Search Results

Search found 61651 results on 2467 pages for 'function object'.

Page 637/2467 | < Previous Page | 633 634 635 636 637 638 639 640 641 642 643 644  | Next Page >

  • Can't connect to SSL web service with WS-Security using PHP SOAP extension - certificate, complex WSDL

    - by BillF
    Using the PHP5 SOAP extension I have been unable to connect to a web service having an https endpoint, with client certificate and using WS-Security, although I can connect using soapUI with the exact same wsdl and client certificate, and obtain the normal response to the request. There is no HTTP authentication and no proxy is involved. The message I get is 'Could not connect to host'. Have been able to verify that I am NOT hitting the host server. (Earlier I wrongly said that I was hitting the server.) The self-signed client SSL certificate is a .pem file converted by openssl from a .p12 keystore which in turn was converted by keytool from a .jks keystore having a single entry consisting of private key and client certificate. In soapUI I did not need to supply a server private certificate, the only two files I gave it were the wdsl and pem. I did have to supply the pem and its passphrase to be able to connect. I am speculating that despite the error message my problem might actually be in the formation of the XML request rather than the SSL connection itself. The wsdl I have been given has nested complex types. The php server is on my Windows XP laptop with IIS. The code, data values and WSDL extracts are shown below. (The WSSoapClient class simply extends SoapClient, adding a WS-Security Username Token header with mustUnderstand = true and including a nonce, both of which the soapUI call had required.) Would so much appreciate any help. I'm a newbie thrown in at the deep end, and how! Have done vast amounts of Googling on this over many days, following many suggestions and have read Pro PHP by Kevin McArthur. An attempt to use classmaps in place of nested arrays also fell flat. The Code class STEeService { public function invokeWebService(array $connection, $operation, array $request) { try { $localCertificateFilespec = $connection['localCertificateFilespec']; $localCertificatePassphrase = $connection['localCertificatePassphrase']; $sslOptions = array( 'ssl' => array( 'local_cert' => $localCertificateFilespec, 'passphrase' => $localCertificatePassphrase, 'allow_self-signed' => true, 'verify_peer' => false ) ); $sslContext = stream_context_create($sslOptions); $clientArguments = array( 'stream_context' => $sslContext, 'local_cert' => $localCertificateFilespec, 'passphrase' => $localCertificatePassphrase, 'trace' => true, 'exceptions' => true, 'encoding' => 'UTF-8', 'soap_version' => SOAP_1_1 ); $oClient = new WSSoapClient($connection['wsdlFilespec'], $clientArguments); $oClient->__setUsernameToken($connection['username'], $connection['password']); return $oClient->__soapCall($operation, $request); } catch (exception $e) { throw new Exception("Exception in eServices " . $operation . " ," . $e->getMessage(), "\n"); } } } $connection is as follows: array(5) { ["username"]=> string(8) "DFU00050" ["password"]=> string(10) "Fabricate1" ["wsdlFilespec"]=> string (63) "c:/inetpub/wwwroot/DMZExternalService_Concrete_WSDL_Staging.xml" ["localCertificateFilespec"]=> string(37) "c:/inetpub/wwwroot/ClientKeystore.pem" ["localCertificatePassphrase"]=> string(14) "password123456" } $clientArguments is as follows: array(7) { ["stream_context"]=> resource(8) of type (stream-context) ["local_cert"]=> string(37) "c:/inetpub/wwwroot/ClientKeystore.pem" ["passphrase"]=> string(14) "password123456" ["trace"]=> bool(true) ["exceptions"]=> bool(true) ["encoding"]=> string(5) "UTF-8" ["soap_version"]=> int(1) } $operation is as follows: 'getConsignmentDetails' $request is as follows: array(1) { [0]=> array(2) { ["header"]=> array(2) { ["source"]=> string(9) "customerA" ["accountNo"]=> string(8) "10072906" } ["consignmentId"]=> string(11) "GKQ00000085" } } Note how there is an extra level of nesting, an array wrapping the request which is itself an array. This was suggested in a post although I don't see the reason, but it seems to help avoid other exceptions. The exception thrown by ___soapCall is as follows: object(SoapFault)#6 (9) { ["message":protected]=> string(25) "Could not connect to host" ["string":"Exception":private]=> string(0) "" ["code":protected]=> int(0) ["file":protected]=> string(43) "C:\Inetpub\wwwroot\eServices\WSSecurity.php" ["line":protected]=> int(85) ["trace":"Exception":private]=> array(5) { [0]=> array(6) { ["file"]=> string(43) "C:\Inetpub\wwwroot\eServices\WSSecurity.php" ["line"]=> int(85) ["function"]=> string(11) "__doRequest" ["class"]=> string(10) "SoapClient" ["type"]=> string(2) "->" ["args"]=> array(4) { [0]=> string(1240) " DFU00050 Fabricate1 E0ByMUA= 2010-10-28T13:13:52Z customerA10072906GKQ00000085 " [1]=> string(127) "https://services.startrackexpress.com.au:7560/DMZExternalService/InterfaceServices/ExternalOps.serviceagent/OperationsEndpoint1" [2]=> string(104) "/DMZExternalService/InterfaceServices/ExternalOps.serviceagent/OperationsEndpoint1/getConsignmentDetails" [3]=> int(1) } } [1]=> array(4) { ["function"]=> string(11) "__doRequest" ["class"]=> string(39) "startrackexpress\eservices\WSSoapClient" ["type"]=> string(2) "->" ["args"]=> array(5) { [0]=> string(1240) " DFU00050 Fabricate1 E0ByMUA= 2010-10-28T13:13:52Z customerA10072906GKQ00000085 " [1]=> string(127) "https://services.startrackexpress.com.au:7560/DMZExternalService/InterfaceServices/ExternalOps.serviceagent/OperationsEndpoint1" [2]=> string(104) "/DMZExternalService/InterfaceServices/ExternalOps.serviceagent/OperationsEndpoint1/getConsignmentDetails" [3]=> int(1) [4]=> int(0) } } [2]=> array(6) { ["file"]=> string(43) "C:\Inetpub\wwwroot\eServices\WSSecurity.php" ["line"]=> int(70) ["function"]=> string(10) "__soapCall" ["class"]=> string(10) "SoapClient" ["type"]=> string(2) "->" ["args"]=> array(4) { [0]=> string(21) "getConsignmentDetails" [1]=> array(1) { [0]=> array(2) { ["header"]=> array(2) { ["source"]=> string(9) "customerA" ["accountNo"]=> string(8) "10072906" } ["consignmentId"]=> string(11) "GKQ00000085" } } [2]=> NULL [3]=> object(SoapHeader)#5 (4) { ["namespace"]=> string(81) "http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd" ["name"]=> string(8) "Security" ["data"]=> object(SoapVar)#4 (2) { ["enc_type"]=> int(147) ["enc_value"]=> string(594) " DFU00050 Fabricate1 E0ByMUA= 2010-10-28T13:13:52Z " } ["mustUnderstand"]=> bool(true) } } } [3]=> array(6) { ["file"]=> string(42) "C:\Inetpub\wwwroot\eServices\eServices.php" ["line"]=> int(87) ["function"]=> string(10) "__soapCall" ["class"]=> string(39) "startrackexpress\eservices\WSSoapClient" ["type"]=> string(2) "->" ["args"]=> array(2) { [0]=> string(21) "getConsignmentDetails" [1]=> array(1) { [0]=> array(2) { ["header"]=> array(2) { ["source"]=> string(9) "customerA" ["accountNo"]=> string(8) "10072906" } ["consignmentId"]=> string(11) "GKQ00000085" } } } } [4]=> array(6) { ["file"]=> string(58) "C:\Inetpub\wwwroot\eServices\EnquireConsignmentDetails.php" ["line"]=> int(44) ["function"]=> string(16) "invokeWebService" ["class"]=> string(38) "startrackexpress\eservices\STEeService" ["type"]=> string(2) "->" ["args"]=> array(3) { [0]=> array(5) { ["username"]=> string(10) "DFU00050 " ["password"]=> string(12) "Fabricate1 " ["wsdlFilespec"]=> string(63) "c:/inetpub/wwwroot/DMZExternalService_Concrete_WSDL_Staging.xml" ["localCertificateFilespec"]=> string(37) "c:/inetpub/wwwroot/ClientKeystore.pem" ["localCertificatePassphrase"]=> string(14) "password123456" } [1]=> string(21) "getConsignmentDetails" [2]=> array(1) { [0]=> array(2) { ["header"]=> array(2) { ["source"]=> string(9) "customerA" ["accountNo"]=> string(8) "10072906" } ["consignmentId"]=> string(11) "GKQ00000085" } } } } } ["previous":"Exception":private]=> NULL ["faultstring"]=> string(25) "Could not connect to host" ["faultcode"]=> string(4) "HTTP" } Here are some WSDL extracts (TIBCO BusinessWorks): <xsd:complexType name="TransactionHeaderType"> <xsd:sequence> <xsd:element name="source" type="xsd:string"/> <xsd:element name="accountNo" type="xsd:integer"/> <xsd:element name="userId" type="xsd:string" minOccurs="0"/> <xsd:element name="transactionId" type="xsd:string" minOccurs="0"/> <xsd:element name="transactionDatetime" type="xsd:dateTime" minOccurs="0"/> </xsd:sequence> </xsd:complexType> <xsd:element name="getConsignmentDetailRequest"> <xsd:complexType> <xsd:sequence> <xsd:element name="header" type="prim:TransactionHeaderType"/> <xsd:element name="consignmentId" type="prim:ID" maxOccurs="unbounded"/> </xsd:sequence> </xsd:complexType> </xsd:element> <xsd:element name="getConsignmentDetailResponse"> <xsd:complexType> <xsd:sequence> <xsd:element name="consignment" type="freight:consignmentType" minOccurs="0" maxOccurs="unbounded"/> </xsd:sequence> </xsd:complexType> </xsd:element> <xsd:element name="getConsignmentDetailRequest"> <xsd:complexType> <xsd:sequence> <xsd:element name="header" type="prim:TransactionHeaderType"/> <xsd:element name="consignmentId" type="prim:ID" maxOccurs="unbounded"/> </xsd:sequence> </xsd:complexType> </xsd:element> <xsd:element name="getConsignmentDetailResponse"> <xsd:complexType> <xsd:sequence> <xsd:element name="consignment" type="freight:consignmentType" minOccurs="0" maxOccurs="unbounded"/> </xsd:sequence> </xsd:complexType> </xsd:element> <wsdl:operation name="getConsignmentDetails"> <wsdl:input message="tns:getConsignmentDetailsRequest"/> <wsdl:output message="tns:getConsignmentDetailsResponse"/> <wsdl:fault name="fault1" message="tns:fault"/> </wsdl:operation> <wsdl:service name="ExternalOps"> <wsdl:port name="OperationsEndpoint1" binding="tns:OperationsEndpoint1Binding"> <soap:address location="https://services.startrackexpress.com.au:7560/DMZExternalService/InterfaceServices/ExternalOps.serviceagent/OperationsEndpoint1"/> </wsdl:port> </wsdl:service> And here in case it's relevant is the WSSoapClient class: <?PHP namespace startrackexpress\eservices; use SoapClient, SoapVar, SoapHeader; class WSSoapClient extends SoapClient { private $username; private $password; /*Generates a WS-Security header*/ private function wssecurity_header() { $timestamp = gmdate('Y-m-d\TH:i:s\Z'); $nonce = mt_rand(); $passdigest = base64_encode(pack('H*', sha1(pack('H*', $nonce).pack('a*', $timestamp).pack('a*', $this->password)))); $auth = ' <wsse:Security SOAP-ENV:mustUnderstand="1" xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"> <wsse:UsernameToken> <wsse:Username>' . $this->username . '</wsse:Username> <wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0#PasswordText">' . $this->password . '</wsse:Password> <wsse:Nonce>' . base64_encode(pack('H*', $nonce)).'</wsse:Nonce> <wsu:Created xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">' . $timestamp . '</wsu:Created> </wsse:UsernameToken> </wsse:Security> '; $authvalues = new SoapVar($auth, XSD_ANYXML); $header = new SoapHeader("http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd", "Security",$authvalues, true); return $header; } // Sets a username and passphrase public function __setUsernameToken($username,$password) { $this->username=$username; $this->password=$password; } // Overwrites the original method, adding the security header public function __soapCall($function_name, $arguments, $options=null, $input_headers=null, $output_headers=null) { try { $result = parent::__soapCall($function_name, $arguments, $options, $this->wssecurity_header()); return $result; } catch (exception $e) { throw new Exception("Exception in __soapCall, " . $e->getMessage(), "\n"); } } } ?> Update: The request XML would have been as follows: <?xml version="1.0" encoding="UTF-8"?> <SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns:ns1="http://startrackexpress/Common/Primitives/v1" xmlns:ns2="http://startrackexpress/Common/actions/externals/Consignment/v1" xmlns:ns3="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"> <SOAP-ENV:Header> <wsse:Security SOAP-ENV:mustUnderstand="1" xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"> <wsse:UsernameToken> <wsse:Username>DFU00050</wsse:Username> <wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0#PasswordText">Fabricate1</wsse:Password> <wsse:Nonce>M4FIeGA=</wsse:Nonce> <wsu:Created xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">2010-10-29T14:05:27Z</wsu:Created> </wsse:UsernameToken> </wsse:Security> </SOAP-ENV:Header> <SOAP-ENV:Body><ns2:getConsignmentDetailRequest> <ns2:header><ns1:source>customerA</ns1:source><ns1:accountNo>10072906</ns1:accountNo></ns2:header> <ns2:consignmentId>GKQ00000085</ns2:consignmentId> </ns2:getConsignmentDetailRequest></SOAP-ENV:Body> </SOAP-ENV:Envelope> This was obtained with the following code in WSSoapClient: public function __doRequest($request, $location, $action, $version) { echo "<p> " . htmlspecialchars($request) . " </p>" ; return parent::__doRequest($request, $location, $action, $version); }

    Read the article

  • Tuesday + 3 = Friday? C++ Programming Problem

    - by lampshade
    Looking at the main function, we can see that I've Hard Coded the "Monday" into my setDay public function. It is easy to grab a day of the week from the user using a c-string (as I did in setDay), but how would I ask the user to add n to the day that is set, "Monday" and come up with "Thursday"? It is hard because typdef enum { INVALID, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY} doesn't interpret 9 is 0 and/or 10 as 1. #include <iostream> using std::cout; using std::endl; class DayOfTheWeek //class is encapsulation of functions and members that manipulate the data. { public: DayOfTheWeek(); // Constructor virtual ~DayOfTheWeek(); // Destructor void setDay(const char * day); // Function to set the day void printDay() const; // Function to Print the day. const char * getDay() const; // Function to get the day. const char * plusOneDay(); // Next day function const char * minusOneDay(); // Previous day function const char * addDays(int addValue); // function that adds days based on parameter value private: char * day; // variable for the days of the week. }; DayOfTheWeek::DayOfTheWeek() : day(0) { // Usually I would allocate pointer member variables // Here in the construction of the Object } const char * DayOfTheWeek::getDay() const { return day; // we can get the day simply by returning it. } const char * DayOfTheWeek::minusOneDay() { if ( strcmp( day, "Monday" ) == 0) { cout << "The day before " << day << " is "; return "Sunday"; } else if ( strcmp( day, "Tuesday" ) == 0 ) { cout << "The day before " << day << " is "; return "Monday"; } else if ( strcmp( day, "Wednesday" ) == 0 ) { cout << "The day before " << day << " is "; return "Tuesday"; } else if ( strcmp( day, "Thursday" ) == 0 ) { cout << "The day before " << day << " is "; return "Wednesday"; } else if ( strcmp( day, "Friday" ) == 0 ) { cout << "The day before " << day << " is "; return "Thursday"; } else if ( strcmp( day, "Saturday" ) == 0 ) { cout << "The day before " << day << " is "; return "Friday"; } else if ( strcmp( day, "Sunday" ) == 0 ) { cout << "The day before " << day << " is "; return "Saturday"; } else { cout << "'" << day << "'"; return "is an invalid day of the week!"; } } const char * DayOfTheWeek::plusOneDay() { if ( strcmp( day, "Monday" ) == 0) { cout << "The day after " << day << " is "; return "Tuesday"; } else if ( strcmp( day, "Tuesday" ) == 0 ) { cout << "The day after " << day << " is "; return "Wednesday"; } else if ( strcmp( day, "Wednesday" ) == 0 ) { cout << "The day after " << day << " is "; return "Thursday"; } else if ( strcmp( day, "Thursday" ) == 0 ) { cout << "The day after " << day << " is "; return "Friday"; } else if ( strcmp( day, "Friday" ) == 0 ) { cout << "The day after " << day << " is "; return "Saturday"; } else if ( strcmp( day, "Saturday" ) == 0 ) { cout << "The day after " << day << " is "; return "Sunday"; } else if ( strcmp( day, "Sunday" ) == 0 ) { cout << "The day after " << day << " is "; return "Monday"; } else { cout << "'" << day << "'"; return " is an invalid day of the week!"; } } const char * DayOfTheWeek::addDays(int addValue) { if ( addValue < 0 ) { if ( strcmp( day, "Monday" ) == 0) { cout << day << " - " << -addValue << " = "; return "Friday"; } else if ( strcmp( day, "Tuesday" ) == 0 ) { cout << day << " - " << -addValue << " = "; return "Saturday"; } else if ( strcmp( day, "Wednesday" ) == 0 ) { cout << day << " - " << -addValue << " = "; return "Sunday"; } else if ( strcmp( day, "Thursday" ) == 0 ) { cout << day << " - " << -addValue << " = "; return "Monday"; } else if ( strcmp( day, "Friday" ) == 0 ) { cout << day << " - " << -addValue << " = "; return "Tuesday"; } else if ( strcmp( day, "Saturday" ) == 0 ) { cout << day << " - " << -addValue << " = "; return "Wednesday"; } else if ( strcmp( day, "Sunday" ) == 0 ) { cout << day << " - " << -addValue << " = "; return "Thursday"; } else { cout << "'" << day << "' "; return "is an invalid day of the week! "; } } else // if our parameter is greater than 0 (positive) { if ( strcmp( day, "Monday" ) == 0) { cout << day << " + " << addValue << " = "; return "Thursday"; } else if ( strcmp( day, "Tuesday" ) == 0 ) { cout << day << " + " << addValue << " = "; return "Friday"; } else if ( strcmp( day, "Wednesday" ) == 0 ) { cout << day << " + " << addValue << " = "; return "Saturday"; } else if ( strcmp( day, "Thursday" ) == 0 ) { cout << day << " + " << addValue << " = "; return "Sunday"; } else if ( strcmp( day, "Friday" ) == 0 ) { cout << day << " + " << addValue << " = "; return "Monday"; } else if ( strcmp( day, "Saturday" ) == 0 ) { cout << day << " + " << addValue << " = "; return "Tuesday"; } else if ( strcmp( day, "Sunday" ) == 0 ) { cout << day << " + " << addValue << " = "; return "Wednesday"; } else { cout << "'" << day << "' "; return "is an invalid day of the week! "; } } } void DayOfTheWeek::printDay() const { cout << "The Value of the " << day; } void DayOfTheWeek::setDay(const char * day) { if (day) {// Here I am allocating the object member char day pointer this->day = new char[strlen(day)+1]; size_t length = strlen(day)+1; // +1 for trailing null char strcpy_s(this->day , length , day); // copying c-strings } else day = NULL; // If their was a problem with the parameter 'day' } DayOfTheWeek::~DayOfTheWeek() { delete day; // Free the memory allocated in SetDay } int main() { DayOfTheWeek MondayObject; // declare an object MondayObject.setDay("Monday"); // Call our public function 'setDay' to set a day of the week MondayObject.printDay(); // Call our public function 'printDay' to print the day we set cout << " object is " << MondayObject.getDay() << endl; // Print the value of the object cout << MondayObject.plusOneDay() << endl; cout << MondayObject.minusOneDay() << endl; cout << MondayObject.addDays(3) << endl; MondayObject.printDay(); cout << " object is still " << MondayObject.getDay() << endl; // Print the value of the object cout << MondayObject.addDays(-3) << endl; return 0; }

    Read the article

  • Hi, I have a C hashing routine which is behaving strangely?

    - by aks
    Hi, In this hashing routine: 1.) I am able to add strings. 2.) I am able to view my added strings. 3.) When i try to add a duplicate string, it throws me an error saying already present. 4.) But, when i try to delete the same string which is already present in hash table, then the lookup_routine calls hash function to get an index. At this time, it throws a different hash index to the one it was already added. Hence, my delete routine is failing? I am able to understand the reason why for same string, hash fucntion calculates a different index each time (whereas the same logic works in view hash table routine)? Can someone help me? This is the Output, i am getting: $ ./a Press 1 to add an element to the hashtable Press 2 to delete an element from the hashtable Press 3 to search the hashtable Press 4 to view the hashtable Press 5 to exit Please enter your choice: 1 Please enter the string :gaura enters in add_string DEBUG purpose in hash function: str passed = gaura Hashval returned in hash func= 1 hashval = 1 enters in lookup_string str in lookup_string = gaura DEBUG purpose in hash function: str passed = gaura Hashval returned in hash func= 1 hashval = 1 DEBUG ERROR :element not found in lookup string DEBUG Purpose NULL Inserting... DEBUG1 : enters here hashval = 1 String added successfully Press 1 to add an element to the hashtable Press 2 to delete an element from the hashtable Press 3 to search the hashtable Press 4 to view the hashtable Press 5 to exit Please enter your choice: 1 Please enter the string :ayu enters in add_string DEBUG purpose in hash function: str passed = ayu Hashval returned in hash func= 1 hashval = 1 enters in lookup_string str in lookup_string = ayu DEBUG purpose in hash function: str passed = ayu Hashval returned in hash func= 1 hashval = 1 returns NULL in lookup_string DEBUG Purpose NULL Inserting... DEBUG2 : enters here hashval = 1 String added successfully Press 1 to add an element to the hashtable Press 2 to delete an element from the hashtable Press 3 to search the hashtable Press 4 to view the hashtable Press 5 to exit Please enter your choice: 1 Please enter the string :gaurava enters in add_string DEBUG purpose in hash function: str passed = gaurava Hashval returned in hash func= 7 hashval = 7 enters in lookup_string str in lookup_string = gaurava DEBUG purpose in hash function: str passed = gaurava Hashval returned in hash func= 7 hashval = 7 DEBUG ERROR :element not found in lookup string DEBUG Purpose NULL Inserting... DEBUG1 : enters here hashval = 7 String added successfully Press 1 to add an element to the hashtable Press 2 to delete an element from the hashtable Press 3 to search the hashtable Press 4 to view the hashtable Press 5 to exit Please enter your choice: 4 Index : i = 1 String = gaura ayu Index : i = 7 String = gaurava Press 1 to add an element to the hashtable Press 2 to delete an element from the hashtable Press 3 to search the hashtable Press 4 to view the hashtable Press 5 to exit Please enter your choice: 2 Please enter the string you want to delete :gaura String entered = gaura enters in delete_string DEBUG purpose in hash function: str passed = gaura Hashval returned in hash func= 0 hashval = 0 enters in lookup_string str in lookup_string = gaura DEBUG purpose in hash function: str passed = gaura Hashval returned in hash func= 0 hashval = 0 DEBUG ERROR :element not found in lookup string DEBUG Purpose Item not present. So, cannot be deleted Item found in list: Deletion failed Press 1 to add an element to the hashtable Press 2 to delete an element from the hashtable Press 3 to search the hashtable Press 4 to view the hashtable Press 5 to exit Please enter your choice: My routine is pasted below: include include struct list { char *string; struct list *next; }; struct hash_table { int size; /* the size of the table */ struct list *table; / the table elements */ }; struct hash_table * hashtable = NULL; struct hash_table *create_hash_table(int size) { struct hash_table *new_table; int i; if (size<1) return NULL; /* invalid size for table */ /* Attempt to allocate memory for the table structure */ if ((new_table = malloc(sizeof(struct hash_table))) == NULL) { return NULL; } /* Attempt to allocate memory for the table itself */ if ((new_table->table = malloc(sizeof(struct list *) * size)) == NULL) { return NULL; } /* Initialize the elements of the table */ for(i=0; i<size; i++) new_table->table[i] = '\0'; /* Set the table's size */ new_table->size = size; return new_table; } unsigned int hash(struct hash_table *hashtable, char *str) { printf("\n DEBUG purpose in hash function:\n"); printf("\n str passed = %s", str); unsigned int hashval = 0; int i = 0; for(; *str != '\0'; str++) { hashval += str[i]; i++; } hashval = hashval % 10; printf("\n Hashval returned in hash func= %d", hashval); return hashval; } struct list *lookup_string(struct hash_table *hashtable, char *str) { printf("\n enters in lookup_string \n"); printf("\n str in lookup_string = %s",str); struct list * new_list; unsigned int hashval = hash(hashtable, str); printf("\n hashval = %d \n", hashval); if(hashtable->table[hashval] == NULL) { printf("\n DEBUG ERROR :element not found in lookup string \n"); return NULL; } /* Go to the correct list based on the hash value and see if str is * in the list. If it is, return return a pointer to the list element. * If it isn't, the item isn't in the table, so return NULL. */ for(new_list = hashtable->table[hashval]; new_list != NULL;new_list = new_list->next) { if (strcmp(str, new_list->string) == 0) return new_list; } printf("\n returns NULL in lookup_string \n"); return NULL; } int add_string(struct hash_table *hashtable, char *str) { printf("\n enters in add_string \n"); struct list *new_list; struct list *current_list; unsigned int hashval = hash(hashtable, str); printf("\n hashval = %d", hashval); /* Attempt to allocate memory for list */ if ((new_list = malloc(sizeof(struct list))) == NULL) { printf("\n enters here \n"); return 1; } /* Does item already exist? */ current_list = lookup_string(hashtable, str); if (current_list == NULL) { printf("\n DEBUG Purpose \n"); printf("\n NULL \n"); } /* item already exists, don't insert it again. */ if (current_list != NULL) { printf("\n Item already present...\n"); return 2; } /* Insert into list */ printf("\n Inserting...\n"); new_list->string = strdup(str); new_list->next = NULL; //new_list->next = hashtable->table[hashval]; if(hashtable->table[hashval] == NULL) { printf("\n DEBUG1 : enters here \n"); printf("\n hashval = %d", hashval); hashtable->table[hashval] = new_list; } else { printf("\n DEBUG2 : enters here \n"); printf("\n hashval = %d", hashval); struct list * temp_list = hashtable->table[hashval]; while(temp_list->next!=NULL) temp_list = temp_list->next; temp_list->next = new_list; // hashtable->table[hashval] = new_list; } return 0; } int delete_string(struct hash_table *hashtable, char *str) { printf("\n enters in delete_string \n"); struct list *new_list; struct list *current_list; unsigned int hashval = hash(hashtable, str); printf("\n hashval = %d", hashval); /* Does item already exist? */ current_list = lookup_string(hashtable, str); if (current_list == NULL) { printf("\n DEBUG Purpose \n"); printf("\n Item not present. So, cannot be deleted \n"); return 1; } /* item exists, delete it. */ if (current_list != NULL) { struct list * temp = hashtable->table[hashval]; if(strcmp(temp->string,str) == 0) { if(temp->next == NULL) { hashtable->table[hashval] = NULL; free(temp); } else { hashtable->table[hashval] = temp->next; free(temp); } } else { struct list * temp1; while(temp->next != NULL) { temp1 = temp; if(strcmp(temp->string, str) == 0) { break; } else { temp = temp->next; } } if(temp->next == NULL) { temp1->next = NULL; free(temp); } else { temp1->next = temp->next; free(temp); } } } return 0; } void free_table(struct hash_table *hashtable) { int i; struct list *new_list, *temp_list; if (hashtable==NULL) return; /* Free the memory for every item in the table, including the * strings themselves. */ for(i=0; i<hashtable->size; i++) { new_list = hashtable->table[i]; while(new_list!=NULL) { temp_list = new_list; new_list = new_list->next; free(temp_list->string); free(temp_list); } } /* Free the table itself */ free(hashtable->table); free(hashtable); } void view_hashtable(struct hash_table * hashtable) { int i = 0; if(hashtable == NULL) return; for(i =0; i < hashtable->size; i++) { if((hashtable->table[i] == 0) || (strcmp(hashtable->table[i]->string, "*") == 0)) { continue; } printf(" Index : i = %d\t String = %s",i, hashtable->table[i]->string); struct list * temp = hashtable->table[i]->next; while(temp != NULL) { printf("\t %s",temp->string); temp = temp->next; } printf("\n"); } } int main() { hashtable = create_hash_table(10); if(hashtable == NULL) { printf("\n Memory allocation failure during creation of hash table \n"); return 0; } int flag = 1; while(flag) { int choice; printf("\n Press 1 to add an element to the hashtable\n"); printf("\n Press 2 to delete an element from the hashtable\n"); printf("\n Press 3 to search the hashtable\n"); printf("\n Press 4 to view the hashtable\n"); printf("\n Press 5 to exit \n"); printf("\n Please enter your choice: "); scanf("%d",&choice); if(choice == 5) flag = 0; else if(choice == 1) { char str[20]; printf("\n Please enter the string :"); scanf("%s",&str); int i; i = add_string(hashtable,str); if(i == 1) { printf("\n Memory allocation failure:Choice 1 \n"); return 0; } else if(i == 2) { printf("\n String already prsent in hash table : Couldnot add it again\n"); return 0; } else { printf("\n String added successfully \n"); } } else if(choice == 2) { int i; struct list * temp_list; char str[20]; printf("\n Please enter the string you want to delete :"); scanf("%s",&str); printf("\n String entered = %s", str); i = delete_string(hashtable,str); if(i == 0) { printf("\n Item found in list: Deletion success \n"); } else printf("\n Item found in list: Deletion failed \n"); } else if(choice == 3) { struct list * temp_list; char str[20]; printf("\n Please enter the string :"); scanf("%s",&str); temp_list = lookup_string(hashtable,str); if(!temp_list) { printf("\n Item not found in list: Deletion failed \n"); return 0; } printf("\n Item found: Present in Hash Table \n"); } else if(choice == 4) { view_hashtable(hashtable); } else if(choice == 5) { printf("\n Exiting ...."); return 0; } else printf("\n Invalid choice:"); }; free_table(hashtable); return 0; }

    Read the article

  • Confused Why I am getting C1010 error?

    - by bluepixel
    I have three files: Main, slist.h and slist.cpp can be seen at http://forums.devarticles.com/c-c-help-52/confused-why-i-am-getting-c2143-and-c1010-error-259574.html I'm trying to make a program where main reads the list of student names from a file (roster.txt) and inserts all the names in a list in ascending order. This is the full class roster list (notCheckedIN). From here I will read all students who have come to write the exams, each checkin will transfer their name to another list (in ascending order) called present. The final product is notCheckedIN will contain a list of all those students that did not write the exam and present will contain the list of all students who wrote the exam Main File: // Exam.cpp : Defines the entry point for the console application. #include "stdafx.h" #include "iostream" #include "iomanip" #include "fstream" #include "string" #include "slist.h" using namespace std; void OpenFile(ifstream&); void GetClassRoster(SortList&, ifstream&); void InputStuName(SortList&, SortList&); void UpdateList(SortList&, SortList&, string); void Print(SortList&, SortList&); const string END_DATA = "EndData"; int main() { ifstream roster; SortList notCheckedIn; //students present SortList present; //student absent OpenFile(roster); if(!roster) //Make sure file is opened return 1; GetClassRoster(notCheckedIn, roster); //insert the roster list into the notCheckedIn list InputStuName(present, notCheckedIn); Print(present, notCheckedIn); return 0; } void OpenFile(ifstream& roster) //Precondition: roster is pointing to file containing student anmes //Postcondition:IF file does not exist -> exit { string fileName = "roster.txt"; roster.open(fileName.c_str()); if(!roster) cout << "***ERROR CANNOT OPEN FILE :"<< fileName << "***" << endl; } void GetClassRoster(SortList& notCheckedIN, ifstream& roster) //Precondition:roster points to file containing list of student last name // && notCheckedIN is empty //Postcondition:notCheckedIN is filled with the names taken from roster.txt in ascending order { string name; roster >> name; while(roster) { notCheckedIN.Insert(name); roster >> name; } } void InputStuName(SortList& present, SortList& notCheckedIN) //Precondition: present list is empty initially and notCheckedIN list is full //Postcondition: repeated prompting to enter stuName // && notCheckedIN will delete all names found in present // && present will contain names present // && names not found in notCheckedIN will report Error { string stuName; cout << "Enter last name (Enter EndData if none to Enter): "; cin >> stuName; while(stuName!=END_DATA) { UpdateList(present, notCheckedIN, stuName); } } void UpdateList(SortList& present, SortList& notCheckedIN, string stuName) //Precondition:stuName is assigned //Postcondition:IF stuName is present, stuName is inserted in present list // && stuName is removed from the notCheckedIN list // ELSE stuName does not exist { if(notCheckedIN.isPresent(stuName)) { present.Insert(stuName); notCheckedIN.Delete(stuName); } else cout << "NAME IS NOT PRESENT" << endl; } void Print(SortList& present, SortList& notCheckedIN) //Precondition: present and notCheckedIN contains a list of student Names present/not present //Postcondition: content of present and notCheckedIN is printed { cout << "Candidates Present" << endl; present.Print(); cout << "Candidates Absent" << endl; notCheckedIN.Print(); } Header File: //Specification File: slist.h //This file gives the specifications of a list abstract data type //List items inserted will be in order //Class SortList, structured type used to represent an ADT using namespace std; const int MAX_LENGTH = 200; typedef string ItemType; //Class Object (class instance) SortList. Variable of class type. class SortList { //Class Member - components of a class, can be either data or functions public: //Constructor //Post-condition: Empty list is created SortList(); //Const member function. Compiler error occurs if any statement within tries to modify a private data bool isEmpty() const; //Post-condition: == true if list is empty // == false if list is not empty bool isFull() const; //Post-condition: == true if list is full // == false if list is full int Length() const; //Post-condition: size of list void Insert(ItemType item); //Precondition: NOT isFull() && item is assigned //Postcondition: item is in list && Length() = Length()@entry + 1 void Delete(ItemType item); //Precondition: NOT isEmpty() && item is assigned //Postcondition: // IF items is in list at entry // first occurance of item in list is removed // && Length() = Length()@entry -1; // ELSE // list is not changed bool isPresent(ItemType item) const; //Precondition: item is assigned //Postcondition: == true if item is present in list // == false if item is not present in list void Print() const; //Postcondition: All component of list have been output private: int length; ItemType data[MAX_LENGTH]; void BinSearch(ItemType, bool&, int&) const; }; Source File: //Implementation File: slist.cpp //This file gives the specifications of a list abstract data type //List items inserted will be in order //Class SortList, structured type used to represent an ADT #include "iostream" #include "slist.h" using namespace std; // int length; // ItemType data[MAX_SIZE]; //Class Object (class instance) SortList. Variable of class type. SortList::SortList() //Constructor //Post-condition: Empty list is created { length=0; } //Const member function. Compiler error occurs if any statement within tries to modify a private data bool SortList::isEmpty() const //Post-condition: == true if list is empty // == false if list is not empty { return(length==0); } bool SortList::isFull() const //Post-condition: == true if list is full // == false if list is full { return (length==(MAX_LENGTH-1)); } int SortList::Length() const //Post-condition: size of list { return length; } void SortList::Insert(ItemType item) //Precondition: NOT isFull() && item is assigned //Postcondition: item is in list && Length() = Length()@entry + 1 // && list componenet are in ascending order of value { int index; index = length -1; while(index >=0 && item<data[index]) { data[index+1]=data[index]; index--; } data[index+1]=item; length++; } void SortList:elete(ItemType item) //Precondition: NOT isEmpty() && item is assigned //Postcondition: // IF items is in list at entry // first occurance of item in list is removed // && Length() = Length()@entry -1; // && list components are in ascending order // ELSE data array is unchanged { bool found; int position; BinSearch(item,found,position); if (found) { for(int index = position; index < length; index++) data[index]=data[index+1]; length--; } } bool SortList::isPresent(ItemType item) const //Precondition: item is assigned && length <= MAX_LENGTH && items are in ascending order //Postcondition: true if item is found in the list // false if item is not found in the list { bool found; int position; BinSearch(item,found,position); return (found); } void SortList::Print() const //Postcondition: All component of list have been output { for(int x= 0; x<length; x++) cout << data[x] << endl; } void SortList::BinSearch(ItemType item, bool found, int position) const //Precondition: item contains item to be found // && item in the list is an ascending order //Postcondition: IF item is in list, position is returned // ELSE item does not exist in the list { int first = 0; int last = length -1; int middle; found = false; while(!found) { middle = (first+last)/2; if(data[middle]<item) first = middle+1; else if (data[middle] > item) last = middle -1; else found = true; } if(found) position = middle; } I cannot get rid of the C1010 error: fatal error C1010: unexpected end of file while looking for precompiled header. Did you forget to add '#include "stdafx.h"' to your source? Is there a way to get rid of this error? When I included "stdafx.h" I received the following 32 errors (which does not make sense to me why because I referred back to my manual on how to use Class method - everything looks a.ok.) Error 1 error C2871: 'std' : a namespace with this name does not exist c:\..\slist.h 6 Error 2 error C2146: syntax error : missing ';' before identifier 'ItemType' c:\..\slist.h 8 Error 3 error C4430: missing type specifier - int assumed. Note: C++ does not support default-int c:\..\slist.h 8 Error 4 error C4430: missing type specifier - int assumed. Note: C++ does not support default-int c:\..\slist.h 8 Error 5 error C2061: syntax error : identifier 'ItemType' c:\..\slist.h 30 Error 6 error C2061: syntax error : identifier 'ItemType' c:\..\slist.h 34 Error 7 error C2061: syntax error : identifier 'ItemType' c:\..\slist.h 43 Error 8 error C2146: syntax error : missing ';' before identifier 'data' c:\..\slist.h 52 Error 9 error C4430: missing type specifier - int assumed. Note: C++ does not support default-int c:\..\slist.h 52 Error 10 error C4430: missing type specifier - int assumed. Note: C++ does not support default-int c:\..\slist.h 52 Error 11 error C2061: syntax error : identifier 'ItemType' c:\..\slist.h 53 Error 12 error C2146: syntax error : missing ')' before identifier 'item' c:\..\slist.cpp 41 Error 13 error C2761: 'void SortList::Insert(void)' : member function redeclaration not allowed c:\..\slist.cpp 41 Error 14 error C2059: syntax error : ')' c:\..\slist.cpp 41 Error 15 error C2143: syntax error : missing ';' before '{' c:\..\slist.cpp 45 Error 16 error C2447: '{' : missing function header (old-style formal list?) c:\..\slist.cpp 45 Error 17 error C2146: syntax error : missing ')' before identifier 'item' c:\..\slist.cpp 57 Error 18 error C2761: 'void SortList:elete(void)' : member function redeclaration not allowed c:\..\slist.cpp 57 Error 19 error C2059: syntax error : ')' c:\..\slist.cpp 57 Error 20 error C2143: syntax error : missing ';' before '{' c:\..\slist.cpp 65 Error 21 error C2447: '{' : missing function header (old-style formal list?) c:\..\slist.cpp 65 Error 22 error C2146: syntax error : missing ')' before identifier 'item' c:\..\slist.cpp 79 Error 23 error C2761: 'bool SortList::isPresent(void) const' : member function redeclaration not allowed c:\..\slist.cpp 79 Error 24 error C2059: syntax error : ')' c:\..\slist.cpp 79 Error 25 error C2143: syntax error : missing ';' before '{' c:\..\slist.cpp 83 Error 26 error C2447: '{' : missing function header (old-style formal list?) c:\..\slist.cpp 83 Error 27 error C2065: 'data' : undeclared identifier c:\..\slist.cpp 95 Error 28 error C2146: syntax error : missing ')' before identifier 'item' c:\..\slist.cpp 98 Error 29 error C2761: 'void SortList::BinSearch(void) const' : member function redeclaration not allowed c:\..\slist.cpp 98 Error 30 error C2059: syntax error : ')' c:\..\slist.cpp 98 Error 31 error C2143: syntax error : missing ';' before '{' c:\..\slist.cpp 103 Error 32 error C2447: '{' : missing function header (old-style formal list?) c:\..\slist.cpp 103

    Read the article

  • C# 5 Async, Part 1: Simplifying Asynchrony – That for which we await

    - by Reed
    Today’s announcement at PDC of the future directions C# is taking excite me greatly.  The new Visual Studio Async CTP is amazing.  Asynchronous code – code which frustrates and demoralizes even the most advanced of developers, is taking a huge leap forward in terms of usability.  This is handled by building on the Task functionality in .NET 4, as well as the addition of two new keywords being added to the C# language: async and await. This core of the new asynchronous functionality is built upon three key features.  First is the Task functionality in .NET 4, and based on Task and Task<TResult>.  While Task was intended to be the primary means of asynchronous programming with .NET 4, the .NET Framework was still based mainly on the Asynchronous Pattern and the Event-based Asynchronous Pattern. The .NET Framework added functionality and guidance for wrapping existing APIs into a Task based API, but the framework itself didn’t really adopt Task or Task<TResult> in any meaningful way.  The CTP shows that, going forward, this is changing. One of the three key new features coming in C# is actually a .NET Framework feature.  Nearly every asynchronous API in the .NET Framework has been wrapped into a new, Task-based method calls.  In the CTP, this is done via as external assembly (AsyncCtpLibrary.dll) which uses Extension Methods to wrap the existing APIs.  However, going forward, this will be handled directly within the Framework.  This will have a unifying effect throughout the .NET Framework.  This is the first building block of the new features for asynchronous programming: Going forward, all asynchronous operations will work via a method that returns Task or Task<TResult> The second key feature is the new async contextual keyword being added to the language.  The async keyword is used to declare an asynchronous function, which is a method that either returns void, a Task, or a Task<T>. Inside the asynchronous function, there must be at least one await expression.  This is a new C# keyword (await) that is used to automatically take a series of statements and break it up to potentially use discontinuous evaluation.  This is done by using await on any expression that evaluates to a Task or Task<T>. For example, suppose we want to download a webpage as a string.  There is a new method added to WebClient: Task<string> WebClient.DownloadStringTaskAsync(Uri).  Since this returns a Task<string> we can use it within an asynchronous function.  Suppose, for example, that we wanted to do something similar to my asynchronous Task example – download a web page asynchronously and check to see if it supports XHTML 1.0, then report this into a TextBox.  This could be done like so: private async void button1_Click(object sender, RoutedEventArgs e) { string url = "http://reedcopsey.com"; string content = await new WebClient().DownloadStringTaskAsync(url); this.textBox1.Text = string.Format("Page {0} supports XHTML 1.0: {1}", url, content.Contains("XHTML 1.0")); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Let’s walk through what’s happening here, step by step.  By adding the async contextual keyword to the method definition, we are able to use the await keyword on our WebClient.DownloadStringTaskAsync method call. When the user clicks this button, the new method (Task<string> WebClient.DownloadStringTaskAsync(string)) is called, which returns a Task<string>.  By adding the await keyword, the runtime will call this method that returns Task<string>, and execution will return to the caller at this point.  This means that our UI is not blocked while the webpage is downloaded.  Instead, the UI thread will “await” at this point, and let the WebClient do it’s thing asynchronously. When the WebClient finishes downloading the string, the user interface’s synchronization context will automatically be used to “pick up” where it left off, and the Task<string> returned from DownloadStringTaskAsync is automatically unwrapped and set into the content variable.  At this point, we can use that and set our text box content. There are a couple of key points here: Asynchronous functions are declared with the async keyword, and contain one or more await expressions In addition to the obvious benefits of shorter, simpler code – there are some subtle but tremendous benefits in this approach.  When the execution of this asynchronous function continues after the first await statement, the initial synchronization context is used to continue the execution of this function.  That means that we don’t have to explicitly marshal the call that sets textbox1.Text back to the UI thread – it’s handled automatically by the language and framework!  Exception handling around asynchronous method calls also just works. I’d recommend every C# developer take a look at the documentation on the new Asynchronous Programming for C# and Visual Basic page, download the Visual Studio Async CTP, and try it out.

    Read the article

  • An easy way to create Side by Side registrationless COM Manifests with Visual Studio

    - by Rick Strahl
    Here's something I didn't find out until today: You can use Visual Studio to easily create registrationless COM manifest files for you with just a couple of small steps. Registrationless COM lets you use COM component without them being registered in the registry. This means it's possible to deploy COM components along with another application using plain xcopy semantics. To be sure it's rarely quite that easy - you need to watch out for dependencies - but if you know you have COM components that are light weight and have no or known dependencies it's easy to get everything into a single folder and off you go. Registrationless COM works via manifest files which carry the same name as the executable plus a .manifest extension (ie. yourapp.exe.manifest) I'm going to use a Visual FoxPro COM object as an example and create a simple Windows Forms app that calls the component - without that component being registered. Let's take a walk down memory lane… Create a COM Component I start by creating a FoxPro COM component because that's what I know and am working with here in my legacy environment. You can use VB classic or C++ ATL object if that's more to your liking. Here's a real simple Fox one: DEFINE CLASS SimpleServer as Session OLEPUBLIC FUNCTION HelloWorld(lcName) RETURN "Hello " + lcName ENDDEFINE Compile it into a DLL COM component with: BUILD MTDLL simpleserver FROM simpleserver RECOMPILE And to make sure it works test it quickly from Visual FoxPro: server = CREATEOBJECT("simpleServer.simpleserver") MESSAGEBOX( server.HelloWorld("Rick") ) Using Visual Studio to create a Manifest File for a COM Component Next open Visual Studio and create a new executable project - a Console App or WinForms or WPF application will all do. Go to the References Node Select Add Reference Use the Browse tab and find your compiled DLL to import  Next you'll see your assembly in the project. Right click on the reference and select Properties Click on the Isolated DropDown and select True Compile and that's all there's to it. Visual Studio will create a App.exe.manifest file right alongside your application's EXE. The manifest file created looks like this: xml version="1.0" encoding="utf-8"? assembly xsi:schemaLocation="urn:schemas-microsoft-com:asm.v1 assembly.adaptive.xsd" manifestVersion="1.0" xmlns:asmv1="urn:schemas-microsoft-com:asm.v1" xmlns:asmv2="urn:schemas-microsoft-com:asm.v2" xmlns:asmv3="urn:schemas-microsoft-com:asm.v3" xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" xmlns:co.v1="urn:schemas-microsoft-com:clickonce.v1" xmlns:co.v2="urn:schemas-microsoft-com:clickonce.v2" xmlns="urn:schemas-microsoft-com:asm.v1" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" assemblyIdentity name="App.exe" version="1.0.0.0" processorArchitecture="x86" type="win32" / file name="simpleserver.DLL" asmv2:size="27293" hash xmlns="urn:schemas-microsoft-com:asm.v2" dsig:Transforms dsig:Transform Algorithm="urn:schemas-microsoft-com:HashTransforms.Identity" / dsig:Transforms dsig:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" / dsig:DigestValuepuq+ua20bbidGOWhPOxfquztBCU=dsig:DigestValue hash typelib tlbid="{f10346e2-c9d9-47f7-81d1-74059cc15c3c}" version="1.0" helpdir="" resourceid="0" flags="HASDISKIMAGE" / comClass clsid="{af2c2811-0657-4264-a1f5-06d033a969ff}" threadingModel="Apartment" tlbid="{f10346e2-c9d9-47f7-81d1-74059cc15c3c}" progid="simpleserver.SimpleServer" description="simpleserver.SimpleServer" / file assembly Now let's finish our super complex console app to test with: using System; using System.Collections.Generic; using System.Text; namespace ConsoleApplication1 {     class Program     {         static voidMain(string[] args)         { Type type = Type.GetTypeFromProgID("simpleserver.simpleserver",true); dynamic server = Activator.CreateInstance(type); Console.WriteLine(server.HelloWorld("rick")); Console.ReadLine(); } } } Now run the Console Application… As expected that should work. And why not? The COM component is still registered, right? :-) Nothing tricky about that. Let's unregister the COM component and then re-run and see what happens. Go to the Command Prompt Change to the folder where the DLL is installed Unregister with: RegSvr32 -u simpleserver.dll      To be sure that the COM component no longer works, check it out with the same test you used earlier (ie. o = CREATEOBJECT("SimpleServer.SimpleServer") in your development environment or VBScript etc.). Make sure you run the EXE and you don't re-compile the application or else Visual Studio will complain that it can't find the COM component in the registry while compiling. In fact now that we have our .manifest file you can remove the COM object from the project. When you run run the EXE from Windows Explorer or a command prompt to avoid the recompile. Watch out for embedded Manifest Files Now recompile your .NET project and run it… and it will most likely fail! The problem is that .NET applications by default embeds a manifest file into the compiled EXE application which results in the externally created manifest file being completely ignored. Only one manifest can be applied at a time and the compiled manifest takes precedency. Uh, thanks Visual Studio - not very helpful… Note that if you use another development tool like Visual FoxPro to create your EXE this won't be an issue as long as the tool doesn't automatically add a manifest file. Creating a Visual FoxPro EXE for example will work immediately with the generated manifest file as is. If you are using .NET and Visual Studio you have a couple of options of getting around this: Remove the embedded manifest file Copy the contents of the generated manifest file into a project manifest file and compile that in To remove an embedded manifest in a Visual Studio project: Open the Project Properties (Alt-Enter on project node) Go down to Resources | Manifest and select | Create Application without a Manifest   You can now add use the external manifest file and it will actually be respected when the app runs. The other option is to let Visual Studio create the manifest file on disk and then explicitly add the manifest file into the project. Notice on the dialog above I did this for app.exe.manifest and the manifest actually shows up in the list. If I select this file it will be compiled into the EXE and be used in lieu of any external files and that works as well. Remove the simpleserver.dll reference so you can compile your code and run the application. Now it should work without COM registration of the component. Personally I prefer external manifests because they can be modified after the fact - compiled manifests are evil in my mind because they are immutable - once they are there they can't be overriden or changed. So I prefer an external manifest. However, if you are absolutely sure nothing needs to change and you don't want anybody messing with your manifest, you can also embed it. The option to either is there. Watch for Manifest Caching While working trying to get this to work I ran into some problems at first. Specifically when it wasn't working at first (due to the embedded schema) I played with various different manifest layouts in different files etc.. There are a number of different ways to actually represent manifest files including offloading to separate folder (more on that later). A few times I made deliberate errors in the schema file and I found that regardless of what I did once the app failed or worked no amount of changing of the manifest file would make it behave differently. It appears that Windows is caching the manifest data for a given EXE or DLL. It takes a restart or a recompile of either the EXE or the DLL to clear the caching. Recompile your servers in order to see manifest changes unless there's an outright failure of an invalid manifest file. If the app starts the manifest is being read and caches immediately. This can be very confusing especially if you don't know that it's happening. I found myself always recompiling the exe after each run and before making any changes to the manifest file. Don't forget about Runtimes of COM Objects In the example I used above I used a Visual FoxPro COM component. Visual FoxPro is a runtime based environment so if I'm going to distribute an application that uses a FoxPro COM object the runtimes need to be distributed as well. The same is true of classic Visual Basic applications. Assuming that you don't know whether the runtimes are installed on the target machines make sure to install all the additional files in the EXE's directory alongside the COM DLL. In the case of Visual FoxPro the target folder should contain: The EXE  App.exe The Manifest file (unless it's compiled in) App.exe.manifest The COM object DLL (simpleserver.dll) Visual FoxPro Runtimes: VFP9t.dll (or VFP9r.dll for non-multithreaded dlls), vfp9rENU.dll, msvcr71.dll All these files should be in the same folder. Debugging Manifest load Errors If you for some reason get your manifest loading wrong there are a couple of useful tools available - SxSTrace and SxSParse. These two tools can be a huge help in debugging manifest loading errors. Put the following into a batch file (SxS_Trace.bat for example): sxstrace Trace -logfile:sxs.bin sxstrace Parse -logfile:sxs.bin -outfile:sxs.txt Then start the batch file before running your EXE. Make sure there's no caching happening as described in the previous section. For example, if I go into the manifest file and explicitly break the CLSID and/or ProgID I get a detailed report on where the EXE is looking for the manifest and what it's reading. Eventually the trace gives me an error like this: INFO: Parsing Manifest File C:\wwapps\Conf\SideBySide\Code\app.EXE.     INFO: Manifest Definition Identity is App.exe,processorArchitecture="x86",type="win32",version="1.0.0.0".     ERROR: Line 13: The value {AAaf2c2811-0657-4264-a1f5-06d033a969ff} of attribute clsid in element comClass is invalid. ERROR: Activation Context generation failed. End Activation Context Generation. pinpointing nicely where the error lies. Pay special attention to the various attributes - they have to match exactly in the different sections of the manifest file(s). Multiple COM Objects The manifest file that Visual Studio creates is actually quite more complex than is required for basic registrationless COM object invokation. The manifest file can be simplified a lot actually by stripping off various namespaces and removing the type library references altogether. Here's an example of a simplified manifest file that actually includes references to 2 COM servers: xml version="1.0" encoding="utf-8"? assembly xmlns="urn:schemas-microsoft-com:asm.v1" manifestVersion="1.0" assemblyIdentity name="App.exe" version="1.0.0.0" processorArchitecture="x86" type="win32" / file name="simpleserver.DLL" comClass clsid="{af2c2811-0657-4264-a1f5-06d033a969ff}" threadingModel="Apartment" progid="simpleserver.SimpleServer" description="simpleserver.SimpleServer" / file file name = "sidebysidedeploy.dll" comClass clsid="{EF82B819-7963-4C36-9443-3978CD94F57C}" progid="sidebysidedeploy.SidebysidedeployServer" description="SidebySideDeploy Server" threadingModel="apartment" / file assembly Simple enough right? Routing to separate Manifest Files and Folders In the examples above all files ended up in the application's root folder - all the DLLs, support files and runtimes. Sometimes that's not so desirable and you can actually create separate manifest files. The easiest way to do this is to create a manifest file that 'routes' to another manifest file in a separate folder. Basically you create a new 'assembly identity' via a named id. You can then create a folder and another manifest with the id plus .manifest that points at the actual file. In this example I create: App.exe.manifest A folder called App.deploy A manifest file in App.deploy All DLLs and runtimes in App.deploy Let's start with that master manifest file. This file only holds a reference to another manifest file: App.exe.manifest xml version="1.0" encoding="UTF-8" standalone="yes"? assembly xmlns="urn:schemas-microsoft-com:asm.v1" manifestVersion="1.0" assemblyIdentity name="App.exe" version="1.0.0.0" processorArchitecture="x86" type="win32" / dependency dependentAssembly assemblyIdentity name="App.deploy" version="1.0.0.0" type="win32" / dependentAssembly dependency assembly   Note this file only contains a dependency to App.deploy which is another manifest id. I can then create App.deploy.manifest in the current folder or in an App.deploy folder. In this case I'll create App.deploy and in it copy the DLLs and support runtimes. I then create App.deploy.manifest. App.deploy.manifest xml version="1.0" encoding="UTF-8" standalone="yes"? assembly xmlns="urn:schemas-microsoft-com:asm.v1" manifestVersion="1.0" assemblyIdentity name="App.deploy" type="win32" version="1.0.0.0" / file name="simpleserver.DLL" comClass clsid="{af2c2811-0657-4264-a1f5-06d033a969ff}" threadingModel="Apartment" progid="simpleserver.SimpleServer" description="simpleserver.SimpleServer" / file file name="sidebysidedeploy.dll" comClass clsid="{EF82B819-7963-4C36-9443-3978CD94F57C}" threadingModel="Apartment" progid="sidebysidedeploy.SidebysidedeployServer" description="SidebySideDeploy Server" / file assembly   In this manifest file I then host my COM DLLs and any support runtimes. This is quite useful if you have lots of DLLs you are referencing or if you need to have separate configuration and application files that are associated with the COM object. This way the operation of your main application and the COM objects it interacts with is somewhat separated. You can see the two folders here:   Routing Manifests to different Folders In theory registrationless COM should be pretty easy in painless - you've seen the configuration manifest files and it certainly doesn't look very complicated, right? But the devil's in the details. The ActivationContext API (SxS - side by side activation) is very intolerant of small errors in the XML or formatting of the keys, so be really careful when setting up components, especially if you are manually editing these files. If you do run into trouble SxsTrace/SxsParse are a huge help to track down the problems. And remember that if you do have problems that you'll need to recompile your EXEs or DLLs for the SxS APIs to refresh themselves properly. All of this gets even more fun if you want to do registrationless COM inside of IIS :-) But I'll leave that for another blog post…© Rick Strahl, West Wind Technologies, 2005-2011Posted in COM  .NET  FoxPro   Tweet (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Creating an ASP.NET report using Visual Studio 2010 - Part 3

    - by rajbk
    We continue building our report in this three part series. Creating an ASP.NET report using Visual Studio 2010 - Part 1 Creating an ASP.NET report using Visual Studio 2010 - Part 2 Adding the ReportViewer control and filter drop downs. Open the source code for index.aspx and add a ScriptManager control. This control is required for the ReportViewer control. Add a DropDownList for the categories and suppliers. Add the ReportViewer control. The markup after these steps is shown below. <div> <asp:ScriptManager ID="smScriptManager" runat="server"> </asp:ScriptManager> <div id="searchFilter"> Filter by: Category : <asp:DropDownList ID="ddlCategories" runat="server" /> and Supplier : <asp:DropDownList ID="ddlSuppliers" runat="server" /> </div> <rsweb:ReportViewer ID="rvProducts" runat="server"> </rsweb:ReportViewer> </div> The design view for index.aspx is shown below. The dropdowns will display the categories and suppliers in the database. Changing the selection in the drop downs will cause the report to be filtered by the selections in the dropdowns. You will see how to do this in the next steps.   Attaching the RDLC to the ReportViewer control by clicking on the top right of the control, going to Report Viewer tasks and selecting Products.rdlc.   Resize the ReportViewer control by dragging at the bottom right corner. I set mine to 800px x 500px. You can also set this value in source view. Defining the data sources. We will now define the Data Source used to populate the report. Go back to the “ReportViewer Tasks” and select “Choose Data Sources” Select a “New data source..” Select “Object” and name your Data Source ID “odsProducts”   In the next screen, choose “ProductRepository” as your business object. Choose “GetProductsProjected” in the next screen.   The method requires a SupplierID and CategoryID. We will set these so that our data source gets the values from the drop down lists we defined earlier. Set the parameter source to be of type “Control” and set the ControlIDs to be ddlSuppliers and ddlCategories respectively. Your screen will look like this: We are now going to define the data source for our drop downs. Select the ddlCategory drop down and pick “Choose Data Source”. Pick “Object” and give it an id “odsCategories”   In the next screen, choose “ProductRepository” Select the GetCategories() method in the next screen.   Select “CategoryName” and “CategoryID” in the next screen. We are done defining the data source for the Category drop down. Perform the same steps for the Suppliers drop down.   Select each dropdown and set the AppendDataBoundItems to true and AutoPostback to true.     The AppendDataBoundItems is needed because we are going to insert an “All“ list item with a value of empty. Go to each drop down and add this list item markup as shown below> Finally, double click on each drop down in the designer and add the following code in the code behind. This along with the “Autopostback= true” attribute refreshes the report anytime a drop down is changed. protected void ddlCategories_SelectedIndexChanged(object sender, EventArgs e) { rvProducts.LocalReport.Refresh(); }   protected void ddlSuppliers_SelectedIndexChanged(object sender, EventArgs e) { rvProducts.LocalReport.Refresh(); } Compile your report and run the page. You should see the report rendered. Note that the tool bar in the ReportViewer control gives you a couple of options including the ability to export the data to Excel, PDF or word.   Conclusion Through this three part series, we did the following: Created a data layer for use by our RDLC. Created an RDLC using the report wizard and define a dataset for the report. Used the report design surface to design our report including adding a chart. Used the ReportViewer control to attach the RDLC. Connected our ReportWiewer to a data source and take parameter values from the drop downlists. Used AutoPostBack to refresh the reports when the dropdown selection was changed. RDLCs allow you to create interactive reports including drill downs and grouping. For even more advanced reports you can use Microsoft® SQL Server™ Reporting Services with RDLs. With RDLs, the report is rendered on the report server instead of the web server. Another nice thing about RDLs is that you can define a parameter list for the report and it gets rendered automatically for you. RDLCs and RDLs both have their advantages and its best to compare them and choose the right one for your requirements. Download VS2010 RTM Sample project NorthwindReports.zip   Alfred Borden: Are you watching closely?

    Read the article

  • Entity Framework 4.0: Creating objects of correct type when using lazy loading

    - by DigiMortal
    In my posting about Entity Framework 4.0 and POCOs I introduced lazy loading in EF applications. EF uses proxy classes for lazy loading and this means we have new types in that come and go dynamically in runtime. We don’t have these types available when we write code but we cannot forget that EF may expect us to use dynamically generated types. In this posting I will give you simple hint how to use correct types in your code. The background of lazy loading and proxy classes As a first thing I will explain you in short what is proxy class. Business classes when designed correctly have no knowledge about their birth and death – they don’t know how they are created and they don’t know how their data is persisted. This is the responsibility of object runtime. When we use lazy loading we need a little bit different classes that know how to load data for properties when code accesses the property first time. As we cannot add this functionality to our business classes (they may be stored through more than one data access technology or by more than one Data Access Layer (DAL)) we create proxy classes that extend our business classes. If we have class called Product and product has lazy loaded property called Customer then we need proxy class, let’s say ProductProxy, that has same public signature as Product so we can use it INSTEAD OF product in our code. ProductProxy overrides Customer property. If customer is not asked then customer is null. But if we ask for Customer property then overridden property of ProductProxy loads it from database. This is how lazy loading works. Problem – two types for same thing As lazy loading may introduce dynamically generated proxy types we don’t know in our application code which type is returned. We cannot be sure that we have Product not ProductProxy returned. This leads us to the following question: how can we create Product of correct type if we don’t know the correct type? In EF solution is simple. Solution – use factory methods If you are using repositories and you are not using factories (imho it is pretty pointless with mapper) you can add factory methods to your EF based repositories. Take a look at this class. public class Event {     public int ID { get; set; }     public string Title { get; set; }     public string Location { get; set; }     public virtual Party Organizer { get; set; }     public DateTime Date { get; set; } } We have virtual member called Organizer. This property is virtual because we want to use lazy loading on this class so Organizer is loaded only when we ask it. EF provides us with method called CreateObject<T>(). CreateObject<T>() is member of ObjectContext class and it creates the object based on given type. In runtime proxy type for Event is created for us automatically and when we call CreateObject<T>() for Event it returns as object of Event proxy type. The factory method for events repository is as follows. public Event CreateEvent() {     var evt = _context.CreateObject<Event>();     return evt; } And we are done. Instead of creating factory classes we created factory methods that guarantee that created objects are of correct type. Conclusion Although lazy loading introduces some new objects we cannot use at design time because they live only in runtime we can write code without worrying about exact implementation type of object. This holds true until we have clean code and we don’t make any decisions based on object type. EF4.0 provides us with very simple factory method that create and return objects of correct type. All we had to do was adding factory methods to our repositories.

    Read the article

  • Book Review: Oracle ADF Real World Developer’s Guide

    - by Frank Nimphius
    Recently PACKT Publishing published "Oracle ADF Real World Developer’s Guide" by Jobinesh Purushothaman, a product manager in our team. Though already the sixth book dedicated to Oracle ADF, it has a lot of great information in it that none of the previous books covered, making it a safe buy even for those who own the other books published by Oracle Press (McGrwHill) and PACKT Publishing. More than the half of the "Oracle ADF Real World Developer’s Guide" book is dedicated to Oracle ADF Business Components in a depth and clarity that allows you to feel the expertise that Jobinesh gained in this area. If you enjoy Jobinesh blog (http://jobinesh.blogspot.co.uk/) about Oracle ADF, then, no matter what expert you are in Oracle ADF, this book makes you happy as it provides you with detail information you always wished to have. If you are new to Oracle ADF, then this book alone doesn't get you flying, but, if you have some Java background, accelerates your learning big, big, big times. Chapter 1 is an introduction to Oracle ADF and not only explains the layers but also how it compares to plain Java EE solutions (page 13). If you are new to Oracle JDeveloper and ADF, then at the end of this chapter you know how to start JDeveloper and begin your ADF development Chapter 2 starts with what Jobinesh really is good at: ADF Business Components. In this chapter you learn about the architecture ingredients of ADF Business Components: View Objects, View Links, Associations, Entities, Row Sets, Query Collections and Application Modules. This chapter also provides a introduction to ADFBC SDO services, as well as sequence diagrams for what happens when you execute queries or commit updates. Chapter 3 is dedicated to entity objects and  is one of many chapters in this book you will enjoy and never want to miss. Jobinesh explains the artifacts that make up an entity object, how to work with entities and resource bundles, and many advanced topics, including inheritance, change history tracking, custom properties, validation and cursor handling.  Chapter 4 - you guessed it - is all about View objects. Comparable to entities, you learn about the XM files and classes that make a view object, as well as how to define and work with queries. List-of-values, inheritance, polymorphism, bind variables and data filtering are interesting - and important topics that follow. Again the chapter provides helpful sequence diagrams for you to understand what happens internally within a view object. Chapter 5 focuses on advanced view object and entity object topics, like lifecycle callback methods and when you want to override them. This chapter is a good digest of Jobinesh's blog entries (which most ADF developers have in their bookmark list). Really worth reading ! Chapter 6 then is bout Application Modules. Beside of what application modules are, this chapter covers important topics like properties, passivation, activation, application module pooling, how and where to write custom logic. In addition you learn about the AM lifecycle and request sequence. Chapter 7 is about the ADF binding layer. If you are new to Oracle ADF and got lost in the more advanced ADF Business Components chapters, then this chapter is where you get back into the game. In very easy terms, Jobinesh explains what the ADF binding is, how it fits into the JSF request lifecycle and what are the metadata file involved. Chapter 8 then goes into building data bound web user interfaces. In this chapter you get the basics of JavaServer Faces (e.g. managed beans) and learn about the interaction between the JSF UI and the ADF binding layer. Later this chapter provides advanced solutions for working with tree components and list of values. Chapter 9 introduces bounded task flows and ADF controller. This is a chapter you want to read if you are new to ADF of have started. Experts don't find anything new here, which doesn't mean that it is not worth reading it (I for example, enjoyed the controller talk very much) Chapter 10 is an advanced coverage of bounded task flow and talks about contextual events  Chapter 11 is another highlight and explains error handling, trains, transactions and more. I can only recommend you read this chapter. I am aware of many documents that cover exception handling in Oracle ADF (and my Oracle Magazine article for January/February 2013 does the same), but none that covers it in such a great depth. Chapter 12 covers ADF best practices, which is a great round-up of all the tips provided in this book (without Jobinesh to repeat himself). Its all cool stuff that helps you with your ADF projects. In summary, "Oracle ADF Real World Developer’s Guide" by Jobinesh Purushothaman is a great book and addition for all Oracle ADF developers and those who want to become one. Frank

    Read the article

  • Developing web apps using ASP.NET MVC 3, Razor and EF Code First - Part 2

    - by shiju
    In my previous post Developing web apps using ASP.NET MVC 3, Razor and EF Code First - Part 1, we have discussed on how to work with ASP.NET MVC 3 and EF Code First for developing web apps. We have created generic repository and unit of work with EF Code First for our ASP.NET MVC 3 application and did basic CRUD operations against a simple domain entity. In this post, I will demonstrate on working with domain entity with deep object graph, Service Layer and View Models and will also complete the rest of the demo application. In the previous post, we have done CRUD operations against Category entity and this post will be focus on Expense entity those have an association with Category entity. You can download the source code from http://efmvc.codeplex.com . The following frameworks will be used for this step by step tutorial.    1. ASP.NET MVC 3 RTM    2. EF Code First CTP 5    3. Unity 2.0 Domain Model Category Entity public class Category   {       public int CategoryId { get; set; }       [Required(ErrorMessage = "Name Required")]       [StringLength(25, ErrorMessage = "Must be less than 25 characters")]       public string Name { get; set;}       public string Description { get; set; }       public virtual ICollection<Expense> Expenses { get; set; }   } Expense Entity public class Expense     {                public int ExpenseId { get; set; }                public string  Transaction { get; set; }         public DateTime Date { get; set; }         public double Amount { get; set; }         public int CategoryId { get; set; }         public virtual Category Category { get; set; }     } We have two domain entities - Category and Expense. A single category contains a list of expense transactions and every expense transaction should have a Category. Repository class for Expense Transaction Let’s create repository class for handling CRUD operations for Expense entity public class ExpenseRepository : RepositoryBase<Expense>, IExpenseRepository     {     public ExpenseRepository(IDatabaseFactory databaseFactory)         : base(databaseFactory)         {         }                } public interface IExpenseRepository : IRepository<Expense> { } Service Layer If you are new to Service Layer, checkout Martin Fowler's article Service Layer . According to Martin Fowler, Service Layer defines an application's boundary and its set of available operations from the perspective of interfacing client layers. It encapsulates the application's business logic, controlling transactions and coordinating responses in the implementation of its operations. Controller classes should be lightweight and do not put much of business logic onto it. We can use the service layer as the business logic layer and can encapsulate the rules of the application. Let’s create a Service class for coordinates the transaction for Expense public interface IExpenseService {     IEnumerable<Expense> GetExpenses(DateTime startDate, DateTime ednDate);     Expense GetExpense(int id);             void CreateExpense(Expense expense);     void DeleteExpense(int id);     void SaveExpense(); } public class ExpenseService : IExpenseService {     private readonly IExpenseRepository expenseRepository;            private readonly IUnitOfWork unitOfWork;     public ExpenseService(IExpenseRepository expenseRepository, IUnitOfWork unitOfWork)     {                  this.expenseRepository = expenseRepository;         this.unitOfWork = unitOfWork;     }     public IEnumerable<Expense> GetExpenses(DateTime startDate, DateTime endDate)     {         var expenses = expenseRepository.GetMany(exp => exp.Date >= startDate && exp.Date <= endDate);         return expenses;     }     public void CreateExpense(Expense expense)     {         expenseRepository.Add(expense);         unitOfWork.Commit();     }     public Expense GetExpense(int id)     {         var expense = expenseRepository.GetById(id);         return expense;     }     public void DeleteExpense(int id)     {         var expense = expenseRepository.GetById(id);         expenseRepository.Delete(expense);         unitOfWork.Commit();     }     public void SaveExpense()     {         unitOfWork.Commit();     } }   View Model for Expense Transactions In real world ASP.NET MVC applications, we need to design model objects especially for our views. Our domain objects are mainly designed for the needs for domain model and it is representing the domain of our applications. On the other hand, View Model objects are designed for our needs for views. We have an Expense domain entity that has an association with Category. While we are creating a new Expense, we have to specify that in which Category belongs with the new Expense transaction. The user interface for Expense transaction will have form fields for representing the Expense entity and a CategoryId for representing the Category. So let's create view model for representing the need for Expense transactions. public class ExpenseViewModel {     public int ExpenseId { get; set; }       [Required(ErrorMessage = "Category Required")]     public int CategoryId { get; set; }       [Required(ErrorMessage = "Transaction Required")]     public string Transaction { get; set; }       [Required(ErrorMessage = "Date Required")]     public DateTime Date { get; set; }       [Required(ErrorMessage = "Amount Required")]     public double Amount { get; set; }       public IEnumerable<SelectListItem> Category { get; set; } } The ExpenseViewModel is designed for the purpose of View template and contains the all validation rules. It has properties for mapping values to Expense entity and a property Category for binding values to a drop-down for list values of Category. Create Expense transaction Let’s create action methods in the ExpenseController for creating expense transactions public ActionResult Create() {     var expenseModel = new ExpenseViewModel();     var categories = categoryService.GetCategories();     expenseModel.Category = categories.ToSelectListItems(-1);     expenseModel.Date = DateTime.Today;     return View(expenseModel); } [HttpPost] public ActionResult Create(ExpenseViewModel expenseViewModel) {                      if (!ModelState.IsValid)         {             var categories = categoryService.GetCategories();             expenseViewModel.Category = categories.ToSelectListItems(expenseViewModel.CategoryId);             return View("Save", expenseViewModel);         }         Expense expense=new Expense();         ModelCopier.CopyModel(expenseViewModel,expense);         expenseService.CreateExpense(expense);         return RedirectToAction("Index");              } In the Create action method for HttpGet request, we have created an instance of our View Model ExpenseViewModel with Category information for the drop-down list and passing the Model object to View template. The extension method ToSelectListItems is shown below   public static IEnumerable<SelectListItem> ToSelectListItems(         this IEnumerable<Category> categories, int  selectedId) {     return           categories.OrderBy(category => category.Name)                 .Select(category =>                     new SelectListItem                     {                         Selected = (category.CategoryId == selectedId),                         Text = category.Name,                         Value = category.CategoryId.ToString()                     }); } In the Create action method for HttpPost, our view model object ExpenseViewModel will map with posted form input values. We need to create an instance of Expense for the persistence purpose. So we need to copy values from ExpenseViewModel object to Expense object. ASP.NET MVC futures assembly provides a static class ModelCopier that can use for copying values between Model objects. ModelCopier class has two static methods - CopyCollection and CopyModel.CopyCollection method will copy values between two collection objects and CopyModel will copy values between two model objects. We have used CopyModel method of ModelCopier class for copying values from expenseViewModel object to expense object. Finally we did a call to CreateExpense method of ExpenseService class for persisting new expense transaction. List Expense Transactions We want to list expense transactions based on a date range. So let’s create action method for filtering expense transactions with a specified date range. public ActionResult Index(DateTime? startDate, DateTime? endDate) {     //If date is not passed, take current month's first and last dte     DateTime dtNow;     dtNow = DateTime.Today;     if (!startDate.HasValue)     {         startDate = new DateTime(dtNow.Year, dtNow.Month, 1);         endDate = startDate.Value.AddMonths(1).AddDays(-1);     }     //take last date of start date's month, if end date is not passed     if (startDate.HasValue && !endDate.HasValue)     {         endDate = (new DateTime(startDate.Value.Year, startDate.Value.Month, 1)).AddMonths(1).AddDays(-1);     }     var expenses = expenseService.GetExpenses(startDate.Value ,endDate.Value);     //if request is Ajax will return partial view     if (Request.IsAjaxRequest())     {         return PartialView("ExpenseList", expenses);     }     //set start date and end date to ViewBag dictionary     ViewBag.StartDate = startDate.Value.ToShortDateString();     ViewBag.EndDate = endDate.Value.ToShortDateString();     //if request is not ajax     return View(expenses); } We are using the above Index Action method for both Ajax requests and normal requests. If there is a request for Ajax, we will call the PartialView ExpenseList. Razor Views for listing Expense information Let’s create view templates in Razor for showing list of Expense information ExpenseList.cshtml @model IEnumerable<MyFinance.Domain.Expense>   <table>         <tr>             <th>Actions</th>             <th>Category</th>             <th>                 Transaction             </th>             <th>                 Date             </th>             <th>                 Amount             </th>         </tr>       @foreach (var item in Model) {              <tr>             <td>                 @Html.ActionLink("Edit", "Edit",new { id = item.ExpenseId })                 @Ajax.ActionLink("Delete", "Delete", new { id = item.ExpenseId }, new AjaxOptions { Confirm = "Delete Expense?", HttpMethod = "Post", UpdateTargetId = "divExpenseList" })             </td>              <td>                 @item.Category.Name             </td>             <td>                 @item.Transaction             </td>             <td>                 @String.Format("{0:d}", item.Date)             </td>             <td>                 @String.Format("{0:F}", item.Amount)             </td>         </tr>          }       </table>     <p>         @Html.ActionLink("Create New Expense", "Create") |         @Html.ActionLink("Create New Category", "Create","Category")     </p> Index.cshtml @using MyFinance.Helpers; @model IEnumerable<MyFinance.Domain.Expense> @{     ViewBag.Title = "Index"; }    <h2>Expense List</h2>    <script src="@Url.Content("~/Scripts/jquery.unobtrusive-ajax.min.js")" type="text/javascript"></script> <script src="@Url.Content("~/Scripts/jquery-ui.js")" type="text/javascript"></script> <script src="@Url.Content("~/Scripts/jquery.ui.datepicker.js")" type="text/javascript"></script> <link href="@Url.Content("~/Content/jquery-ui-1.8.6.custom.css")" rel="stylesheet" type="text/css" />      @using (Ajax.BeginForm(new AjaxOptions{ UpdateTargetId="divExpenseList", HttpMethod="Get"})) {     <table>         <tr>         <td>         <div>           Start Date: @Html.TextBox("StartDate", Html.Encode(String.Format("{0:mm/dd/yyyy}", ViewData["StartDate"].ToString())), new { @class = "ui-datepicker" })         </div>         </td>         <td><div>            End Date: @Html.TextBox("EndDate", Html.Encode(String.Format("{0:mm/dd/yyyy}", ViewData["EndDate"].ToString())), new { @class = "ui-datepicker" })          </div></td>          <td> <input type="submit" value="Search By TransactionDate" /></td>         </tr>     </table>         }   <div id="divExpenseList">             @Html.Partial("ExpenseList", Model)     </div> <script type="text/javascript">     $().ready(function () {         $('.ui-datepicker').datepicker({             dateFormat: 'mm/dd/yy',             buttonImage: '@Url.Content("~/Content/calendar.gif")',             buttonImageOnly: true,             showOn: "button"         });     }); </script> Ajax search functionality using Ajax.BeginForm The search functionality of Index view is providing Ajax functionality using Ajax.BeginForm. The Ajax.BeginForm() method writes an opening <form> tag to the response. You can use this method in a using block. In that case, the method renders the closing </form> tag at the end of the using block and the form is submitted asynchronously by using JavaScript. The search functionality will call the Index Action method and this will return partial view ExpenseList for updating the search result. We want to update the response UI for the Ajax request onto divExpenseList element. So we have specified the UpdateTargetId as "divExpenseList" in the Ajax.BeginForm method. Add jQuery DatePicker Our search functionality is using a date range so we are providing two date pickers using jQuery datepicker. You need to add reference to the following JavaScript files to working with jQuery datepicker. jquery-ui.js jquery.ui.datepicker.js For theme support for datepicker, we can use a customized CSS class. In our example we have used a CSS file “jquery-ui-1.8.6.custom.css”. For more details about the datepicker component, visit jquery UI website at http://jqueryui.com/demos/datepicker . In the jQuery ready event, we have used following JavaScript function to initialize the UI element to show date picker. <script type="text/javascript">     $().ready(function () {         $('.ui-datepicker').datepicker({             dateFormat: 'mm/dd/yy',             buttonImage: '@Url.Content("~/Content/calendar.gif")',             buttonImageOnly: true,             showOn: "button"         });     }); </script>   Source Code You can download the source code from http://efmvc.codeplex.com/ . Summary In this two-part series, we have created a simple web application using ASP.NET MVC 3 RTM, Razor and EF Code First CTP 5. I have demonstrated patterns and practices  such as Dependency Injection, Repository pattern, Unit of Work, ViewModel and Service Layer. My primary objective was to demonstrate different practices and options for developing web apps using ASP.NET MVC 3 and EF Code First. You can implement these approaches in your own way for building web apps using ASP.NET MVC 3. I will refactor this demo app on later time.

    Read the article

  • New .NET Library for Accessing the Survey Monkey API

    - by Ben Emmett
    I’ve used Survey Monkey’s API for a while, and though it’s pretty powerful, there’s a lot of boilerplate each time it’s used in a new project, and the json it returns needs a bunch of processing to be able to use the raw information. So I’ve finally got around to releasing a .NET library you can use to consume the API more easily. The main advantages are: Only ever deal with strongly-typed .NET objects, making everything much more robust and a lot faster to get going Automatically handles things like rate-limiting and paging through results Uses combinations of endpoints to get all relevant data for you, and processes raw response data to map responses to questions To start, either install it using NuGet with PM> Install-Package SurveyMonkeyApi (easier option), or grab the source from https://github.com/bcemmett/SurveyMonkeyApi if you prefer to build it yourself. You’ll also need to have signed up for a developer account with Survey Monkey, and have both your API key and an OAuth token. A simple usage would be something like: string apiKey = "KEY"; string token = "TOKEN"; var sm = new SurveyMonkeyApi(apiKey, token); List<Survey> surveys = sm.GetSurveyList(); The surveys object is now a list of surveys with all the information available from the /surveys/get_survey_list API endpoint, including the title, id, date it was created and last modified, language, number of questions / responses, and relevant urls. If there are more than 1000 surveys in your account, the library pages through the results for you, making multiple requests to get a complete list of surveys. All the filtering available in the API can be controlled using .NET objects. For example you might only want surveys created in the last year and containing “pineapple” in the title: var settings = new GetSurveyListSettings { Title = "pineapple", StartDate = DateTime.Now.AddYears(-1) }; List<Survey> surveys = sm.GetSurveyList(settings); By default, whenever optional fields can be requested with a response, they will all be fetched for you. You can change this behaviour if for some reason you explicitly don’t want the information, using var settings = new GetSurveyListSettings { OptionalData = new GetSurveyListSettingsOptionalData { DateCreated = false, AnalysisUrl = false } }; Survey Monkey’s 7 read-only endpoints are supported, and the other 4 which make modifications to data might be supported in the future. The endpoints are: Endpoint Method Object returned /surveys/get_survey_list GetSurveyList() List<Survey> /surveys/get_survey_details GetSurveyDetails() Survey /surveys/get_collector_list GetCollectorList() List<Collector> /surveys/get_respondent_list GetRespondentList() List<Respondent> /surveys/get_responses GetResponses() List<Response> /surveys/get_response_counts GetResponseCounts() Collector /user/get_user_details GetUserDetails() UserDetails /batch/create_flow Not supported Not supported /batch/send_flow Not supported Not supported /templates/get_template_list Not supported Not supported /collectors/create_collector Not supported Not supported The hierarchy of objects the library can return is Survey List<Page> List<Question> QuestionType List<Answer> List<Item> List<Collector> List<Response> Respondent List<ResponseQuestion> List<ResponseAnswer> Each of these classes has properties which map directly to the names of properties returned by the API itself (though using PascalCasing which is more natural for .NET, rather than the snake_casing used by SurveyMonkey). For most users, Survey Monkey imposes a rate limit of 2 requests per second, so by default the library leaves at least 500ms between requests. You can request higher limits from them, so if you want to change the delay between requests just use a different constructor: var sm = new SurveyMonkeyApi(apiKey, token, 200); //200ms delay = 5 reqs per sec There’s a separate cap of 1000 requests per day for each API key, which the library doesn’t currently enforce, so if you think you’ll be in danger of exceeding that you’ll need to handle it yourself for now.  To help, you can see how many requests the current instance of the SurveyMonkeyApi object has made by reading its RequestsMade property. If the library encounters any errors, including communicating with the API, it will throw a SurveyMonkeyException, so be sure to handle that sensibly any time you use it to make calls. Finally, if you have a survey (or list of surveys) obtained using GetSurveyList(), the library can automatically fill in all available information using sm.FillMissingSurveyInformation(surveys); For each survey in the list, it uses the other endpoints to fill in the missing information about the survey’s question structure, respondents, and responses. This results in at least 5 API calls being made per survey, so be careful before passing it a large list. It also joins up the raw response information to the survey’s question structure, so that for each question in a respondent’s set of replies, you can access a ProcessedAnswer object. For example, a response to a dropdown question (from the /surveys/get_responses endpoint) might be represented in json as { "answers": [ { "row": "9384627365", } ], "question_id": "615487516" } Separately, the question’s structure (from the /surveys/get_survey_details endpoint) might have several possible answers, one of which might look like { "text": "Fourth item in dropdown list", "visible": true, "position": 4, "type": "row", "answer_id": "9384627365" } The library understands how this mapping works, and uses that to give you the following ProcessedAnswer object, which first describes the family and type of question, and secondly gives you the respondent’s answers as they relate to the question. Survey Monkey has many different question types, with 11 distinct data structures, each of which are supported by the library. If you have suggestions or spot any bugs, let me know in the comments, or even better submit a pull request .

    Read the article

  • jQuery Datatable in MVC &hellip; extended.

    - by Steve Clements
    There are a million plugins for jQuery and when a web forms developer like myself works in MVC making use of them is par-for-the-course!  MVC is the way now, web forms are but a memory!! Grids / tables are my focus at the moment.  I don’t want to get in to righting reems of css and html, but it’s not acceptable to simply dump a table on the screen, functionality like sorting, paging, fixed header and perhaps filtering are expected behaviour.  What isn’t always required though is the massive functionality like editing etc you get with many grid plugins out there. You potentially spend a long time getting everything hooked together when you just don’t need it. That is where the jQuery DataTable plugin comes in.  It doesn’t have editing “out of the box” (you can add other plugins as you require to achieve such functionality). What it does though is very nicely format a table (and integrate with jQuery UI) without needing to hook up and Async actions etc.  Take a look here… http://www.datatables.net I did in the first instance start looking at the Telerik MVC grid control – I’m a fan of Telerik controls and if you are developing an in-house of open source app you get the MVC stuff for free…nice!  Their grid however is far more than I require.  Note: Using Telerik MVC controls with your own jQuery and jQuery UI does come with some hurdles, mainly to do with the order in which all your jQuery is executing – I won’t cover that here though – mainly because I don’t have a clear answer on the best way to solve it! One nice thing about the dataTable above is how easy it is to extend http://www.datatables.net/examples/plug-ins/plugin_api.html and there are some nifty examples on the site already… I however have a requirement that wasn’t on the site … I need a grid at the bottom of the page that will size automatically to the bottom of the page and be scrollable if required within its own space i.e. everything above the grid didn’t scroll as well.  Now a CSS master may have a great solution to this … I’m not that master and so didn’t! The content above the grid can vary so any kind of fixed positioning is out. So I wrote a little extension for the DataTable, hooked that up to the document.ready event and window.resize event. Initialising my dataTable ( s )… $(document).ready(function () {   var dTable = $(".tdata").dataTable({ "bPaginate": false, "bLengthChange": false, "bFilter": true, "bSort": true, "bInfo": false, "bAutoWidth": true, "sScrollY": "400px" });   My extension to the API to give me the resizing….   // ********************************************************************** // jQuery dataTable API extension to resize grid and adjust column sizes // $.fn.dataTableExt.oApi.fnSetHeightToBottom = function (oSettings) { var id = oSettings.nTable.id; var dt = $("#" + id); var top = dt.position().top; var winHeight = $(document).height(); var remain = (winHeight - top) - 83; dt.parent().attr("style", "overflow-x: auto; overflow-y: auto; height: " + remain + "px;"); this.fnAdjustColumnSizing(); } This is very much is debug mode, so pretty verbose at the moment – I’ll tidy that up later! You can see the last call is a call to an existing method, as the columns are fixed and that normally involves so CSS voodoo, a call to adjust those sizes is required. Just above is the style that the dataTable gives the grid wrapper div, I got that from some firebug action and stick in my new height. The –83 is to give me the space at the bottom i require for fixed footer!   Finally I hook that up to the load and window resize.  I’m actually using jQuery UI tabs as well, so I’ve got that in the open event of the tabs.   $(document).ready(function () { var oTable; $("#tabs").tabs({ "show": function (event, ui) { oTable = $('div.dataTables_scrollBody>table.tdata', ui.panel).dataTable(); if (oTable.length > 0) { oTable.fnSetHeightToBottom(); } } }); $(window).bind("resize", function () { oTable.fnSetHeightToBottom(); }); }); And that all there is too it.  Testament to the wonders of jQuery and the immense community surrounding it – to which I am extremely grateful. I’ve also hooked up some custom column filtering on the grid – pretty normal stuff though – you can get what you need for that from their website.  I do hide the out of the box filter input as I wanted column specific, you need filtering turned on when initialising to get it to work and that input come with it!  Tip: fnFilter is the method you want.  With column index as a param – I used data tags to simply that one.

    Read the article

  • Handling Trailing Delimiters in HL7 Messages

    - by Thomas Canter
    Applies to: BizTalk Server 2006 with the HL7 1.3 Accelerator Outline of the problem Trailing Delimiters are empty values at the end of an object in a HL7 ER7 formatted message. Examples: Empty Field NTE|P| NTE|P|| Empty component ORC|1|725^ Empty Subcomponent ORC|1|||||27& Empty repeat OBR|1||||||||027~ Trailing delimiters indicate the following object exists and is empty, which is quite different from null, null is an explicit value indicated by a pair of double quotes -> "". The BizTalk HL7 Accelerator by default does not allow trailing delimiters. There are three methods to allow trailing delimiters. NOTE: All Schemas always allow trailing delimiters in the MSH Segment Using party identifiers MSH3.1 – Receive/inbound processing, using this value as a party allows you to configure the system to allow inbound trailing delimiters. MSH5.1 – Send/outbound processing, using this value as a party allows you to configure the system to allow outbound trailing delimiters. Generally, if you allow inbound trailing delimiters, unless you are willing to programmatically remove all trailing delimiters, then you need to configure the send to allow trailing delimiters. Add the appropriate parties to the BizTalk Parties list from these two fields in your message stream. Open the BizTalk HL7 Configuration tool and for each party check the "Allow trailing delimiters (separators)" check box on the Validation tab. Disadvantage – Each MSH3.1 and MSH5.1 value must be represented in the parties list and configured. Advantage – granular control over system behavior for each inbound/outbound system. Using instance properties of a pipeline used in a send port or receive location. Open the BizTalk Server Administration console locate the send port or receive location that contains the BTAHL72XReceivePipeline or BTAHL72XSendPipeline pipeline. Open the properties To the right of the pipeline selected locate the […] ellipses button In the property list, locate the "TrailingDelimiterAllowed" property and set it to True. Advantage – All messages through a particular Send Port or Receive Location will allow trailing delimiters. Disadvantage – Must configure each Send Port or Receive Location. No granular control over which remote parties will send or receive messages with trailing delimiters. Using a custom pipeline that uses a pre-configured BTA HL7 Pipeline component. Use Visual Studio to construct a custom receive and send pipeline using the appropriate assembler or dissasembler. Set the component property to "TrailingDelimitersAllowed" to True Compile and deploy the custom pipeline Use the custom pipeline instead of the standard pipeline for all HL7 message processing Advantage – All messages using the custom pipeline will automatically allow trailing delimiters. Disadvantage – Requires custom coding and development to create and deploy the custom pipeline. No granular control over which remote parties will send or receive messages with trailing delimiters. What does a Trailing Delimiter do to the XML Schema? Allowing trailing delimiters does not have the impact often expected in the actual XML Schema.The Schema reproduces the message with no data loss.Thus, the message when represented in XML must contain the extra fields, in order to reproduce the outbound message.Thus, a trialing delimiter results in an empty XML field.Trailing Delmiters are not stripped from the inbound message. Example:<PID_21>44172</PID_21><PID_21>9257</PID_21> -> the original maximum number of repeats<PID_21></PID_21> -> The empty repeated field Allowing trailing delimiters not remove the trailing delimiters from the message, it simply suppresses the check that will cause the message to fail parse with trailing delimiters. When can you not fix the problem by enabling trailing delimiters Each object in a message must have a location in the target BTAHL7 schema for its content to reside.If you have more objects in the message than are contained at that location, then enabling trailing delimiters will not resolve the problem. The schema must be extended to accommodate the empty message content.Examples: Extra Field NTE|P||||Only 4 fields in NTE Segment, the 4th field exists, but is empty. Extra component PID|1|1523|47^^^^^^^Only 5 components in a CX data type, the 5th component exists, but is empty Extra subcomponent ORC|1|||||27&&Only 2 subcomponents in a CQ data type, the 3rd subcomponent is empty, but exists. Extra Repeat PID|1||||||||||||||||||||4419~5217~Only 2 repeats allowed for the field "Mother's identifier", the repeat is empty, but exists. In each of these cases, you must locate the failing object and extend the type to allow an additional object of that type. FieldAdd a field of ST to the end of the segment with a suitable name in the segments_nnn.xsd Component Create a new Custom CX data type (i.e. CX_XtraComp) in the datatypes_nnn.xsd and add a new component to the custom CX data type. Update the field in the segments_nnn.xsd file to use the custom data type instead of the standard datatype. Subcomponent Create a new Custom CQ data type that accepts an additional TS value at the end of the data type. Create a custom TQ data type that uses the new custom CQ data type as the first subcomponent. Modify the ORC segment to use the new CQ data type at ORC.7 instead of the standard CQ data type. RepeatModify the Field definition for PID.21 in the segments_nnn.xsd to allow more repeats in the field.

    Read the article

  • Anti-Forgery Request in ASP.NET MVC and AJAX

    - by Dixin
    Background To secure websites from cross-site request forgery (CSRF, or XSRF) attack, ASP.NET MVC provides an excellent mechanism: The server prints tokens to cookie and inside the form; When the form is submitted to server, token in cookie and token inside the form are sent by the HTTP request; Server validates the tokens. To print tokens to browser, just invoke HtmlHelper.AntiForgeryToken():<% using (Html.BeginForm()) { %> <%: this.Html.AntiForgeryToken(Constants.AntiForgeryTokenSalt)%> <%-- Other fields. --%> <input type="submit" value="Submit" /> <% } %> which writes to token to the form:<form action="..." method="post"> <input name="__RequestVerificationToken" type="hidden" value="J56khgCvbE3bVcsCSZkNVuH9Cclm9SSIT/ywruFsXEgmV8CL2eW5C/gGsQUf/YuP" /> <!-- Other fields. --> <input type="submit" value="Submit" /> </form> and the cookie: __RequestVerificationToken_Lw__=J56khgCvbE3bVcsCSZkNVuH9Cclm9SSIT/ywruFsXEgmV8CL2eW5C/gGsQUf/YuP When the above form is submitted, they are both sent to server. [ValidateAntiForgeryToken] attribute is used to specify the controllers or actions to validate them:[HttpPost] [ValidateAntiForgeryToken(Salt = Constants.AntiForgeryTokenSalt)] public ActionResult Action(/* ... */) { // ... } This is very productive for form scenarios. But recently, when resolving security vulnerabilities for Web products, I encountered 2 problems: It is expected to add [ValidateAntiForgeryToken] to each controller, but actually I have to add it for each POST actions, which is a little crazy; After anti-forgery validation is turned on for server side, AJAX POST requests will consistently fail. Specify validation on controller (not on each action) Problem For the first problem, usually a controller contains actions for both HTTP GET and HTTP POST requests, and usually validations are expected for HTTP POST requests. So, if the [ValidateAntiForgeryToken] is declared on the controller, the HTTP GET requests become always invalid:[ValidateAntiForgeryToken(Salt = Constants.AntiForgeryTokenSalt)] public class SomeController : Controller { [HttpGet] public ActionResult Index() // Index page cannot work at all. { // ... } [HttpPost] public ActionResult PostAction1(/* ... */) { // ... } [HttpPost] public ActionResult PostAction2(/* ... */) { // ... } // ... } If user sends a HTTP GET request from a link: http://Site/Some/Index, validation definitely fails, because no token is provided. So the result is, [ValidateAntiForgeryToken] attribute must be distributed to each HTTP POST action in the application:public class SomeController : Controller { [HttpGet] public ActionResult Index() // Works. { // ... } [HttpPost] [ValidateAntiForgeryToken(Salt = Constants.AntiForgeryTokenSalt)] public ActionResult PostAction1(/* ... */) { // ... } [HttpPost] [ValidateAntiForgeryToken(Salt = Constants.AntiForgeryTokenSalt)] public ActionResult PostAction2(/* ... */) { // ... } // ... } Solution To avoid a large number of [ValidateAntiForgeryToken] attributes (one attribute for one HTTP POST action), I created a wrapper class of ValidateAntiForgeryTokenAttribute, where HTTP verbs can be specified:[AttributeUsage(AttributeTargets.Class | AttributeTargets.Method, AllowMultiple = false, Inherited = true)] public class ValidateAntiForgeryTokenWrapperAttribute : FilterAttribute, IAuthorizationFilter { private readonly ValidateAntiForgeryTokenAttribute _validator; private readonly AcceptVerbsAttribute _verbs; public ValidateAntiForgeryTokenWrapperAttribute(HttpVerbs verbs) : this(verbs, null) { } public ValidateAntiForgeryTokenWrapperAttribute(HttpVerbs verbs, string salt) { this._verbs = new AcceptVerbsAttribute(verbs); this._validator = new ValidateAntiForgeryTokenAttribute() { Salt = salt }; } public void OnAuthorization(AuthorizationContext filterContext) { string httpMethodOverride = filterContext.HttpContext.Request.GetHttpMethodOverride(); if (this._verbs.Verbs.Contains(httpMethodOverride, StringComparer.OrdinalIgnoreCase)) { this._validator.OnAuthorization(filterContext); } } } When this attribute is declared on controller, only HTTP requests with the specified verbs are validated:[ValidateAntiForgeryTokenWrapper(HttpVerbs.Post, Constants.AntiForgeryTokenSalt)] public class SomeController : Controller { // Actions for HTTP GET requests are not affected. // Only HTTP POST requests are validated. } Now one single attribute on controller turns on validation for all HTTP POST actions. Submit token via AJAX Problem For AJAX scenarios, when request is sent by JavaScript instead of form:$.post(url, { productName: "Tofu", categoryId: 1 // Token is not posted. }, callback); This kind of AJAX POST requests will always be invalid, because server side code cannot see the token in the posted data. Solution The token must be printed to browser then submitted back to server. So first of all, HtmlHelper.AntiForgeryToken() must be called in the page where the AJAX POST will be sent. Then jQuery must find the printed token in the page, and post it:$.post(url, { productName: "Tofu", categoryId: 1, __RequestVerificationToken: getToken() // Token is posted. }, callback); To be reusable, this can be encapsulated in a tiny jQuery plugin:(function ($) { $.getAntiForgeryToken = function () { // HtmlHelper.AntiForgeryToken() must be invoked to print the token. return $("input[type='hidden'][name='__RequestVerificationToken']").val(); }; var addToken = function (data) { // Converts data if not already a string. if (data && typeof data !== "string") { data = $.param(data); } data = data ? data + "&" : ""; return data + "__RequestVerificationToken=" + encodeURIComponent($.getAntiForgeryToken()); }; $.postAntiForgery = function (url, data, callback, type) { return $.post(url, addToken(data), callback, type); }; $.ajaxAntiForgery = function (settings) { settings.data = addToken(settings.data); return $.ajax(settings); }; })(jQuery); Then in the application just replace $.post() invocation with $.postAntiForgery(), and replace $.ajax() instead of $.ajaxAntiForgery():$.postAntiForgery(url, { productName: "Tofu", categoryId: 1 }, callback); // Token is posted. This solution looks hard coded and stupid. If you have more elegant solution, please do tell me.

    Read the article

  • Class Loading Deadlocks

    - by tomas.nilsson
    Mattis follows up on his previous post with one more expose on Class Loading Deadlocks As I wrote in a previous post, the class loading mechanism in Java is very powerful. There are many advanced techniques you can use, and when used wrongly you can get into all sorts of trouble. But one of the sneakiest deadlocks you can run into when it comes to class loading doesn't require any home made class loaders or anything. All you need is classes depending on each other, and some bad luck. First of all, here are some basic facts about class loading: 1) If a thread needs to use a class that is not yet loaded, it will try to load that class 2) If another thread is already loading the class, the first thread will wait for the other thread to finish the loading 3) During the loading of a class, one thing that happens is that the <clinit method of a class is being run 4) The <clinit method initializes all static fields, and runs any static blocks in the class. Take the following class for example: class Foo { static Bar bar = new Bar(); static { System.out.println("Loading Foo"); } } The first time a thread needs to use the Foo class, the class will be initialized. The <clinit method will run, creating a new Bar object and printing "Loading Foo" But what happens if the Bar object has never been used before either? Well, then we will need to load that class as well, calling the Bar <clinit method as we go. Can you start to see the potential problem here? A hint is in fact #2 above. What if another thread is currently loading class Bar? The thread loading class Foo will have to wait for that thread to finish loading. But what happens if the <clinit method of class Bar tries to initialize a Foo object? That thread will have to wait for the first thread, and there we have the deadlock. Thread one is waiting for thread two to initialize class Bar, thread two is waiting for thread one to initialize class Foo. All that is needed for a class loading deadlock is static cross dependencies between two classes (and a multi threaded environment): class Foo { static Bar b = new Bar(); } class Bar { static Foo f = new Foo(); } If two threads cause these classes to be loaded at exactly the same time, we will have a deadlock. So, how do you avoid this? Well, one way is of course to not have these circular (static) dependencies. On the other hand, it can be very hard to detect these, and sometimes your design may depend on it. What you can do in that case is to make sure that the classes are first loaded single threadedly, for example during an initialization phase of your application. The following program shows this kind of deadlock. To help bad luck on the way, I added a one second sleep in the static block of the classes to trigger the unlucky timing. Notice that if you uncomment the "//Foo f = new Foo();" line in the main method, the class will be loaded single threadedly, and the program will terminate as it should. public class ClassLoadingDeadlock { // Start two threads. The first will instansiate a Foo object, // the second one will instansiate a Bar object. public static void main(String[] arg) { // Uncomment next line to stop the deadlock // Foo f = new Foo(); new Thread(new FooUser()).start(); new Thread(new BarUser()).start(); } } class FooUser implements Runnable { public void run() { System.out.println("FooUser causing class Foo to be loaded"); Foo f = new Foo(); System.out.println("FooUser done"); } } class BarUser implements Runnable { public void run() { System.out.println("BarUser causing class Bar to be loaded"); Bar b = new Bar(); System.out.println("BarUser done"); } } class Foo { static { // We are deadlock prone even without this sleep... // The sleep just makes us more deterministic try { Thread.sleep(1000); } catch(InterruptedException e) {} } static Bar b = new Bar(); } class Bar { static { try { Thread.sleep(1000); } catch(InterruptedException e) {} } static Foo f = new Foo(); }

    Read the article

  • C# 4.0: Covariance And Contravariance In Generics

    - by Paulo Morgado
    C# 4.0 (and .NET 4.0) introduced covariance and contravariance to generic interfaces and delegates. But what is this variance thing? According to Wikipedia, in multilinear algebra and tensor analysis, covariance and contravariance describe how the quantitative description of certain geometrical or physical entities changes when passing from one coordinate system to another.(*) But what does this have to do with C# or .NET? In type theory, a the type T is greater (>) than type S if S is a subtype (derives from) T, which means that there is a quantitative description for types in a type hierarchy. So, how does covariance and contravariance apply to C# (and .NET) generic types? In C# (and .NET), variance applies to generic type parameters and not to the resulting generic type. A generic type parameter is: covariant if the ordering of the generic types follows the ordering of the generic type parameters: Generic<T> = Generic<S> for T = S. contravariant if the ordering of the generic types is reversed from the ordering of the generic type parameters: Generic<T> = Generic<S> for T = S. invariant if neither of the above apply. If this definition is applied to arrays, we can see that arrays have always been covariant because this is valid code: object[] objectArray = new string[] { "string 1", "string 2" }; objectArray[0] = "string 3"; objectArray[1] = new object(); However, when we try to run this code, the second assignment will throw an ArrayTypeMismatchException. Although the compiler was fooled into thinking this was valid code because an object is being assigned to an element of an array of object, at run time, there is always a type check to guarantee that the runtime type of the definition of the elements of the array is greater or equal to the instance being assigned to the element. In the above example, because the runtime type of the array is array of string, the first assignment of array elements is valid because string = string and the second is invalid because string = object. This leads to the conclusion that, although arrays have always been covariant, they are not safely covariant – code that compiles is not guaranteed to run without errors. In C#, the way to define that a generic type parameter as covariant is using the out generic modifier: public interface IEnumerable<out T> { IEnumerator<T> GetEnumerator(); } public interface IEnumerator<out T> { T Current { get; } bool MoveNext(); } Notice the convenient use the pre-existing out keyword. Besides the benefit of not having to remember a new hypothetic covariant keyword, out is easier to remember because it defines that the generic type parameter can only appear in output positions — read-only properties and method return values. In a similar way, the way to define a type parameter as contravariant is using the in generic modifier: public interface IComparer<in T> { int Compare(T x, T y); } Once again, the use of the pre-existing in keyword makes it easier to remember that the generic type parameter can only be used in input positions — write-only properties and method non ref and non out parameters. Because covariance and contravariance apply only to the generic type parameters, a generic type definition can have both covariant and contravariant generic type parameters in its definition: public delegate TResult Func<in T, out TResult>(T arg); A generic type parameter that is not marked covariant (out) or contravariant (in) is invariant. All the types in the .NET Framework where variance could be applied to its generic type parameters have been modified to take advantage of this new feature. In summary, the rules for variance in C# (and .NET) are: Variance in type parameters are restricted to generic interface and generic delegate types. A generic interface or generic delegate type can have both covariant and contravariant type parameters. Variance applies only to reference types; if you specify a value type for a variant type parameter, that type parameter is invariant for the resulting constructed type. Variance does not apply to delegate combination. That is, given two delegates of types Action<Derived> and Action<Base>, you cannot combine the second delegate with the first although the result would be type safe. Variance allows the second delegate to be assigned to a variable of type Action<Derived>, but delegates can combine only if their types match exactly. If you want to learn more about variance in C# (and .NET), you can always read: Covariance and Contravariance in Generics — MSDN Library Exact rules for variance validity — Eric Lippert Events get a little overhaul in C# 4, Afterward: Effective Events — Chris Burrows Note: Because variance is a feature of .NET 4.0 and not only of C# 4.0, all this also applies to Visual Basic 10.

    Read the article

  • http request to cgi python script successful, but the script doesn't seem to run

    - by chipChocolate.py
    I have configured cgi scripts for my apache2 web server. Here is what I want to do: Client uploads the image to the server. (this already works) On success, I want to execute the python script to resize the image. I tried the following and the success function does execute but my python script does not seem to execute: Javascript code that sends the request: var input = document.getElementById('imageLoader'); imageName = input.value; var file = input.files[0]; if(file != undefined){ formData= new FormData(); console.log(formData.length); if(!!file.type.match(/image.*/)){ formData.append("image", file); $.ajax({ url: "upload.php", type: "POST", processData: false, contentType: false, success: function() { var input = document.getElementById('imageLoader'); imageName = input.value; var file = input.files[0]; formData = new FormData(); formData.append("filename", file); $.ajax({ url: "http://localhost/Main/cgi-bin/resize.py", type: "POST", data: formData, processData: false, contentType: false, success: function(data) { console.log(data); } }); // code continues... resize.py: #!/usr/bin/python import cgi import cgitb import Image cgitb.enable() data = cgi.FieldStorage() filename = data.getvalue("filename") im = Image.open("../JS/upload/" + filename) (width, height) = im.size maxWidth = 600 maxHeight = 400 if width > maxWidth: d = float(width) / maxWidth height = int(height / d) width = maxWidth if height > maxHeight: d = float(height) / maxHeight width = int(width / d) height = maxHeight size = (width, height) im = im.resize(size, Image.ANTIALIAS) im.save("../JS/upload/" + filename, quality=100) This is the apache2.conf: <Directory /var/www/html/Main/cgi-bin> AllowOverride None Options +ExecCGI SetHandler cgi-script AddHandler cgi-script .py .cgi Order allow,deny Allow from all </Directory> cgi-bin and python script file permissions: drwxrwxr-x 2 mou mou 4096 Aug 24 03:28 cgi-bin -rwxrwxrwx 1 mou mou 1673 Aug 24 03:28 resize.py Edit: Executing this code $.ajax({ url: "http://localhost/Main/cgi-bin/resize.py", type: "POST", data: formData, // formData = {"filename" : "the filename which was saved in a variable whie the image was uploaded"} processData: false, contentType: false, success: function(data) { alert(data); } }); it alerts the following: <body bgcolor="#f0f0f8"><font color="#f0f0f8" size="-5"> --> <body bgcolor="#f0f0f8"><font color="#f0f0f8" size="-5"> --> --> </font> </font> </font> </script> </object> </blockquote> </pre> </table> </table> </table> </table> </table> </font> </font> </font><body bgcolor="#f0f0f8"> <table width="100%" cellspacing=0 cellpadding=2 border=0 summary="heading"> <tr bgcolor="#6622aa"> <td valign=bottom>&nbsp;<br> <font color="#ffffff" face="helvetica, arial">&nbsp;<br><big><big><strong>&lt;type 'exceptions.TypeError'&gt;</strong></big></big></font></td ><td align=right valign=bottom ><font color="#ffffff" face="helvetica, arial">Python 2.7.6: /usr/bin/python<br>Sun Aug 24 17:24:15 2014</font></td></tr></table> <p>A problem occurred in a Python script. Here is the sequence of function calls leading up to the error, in the order they occurred.</p> <table width="100%" cellspacing=0 cellpadding=0 border=0> <tr><td bgcolor="#d8bbff"><big>&nbsp;</big><a href="file:///var/www/html/Main/cgi-bin/resize.py">/var/www/html/Main/cgi-bin/resize.py</a> in <strong><module></strong>()</td></tr> <tr><td><font color="#909090"><tt>&nbsp;&nbsp;<small>&nbsp;&nbsp;&nbsp;10</small>&nbsp;<br> </tt></font></td></tr> <tr><td><font color="#909090"><tt>&nbsp;&nbsp;<small>&nbsp;&nbsp;&nbsp;11</small>&nbsp;filename&nbsp;=&nbsp;data.getvalue("filename")<br> </tt></font></td></tr> <tr><td bgcolor="#ffccee"><tt>=&gt;<small>&nbsp;&nbsp;&nbsp;12</small>&nbsp;im&nbsp;=&nbsp;Image.open("../JS/upload/"&nbsp;+&nbsp;filename)<br> </tt></td></tr> <tr><td><font color="#909090"><tt>&nbsp;&nbsp;<small>&nbsp;&nbsp;&nbsp;13</small>&nbsp;<br> </tt></font></td></tr> <tr><td><font color="#909090"><tt>&nbsp;&nbsp;<small>&nbsp;&nbsp;&nbsp;14</small>&nbsp;(width,&nbsp;height)&nbsp;=&nbsp;im.size<br> </tt></font></td></tr> <tr><td><small><font color="#909090">im <em>undefined</em>, <strong>Image</strong>&nbsp;= &lt;module 'Image' from '/usr/lib/python2.7/dist-packages/PILcompat/Image.pyc'&gt;, Image.<strong>open</strong>&nbsp;= &lt;function open&gt;, <strong>filename</strong>&nbsp;= '<font color="#c040c0">\xff\xd8\xff\xe0\x00\x10</font>JFIF<font color="#c040c0">\x00\x01\x01\x00\x00\x01\x00\x01\x00\x00\xff\xdb\x00</font>C<font color="#c040c0">\x00\x06\x04\x05\x06\x05\x04\x06\x06\x05\x06\x07\x07\x06\x08\n\x10\n\n\t\t\n\x14\x0e</font>...<font color="#c040c0">\x94\r\x17\x11</font>b<font color="#c040c0">\xcd\xdc\x1a\xfe\xf1\x05\x1b\x15\xd1</font>R<font color="#c040c0">\xce\xe9</font>*<font color="#c040c0">\xb5\x8e</font>b<font color="#c040c0">\x97\x82\x87</font>R<font color="#c040c0">\xf4\xaa</font>K<font color="#c040c0">\x83</font>6<font color="#c040c0">\xbf\xfb</font>0<font color="#c040c0">\xa0\xb6</font>8<font color="#c040c0">\xa9</font>C<font color="#c040c0">\x86\x8d\x96</font>n+E<font color="#c040c0">\xd3\x7f\x99\xff\xd9</font>'</font></small></td></tr></table> <table width="100%" cellspacing=0 cellpadding=0 border=0> <tr><td bgcolor="#d8bbff"><big>&nbsp;</big><a href="file:///usr/lib/python2.7/dist-packages/PIL/Image.py">/usr/lib/python2.7/dist-packages/PIL/Image.py</a> in <strong>open</strong>(fp='../JS/upload/<font color="#c040c0">\xff\xd8\xff\xe0\x00\x10</font>JFIF<font color="#c040c0">\x00\x01\x01\x00\x00\x01\x00\x01\x00\x00\xff\xdb\x00</font>C<font color="#c040c0">\x00\x06\x04\x05\x06\x05\x04\x06\x06\x05\x06</font>...<font color="#c040c0">\x94\r\x17\x11</font>b<font color="#c040c0">\xcd\xdc\x1a\xfe\xf1\x05\x1b\x15\xd1</font>R<font color="#c040c0">\xce\xe9</font>*<font color="#c040c0">\xb5\x8e</font>b<font color="#c040c0">\x97\x82\x87</font>R<font color="#c040c0">\xf4\xaa</font>K<font color="#c040c0">\x83</font>6<font color="#c040c0">\xbf\xfb</font>0<font color="#c040c0">\xa0\xb6</font>8<font color="#c040c0">\xa9</font>C<font color="#c040c0">\x86\x8d\x96</font>n+E<font color="#c040c0">\xd3\x7f\x99\xff\xd9</font>', mode='r')</td></tr> <tr><td><font color="#909090"><tt>&nbsp;&nbsp;<small>&nbsp;1994</small>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;if&nbsp;isPath(fp):<br> </tt></font></td></tr> <tr><td><font color="#909090"><tt>&nbsp;&nbsp;<small>&nbsp;1995</small>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;filename&nbsp;=&nbsp;fp<br> </tt></font></td></tr> <tr><td bgcolor="#ffccee"><tt>=&gt;<small>&nbsp;1996</small>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;fp&nbsp;=&nbsp;builtins.open(fp,&nbsp;"rb")<br> </tt></td></tr> <tr><td><font color="#909090"><tt>&nbsp;&nbsp;<small>&nbsp;1997</small>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;else:<br> </tt></font></td></tr> <tr><td><font color="#909090"><tt>&nbsp;&nbsp;<small>&nbsp;1998</small>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;filename&nbsp;=&nbsp;""<br> </tt></font></td></tr> <tr><td><small><font color="#909090"><strong>fp</strong>&nbsp;= '../JS/upload/<font color="#c040c0">\xff\xd8\xff\xe0\x00\x10</font>JFIF<font color="#c040c0">\x00\x01\x01\x00\x00\x01\x00\x01\x00\x00\xff\xdb\x00</font>C<font color="#c040c0">\x00\x06\x04\x05\x06\x05\x04\x06\x06\x05\x06</font>...<font color="#c040c0">\x94\r\x17\x11</font>b<font color="#c040c0">\xcd\xdc\x1a\xfe\xf1\x05\x1b\x15\xd1</font>R<font color="#c040c0">\xce\xe9</font>*<font color="#c040c0">\xb5\x8e</font>b<font color="#c040c0">\x97\x82\x87</font>R<font color="#c040c0">\xf4\xaa</font>K<font color="#c040c0">\x83</font>6<font color="#c040c0">\xbf\xfb</font>0<font color="#c040c0">\xa0\xb6</font>8<font color="#c040c0">\xa9</font>C<font color="#c040c0">\x86\x8d\x96</font>n+E<font color="#c040c0">\xd3\x7f\x99\xff\xd9</font>', <em>global</em> <strong>builtins</strong>&nbsp;= &lt;module '__builtin__' (built-in)&gt;, builtins.<strong>open</strong>&nbsp;= &lt;built-in function open&gt;</font></small></td></tr></table><p><strong>&lt;type 'exceptions.TypeError'&gt;</strong>: file() argument 1 must be encoded string without NULL bytes, not str <br><tt><small>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</small>&nbsp;</tt>args&nbsp;= ('file() argument 1 must be encoded string without NULL bytes, not str',) <br><tt><small>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</small>&nbsp;</tt>message&nbsp;= 'file() argument 1 must be encoded string without NULL bytes, not str' <!-- The above is a description of an error in a Python program, formatted for a Web browser because the 'cgitb' module was enabled. In case you are not reading this in a Web browser, here is the original traceback: Traceback (most recent call last): File "/var/www/html/Main/cgi-bin/resize.py", line 12, in &lt;module&gt; im = Image.open("../JS/upload/" + filename) File "/usr/lib/python2.7/dist-packages/PIL/Image.py", line 1996, in open fp = builtins.open(fp, "rb") TypeError: file() argument 1 must be encoded string without NULL bytes, not str --> Does this mean that the formData I am sending over is empty?

    Read the article

  • User is trying to leave! Set at-least confirm alert on browser(tab) close event!!

    - by kaushalparik27
    This is something that might be annoying or irritating for end user. Obviously, It's impossible to prevent end user from closing the/any browser. Just think of this if it becomes possible!!!. That will be a horrible web world where everytime you will be attacked by sites and they will not allow to close your browser until you confirm your shopping cart and do the payment. LOL:) You need to open the task manager and might have to kill the running browser exe processes.Anyways; Jokes apart, but I have one situation where I need to alert/confirm from the user in any anyway when they try to close the browser or change the url. Think of this: You are creating a single page intranet asp.net application where your employee can enter/select their TDS/Investment Declarations and you wish to at-least ALERT/CONFIRM them if they are attempting to:[1] Close the Browser[2] Close the Browser Tab[3] Attempt to go some other site by Changing the urlwithout completing/freezing their declaration.So, Finally requirement is clear. I need to alert/confirm the user what he is going to do on above bulleted events. I am going to use window.onbeforeunload event to set the javascript confirm alert box to appear.    <script language="JavaScript" type="text/javascript">        window.onbeforeunload = confirmExit;        function confirmExit() {            return "You are about to exit the system before freezing your declaration! If you leave now and never return to freeze your declaration; then they will not go into effect and you may lose tax deduction, Are you sure you want to leave now?";        }    </script>See! you are halfway done!. So, every time browser unloads the page, above confirm alert causes to appear on front of user like below:By saying here "every time browser unloads the page"; I mean to say that whenever page loads or postback happens the browser onbeforeunload event will be executed. So, event a button submit or a link submit which causes page to postback would tend to execute the browser onbeforeunload event to fire!So, now the hurdle is how can we prevent the alert "Not to show when page is being postback" via any button/link submit? Answer is JQuery :)Idea is, you just need to set the script reference src to jQuery library and Set the window.onbeforeunload event to null when any input/link causes a page to postback.Below will be the complete code:<head runat="server">    <title></title>    <script src="jquery.min.js" type="text/javascript"></script>    <script language="JavaScript" type="text/javascript">        window.onbeforeunload = confirmExit;        function confirmExit() {            return "You are about to exit the system before freezing your declaration! If you leave now and never return to freeze your declaration; then they will not go into effect and you may lose tax deduction, Are you sure you want to leave now?";        }        $(function() {            $("a").click(function() {                window.onbeforeunload = null;            });            $("input").click(function() {                window.onbeforeunload = null;            });        });    </script></head><body>    <form id="form1" runat="server">    <div></div>    </form></body></html>So, By this post I have tried to set the confirm alert if user try to close the browser/tab or try leave the site by changing the url. I have attached a working example with this post here. I hope someone might find it helpful.

    Read the article

  • MVVM Light V4 preview 2 (BL0015) #mvvmlight

    - by Laurent Bugnion
    Over the past few weeks, I have worked hard on a few new features for MVVM Light V4. Here is a second early preview (consider this pre-alpha if you wish). The features are unit-tested, but I am now looking for feedback and there might be bugs! Bug correction: Messenger.CleanupList is now thread safe This was an annoying bug that is now corrected: In some circumstances, an exception could be thrown when the Messenger’s recipients list was cleaned up (i.e. the “dead” instances were removed). The method is called now and then and the exception was thrown apparently at random. In fact it was really a multi-threading issue, which is now corrected. Bug correction: AllowPartiallyTrustedCallers prevents EventToCommand to work This is a particularly annoying regression bug that was introduced in BL0014. In order to allow MVVM Light to work in XBAPs too, I added the AllowPartiallyTrustedCallers attribute to the assemblies. However, we just found out that this causes issues when using EventToCommand. In order to allow EventToCommand to continue working, I reverted to the previous state by removing the AllowPartiallyTrustedCallers attribute for now. I will work with my friends at Microsoft to try and find a solution. Stay tuned. Bug correction: XML documentation file is now generated in Release configuration The XML documentation file was not generated for the Release configuration. This was a simple flag in the project file that I had forgotten to set. This is corrected now. Applying EventToCommand to non-FrameworkElements This feature has been requested in order to be able to execute a command when a Storyboard is completed. I implemented this, but unfortunately found out that EventToCommand can only be added to Storyboards in Silverlight 3 and Silverlight 4, but not in WPF or in Windows Phone 7. This obviously limits the usefulness of this change, but I decided to publish it anyway, because it is pretty damn useful in Silverlight… Why not in WPF? In WPF, Storyboards added to a resource dictionary are frozen. This is a feature of WPF which allows to optimize certain objects for performance: By freezing them, it is a contract where we say “this object will not be modified anymore, so do your perf optimization on them without worrying too much”. Unfortunately, adding a Trigger (such as EventTrigger) to an object in resources does not work if this object is frozen… and unfortunately, there is no way to tell WPF not to freeze the Storyboard in the resources… so there is no way around that (at least none I can see. In Silverlight, objects are not frozen, so an EventTrigger can be added without problems. Why not in WP7? In Windows Phone 7, there is a totally different issue: Adding a Trigger can only be done to a FrameworkElement, which Storyboard is not. Here I think that we might see a change in a future version of the framework, so maybe this small trick will work in the future. Workaround? Since you cannot use the EventToCommand on a Storyboard in WPF and in WP7, the workaround is pretty obvious: Handle the Completed event in the code behind, and call the Command from there on the ViewModel. This object can be obtained by casting the DataContext to the ViewModel type. This means that the View needs to know about the ViewModel, but I never had issues with that anyway. New class: NotifyPropertyChanged Sometimes when you implement a model object (for example Customer), you would like to have it implement INotifyPropertyChanged, but without having all the frills of a ViewModelBase. A new class named NotifyPropertyChanged allows you to do that. This class is a simple implementation of INotifyPropertyChaned (with all the overloads of RaisePropertyChanged that were implemented in BL0014). In fact, ViewModelBase inherits NotifyPropertyChanged. ViewModelBase does not implement IDisposable anymore The IDisposable interface and the Dispose method had been marked obsolete in the ViewModelBase class already in V3. Now they have been removed. Note: By this, I do not mean that IDisposable is a bad interface, or that it shouldn’t be used on viewmodels. In the contrary, I know that this interface is very useful in certain circumstances. However, I think that having it by default on every instance of ViewModelBase was sending a wrong message. This interface has a strong meaning in .NET: After Dispose has been executed, the instance should not be used anymore, and should be ready for garbage collection. What I really wanted to have on ViewModelBase was rather a simple cleanup method, something that can be executed now and then during runtime. This is fulfilled by the ICleanup interface and its Cleanup method. If your ViewModels need IDisposable, you can still use it! You will just have to implement the interface on the class itself, because it is not available on ViewModelBase anymore. What’s next? I have a couple exciting new features implemented already but that need more testing before they go live… Just stay tuned and by MIX11 (12-14 April 2011), we should see at least a major addition to MVVM Light Toolkit, as well as another smaller feature which is pretty cool nonetheless More about this later! Happy Coding Laurent   Laurent Bugnion (GalaSoft) Subscribe | Twitter | Facebook | Flickr | LinkedIn

    Read the article

  • Center Pictures and Other Objects in Office 2007 & 2010

    - by Matthew Guay
    Sometimes it can be difficult to center a picture in a document just by dragging it dragging it around. Today we show you how to center pictures, images, and other objects perfectly in Word and PowerPoint. Note: For this tutorial we’re using Office 2010, but the steps are nearly identical in 2007. Centering a Picture in Word First let’s insert a picture into our document.  Click the Insert tab, and then click Picture. Once you select the picture you want, it will be added to your document.  Usually, pictures are added wherever your curser was in the document, so in a blank document it will be added at the top left. Also notice Picture Tools show up in the Ribbon after inserting an image. Note: The following menu items are available in Picture Tools Format tab which is displayed when you select the object or image you’re working with. How do we align the picture just like we want?  Click Position to get some quick placement options, including centered in the middle of the document or on the top.    However, for more advanced placement, we can use the Align tool.  If Word isn’t maximized, you may only see the icon without the “Align” label. Notice the tools were grayed out in the menu by default.  To be able to change the Alignment, we need to first change the text wrap settings. Click the Wrap Text button, and any option other than “In Line with Text”.  Your choice will depend on the document you’re writing, just choose the option that works best in the document.   Now, select the Align tools again.  You can now position your image precisely with these options. Align Center will position your picture in the center of the page widthwise. Align Middle will put the picture in the middle of the page height-wise. This works the same with textboxes.  Simply click the Align button in the Format tab, and you can center it in the page. And if you’d like to align several objects together, simply select them all, click Group, and then select Group from the menu.   Now, in the align tools, you can center the whole group on your page for a heading, or whatever you want to use the pictures for. These steps also work the same with Office 2007. Center objects in PowerPoint This works similar in PowerPoint, except that pictures are automatically set for square wrapping automatically, so you don’t have to change anything.  Simply insert the picture or other object of your choice, click Align, and choose the option you want. Additionally, if one object is already aligned like you want, drag another object near it and you will see a Smart Guide to help you align or center the second object with the first.  This only works with shapes in PowerPoint 2010 beta, but will work with pictures, textboxes, and media in the final release this summer. Conclusion These are good methods for centering images and objects in Word and PowerPoint.  From designing perfect headers to emphasizing your message in a PowerPoint presentation, this is something we’ve found useful and hope you will too. Since we’re talking about Office here, it’s worth mentioning that Microsoft has announced the Technology Guarantee Program for Office 2010. Essentially what this means is, if you purchase a version of Office 2007 between March 5th and September 30th of this year, when Office 2010 is released you’ll be able to upgrade to it for free! Similar Articles Productive Geek Tips Add or Remove Apps from the Microsoft Office 2007 or 2010 SuiteAdd More Functions To Office 2007 By Installing Add-InsCustomize Your Welcome Picture Choices in Windows VistaEasily Rotate Pictures In Word 2007Add Effects To Your Pictures in Word 2007 TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 PCmover Professional Discover New Bundled Feeds in Google Reader Play Music in Chrome by Simply Dragging a File 15 Great Illustrations by Chow Hon Lam Easily Sync Files & Folders with Friends & Family Amazon Free Kindle for PC Download Stretch popurls.com with a Stylish Script (Firefox)

    Read the article

  • What is this code?

    - by Aerovistae
    This is from the Evolution of a Programmer "joke", at the "Master Programmer" level. It seems to be C++, but I don't know what all this bloated extra stuff is, nor did any Google searches turn up anything except the joke I took it from. Can anyone tell me more about what I'm reading here? [ uuid(2573F8F4-CFEE-101A-9A9F-00AA00342820) ] library LHello { // bring in the master library importlib("actimp.tlb"); importlib("actexp.tlb"); // bring in my interfaces #include "pshlo.idl" [ uuid(2573F8F5-CFEE-101A-9A9F-00AA00342820) ] cotype THello { interface IHello; interface IPersistFile; }; }; [ exe, uuid(2573F890-CFEE-101A-9A9F-00AA00342820) ] module CHelloLib { // some code related header files importheader(<windows.h>); importheader(<ole2.h>); importheader(<except.hxx>); importheader("pshlo.h"); importheader("shlo.hxx"); importheader("mycls.hxx"); // needed typelibs importlib("actimp.tlb"); importlib("actexp.tlb"); importlib("thlo.tlb"); [ uuid(2573F891-CFEE-101A-9A9F-00AA00342820), aggregatable ] coclass CHello { cotype THello; }; }; #include "ipfix.hxx" extern HANDLE hEvent; class CHello : public CHelloBase { public: IPFIX(CLSID_CHello); CHello(IUnknown *pUnk); ~CHello(); HRESULT __stdcall PrintSz(LPWSTR pwszString); private: static int cObjRef; }; #include <windows.h> #include <ole2.h> #include <stdio.h> #include <stdlib.h> #include "thlo.h" #include "pshlo.h" #include "shlo.hxx" #include "mycls.hxx" int CHello:cObjRef = 0; CHello::CHello(IUnknown *pUnk) : CHelloBase(pUnk) { cObjRef++; return; } HRESULT __stdcall CHello::PrintSz(LPWSTR pwszString) { printf("%ws\n", pwszString); return(ResultFromScode(S_OK)); } CHello::~CHello(void) { // when the object count goes to zero, stop the server cObjRef--; if( cObjRef == 0 ) PulseEvent(hEvent); return; } #include <windows.h> #include <ole2.h> #include "pshlo.h" #include "shlo.hxx" #include "mycls.hxx" HANDLE hEvent; int _cdecl main( int argc, char * argv[] ) { ULONG ulRef; DWORD dwRegistration; CHelloCF *pCF = new CHelloCF(); hEvent = CreateEvent(NULL, FALSE, FALSE, NULL); // Initialize the OLE libraries CoInitiali, NULL); // Initialize the OLE libraries CoInitializeEx(NULL, COINIT_MULTITHREADED); CoRegisterClassObject(CLSID_CHello, pCF, CLSCTX_LOCAL_SERVER, REGCLS_MULTIPLEUSE, &dwRegistration); // wait on an event to stop WaitForSingleObject(hEvent, INFINITE); // revoke and release the class object CoRevokeClassObject(dwRegistration); ulRef = pCF->Release(); // Tell OLE we are going away. CoUninitialize(); return(0); } extern CLSID CLSID_CHello; extern UUID LIBID_CHelloLib; CLSID CLSID_CHello = { /* 2573F891-CFEE-101A-9A9F-00AA00342820 */ 0x2573F891, 0xCFEE, 0x101A, { 0x9A, 0x9F, 0x00, 0xAA, 0x00, 0x34, 0x28, 0x20 } }; UUID LIBID_CHelloLib = { /* 2573F890-CFEE-101A-9A9F-00AA00342820 */ 0x2573F890, 0xCFEE, 0x101A, { 0x9A, 0x9F, 0x00, 0xAA, 0x00, 0x34, 0x28, 0x20 } }; #include <windows.h> #include <ole2.h> #include <stdlib.h> #include <string.h> #include <stdio.h> #include "pshlo.h" #include "shlo.hxx" #include "clsid.h" int _cdecl main( int argc, char * argv[] ) { HRESULT hRslt; IHello *pHello; ULONG ulCnt; IMoniker * pmk; WCHAR wcsT[_MAX_PATH]; WCHAR wcsPath[2 * _MAX_PATH]; // get object path wcsPath[0] = '\0'; wcsT[0] = '\0'; if( argc > 1) { mbstowcs(wcsPath, argv[1], strlen(argv[1]) + 1); wcsupr(wcsPath); } else { fprintf(stderr, "Object path must be specified\n"); return(1); } // get print string if(argc > 2) mbstowcs(wcsT, argv[2], strlen(argv[2]) + 1); else wcscpy(wcsT, L"Hello World"); printf("Linking to object %ws\n", wcsPath); printf("Text String %ws\n", wcsT); // Initialize the OLE libraries hRslt = CoInitializeEx(NULL, COINIT_MULTITHREADED); if(SUCCEEDED(hRslt)) { hRslt = CreateFileMoniker(wcsPath, &pmk); if(SUCCEEDED(hRslt)) hRslt = BindMoniker(pmk, 0, IID_IHello, (void **)&pHello); if(SUCCEEDED(hRslt)) { // print a string out pHello->PrintSz(wcsT); Sleep(2000); ulCnt = pHello->Release(); } else printf("Failure to connect, status: %lx", hRslt); // Tell OLE we are going away. CoUninitialize(); } return(0); }

    Read the article

  • Get XML from Server for Use on Windows Phone

    - by psheriff
    When working with mobile devices you always need to take into account bandwidth usage and power consumption. If you are constantly connecting to a server to retrieve data for an input screen, then you might think about moving some of that data down to the phone and cache the data on the phone. An example would be a static list of US State Codes that you are asking the user to select from. Since this is data that does not change very often, this is one set of data that would be great to cache on the phone. Since the Windows Phone does not have an embedded database, you can just use an XML string stored in Isolated Storage. Of course, then you need to figure out how to get data down to the phone. You can either ship it with the application, or connect and retrieve the data from your server one time and thereafter cache it and retrieve it from the cache. In this blog post you will see how to create a WCF service to retrieve data from a Product table in a database and send that data as XML to the phone and store it in Isolated Storage. You will then read that data from Isolated Storage using LINQ to XML and display it in a ListBox. Step 1: Create a Windows Phone Application The first step is to create a Windows Phone application called WP_GetXmlFromDataSet (or whatever you want to call it). On the MainPage.xaml add the following XAML within the “ContentPanel” grid: <StackPanel>  <Button Name="btnGetXml"          Content="Get XML"          Click="btnGetXml_Click" />  <Button Name="btnRead"          Content="Read XML"          IsEnabled="False"          Click="btnRead_Click" />  <ListBox Name="lstData"            Height="430"            ItemsSource="{Binding}"            DisplayMemberPath="ProductName" /></StackPanel> Now it is time to create the WCF Service Application that you will call to get the XML from a table in a SQL Server database. Step 2: Create a WCF Service Application Add a new project to your solution called WP_GetXmlFromDataSet.Services. Delete the IService1.* and Service1.* files and the App_Data folder, as you don’t generally need these items. Add a new WCF Service class called ProductService. In the IProductService class modify the void DoWork() method with the following code: [OperationContract]string GetProductXml(); Open the code behind in the ProductService.svc and create the GetProductXml() method. This method (shown below) will connect up to a database and retrieve data from a Product table. public string GetProductXml(){  string ret = string.Empty;  string sql = string.Empty;  SqlDataAdapter da;  DataSet ds = new DataSet();   sql = "SELECT ProductId, ProductName,";  sql += " IntroductionDate, Price";  sql += " FROM Product";   da = new SqlDataAdapter(sql,    ConfigurationManager.ConnectionStrings["Sandbox"].ConnectionString);   da.Fill(ds);   // Create Attribute based XML  foreach (DataColumn col in ds.Tables[0].Columns)  {    col.ColumnMapping = MappingType.Attribute;  }   ds.DataSetName = "Products";  ds.Tables[0].TableName = "Product";  ret = ds.GetXml();   return ret;} After retrieving the data from the Product table using a DataSet, you will want to set each column’s ColumnMapping property to Attribute. Using attribute based XML will make the data transferred across the wire a little smaller. You then set the DataSetName property to the top-level element name you want to assign to the XML. You then set the TableName property on the DataTable to the name you want each element to be in your XML. The last thing you need to do is to call the GetXml() method on the DataSet object which will return an XML string of the data in your DataSet object. This is the value that you will return from the service call. The XML that is returned from the above call looks like the following: <Products>  <Product ProductId="1"           ProductName="PDSA .NET Productivity Framework"           IntroductionDate="9/3/2010"           Price="5000" />  <Product ProductId="3"           ProductName="Haystack Code Generator for .NET"           IntroductionDate="7/1/2010"           Price="599.00" />  ...  ...  ... </Products> The GetProductXml() method uses a connection string from the Web.Config file, so add a <connectionStrings> element to the Web.Config file in your WCF Service application. Modify the settings shown below as needed for your server and database name. <connectionStrings>  <add name="Sandbox"        connectionString="Server=Localhost;Database=Sandbox;                         Integrated Security=Yes"/></connectionStrings> The Product Table You will need a Product table that you can read data from. I used the following structure for my product table. Add any data you want to this table after you create it in your database. CREATE TABLE Product(  ProductId int PRIMARY KEY IDENTITY(1,1) NOT NULL,  ProductName varchar(50) NOT NULL,  IntroductionDate datetime NULL,  Price money NULL) Step 3: Connect to WCF Service from Windows Phone Application Back in your Windows Phone application you will now need to add a Service Reference to the WCF Service application you just created. Right-mouse click on the Windows Phone Project and choose Add Service Reference… from the context menu. Click on the Discover button. In the Namespace text box enter “ProductServiceRefrence”, then click the OK button. If you entered everything correctly, Visual Studio will generate some code that allows you to connect to your Product service. On the MainPage.xaml designer window double click on the Get XML button to generate the Click event procedure for this button. In the Click event procedure make a call to a GetXmlFromServer() method. This method will also need a “Completed” event procedure to be written since all communication with a WCF Service from Windows Phone must be asynchronous.  Write these two methods as follows: private const string KEY_NAME = "ProductData"; private void GetXmlFromServer(){  ProductServiceClient client = new ProductServiceClient();   client.GetProductXmlCompleted += new     EventHandler<GetProductXmlCompletedEventArgs>      (client_GetProductXmlCompleted);   client.GetProductXmlAsync();  client.CloseAsync();} void client_GetProductXmlCompleted(object sender,                                   GetProductXmlCompletedEventArgs e){  // Store XML data in Isolated Storage  IsolatedStorageSettings.ApplicationSettings[KEY_NAME] = e.Result;   btnRead.IsEnabled = true;} As you can see, this is a fairly standard call to a WCF Service. In the Completed event you get the Result from the event argument, which is the XML, and store it into Isolated Storage using the IsolatedStorageSettings.ApplicationSettings class. Notice the constant that I added to specify the name of the key. You will use this constant later to read the data from Isolated Storage. Step 4: Create a Product Class Even though you stored XML data into Isolated Storage when you read that data out you will want to convert each element in the XML file into an actual Product object. This means that you need to create a Product class in your Windows Phone application. Add a Product class to your project that looks like the code below: public class Product{  public string ProductName{ get; set; }  public int ProductId{ get; set; }  public DateTime IntroductionDate{ get; set; }  public decimal Price{ get; set; }} Step 5: Read Settings from Isolated Storage Now that you have the XML data stored in Isolated Storage, it is time to use it. Go back to the MainPage.xaml design view and double click on the Read XML button to generate the Click event procedure. From the Click event procedure call a method named ReadProductXml().Create this method as shown below: private void ReadProductXml(){  XElement xElem = null;   if (IsolatedStorageSettings.ApplicationSettings.Contains(KEY_NAME))  {    xElem = XElement.Parse(     IsolatedStorageSettings.ApplicationSettings[KEY_NAME].ToString());     // Create a list of Product objects    var products =         from prod in xElem.Descendants("Product")        orderby prod.Attribute("ProductName").Value        select new Product        {          ProductId = Convert.ToInt32(prod.Attribute("ProductId").Value),          ProductName = prod.Attribute("ProductName").Value,          IntroductionDate =             Convert.ToDateTime(prod.Attribute("IntroductionDate").Value),          Price = Convert.ToDecimal(prod.Attribute("Price").Value)        };     lstData.DataContext = products;  }} The ReadProductXml() method checks to make sure that the key name that you saved your XML as exists in Isolated Storage prior to trying to open it. If the key name exists, then you retrieve the value as a string. Use the XElement’s Parse method to convert the XML string to a XElement object. LINQ to XML is used to iterate over each element in the XElement object and create a new Product object from each attribute in your XML file. The LINQ to XML code also orders the XML data by the ProductName. After the LINQ to XML code runs you end up with an IEnumerable collection of Product objects in the variable named “products”. You assign this collection of product data to the DataContext of the ListBox you created in XAML. The DisplayMemberPath property of the ListBox is set to “ProductName” so it will now display the product name for each row in your products collection. Summary In this article you learned how to retrieve an XML string from a table in a database, return that string across a WCF Service and store it into Isolated Storage on your Windows Phone. You then used LINQ to XML to create a collection of Product objects from the data stored and display that data in a Windows Phone list box. This same technique can be used in Silverlight or WPF applications too. NOTE: You can download the complete sample code at my website. http://www.pdsa.com/downloads. Choose Tips & Tricks, then "Get XML From Server for Use on Windows Phone" from the drop-down. Good Luck with your Coding,Paul Sheriff ** SPECIAL OFFER FOR MY BLOG READERS **Visit http://www.pdsa.com/Event/Blog for a free video on Silverlight entitled Silverlight XAML for the Complete Novice - Part 1.  

    Read the article

  • FAQ: GridView Calculation with JavaScript - Displaying Quantity Total

    - by Vincent Maverick Durano
    Previously we've talked about how calculate the sub-totals and grand total in GridView here, how to format the numbers into a currency format and how to validate the quantity to just accept whole numbers using JavaScript here. One of the users in the forum (http://forums.asp.net) is asking if how to modify the script to display the quantity total in the footer. In this post I'm going to show you how to it. Basically we just need to modify the javascript CalculateTotals function and add the codes there for calculating the quantity total and display it in the footer. Here are the code blocks below:   <html xmlns="http://www.w3.org/1999/xhtml" > <head runat="server"> <title></title> <script type="text/javascript"> function CalculateTotals() { var gv = document.getElementById("<%= GridView1.ClientID %>"); var tb = gv.getElementsByTagName("input"); var lb = gv.getElementsByTagName("span"); var sub = 0; var total = 0; var indexQ = 1; var indexP = 0; var price = 0; var qty = 0; var totalQty = 0; for (var i = 0; i < tb.length; i++) { if (tb[i].type == "text") { ValidateNumber(tb[i]); price = lb[indexP].innerHTML.replace("$", "").replace(",", ""); sub = parseFloat(price) * parseFloat(tb[i].value); if (isNaN(sub)) { lb[i + indexQ].innerHTML = "0.00"; sub = 0; } else { lb[i + indexQ].innerHTML = FormatToMoney(sub, "$", ",", "."); ; } indexQ++; indexP = indexP + 2; if (isNaN(tb[i].value) || tb[i].value == "") { qty = 0; } else { qty = tb[i].value; } totalQty += parseInt(qty); total += parseFloat(sub); } } lb[lb.length - 2].innerHTML = totalQty; lb[lb.length - 1].innerHTML = FormatToMoney(total, "$", ",", "."); } function ValidateNumber(o) { if (o.value.length > 0) { o.value = o.value.replace(/[^\d]+/g, ''); //Allow only whole numbers } } function isThousands(position) { if (Math.floor(position / 3) * 3 == position) return true; return false; }; function FormatToMoney(theNumber, theCurrency, theThousands, theDecimal) { var theDecimalDigits = Math.round((theNumber * 100) - (Math.floor(theNumber) * 100)); theDecimalDigits = "" + (theDecimalDigits + "0").substring(0, 2); theNumber = "" + Math.floor(theNumber); var theOutput = theCurrency; for (x = 0; x < theNumber.length; x++) { theOutput += theNumber.substring(x, x + 1); if (isThousands(theNumber.length - x - 1) && (theNumber.length - x - 1 != 0)) { theOutput += theThousands; }; }; theOutput += theDecimal + theDecimalDigits; return theOutput; } </script> </head> <body> <form id="form1" runat="server"> <asp:gridview ID="GridView1" runat="server" ShowFooter="true" AutoGenerateColumns="false"> <Columns> <asp:BoundField DataField="RowNumber" HeaderText="Row Number" /> <asp:BoundField DataField="Description" HeaderText="Item Description" /> <asp:TemplateField HeaderText="Item Price"> <ItemTemplate> <asp:Label ID="LBLPrice" runat="server" Text='<%# Eval("Price","{0:C}") %>'></asp:Label> </ItemTemplate> <FooterTemplate> <b>Total Qty:</b> </FooterTemplate> </asp:TemplateField> <asp:TemplateField HeaderText="Quantity"> <ItemTemplate> <asp:TextBox ID="TXTQty" runat="server" onkeyup="CalculateTotals();"></asp:TextBox> </ItemTemplate> <FooterTemplate> <asp:Label ID="LBLQtyTotal" runat="server" Font-Bold="true" ForeColor="Blue" Text="0" ></asp:Label>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <b>Total Amount:</b> </FooterTemplate> </asp:TemplateField> <asp:TemplateField HeaderText="Sub-Total"> <ItemTemplate> <asp:Label ID="LBLSubTotal" runat="server" ForeColor="Green" Text="0.00"></asp:Label> </ItemTemplate> <FooterTemplate> <asp:Label ID="LBLTotal" runat="server" ForeColor="Green" Font-Bold="true" Text="0.00"></asp:Label> </FooterTemplate> </asp:TemplateField> </Columns> </asp:gridview> </form> </body> </html>   Here's the output below when you run it on the page: I hope someone find this post useful! Technorati Tags: ASP.NET,C#,JavaScript,GridView

    Read the article

  • Creating ASP.NET MVC Negotiated Content Results

    - by Rick Strahl
    In a recent ASP.NET MVC application I’m involved with, we had a late in the process request to handle Content Negotiation: Returning output based on the HTTP Accept header of the incoming HTTP request. This is standard behavior in ASP.NET Web API but ASP.NET MVC doesn’t support this functionality directly out of the box. Another reason this came up in discussion is last week’s announcements of ASP.NET vNext, which seems to indicate that ASP.NET Web API is not going to be ported to the cloud version of vNext, but rather be replaced by a combined version of MVC and Web API. While it’s not clear what new API features will show up in this new framework, it’s pretty clear that the ASP.NET MVC style syntax will be the new standard for all the new combined HTTP processing framework. Why negotiated Content? Content negotiation is one of the key features of Web API even though it’s such a relatively simple thing. But it’s also something that’s missing in MVC and once you get used to automatically having your content returned based on Accept headers it’s hard to go back to manually having to create separate methods for different output types as you’ve had to with Microsoft server technologies all along (yes, yes I know other frameworks – including my own – have done this for years but for in the box features this is relatively new from Web API). As a quick review,  Accept Header content negotiation works off the request’s HTTP Accept header:POST http://localhost/mydailydosha/Editable/NegotiateContent HTTP/1.1 Content-Type: application/json Accept: application/json Host: localhost Content-Length: 76 Pragma: no-cache { ElementId: "header", PageName: "TestPage", Text: "This is a nice header" } If I make this request I would expect to get back a JSON result based on my application/json Accept header. To request XML  I‘d just change the accept header:Accept: text/xml and now I’d expect the response to come back as XML. Now this only works with media types that the server can process. In my case here I need to handle JSON, XML, HTML (using Views) and Plain Text. HTML results might need more than just a data return – you also probably need to specify a View to render the data into either by specifying the view explicitly or by using some sort of convention that can automatically locate a view to match. Today ASP.NET MVC doesn’t support this sort of automatic content switching out of the box. Unfortunately, in my application scenario we have an application that started out primarily with an AJAX backend that was implemented with JSON only. So there are lots of JSON results like this:[Route("Customers")] public ActionResult GetCustomers() { return Json(repo.GetCustomers(),JsonRequestBehavior.AllowGet); } These work fine, but they are of course JSON specific. Then a couple of weeks ago, a requirement came in that an old desktop application needs to also consume this API and it has to use XML to do it because there’s no JSON parser available for it. Ooops – stuck with JSON in this case. While it would have been easy to add XML specific methods I figured it’s easier to add basic content negotiation. And that’s what I show in this post. Missteps – IResultFilter, IActionFilter My first attempt at this was to use IResultFilter or IActionFilter which look like they would be ideal to modify result content after it’s been generated using OnResultExecuted() or OnActionExecuted(). Filters are great because they can look globally at all controller methods or individual methods that are marked up with the Filter’s attribute. But it turns out these filters don’t work for raw POCO result values from Action methods. What we wanted to do for API calls is get back to using plain .NET types as results rather than result actions. That is  you write a method that doesn’t return an ActionResult, but a standard .NET type like this:public Customer UpdateCustomer(Customer cust) { … do stuff to customer :-) return cust; } Unfortunately both OnResultExecuted and OnActionExecuted receive an MVC ContentResult instance from the POCO object. MVC basically takes any non-ActionResult return value and turns it into a ContentResult by converting the value using .ToString(). Ugh. The ContentResult itself doesn’t contain the original value, which is lost AFAIK with no way to retrieve it. So there’s no way to access the raw customer object in the example above. Bummer. Creating a NegotiatedResult This leaves mucking around with custom ActionResults. ActionResults are MVC’s standard way to return action method results – you basically specify that you would like to render your result in a specific format. Common ActionResults are ViewResults (ie. View(vn,model)), JsonResult, RedirectResult etc. They work and are fairly effective and work fairly well for testing as well as it’s the ‘standard’ interface to return results from actions. The problem with the this is mainly that you’re explicitly saying that you want a specific result output type. This works well for many things, but sometimes you do want your result to be negotiated. My first crack at this solution here is to create a simple ActionResult subclass that looks at the Accept header and based on that writes the output. I need to support JSON and XML content and HTML as well as text – so effectively 4 media types: application/json, text/xml, text/html and text/plain. Everything else is passed through as ContentResult – which effecively returns whatever .ToString() returns. Here’s what the NegotiatedResult usage looks like:public ActionResult GetCustomers() { return new NegotiatedResult(repo.GetCustomers()); } public ActionResult GetCustomer(int id) { return new NegotiatedResult("Show", repo.GetCustomer(id)); } There are two overloads of this method – one that returns just the raw result value and a second version that accepts an optional view name. The second version returns the Razor view specified only if text/html is requested – otherwise the raw data is returned. This is useful in applications where you have an HTML front end that can also double as an API interface endpoint that’s using the same model data you send to the View. For the application I mentioned above this was another actual use-case we needed to address so this was a welcome side effect of creating a custom ActionResult. There’s also an extension method that directly attaches a Negotiated() method to the controller using the same syntax:public ActionResult GetCustomers() { return this.Negotiated(repo.GetCustomers()); } public ActionResult GetCustomer(int id) { return this.Negotiated("Show",repo.GetCustomer(id)); } Using either of these mechanisms now allows you to return JSON, XML, HTML or plain text results depending on the Accept header sent. Send application/json you get just the Customer JSON data. Ditto for text/xml and XML data. Pass text/html for the Accept header and the "Show.cshtml" Razor view is rendered passing the result model data producing final HTML output. While this isn’t as clean as passing just POCO objects back as I had intended originally, this approach fits better with how MVC action methods are intended to be used and we get the bonus of being able to specify a View to render (optionally) for HTML. How does it work An ActionResult implementation is pretty straightforward. You inherit from ActionResult and implement the ExecuteResult method to send your output to the ASP.NET output stream. ActionFilters are an easy way to effectively do post processing on ASP.NET MVC controller actions just before the content is sent to the output stream, assuming your specific action result was used. Here’s the full code to the NegotiatedResult class (you can also check it out on GitHub):/// <summary> /// Returns a content negotiated result based on the Accept header. /// Minimal implementation that works with JSON and XML content, /// can also optionally return a view with HTML. /// </summary> /// <example> /// // model data only /// public ActionResult GetCustomers() /// { /// return new NegotiatedResult(repo.Customers.OrderBy( c=> c.Company) ) /// } /// // optional view for HTML /// public ActionResult GetCustomers() /// { /// return new NegotiatedResult("List", repo.Customers.OrderBy( c=> c.Company) ) /// } /// </example> public class NegotiatedResult : ActionResult { /// <summary> /// Data stored to be 'serialized'. Public /// so it's potentially accessible in filters. /// </summary> public object Data { get; set; } /// <summary> /// Optional name of the HTML view to be rendered /// for HTML responses /// </summary> public string ViewName { get; set; } public static bool FormatOutput { get; set; } static NegotiatedResult() { FormatOutput = HttpContext.Current.IsDebuggingEnabled; } /// <summary> /// Pass in data to serialize /// </summary> /// <param name="data">Data to serialize</param> public NegotiatedResult(object data) { Data = data; } /// <summary> /// Pass in data and an optional view for HTML views /// </summary> /// <param name="data"></param> /// <param name="viewName"></param> public NegotiatedResult(string viewName, object data) { Data = data; ViewName = viewName; } public override void ExecuteResult(ControllerContext context) { if (context == null) throw new ArgumentNullException("context"); HttpResponseBase response = context.HttpContext.Response; HttpRequestBase request = context.HttpContext.Request; // Look for specific content types if (request.AcceptTypes.Contains("text/html")) { response.ContentType = "text/html"; if (!string.IsNullOrEmpty(ViewName)) { var viewData = context.Controller.ViewData; viewData.Model = Data; var viewResult = new ViewResult { ViewName = ViewName, MasterName = null, ViewData = viewData, TempData = context.Controller.TempData, ViewEngineCollection = ((Controller)context.Controller).ViewEngineCollection }; viewResult.ExecuteResult(context.Controller.ControllerContext); } else response.Write(Data); } else if (request.AcceptTypes.Contains("text/plain")) { response.ContentType = "text/plain"; response.Write(Data); } else if (request.AcceptTypes.Contains("application/json")) { using (JsonTextWriter writer = new JsonTextWriter(response.Output)) { var settings = new JsonSerializerSettings(); if (FormatOutput) settings.Formatting = Newtonsoft.Json.Formatting.Indented; JsonSerializer serializer = JsonSerializer.Create(settings); serializer.Serialize(writer, Data); writer.Flush(); } } else if (request.AcceptTypes.Contains("text/xml")) { response.ContentType = "text/xml"; if (Data != null) { using (var writer = new XmlTextWriter(response.OutputStream, new UTF8Encoding())) { if (FormatOutput) writer.Formatting = System.Xml.Formatting.Indented; XmlSerializer serializer = new XmlSerializer(Data.GetType()); serializer.Serialize(writer, Data); writer.Flush(); } } } else { // just write data as a plain string response.Write(Data); } } } /// <summary> /// Extends Controller with Negotiated() ActionResult that does /// basic content negotiation based on the Accept header. /// </summary> public static class NegotiatedResultExtensions { /// <summary> /// Return content-negotiated content of the data based on Accept header. /// Supports: /// application/json - using JSON.NET /// text/xml - Xml as XmlSerializer XML /// text/html - as text, or an optional View /// text/plain - as text /// </summary> /// <param name="controller"></param> /// <param name="data">Data to return</param> /// <returns>serialized data</returns> /// <example> /// public ActionResult GetCustomers() /// { /// return this.Negotiated( repo.Customers.OrderBy( c=> c.Company) ) /// } /// </example> public static NegotiatedResult Negotiated(this Controller controller, object data) { return new NegotiatedResult(data); } /// <summary> /// Return content-negotiated content of the data based on Accept header. /// Supports: /// application/json - using JSON.NET /// text/xml - Xml as XmlSerializer XML /// text/html - as text, or an optional View /// text/plain - as text /// </summary> /// <param name="controller"></param> /// <param name="viewName">Name of the View to when Accept is text/html</param> /// /// <param name="data">Data to return</param> /// <returns>serialized data</returns> /// <example> /// public ActionResult GetCustomers() /// { /// return this.Negotiated("List", repo.Customers.OrderBy( c=> c.Company) ) /// } /// </example> public static NegotiatedResult Negotiated(this Controller controller, string viewName, object data) { return new NegotiatedResult(viewName, data); } } Output Generation – JSON and XML Generating output for XML and JSON is simple – you use the desired serializer and off you go. Using XmlSerializer and JSON.NET it’s just a handful of lines each to generate serialized output directly into the HTTP output stream. Please note this implementation uses JSON.NET for its JSON generation rather than the default JavaScriptSerializer that MVC uses which I feel is an additional bonus to implementing this custom action. I’d already been using a custom JsonNetResult class previously, but now this is just rolled into this custom ActionResult. Just keep in mind that JSON.NET outputs slightly different JSON for certain things like collections for example, so behavior may change. One addition to this implementation might be a flag to allow switching the JSON serializer. Html View Generation Html View generation actually turned out to be easier than anticipated. Initially I used my generic ASP.NET ViewRenderer Class that can render MVC views from any ASP.NET application. However it turns out since we are executing inside of an active MVC request there’s an easier way: We can simply create a custom ViewResult and populate its members and then execute it. The code in text/html handling code that renders the view is simply this:response.ContentType = "text/html"; if (!string.IsNullOrEmpty(ViewName)) { var viewData = context.Controller.ViewData; viewData.Model = Data; var viewResult = new ViewResult { ViewName = ViewName, MasterName = null, ViewData = viewData, TempData = context.Controller.TempData, ViewEngineCollection = ((Controller)context.Controller).ViewEngineCollection }; viewResult.ExecuteResult(context.Controller.ControllerContext); } else response.Write(Data); which is a neat and easy way to render a Razor view assuming you have an active controller that’s ready for rendering. Sweet – dependency removed which makes this class self-contained without any external dependencies other than JSON.NET. Summary While this isn’t exactly a new topic, it’s the first time I’ve actually delved into this with MVC. I’ve been doing content negotiation with Web API and prior to that with my REST library. This is the first time it’s come up as an issue in MVC. But as I have worked through this I find that having a way to specify both HTML Views *and* JSON and XML results from a single controller certainly is appealing to me in many situations as we are in this particular application returning identical data models for each of these operations. Rendering content negotiated views is something that I hope ASP.NET vNext will provide natively in the combined MVC and WebAPI model, but we’ll see how this actually will be implemented. In the meantime having a custom ActionResult that provides this functionality is a workable and easily adaptable way of handling this going forward. Whatever ends up happening in ASP.NET vNext the abstraction can probably be changed to support the native features of the future. Anyway I hope some of you found this useful if not for direct integration then as insight into some of the rendering logic that MVC uses to get output into the HTTP stream… Related Resources Latest Version of NegotiatedResult.cs on GitHub Understanding Action Controllers Rendering ASP.NET Views To String© Rick Strahl, West Wind Technologies, 2005-2014Posted in MVC  ASP.NET  HTTP   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Using Event Driven Programming in games, when is it beneficial?

    - by Arthur Wulf White
    I am learning ActionScript 3 and I see the Event flow adheres to the W3C recommendations. From what I learned events can only be captured by the dispatcher unless, the listener capturing the event is a DisplayObject on stage and a parent of the object firing the event. You can capture the events in the capture(before) or bubbling(after) phase depending on Listner and Event setup you use. Does this system lend itself well for game programming? When is this system useful? Could you give an example of a case where using events is a lot better than going without them? Are they somehow better for performance in games? Please do not mention events you must use to get a game running, like Event.ENTER_FRAME Or events that are required to get input from the user like, KeyboardEvent.KEY_DOWN and MouseEvent.CLICK. I am asking if there is any use in firing events that have nothing to do with user input, frame rendering and the likes(that are necessary). I am referring to cases where objects are communicating. Is this used to avoid storing a collection of objects that are on the stage? Thanks Here is some code I wrote as an example of event behavior in ActionScript 3, enjoy. package regression { import flash.display.Shape; import flash.display.Sprite; import flash.events.Event; import flash.events.EventDispatcher; import flash.events.KeyboardEvent; import flash.events.MouseEvent; import flash.events.EventPhase; /** * ... * @author ... */ public class Check_event_listening_1 extends Sprite { public const EVENT_DANCE : String = "dance"; public const EVENT_PLAY : String = "play"; public const EVENT_YELL : String = "yell"; private var baby : Shape = new Shape(); private var mom : Sprite = new Sprite(); private var stranger : EventDispatcher = new EventDispatcher(); public function Check_event_listening_1() { if (stage) init(); else addEventListener(Event.ADDED_TO_STAGE, init); } private function init(e:Event = null):void { trace("test begun"); addChild(mom); mom.addChild(baby); stage.addEventListener(EVENT_YELL, onEvent); this.addEventListener(EVENT_YELL, onEvent); mom.addEventListener(EVENT_YELL, onEvent); baby.addEventListener(EVENT_YELL, onEvent); stranger.addEventListener(EVENT_YELL, onEvent); trace("\nTest1 - Stranger yells with no bubbling"); stranger.dispatchEvent(new Event(EVENT_YELL, false)); trace("\nTest2 - Stranger yells with bubbling"); stranger.dispatchEvent(new Event(EVENT_YELL, true)); stage.addEventListener(EVENT_PLAY, onEvent); this.addEventListener(EVENT_PLAY, onEvent); mom.addEventListener(EVENT_PLAY, onEvent); baby.addEventListener(EVENT_PLAY, onEvent); stranger.addEventListener(EVENT_PLAY, onEvent); trace("\nTest3 - baby plays with no bubbling"); baby.dispatchEvent(new Event(EVENT_PLAY, false)); trace("\nTest4 - baby plays with bubbling"); baby.dispatchEvent(new Event(EVENT_PLAY, true)); trace("\nTest5 - baby plays with bubbling but is not a child of mom"); mom.removeChild(baby); baby.dispatchEvent(new Event(EVENT_PLAY, true)); mom.addChild(baby); stage.addEventListener(EVENT_DANCE, onEvent, true); this.addEventListener(EVENT_DANCE, onEvent, true); mom.addEventListener(EVENT_DANCE, onEvent, true); baby.addEventListener(EVENT_DANCE, onEvent); trace("\nTest6 - Mom dances without bubbling - everyone is listening during capture phase(not target and bubble phase)"); mom.dispatchEvent(new Event(EVENT_DANCE, false)); trace("\nTest7 - Mom dances with bubbling - everyone is listening during capture phase(not target and bubble phase)"); mom.dispatchEvent(new Event(EVENT_DANCE, true)); } private function onEvent(e : Event):void { trace("Event was captured"); trace("\nTYPE : ", e.type, "\nTARGET : ", objToName(e.target), "\nCURRENT TARGET : ", objToName(e.currentTarget), "\nPHASE : ", phaseToString(e.eventPhase)); } private function phaseToString(phase : int):String { switch(phase) { case EventPhase.AT_TARGET : return "TARGET"; case EventPhase.BUBBLING_PHASE : return "BUBBLING"; case EventPhase.CAPTURING_PHASE : return "CAPTURE"; default: return "UNKNOWN"; } } private function objToName(obj : Object):String { if (obj == stage) return "STAGE"; else if (obj == this) return "MAIN"; else if (obj == mom) return "Mom"; else if (obj == baby) return "Baby"; else if (obj == stranger) return "Stranger"; else return "Unknown" } } } /*result : test begun Test1 - Stranger yells with no bubbling Event was captured TYPE : yell TARGET : Stranger CURRENT TARGET : Stranger PHASE : TARGET Test2 - Stranger yells with bubbling Event was captured TYPE : yell TARGET : Stranger CURRENT TARGET : Stranger PHASE : TARGET Test3 - baby plays with no bubbling Event was captured TYPE : play TARGET : Baby CURRENT TARGET : Baby PHASE : TARGET Test4 - baby plays with bubbling Event was captured TYPE : play TARGET : Baby CURRENT TARGET : Baby PHASE : TARGET Event was captured TYPE : play TARGET : Baby CURRENT TARGET : Mom PHASE : BUBBLING Event was captured TYPE : play TARGET : Baby CURRENT TARGET : MAIN PHASE : BUBBLING Event was captured TYPE : play TARGET : Baby CURRENT TARGET : STAGE PHASE : BUBBLING Test5 - baby plays with bubbling but is not a child of mom Event was captured TYPE : play TARGET : Baby CURRENT TARGET : Baby PHASE : TARGET Test6 - Mom dances without bubbling - everyone is listening during capture phase(not target and bubble phase) Event was captured TYPE : dance TARGET : Mom CURRENT TARGET : STAGE PHASE : CAPTURE Event was captured TYPE : dance TARGET : Mom CURRENT TARGET : MAIN PHASE : CAPTURE Test7 - Mom dances with bubbling - everyone is listening during capture phase(not target and bubble phase) Event was captured TYPE : dance TARGET : Mom CURRENT TARGET : STAGE PHASE : CAPTURE Event was captured TYPE : dance TARGET : Mom CURRENT TARGET : MAIN PHASE : CAPTURE */

    Read the article

< Previous Page | 633 634 635 636 637 638 639 640 641 642 643 644  | Next Page >