n", 1000000.0 / COUNTER); return 0; }

    Read the article

  • PHP syntax error “unexpected $end”

    - by Jacksta
    I have 3 files 1) show_createtable.html 2) do_showfielddef.php 3) do_showtble.php 1) First file is for creating a new table for a data base, it is a fom with 2 inputs, Table Name and Number of Fields. THIS WORKS FINE! <html xmlns="http://www.w3.org/1999/xhtml"> <head> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <title>Untitled Document</title> </head> <body> <h1>Step 1: Name and Number</h1> <form method="post" action="do_showfielddef.php" /> <p><strong>Table Name:</strong><br /> <input type="text" name="table_name" size="30" /></p> <p><strong>Number of fields:</strong><br /> <input type="text" name="num_fields" size="30" /></p> <p><input type="submit" name="submit" value="go to step2" /></p> </form> </body> </html> 2) this script validates fields and createa another form to enter all the table rows. This for also WORKS FINE! <?php //validate important input if ((!$_POST[table_name]) || (!$_POST[num_fields])) { header( "location: show_createtable.html"); exit; } //begin creating form for display $form_block = " <form action=\"do_createtable.php\" method=\"post\"> <input name=\"table_name\" type=\"hidden\" value=\"$_POST[table_name]\"> <table cellspacing=\"5\" cellpadding=\"5\"> <tr> <th>Field Name</th><th>Field Type</th><th>Table Length</th> </tr>"; //count from 0 until you reach the number fo fields for ($i = 0; $i <$_POST[num_fields]; $i++) { $form_block .=" <tr> <td align=center><input type=\"texr\" name=\"field name[]\" size=\"30\"></td> <td align=center> <select name=\"field_type[]\"> <option value=\"char\">char</option> <option value=\"date\">date</option> <option value=\"float\">float</option> <option value=\"int\">int</option> <option value=\"text\">text</option> <option value=\"varchar\">varchar</option> </select> </td> <td align=center><input type=\"text\" name=\"field_length[]\" size=\"5\"> </td> </tr>"; } //finish up the form $form_block .= " <tr> <td align=center colspan=3><input type =\"submit\" value=\"create table\"> </td> </tr> </table> </form>"; ?> <html> <head> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <title>Create a database table: Step 2</title> </head> <body> <h1>defnie fields for <? echo "$_POST[table_name]"; ?> </h1> <? echo "$form_block"; ?> </body> </html> Problem is here 3) this form creates the tables and enteres them into the database. I am getting an error on line 37 "Parse error: syntax error, unexpected $end in /home/admin/domains/domaina.com.au/public_html/do_createtable.php on line 37" <? $db_name = "testDB"; $connection = @mysql_connect("localhost", "admin_user", "pass") or die(mysql_error()); $db = @mysql_select_db($db_name, $connection) or die(mysql_error()); $sql = "CREATE TABLE $_POST[table_name]("; for ($i = 0; $i < count($_POST[field_name]); $i++) { $sql .= $_POST[field_name][$i]." ".$_POST[field_type][$i]; if ($_POST[field_length][$i] !="") { $sql .=" (".$_POST[field_length][$i]."),"; } else { $sql .=","; } $sql = substr($sql, 0, -1); $sql .= ")"; $result = mysql_query($sql, $connection) or die(mysql_error()); if ($result) { $msg = "<p>" .$_POST[table_name]." has been created!</p>"; ?> <html> <head> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <title>Create A Database Table: Step 3</title> </head> <body> <h1>Adding table to <? echo "$db_name"; ?>...</h1> <? echo "$msg"; ?> </body> </html>

    Read the article

  • Java homework help, Error <identifier> expected

    - by user2900126
    Help with java homework this is my assignment that I have, this assignment code I've tried. But when I try to compile it I keep getting errors which I cant seem to find soloutions too: Error says <identifier> expected for Line 67 public static void () Assignment brief To write a simple java classMobile that models a mobile phone. Details the information stored about each mobile phone will include • Its type e.g. “Sony ericsson x90” or “Samsung Galaxy S”; • Its screen size in inches; You may assume that this a whole number from the scale 3 to 5 inclusive. • Its memory card capacity in gigabytes You may assume that this a whole number • The name of its present service provider You may assume this is a single line of text. • The type of contract with service provider You may assume this is a single line of text. • Its camera resolution in megapixels; You should not assume that this a whole number; • The percentage of charge left on the phone e.g. a fully charged phone will have a charge of 100. You may assume that this a whole number • Whether the phone has GPS or not. Your class will have fields corresponding to these attributes . Start by opening BlueJ, creating a new project called myMobile which has a classMobile and set up the fields that you need, Next you will need to write a Constructor for the class. Assume that each phone is manufactured by creating an object and specifying its type, its screen size, its memory card capacity, its camera resolution and whether it has GPS or not. Therefore you will need a constructor that allows you to pass arguments to initialise these five attributes. Other fields should be set to appropriate default values. You may assume that a new phone comes fully charged. When the phone is sold to its owner, you will need to set the service provider and type of contract with that provider so you will need mutator methods • setProvider () - - to set service provider. • setContractType - - to set the type of contract These methods will be used when the phones provider is changed. You should also write a mutator method ChargeUp () which simulates fully charging the phone. To obtain information about your mobile object you should write • accessor methods corresponding to four of its fields: • getType () – which returns the type of mobile; • getProvider () – which returns the present service provider; • getContractType () – which returns its type of contract; • getCharge () – which returns its remaining charge. An accessor method to printDetails () to print, to the terminal window, a report about the phone e.g. This mobile phone is a sony Erricsson X90 with Service provider BigAl and type of contract PAYG. At present it has 30% of its battery charge remaining. Check that the new method works correctly by for example, • creating a Mobile object and setting its fields; • calling printDetails () and t=checking the report corresponds to the details you have just given the mobile; • changing the service provider and contract type by calling setprovider () and setContractType (); • calling printDetails () and checking the report now prints out the new details. Challenging excercises • write a mutator methodswitchedOnFor () =which simulates using the phone for a specified period. You may assume the phone loses 1% of its charge for each hour that it is switched on . • write an accessor method checkcharge () whichg checks the phone remaing charge. If this charge has a value less than 25%, then this method returns a string containg the message Be aware that you will soon need to re-charge your phone, otherwise it returns a string your phone charge is sufficient. • Write a method changeProvider () which simulates changing the provider (and presumably also the type of service contract). Finally you may add up to four additional fields, with appropriate methods, that might be required in a more detailed model. above is my assignment that I have, this assignment code I've tried. But when I try to oompile it I keep getting errors which I cant seem to find soloutions too: Error says <identifier> expected for Line 67 public static void () /** * to write a simple java class Mobile that models a mobile phone. * * @author (Lewis Burte-Clarke) * @version (14/10/13) */ public class Mobile { // type of phone private String phonetype; // size of screen in inches private int screensize; // menory card capacity private int memorycardcapacity; // name of present service provider private String serviceprovider; // type of contract with service provider private int typeofcontract; // camera resolution in megapixels private int cameraresolution; // the percentage of charge left on the phone private int checkcharge; // wether the phone has GPS or not private String GPS; // instance variables - replace the example below with your own private int x; // The constructor method public Mobile(String mobilephonetype, int mobilescreensize, int mobilememorycardcapacity,int mobilecameraresolution,String mobileGPS, String newserviceprovider) { this.phonetype = mobilephonetype; this.screensize = mobilescreensize; this.memorycardcapacity = mobilememorycardcapacity; this.cameraresolution = mobilecameraresolution; this.GPS = mobileGPS; // you do not use this ones during instantiation,you can remove them if you do not need or assign them some default values //this.serviceprovider = newserviceprovider; //this.typeofcontract = 12; //this.checkcharge = checkcharge; Mobile samsungPhone = new Mobile("Samsung", "1024", "2", "verizon", "8", "GPS"); 1024 = screensize; 2 = memorycardcapacity; 8 = resolution; GPS = gps; "verizon"=serviceprovider; //typeofcontract = 12; //checkcharge = checkcharge; } // A method to display the state of the object to the screen public void displayMobileDetails() { System.out.println("phonetype: " + phonetype); System.out.println("screensize: " + screensize); System.out.println("memorycardcapacity: " + memorycardcapacity); System.out.println("cameraresolution: " + cameraresolution); System.out.println("GPS: " + GPS); System.out.println("serviceprovider: " + serviceprovider); System.out.println("typeofcontract: " + typeofcontract); } /** * The mymobile class implements an application that * simply displays "new Mobile!" to the standard output. */ public class mymobile { public static void main(String[] args) { System.out.println("new Mobile!"); //Display the string. } } public static void buildPhones(){ Mobile Samsung = new Mobile("Samsung", "3.0", "4gb", "8mega pixels", "GPS"); Mobile Blackberry = new Mobile("Blackberry", "3.0", "4gb", "8mega pixels", "GPS"); Samsung.displayMobileDetails(); Blackberry.displayMobileDetails(); } public static void main(String[] args) { buildPhones(); } } any answers.replies and help would be greatly appreciated as I really lost!

    Read the article

  • A free standing ASP.NET Pager Web Control

    - by Rick Strahl
    Paging in ASP.NET has been relatively easy with stock controls supporting basic paging functionality. However, recently I built an MVC application and one of the things I ran into was that I HAD TO build manual paging support into a few of my pages. Dealing with list controls and rendering markup is easy enough, but doing paging is a little more involved. I ended up with a small but flexible component that can be dropped anywhere. As it turns out the task of creating a semi-generic Pager control for MVC was fairly easily. Now I’m back to working in Web Forms and thought to myself that the way I created the pager in MVC actually would also work in ASP.NET – in fact quite a bit easier since the whole thing can be conveniently wrapped up into an easily reusable control. A standalone pager would provider easier reuse in various pages and a more consistent pager display regardless of what kind of 'control’ the pager is associated with. Why a Pager Control? At first blush it might sound silly to create a new pager control – after all Web Forms has pretty decent paging support, doesn’t it? Well, sort of. Yes the GridView control has automatic paging built in and the ListView control has the related DataPager control. The built in ASP.NET paging has several issues though: Postback and JavaScript requirements If you look at paging links in ASP.NET they are always postback links with javascript:__doPostback() calls that go back to the server. While that works fine and actually has some benefit like the fact that paging saves changes to the page and post them back, it’s not very SEO friendly. Basically if you use javascript based navigation nosearch engine will follow the paging links which effectively cuts off list content on the first page. The DataPager control does support GET based links via the QueryStringParameter property, but the control is effectively tied to the ListView control (which is the only control that implements IPageableItemContainer). DataSource Controls required for Efficient Data Paging Retrieval The only way you can get paging to work efficiently where only the few records you display on the page are queried for and retrieved from the database you have to use a DataSource control - only the Linq and Entity DataSource controls  support this natively. While you can retrieve this data yourself manually, there’s no way to just assign the page number and render the pager based on this custom subset. Other than that default paging requires a full resultset for ASP.NET to filter the data and display only a subset which can be very resource intensive and wasteful if you’re dealing with largish resultsets (although I’m a firm believer in returning actually usable sets :-}). If you use your own business layer that doesn’t fit an ObjectDataSource you’re SOL. That’s a real shame too because with LINQ based querying it’s real easy to retrieve a subset of data that is just the data you want to display but the native Pager functionality doesn’t support just setting properties to display just the subset AFAIK. DataPager is not Free Standing The DataPager control is the closest thing to a decent Pager implementation that ASP.NET has, but alas it’s not a free standing component – it works off a related control and the only one that it effectively supports from the stock ASP.NET controls is the ListView control. This means you can’t use the same data pager formatting for a grid and a list view or vice versa and you’re always tied to the control. Paging Events In order to handle paging you have to deal with paging events. The events fire at specific time instances in the page pipeline and because of this you often have to handle data binding in a way to work around the paging events or else end up double binding your data sources based on paging. Yuk. Styling The GridView pager is a royal pain to beat into submission for styled rendering. The DataPager control has many more options and template layout and it renders somewhat cleaner, but it too is not exactly easy to get a decent display for. Not a Generic Solution The problem with the ASP.NET controls too is that it’s not generic. GridView, DataGrid use their own internal paging, ListView can use a DataPager and if you want to manually create data layout – well you’re on your own. IOW, depending on what you use you likely have very different looking Paging experiences. So, I figured I’ve struggled with this once too many and finally sat down and built a Pager control. The Pager Control My goal was to create a totally free standing control that has no dependencies on other controls and certainly no requirements for using DataSource controls. The idea is that you should be able to use this pager control without any sort of data requirements at all – you should just be able to set properties and be able to display a pager. The Pager control I ended up with has the following features: Completely free standing Pager control – no control or data dependencies Complete manual control – Pager can render without any data dependency Easy to use: Only need to set PageSize, ActivePage and TotalItems Supports optional filtering of IQueryable for efficient queries and Pager rendering Supports optional full set filtering of IEnumerable<T> and DataTable Page links are plain HTTP GET href Links Control automatically picks up Page links on the URL and assigns them (automatic page detection no page index changing events to hookup) Full CSS Styling support On the downside there’s no templating support for the control so the layout of the pager is relatively fixed. All elements however are stylable and there are options to control the text, and layout options such as whether to display first and last pages and the previous/next buttons and so on. To give you an idea what the pager looks like, here are two differently styled examples (all via CSS):   The markup for these two pagers looks like this: <ww:Pager runat="server" id="ItemPager" PageSize="5" PageLinkCssClass="gridpagerbutton" SelectedPageCssClass="gridpagerbutton-selected" PagesTextCssClass="gridpagertext" CssClass="gridpager" RenderContainerDiv="true" ContainerDivCssClass="gridpagercontainer" MaxPagesToDisplay="6" PagesText="Item Pages:" NextText="next" PreviousText="previous" /> <ww:Pager runat="server" id="ItemPager2" PageSize="5" RenderContainerDiv="true" MaxPagesToDisplay="6" /> The latter example uses default style settings so it there’s not much to set. The first example on the other hand explicitly assigns custom styles and overrides a few of the formatting options. Styling The styling is based on a number of CSS classes of which the the main pager, pagerbutton and pagerbutton-selected classes are the important ones. Other styles like pagerbutton-next/prev/first/last are based on the pagerbutton style. The default styling shown for the red outlined pager looks like this: .pagercontainer { margin: 20px 0; background: whitesmoke; padding: 5px; } .pager { float: right; font-size: 10pt; text-align: left; } .pagerbutton,.pagerbutton-selected,.pagertext { display: block; float: left; text-align: center; border: solid 2px maroon; min-width: 18px; margin-left: 3px; text-decoration: none; padding: 4px; } .pagerbutton-selected { font-size: 130%; font-weight: bold; color: maroon; border-width: 0px; background: khaki; } .pagerbutton-first { margin-right: 12px; } .pagerbutton-last,.pagerbutton-prev { margin-left: 12px; } .pagertext { border: none; margin-left: 30px; font-weight: bold; } .pagerbutton a { text-decoration: none; } .pagerbutton:hover { background-color: maroon; color: cornsilk; } .pagerbutton-prev { background-image: url(images/prev.png); background-position: 2px center; background-repeat: no-repeat; width: 35px; padding-left: 20px; } .pagerbutton-next { background-image: url(images/next.png); background-position: 40px center; background-repeat: no-repeat; width: 35px; padding-right: 20px; margin-right: 0px; } Yup that’s a lot of styling settings although not all of them are required. The key ones are pagerbutton, pager and pager selection. The others (which are implicitly created by the control based on the pagerbutton style) are for custom markup of the ‘special’ buttons. In my apps I tend to have two kinds of pages: Those that are associated with typical ‘grid’ displays that display purely tabular data and those that have a more looser list like layout. The two pagers shown above represent these two views and the pager and gridpager styles in my standard style sheet reflect these two styles. Configuring the Pager with Code Finally lets look at what it takes to hook up the pager. As mentioned in the highlights the Pager control is completely independent of other controls so if you just want to display a pager on its own it’s as simple as dropping the control and assigning the PageSize, ActivePage and either TotalPages or TotalItems. So for this markup: <ww:Pager runat="server" id="ItemPagerManual" PageSize="5" MaxPagesToDisplay="6" /> I can use code as simple as: ItemPagerManual.PageSize = 3; ItemPagerManual.ActivePage = 4;ItemPagerManual.TotalItems = 20; Note that ActivePage is not required - it will automatically use any Page=x query string value and assign it, although you can override it as I did above. TotalItems can be any value that you retrieve from a result set or manually assign as I did above. A more realistic scenario based on a LINQ to SQL IQueryable result is even easier. In this example, I have a UserControl that contains a ListView control that renders IQueryable data. I use a User Control here because there are different views the user can choose from with each view being a different user control. This incidentally also highlights one of the nice features of the pager: Because the pager is independent of the control I can put the pager on the host page instead of into each of the user controls. IOW, there’s only one Pager control, but there are potentially many user controls/listviews that hold the actual display data. The following code demonstrates how to use the Pager with an IQueryable that loads only the records it displays: protected voidPage_Load(objectsender, EventArgs e) {     Category = Request.Params["Category"] ?? string.Empty;     IQueryable<wws_Item> ItemList = ItemRepository.GetItemsByCategory(Category);     // Update the page and filter the list down     ItemList = ItemPager.FilterIQueryable<wws_Item>(ItemList); // Render user control with a list view Control ulItemList = LoadControl("~/usercontrols/" + App.Configuration.ItemListType + ".ascx"); ((IInventoryItemListControl)ulItemList).InventoryItemList = ItemList; phItemList.Controls.Add(ulItemList); // placeholder } The code uses a business object to retrieve Items by category as an IQueryable which means that the result is only an expression tree that hasn’t execute SQL yet and can be further filtered. I then pass this IQueryable to the FilterIQueryable() helper method of the control which does two main things: Filters the IQueryable to retrieve only the data displayed on the active page Sets the Totaltems property and calculates TotalPages on the Pager and that’s it! When the Pager renders it uses those values, plus the PageSize and ActivePage properties to render the Pager. In addition to IQueryable there are also filter methods for IEnumerable<T> and DataTable, but these versions just filter the data by removing rows/items from the entire already retrieved data. Output Generated and Paging Links The output generated creates pager links as plain href links. Here’s what the output looks like: <div id="ItemPager" class="pagercontainer"> <div class="pager"> <span class="pagertext">Pages: </span><a href="http://localhost/WestWindWebStore/itemlist.aspx?Page=1" class="pagerbutton" />1</a> <a href="http://localhost/WestWindWebStore/itemlist.aspx?Page=2" class="pagerbutton" />2</a> <a href="http://localhost/WestWindWebStore/itemlist.aspx?Page=3" class="pagerbutton" />3</a> <span class="pagerbutton-selected">4</span> <a href="http://localhost/WestWindWebStore/itemlist.aspx?Page=5" class="pagerbutton" />5</a> <a href="http://localhost/WestWindWebStore/itemlist.aspx?Page=6" class="pagerbutton" />6</a> <a href="http://localhost/WestWindWebStore/itemlist.aspx?Page=20" class="pagerbutton pagerbutton-last" />20</a>&nbsp;<a href="http://localhost/WestWindWebStore/itemlist.aspx?Page=3" class="pagerbutton pagerbutton-prev" />Prev</a>&nbsp;<a href="http://localhost/WestWindWebStore/itemlist.aspx?Page=5" class="pagerbutton pagerbutton-next" />Next</a></div> <br clear="all" /> </div> </div> The links point back to the current page and simply append a Page= page link into the page. When the page gets reloaded with the new page number the pager automatically detects the page number and automatically assigns the ActivePage property which results in the appropriate page to be displayed. The code shown in the previous section is all that’s needed to handle paging. Note that HTTP GET based paging is different than the Postback paging ASP.NET uses by default. Postback paging preserves modified page content when clicking on pager buttons, but this control will simply load a new page – no page preservation at this time. The advantage of not using Postback paging is that the URLs generated are plain HTML links that a search engine can follow where __doPostback() links are not. Pager with a Grid The pager also works in combination with grid controls so it’s easy to bypass the grid control’s paging features if desired. In the following example I use a gridView control and binds it to a DataTable result which is also filterable by the Pager control. The very basic plain vanilla ASP.NET grid markup looks like this: <div style="width: 600px; margin: 0 auto;padding: 20px; "> <asp:DataGrid runat="server" AutoGenerateColumns="True" ID="gdItems" CssClass="blackborder" style="width: 600px;"> <AlternatingItemStyle CssClass="gridalternate" /> <HeaderStyle CssClass="gridheader" /> </asp:DataGrid> <ww:Pager runat="server" ID="Pager" CssClass="gridpager" ContainerDivCssClass="gridpagercontainer" PageLinkCssClass="gridpagerbutton" SelectedPageCssClass="gridpagerbutton-selected" PageSize="8" RenderContainerDiv="true" MaxPagesToDisplay="6" /> </div> and looks like this when rendered: using custom set of CSS styles. The code behind for this code is also very simple: protected void Page_Load(object sender, EventArgs e) { string category = Request.Params["category"] ?? ""; busItem itemRep = WebStoreFactory.GetItem(); var items = itemRep.GetItemsByCategory(category) .Select(itm => new {Sku = itm.Sku, Description = itm.Description}); // run query into a DataTable for demonstration DataTable dt = itemRep.Converter.ToDataTable(items,"TItems"); // Remove all items not on the current page dt = Pager.FilterDataTable(dt,0); // bind and display gdItems.DataSource = dt; gdItems.DataBind(); } A little contrived I suppose since the list could already be bound from the list of elements, but this is to demonstrate that you can also bind against a DataTable if your business layer returns those. Unfortunately there’s no way to filter a DataReader as it’s a one way forward only reader and the reader is required by the DataSource to perform the bindings.  However, you can still use a DataReader as long as your business logic filters the data prior to rendering and provides a total item count (most likely as a second query). Control Creation The control itself is a pretty brute force ASP.NET control. Nothing clever about this other than some basic rendering logic and some simple calculations and update routines to determine which buttons need to be shown. You can take a look at the full code from the West Wind Web Toolkit’s Repository (note there are a few dependencies). To give you an idea how the control works here is the Render() method: /// <summary> /// overridden to handle custom pager rendering for runtime and design time /// </summary> /// <param name="writer"></param> protected override void Render(HtmlTextWriter writer) { base.Render(writer); if (TotalPages == 0 && TotalItems > 0) TotalPages = CalculateTotalPagesFromTotalItems(); if (DesignMode) TotalPages = 10; // don't render pager if there's only one page if (TotalPages < 2) return; if (RenderContainerDiv) { if (!string.IsNullOrEmpty(ContainerDivCssClass)) writer.AddAttribute("class", ContainerDivCssClass); writer.RenderBeginTag("div"); } // main pager wrapper writer.WriteBeginTag("div"); writer.AddAttribute("id", this.ClientID); if (!string.IsNullOrEmpty(CssClass)) writer.WriteAttribute("class", this.CssClass); writer.Write(HtmlTextWriter.TagRightChar + "\r\n"); // Pages Text writer.WriteBeginTag("span"); if (!string.IsNullOrEmpty(PagesTextCssClass)) writer.WriteAttribute("class", PagesTextCssClass); writer.Write(HtmlTextWriter.TagRightChar); writer.Write(this.PagesText); writer.WriteEndTag("span"); // if the base url is empty use the current URL FixupBaseUrl(); // set _startPage and _endPage ConfigurePagesToRender(); // write out first page link if (ShowFirstAndLastPageLinks && _startPage != 1) { writer.WriteBeginTag("a"); string pageUrl = StringUtils.SetUrlEncodedKey(BaseUrl, QueryStringPageField, (1).ToString()); writer.WriteAttribute("href", pageUrl); if (!string.IsNullOrEmpty(PageLinkCssClass)) writer.WriteAttribute("class", PageLinkCssClass + " " + PageLinkCssClass + "-first"); writer.Write(HtmlTextWriter.SelfClosingTagEnd); writer.Write("1"); writer.WriteEndTag("a"); writer.Write("&nbsp;"); } // write out all the page links for (int i = _startPage; i < _endPage + 1; i++) { if (i == ActivePage) { writer.WriteBeginTag("span"); if (!string.IsNullOrEmpty(SelectedPageCssClass)) writer.WriteAttribute("class", SelectedPageCssClass); writer.Write(HtmlTextWriter.TagRightChar); writer.Write(i.ToString()); writer.WriteEndTag("span"); } else { writer.WriteBeginTag("a"); string pageUrl = StringUtils.SetUrlEncodedKey(BaseUrl, QueryStringPageField, i.ToString()).TrimEnd('&'); writer.WriteAttribute("href", pageUrl); if (!string.IsNullOrEmpty(PageLinkCssClass)) writer.WriteAttribute("class", PageLinkCssClass); writer.Write(HtmlTextWriter.SelfClosingTagEnd); writer.Write(i.ToString()); writer.WriteEndTag("a"); } writer.Write("\r\n"); } // write out last page link if (ShowFirstAndLastPageLinks && _endPage < TotalPages) { writer.WriteBeginTag("a"); string pageUrl = StringUtils.SetUrlEncodedKey(BaseUrl, QueryStringPageField, TotalPages.ToString()); writer.WriteAttribute("href", pageUrl); if (!string.IsNullOrEmpty(PageLinkCssClass)) writer.WriteAttribute("class", PageLinkCssClass + " " + PageLinkCssClass + "-last"); writer.Write(HtmlTextWriter.SelfClosingTagEnd); writer.Write(TotalPages.ToString()); writer.WriteEndTag("a"); } // Previous link if (ShowPreviousNextLinks && !string.IsNullOrEmpty(PreviousText) && ActivePage > 1) { writer.Write("&nbsp;"); writer.WriteBeginTag("a"); string pageUrl = StringUtils.SetUrlEncodedKey(BaseUrl, QueryStringPageField, (ActivePage - 1).ToString()); writer.WriteAttribute("href", pageUrl); if (!string.IsNullOrEmpty(PageLinkCssClass)) writer.WriteAttribute("class", PageLinkCssClass + " " + PageLinkCssClass + "-prev"); writer.Write(HtmlTextWriter.SelfClosingTagEnd); writer.Write(PreviousText); writer.WriteEndTag("a"); } // Next link if (ShowPreviousNextLinks && !string.IsNullOrEmpty(NextText) && ActivePage < TotalPages) { writer.Write("&nbsp;"); writer.WriteBeginTag("a"); string pageUrl = StringUtils.SetUrlEncodedKey(BaseUrl, QueryStringPageField, (ActivePage + 1).ToString()); writer.WriteAttribute("href", pageUrl); if (!string.IsNullOrEmpty(PageLinkCssClass)) writer.WriteAttribute("class", PageLinkCssClass + " " + PageLinkCssClass + "-next"); writer.Write(HtmlTextWriter.SelfClosingTagEnd); writer.Write(NextText); writer.WriteEndTag("a"); } writer.WriteEndTag("div"); if (RenderContainerDiv) { if (RenderContainerDivBreak) writer.Write("<br clear=\"all\" />\r\n"); writer.WriteEndTag("div"); } } As I said pretty much brute force rendering based on the control’s property settings of which there are quite a few: You can also see the pager in the designer above. unfortunately the VS designer (both 2010 and 2008) fails to render the float: left CSS styles properly and starts wrapping after margins are applied in the special buttons. Not a big deal since VS does at least respect the spacing (the floated elements overlay). Then again I’m not using the designer anyway :-}. Filtering Data What makes the Pager easy to use is the filter methods built into the control. While this functionality is clearly not the most politically correct design choice as it violates separation of concerns, it’s very useful for typical pager operation. While I actually have filter methods that do something similar in my business layer, having it exposed on the control makes the control a lot more useful for typical databinding scenarios. Of course these methods are optional – if you have a business layer that can provide filtered page queries for you can use that instead and assign the TotalItems property manually. There are three filter method types available for IQueryable, IEnumerable and for DataTable which tend to be the most common use cases in my apps old and new. The IQueryable version is pretty simple as it can simply rely on on .Skip() and .Take() with LINQ: /// <summary> /// <summary> /// Queries the database for the ActivePage applied manually /// or from the Request["page"] variable. This routine /// figures out and sets TotalPages, ActivePage and /// returns a filtered subset IQueryable that contains /// only the items from the ActivePage. /// </summary> /// <param name="query"></param> /// <param name="activePage"> /// The page you want to display. Sets the ActivePage property when passed. /// Pass 0 or smaller to use ActivePage setting. /// </param> /// <returns></returns> public IQueryable<T> FilterIQueryable<T>(IQueryable<T> query, int activePage) where T : class, new() { ActivePage = activePage < 1 ? ActivePage : activePage; if (ActivePage < 1) ActivePage = 1; TotalItems = query.Count(); if (TotalItems <= PageSize) { ActivePage = 1; TotalPages = 1; return query; } int skip = ActivePage - 1; if (skip > 0) query = query.Skip(skip * PageSize); _TotalPages = CalculateTotalPagesFromTotalItems(); return query.Take(PageSize); } The IEnumerable<T> version simply  converts the IEnumerable to an IQuerable and calls back into this method for filtering. The DataTable version requires a little more work to manually parse and filter records (I didn’t want to add the Linq DataSetExtensions assembly just for this): /// <summary> /// Filters a data table for an ActivePage. /// /// Note: Modifies the data set permanently by remove DataRows /// </summary> /// <param name="dt">Full result DataTable</param> /// <param name="activePage">Page to display. 0 to use ActivePage property </param> /// <returns></returns> public DataTable FilterDataTable(DataTable dt, int activePage) { ActivePage = activePage < 1 ? ActivePage : activePage; if (ActivePage < 1) ActivePage = 1; TotalItems = dt.Rows.Count; if (TotalItems <= PageSize) { ActivePage = 1; TotalPages = 1; return dt; } int skip = ActivePage - 1; if (skip > 0) { for (int i = 0; i < skip * PageSize; i++ ) dt.Rows.RemoveAt(0); } while(dt.Rows.Count > PageSize) dt.Rows.RemoveAt(PageSize); return dt; } Using the Pager Control The pager as it is is a first cut I built a couple of weeks ago and since then have been tweaking a little as part of an internal project I’m working on. I’ve replaced a bunch of pagers on various older pages with this pager without any issues and have what now feels like a more consistent user interface where paging looks and feels the same across different controls. As a bonus I’m only loading the data from the database that I need to display a single page. With the preset class tags applied too adding a pager is now as easy as dropping the control and adding the style sheet for styling to be consistent – no fuss, no muss. Schweet. Hopefully some of you may find this as useful as I have or at least as a baseline to build ontop of… Resources The Pager is part of the West Wind Web & Ajax Toolkit Pager.cs Source Code (some toolkit dependencies) Westwind.css base stylesheet with .pager and .gridpager styles Pager Example Page © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  

    Read the article

  • Remotely Schedule and Stream Recorded TV in Windows 7 Media Center

    - by DigitalGeekery
    Have you ever been away from home and suddenly realized you forgot to record your favorite program? Now Windows 7 Media Center, users can schedule recordings remotely from their phones or mobile devices with Remote Potato. How it Works Remote Potato installs server software on the host computer running Windows 7 Media Center. Once the software is installed, we’ll need to do some port forwarding on the router and setup an optional dynamic DNS address. When setup is completed, we will access the application through a web based interface. Silverlight is required for Streaming recorded TV, but scheduling recordings can be done through an HTML interface. Installing Remote Potato Download and install Remote Potato on the Media Center PC. (See download link below) If you plan to stream any Recorded TV, you’ll also want to install the streaming pack located on the same page. It isn’t required to stream all shows, only shows that require the AC3 audio codec. Click Yes to allow Remote Potato to add rules to the Windows Firewall for remote access. You’ll likely need to accept a few UAC prompts. When notified that the rules were added, click OK. Remote Potato will then prompt you to allow administrator privileges to reserve a URL for it’s web server. Click Yes. Remote Potato server will start. Click on the configuration button at the right to to reveal the settings tabs.   One the General tab, you’ll have the option to run Remote Potato on startup and minimized in the System Tray. If you’re running Media Center on a dedicated HTPC, you’ll probably want to enable both startup options. Forwarding Ports on Your Router You’ll need to forward a couple ports on your router. By default, these will be ports 9080 and 9081. In this example we’re using a Linksys WRT54GL router, however, the steps for port forwarding will vary from router to router. On the Linksys configuration page, click on the Applications & Gaming Tab, and then the Port Range Forward tab. Under Application, type in a name of your choosing. In both the Start and End boxes, type the port number 9080. Enter the local IP address of your Media Center computer in the IP address column. Click the check box under Enable. Repeat the process on the next line, but this time use port 9081. When finished, click the Save Settings button. Note: It’s highly recommended that you configure the home computer running Media Center & Remote Potato with a static IP address.   Find your IP Address You’ll need to find the IP address assigned to your router from your ISP. There are many ways to do this but a quick and easy way is to visit a site like checkip.dyndns.org (link available below) The current external IP address of your router will be displayed in the browser.   Dynamic DNS This is an optional step, but  it’s highly recommended. Many routers, such as the Linksys WRT54GL we are using, support Dynamic DNS (DDNS). What Dynamic DNS allows you to do is affiliate your home router’s external IP address to a domain name. Every time your home router is assigned a a new IP address by your ISP, the domain name is updated to point to your new IP address. Remote Potato’s user interface is accessed over the Internet is by connecting to your router’s IP address followed by a colon and the port number. (Ex: XXX.XXX.XXX.XXX:9080) Instead of constantly having to look up and remember an IP address, you can use DDNS along with a 3rd party provider like DynDNS.com, to sign up for a free domain name and configure it to be updated each time your router is assigned a new IP address. Go to the DynDNS.com website (See link at the end of the article) and sign up for a free Domain name. You’ll need to register and confirm by email.   Once you’ve signed in and selected your domain name click Activate Services. You’ll get a confirmation message that your domain name has been activated.    On the Linksys WRT54GL click on the Setup tab an then DDNS. Select DynDNS.org, or TZO.com if you prefer to use their service, from the drop down list.   With DynDNS, you’ll need to fill in your username and password you signed up with at the DynDNS website and the hostname you chose. Note: You can connect over your local network with the IP Address of the computer running Remote Potato followed by a colon and the port number. Ex: 192.168.1.2:9080 Logging in Remote Potato and Recording a Show Once you connect, you’ll see the start page. To view the TV listings, click on TV Guide. You’ll then see your guide listings. There are a few ways to navigate the listings. At the top left, you can click on any of the preset time buttons to jump to  the listings at that time of the day.  Click on the arrows to the right and left of the day and date at the top center to proceed to the previous or next day. Or, jump to a specific day with the date and date buttons at the top right.   To setup a recording, click on a program.   You can choose to record the individual show or the entire series by clicking on Record Show or Record Series.   Remote Potato on Mobile Devices Perhaps the coolest feature of Remote Potato is the ability to schedule recording from your phone or mobile device. Note: For any devices or computers without Silverlight, you will be prompted to view the HTML page. Select Browse Listings. Select your program to record. In the Program Details, select Record Show to record the single episode or Record Series to record all instances of the series. You will then see a red dot on the program listing to indicate that the show is scheduled for recording.   Streaming Recorded TV Click on Recorded TV from the home screen to access your previously recorded TV programs. Click on the selection you wish to stream. Click on Play. If you receive this error message, you’ll need to install the streaming pack for Remote Potato. This is found on the same download page as installation files. (See link below) The Begin from slider allows you to start playback from the start (by default) or a different time of the program by moving the slider. The Quality (bitrate) setting  allows you to choose the quality of the playback. We found the video quality on the Normal setting to be pretty lousy, and Low was just pointless. High was the best overall viewing experience as it provided smooth quality video playback. We experienced significant stuttering during playback using the Ultra High setting.   Click Start when you are ready to begin. When playback begins you’ll see a slider at the top right.   Move the slider left or right to increase or decrease the size of the video. There’s also a button to switch to full screen.   Media Center users who travel frequently or are always on the go will likely find Remote Potato to be a blessing. Since being released earlier this year, updates for Remote Potato have come fast and furious. The latest beta release includes support for streaming music and photos. If you like those nice network TV logos, check out our article on adding TV channel logos to Windows Media Center. Downloads and Links Download Remote Potato and Streaming Pack Find your IP address Sign Up for a Domain Name at DynDNS.com Similar Articles Productive Geek Tips Schedule Updates for Windows Media CenterUsing Netflix Watchnow in Windows Vista Media Center (Gmedia)Add a Sleep Timer to Windows 7 Media CenterStartup Customizations for Media Center in Windows 7Enable Media Streaming in Windows Home Server to Windows Media Player TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips DVDFab 6 Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 FoxClocks adds World Times in your Statusbar (Firefox) Have Fun Editing Photo Editing with Citrify Outlook Connector Upgrade Error Gadfly is a cool Twitter/Silverlight app Enable DreamScene in Windows 7 Microsoft’s “How Do I ?” Videos

    Read the article

  • Looking For iPhone 4S Alternatives? Here Are 3 Smartphones You Should Consider

    - by Gopinath
    If you going to buy iPhone 4S on a two year contract in USA, Europe or Australia you may not find it expensive. But if you are planning to buy it in any other parts of the world, you will definitely feel the heat of ridiculous iPhone 4S price. In India iPhone 4S costs approximately costs $1000 which is 30% more than the price tag of an unlocked iPhone sold in USA. Personally I love iPhones as there is no match for the user experience provided by Apple as well as the wide range of really meaning applications available for iPhone. But it breaks heart to spend $1000 for a phone and I’m forced to look at alternates available in the market. Here are the four iPhone 4S alternates available in almost all the countries where we can buy iPhone 4S Google Galaxy Nexus The Galaxy Nexus is Google’s own Android smartphone manufactured by Samsung and sold under the brand name of Google Nexus. Galaxy Nexus is the pure Android phone available in the market without any bloat software or custom user interfaces like other Androids available in the market. Galaxy Nexus is also the first Android phone to be shipped with the latest version of Android OS, Ice Cream Sandwich. This phone is the benchmark for the rest of Android phones that are going to enter the market soon. In the words of Google this smartphone is called as “Galaxy Nexus: Simple. Beautiful. Beyond Smart.”.  BGR review summarizes the phone as This is almost comical at this point, but the Samsung Galaxy Nexus is my favourite Android device in the world. Easily replacing the HTC Rezound, the Motorola DROID RAZR, and Samsung Galaxy S II, the Galaxy Nexus champions in a brand new version of Android that pushes itself further than almost any other mobile OS in the industry. Samsung Galaxy S II The one single company that is able to sell more smartphones than Apple is Samsung. Samsung recently displaced Apple from the top smartphone seller spot and occupied it with loads of pride. Samsung’s Galaxy S II fits as one the best alternatives to Apple’s iPhone 4S with it’s beautiful design and remarkable performance. Engadget summarizes Samsung Galaxy S2 review as It’s the best Android smartphone yet, but more importantly, it might well be the best smartphone, period. Of course, a 4.3-inch screen size won’t suit everyone, no matter how stupendously thin the device that carries it may be, and we also can’t say for sure that the Galaxy S II would justify a long-term iOS user foresaking his investment into one ecosystem and making the leap to another. Nonetheless, if you’re asking us what smartphone to buy today, unconstrained by such externalities, the Galaxy S II would be the clear choice. Sometimes it’s just as simple as that. Nokia Lumia 800 Here comes unexpected Windows Phone in to the boxing ring. May be they are not as great as Androids available in the market today, but they are picking up very quickly. Especially the Nokia Lumia 800 seems to be first ever Windows Phone 7 aimed at competing serious with Androids and iPhones available in the market. There are reports that Nokia Lumia 800 is outselling all Androids in UK and few high profile tech blogs are calling it as the king of Windows Phone. Considering this phone while evaluating the alternative of iPhone 4S will not disappoint you. We assure. Droid RAZR Remember the Motorola Driod that swept entire Android market share couple of years ago? The first two version of Motorola Droids were the best in the market and they out performed almost every other Android phone those days. The invasion of Samsung Androids, Motorola lost it charm. With the recent release of Droid RAZR, Motorola seems to be in the right direction to reclaiming the prestige. Droid RAZR is the thinnest smartphone available in the market and it’s beauty is not just skin deep. Here is a review of the phone from Engadget blog the RAZR’s beauty is not only skin deep. The LTE radio, 1.2GHz dual-core processor and 1GB of RAM make sure this sleek number is ready to run with the big boys. It kept pace with, and in some cases clearly outclassed its high-end competition. Despite its deficiencies in the display department and underwhelming battery life, the RAZR looks to be a perfectly viable alternative when considering the similarly-pricey Rezound and Galaxy Nexus Further Reading So we have seen the four alternates of iPhone 4S available in the market and I personally love to buy a Samsung smartphone if I’m don’t have money to afford an iPhone 4S. If you are interested in deep diving into the alternates, here few links that help you do more research Apple iPhone 4S vs. Samsung Galaxy Nexus vs. Motorola Droid RAZR: How Their Specs Compare by Huffington Post Nokia Lumia 800 vs. iPhone 4S vs. Nexus Galaxy: Spec Smackdown by PC World Browser Speed Test: Nokia Lumia 800 vs. iPhone 4S vs. Samsung Galaxy S II – by Gizmodo iPhone 4S vs Samsung Galaxy S II by pocket lint Apple iPhone 4S vs. Samsung Galaxy S II by techie buzz This article titled,Looking For iPhone 4S Alternatives? Here Are 3 Smartphones You Should Consider, was originally published at Tech Dreams. Grab our rss feed or fan us on Facebook to get updates from us.

    Read the article

  • How To Switch Back to Outlook 2007 After the 2010 Beta Ends

    - by Matthew Guay
    Are you switching back to Outlook 2007 after trying out Office 2010 beta?  Here’s how you can restore your Outlook data and keep everything working fine after the switch. Whenever you install a newer version of Outlook, it will convert your profile and data files to the latest format.  This makes them work the best in the newer version of Outlook, but may cause problems if you decide to revert to an older version.  If you installed Outlook 2010 beta, it automatically imported and converted your profile from Outlook 2007.  When the beta expires, you will either have to reinstall Office 2007 or purchase a copy of Office 2010. If you choose to reinstall Office 2007, you may notice an error message each time you open Outlook. Outlook will still work fine and all of your data will be saved, but this error message can get annoying.  Here’s how you can create a new profile, import all of your old data, and get rid of this error message. Banish the Error Message with a New Profile To get rid of this error message, we need to create a new Outlook profile.  First, make sure your Outlook data files are backed up.  Your messages, contacts, calendar, and more are stored in a .pst file in your appdata folder.  Enter the following in the address bar of an Explorer window to open your Outlook data folder, and replace username with your user name: C:\Users\username\AppData\Local\Microsoft\Outlook Copy the Outlook Personal Folders (.pst) files that contain your data. Its name is usually your email address, though it may have a different name.  If in doubt, select all of the Outlook Personal Folders files, copy them, and save them in another safe place (such as your Documents folder). Now, let’s remove your old profile.  Open Control Panel, and select Mail.  In Windows Vista or 7, simply enter “Mail” in the search box and select the first entry. Click the “Show Profiles…” button. Now, select your Outlook profile, and click Remove.  This will not delete your data files, but will remove them from Outlook. Press Yes to confirm that you wish to remove this profile. Open Outlook, and you will be asked to create a new profile.  Enter a name for your new profile, and press Ok. Now enter your email account information to setup Outlook as normal. Outlook will attempt to automatically configure your account settings.  This usually works for accounts with popular email systems, but if it fails to find your information you can enter it manually.  Press finish when everything’s done. Outlook will now go ahead and download messages from your email account.  In our test, we used a Gmail account that still had all of our old messages online.  Those files are backed up in our old Outlook data files, so we can save time and not download them.  Click the Send/Receive button on the bottom of the window, and select “Cancel Send/Receive”. Restore Your Old Outlook Data Let’s add our old Outlook file back to Outlook 2007.  Exit Outlook, and then go back to Control Panel, and select Mail as above.  This time, click the Data Files button. Click the Add button on the top left. Select “Office Outlook Personal Folders File (.pst)”, and click Ok. Now, select your old Outlook data file.  It should be in the folder that opens by default; if not, browse to the backup copy we saved earlier, and select it. Press Ok at the next dialog to accept the default settings. Now, select the data file we just imported, and click “Set as Default”. Now, all of your old messages, appointments, contacts, and everything else will be right in Outlook ready for you.  Click Ok, and then open Outlook to see the change. All of the data that was in Outlook 2010 is now ready to use in Outlook 2007.  You won’t have to wait to re-download all of your emails from the server since everything’s still here ready to be used.  And when you open Outlook, you won’t see any error messages, either! Conclusion Migrating your Outlook profile back to Outlook 2007 is fairly easy, and with these steps, you can avoid seeing an error message every time you open Outlook.  With all your data in tact, you’re ready to get back to work instead of getting frustrated with Outlook.  Many of us use webmail and keep all of our messages in the cloud, but even on broadband connections it can take a long time to download several gigabytes of emails. Similar Articles Productive Geek Tips Opening Attachments in Outlook 2007 by KeyboardQuickly Create Appointments from Tasks with Outlook 2007’s To-Do BarFix For Outlook 2007 Constantly Asking for Password on VistaPin Microsoft Outlook to the Desktop BackgroundOur Look at the LinkedIn Social Connector for Outlook TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips DVDFab 6 Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 Download Free MP3s from Amazon Awe inspiring, inter-galactic theme (Win 7) Case Study – How to Optimize Popular Wordpress Sites Restore Hidden Updates in Windows 7 & Vista Iceland an Insurance Job? Find Downloads and Add-ins for Outlook

    Read the article

  • Our Look at the Internet Explorer 9 Platform Preview

    - by Asian Angel
    Have you been hearing all about Microsoft’s work on Internet Explorer 9 and are curious about it? If you are wanting a taste of the upcoming release then join us as we take a look at the Internet Explorer 9 Platform Preview. Note: Windows Vista and Server 2008 users may need to install a Platform Update (see link at bottom for more information). Getting Started If you are curious about the systems that the platform preview will operate on here is an excerpt from the FAQ page (link provided below). There are two important points of interest here: The platform preview does not replace your regular Internet Explorer installation The platform preview (and the final version of Internet Explorer 9) will not work on Windows XP There really is not a lot to the install process…basically all that you will have to deal with is the “EULA Window” and the “Install Finished Window”. Note: The platform preview will install to a “Program Files Folder” named “Internet Explorer Platform Preview”. Internet Explorer 9 Platform Preview in Action When you start the platform preview up for the first time you will be presented with the Internet Explorer 9 Test Drive homepage. Do not be surprised that there is not a lot to the UI at this time…but you can get a good idea of how Internet Explorer will act. Note: You will not be able to alter the “Homepage” for the platform preview. Of the four menus available there are two that will be of interest to most people…the “Page & Debug Menus”. If you go to navigate to a new webpage you will need to go through the “Page Menu” unless you have installed the Address Bar Mini-Tool (shown below). Want to see what a webpage will look like in an older version of Internet Explorer? Then choose your version in the “Debug Menu”. We did find it humorous that IE6 was excluded from the choices offered. Here is what the URL entry window looks like if you are using the “Page Menu” to navigate between websites. Here is the main page of the site here displayed in “IE9 Mode”…looking good. Here is the main page viewed in “Forced IE5 Document Mode”. There were some minor differences (colors, sidebar, etc.) in how the main page displayed in comparison to “IE9 Mode”. Being able to switch between modes makes for an interesting experience… As you can see there is not much to the “Context Menu” at the moment. Notice the slightly altered icon for the platform preview… “Add” an Address Bar of Sorts If you would like to use a “make-shift” Address Bar with the platform preview you can set up the portable file (IE9browser.exe) for the Internet Explorer 9 Test Platform Addressbar Mini-Tool. Just place it in an appropriate folder, create a shortcut for it, and it will be ready to go. Here is a close look at the left side of the Address Bar Mini-Tool. You can try to access “IE Favorites” but may have sporadic results like those we experienced during our tests. Note: The Address Bar Mini-Tool will not line up perfectly with the platform preview but still makes a nice addition. And a close look at the right side of the Address Bar Mini-Tool. In order to completely shut down the Address Bar Mini-Tool you will need to click on “Close”. Each time that you enter an address into the Address Bar Mini-Tool it will open a new window/instance of the platform preview. Note: During our tests we noticed that clicking on “Home” in the “Page Menu” opened the previously viewed website but once we closed and restarted the platform preview the test drive website was the starting/home page again. Even if the platform preview is not running the Address Bar Mini-Tool can still run as shown here. Note: You will not be able to move the Address Bar Mini-Tool from its’ locked-in position at the top of the screen. Now for some fun. With just the Address Bar Mini-Tool open you can enter an address and cause the platform preview to open. Here is our example from above now open in the platform preview…good to go. Conclusion During our tests we did experience the occasional crash but overall we were pleased with the platform preview’s performance. The platform preview handled rather well and definitely seemed much quicker than Internet Explorer 8 on our test system (a definite bonus!). If you are an early adopter then this could certainly get you in the mood for the upcoming beta releases! Links Download the Internet Explorer 9 Preview Platform Download the Internet Explorer 9 Test Platform Addressbar Mini-Tool Information about Platform Update for Windows Vista & Server 2008 View the Internet Explorer 9 Platform Preview FAQ Similar Articles Productive Geek Tips Mysticgeek Blog: A Look at Internet Explorer 8 Beta 1 on Windows XPMake Ctrl+Tab in Internet Explorer 7 Use Most Recent OrderRemove ISP Text or Corporate Branding from Internet Explorer Title BarWhy Can’t I Turn the Details/Preview Panes On or Off in Windows Vista Explorer?Prevent Firefox or Internet Explorer from Printing the URL on Every Page TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips DVDFab 6 Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 Awesome Lyrics Finder for Winamp & Windows Media Player Download Videos from Hulu Pixels invade Manhattan Convert PDF files to ePub to read on your iPad Hide Your Confidential Files Inside Images Get Wildlife Photography Tips at BBC’s PhotoMasterClasses

    Read the article

  • Creating packages in code – Execute SQL Task

    The Execute SQL Task is for obvious reasons very well used, so I thought if you are building packages in code the chances are you will be using it. Using the task basic features of the task are quite straightforward, add the task and set some properties, just like any other. When you start interacting with variables though it can be a little harder to grasp so these samples should see you through. Some of these more advanced features are explained in much more detail in our ever popular post The Execute SQL Task, here I’ll just be showing you how to implement them in code. The abbreviated code blocks below demonstrate the different features of the task. The complete code has been encapsulated into a sample class which you can download (ExecSqlPackage.cs). Each feature described has its own method in the sample class which is mentioned after the code block. This first sample just shows adding the task, setting the basic properties for a connection and of course an SQL statement. Package package = new Package(); // Add the SQL OLE-DB connection ConnectionManager sqlConnection = AddSqlConnection(package, "localhost", "master"); // Add the SQL Task package.Executables.Add("STOCK:SQLTask"); // Get the task host wrapper TaskHost taskHost = package.Executables[0] as TaskHost; // Set required properties taskHost.Properties["Connection"].SetValue(taskHost, sqlConnection.ID); taskHost.Properties["SqlStatementSource"].SetValue(taskHost, "SELECT * FROM sysobjects"); For the full version of this code, see the CreatePackage method in the sample class. The AddSqlConnection method is a helper method that adds an OLE-DB connection to the package, it is of course in the sample class file too. Returning a single value with a Result Set The following sample takes a different approach, getting a reference to the ExecuteSQLTask object task itself, rather than just using the non-specific TaskHost as above. Whilst it means we need to add an extra reference to our project (Microsoft.SqlServer.SQLTask) it makes coding much easier as we have compile time validation of any property and types we use. For the more complex properties that is very valuable and saves a lot of time during development. The query has also been changed to return a single value, one row and one column. The sample shows how we can return that value into a variable, which we also add to our package in the code. To do this manually you would set the Result Set property on the General page to Single Row and map the variable on the Result Set page in the editor. Package package = new Package(); // Add the SQL OLE-DB connection ConnectionManager sqlConnection = AddSqlConnection(package, "localhost", "master"); // Add the SQL Task package.Executables.Add("STOCK:SQLTask"); // Get the task host wrapper TaskHost taskHost = package.Executables[0] as TaskHost; // Add variable to hold result value package.Variables.Add("Variable", false, "User", 0); // Get the task object ExecuteSQLTask task = taskHost.InnerObject as ExecuteSQLTask; // Set core properties task.Connection = sqlConnection.Name; task.SqlStatementSource = "SELECT id FROM sysobjects WHERE name = 'sysrowsets'"; // Set single row result set task.ResultSetType = ResultSetType.ResultSetType_SingleRow; // Add result set binding, map the id column to variable task.ResultSetBindings.Add(); IDTSResultBinding resultBinding = task.ResultSetBindings.GetBinding(0); resultBinding.ResultName = "id"; resultBinding.DtsVariableName = "User::Variable"; For the full version of this code, see the CreatePackageResultVariable method in the sample class. The other types of Result Set behaviour are just a variation on this theme, set the property and map the result binding as required. Parameter Mapping for SQL Statements This final example uses a parameterised SQL statement, with the coming from a variable. The syntax varies slightly between connection types, as explained in the Working with Parameters and Return Codes in the Execute SQL Taskhelp topic, but OLE-DB is the most commonly used, for which a question mark is the parameter value placeholder. Package package = new Package(); // Add the SQL OLE-DB connection ConnectionManager sqlConnection = AddSqlConnection(package, ".", "master"); // Add the SQL Task package.Executables.Add("STOCK:SQLTask"); // Get the task host wrapper TaskHost taskHost = package.Executables[0] as TaskHost; // Get the task object ExecuteSQLTask task = taskHost.InnerObject as ExecuteSQLTask; // Set core properties task.Connection = sqlConnection.Name; task.SqlStatementSource = "SELECT id FROM sysobjects WHERE name = ?"; // Add variable to hold parameter value package.Variables.Add("Variable", false, "User", "sysrowsets"); // Add input parameter binding task.ParameterBindings.Add(); IDTSParameterBinding parameterBinding = task.ParameterBindings.GetBinding(0); parameterBinding.DtsVariableName = "User::Variable"; parameterBinding.ParameterDirection = ParameterDirections.Input; parameterBinding.DataType = (int)OleDBDataTypes.VARCHAR; parameterBinding.ParameterName = "0"; parameterBinding.ParameterSize = 255; For the full version of this code, see the CreatePackageParameterVariable method in the sample class. You’ll notice the data type has to be specified for the parameter IDTSParameterBinding .DataType Property, and these type codes are connection specific too. My enumeration I wrote several years ago is shown below was probably done by reverse engineering a package and also the API header file, but I recently found a very handy post that covers more connections as well for exactly this, Setting the DataType of IDTSParameterBinding objects (Execute SQL Task). /// <summary> /// Enumeration of OLE-DB types, used when mapping OLE-DB parameters. /// </summary> private enum OleDBDataTypes { BYTE = 0x11, CURRENCY = 6, DATE = 7, DB_VARNUMERIC = 0x8b, DBDATE = 0x85, DBTIME = 0x86, DBTIMESTAMP = 0x87, DECIMAL = 14, DOUBLE = 5, FILETIME = 0x40, FLOAT = 4, GUID = 0x48, LARGE_INTEGER = 20, LONG = 3, NULL = 1, NUMERIC = 0x83, NVARCHAR = 130, SHORT = 2, SIGNEDCHAR = 0x10, ULARGE_INTEGER = 0x15, ULONG = 0x13, USHORT = 0x12, VARCHAR = 0x81, VARIANT_BOOL = 11 } Download Sample code ExecSqlPackage.cs (10KB)

    Read the article

  • Parallelism in .NET – Part 9, Configuration in PLINQ and TPL

    - by Reed
    Parallel LINQ and the Task Parallel Library contain many options for configuration.  Although the default configuration options are often ideal, there are times when customizing the behavior is desirable.  Both frameworks provide full configuration support. When working with Data Parallelism, there is one primary configuration option we often need to control – the number of threads we want the system to use when parallelizing our routine.  By default, PLINQ and the TPL both use the ThreadPool to schedule tasks.  Given the major improvements in the ThreadPool in CLR 4, this default behavior is often ideal.  However, there are times that the default behavior is not appropriate.  For example, if you are working on multiple threads simultaneously, and want to schedule parallel operations from within both threads, you might want to consider restricting each parallel operation to using a subset of the processing cores of the system.  Not doing this might over-parallelize your routine, which leads to inefficiencies from having too many context switches. In the Task Parallel Library, configuration is handled via the ParallelOptions class.  All of the methods of the Parallel class have an overload which accepts a ParallelOptions argument. We configure the Parallel class by setting the ParallelOptions.MaxDegreeOfParallelism property.  For example, let’s revisit one of the simple data parallel examples from Part 2: Parallel.For(0, pixelData.GetUpperBound(0), row => { for (int col=0; col < pixelData.GetUpperBound(1); ++col) { pixelData[row, col] = AdjustContrast(pixelData[row, col], minPixel, maxPixel); } }); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Here, we’re looping through an image, and calling a method on each pixel in the image.  If this was being done on a separate thread, and we knew another thread within our system was going to be doing a similar operation, we likely would want to restrict this to using half of the cores on the system.  This could be accomplished easily by doing: var options = new ParallelOptions(); options.MaxDegreeOfParallelism = Math.Max(Environment.ProcessorCount / 2, 1); Parallel.For(0, pixelData.GetUpperBound(0), options, row => { for (int col=0; col < pixelData.GetUpperBound(1); ++col) { pixelData[row, col] = AdjustContrast(pixelData[row, col], minPixel, maxPixel); } }); Now, we’re restricting this routine to using no more than half the cores in our system.  Note that I included a check to prevent a single core system from supplying zero; without this check, we’d potentially cause an exception.  I also did not hard code a specific value for the MaxDegreeOfParallelism property.  One of our goals when parallelizing a routine is allowing it to scale on better hardware.  Specifying a hard-coded value would contradict that goal. Parallel LINQ also supports configuration, and in fact, has quite a few more options for configuring the system.  The main configuration option we most often need is the same as our TPL option: we need to supply the maximum number of processing threads.  In PLINQ, this is done via a new extension method on ParallelQuery<T>: ParallelEnumerable.WithDegreeOfParallelism. Let’s revisit our declarative data parallelism sample from Part 6: double min = collection.AsParallel().Min(item => item.PerformComputation()); Here, we’re performing a computation on each element in the collection, and saving the minimum value of this operation.  If we wanted to restrict this to a limited number of threads, we would add our new extension method: int maxThreads = Math.Max(Environment.ProcessorCount / 2, 1); double min = collection .AsParallel() .WithDegreeOfParallelism(maxThreads) .Min(item => item.PerformComputation()); This automatically restricts the PLINQ query to half of the threads on the system. PLINQ provides some additional configuration options.  By default, PLINQ will occasionally revert to processing a query in parallel.  This occurs because many queries, if parallelized, typically actually cause an overall slowdown compared to a serial processing equivalent.  By analyzing the “shape” of the query, PLINQ often decides to run a query serially instead of in parallel.  This can occur for (taken from MSDN): Queries that contain a Select, indexed Where, indexed SelectMany, or ElementAt clause after an ordering or filtering operator that has removed or rearranged original indices. Queries that contain a Take, TakeWhile, Skip, SkipWhile operator and where indices in the source sequence are not in the original order. Queries that contain Zip or SequenceEquals, unless one of the data sources has an originally ordered index and the other data source is indexable (i.e. an array or IList(T)). Queries that contain Concat, unless it is applied to indexable data sources. Queries that contain Reverse, unless applied to an indexable data source. If the specific query follows these rules, PLINQ will run the query on a single thread.  However, none of these rules look at the specific work being done in the delegates, only at the “shape” of the query.  There are cases where running in parallel may still be beneficial, even if the shape is one where it typically parallelizes poorly.  In these cases, you can override the default behavior by using the WithExecutionMode extension method.  This would be done like so: var reversed = collection .AsParallel() .WithExecutionMode(ParallelExecutionMode.ForceParallelism) .Select(i => i.PerformComputation()) .Reverse(); Here, the default behavior would be to not parallelize the query unless collection implemented IList<T>.  We can force this to run in parallel by adding the WithExecutionMode extension method in the method chain. Finally, PLINQ has the ability to configure how results are returned.  When a query is filtering or selecting an input collection, the results will need to be streamed back into a single IEnumerable<T> result.  For example, the method above returns a new, reversed collection.  In this case, the processing of the collection will be done in parallel, but the results need to be streamed back to the caller serially, so they can be enumerated on a single thread. This streaming introduces overhead.  IEnumerable<T> isn’t designed with thread safety in mind, so the system needs to handle merging the parallel processes back into a single stream, which introduces synchronization issues.  There are two extremes of how this could be accomplished, but both extremes have disadvantages. The system could watch each thread, and whenever a thread produces a result, take that result and send it back to the caller.  This would mean that the calling thread would have access to the data as soon as data is available, which is the benefit of this approach.  However, it also means that every item is introducing synchronization overhead, since each item needs to be merged individually. On the other extreme, the system could wait until all of the results from all of the threads were ready, then push all of the results back to the calling thread in one shot.  The advantage here is that the least amount of synchronization is added to the system, which means the query will, on a whole, run the fastest.  However, the calling thread will have to wait for all elements to be processed, so this could introduce a long delay between when a parallel query begins and when results are returned. The default behavior in PLINQ is actually between these two extremes.  By default, PLINQ maintains an internal buffer, and chooses an optimal buffer size to maintain.  Query results are accumulated into the buffer, then returned in the IEnumerable<T> result in chunks.  This provides reasonably fast access to the results, as well as good overall throughput, in most scenarios. However, if we know the nature of our algorithm, we may decide we would prefer one of the other extremes.  This can be done by using the WithMergeOptions extension method.  For example, if we know that our PerformComputation() routine is very slow, but also variable in runtime, we may want to retrieve results as they are available, with no bufferring.  This can be done by changing our above routine to: var reversed = collection .AsParallel() .WithExecutionMode(ParallelExecutionMode.ForceParallelism) .WithMergeOptions(ParallelMergeOptions.NotBuffered) .Select(i => i.PerformComputation()) .Reverse(); On the other hand, if are already on a background thread, and we want to allow the system to maximize its speed, we might want to allow the system to fully buffer the results: var reversed = collection .AsParallel() .WithExecutionMode(ParallelExecutionMode.ForceParallelism) .WithMergeOptions(ParallelMergeOptions.FullyBuffered) .Select(i => i.PerformComputation()) .Reverse(); Notice, also, that you can specify multiple configuration options in a parallel query.  By chaining these extension methods together, we generate a query that will always run in parallel, and will always complete before making the results available in our IEnumerable<T>.

    Read the article

  • New features of C# 4.0

    This article covers New features of C# 4.0. Article has been divided into below sections. Introduction. Dynamic Lookup. Named and Optional Arguments. Features for COM interop. Variance. Relationship with Visual Basic. Resources. Other interested readings… 22 New Features of Visual Studio 2008 for .NET Professionals 50 New Features of SQL Server 2008 IIS 7.0 New features Introduction It is now close to a year since Microsoft Visual C# 3.0 shipped as part of Visual Studio 2008. In the VS Managed Languages team we are hard at work on creating the next version of the language (with the unsurprising working title of C# 4.0), and this document is a first public description of the planned language features as we currently see them. Please be advised that all this is in early stages of production and is subject to change. Part of the reason for sharing our plans in public so early is precisely to get the kind of feedback that will cause us to improve the final product before it rolls out. Simultaneously with the publication of this whitepaper, a first public CTP (community technology preview) of Visual Studio 2010 is going out as a Virtual PC image for everyone to try. Please use it to play and experiment with the features, and let us know of any thoughts you have. We ask for your understanding and patience working with very early bits, where especially new or newly implemented features do not have the quality or stability of a final product. The aim of the CTP is not to give you a productive work environment but to give you the best possible impression of what we are working on for the next release. The CTP contains a number of walkthroughs, some of which highlight the new language features of C# 4.0. Those are excellent for getting a hands-on guided tour through the details of some common scenarios for the features. You may consider this whitepaper a companion document to these walkthroughs, complementing them with a focus on the overall language features and how they work, as opposed to the specifics of the concrete scenarios. C# 4.0 The major theme for C# 4.0 is dynamic programming. Increasingly, objects are “dynamic” in the sense that their structure and behavior is not captured by a static type, or at least not one that the compiler knows about when compiling your program. Some examples include a. objects from dynamic programming languages, such as Python or Ruby b. COM objects accessed through IDispatch c. ordinary .NET types accessed through reflection d. objects with changing structure, such as HTML DOM objects While C# remains a statically typed language, we aim to vastly improve the interaction with such objects. A secondary theme is co-evolution with Visual Basic. Going forward we will aim to maintain the individual character of each language, but at the same time important new features should be introduced in both languages at the same time. They should be differentiated more by style and feel than by feature set. The new features in C# 4.0 fall into four groups: Dynamic lookup Dynamic lookup allows you to write method, operator and indexer calls, property and field accesses, and even object invocations which bypass the C# static type checking and instead gets resolved at runtime. Named and optional parameters Parameters in C# can now be specified as optional by providing a default value for them in a member declaration. When the member is invoked, optional arguments can be omitted. Furthermore, any argument can be passed by parameter name instead of position. COM specific interop features Dynamic lookup as well as named and optional parameters both help making programming against COM less painful than today. On top of that, however, we are adding a number of other small features that further improve the interop experience. Variance It used to be that an IEnumerable<string> wasn’t an IEnumerable<object>. Now it is – C# embraces type safe “co-and contravariance” and common BCL types are updated to take advantage of that. Dynamic Lookup Dynamic lookup allows you a unified approach to invoking things dynamically. With dynamic lookup, when you have an object in your hand you do not need to worry about whether it comes from COM, IronPython, the HTML DOM or reflection; you just apply operations to it and leave it to the runtime to figure out what exactly those operations mean for that particular object. This affords you enormous flexibility, and can greatly simplify your code, but it does come with a significant drawback: Static typing is not maintained for these operations. A dynamic object is assumed at compile time to support any operation, and only at runtime will you get an error if it wasn’t so. Oftentimes this will be no loss, because the object wouldn’t have a static type anyway, in other cases it is a tradeoff between brevity and safety. In order to facilitate this tradeoff, it is a design goal of C# to allow you to opt in or opt out of dynamic behavior on every single call. The dynamic type C# 4.0 introduces a new static type called dynamic. When you have an object of type dynamic you can “do things to it” that are resolved only at runtime: dynamic d = GetDynamicObject(…); d.M(7); The C# compiler allows you to call a method with any name and any arguments on d because it is of type dynamic. At runtime the actual object that d refers to will be examined to determine what it means to “call M with an int” on it. The type dynamic can be thought of as a special version of the type object, which signals that the object can be used dynamically. It is easy to opt in or out of dynamic behavior: any object can be implicitly converted to dynamic, “suspending belief” until runtime. Conversely, there is an “assignment conversion” from dynamic to any other type, which allows implicit conversion in assignment-like constructs: dynamic d = 7; // implicit conversion int i = d; // assignment conversion Dynamic operations Not only method calls, but also field and property accesses, indexer and operator calls and even delegate invocations can be dispatched dynamically: dynamic d = GetDynamicObject(…); d.M(7); // calling methods d.f = d.P; // getting and settings fields and properties d[“one”] = d[“two”]; // getting and setting thorugh indexers int i = d + 3; // calling operators string s = d(5,7); // invoking as a delegate The role of the C# compiler here is simply to package up the necessary information about “what is being done to d”, so that the runtime can pick it up and determine what the exact meaning of it is given an actual object d. Think of it as deferring part of the compiler’s job to runtime. The result of any dynamic operation is itself of type dynamic. Runtime lookup At runtime a dynamic operation is dispatched according to the nature of its target object d: COM objects If d is a COM object, the operation is dispatched dynamically through COM IDispatch. This allows calling to COM types that don’t have a Primary Interop Assembly (PIA), and relying on COM features that don’t have a counterpart in C#, such as indexed properties and default properties. Dynamic objects If d implements the interface IDynamicObject d itself is asked to perform the operation. Thus by implementing IDynamicObject a type can completely redefine the meaning of dynamic operations. This is used intensively by dynamic languages such as IronPython and IronRuby to implement their own dynamic object models. It will also be used by APIs, e.g. by the HTML DOM to allow direct access to the object’s properties using property syntax. Plain objects Otherwise d is a standard .NET object, and the operation will be dispatched using reflection on its type and a C# “runtime binder” which implements C#’s lookup and overload resolution semantics at runtime. This is essentially a part of the C# compiler running as a runtime component to “finish the work” on dynamic operations that was deferred by the static compiler. Example Assume the following code: dynamic d1 = new Foo(); dynamic d2 = new Bar(); string s; d1.M(s, d2, 3, null); Because the receiver of the call to M is dynamic, the C# compiler does not try to resolve the meaning of the call. Instead it stashes away information for the runtime about the call. This information (often referred to as the “payload”) is essentially equivalent to: “Perform an instance method call of M with the following arguments: 1. a string 2. a dynamic 3. a literal int 3 4. a literal object null” At runtime, assume that the actual type Foo of d1 is not a COM type and does not implement IDynamicObject. In this case the C# runtime binder picks up to finish the overload resolution job based on runtime type information, proceeding as follows: 1. Reflection is used to obtain the actual runtime types of the two objects, d1 and d2, that did not have a static type (or rather had the static type dynamic). The result is Foo for d1 and Bar for d2. 2. Method lookup and overload resolution is performed on the type Foo with the call M(string,Bar,3,null) using ordinary C# semantics. 3. If the method is found it is invoked; otherwise a runtime exception is thrown. Overload resolution with dynamic arguments Even if the receiver of a method call is of a static type, overload resolution can still happen at runtime. This can happen if one or more of the arguments have the type dynamic: Foo foo = new Foo(); dynamic d = new Bar(); var result = foo.M(d); The C# runtime binder will choose between the statically known overloads of M on Foo, based on the runtime type of d, namely Bar. The result is again of type dynamic. The Dynamic Language Runtime An important component in the underlying implementation of dynamic lookup is the Dynamic Language Runtime (DLR), which is a new API in .NET 4.0. The DLR provides most of the infrastructure behind not only C# dynamic lookup but also the implementation of several dynamic programming languages on .NET, such as IronPython and IronRuby. Through this common infrastructure a high degree of interoperability is ensured, but just as importantly the DLR provides excellent caching mechanisms which serve to greatly enhance the efficiency of runtime dispatch. To the user of dynamic lookup in C#, the DLR is invisible except for the improved efficiency. However, if you want to implement your own dynamically dispatched objects, the IDynamicObject interface allows you to interoperate with the DLR and plug in your own behavior. This is a rather advanced task, which requires you to understand a good deal more about the inner workings of the DLR. For API writers, however, it can definitely be worth the trouble in order to vastly improve the usability of e.g. a library representing an inherently dynamic domain. Open issues There are a few limitations and things that might work differently than you would expect. · The DLR allows objects to be created from objects that represent classes. However, the current implementation of C# doesn’t have syntax to support this. · Dynamic lookup will not be able to find extension methods. Whether extension methods apply or not depends on the static context of the call (i.e. which using clauses occur), and this context information is not currently kept as part of the payload. · Anonymous functions (i.e. lambda expressions) cannot appear as arguments to a dynamic method call. The compiler cannot bind (i.e. “understand”) an anonymous function without knowing what type it is converted to. One consequence of these limitations is that you cannot easily use LINQ queries over dynamic objects: dynamic collection = …; var result = collection.Select(e => e + 5); If the Select method is an extension method, dynamic lookup will not find it. Even if it is an instance method, the above does not compile, because a lambda expression cannot be passed as an argument to a dynamic operation. There are no plans to address these limitations in C# 4.0. Named and Optional Arguments Named and optional parameters are really two distinct features, but are often useful together. Optional parameters allow you to omit arguments to member invocations, whereas named arguments is a way to provide an argument using the name of the corresponding parameter instead of relying on its position in the parameter list. Some APIs, most notably COM interfaces such as the Office automation APIs, are written specifically with named and optional parameters in mind. Up until now it has been very painful to call into these APIs from C#, with sometimes as many as thirty arguments having to be explicitly passed, most of which have reasonable default values and could be omitted. Even in APIs for .NET however you sometimes find yourself compelled to write many overloads of a method with different combinations of parameters, in order to provide maximum usability to the callers. Optional parameters are a useful alternative for these situations. Optional parameters A parameter is declared optional simply by providing a default value for it: public void M(int x, int y = 5, int z = 7); Here y and z are optional parameters and can be omitted in calls: M(1, 2, 3); // ordinary call of M M(1, 2); // omitting z – equivalent to M(1, 2, 7) M(1); // omitting both y and z – equivalent to M(1, 5, 7) Named and optional arguments C# 4.0 does not permit you to omit arguments between commas as in M(1,,3). This could lead to highly unreadable comma-counting code. Instead any argument can be passed by name. Thus if you want to omit only y from a call of M you can write: M(1, z: 3); // passing z by name or M(x: 1, z: 3); // passing both x and z by name or even M(z: 3, x: 1); // reversing the order of arguments All forms are equivalent, except that arguments are always evaluated in the order they appear, so in the last example the 3 is evaluated before the 1. Optional and named arguments can be used not only with methods but also with indexers and constructors. Overload resolution Named and optional arguments affect overload resolution, but the changes are relatively simple: A signature is applicable if all its parameters are either optional or have exactly one corresponding argument (by name or position) in the call which is convertible to the parameter type. Betterness rules on conversions are only applied for arguments that are explicitly given – omitted optional arguments are ignored for betterness purposes. If two signatures are equally good, one that does not omit optional parameters is preferred. M(string s, int i = 1); M(object o); M(int i, string s = “Hello”); M(int i); M(5); Given these overloads, we can see the working of the rules above. M(string,int) is not applicable because 5 doesn’t convert to string. M(int,string) is applicable because its second parameter is optional, and so, obviously are M(object) and M(int). M(int,string) and M(int) are both better than M(object) because the conversion from 5 to int is better than the conversion from 5 to object. Finally M(int) is better than M(int,string) because no optional arguments are omitted. Thus the method that gets called is M(int). Features for COM interop Dynamic lookup as well as named and optional parameters greatly improve the experience of interoperating with COM APIs such as the Office Automation APIs. In order to remove even more of the speed bumps, a couple of small COM-specific features are also added to C# 4.0. Dynamic import Many COM methods accept and return variant types, which are represented in the PIAs as object. In the vast majority of cases, a programmer calling these methods already knows the static type of a returned object from context, but explicitly has to perform a cast on the returned value to make use of that knowledge. These casts are so common that they constitute a major nuisance. In order to facilitate a smoother experience, you can now choose to import these COM APIs in such a way that variants are instead represented using the type dynamic. In other words, from your point of view, COM signatures now have occurrences of dynamic instead of object in them. This means that you can easily access members directly off a returned object, or you can assign it to a strongly typed local variable without having to cast. To illustrate, you can now say excel.Cells[1, 1].Value = "Hello"; instead of ((Excel.Range)excel.Cells[1, 1]).Value2 = "Hello"; and Excel.Range range = excel.Cells[1, 1]; instead of Excel.Range range = (Excel.Range)excel.Cells[1, 1]; Compiling without PIAs Primary Interop Assemblies are large .NET assemblies generated from COM interfaces to facilitate strongly typed interoperability. They provide great support at design time, where your experience of the interop is as good as if the types where really defined in .NET. However, at runtime these large assemblies can easily bloat your program, and also cause versioning issues because they are distributed independently of your application. The no-PIA feature allows you to continue to use PIAs at design time without having them around at runtime. Instead, the C# compiler will bake the small part of the PIA that a program actually uses directly into its assembly. At runtime the PIA does not have to be loaded. Omitting ref Because of a different programming model, many COM APIs contain a lot of reference parameters. Contrary to refs in C#, these are typically not meant to mutate a passed-in argument for the subsequent benefit of the caller, but are simply another way of passing value parameters. It therefore seems unreasonable that a C# programmer should have to create temporary variables for all such ref parameters and pass these by reference. Instead, specifically for COM methods, the C# compiler will allow you to pass arguments by value to such a method, and will automatically generate temporary variables to hold the passed-in values, subsequently discarding these when the call returns. In this way the caller sees value semantics, and will not experience any side effects, but the called method still gets a reference. Open issues A few COM interface features still are not surfaced in C#. Most notably these include indexed properties and default properties. As mentioned above these will be respected if you access COM dynamically, but statically typed C# code will still not recognize them. There are currently no plans to address these remaining speed bumps in C# 4.0. Variance An aspect of generics that often comes across as surprising is that the following is illegal: IList<string> strings = new List<string>(); IList<object> objects = strings; The second assignment is disallowed because strings does not have the same element type as objects. There is a perfectly good reason for this. If it were allowed you could write: objects[0] = 5; string s = strings[0]; Allowing an int to be inserted into a list of strings and subsequently extracted as a string. This would be a breach of type safety. However, there are certain interfaces where the above cannot occur, notably where there is no way to insert an object into the collection. Such an interface is IEnumerable<T>. If instead you say: IEnumerable<object> objects = strings; There is no way we can put the wrong kind of thing into strings through objects, because objects doesn’t have a method that takes an element in. Variance is about allowing assignments such as this in cases where it is safe. The result is that a lot of situations that were previously surprising now just work. Covariance In .NET 4.0 the IEnumerable<T> interface will be declared in the following way: public interface IEnumerable<out T> : IEnumerable { IEnumerator<T> GetEnumerator(); } public interface IEnumerator<out T> : IEnumerator { bool MoveNext(); T Current { get; } } The “out” in these declarations signifies that the T can only occur in output position in the interface – the compiler will complain otherwise. In return for this restriction, the interface becomes “covariant” in T, which means that an IEnumerable<A> is considered an IEnumerable<B> if A has a reference conversion to B. As a result, any sequence of strings is also e.g. a sequence of objects. This is useful e.g. in many LINQ methods. Using the declarations above: var result = strings.Union(objects); // succeeds with an IEnumerable<object> This would previously have been disallowed, and you would have had to to some cumbersome wrapping to get the two sequences to have the same element type. Contravariance Type parameters can also have an “in” modifier, restricting them to occur only in input positions. An example is IComparer<T>: public interface IComparer<in T> { public int Compare(T left, T right); } The somewhat baffling result is that an IComparer<object> can in fact be considered an IComparer<string>! It makes sense when you think about it: If a comparer can compare any two objects, it can certainly also compare two strings. This property is referred to as contravariance. A generic type can have both in and out modifiers on its type parameters, as is the case with the Func<…> delegate types: public delegate TResult Func<in TArg, out TResult>(TArg arg); Obviously the argument only ever comes in, and the result only ever comes out. Therefore a Func<object,string> can in fact be used as a Func<string,object>. Limitations Variant type parameters can only be declared on interfaces and delegate types, due to a restriction in the CLR. Variance only applies when there is a reference conversion between the type arguments. For instance, an IEnumerable<int> is not an IEnumerable<object> because the conversion from int to object is a boxing conversion, not a reference conversion. Also please note that the CTP does not contain the new versions of the .NET types mentioned above. In order to experiment with variance you have to declare your own variant interfaces and delegate types. COM Example Here is a larger Office automation example that shows many of the new C# features in action. using System; using System.Diagnostics; using System.Linq; using Excel = Microsoft.Office.Interop.Excel; using Word = Microsoft.Office.Interop.Word; class Program { static void Main(string[] args) { var excel = new Excel.Application(); excel.Visible = true; excel.Workbooks.Add(); // optional arguments omitted excel.Cells[1, 1].Value = "Process Name"; // no casts; Value dynamically excel.Cells[1, 2].Value = "Memory Usage"; // accessed var processes = Process.GetProcesses() .OrderByDescending(p =&gt; p.WorkingSet) .Take(10); int i = 2; foreach (var p in processes) { excel.Cells[i, 1].Value = p.ProcessName; // no casts excel.Cells[i, 2].Value = p.WorkingSet; // no casts i++; } Excel.Range range = excel.Cells[1, 1]; // no casts Excel.Chart chart = excel.ActiveWorkbook.Charts. Add(After: excel.ActiveSheet); // named and optional arguments chart.ChartWizard( Source: range.CurrentRegion, Title: "Memory Usage in " + Environment.MachineName); //named+optional chart.ChartStyle = 45; chart.CopyPicture(Excel.XlPictureAppearance.xlScreen, Excel.XlCopyPictureFormat.xlBitmap, Excel.XlPictureAppearance.xlScreen); var word = new Word.Application(); word.Visible = true; word.Documents.Add(); // optional arguments word.Selection.Paste(); } } The code is much more terse and readable than the C# 3.0 counterpart. Note especially how the Value property is accessed dynamically. This is actually an indexed property, i.e. a property that takes an argument; something which C# does not understand. However the argument is optional. Since the access is dynamic, it goes through the runtime COM binder which knows to substitute the default value and call the indexed property. Thus, dynamic COM allows you to avoid accesses to the puzzling Value2 property of Excel ranges. Relationship with Visual Basic A number of the features introduced to C# 4.0 already exist or will be introduced in some form or other in Visual Basic: · Late binding in VB is similar in many ways to dynamic lookup in C#, and can be expected to make more use of the DLR in the future, leading to further parity with C#. · Named and optional arguments have been part of Visual Basic for a long time, and the C# version of the feature is explicitly engineered with maximal VB interoperability in mind. · NoPIA and variance are both being introduced to VB and C# at the same time. VB in turn is adding a number of features that have hitherto been a mainstay of C#. As a result future versions of C# and VB will have much better feature parity, for the benefit of everyone. Resources All available resources concerning C# 4.0 can be accessed through the C# Dev Center. Specifically, this white paper and other resources can be found at the Code Gallery site. Enjoy! span.fullpost {display:none;}

    Read the article

  • Adobe Photoshop Vs Lightroom Vs Aperture

    - by Aditi
    Adobe Photoshop is the standard choice for photographers, graphic artists and Web designers. Adobe Photoshop Lightroom  & Apple’s Aperture are also in the same league but the usage is vastly different. Although Photoshop is most popular & widely used by photographers, but in many ways it’s less relevant to photographers than ever before. As Lightroom & Aperture is aimed squarely at photographers for photo-processing. With this write up we are going to help you choose what is right for you and why. Adobe Photoshop Adobe Photoshop is the most liked tool for the detailed photo editing & designing work. Photoshop provides great features for rollover and Image slicing. Adobe Photoshop includes comprehensive optimization features for producing the highest quality Web graphics with the smallest possible file sizes. You can also create startling animations with it. Designers & Editors know how important precise masking is, PhotoShop lets you do that with various detailing tools. Art history brush, contact sheets, and history palette are some of the smart features, which add to its viability. Download Whether you’re producing printed pages or moving images, you can work more efficiently and produce better results because of its smooth integration across other adobe applications. Buy supporting layer effects, it allows you to quickly add drop shadows, inner and outer glows, bevels, and embossing to layers. It also provides Seamless Web Graphics Workflow. Photoshop is hands-down the BEST for editing. Photoshop Cons: • Slower, less precise editing features in Bridge • Processing lots of images requires actions and can be slower than exporting images from Lightroom • Much slower with editing and processing a large number of images Aperture Apple Aperture is aimed at the professional photographer who shoots predominantly raw files. It helps them to manage their workflow and perform their initial Raw conversion in a better way. Aperture provides adjustment tools such as Histogram to modify color and white balance, but most of the editing of photos is left for Photoshop. It gives users the option of seeing their photographs laid out like slides or negatives on a light table. It boasts of – stars, color-coding and easy techniques for filtering and picking images. Aperture has moved forward few steps than Photoshop, but most of the editing work has been left for Photoshop as it features seamless Photoshop integration. Aperture Pros: Aperture is a step up from the iPhoto software that comes with every Mac, and fairly easy to learn. Adjustments are made in a logical order from top to bottom of the menu. You can store the images in a library or any folder you choose. Aperture also works really well with direct Canon files. It is just $79 if you buy it through Apple’s App Store Moving forward, it will run on the iPad, and possibly the iPhone – Adobe products like Lightroom and Photoshop may never offer these options It is much nicer and simpler user interface. Lightroom Lightroom does a smashing job of basic fixing and editing. It is more advanced tool for photographers. They can use it to have a startling photography effect. Light room has many advanced features, which makes it one of the best tools for photographers and far ahead of the other two. They are Nondestructive editing. Nothing is actually changed in an image until the photo is exported. Better controls over organizing your photos. Lightroom helps to gather a group of photos to use in a slideshow. Lightroom has larger Compare and Survey views of images. Quickly customizable interface. Simple keystrokes allow you to perform different All Lightroom controls are kept available in panels right next to the photos. Always-available History palette, it doesn’t go when you close lightroom. You gain more colors to work with compared to Photoshop and with more precise control. Local control, or adjusting small parts of a photo without affecting anything else, has long been an important part of photography. In Lightroom 2, you can darken, lighten, and affect color and change sharpness and other aspects of specific areas in the photo simply by brushing your cursor across the areas. Photoshop has far more power in its Cloning and Healing Brush tools than Lightroom, but Lightroom offers simple cloning and healing that’s nondestructive. Lightroom supports the RAW formats of more cameras than Aperture. Lightroom provides the option of storing images outside the application in the file system. It costs less than photoshop. Download Why PhotoShop is advanced than Lightroom? There are countless image processing plug-ins on the market for doing specialized processing in Photoshop. For example, if your image needs sophisticated noise reduction, you can use the Noiseware plug-in with Photoshop to do a much better job or noise removal than Lightroom can do. Lightroom’s advantages over Aperture 3 Will always have better integration with Photoshop. Lightroom is backed by bigger and more active user community (So abundant availability for tutorials, etc.) Better noise reduction tool. Especially for photographers the Lens-distortion correction tool  is perfect Lightroom Cons: • Have to Import images to work on them • Slows down with over 10,000 images in the catalog • For processing just one or two images this is a slower workflow Photoshop Pros: • ACR has the same RAW processing controls as Lightroom • ACR Histogram is specialized to the chosen color space (Lightroom is locked into ProPhoto RGB color space with an sRGB tone curve) • Don’t have to Import images to open in Bridge or ACR • Ability to customize processing of RAW images with Photoshop Actions Pricing and Availability Get LightRoomGet PhotoShop Latest version Of Photoshop can be purchased from Adobe store and Adobe authorized reseller and it costs US$999. Latest version of Aperture can be bought for US$199 from Apple Online store or Mac App Store. You can buy latest version of LightRoom from Adobe Store or Adobe Authorized reseller for US$299. Related posts:Adobe Photoshop CS5 vs Photoshop CS5 extended Web based Alternatives to Photoshop 10 Free Alternatives for Adobe Photoshop Software

    Read the article

  • Parallelism in .NET – Part 11, Divide and Conquer via Parallel.Invoke

    - by Reed
    Many algorithms are easily written to work via recursion.  For example, most data-oriented tasks where a tree of data must be processed are much more easily handled by starting at the root, and recursively “walking” the tree.  Some algorithms work this way on flat data structures, such as arrays, as well.  This is a form of divide and conquer: an algorithm design which is based around breaking up a set of work recursively, “dividing” the total work in each recursive step, and “conquering” the work when the remaining work is small enough to be solved easily. Recursive algorithms, especially ones based on a form of divide and conquer, are often a very good candidate for parallelization. This is apparent from a common sense standpoint.  Since we’re dividing up the total work in the algorithm, we have an obvious, built-in partitioning scheme.  Once partitioned, the data can be worked upon independently, so there is good, clean isolation of data. Implementing this type of algorithm is fairly simple.  The Parallel class in .NET 4 includes a method suited for this type of operation: Parallel.Invoke.  This method works by taking any number of delegates defined as an Action, and operating them all in parallel.  The method returns when every delegate has completed: Parallel.Invoke( () => { Console.WriteLine("Action 1 executing in thread {0}", Thread.CurrentThread.ManagedThreadId); }, () => { Console.WriteLine("Action 2 executing in thread {0}", Thread.CurrentThread.ManagedThreadId); }, () => { Console.WriteLine("Action 3 executing in thread {0}", Thread.CurrentThread.ManagedThreadId); } ); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Running this simple example demonstrates the ease of using this method.  For example, on my system, I get three separate thread IDs when running the above code.  By allowing any number of delegates to be executed directly, concurrently, the Parallel.Invoke method provides us an easy way to parallelize any algorithm based on divide and conquer.  We can divide our work in each step, and execute each task in parallel, recursively. For example, suppose we wanted to implement our own quicksort routine.  The quicksort algorithm can be designed based on divide and conquer.  In each iteration, we pick a pivot point, and use that to partition the total array.  We swap the elements around the pivot, then recursively sort the lists on each side of the pivot.  For example, let’s look at this simple, sequential implementation of quicksort: public static void QuickSort<T>(T[] array) where T : IComparable<T> { QuickSortInternal(array, 0, array.Length - 1); } private static void QuickSortInternal<T>(T[] array, int left, int right) where T : IComparable<T> { if (left >= right) { return; } SwapElements(array, left, (left + right) / 2); int last = left; for (int current = left + 1; current <= right; ++current) { if (array[current].CompareTo(array[left]) < 0) { ++last; SwapElements(array, last, current); } } SwapElements(array, left, last); QuickSortInternal(array, left, last - 1); QuickSortInternal(array, last + 1, right); } static void SwapElements<T>(T[] array, int i, int j) { T temp = array[i]; array[i] = array[j]; array[j] = temp; } Here, we implement the quicksort algorithm in a very common, divide and conquer approach.  Running this against the built-in Array.Sort routine shows that we get the exact same answers (although the framework’s sort routine is slightly faster).  On my system, for example, I can use framework’s sort to sort ten million random doubles in about 7.3s, and this implementation takes about 9.3s on average. Looking at this routine, though, there is a clear opportunity to parallelize.  At the end of QuickSortInternal, we recursively call into QuickSortInternal with each partition of the array after the pivot is chosen.  This can be rewritten to use Parallel.Invoke by simply changing it to: // Code above is unchanged... SwapElements(array, left, last); Parallel.Invoke( () => QuickSortInternal(array, left, last - 1), () => QuickSortInternal(array, last + 1, right) ); } This routine will now run in parallel.  When executing, we now see the CPU usage across all cores spike while it executes.  However, there is a significant problem here – by parallelizing this routine, we took it from an execution time of 9.3s to an execution time of approximately 14 seconds!  We’re using more resources as seen in the CPU usage, but the overall result is a dramatic slowdown in overall processing time. This occurs because parallelization adds overhead.  Each time we split this array, we spawn two new tasks to parallelize this algorithm!  This is far, far too many tasks for our cores to operate upon at a single time.  In effect, we’re “over-parallelizing” this routine.  This is a common problem when working with divide and conquer algorithms, and leads to an important observation: When parallelizing a recursive routine, take special care not to add more tasks than necessary to fully utilize your system. This can be done with a few different approaches, in this case.  Typically, the way to handle this is to stop parallelizing the routine at a certain point, and revert back to the serial approach.  Since the first few recursions will all still be parallelized, our “deeper” recursive tasks will be running in parallel, and can take full advantage of the machine.  This also dramatically reduces the overhead added by parallelizing, since we’re only adding overhead for the first few recursive calls.  There are two basic approaches we can take here.  The first approach would be to look at the total work size, and if it’s smaller than a specific threshold, revert to our serial implementation.  In this case, we could just check right-left, and if it’s under a threshold, call the methods directly instead of using Parallel.Invoke. The second approach is to track how “deep” in the “tree” we are currently at, and if we are below some number of levels, stop parallelizing.  This approach is a more general-purpose approach, since it works on routines which parse trees as well as routines working off of a single array, but may not work as well if a poor partitioning strategy is chosen or the tree is not balanced evenly. This can be written very easily.  If we pass a maxDepth parameter into our internal routine, we can restrict the amount of times we parallelize by changing the recursive call to: // Code above is unchanged... SwapElements(array, left, last); if (maxDepth < 1) { QuickSortInternal(array, left, last - 1, maxDepth); QuickSortInternal(array, last + 1, right, maxDepth); } else { --maxDepth; Parallel.Invoke( () => QuickSortInternal(array, left, last - 1, maxDepth), () => QuickSortInternal(array, last + 1, right, maxDepth)); } We no longer allow this to parallelize indefinitely – only to a specific depth, at which time we revert to a serial implementation.  By starting the routine with a maxDepth equal to Environment.ProcessorCount, we can restrict the total amount of parallel operations significantly, but still provide adequate work for each processing core. With this final change, my timings are much better.  On average, I get the following timings: Framework via Array.Sort: 7.3 seconds Serial Quicksort Implementation: 9.3 seconds Naive Parallel Implementation: 14 seconds Parallel Implementation Restricting Depth: 4.7 seconds Finally, we are now faster than the framework’s Array.Sort implementation.

    Read the article

  • SQL SERVER – Database Dynamic Caching by Automatic SQL Server Performance Acceleration

    - by pinaldave
    My second look at SafePeak’s new version (2.1) revealed to me few additional interesting features. For those of you who hadn’t read my previous reviews SafePeak and not familiar with it, here is a quick brief: SafePeak is in business of accelerating performance of SQL Server applications, as well as their scalability, without making code changes to the applications or to the databases. SafePeak performs database dynamic caching, by caching in memory result sets of queries and stored procedures while keeping all those cache correct and up to date. Cached queries are retrieved from the SafePeak RAM in microsecond speed and not send to the SQL Server. The application gets much faster results (100-500 micro seconds), the load on the SQL Server is reduced (less CPU and IO) and the application or the infrastructure gets better scalability. SafePeak solution is hosted either within your cloud servers, hosted servers or your enterprise servers, as part of the application architecture. Connection of the application is done via change of connection strings or adding reroute line in the c:\windows\system32\drivers\etc\hosts file on all application servers. For those who would like to learn more on SafePeak architecture and how it works, I suggest to read this vendor’s webpage: SafePeak Architecture. More interesting new features in SafePeak 2.1 In my previous review of SafePeak new I covered the first 4 things I noticed in the new SafePeak (check out my article “SQLAuthority News – SafePeak Releases a Major Update: SafePeak version 2.1 for SQL Server Performance Acceleration”): Cache setup and fine-tuning – a critical part for getting good caching results Database templates Choosing which database to cache Monitoring and analysis options by SafePeak Since then I had a chance to play with SafePeak some more and here is what I found. 5. Analysis of SQL Performance (present and history): In SafePeak v.2.1 the tools for understanding of performance became more comprehensive. Every 15 minutes SafePeak creates and updates various performance statistics. Each query (or a procedure execute) that arrives to SafePeak gets a SQL pattern, and after it is used again there are statistics for such pattern. An important part of this product is that it understands the dependencies of every pattern (list of tables, views, user defined functions and procs). From this understanding SafePeak creates important analysis information on performance of every object: response time from the database, response time from SafePeak cache, average response time, percent of traffic and break down of behavior. One of the interesting things this behavior column shows is how often the object is actually pdated. The break down analysis allows knowing the above information for: queries and procedures, tables, views, databases and even instances level. The data is show now on all arriving queries, both read queries (that can be cached), but also any types of updates like DMLs, DDLs, DCLs, and even session settings queries. The stats are being updated every 15 minutes and SafePeak dashboard allows going back in time and investigating what happened within any time frame. 6. Logon trigger, for making sure nothing corrupts SafePeak cache data If you have an application with many parts, many servers many possible locations that can actually update the database, or the SQL Server is accessible to many DBAs or software engineers, each can access some database directly and do some changes without going thru SafePeak – this can create a potential corruption of the data stored in SafePeak cache. To make sure SafePeak cache is correct it needs to get all updates to arrive to SafePeak, and if a DBA will access the database directly and do some changes, for example, then SafePeak will simply not know about it and will not clean SafePeak cache. In the new version, SafePeak brought a new feature called “Logon Trigger” to solve the above challenge. By special click of a button SafePeak can deploy a special server logon trigger (with a CLR object) on your SQL Server that actually monitors all connections and informs SafePeak on any connection that is coming not from SafePeak. In SafePeak dashboard there is an interface that allows to control which logins can be ignored based on login names and IPs, while the rest will invoke cache cleanup of SafePeak and actually locks SafePeak cache until this connection will not be closed. Important to note, that this does not interrupt any logins, only informs SafePeak on such connection. On the Dashboard screen in SafePeak you will be able to see those connections and then decide what to do with them. Configuration of this feature in SafePeak dashboard can be done here: Settings -> SQL instances management -> click on instance -> Logon Trigger tab. Other features: 7. User management ability to grant permissions to someone without changing its configuration and only use SafePeak as performance analysis tool. 8. Better reports for analysis of performance using 15 minute resolution charts. 9. Caching of client cursors 10. Support for IPv6 Summary SafePeak is a great SQL Server performance acceleration solution for users who want immediate results for sites with performance, scalability and peak spikes challenges. Especially if your apps are packaged or 3rd party, since no code changes are done. SafePeak can significantly increase response times, by reducing network roundtrip to the database, decreasing CPU resource usage, eliminating I/O and storage access. SafePeak team provides a free fully functional trial www.safepeak.com/download and actually provides a one-on-one assistance during such trial. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: About Me, Pinal Dave, PostADay, SQL, SQL Authority, SQL Performance, SQL Query, SQL Server, SQL Tips and Tricks, SQL Utility, T SQL, Technology

    Read the article

  • Creating packages in code – Execute SQL Task

    The Execute SQL Task is for obvious reasons very well used, so I thought if you are building packages in code the chances are you will be using it. Using the task basic features of the task are quite straightforward, add the task and set some properties, just like any other. When you start interacting with variables though it can be a little harder to grasp so these samples should see you through. Some of these more advanced features are explained in much more detail in our ever popular post The Execute SQL Task, here I’ll just be showing you how to implement them in code. The abbreviated code blocks below demonstrate the different features of the task. The complete code has been encapsulated into a sample class which you can download (ExecSqlPackage.cs). Each feature described has its own method in the sample class which is mentioned after the code block. This first sample just shows adding the task, setting the basic properties for a connection and of course an SQL statement. Package package = new Package(); // Add the SQL OLE-DB connection ConnectionManager sqlConnection = AddSqlConnection(package, "localhost", "master"); // Add the SQL Task package.Executables.Add("STOCK:SQLTask"); // Get the task host wrapper TaskHost taskHost = package.Executables[0] as TaskHost; // Set required properties taskHost.Properties["Connection"].SetValue(taskHost, sqlConnection.ID); taskHost.Properties["SqlStatementSource"].SetValue(taskHost, "SELECT * FROM sysobjects"); For the full version of this code, see the CreatePackage method in the sample class. The AddSqlConnection method is a helper method that adds an OLE-DB connection to the package, it is of course in the sample class file too. Returning a single value with a Result Set The following sample takes a different approach, getting a reference to the ExecuteSQLTask object task itself, rather than just using the non-specific TaskHost as above. Whilst it means we need to add an extra reference to our project (Microsoft.SqlServer.SQLTask) it makes coding much easier as we have compile time validation of any property and types we use. For the more complex properties that is very valuable and saves a lot of time during development. The query has also been changed to return a single value, one row and one column. The sample shows how we can return that value into a variable, which we also add to our package in the code. To do this manually you would set the Result Set property on the General page to Single Row and map the variable on the Result Set page in the editor. Package package = new Package(); // Add the SQL OLE-DB connection ConnectionManager sqlConnection = AddSqlConnection(package, "localhost", "master"); // Add the SQL Task package.Executables.Add("STOCK:SQLTask"); // Get the task host wrapper TaskHost taskHost = package.Executables[0] as TaskHost; // Add variable to hold result value package.Variables.Add("Variable", false, "User", 0); // Get the task object ExecuteSQLTask task = taskHost.InnerObject as ExecuteSQLTask; // Set core properties task.Connection = sqlConnection.Name; task.SqlStatementSource = "SELECT id FROM sysobjects WHERE name = 'sysrowsets'"; // Set single row result set task.ResultSetType = ResultSetType.ResultSetType_SingleRow; // Add result set binding, map the id column to variable task.ResultSetBindings.Add(); IDTSResultBinding resultBinding = task.ResultSetBindings.GetBinding(0); resultBinding.ResultName = "id"; resultBinding.DtsVariableName = "User::Variable"; For the full version of this code, see the CreatePackageResultVariable method in the sample class. The other types of Result Set behaviour are just a variation on this theme, set the property and map the result binding as required. Parameter Mapping for SQL Statements This final example uses a parameterised SQL statement, with the coming from a variable. The syntax varies slightly between connection types, as explained in the Working with Parameters and Return Codes in the Execute SQL Taskhelp topic, but OLE-DB is the most commonly used, for which a question mark is the parameter value placeholder. Package package = new Package(); // Add the SQL OLE-DB connection ConnectionManager sqlConnection = AddSqlConnection(package, ".", "master"); // Add the SQL Task package.Executables.Add("STOCK:SQLTask"); // Get the task host wrapper TaskHost taskHost = package.Executables[0] as TaskHost; // Get the task object ExecuteSQLTask task = taskHost.InnerObject as ExecuteSQLTask; // Set core properties task.Connection = sqlConnection.Name; task.SqlStatementSource = "SELECT id FROM sysobjects WHERE name = ?"; // Add variable to hold parameter value package.Variables.Add("Variable", false, "User", "sysrowsets"); // Add input parameter binding task.ParameterBindings.Add(); IDTSParameterBinding parameterBinding = task.ParameterBindings.GetBinding(0); parameterBinding.DtsVariableName = "User::Variable"; parameterBinding.ParameterDirection = ParameterDirections.Input; parameterBinding.DataType = (int)OleDBDataTypes.VARCHAR; parameterBinding.ParameterName = "0"; parameterBinding.ParameterSize = 255; For the full version of this code, see the CreatePackageParameterVariable method in the sample class. You’ll notice the data type has to be specified for the parameter IDTSParameterBinding .DataType Property, and these type codes are connection specific too. My enumeration I wrote several years ago is shown below was probably done by reverse engineering a package and also the API header file, but I recently found a very handy post that covers more connections as well for exactly this, Setting the DataType of IDTSParameterBinding objects (Execute SQL Task). /// <summary> /// Enumeration of OLE-DB types, used when mapping OLE-DB parameters. /// </summary> private enum OleDBDataTypes { BYTE = 0x11, CURRENCY = 6, DATE = 7, DB_VARNUMERIC = 0x8b, DBDATE = 0x85, DBTIME = 0x86, DBTIMESTAMP = 0x87, DECIMAL = 14, DOUBLE = 5, FILETIME = 0x40, FLOAT = 4, GUID = 0x48, LARGE_INTEGER = 20, LONG = 3, NULL = 1, NUMERIC = 0x83, NVARCHAR = 130, SHORT = 2, SIGNEDCHAR = 0x10, ULARGE_INTEGER = 0x15, ULONG = 0x13, USHORT = 0x12, VARCHAR = 0x81, VARIANT_BOOL = 11 } Download Sample code ExecSqlPackage.cs (10KB)

    Read the article

  • Azure Grid Computing - Worker Roles as HPC Compute Nodes

    - by JoshReuben
    Overview ·        With HPC 2008 R2 SP1 You can add Azure worker roles as compute nodes in a local Windows HPC Server cluster. ·        The subscription for Windows Azure like any other Azure Service - charged for the time that the role instances are available, as well as for the compute and storage services that are used on the nodes. ·        Win-Win ? - Azure charges the computer hour cost (according to vm size) amortized over a month – so you save on purchasing compute node hardware. Microsoft wins because you need to purchase HPC to have a local head node for managing this compute cluster grid distributed in the cloud. ·        Blob storage is used to hold input & output files of each job. I can see how Parametric Sweep HPC jobs can be supported (where the same job is run multiple times on each node against different input units), but not MPI.NET (where different HPC Job instances function as coordinated agents and conduct master-slave inter-process communication), unless Azure is somehow tunneling MPI communication through inter-WorkerRole Azure Queues. ·        this is not the end of the story for Azure Grid Computing. If MS requires you to purchase a local HPC license (and administrate it), what's to stop a 3rd party from doing this and encapsulating exposing HPC WCF Broker Service to you for managing compute nodes? If MS doesn’t  provide head node as a service, someone else will! Process ·        requires creation of a worker node template that specifies a connection to an existing subscription for Windows Azure + an availability policy for the worker nodes. ·        After worker nodes are added to the cluster, you can start them, which provisions the Windows Azure role instances, and then bring them online to run HPC cluster jobs. ·        A Windows Azure worker role instance runs a HPC compatible Azure guest operating system which runs on the VMs that host your service. The guest operating system is updated monthly. You can choose to upgrade the guest OS for your service automatically each time an update is released - All role instances defined by your service will run on the guest operating system version that you specify. see Windows Azure Guest OS Releases and SDK Compatibility Matrix (http://go.microsoft.com/fwlink/?LinkId=190549). ·        use the hpcpack command to upload file packages and install files to run on the worker nodes. see hpcpack (http://go.microsoft.com/fwlink/?LinkID=205514). Requirements ·        assuming you have an azure subscription account and the HPC head node installed and configured. ·        Install HPC Pack 2008 R2 SP 1 -  see Microsoft HPC Pack 2008 R2 Service Pack 1 Release Notes (http://go.microsoft.com/fwlink/?LinkID=202812). ·        Configure the head node to connect to the Internet - connectivity is provided by the connection of the head node to the enterprise network. You may need to configure a proxy client on the head node. Any cluster network topology (1-5) is supported). ·        Configure the firewall - allow outbound TCP traffic on the following ports: 80,       443, 5901, 5902, 7998, 7999 ·        Note: HPC Server  uses Admin Mode (Elevated Privileges) in Windows Azure to give the service administrator of the subscription the necessary privileges to initialize HPC cluster services on the worker nodes. ·        Obtain a Windows Azure subscription certificate - the Windows Azure subscription must be configured with a public subscription (API) certificate -a valid X.509 certificate with a key size of at least 2048 bits. Generate a self-sign certificate & upload a .cer file to the Windows Azure Portal Account page > Manage my API Certificates link. see Using the Windows Azure Service Management API (http://go.microsoft.com/fwlink/?LinkId=205526). ·        import the certificate with an associated private key on the HPC cluster head node - into the trusted root store of the local computer account. Obtain Windows Azure Connection Information for HPC Server ·        required for each worker node template ·        copy from azure portal - Get from: navigation pane > Hosted Services > Storage Accounts & CDN ·        Subscription ID - a 32-char hex string in the form xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx. In Properties pane. ·        Subscription certificate thumbprint - a 40-char hex string (you need to remove spaces). In Management Certificates > Properties pane. ·        Service name - the value of <ServiceName> configured in the public URL of the service (http://<ServiceName>.cloudapp.net). In Hosted Services > Properties pane. ·        Blob Storage account name - the value of <StorageAccountName> configured in the public URL of the account (http://<StorageAccountName>.blob.core.windows.net). In Storage Accounts > Properties pane. Import the Azure Subscription Certificate on the HPC Head Node ·        enable the services for Windows HPC Server  to authenticate properly with the Windows Azure subscription. ·        use the Certificates MMC snap-in to import the certificate to the Trusted Root Certification Authorities store of the local computer account. The certificate must be in PFX format (.pfx or .p12 file) with a private key that is protected by a password. ·        see Certificates (http://go.microsoft.com/fwlink/?LinkId=163918). ·        To open the certificates snapin: Run > mmc. File > Add/Remove Snap-in > certificates > Computer account > Local Computer ·        To import the certificate via wizard - Certificates > Trusted Root Certification Authorities > Certificates > All Tasks > Import ·        After the certificate is imported, it appears in the details pane in the Certificates snap-in. You can open the certificate to check its status. Configure a Proxy Client on the HPC Head Node ·        the following Windows HPC Server services must be able to communicate over the Internet (through the firewall) with the services for Windows Azure: HPCManagement, HPCScheduler, HPCBrokerWorker. ·        Create a Windows Azure Worker Node Template ·        Edit HPC node templates in HPC Node Template Editor. ·        Specify: 1) Windows Azure subscription connection info (unique service name) for adding a set of worker nodes to the cluster + 2)worker node availability policy – rules for deploying / removing worker role instances in Windows Azure o   HPC Cluster Manager > Configuration > Navigation Pane > Node Templates > Actions pane > New à Create Node Template Wizard or Edit à Node Template Editor o   Choose Node Template Type page - Windows Azure worker node template o   Specify Template Name page – template name & description o   Provide Connection Information page – Azure Subscription ID (text) & Subscription certificate (browse) o   Provide Service Information page - Azure service name + blob storage account name (optionally click Retrieve Connection Information to get list of available from azure – possible LRT). o   Configure Azure Availability Policy page - how Windows Azure worker nodes start / stop (online / offline the worker role instance -  add / remove) – manual / automatic o   for automatic - In the Configure Windows Azure Worker Availability Policy dialog -select days and hours for worker nodes to start / stop. ·        To validate the Windows Azure connection information, on the template's Connection Information tab > Validate connection information. ·        You can upload a file package to the storage account that is specified in the template - eg upload application or service files that will run on the worker nodes. see hpcpack (http://go.microsoft.com/fwlink/?LinkID=205514). Add Azure Worker Nodes to the HPC Cluster ·        Use the Add Node Wizard – specify: 1) the worker node template, 2) The number of worker nodes   (within the quota of role instances in the azure subscription), and 3)           The VM size of the worker nodes : ExtraSmall, Small, Medium, Large, or ExtraLarge.  ·        to add worker nodes of different sizes, must run the Add Node Wizard separately for each size. ·        All worker nodes that are added to the cluster by using a specific worker node template define a set of worker nodes that will be deployed and managed together in Windows Azure when you start the nodes. This includes worker nodes that you add later by using the worker node template and, if you choose, worker nodes of different sizes. You cannot start, stop, or delete individual worker nodes. ·        To add Windows Azure worker nodes o   In HPC Cluster Manager: Node Management > Actions pane > Add Node à Add Node Wizard o   Select Deployment Method page - Add Azure Worker nodes o   Specify New Nodes page - select a worker node template, specify the number and size of the worker nodes ·        After you add worker nodes to the cluster, they are in the Not-Deployed state, and they have a health state of Unapproved. Before you can use the worker nodes to run jobs, you must start them and then bring them online. ·        Worker nodes are numbered consecutively in a naming series that begins with the root name AzureCN – this is non-configurable. Deploying Windows Azure Worker Nodes ·        To deploy the role instances in Windows Azure - start the worker nodes added to the HPC cluster and bring the nodes online so that they are available to run cluster jobs. This can be configured in the HPC Azure Worker Node Template – Azure Availability Policy -  to be automatic or manual. ·        The Start, Stop, and Delete actions take place on the set of worker nodes that are configured by a specific worker node template. You cannot perform one of these actions on a single worker node in a set. You also cannot perform a single action on two sets of worker nodes (specified by two different worker node templates). ·        ·          Starting a set of worker nodes deploys a set of worker role instances in Windows Azure, which can take some time to complete, depending on the number of worker nodes and the performance of Windows Azure. ·        To start worker nodes manually and bring them online o   In HPC Node Management > Navigation Pane > Nodes > List / Heat Map view - select one or more worker nodes. o   Actions pane > Start – in the Start Azure Worker Nodes dialog, select a node template. o   the state of the worker nodes changes from Not Deployed to track the provisioning progress – worker node Details Pane > Provisioning Log tab. o   If there were errors during the provisioning of one or more worker nodes, the state of those nodes is set to Unknown and the node health is set to Unapproved. To determine the reason for the failure, review the provisioning logs for the nodes. o   After a worker node starts successfully, the node state changes to Offline. To bring the nodes online, select the nodes that are in the Offline state > Bring Online. ·        Troubleshooting o   check node template. o   use telnet to test connectivity: telnet <ServiceName>.cloudapp.net 7999 o   check node status - Deployment status information appears in the service account information in the Windows Azure Portal - HPC queries this -  see  node status information for any failed nodes in HPC Node Management. ·        When role instances are deployed, file packages that were previously uploaded to the storage account using the hpcpack command are automatically installed. You can also upload file packages to storage after the worker nodes are started, and then manually install them on the worker nodes. see hpcpack (http://go.microsoft.com/fwlink/?LinkID=205514). ·        to remove a set of role instances in Windows Azure - stop the nodes by using HPC Cluster Manager (apply the Stop action). This deletes the role instances from the service and changes the state of the worker nodes in the HPC cluster to Not Deployed. ·        Each time that you start a set of worker nodes, two proxy role instances (size Small) are configured in Windows Azure to facilitate communication between HPC Cluster Manager and the worker nodes. The proxy role instances are not listed in HPC Cluster Manager after the worker nodes are added. However, the instances appear in the Windows Azure Portal. The proxy role instances incur charges in Windows Azure along with the worker node instances, and they count toward the quota of role instances in the subscription.

    Read the article

  • How to Troubleshoot TFS Build Server Failure?

    - by Tarun Arora
    Ever found your self in this helpless situation where you think you have tried every possible suggestion on the internet to bring the build server back but it just won’t work. Well some times before hunting around for a solution it is important to understand what the problem is, if the error messages in the build logs don’t seem to help you can always enable tracing on the build server to get more information on what could possibly be the root cause of failure. In this blog post today I’ll be showing you how to enable tracing on, - TFS 2010/11 Server - Build Server - Client Enable Tracing on Team Foundation Server 2010/2011 On the Team Foundation Server navigate to C:\Program Files\Microsoft Team Foundation Server 2010\Application Tier\Web Services, right click web.config and from the context menu select edit.          Search for the <appSettings> node in the config file and set the value of the key ‘traceWriter’ to true.          In the <System.diagnostics> tag set the value of switches from 0 to 4 to set the trace level to maximum to write diagnostics level trace information.          Restart the TFS Application pool to force this change to take effect. The application pool restart will impact any one using the TFS server at present. Note - It is recommended that you do not make any changes to the TFS production application server, this can have serious consequences and can even jeopardize the installation of your server.          Download the Debug view tool from http://technet.microsoft.com/en-us/sysinternals/bb896647.aspx and set it to capture “Global Events”. Perform any actions in the Team Explorer on the client machine, you should be able to see a series of trace data in the debug view tool now.         Enable Tracing on Build Controller/Agents Log on to the Build Controller/Agent and Navigate to the directory C:\Program Files\Microsoft Team Foundation Server 2010\Tools         Look for the configuration file ‘TFSBuildServiceHost.exe.config’ if it is not already there create a new text file and rename it to ‘TFSBuildServiceHost.exe.config’         To Enable tracing uncomment the <system.diagnostics> and paste the snippet below if it is not already there. <configuration> <system.diagnostics> <switches> <add name="BuildServiceTraceLevel" value="4"/> </switches> <trace autoflush="true" indentsize="4"> <listeners> <add name="myListener" type="Microsoft.TeamFoundation.TeamFoundationTextWriterTraceListener, Microsoft.TeamFoundation.Common, Version=10.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a" initializeData="c:\logs\TFSBuildServiceHost.exe.log" /> <remove name="Default" /> </listeners> </trace> </system.diagnostics> </configuration> The highlighted path above is where the Log file will be created. If the folder is not already there then create the folder, also, make sure that the account running the build service has access to write to this folder.         Restart the build Controller/Agent service from the administration console (or net stop tfsbuildservicehost & net start tfsbuildservicehost) in order for the new setting to be picked up.         Enable TFS Tracing on the Client Machine On the client machine, shut down Visual Studio, navigate to C:\Program Files\Microsoft Visual Studio 10.0\Common 7\IDE          Search for devenv.exe.config, make a backup copy of the config file and right click the file and from the context menu select edit. If its not already there create this file.          Edit devenv.exe.config by adding the below code snippet before the last </configuration> tag <system.diagnostics> <switches> <add name="TeamFoundationSoapProxy" value="4" /> <add name="VersionControl" value="4" /> </switches> <trace autoflush="true" indentsize="3"> <listeners> <add name="myListener" type="Microsoft.TeamFoundation.TeamFoundationTextWriterTraceListener,Microsoft.TeamFoundation.Common, Version=10.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a" initializeData="c:\tf.log" /> <add name="perfListener" type="Microsoft.TeamFoundation.Client.PerfTraceListener, Microsoft.TeamFoundation.Client, Version=10.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a"/> </listeners> </trace> </system.diagnostics> The highlighted path above is where the Log file will be created. If the folder is not already there then create the folder. Start Visual Studio and after a bit of activity you should be able to see the new log file being created on the folder specified in the config file. Other Resources Below are some Key resource you might like to review. I would highly recommend the documentation, walkthroughs and videos available on MSDN.   Thank you for taking the time out and reading this blog post. If you enjoyed the post, remember to subscribe to http://feeds.feedburner.com/TarunArora. Have you come across an interesting one to one with the build server, please share your experience here. Questions/Feedback/Suggestions, etc please leave a comment. Thank You! Share this post : CodeProject

    Read the article

  • Trace File Source Adapter

    The Trace File Source adapter is a useful addition to your SSIS toolbox.  It allows you to read 2005 and 2008 profiler traces stored as .trc files and read them into the Data Flow.  From there you can perform filtering and analysis using the power of SSIS. There is no need for a SQL Server connection this just uses the trace file. Example Usages Cache warming for SQL Server Analysis Services Reading the flight recorder Find out the longest running queries on a server Analyze statements for CPU, memory by user or some other criteria you choose Properties The Trace File Source adapter has two properties, both of which combine to control the source trace file that is read at runtime. SQL Server 2005 and SQL Server 2008 trace files are supported for both the Database Engine (SQL Server) and Analysis Services. The properties are managed by the Editor form or can be set directly from the Properties Grid in Visual Studio. Property Type Description AccessMode Enumeration This property determines how the Filename property is interpreted. The values available are: DirectInput Variable Filename String This property holds the path for trace file to load (*.trc). The value is either a full path, or the name of a variable which contains the full path to the trace file, depending on the AccessMode property. Trace Column Definition Hopefully the majority of you can skip this section entirely, but if you encounter some problems processing a trace file this may explain it and allow you to fix the problem. The component is built upon the trace management API provided by Microsoft. Unfortunately API methods that expose the schema of a trace file have known issues and are unreliable, put simply the data often differs from what was specified. To overcome these limitations the component uses  some simple XML files. These files enable the trace column data types and sizing attributes to be overridden. For example SQL Server Profiler or TMO generated structures define EventClass as an integer, but the real value is a string. TraceDataColumnsSQL.xml  - SQL Server Database Engine Trace Columns TraceDataColumnsAS.xml    - SQL Server Analysis Services Trace Columns The files can be found in the %ProgramFiles%\Microsoft SQL Server\100\DTS\PipelineComponents folder, e.g. "C:\Program Files\Microsoft SQL Server\100\DTS\PipelineComponents\TraceDataColumnsSQL.xml" "C:\Program Files\Microsoft SQL Server\100\DTS\PipelineComponents\TraceDataColumnsAS.xml" If at runtime the component encounters a type conversion or sizing error it is most likely due to a discrepancy between the column definition as reported by the API and the actual value encountered. Whilst most common issues have already been fixed through these files we have implemented specific exception traps to direct you to the files to enable you to fix any further issues due to different usage or data scenarios that we have not tested. An example error that you can fix through these files is shown below. Buffer exception writing value to column 'Column Name'. The string value is 999 characters in length, the column is only 111. Columns can be overridden by the TraceDataColumns XML files in "C:\Program Files\Microsoft SQL Server\100\DTS\PipelineComponents\TraceDataColumnsAS.xml". Installation The component is provided as an MSI file which you can download and run to install it. This simply places the files on disk in the correct locations and also installs the assemblies in the Global Assembly Cache as per Microsoft’s recommendations. You may need to restart the SQL Server Integration Services service, as this caches information about what components are installed, as well as restarting any open instances of Business Intelligence Development Studio (BIDS) / Visual Studio that you may be using to build your SSIS packages. Finally you will have to add the transformation to the Visual Studio toolbox manually. Right-click the toolbox, and select Choose Items.... Select the SSIS Data Flow Items tab, and then check the Trace File Source transformation in the Choose Toolbox Items window. This process has been described in detail in the related FAQ entry for How do I install a task or transform component? We recommend you follow best practice and apply the current Microsoft SQL Server Service pack to your SQL Server servers and workstations. Please note that the Microsoft Trace classes used in the component are not supported on 64-bit platforms. To use the Trace File Source on a 64-bit host you need to ensure you have the 32-bit (x86) tools available, and the way you execute your package is setup to use them, please see the help topic 64-bit Considerations for Integration Services for more details. Downloads Trace Sources for SQL Server 2005 -- Trace Sources for SQL Server 2008 Version History SQL Server 2008 Version 2.0.0.382 - SQL Sever 2008 public release. (9 Apr 2009) SQL Server 2005 Version 1.0.0.321 - SQL Server 2005 public release. (18 Nov 2008) -- Screenshots

    Read the article

< Previous Page | 618 619 620 621 622 623 624 625 626 627 628 629  | Next Page >