Search Results

Search found 20464 results on 819 pages for 'css classes'.

Page 665/819 | < Previous Page | 661 662 663 664 665 666 667 668 669 670 671 672  | Next Page >

  • Drop down box is always 100%

    - by danit
    I have the following HTML: <div style="30px;"> <table width="100%;"> <tr> <td> <SELECT name="guidelinks"> <OPTION SELECTED value="jex6.htm">Page 1 <OPTION value="jex7.htm">My Cool Page </SELECT> </td> </tr> </table> When this drop down box is displayed the width is 100%, not 30px, can anyone explain why and how to fix this? Unofrtunatly I cant edit the code on the CSS

    Read the article

  • Integrating JavaScript Unit Tests with Visual Studio

    - by Stephen Walther
    Modern ASP.NET web applications take full advantage of client-side JavaScript to provide better interactivity and responsiveness. If you are building an ASP.NET application in the right way, you quickly end up with lots and lots of JavaScript code. When writing server code, you should be writing unit tests. One big advantage of unit tests is that they provide you with a safety net that enable you to safely modify your existing code – for example, fix bugs, add new features, and make performance enhancements -- without breaking your existing code. Every time you modify your code, you can execute your unit tests to verify that you have not broken anything. For the same reason that you should write unit tests for your server code, you should write unit tests for your client code. JavaScript is just as susceptible to bugs as C#. There is no shortage of unit testing frameworks for JavaScript. Each of the major JavaScript libraries has its own unit testing framework. For example, jQuery has QUnit, Prototype has UnitTestJS, YUI has YUI Test, and Dojo has Dojo Objective Harness (DOH). The challenge is integrating a JavaScript unit testing framework with Visual Studio. Visual Studio and Visual Studio ALM provide fantastic support for server-side unit tests. You can easily view the results of running your unit tests in the Visual Studio Test Results window. You can set up a check-in policy which requires that all unit tests pass before your source code can be committed to the source code repository. In addition, you can set up Team Build to execute your unit tests automatically. Unfortunately, Visual Studio does not provide “out-of-the-box” support for JavaScript unit tests. MS Test, the unit testing framework included in Visual Studio, does not support JavaScript unit tests. As soon as you leave the server world, you are left on your own. The goal of this blog entry is to describe one approach to integrating JavaScript unit tests with MS Test so that you can execute your JavaScript unit tests side-by-side with your C# unit tests. The goal is to enable you to execute JavaScript unit tests in exactly the same way as server-side unit tests. You can download the source code described by this project by scrolling to the end of this blog entry. Rejected Approach: Browser Launchers One popular approach to executing JavaScript unit tests is to use a browser as a test-driver. When you use a browser as a test-driver, you open up a browser window to execute and view the results of executing your JavaScript unit tests. For example, QUnit – the unit testing framework for jQuery – takes this approach. The following HTML page illustrates how you can use QUnit to create a unit test for a function named addNumbers(). <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <html> <head> <title>Using QUnit</title> <link rel="stylesheet" href="http://github.com/jquery/qunit/raw/master/qunit/qunit.css" type="text/css" /> </head> <body> <h1 id="qunit-header">QUnit example</h1> <h2 id="qunit-banner"></h2> <div id="qunit-testrunner-toolbar"></div> <h2 id="qunit-userAgent"></h2> <ol id="qunit-tests"></ol> <div id="qunit-fixture">test markup, will be hidden</div> <script type="text/javascript" src="http://code.jquery.com/jquery-latest.js"></script> <script type="text/javascript" src="http://github.com/jquery/qunit/raw/master/qunit/qunit.js"></script> <script type="text/javascript"> // The function to test function addNumbers(a, b) { return a+b; } // The unit test test("Test of addNumbers", function () { equals(4, addNumbers(1,3), "1+3 should be 4"); }); </script> </body> </html> This test verifies that calling addNumbers(1,3) returns the expected value 4. When you open this page in a browser, you can see that this test does, in fact, pass. The idea is that you can quickly refresh this QUnit HTML JavaScript test driver page in your browser whenever you modify your JavaScript code. In other words, you can keep a browser window open and keep refreshing it over and over while you are developing your application. That way, you can know very quickly whenever you have broken your JavaScript code. While easy to setup, there are several big disadvantages to this approach to executing JavaScript unit tests: You must view your JavaScript unit test results in a different location than your server unit test results. The JavaScript unit test results appear in the browser and the server unit test results appear in the Visual Studio Test Results window. Because all of your unit test results don’t appear in a single location, you are more likely to introduce bugs into your code without noticing it. Because your unit tests are not integrated with Visual Studio – in particular, MS Test -- you cannot easily include your JavaScript unit tests when setting up check-in policies or when performing automated builds with Team Build. A more sophisticated approach to using a browser as a test-driver is to automate the web browser. Instead of launching the browser and loading the test code yourself, you use a framework to automate this process. There are several different testing frameworks that support this approach: · Selenium – Selenium is a very powerful framework for automating browser tests. You can create your tests by recording a Firefox session or by writing the test driver code in server code such as C#. You can learn more about Selenium at http://seleniumhq.org/. LTAF – The ASP.NET team uses the Lightweight Test Automation Framework to test JavaScript code in the ASP.NET framework. You can learn more about LTAF by visiting the project home at CodePlex: http://aspnet.codeplex.com/releases/view/35501 jsTestDriver – This framework uses Java to automate the browser. jsTestDriver creates a server which can be used to automate multiple browsers simultaneously. This project is located at http://code.google.com/p/js-test-driver/ TestSwam – This framework, created by John Resig, uses PHP to automate the browser. Like jsTestDriver, the framework creates a test server. You can open multiple browsers that are automated by the test server. Learn more about TestSwarm by visiting the following address: https://github.com/jeresig/testswarm/wiki Yeti – This is the framework introduced by Yahoo for automating browser tests. Yeti uses server-side JavaScript and depends on Node.js. Learn more about Yeti at http://www.yuiblog.com/blog/2010/08/25/introducing-yeti-the-yui-easy-testing-interface/ All of these frameworks are great for integration tests – however, they are not the best frameworks to use for unit tests. In one way or another, all of these frameworks depend on executing tests within the context of a “living and breathing” browser. If you create an ASP.NET Unit Test then Visual Studio will launch a web server before executing the unit test. Why is launching a web server so bad? It is not the worst thing in the world. However, it does introduce dependencies that prevent your code from being tested in isolation. One of the defining features of a unit test -- versus an integration test – is that a unit test tests code in isolation. Another problem with launching a web server when performing unit tests is that launching a web server can be slow. If you cannot execute your unit tests quickly, you are less likely to execute your unit tests each and every time you make a code change. You are much more likely to fall into the pit of failure. Launching a browser when performing a JavaScript unit test has all of the same disadvantages as launching a web server when performing an ASP.NET unit test. Instead of testing a unit of JavaScript code in isolation, you are testing JavaScript code within the context of a particular browser. Using the frameworks listed above for integration tests makes perfect sense. However, I want to consider a different approach for creating unit tests for JavaScript code. Using Server-Side JavaScript for JavaScript Unit Tests A completely different approach to executing JavaScript unit tests is to perform the tests outside of any browser. If you really want to test JavaScript then you should test JavaScript and leave the browser out of the testing process. There are several ways that you can execute JavaScript on the server outside the context of any browser: Rhino – Rhino is an implementation of JavaScript written in Java. The Rhino project is maintained by the Mozilla project. Learn more about Rhino at http://www.mozilla.org/rhino/ V8 – V8 is the open-source Google JavaScript engine written in C++. This is the JavaScript engine used by the Chrome web browser. You can download V8 and embed it in your project by visiting http://code.google.com/p/v8/ JScript – JScript is the JavaScript Script Engine used by Internet Explorer (up to but not including Internet Explorer 9), Windows Script Host, and Active Server Pages. Internet Explorer is still the most popular web browser. Therefore, I decided to focus on using the JScript Script Engine to execute JavaScript unit tests. Using the Microsoft Script Control There are two basic ways that you can pass JavaScript to the JScript Script Engine and execute the code: use the Microsoft Windows Script Interfaces or use the Microsoft Script Control. The difficult and proper way to execute JavaScript using the JScript Script Engine is to use the Microsoft Windows Script Interfaces. You can learn more about the Script Interfaces by visiting http://msdn.microsoft.com/en-us/library/t9d4xf28(VS.85).aspx The main disadvantage of using the Script Interfaces is that they are difficult to use from .NET. There is a great series of articles on using the Script Interfaces from C# located at http://www.drdobbs.com/184406028. I picked the easier alternative and used the Microsoft Script Control. The Microsoft Script Control is an ActiveX control that provides a higher level abstraction over the Window Script Interfaces. You can download the Microsoft Script Control from here: http://www.microsoft.com/downloads/en/details.aspx?FamilyID=d7e31492-2595-49e6-8c02-1426fec693ac After you download the Microsoft Script Control, you need to add a reference to it to your project. Select the Visual Studio menu option Project, Add Reference to open the Add Reference dialog. Select the COM tab and add the Microsoft Script Control 1.0. Using the Script Control is easy. You call the Script Control AddCode() method to add JavaScript code to the Script Engine. Next, you call the Script Control Run() method to run a particular JavaScript function. The reference documentation for the Microsoft Script Control is located at the MSDN website: http://msdn.microsoft.com/en-us/library/aa227633%28v=vs.60%29.aspx Creating the JavaScript Code to Test To keep things simple, let’s imagine that you want to test the following JavaScript function named addNumbers() which simply adds two numbers together: MvcApplication1\Scripts\Math.js function addNumbers(a, b) { return 5; } Notice that the addNumbers() method always returns the value 5. Right-now, it will not pass a good unit test. Create this file and save it in your project with the name Math.js in your MVC project’s Scripts folder (Save the file in your actual MVC application and not your MVC test application). Creating the JavaScript Test Helper Class To make it easier to use the Microsoft Script Control in unit tests, we can create a helper class. This class contains two methods: LoadFile() – Loads a JavaScript file. Use this method to load the JavaScript file being tested or the JavaScript file containing the unit tests. ExecuteTest() – Executes the JavaScript code. Use this method to execute a JavaScript unit test. Here’s the code for the JavaScriptTestHelper class: JavaScriptTestHelper.cs   using System; using System.IO; using Microsoft.VisualStudio.TestTools.UnitTesting; using MSScriptControl; namespace MvcApplication1.Tests { public class JavaScriptTestHelper : IDisposable { private ScriptControl _sc; private TestContext _context; /// <summary> /// You need to use this helper with Unit Tests and not /// Basic Unit Tests because you need a Test Context /// </summary> /// <param name="testContext">Unit Test Test Context</param> public JavaScriptTestHelper(TestContext testContext) { if (testContext == null) { throw new ArgumentNullException("TestContext"); } _context = testContext; _sc = new ScriptControl(); _sc.Language = "JScript"; _sc.AllowUI = false; } /// <summary> /// Load the contents of a JavaScript file into the /// Script Engine. /// </summary> /// <param name="path">Path to JavaScript file</param> public void LoadFile(string path) { var fileContents = File.ReadAllText(path); _sc.AddCode(fileContents); } /// <summary> /// Pass the path of the test that you want to execute. /// </summary> /// <param name="testMethodName">JavaScript function name</param> public void ExecuteTest(string testMethodName) { dynamic result = null; try { result = _sc.Run(testMethodName, new object[] { }); } catch { var error = ((IScriptControl)_sc).Error; if (error != null) { var description = error.Description; var line = error.Line; var column = error.Column; var text = error.Text; var source = error.Source; if (_context != null) { var details = String.Format("{0} \r\nLine: {1} Column: {2}", source, line, column); _context.WriteLine(details); } } throw new AssertFailedException(error.Description); } } public void Dispose() { _sc = null; } } }     Notice that the JavaScriptTestHelper class requires a Test Context to be instantiated. For this reason, you can use the JavaScriptTestHelper only with a Visual Studio Unit Test and not a Basic Unit Test (These are two different types of Visual Studio project items). Add the JavaScriptTestHelper file to your MVC test application (for example, MvcApplication1.Tests). Creating the JavaScript Unit Test Next, we need to create the JavaScript unit test function that we will use to test the addNumbers() function. Create a folder in your MVC test project named JavaScriptTests and add the following JavaScript file to this folder: MvcApplication1.Tests\JavaScriptTests\MathTest.js /// <reference path="JavaScriptUnitTestFramework.js"/> function testAddNumbers() { // Act var result = addNumbers(1, 3); // Assert assert.areEqual(4, result, "addNumbers did not return right value!"); }   The testAddNumbers() function takes advantage of another JavaScript library named JavaScriptUnitTestFramework.js. This library contains all of the code necessary to make assertions. Add the following JavaScriptnitTestFramework.js to the same folder as the MathTest.js file: MvcApplication1.Tests\JavaScriptTests\JavaScriptUnitTestFramework.js var assert = { areEqual: function (expected, actual, message) { if (expected !== actual) { throw new Error("Expected value " + expected + " is not equal to " + actual + ". " + message); } } }; There is only one type of assertion supported by this file: the areEqual() assertion. Most likely, you would want to add additional types of assertions to this file to make it easier to write your JavaScript unit tests. Deploying the JavaScript Test Files This step is non-intuitive. When you use Visual Studio to run unit tests, Visual Studio creates a new folder and executes a copy of the files in your project. After you run your unit tests, your Visual Studio Solution will contain a new folder named TestResults that includes a subfolder for each test run. You need to configure Visual Studio to deploy your JavaScript files to the test run folder or Visual Studio won’t be able to find your JavaScript files when you execute your unit tests. You will get an error that looks something like this when you attempt to execute your unit tests: You can configure Visual Studio to deploy your JavaScript files by adding a Test Settings file to your Visual Studio Solution. It is important to understand that you need to add this file to your Visual Studio Solution and not a particular Visual Studio project. Right-click your Solution in the Solution Explorer window and select the menu option Add, New Item. Select the Test Settings item and click the Add button. After you create a Test Settings file for your solution, you can indicate that you want a particular folder to be deployed whenever you perform a test run. Select the menu option Test, Edit Test Settings to edit your test configuration file. Select the Deployment tab and select your MVC test project’s JavaScriptTest folder to deploy. Click the Apply button and the Close button to save the changes and close the dialog. Creating the Visual Studio Unit Test The very last step is to create the Visual Studio unit test (the MS Test unit test). Add a new unit test to your MVC test project by selecting the menu option Add New Item and selecting the Unit Test project item (Do not select the Basic Unit Test project item): The difference between a Basic Unit Test and a Unit Test is that a Unit Test includes a Test Context. We need this Test Context to use the JavaScriptTestHelper class that we created earlier. Enter the following test method for the new unit test: [TestMethod] public void TestAddNumbers() { var jsHelper = new JavaScriptTestHelper(this.TestContext); // Load JavaScript files jsHelper.LoadFile("JavaScriptUnitTestFramework.js"); jsHelper.LoadFile(@"..\..\..\MvcApplication1\Scripts\Math.js"); jsHelper.LoadFile("MathTest.js"); // Execute JavaScript Test jsHelper.ExecuteTest("testAddNumbers"); } This code uses the JavaScriptTestHelper to load three files: JavaScripUnitTestFramework.js – Contains the assert functions. Math.js – Contains the addNumbers() function from your MVC application which is being tested. MathTest.js – Contains the JavaScript unit test function. Next, the test method calls the JavaScriptTestHelper ExecuteTest() method to execute the testAddNumbers() JavaScript function. Running the Visual Studio JavaScript Unit Test After you complete all of the steps described above, you can execute the JavaScript unit test just like any other unit test. You can use the keyboard combination CTRL-R, CTRL-A to run all of the tests in the current Visual Studio Solution. Alternatively, you can use the buttons in the Visual Studio toolbar to run the tests: (Unfortunately, the Run All Impacted Tests button won’t work correctly because Visual Studio won’t detect that your JavaScript code has changed. Therefore, you should use either the Run Tests in Current Context or Run All Tests in Solution options instead.) The results of running the JavaScript tests appear side-by-side with the results of running the server tests in the Test Results window. For example, if you Run All Tests in Solution then you will get the following results: Notice that the TestAddNumbers() JavaScript test has failed. That is good because our addNumbers() function is hard-coded to always return the value 5. If you double-click the failing JavaScript test, you can view additional details such as the JavaScript error message and the line number of the JavaScript code that failed: Summary The goal of this blog entry was to explain an approach to creating JavaScript unit tests that can be easily integrated with Visual Studio and Visual Studio ALM. I described how you can use the Microsoft Script Control to execute JavaScript on the server. By taking advantage of the Microsoft Script Control, we were able to execute our JavaScript unit tests side-by-side with all of our other unit tests and view the results in the standard Visual Studio Test Results window. You can download the code discussed in this blog entry from here: http://StephenWalther.com/downloads/Blog/JavaScriptUnitTesting/JavaScriptUnitTests.zip Before running this code, you need to first install the Microsoft Script Control which you can download from here: http://www.microsoft.com/downloads/en/details.aspx?FamilyID=d7e31492-2595-49e6-8c02-1426fec693ac

    Read the article

  • WCF WS-Security and WSE Nonce Authentication

    - by Rick Strahl
    WCF makes it fairly easy to access WS-* Web Services, except when you run into a service format that it doesn't support. Even then WCF provides a huge amount of flexibility to make the service clients work, however finding the proper interfaces to make that happen is not easy to discover and for the most part undocumented unless you're lucky enough to run into a blog, forum or StackOverflow post on the matter. This is definitely true for the Password Nonce as part of the WS-Security/WSE protocol, which is not natively supported in WCF. Specifically I had a need to create a WCF message on the client that includes a WS-Security header that looks like this from their spec document:<soapenv:Header> <wsse:Security soapenv:mustUnderstand="1" xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"> <wsse:UsernameToken wsu:Id="UsernameToken-8" xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"> <wsse:Username>TeStUsErNaMe1</wsse:Username> <wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0#PasswordText" >TeStPaSsWoRd1</wsse:Password> <wsse:Nonce EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#Base64Binary" >f8nUe3YupTU5ISdCy3X9Gg==</wsse:Nonce> <wsu:Created>2011-05-04T19:01:40.981Z</wsu:Created> </wsse:UsernameToken> </wsse:Security> </soapenv:Header> Specifically, the Nonce and Created keys are what WCF doesn't create or have a built in formatting for. Why is there a nonce? My first thought here was WTF? The username and password are there in clear text, what does the Nonce accomplish? The Nonce and created keys are are part of WSE Security specification and are meant to allow the server to detect and prevent replay attacks. The hashed nonce should be unique per request which the server can store and check for before running another request thus ensuring that a request is not replayed with exactly the same values. Basic ServiceUtl Import - not much Luck The first thing I did when I imported this service with a service reference was to simply import it as a Service Reference. The Add Service Reference import automatically detects that WS-Security is required and appropariately adds the WS-Security to the basicHttpBinding in the config file:<?xml version="1.0" encoding="utf-8" ?> <configuration> <system.serviceModel> <bindings> <basicHttpBinding> <binding name="RealTimeOnlineSoapBinding"> <security mode="Transport" /> </binding> <binding name="RealTimeOnlineSoapBinding1" /> </basicHttpBinding> </bindings> <client> <endpoint address="https://notarealurl.com:443/services/RealTimeOnline" binding="basicHttpBinding" bindingConfiguration="RealTimeOnlineSoapBinding" contract="RealTimeOnline.RealTimeOnline" name="RealTimeOnline" /> </client> </system.serviceModel> </configuration> If if I run this as is using code like this:var client = new RealTimeOnlineClient(); client.ClientCredentials.UserName.UserName = "TheUsername"; client.ClientCredentials.UserName.Password = "ThePassword"; … I get nothing in terms of WS-Security headers. The request is sent, but the the binding expects transport level security to be applied, rather than message level security. To fix this so that a WS-Security message header is sent the security mode can be changed to: <security mode="TransportWithMessageCredential" /> Now if I re-run I at least get a WS-Security header which looks like this:<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/" xmlns:u="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"> <s:Header> <o:Security s:mustUnderstand="1" xmlns:o="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"> <u:Timestamp u:Id="_0"> <u:Created>2012-11-24T02:55:18.011Z</u:Created> <u:Expires>2012-11-24T03:00:18.011Z</u:Expires> </u:Timestamp> <o:UsernameToken u:Id="uuid-18c215d4-1106-40a5-8dd1-c81fdddf19d3-1"> <o:Username>TheUserName</o:Username> <o:Password Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0#PasswordText" >ThePassword</o:Password> </o:UsernameToken> </o:Security> </s:Header> Closer! Now the WS-Security header is there along with a timestamp field (which might not be accepted by some WS-Security expecting services), but there's no Nonce or created timestamp as required by my original service. Using a CustomBinding instead My next try was to go with a CustomBinding instead of basicHttpBinding as it allows a bit more control over the protocol and transport configurations for the binding. Specifically I can explicitly specify the message protocol(s) used. Using configuration file settings here's what the config file looks like:<?xml version="1.0"?> <configuration> <system.serviceModel> <bindings> <customBinding> <binding name="CustomSoapBinding"> <security includeTimestamp="false" authenticationMode="UserNameOverTransport" defaultAlgorithmSuite="Basic256" requireDerivedKeys="false" messageSecurityVersion="WSSecurity10WSTrustFebruary2005WSSecureConversationFebruary2005WSSecurityPolicy11BasicSecurityProfile10"> </security> <textMessageEncoding messageVersion="Soap11"></textMessageEncoding> <httpsTransport maxReceivedMessageSize="2000000000"/> </binding> </customBinding> </bindings> <client> <endpoint address="https://notrealurl.com:443/services/RealTimeOnline" binding="customBinding" bindingConfiguration="CustomSoapBinding" contract="RealTimeOnline.RealTimeOnline" name="RealTimeOnline" /> </client> </system.serviceModel> <startup> <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/> </startup> </configuration> This ends up creating a cleaner header that's missing the timestamp field which can cause some services problems. The WS-Security header output generated with the above looks like this:<s:Header> <o:Security s:mustUnderstand="1" xmlns:o="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"> <o:UsernameToken u:Id="uuid-291622ca-4c11-460f-9886-ac1c78813b24-1"> <o:Username>TheUsername</o:Username> <o:Password Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0#PasswordText" >ThePassword</o:Password> </o:UsernameToken> </o:Security> </s:Header> This is closer as it includes only the username and password. The key here is the protocol for WS-Security:messageSecurityVersion="WSSecurity10WSTrustFebruary2005WSSecureConversationFebruary2005WSSecurityPolicy11BasicSecurityProfile10" which explicitly specifies the protocol version. There are several variants of this specification but none of them seem to support the nonce unfortunately. This protocol does allow for optional omission of the Nonce and created timestamp provided (which effectively makes those keys optional). With some services I tried that requested a Nonce just using this protocol actually worked where the default basicHttpBinding failed to connect, so this is a possible solution for access to some services. Unfortunately for my target service that was not an option. The nonce has to be there. Creating Custom ClientCredentials As it turns out WCF doesn't have support for the Digest Nonce as part of WS-Security, and so as far as I can tell there's no way to do it just with configuration settings. I did a bunch of research on this trying to find workarounds for this, and I did find a couple of entries on StackOverflow as well as on the MSDN forums. However, none of these are particularily clear and I ended up using bits and pieces of several of them to arrive at a working solution in the end. http://stackoverflow.com/questions/896901/wcf-adding-nonce-to-usernametoken http://social.msdn.microsoft.com/Forums/en-US/wcf/thread/4df3354f-0627-42d9-b5fb-6e880b60f8ee The latter forum message is the more useful of the two (the last message on the thread in particular) and it has most of the information required to make this work. But it took some experimentation for me to get this right so I'll recount the process here maybe a bit more comprehensively. In order for this to work a number of classes have to be overridden: ClientCredentials ClientCredentialsSecurityTokenManager WSSecurityTokenizer The idea is that we need to create a custom ClientCredential class to hold the custom properties so they can be set from the UI or via configuration settings. The TokenManager and Tokenizer are mainly required to allow the custom credentials class to flow through the WCF pipeline and eventually provide custom serialization. Here are the three classes required and their full implementations:public class CustomCredentials : ClientCredentials { public CustomCredentials() { } protected CustomCredentials(CustomCredentials cc) : base(cc) { } public override System.IdentityModel.Selectors.SecurityTokenManager CreateSecurityTokenManager() { return new CustomSecurityTokenManager(this); } protected override ClientCredentials CloneCore() { return new CustomCredentials(this); } } public class CustomSecurityTokenManager : ClientCredentialsSecurityTokenManager { public CustomSecurityTokenManager(CustomCredentials cred) : base(cred) { } public override System.IdentityModel.Selectors.SecurityTokenSerializer CreateSecurityTokenSerializer(System.IdentityModel.Selectors.SecurityTokenVersion version) { return new CustomTokenSerializer(System.ServiceModel.Security.SecurityVersion.WSSecurity11); } } public class CustomTokenSerializer : WSSecurityTokenSerializer { public CustomTokenSerializer(SecurityVersion sv) : base(sv) { } protected override void WriteTokenCore(System.Xml.XmlWriter writer, System.IdentityModel.Tokens.SecurityToken token) { UserNameSecurityToken userToken = token as UserNameSecurityToken; string tokennamespace = "o"; DateTime created = DateTime.Now; string createdStr = created.ToString("yyyy-MM-ddThh:mm:ss.fffZ"); // unique Nonce value - encode with SHA-1 for 'randomness' // in theory the nonce could just be the GUID by itself string phrase = Guid.NewGuid().ToString(); var nonce = GetSHA1String(phrase); // in this case password is plain text // for digest mode password needs to be encoded as: // PasswordAsDigest = Base64(SHA-1(Nonce + Created + Password)) // and profile needs to change to //string password = GetSHA1String(nonce + createdStr + userToken.Password); string password = userToken.Password; writer.WriteRaw(string.Format( "<{0}:UsernameToken u:Id=\"" + token.Id + "\" xmlns:u=\"http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd\">" + "<{0}:Username>" + userToken.UserName + "</{0}:Username>" + "<{0}:Password Type=\"http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0#PasswordText\">" + password + "</{0}:Password>" + "<{0}:Nonce EncodingType=\"http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#Base64Binary\">" + nonce + "</{0}:Nonce>" + "<u:Created>" + createdStr + "</u:Created></{0}:UsernameToken>", tokennamespace)); } protected string GetSHA1String(string phrase) { SHA1CryptoServiceProvider sha1Hasher = new SHA1CryptoServiceProvider(); byte[] hashedDataBytes = sha1Hasher.ComputeHash(Encoding.UTF8.GetBytes(phrase)); return Convert.ToBase64String(hashedDataBytes); } } Realistically only the CustomTokenSerializer has any significant code in. The code there deals with actually serializing the custom credentials using low level XML semantics by writing output into an XML writer. I can't take credit for this code - most of the code comes from the MSDN forum post mentioned earlier - I made a few adjustments to simplify the nonce generation and also added some notes to allow for PasswordDigest generation. Per spec the nonce is nothing more than a unique value that's supposed to be 'random'. I'm thinking that this value can be any string that's unique and a GUID on its own probably would have sufficed. Comments on other posts that GUIDs can be potentially guessed are highly exaggerated to say the least IMHO. To satisfy even that aspect though I added the SHA1 encryption and binary decoding to give a more random value that would be impossible to 'guess'. The original example from the forum post used another level of encoding and decoding to string in between - but that really didn't accomplish anything but extra overhead. The header output generated from this looks like this:<s:Header> <o:Security s:mustUnderstand="1" xmlns:o="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"> <o:UsernameToken u:Id="uuid-f43d8b0d-0ebb-482e-998d-f544401a3c91-1" xmlns:u="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"> <o:Username>TheUsername</o:Username> <o:Password Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0#PasswordText">ThePassword</o:Password> <o:Nonce EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#Base64Binary" >PjVE24TC6HtdAnsf3U9c5WMsECY=</o:Nonce> <u:Created>2012-11-23T07:10:04.670Z</u:Created> </o:UsernameToken> </o:Security> </s:Header> which is exactly as it should be. Password Digest? In my case the password is passed in plain text over an SSL connection, so there's no digest required so I was done with the code above. Since I don't have a service handy that requires a password digest,  I had no way of testing the code for the digest implementation, but here is how this is likely to work. If you need to pass a digest encoded password things are a little bit trickier. The password type namespace needs to change to: http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0#Digest and then the password value needs to be encoded. The format for password digest encoding is this: Base64(SHA-1(Nonce + Created + Password)) and it can be handled in the code above with this code (that's commented in the snippet above): string password = GetSHA1String(nonce + createdStr + userToken.Password); The entire WriteTokenCore method for digest code looks like this:protected override void WriteTokenCore(System.Xml.XmlWriter writer, System.IdentityModel.Tokens.SecurityToken token) { UserNameSecurityToken userToken = token as UserNameSecurityToken; string tokennamespace = "o"; DateTime created = DateTime.Now; string createdStr = created.ToString("yyyy-MM-ddThh:mm:ss.fffZ"); // unique Nonce value - encode with SHA-1 for 'randomness' // in theory the nonce could just be the GUID by itself string phrase = Guid.NewGuid().ToString(); var nonce = GetSHA1String(phrase); string password = GetSHA1String(nonce + createdStr + userToken.Password); writer.WriteRaw(string.Format( "<{0}:UsernameToken u:Id=\"" + token.Id + "\" xmlns:u=\"http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd\">" + "<{0}:Username>" + userToken.UserName + "</{0}:Username>" + "<{0}:Password Type=\"http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0#Digest\">" + password + "</{0}:Password>" + "<{0}:Nonce EncodingType=\"http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#Base64Binary\">" + nonce + "</{0}:Nonce>" + "<u:Created>" + createdStr + "</u:Created></{0}:UsernameToken>", tokennamespace)); } I had no service to connect to to try out Digest auth - if you end up needing it and get it to work please drop a comment… How to use the custom Credentials The easiest way to use the custom credentials is to create the client in code. Here's a factory method I use to create an instance of my service client:  public static RealTimeOnlineClient CreateRealTimeOnlineProxy(string url, string username, string password) { if (string.IsNullOrEmpty(url)) url = "https://notrealurl.com:443/cows/services/RealTimeOnline"; CustomBinding binding = new CustomBinding(); var security = TransportSecurityBindingElement.CreateUserNameOverTransportBindingElement(); security.IncludeTimestamp = false; security.DefaultAlgorithmSuite = SecurityAlgorithmSuite.Basic256; security.MessageSecurityVersion = MessageSecurityVersion.WSSecurity10WSTrustFebruary2005WSSecureConversationFebruary2005WSSecurityPolicy11BasicSecurityProfile10; var encoding = new TextMessageEncodingBindingElement(); encoding.MessageVersion = MessageVersion.Soap11; var transport = new HttpsTransportBindingElement(); transport.MaxReceivedMessageSize = 20000000; // 20 megs binding.Elements.Add(security); binding.Elements.Add(encoding); binding.Elements.Add(transport); RealTimeOnlineClient client = new RealTimeOnlineClient(binding, new EndpointAddress(url)); // to use full client credential with Nonce uncomment this code: // it looks like this might not be required - the service seems to work without it client.ChannelFactory.Endpoint.Behaviors.Remove<System.ServiceModel.Description.ClientCredentials>(); client.ChannelFactory.Endpoint.Behaviors.Add(new CustomCredentials()); client.ClientCredentials.UserName.UserName = username; client.ClientCredentials.UserName.Password = password; return client; } This returns a service client that's ready to call other service methods. The key item in this code is the ChannelFactory endpoint behavior modification that that first removes the original ClientCredentials and then adds the new one. The ClientCredentials property on the client is read only and this is the way it has to be added.   Summary It's a bummer that WCF doesn't suport WSE Security authentication with nonce values out of the box. From reading the comments in posts/articles while I was trying to find a solution, I found that this feature was omitted by design as this protocol is considered unsecure. While I agree that plain text passwords are rarely a good idea even if they go over secured SSL connection as WSE Security does, there are unfortunately quite a few services (mosly Java services I suspect) that use this protocol. I've run into this twice now and trying to find a solution online I can see that this is not an isolated problem - many others seem to have struggled with this. It seems there are about a dozen questions about this on StackOverflow all with varying incomplete answers. Hopefully this post provides a little more coherent content in one place. Again I marvel at WCF and its breadth of support for protocol features it has in a single tool. And even when it can't handle something there are ways to get it working via extensibility. But at the same time I marvel at how freaking difficult it is to arrive at these solutions. I mean there's no way I could have ever figured this out on my own. It takes somebody working on the WCF team or at least being very, very intricately involved in the innards of WCF to figure out the interconnection of the various objects to do this from scratch. Luckily this is an older problem that has been discussed extensively online and I was able to cobble together a solution from the online content. I'm glad it worked out that way, but it feels dirty and incomplete in that there's a whole learning path that was omitted to get here… Man am I glad I'm not dealing with SOAP services much anymore. REST service security - even when using some sort of federation is a piece of cake by comparison :-) I'm sure once standards bodies gets involved we'll be right back in security standard hell…© Rick Strahl, West Wind Technologies, 2005-2012Posted in WCF  Web Services   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Running an intern program

    - by dotneteer
    This year I am running an unpaid internship program for high school students. I work for a small company. We have ideas for a few side projects but never have time to do them. So we experiment by making them intern projects. In return, we give these interns guidance to learn, personal attentions, and opportunities with real-world projects. A few years ago, I blogged about the idea of teaching kids to write application with no more than 6 hours of training. This time, I was able to reduce the instruction time to 4 hours and immediately put them into real work projects. When they encounter problems, I combine directions, pointer to various materials on w3school, Udacity, Codecademy and UTube, as well as encouraging them to  search for solutions with search engines. Now entering the third week, I am more than encouraged and feeling accomplished. Our the most senior intern, Christopher Chen, is a recent high school graduate and is heading to UC Berkeley to study computer science after the summer. He previously only had one year of Java experience through the AP computer science course but had no web development experience. Only 12 days into his internship, he has already gain advanced css skills with deeper understanding than more than half of the “senior” developers that I have ever worked with. I put him on a project to migrate an existing website to the Orchard content management system (CMS) with which I am new as well. We were able to teach each other and quickly gain advanced Orchard skills such as creating custom theme and modules. I felt very much a relationship similar to the those between professors and graduate students. On the other hand, I quite expect that I will lose him the next summer to companies like Google, Facebook or Microsoft. As a side note, Christopher and I will do a two part Orchard presentations together at the next SoCal code camp at UC San Diego July 27-28. The first part, “creating an Orchard website on Azure in 60 minutes”, is an introductory lecture and we will discuss how to create a website using Orchard without writing code. The 2nd part, “customizing Orchard websites without limit”, is an advanced lecture and we will discuss custom theme and module development with WebMatrix and Visual Studio.

    Read the article

  • Naming PowerPoint Components With A VSTO Add-In

    - by Tim Murphy
    Note: Cross posted from Coding The Document. Permalink Sometimes in order to work with Open XML we need a little help from other tools.  In this post I am going to describe  a fairly simple solution for marking up PowerPoint presentations so that they can be used as templates and processed using the Open XML SDK. Add-ins are tools which it can be hard to find information on.  I am going to up the obscurity by adding a Ribbon button.  For my example I am using Visual Studio 2008 and creating a PowerPoint 2007 Add-in project.  To that add a Ribbon Visual Designer.  The new ribbon by default will show up on the Add-in tab. Add a button to the ribbon.  Also add a WinForm to collect a new name for the object selected.  Make sure to set the OK button’s DialogResult to OK. In the ribbon button click event add the following code. ObjectNameForm dialog = new ObjectNameForm(); Selection selection = Globals.ThisAddIn.Application.ActiveWindow.Selection;   dialog.objectName = selection.ShapeRange.Name;   if (dialog.ShowDialog() == DialogResult.OK) { selection.ShapeRange.Name = dialog.objectName; } This code will first read the current Name attribute of the Shape object.  If the user clicks OK on the dialog it save the string value back to the same place. Once it is done you can retrieve identify the control through Open XML via the NonVisualDisplayProperties objects.  The only problem is that this object is a child of several different classes.  This means that there isn’t just one way to retrieve the value.  Below are a couple of pieces of code to identify the container that you have named. The first example is if you are naming placeholders in a layout slide. foreach(var slideMasterPart in slideMasterParts) { var layoutParts = slideMasterPart.SlideLayoutParts; foreach(SlideLayoutPart slideLayoutPart in layoutParts) { foreach (assmPresentation.Shape shape in slideLayoutPart.SlideLayout.CommonSlideData.ShapeTree.Descendants<assmPresentation.Shape>()) { var slideMasterProperties = from p in shape.Descendants<assmPresentation.NonVisualDrawingProperties>() where p.Name == TokenText.Text select p;   if (slideMasterProperties.Count() > 0) tokenFound = true; } } } The second example allows you to find charts that you have named with the add-in. foreach(var slidePart in slideParts) { foreach(assmPresentation.Shape slideShape in slidePart.Slide.CommonSlideData.ShapeTree.Descendants<assmPresentation.Shape>()) { var slideProperties = from g in slidePart.Slide.Descendants<GraphicFrame>() where g.NonVisualGraphicFrameProperties.NonVisualDrawingProperties.Name == TokenText.Text select g;   if(slideProperties.Count() > 0) { tokenFound = true; } } } Together the combination of Open XML and VSTO add-ins make a powerful combination in creating a process for maintaining a template and generating documents from the template.

    Read the article

  • Creating STA COM compatible ASP.NET Applications

    - by Rick Strahl
    When building ASP.NET applications that interface with old school COM objects like those created with VB6 or Visual FoxPro (MTDLL), it's extremely important that the threads that are serving requests use Single Threaded Apartment Threading. STA is a COM built-in technology that allows essentially single threaded components to operate reliably in a multi-threaded environment. STA's guarantee that COM objects instantiated on a specific thread stay on that specific thread and any access to a COM object from another thread automatically marshals that thread to the STA thread. The end effect is that you can have multiple threads, but a COM object instance lives on a fixed never changing thread. ASP.NET by default uses MTA (multi-threaded apartment) threads which are truly free spinning threads that pay no heed to COM object marshaling. This is vastly more efficient than STA threading which has a bit of overhead in determining whether it's OK to run code on a given thread or whether some sort of thread/COM marshaling needs to occur. MTA COM components can be very efficient, but STA COM components in a multi-threaded environment always tend to have a fair amount of overhead. It's amazing how much COM Interop I still see today so while it seems really old school to be talking about this topic, it's actually quite apropos for me as I have many customers using legacy COM systems that need to interface with other .NET applications. In this post I'm consolidating some of the hacks I've used to integrate with various ASP.NET technologies when using STA COM Components. STA in ASP.NET Support for STA threading in the ASP.NET framework is fairly limited. Specifically only the original ASP.NET WebForms technology supports STA threading directly via its STA Page Handler implementation or what you might know as ASPCOMPAT mode. For WebForms running STA components is as easy as specifying the ASPCOMPAT attribute in the @Page tag:<%@ Page Language="C#" AspCompat="true" %> which runs the page in STA mode. Removing it runs in MTA mode. Simple. Unfortunately all other ASP.NET technologies built on top of the core ASP.NET engine do not support STA natively. So if you want to use STA COM components in MVC or with class ASMX Web Services, there's no automatic way like the ASPCOMPAT keyword available. So what happens when you run an STA COM component in an MTA application? In low volume environments - nothing much will happen. The COM objects will appear to work just fine as there are no simultaneous thread interactions and the COM component will happily run on a single thread or multiple single threads one at a time. So for testing running components in MTA environments may appear to work just fine. However as load increases and threads get re-used by ASP.NET COM objects will end up getting created on multiple different threads. This can result in crashes or hangs, or data corruption in the STA components which store their state in thread local storage on the STA thread. If threads overlap this global store can easily get corrupted which in turn causes problems. STA ensures that any COM object instance loaded always stays on the same thread it was instantiated on. What about COM+? COM+ is supposed to address the problem of STA in MTA applications by providing an abstraction with it's own thread pool manager for COM objects. It steps in to the COM instantiation pipeline and hands out COM instances from its own internally maintained STA Thread pool. This guarantees that the COM instantiation threads are STA threads if using STA components. COM+ works, but in my experience the technology is very, very slow for STA components. It adds a ton of overhead and reduces COM performance noticably in load tests in IIS. COM+ can make sense in some situations but for Web apps with STA components it falls short. In addition there's also the need to ensure that COM+ is set up and configured on the target machine and the fact that components have to be registered in COM+. COM+ also keeps components up at all times, so if a component needs to be replaced the COM+ package needs to be unloaded (same is true for IIS hosted components but it's more common to manage that). COM+ is an option for well established components, but native STA support tends to provide better performance and more consistent usability, IMHO. STA for non supporting ASP.NET Technologies As mentioned above only WebForms supports STA natively. However, by utilizing the WebForms ASP.NET Page handler internally it's actually possible to trick various other ASP.NET technologies and let them work with STA components. This is ugly but I've used each of these in various applications and I've had minimal problems making them work with FoxPro STA COM components which is about as dififcult as it gets for COM Interop in .NET. In this post I summarize several STA workarounds that enable you to use STA threading with these ASP.NET Technologies: ASMX Web Services ASP.NET MVC WCF Web Services ASP.NET Web API ASMX Web Services I start with classic ASP.NET ASMX Web Services because it's the easiest mechanism that allows for STA modification. It also clearly demonstrates how the WebForms STA Page Handler is the key technology to enable the various other solutions to create STA components. Essentially the way this works is to override the WebForms Page class and hijack it's init functionality for processing requests. Here's what this looks like for Web Services:namespace FoxProAspNet { public class WebServiceStaHandler : System.Web.UI.Page, IHttpAsyncHandler { protected override void OnInit(EventArgs e) { IHttpHandler handler = new WebServiceHandlerFactory().GetHandler( this.Context, this.Context.Request.HttpMethod, this.Context.Request.FilePath, this.Context.Request.PhysicalPath); handler.ProcessRequest(this.Context); this.Context.ApplicationInstance.CompleteRequest(); } public IAsyncResult BeginProcessRequest( HttpContext context, AsyncCallback cb, object extraData) { return this.AspCompatBeginProcessRequest(context, cb, extraData); } public void EndProcessRequest(IAsyncResult result) { this.AspCompatEndProcessRequest(result); } } public class AspCompatWebServiceStaHandlerWithSessionState : WebServiceStaHandler, IRequiresSessionState { } } This class overrides the ASP.NET WebForms Page class which has a little known AspCompatBeginProcessRequest() and AspCompatEndProcessRequest() method that is responsible for providing the WebForms ASPCOMPAT functionality. These methods handle routing requests to STA threads. Note there are two classes - one that includes session state and one that does not. If you plan on using ASP.NET Session state use the latter class, otherwise stick to the former. This maps to the EnableSessionState page setting in WebForms. This class simply hooks into this functionality by overriding the BeginProcessRequest and EndProcessRequest methods and always forcing it into the AspCompat methods. The way this works is that BeginProcessRequest() fires first to set up the threads and starts intializing the handler. As part of that process the OnInit() method is fired which is now already running on an STA thread. The code then creates an instance of the actual WebService handler factory and calls its ProcessRequest method to start executing which generates the Web Service result. Immediately after ProcessRequest the request is stopped with Application.CompletRequest() which ensures that the rest of the Page handler logic doesn't fire. This means that even though the fairly heavy Page class is overridden here, it doesn't end up executing any of its internal processing which makes this code fairly efficient. In a nutshell, we're highjacking the Page HttpHandler and forcing it to process the WebService process handler in the context of the AspCompat handler behavior. Hooking up the Handler Because the above is an HttpHandler implementation you need to hook up the custom handler and replace the standard ASMX handler. To do this you need to modify the web.config file (here for IIS 7 and IIS Express): <configuration> <system.webServer> <handlers> <remove name="WebServiceHandlerFactory-Integrated-4.0" /> <add name="Asmx STA Web Service Handler" path="*.asmx" verb="*" type="FoxProAspNet.WebServiceStaHandler" precondition="integrated"/> </handlers> </system.webServer> </configuration> (Note: The name for the WebServiceHandlerFactory-Integrated-4.0 might be slightly different depending on your server version. Check the IIS Handler configuration in the IIS Management Console for the exact name or simply remove the handler from the list there which will propagate to your web.config). For IIS 5 & 6 (Windows XP/2003) or the Visual Studio Web Server use:<configuration> <system.web> <httpHandlers> <remove path="*.asmx" verb="*" /> <add path="*.asmx" verb="*" type="FoxProAspNet.WebServiceStaHandler" /> </httpHandlers> </system.web></configuration> To test, create a new ASMX Web Service and create a method like this: [WebService(Namespace = "http://foxaspnet.org/")] [WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)] public class FoxWebService : System.Web.Services.WebService { [WebMethod] public string HelloWorld() { return "Hello World. Threading mode is: " + System.Threading.Thread.CurrentThread.GetApartmentState(); } } Run this before you put in the web.config configuration changes and you should get: Hello World. Threading mode is: MTA Then put the handler mapping into Web.config and you should see: Hello World. Threading mode is: STA And you're on your way to using STA COM components. It's a hack but it works well! I've used this with several high volume Web Service installations with various customers and it's been fast and reliable. ASP.NET MVC ASP.NET MVC has quickly become the most popular ASP.NET technology, replacing WebForms for creating HTML output. MVC is more complex to get started with, but once you understand the basic structure of how requests flow through the MVC pipeline it's easy to use and amazingly flexible in manipulating HTML requests. In addition, MVC has great support for non-HTML output sources like JSON and XML, making it an excellent choice for AJAX requests without any additional tools. Unlike WebForms ASP.NET MVC doesn't support STA threads natively and so some trickery is needed to make it work with STA threads as well. MVC gets its handler implementation through custom route handlers using ASP.NET's built in routing semantics. To work in an STA handler requires working in the Page Handler as part of the Route Handler implementation. As with the Web Service handler the first step is to create a custom HttpHandler that can instantiate an MVC request pipeline properly:public class MvcStaThreadHttpAsyncHandler : Page, IHttpAsyncHandler, IRequiresSessionState { private RequestContext _requestContext; public MvcStaThreadHttpAsyncHandler(RequestContext requestContext) { if (requestContext == null) throw new ArgumentNullException("requestContext"); _requestContext = requestContext; } public IAsyncResult BeginProcessRequest(HttpContext context, AsyncCallback cb, object extraData) { return this.AspCompatBeginProcessRequest(context, cb, extraData); } protected override void OnInit(EventArgs e) { var controllerName = _requestContext.RouteData.GetRequiredString("controller"); var controllerFactory = ControllerBuilder.Current.GetControllerFactory(); var controller = controllerFactory.CreateController(_requestContext, controllerName); if (controller == null) throw new InvalidOperationException("Could not find controller: " + controllerName); try { controller.Execute(_requestContext); } finally { controllerFactory.ReleaseController(controller); } this.Context.ApplicationInstance.CompleteRequest(); } public void EndProcessRequest(IAsyncResult result) { this.AspCompatEndProcessRequest(result); } public override void ProcessRequest(HttpContext httpContext) { throw new NotSupportedException("STAThreadRouteHandler does not support ProcessRequest called (only BeginProcessRequest)"); } } This handler code figures out which controller to load and then executes the controller. MVC internally provides the information needed to route to the appropriate method and pass the right parameters. Like the Web Service handler the logic occurs in the OnInit() and performs all the processing in that part of the request. Next, we need a RouteHandler that can actually pick up this handler. Unlike the Web Service handler where we simply registered the handler, MVC requires a RouteHandler to pick up the handler. RouteHandlers look at the URL's path and based on that decide on what handler to invoke. The route handler is pretty simple - all it does is load our custom handler: public class MvcStaThreadRouteHandler : IRouteHandler { public IHttpHandler GetHttpHandler(RequestContext requestContext) { if (requestContext == null) throw new ArgumentNullException("requestContext"); return new MvcStaThreadHttpAsyncHandler(requestContext); } } At this point you can instantiate this route handler and force STA requests to MVC by specifying a route. The following sets up the ASP.NET Default Route:Route mvcRoute = new Route("{controller}/{action}/{id}", new RouteValueDictionary( new { controller = "Home", action = "Index", id = UrlParameter.Optional }), new MvcStaThreadRouteHandler()); RouteTable.Routes.Add(mvcRoute);   To make this code a little easier to work with and mimic the behavior of the routes.MapRoute() functionality extension method that MVC provides, here is an extension method for MapMvcStaRoute(): public static class RouteCollectionExtensions { public static void MapMvcStaRoute(this RouteCollection routeTable, string name, string url, object defaults = null) { Route mvcRoute = new Route(url, new RouteValueDictionary(defaults), new MvcStaThreadRouteHandler()); RouteTable.Routes.Add(mvcRoute); } } With this the syntax to add  route becomes a little easier and matches the MapRoute() method:RouteTable.Routes.MapMvcStaRoute( name: "Default", url: "{controller}/{action}/{id}", defaults: new { controller = "Home", action = "Index", id = UrlParameter.Optional } ); The nice thing about this route handler, STA Handler and extension method is that it's fully self contained. You can put all three into a single class file and stick it into your Web app, and then simply call MapMvcStaRoute() and it just works. Easy! To see whether this works create an MVC controller like this: public class ThreadTestController : Controller { public string ThreadingMode() { return Thread.CurrentThread.GetApartmentState().ToString(); } } Try this test both with only the MapRoute() hookup in the RouteConfiguration in which case you should get MTA as the value. Then change the MapRoute() call to MapMvcStaRoute() leaving all the parameters the same and re-run the request. You now should see STA as the result. You're on your way using STA COM components reliably in ASP.NET MVC. WCF Web Services running through IIS WCF Web Services provide a more robust and wider range of services for Web Services. You can use WCF over HTTP, TCP, and Pipes, and WCF services support WS* secure services. There are many features in WCF that go way beyond what ASMX can do. But it's also a bit more complex than ASMX. As a basic rule if you need to serve straight SOAP Services over HTTP I 'd recommend sticking with the simpler ASMX services especially if COM is involved. If you need WS* support or want to serve data over non-HTTP protocols then WCF makes more sense. WCF is not my forte but I found a solution from Scott Seely on his blog that describes the progress and that seems to work well. I'm copying his code below so this STA information is all in one place and quickly explain. Scott's code basically works by creating a custom OperationBehavior which can be specified via an [STAOperation] attribute on every method. Using his attribute you end up with a class (or Interface if you separate the contract and class) that looks like this: [ServiceContract] public class WcfService { [OperationContract] public string HelloWorldMta() { return Thread.CurrentThread.GetApartmentState().ToString(); } // Make sure you use this custom STAOperationBehavior // attribute to force STA operation of service methods [STAOperationBehavior] [OperationContract] public string HelloWorldSta() { return Thread.CurrentThread.GetApartmentState().ToString(); } } Pretty straight forward. The latter method returns STA while the former returns MTA. To make STA work every method needs to be marked up. The implementation consists of the attribute and OperationInvoker implementation. Here are the two classes required to make this work from Scott's post:public class STAOperationBehaviorAttribute : Attribute, IOperationBehavior { public void AddBindingParameters(OperationDescription operationDescription, System.ServiceModel.Channels.BindingParameterCollection bindingParameters) { } public void ApplyClientBehavior(OperationDescription operationDescription, System.ServiceModel.Dispatcher.ClientOperation clientOperation) { // If this is applied on the client, well, it just doesn’t make sense. // Don’t throw in case this attribute was applied on the contract // instead of the implementation. } public void ApplyDispatchBehavior(OperationDescription operationDescription, System.ServiceModel.Dispatcher.DispatchOperation dispatchOperation) { // Change the IOperationInvoker for this operation. dispatchOperation.Invoker = new STAOperationInvoker(dispatchOperation.Invoker); } public void Validate(OperationDescription operationDescription) { if (operationDescription.SyncMethod == null) { throw new InvalidOperationException("The STAOperationBehaviorAttribute " + "only works for synchronous method invocations."); } } } public class STAOperationInvoker : IOperationInvoker { IOperationInvoker _innerInvoker; public STAOperationInvoker(IOperationInvoker invoker) { _innerInvoker = invoker; } public object[] AllocateInputs() { return _innerInvoker.AllocateInputs(); } public object Invoke(object instance, object[] inputs, out object[] outputs) { // Create a new, STA thread object[] staOutputs = null; object retval = null; Thread thread = new Thread( delegate() { retval = _innerInvoker.Invoke(instance, inputs, out staOutputs); }); thread.SetApartmentState(ApartmentState.STA); thread.Start(); thread.Join(); outputs = staOutputs; return retval; } public IAsyncResult InvokeBegin(object instance, object[] inputs, AsyncCallback callback, object state) { // We don’t handle async… throw new NotImplementedException(); } public object InvokeEnd(object instance, out object[] outputs, IAsyncResult result) { // We don’t handle async… throw new NotImplementedException(); } public bool IsSynchronous { get { return true; } } } The key in this setup is the Invoker and the Invoke method which creates a new thread and then fires the request on this new thread. Because this approach creates a new thread for every request it's not super efficient. There's a bunch of overhead involved in creating the thread and throwing it away after each thread, but it'll work for low volume requests and insure each thread runs in STA mode. If better performance is required it would be useful to create a custom thread manager that can pool a number of STA threads and hand off threads as needed rather than creating new threads on every request. If your Web Service needs are simple and you need only to serve standard SOAP 1.x requests, I would recommend sticking with ASMX services. It's easier to set up and work with and for STA component use it'll be significantly better performing since ASP.NET manages the STA thread pool for you rather than firing new threads for each request. One nice thing about Scotts code is though that it works in any WCF environment including self hosting. It has no dependency on ASP.NET or WebForms for that matter. STA - If you must STA components are a  pain in the ass and thankfully there isn't too much stuff out there anymore that requires it. But when you need it and you need to access STA functionality from .NET at least there are a few options available to make it happen. Each of these solutions is a bit hacky, but they work - I've used all of them in production with good results with FoxPro components. I hope compiling all of these in one place here makes it STA consumption a little bit easier. I feel your pain :-) Resources Download STA Handler Code Examples Scott Seely's original STA WCF OperationBehavior Article© Rick Strahl, West Wind Technologies, 2005-2012Posted in FoxPro   ASP.NET  .NET  COM   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • A Taxonomy of Numerical Methods v1

    - by JoshReuben
    Numerical Analysis – When, What, (but not how) Once you understand the Math & know C++, Numerical Methods are basically blocks of iterative & conditional math code. I found the real trick was seeing the forest for the trees – knowing which method to use for which situation. Its pretty easy to get lost in the details – so I’ve tried to organize these methods in a way that I can quickly look this up. I’ve included links to detailed explanations and to C++ code examples. I’ve tried to classify Numerical methods in the following broad categories: Solving Systems of Linear Equations Solving Non-Linear Equations Iteratively Interpolation Curve Fitting Optimization Numerical Differentiation & Integration Solving ODEs Boundary Problems Solving EigenValue problems Enjoy – I did ! Solving Systems of Linear Equations Overview Solve sets of algebraic equations with x unknowns The set is commonly in matrix form Gauss-Jordan Elimination http://en.wikipedia.org/wiki/Gauss%E2%80%93Jordan_elimination C++: http://www.codekeep.net/snippets/623f1923-e03c-4636-8c92-c9dc7aa0d3c0.aspx Produces solution of the equations & the coefficient matrix Efficient, stable 2 steps: · Forward Elimination – matrix decomposition: reduce set to triangular form (0s below the diagonal) or row echelon form. If degenerate, then there is no solution · Backward Elimination –write the original matrix as the product of ints inverse matrix & its reduced row-echelon matrix à reduce set to row canonical form & use back-substitution to find the solution to the set Elementary ops for matrix decomposition: · Row multiplication · Row switching · Add multiples of rows to other rows Use pivoting to ensure rows are ordered for achieving triangular form LU Decomposition http://en.wikipedia.org/wiki/LU_decomposition C++: http://ganeshtiwaridotcomdotnp.blogspot.co.il/2009/12/c-c-code-lu-decomposition-for-solving.html Represent the matrix as a product of lower & upper triangular matrices A modified version of GJ Elimination Advantage – can easily apply forward & backward elimination to solve triangular matrices Techniques: · Doolittle Method – sets the L matrix diagonal to unity · Crout Method - sets the U matrix diagonal to unity Note: both the L & U matrices share the same unity diagonal & can be stored compactly in the same matrix Gauss-Seidel Iteration http://en.wikipedia.org/wiki/Gauss%E2%80%93Seidel_method C++: http://www.nr.com/forum/showthread.php?t=722 Transform the linear set of equations into a single equation & then use numerical integration (as integration formulas have Sums, it is implemented iteratively). an optimization of Gauss-Jacobi: 1.5 times faster, requires 0.25 iterations to achieve the same tolerance Solving Non-Linear Equations Iteratively find roots of polynomials – there may be 0, 1 or n solutions for an n order polynomial use iterative techniques Iterative methods · used when there are no known analytical techniques · Requires set functions to be continuous & differentiable · Requires an initial seed value – choice is critical to convergence à conduct multiple runs with different starting points & then select best result · Systematic - iterate until diminishing returns, tolerance or max iteration conditions are met · bracketing techniques will always yield convergent solutions, non-bracketing methods may fail to converge Incremental method if a nonlinear function has opposite signs at 2 ends of a small interval x1 & x2, then there is likely to be a solution in their interval – solutions are detected by evaluating a function over interval steps, for a change in sign, adjusting the step size dynamically. Limitations – can miss closely spaced solutions in large intervals, cannot detect degenerate (coinciding) solutions, limited to functions that cross the x-axis, gives false positives for singularities Fixed point method http://en.wikipedia.org/wiki/Fixed-point_iteration C++: http://books.google.co.il/books?id=weYj75E_t6MC&pg=PA79&lpg=PA79&dq=fixed+point+method++c%2B%2B&source=bl&ots=LQ-5P_taoC&sig=lENUUIYBK53tZtTwNfHLy5PEWDk&hl=en&sa=X&ei=wezDUPW1J5DptQaMsIHQCw&redir_esc=y#v=onepage&q=fixed%20point%20method%20%20c%2B%2B&f=false Algebraically rearrange a solution to isolate a variable then apply incremental method Bisection method http://en.wikipedia.org/wiki/Bisection_method C++: http://numericalcomputing.wordpress.com/category/algorithms/ Bracketed - Select an initial interval, keep bisecting it ad midpoint into sub-intervals and then apply incremental method on smaller & smaller intervals – zoom in Adv: unaffected by function gradient à reliable Disadv: slow convergence False Position Method http://en.wikipedia.org/wiki/False_position_method C++: http://www.dreamincode.net/forums/topic/126100-bisection-and-false-position-methods/ Bracketed - Select an initial interval , & use the relative value of function at interval end points to select next sub-intervals (estimate how far between the end points the solution might be & subdivide based on this) Newton-Raphson method http://en.wikipedia.org/wiki/Newton's_method C++: http://www-users.cselabs.umn.edu/classes/Summer-2012/csci1113/index.php?page=./newt3 Also known as Newton's method Convenient, efficient Not bracketed – only a single initial guess is required to start iteration – requires an analytical expression for the first derivative of the function as input. Evaluates the function & its derivative at each step. Can be extended to the Newton MutiRoot method for solving multiple roots Can be easily applied to an of n-coupled set of non-linear equations – conduct a Taylor Series expansion of a function, dropping terms of order n, rewrite as a Jacobian matrix of PDs & convert to simultaneous linear equations !!! Secant Method http://en.wikipedia.org/wiki/Secant_method C++: http://forum.vcoderz.com/showthread.php?p=205230 Unlike N-R, can estimate first derivative from an initial interval (does not require root to be bracketed) instead of inputting it Since derivative is approximated, may converge slower. Is fast in practice as it does not have to evaluate the derivative at each step. Similar implementation to False Positive method Birge-Vieta Method http://mat.iitm.ac.in/home/sryedida/public_html/caimna/transcendental/polynomial%20methods/bv%20method.html C++: http://books.google.co.il/books?id=cL1boM2uyQwC&pg=SA3-PA51&lpg=SA3-PA51&dq=Birge-Vieta+Method+c%2B%2B&source=bl&ots=QZmnDTK3rC&sig=BPNcHHbpR_DKVoZXrLi4nVXD-gg&hl=en&sa=X&ei=R-_DUK2iNIjzsgbE5ID4Dg&redir_esc=y#v=onepage&q=Birge-Vieta%20Method%20c%2B%2B&f=false combines Horner's method of polynomial evaluation (transforming into lesser degree polynomials that are more computationally efficient to process) with Newton-Raphson to provide a computational speed-up Interpolation Overview Construct new data points for as close as possible fit within range of a discrete set of known points (that were obtained via sampling, experimentation) Use Taylor Series Expansion of a function f(x) around a specific value for x Linear Interpolation http://en.wikipedia.org/wiki/Linear_interpolation C++: http://www.hamaluik.com/?p=289 Straight line between 2 points à concatenate interpolants between each pair of data points Bilinear Interpolation http://en.wikipedia.org/wiki/Bilinear_interpolation C++: http://supercomputingblog.com/graphics/coding-bilinear-interpolation/2/ Extension of the linear function for interpolating functions of 2 variables – perform linear interpolation first in 1 direction, then in another. Used in image processing – e.g. texture mapping filter. Uses 4 vertices to interpolate a value within a unit cell. Lagrange Interpolation http://en.wikipedia.org/wiki/Lagrange_polynomial C++: http://www.codecogs.com/code/maths/approximation/interpolation/lagrange.php For polynomials Requires recomputation for all terms for each distinct x value – can only be applied for small number of nodes Numerically unstable Barycentric Interpolation http://epubs.siam.org/doi/pdf/10.1137/S0036144502417715 C++: http://www.gamedev.net/topic/621445-barycentric-coordinates-c-code-check/ Rearrange the terms in the equation of the Legrange interpolation by defining weight functions that are independent of the interpolated value of x Newton Divided Difference Interpolation http://en.wikipedia.org/wiki/Newton_polynomial C++: http://jee-appy.blogspot.co.il/2011/12/newton-divided-difference-interpolation.html Hermite Divided Differences: Interpolation polynomial approximation for a given set of data points in the NR form - divided differences are used to approximately calculate the various differences. For a given set of 3 data points , fit a quadratic interpolant through the data Bracketed functions allow Newton divided differences to be calculated recursively Difference table Cubic Spline Interpolation http://en.wikipedia.org/wiki/Spline_interpolation C++: https://www.marcusbannerman.co.uk/index.php/home/latestarticles/42-articles/96-cubic-spline-class.html Spline is a piecewise polynomial Provides smoothness – for interpolations with significantly varying data Use weighted coefficients to bend the function to be smooth & its 1st & 2nd derivatives are continuous through the edge points in the interval Curve Fitting A generalization of interpolating whereby given data points may contain noise à the curve does not necessarily pass through all the points Least Squares Fit http://en.wikipedia.org/wiki/Least_squares C++: http://www.ccas.ru/mmes/educat/lab04k/02/least-squares.c Residual – difference between observed value & expected value Model function is often chosen as a linear combination of the specified functions Determines: A) The model instance in which the sum of squared residuals has the least value B) param values for which model best fits data Straight Line Fit Linear correlation between independent variable and dependent variable Linear Regression http://en.wikipedia.org/wiki/Linear_regression C++: http://www.oocities.org/david_swaim/cpp/linregc.htm Special case of statistically exact extrapolation Leverage least squares Given a basis function, the sum of the residuals is determined and the corresponding gradient equation is expressed as a set of normal linear equations in matrix form that can be solved (e.g. using LU Decomposition) Can be weighted - Drop the assumption that all errors have the same significance –-> confidence of accuracy is different for each data point. Fit the function closer to points with higher weights Polynomial Fit - use a polynomial basis function Moving Average http://en.wikipedia.org/wiki/Moving_average C++: http://www.codeproject.com/Articles/17860/A-Simple-Moving-Average-Algorithm Used for smoothing (cancel fluctuations to highlight longer-term trends & cycles), time series data analysis, signal processing filters Replace each data point with average of neighbors. Can be simple (SMA), weighted (WMA), exponential (EMA). Lags behind latest data points – extra weight can be given to more recent data points. Weights can decrease arithmetically or exponentially according to distance from point. Parameters: smoothing factor, period, weight basis Optimization Overview Given function with multiple variables, find Min (or max by minimizing –f(x)) Iterative approach Efficient, but not necessarily reliable Conditions: noisy data, constraints, non-linear models Detection via sign of first derivative - Derivative of saddle points will be 0 Local minima Bisection method Similar method for finding a root for a non-linear equation Start with an interval that contains a minimum Golden Search method http://en.wikipedia.org/wiki/Golden_section_search C++: http://www.codecogs.com/code/maths/optimization/golden.php Bisect intervals according to golden ratio 0.618.. Achieves reduction by evaluating a single function instead of 2 Newton-Raphson Method Brent method http://en.wikipedia.org/wiki/Brent's_method C++: http://people.sc.fsu.edu/~jburkardt/cpp_src/brent/brent.cpp Based on quadratic or parabolic interpolation – if the function is smooth & parabolic near to the minimum, then a parabola fitted through any 3 points should approximate the minima – fails when the 3 points are collinear , in which case the denominator is 0 Simplex Method http://en.wikipedia.org/wiki/Simplex_algorithm C++: http://www.codeguru.com/cpp/article.php/c17505/Simplex-Optimization-Algorithm-and-Implemetation-in-C-Programming.htm Find the global minima of any multi-variable function Direct search – no derivatives required At each step it maintains a non-degenerative simplex – a convex hull of n+1 vertices. Obtains the minimum for a function with n variables by evaluating the function at n-1 points, iteratively replacing the point of worst result with the point of best result, shrinking the multidimensional simplex around the best point. Point replacement involves expanding & contracting the simplex near the worst value point to determine a better replacement point Oscillation can be avoided by choosing the 2nd worst result Restart if it gets stuck Parameters: contraction & expansion factors Simulated Annealing http://en.wikipedia.org/wiki/Simulated_annealing C++: http://code.google.com/p/cppsimulatedannealing/ Analogy to heating & cooling metal to strengthen its structure Stochastic method – apply random permutation search for global minima - Avoid entrapment in local minima via hill climbing Heating schedule - Annealing schedule params: temperature, iterations at each temp, temperature delta Cooling schedule – can be linear, step-wise or exponential Differential Evolution http://en.wikipedia.org/wiki/Differential_evolution C++: http://www.amichel.com/de/doc/html/ More advanced stochastic methods analogous to biological processes: Genetic algorithms, evolution strategies Parallel direct search method against multiple discrete or continuous variables Initial population of variable vectors chosen randomly – if weighted difference vector of 2 vectors yields a lower objective function value then it replaces the comparison vector Many params: #parents, #variables, step size, crossover constant etc Convergence is slow – many more function evaluations than simulated annealing Numerical Differentiation Overview 2 approaches to finite difference methods: · A) approximate function via polynomial interpolation then differentiate · B) Taylor series approximation – additionally provides error estimate Finite Difference methods http://en.wikipedia.org/wiki/Finite_difference_method C++: http://www.wpi.edu/Pubs/ETD/Available/etd-051807-164436/unrestricted/EAMPADU.pdf Find differences between high order derivative values - Approximate differential equations by finite differences at evenly spaced data points Based on forward & backward Taylor series expansion of f(x) about x plus or minus multiples of delta h. Forward / backward difference - the sums of the series contains even derivatives and the difference of the series contains odd derivatives – coupled equations that can be solved. Provide an approximation of the derivative within a O(h^2) accuracy There is also central difference & extended central difference which has a O(h^4) accuracy Richardson Extrapolation http://en.wikipedia.org/wiki/Richardson_extrapolation C++: http://mathscoding.blogspot.co.il/2012/02/introduction-richardson-extrapolation.html A sequence acceleration method applied to finite differences Fast convergence, high accuracy O(h^4) Derivatives via Interpolation Cannot apply Finite Difference method to discrete data points at uneven intervals – so need to approximate the derivative of f(x) using the derivative of the interpolant via 3 point Lagrange Interpolation Note: the higher the order of the derivative, the lower the approximation precision Numerical Integration Estimate finite & infinite integrals of functions More accurate procedure than numerical differentiation Use when it is not possible to obtain an integral of a function analytically or when the function is not given, only the data points are Newton Cotes Methods http://en.wikipedia.org/wiki/Newton%E2%80%93Cotes_formulas C++: http://www.siafoo.net/snippet/324 For equally spaced data points Computationally easy – based on local interpolation of n rectangular strip areas that is piecewise fitted to a polynomial to get the sum total area Evaluate the integrand at n+1 evenly spaced points – approximate definite integral by Sum Weights are derived from Lagrange Basis polynomials Leverage Trapezoidal Rule for default 2nd formulas, Simpson 1/3 Rule for substituting 3 point formulas, Simpson 3/8 Rule for 4 point formulas. For 4 point formulas use Bodes Rule. Higher orders obtain more accurate results Trapezoidal Rule uses simple area, Simpsons Rule replaces the integrand f(x) with a quadratic polynomial p(x) that uses the same values as f(x) for its end points, but adds a midpoint Romberg Integration http://en.wikipedia.org/wiki/Romberg's_method C++: http://code.google.com/p/romberg-integration/downloads/detail?name=romberg.cpp&can=2&q= Combines trapezoidal rule with Richardson Extrapolation Evaluates the integrand at equally spaced points The integrand must have continuous derivatives Each R(n,m) extrapolation uses a higher order integrand polynomial replacement rule (zeroth starts with trapezoidal) à a lower triangular matrix set of equation coefficients where the bottom right term has the most accurate approximation. The process continues until the difference between 2 successive diagonal terms becomes sufficiently small. Gaussian Quadrature http://en.wikipedia.org/wiki/Gaussian_quadrature C++: http://www.alglib.net/integration/gaussianquadratures.php Data points are chosen to yield best possible accuracy – requires fewer evaluations Ability to handle singularities, functions that are difficult to evaluate The integrand can include a weighting function determined by a set of orthogonal polynomials. Points & weights are selected so that the integrand yields the exact integral if f(x) is a polynomial of degree <= 2n+1 Techniques (basically different weighting functions): · Gauss-Legendre Integration w(x)=1 · Gauss-Laguerre Integration w(x)=e^-x · Gauss-Hermite Integration w(x)=e^-x^2 · Gauss-Chebyshev Integration w(x)= 1 / Sqrt(1-x^2) Solving ODEs Use when high order differential equations cannot be solved analytically Evaluated under boundary conditions RK for systems – a high order differential equation can always be transformed into a coupled first order system of equations Euler method http://en.wikipedia.org/wiki/Euler_method C++: http://rosettacode.org/wiki/Euler_method First order Runge–Kutta method. Simple recursive method – given an initial value, calculate derivative deltas. Unstable & not very accurate (O(h) error) – not used in practice A first-order method - the local error (truncation error per step) is proportional to the square of the step size, and the global error (error at a given time) is proportional to the step size In evolving solution between data points xn & xn+1, only evaluates derivatives at beginning of interval xn à asymmetric at boundaries Higher order Runge Kutta http://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods C++: http://www.dreamincode.net/code/snippet1441.htm 2nd & 4th order RK - Introduces parameterized midpoints for more symmetric solutions à accuracy at higher computational cost Adaptive RK – RK-Fehlberg – estimate the truncation at each integration step & automatically adjust the step size to keep error within prescribed limits. At each step 2 approximations are compared – if in disagreement to a specific accuracy, the step size is reduced Boundary Value Problems Where solution of differential equations are located at 2 different values of the independent variable x à more difficult, because cannot just start at point of initial value – there may not be enough starting conditions available at the end points to produce a unique solution An n-order equation will require n boundary conditions – need to determine the missing n-1 conditions which cause the given conditions at the other boundary to be satisfied Shooting Method http://en.wikipedia.org/wiki/Shooting_method C++: http://ganeshtiwaridotcomdotnp.blogspot.co.il/2009/12/c-c-code-shooting-method-for-solving.html Iteratively guess the missing values for one end & integrate, then inspect the discrepancy with the boundary values of the other end to adjust the estimate Given the starting boundary values u1 & u2 which contain the root u, solve u given the false position method (solving the differential equation as an initial value problem via 4th order RK), then use u to solve the differential equations. Finite Difference Method For linear & non-linear systems Higher order derivatives require more computational steps – some combinations for boundary conditions may not work though Improve the accuracy by increasing the number of mesh points Solving EigenValue Problems An eigenvalue can substitute a matrix when doing matrix multiplication à convert matrix multiplication into a polynomial EigenValue For a given set of equations in matrix form, determine what are the solution eigenvalue & eigenvectors Similar Matrices - have same eigenvalues. Use orthogonal similarity transforms to reduce a matrix to diagonal form from which eigenvalue(s) & eigenvectors can be computed iteratively Jacobi method http://en.wikipedia.org/wiki/Jacobi_method C++: http://people.sc.fsu.edu/~jburkardt/classes/acs2_2008/openmp/jacobi/jacobi.html Robust but Computationally intense – use for small matrices < 10x10 Power Iteration http://en.wikipedia.org/wiki/Power_iteration For any given real symmetric matrix, generate the largest single eigenvalue & its eigenvectors Simplest method – does not compute matrix decomposition à suitable for large, sparse matrices Inverse Iteration Variation of power iteration method – generates the smallest eigenvalue from the inverse matrix Rayleigh Method http://en.wikipedia.org/wiki/Rayleigh's_method_of_dimensional_analysis Variation of power iteration method Rayleigh Quotient Method Variation of inverse iteration method Matrix Tri-diagonalization Method Use householder algorithm to reduce an NxN symmetric matrix to a tridiagonal real symmetric matrix vua N-2 orthogonal transforms     Whats Next Outside of Numerical Methods there are lots of different types of algorithms that I’ve learned over the decades: Data Mining – (I covered this briefly in a previous post: http://geekswithblogs.net/JoshReuben/archive/2007/12/31/ssas-dm-algorithms.aspx ) Search & Sort Routing Problem Solving Logical Theorem Proving Planning Probabilistic Reasoning Machine Learning Solvers (eg MIP) Bioinformatics (Sequence Alignment, Protein Folding) Quant Finance (I read Wilmott’s books – interesting) Sooner or later, I’ll cover the above topics as well.

    Read the article

  • How to Specify AssemblyKeyFile Attribute in .NET Assembly and Issues

    How to specify strong key file in assembly? Answer: You can specify snk file information using following line [assembly: AssemblyKeyFile(@"c:\Key2.snk")] Where to specify an strong key file (snk file)? Answer: You have two options to specify the AssemblyKeyFile infromation. 1. In class 2. In AssemblyInfo.cs [assembly: AssemblyKeyFile(@"c:\Key2.snk")] 1. In Class you must specify above line before defining namespace of the class and after all the imports or usings Example: See Line 7 in bellow sample class using System;using System.Collections.Generic;using System.Linq;using System.Text;using System.Reflection;[assembly: AssemblyKeyFile(@"c:\Key1.snk")]namespace Csharp3Part1{ class Person { public string GetName() { return "Smith"; } }}2. In AssemblyInfo.cs You can aslo specify assembly information in AssemblyInfo.cs Example: See Line 16 in bellow sample AssemblyInfo.csusing System.Reflection;using System.Runtime.CompilerServices;using System.Runtime.InteropServices;// General Information about an assembly is controlled through the following// set of attributes. Change these attribute values to modify the information// associated with an assembly.[assembly: AssemblyTitle("Csharp3Part1")][assembly: AssemblyDescription("")][assembly: AssemblyConfiguration("")][assembly: AssemblyCompany("Deloitte")][assembly: AssemblyProduct("Csharp3Part1")][assembly: AssemblyCopyright("Copyright © Deloitte 2009")][assembly: AssemblyTrademark("")][assembly: AssemblyCulture("")][assembly: AssemblyKeyFile(@"c:\Key1.snk")]// Setting ComVisible to false makes the types in this assembly not visible// to COM components. If you need to access a type in this assembly from// COM, set the ComVisible attribute to true on that type.[assembly: ComVisible(false)]// The following GUID is for the ID of the typelib if this project is exposed to COM[assembly: Guid("4350396f-1a5c-4598-a79f-2e1f219654f3")]// Version information for an assembly consists of the following four values://// Major Version// Minor Version// Build Number// Revision//// You can specify all the values or you can default the Build and Revision Numbers// by using the '*' as shown below:// [assembly: AssemblyVersion("1.0.*")][assembly: AssemblyVersion("1.0.0.0")][assembly: AssemblyFileVersion("1.0.0.0")]Issues:You should not sepcify this in following ways. 1. In multiple classes. 2. In both class and AssemblyInfo.cs If you did wrong in either one of the above ways, Visual Studio or C#/VB.NET compilers shows following Error Duplicate 'AssemblyKeyFile' attribute and warning Use command line option '/keyfile' or appropriate project settings instead of 'AssemblyKeyFile' To avoid this, Please specity your keyfile information only one time either only in one class or in AssemblyInfo.cs file. It is suggested to specify this at AssemblyInfo.cs file You might also encounter the errors like Error: type or namespace name 'AssemblyKeyFileAttribute' and 'AssemblyKeyFile' could not be found. Solution. Please find herespan.fullpost {display:none;} span.fullpost {display:none;}

    Read the article

  • The right way of using index.html

    - by Jeyekomon
    I have quite a lot of issues I'd like to hear your opinion on, so I hope I'll manage to explain it well enough. I should also note that I'm beginner equipped only with the knowledge of HTML and CSS so although I'm almost sure that there is a simple solution using powerful PHP, it won't help me. Let's say that I have my personal blog on the address example.com/blog.html and there are links to several sub-blogs example.com/blog/math.html, example.com/blog/coding.html etc. So my root folder contains blog.html and blog folder, the blog folder itself contains files math.html and coding.html. First of all, I learned (from Google Webmasters Tools) that for SEO and aesthetical purposes it's good to unify example.com.com and example.com/index.html by adding _rel="canonical"_ attribute into the source of the index.html. Using a couple of other tricks (like linking to ../ and ./) I got rid of the ugly index.html appearing in my web addresses. And now I wonder if this trick can be used not only for the root folder but for any folder? I mean, I would move my blog.html into the blog folder, rename it into the index.html and add rel="canonical" to unify example.com/blog/index.html with example.com/blog/. This trick would change the address of my blog from example.com/blog.html into example.com/blog/. Not finished! I'm also experiencing problems with the google robot indexing my folders. So when I type site:example.com/ into the google search, the link to my folder example.com/blog/ with raw files, icons etc. appears among the other results. I guess there are also other ways how to fix it, but IMHO the change mentioned above would do the trick too - the index.html in the blog folder would preserve the user from viewing the actual raw content of that folder, there would appear only the right link example.com/blog/ in the google search and (I hope that) _rel="canonical"_ would make the second, unwanted link example.com/blog/index.html not to appear in the search results. So my questions are: Is it a good practice to have the index.html file in every subfolder or is it intended to be only in the root folder? Are there any disadvantages or problems that may occur when using the second, "index in every folder" method? Which one of the two ways of structuring the website described above would you prefer?

    Read the article

  • Replacing “if”s with your own number system

    - by Michael Williamson
    During our second code retreat at Red Gate, the restriction for one of the sessions was disallowing the use of if statements. That includes other constructs that have the same effect, such as switch statements or loops that will only be executed zero or one times. The idea is to encourage use of polymorphism instead, and see just how far it can be used to get rid of “if”s. The main place where people struggled to get rid of numbers from their implementation of Conway’s Game of Life was the piece of code that decides whether a cell is live or dead in the next generation. For instance, for a cell that’s currently live, the code might look something like this: if (numberOfNeighbours == 2 || numberOfNeighbours == 3) { return CellState.LIVE; } else { return CellState.DEAD; } The problem is that we need to change behaviour depending on the number of neighbours each cell has, but polymorphism only allows us to switch behaviour based on the type of a value. It follows that the solution is to make different numbers have different types: public interface IConwayNumber { IConwayNumber Increment(); CellState LiveCellNextGeneration(); } public class Zero : IConwayNumber { public IConwayNumber Increment() { return new One(); } public CellState LiveCellNextGeneration() { return CellState.DEAD; } } public class One : IConwayNumber { public IConwayNumber Increment() { return new Two(); } public CellState LiveCellNextGeneration() { return CellState.LIVE; } } public class Two : IConwayNumber { public IConwayNumber Increment() { return new ThreeOrMore(); } public CellState LiveCellNextGeneration() { return CellState.LIVE; } } public class ThreeOrMore : IConwayNumber { public IConwayNumber Increment() { return this; } public CellState LiveCellNextGeneration() { return CellState.DEAD; } } In the code that counts the number of neighbours, we use our new number system by starting with Zero and incrementing when we find a neighbour. To choose the next state of the cell, rather than inspecting the number of neighbours, we ask the number of neighbours for the next state directly: return numberOfNeighbours.LiveCellNextGeneration(); And now we have no “if”s! If C# had double-dispatch, or if we used the visitor pattern, we could move the logic for choosing the next cell out of the number classes, which might feel a bit more natural. I suspect that reimplementing the natural numbers is still going to feel about the same amount of crazy though.

    Read the article

  • URL Routing in ASP.NET 4.0

    In the .NET Framework 3.5 SP1, Microsoft introduced ASP.NET Routing, which decouples the URL of a resource from the physical file on the web server. With ASP.NET Routing you, the developer, define routing rules map route patterns to a class that generates the content. For example, you might indicate that the URL Categories/CategoryName maps to a class that takes the CategoryName and generates HTML that lists that category's products in a grid. With such a mapping, users could view products for the Beverages category by visiting www.yoursite.com/Categories/Beverages. In .NET 3.5 SP1, ASP.NET Routing was primarily designed for ASP.NET MVC applications, although as discussed in Using ASP.NET Routing Without ASP.NET MVC it is possible to implement ASP.NET Routing in a Web Forms application, as well. However, implementing ASP.NET Routing in a Web Forms application involves a bit of seemingly excessive legwork. In a Web Forms scenario we typically want to map a routing pattern to an actual ASP.NET page. To do so we need to create a route handler class that is invoked when the routing URL is requested and, in a sense, dispatches the request to the appropriate ASP.NET page. For instance, to map a route to a physical file, such as mapping Categories/CategoryName to ShowProductsByCategory.aspx - requires three steps: (1) Define the mapping in Global.asax, which maps a route pattern to a route handler class; (2) Create the route handler class, which is responsible for parsing the URL, storing any route parameters into some location that is accessible to the target page (such as HttpContext.Items), and returning an instance of the target page or HTTP Handler that handles the requested route; and (3) writing code in the target page to grab the route parameters and use them in rendering its content. Given how much effort it took to just read the preceding sentence (let alone write it) you can imagine that implementing ASP.NET Routing in a Web Forms application is not necessarily the most straightforward task. The good news is that ASP.NET 4.0 has greatly simplified ASP.NET Routing for Web Form applications by adding a number of classes and helper methods that can be used to encapsulate the aforementioned complexity. With ASP.NET 4.0 it's easier to define the routing rules and there's no need to create a custom route handling class. This article details these enhancements. Read on to learn more! Read More >

    Read the article

  • NHibernate 2 Beginner's Guide Review

    - by Ricardo Peres
    OK, here's the review I promised a while ago. This is a beginner's introduction to NHibernate, so if you have already some experience with NHibernate, you will notice it lacks a lot of concepts and information. It starts with a good description of NHibernate and why would we use it. It goes on describing basic mapping scenarios having primary keys generated with the HiLo or Identity algorithms, without actually explaining why would we choose one over the other. As for mapping, the book talks about XML mappings and provides a simple example of Fluent NHibernate, comparing it to its XML counterpart. When it comes to relations, it covers one-to-many/many-to-one and many-to-many, not one-to-one relations, but only talks briefly about lazy loading, which is, IMO, an important concept. Only Bags are described, not any of the other collection types. The log4net configuration description gets it's own chapter, which I find excessive. The chapter on configuration merely lists the most common properties for configuring NHibernate, both in XML and in code. Querying only talks about loading by ID (using Get, not Load) and using Criteria API, on which a paging example is presented as well as some common filtering options (property equals/like/between to, no examples on conjunction/disjunction, however). There's a chapter fully dedicated to ASP.NET, which explains how we can use NHibernate in web applications. It basically talks about ASP.NET concepts, though. Following it, another chapter explains how we can build our own ASP.NET providers using NHibernate (Membership, Role). The available entity generators for NHibernate are referred and evaluated on a chapter of their own, the list is fine (CodeSmith, nhib-gen, AjGenesis, Visual NHibernate, MyGeneration, NGen, NHModeler, Microsoft T4 (?) and hbm2net), examples are provided whenever possible, however, I have some problems with some of the evaluations: for example, Visual NHibernate scores 5 out of 5 on Visual Studio integration, which simply does not exist! I suspect the author means to say that it can be launched from inside Visual Studio, but then, what can't? Finally, there's a chapter I really don't understand. It seems like a bag where a lot of things are thrown in, like NHibernate Burrow (which actually isn't explained at all), Blog.Net components, CSS template conversion and web.config settings related to the maximum request length for file uploads and ending with XML configuration, with the help of GhostDoc. Like I said, the book is only good for absolute beginners, it does a fair job in explaining the very basics, but lack a lot of not-so-basic concepts. Among other things, it lacks: Inheritance mapping strategies (table per class hierarchy, table per class, table per concrete class) Load versus Get usage Other usefull ISession methods First level cache (Identity Map pattern) Other collection types other that Bag (Set, List, Map, IdBag, etc Fetch options User Types Filters Named queries LINQ examples HQL examples And that's it! I hope you find this review useful. The link to the book site is https://www.packtpub.com/nhibernate-2-x-beginners-guide/book

    Read the article

  • Slides and Code from my Silverlight MVVM Talk at DevConnections

    - by dwahlin
    I had a great time at the DevConnections conference in Las Vegas this year where Visual Studio 2010 and Silverlight 4 were launched. While at the conference I had the opportunity to give a full-day Silverlight workshop as well as 4 different talks and met a lot of people developing applications in Silverlight. I also had a chance to appear on a live broadcast of Channel 9 with John Papa, Ward Bell and Shawn Wildermuth, record a video with Rick Strahl covering jQuery versus Silverlight and record a few podcasts on Silverlight and ASP.NET MVC 2.  It was a really busy 4 days but I had a lot of fun chatting with people and hearing about different business problems they were solving with ASP.NET and/or Silverlight. Thanks to everyone who attended my sessions and took the time to ask questions and stop by to talk one-on-one. One of the talks I gave covered the Model-View-ViewModel pattern and how it can be used to build architecturally sound applications. Topics covered in the talk included: Understanding the MVVM pattern Benefits of the MVVM pattern Creating a ViewModel class Implementing INotifyPropertyChanged in a ViewModelBase class Binding a ViewModel declaratively in XAML Binding a ViewModel with code ICommand and ButtonBase commanding support in Silverlight 4 Using InvokeCommandBehavior to handle additional commanding needs Working with ViewModels and Sample Data in Blend Messaging support with EventBus classes, EventAggregator and Messenger My personal take on code in a code-beside file (I’m all in favor of it when used appropriately for message boxes, child windows, animations, etc.) One of the samples I showed in the talk was intended to teach all of the concepts mentioned above while keeping things as simple as possible.  The sample demonstrates quite a few things you can do with Silverlight and the MVVM pattern so check it out and feel free to leave feedback about things you like, things you’d do differently or anything else. MVVM is simply a pattern, not a way of life so there are many different ways to implement it. If you’re new to the subject of MVVM check out the following resources. I wish this talk would’ve been recorded (especially since my live and canned demos all worked :-)) but these resources will help get you going quickly. Getting Started with the MVVM Pattern in Silverlight Applications Model-View-ViewModel (MVVM) Explained Laurent Bugnion’s Excellent Talk at MIX10     Download sample code and slides from my DevConnections talk     For more information about onsite, online and video training, mentoring and consulting solutions for .NET, SharePoint or Silverlight please visit http://www.thewahlingroup.com.

    Read the article

  • Umbraco Permissions Script - Secure Version

    - by Vizioz Limited
    Back in May I blogged about how to set Permissions for Umbraco using SetACL to set the appropriate directory permissions based on the installation recommendations.Recently I have been working on a site for a client who wanted every security item to be locked down as tightly as possible. And so I modified the script based on the Umbraco security best practices, I thought I'd share it with everyone, if I have missed anything, or if anyone has any suggestions on how to improve this, please let me know :)Please refer to my previous post regarding the SetAcl command line application that you will need.I suggest you save the following into a batch file called: umbPermSecure.batecho offREM Script to setup the Security Permissions for an Umbraco siteREM This script will give your machine Network Service the minimum rights requiredREM for Umbraco to workREM I suggest you update this script to also remove any users who do not need REM access to the web foldersREM **** Pre-requisites ****REM You will need to download - http://setacl.sourceforge.net/REM It is assumed that you have stored SetACL in a directory called, C:\SetACL ifREM not, you will need to modify the script.REM **** Usage ****REM You need to pass in the path for the root of your Umbraco directoryREM E.g. umbPermSecure.bat C:\inetpub\umbracoroot@echo umbPermSecure.bat - Script to set Umbraco File and Directory Permissions@echo based on the Umbraco Security Best Practices Document (13th March 2009)@echo Published by Chris Houston - 19th October 2009@echo http://blog.vizioz.com@echo Adding READ only access SetACL.exe -on "%1" -ot file -actn ace -ace "n:%computername%\NETWORK SERVICE;p:read" -actn clear -clr "dacl,sacl" -log "c:\setacl\log.txt"SetACL.exe -on "%1\web.config" -ot file -actn ace -ace "n:%computername%\NETWORK SERVICE;p:read" -actn clear -clr "dacl,sacl" -log "c:\setacl\log.txt"SetACL.exe -on "%1\bin" -ot file -actn ace -ace "n:%computername%\NETWORK SERVICE;p:read" -actn clear -clr "dacl,sacl" -log "c:\setacl\log.txt"SetACL.exe -on "%1\umbraco" -ot file -actn ace -ace "n:%computername%\NETWORK SERVICE;p:read" -actn clear -clr "dacl,sacl" -log "c:\setacl\log.txt"@echo Adding READ and EXECUTE access SetACL.exe -on "%1\app_code" -ot file -actn ace -ace "n:%computername%\NETWORK SERVICE;p:read_ex" -actn clear -clr "dacl,sacl" -log "c:\setacl\log.txt"SetACL.exe -on "%1\usercontrols" -ot file -actn ace -ace "n:%computername%\NETWORK SERVICE;p:read_ex" -actn clear -clr "dacl,sacl" -log "c:\setacl\log.txt"@echo Adding READ, WRITE and MODIFY access SetACL.exe -on "%1\config" -ot file -actn ace -ace "n:%computername%\NETWORK SERVICE;p:read" -ace "n:%computername%\NETWORK SERVICE;p:change" -actn clear -clr "dacl,sacl" -log "c:\setacl\log.txt"SetACL.exe -on "%1\css" -ot file -actn ace -ace "n:%computername%\NETWORK SERVICE;p:read" -ace "n:%computername%\NETWORK SERVICE;p:change" -actn clear -clr "dacl,sacl" -log "c:\setacl\log.txt"SetACL.exe -on "%1\data" -ot file -actn ace -ace "n:%computername%\NETWORK SERVICE;p:read" -ace "n:%computername%\NETWORK SERVICE;p:change" -actn clear -clr "dacl,sacl" -log "c:\setacl\log.txt"SetACL.exe -on "%1\masterpages" -ot file -actn ace -ace "n:%computername%\NETWORK SERVICE;p:read" -ace "n:%computername%\NETWORK SERVICE;p:change" -actn clear -clr "dacl,sacl" -log "c:\setacl\log.txt"SetACL.exe -on "%1\media" -ot file -actn ace -ace "n:%computername%\NETWORK SERVICE;p:read" -ace "n:%computername%\NETWORK SERVICE;p:change" -actn clear -clr "dacl,sacl" -log "c:\setacl\log.txt"SetACL.exe -on "%1\python" -ot file -actn ace -ace "n:%computername%\NETWORK SERVICE;p:read" -ace "n:%computername%\NETWORK SERVICE;p:change" -actn clear -clr "dacl,sacl" -log "c:\setacl\log.txt"SetACL.exe -on "%1\scripts" -ot file -actn ace -ace "n:%computername%\NETWORK SERVICE;p:read" -ace "n:%computername%\NETWORK SERVICE;p:change" -actn clear -clr "dacl,sacl" -log "c:\setacl\log.txt"SetACL.exe -on "%1\xslt" -ot file -actn ace -ace "n:%computername%\NETWORK SERVICE;p:read" -ace "n:%computername%\NETWORK SERVICE;p:change" -actn clear -clr "dacl,sacl" -log "c:\setacl\log.txt"

    Read the article

  • Vodacom Call Center Management on the NetBeans Platform

    - by Geertjan
    If you live in South Africa, you know about Vodacom. Vodacom is one of the dominant mobile communication companies in South Africa, and beyond, providing voice, messaging, data, and similar mobile services. Inside Vodacom there's an application named Helios, which is a call centre application that had its inception in 2009 and consists of two parts. Firstly, a web-based front-end that allows a call centre agent to service subscribers using a Google-like search on a knowledge base structured as a collection of FAQs. The web-based front-end uses plain-old HTML + CSS + a good helping of JQuery and JQueryUI. This is delivered via JSR-168 portlets running on a cluster of IBM Portal 6 servers. In turn, the portlets communicate via RMI with several back-end EJB's containing the business logic. These EJB's are deployed on a cluster of Weblogic Application Servers, version 10.3.6. The second part is a NetBeans Platform application used for maintaining and constructing the knowledge base, i.e., the back-end of the web-based front-end. Helios is also used for a number of other maintenance functions, such as access permissions, user maintenance, and news bulletins. Below, in the web-based front-end, call centre agents can enter search terms and are presented with a number of FAQs from the knowledge base. Upon selecting a FAQ article, the agent is presented with the article text, the process to guide the subscriber, system checks that display information specific to the subscriber, and links to related applications and articles: Below, you can see that applications are searchable and can be accessed using the same web-based front-end as shown above. And, as can be seen below, knowledge base FAQs are maintained using the Helios Maintenance Application, which is the Vodacom application built on the NetBeans Platform: Several thousand call centre agent user accounts are administered using the Helios Maintenance Application. Below the main FAQ page is shown, together with the About dialog: Vodacom is happy with the back-end NetBeans Platform application. However, the front-end stack runs on quite old technology. Ideally Vodacom would like to migrate the portlets to Oracle Weblogic Portal or Oracle WebCenter, but this hasn't been accomplished yet. Migrating makes sense as the rest of the application server environment consists entirely of Oracle products.

    Read the article

  • Coherence Based WebLogic Server Session Management

    - by [email protected]
    Specifications Supported Configurations WebLogic Server 10.3.2( or 10.3.1 ) Coherence 3.5.2/463 If you use other verion above, then please check the following matrix:   WebLogic Server 9.2 MP1 Weblogic Server 10.3 WebLogic Smart Update Patch ID: AJQB Patch ID: 6W2W Minimum Coherence Release Level/MetaLink Patch ID 3.4.2 Patch 2-Patch ID:8429415 3.4.2 Patch6-Patch ID:11399293 Environment Variables %COHERENCE_HOME%: coherence installation directory %DOMAIN_HOME%: weblogic domain foler. Instructions We Will create to weblogic domains: domain_a, domain_b. To configure those domains with coherence-based session management . Then the changings of session variable value in one domain will propagate to another domain. Main Steps WebLogic Server create domain_a The process is ignored copy %COHERENCE_HOME%\lib\coherence.jar to %DOMAIN_HOME%\lib startup domain deploy %COHERENCE_HOME%\lib\coherence-web-spi.war as a Shared Library repeat step 1~4 at domain_b Coherence duplicate %COHERENCE_HOME%\bin\cache-server.cmd at the same folder and rename it to web-cache-server.cmd modify web-cache-server.cmd java -server -Xms512m -Xmx512m -cp %coherence_home%/lib/coherence.jar;%coherence_home%/lib/coherence-web-spi.war -Dtangosol.coherence.management.remote=true -Dtangosol.coherence.cacheconfig=WEB-INF/classes/session-cache-config.xml -Dtangosol.coherence.session.localstorage=true com.tangosol.net.DefaultCacheServer startup web-cache-server.cmd Testing develop a web app  with OEPE or JDeveloper and implment functions: changing, viewing, listing  session variables. ( or download sample codes here ) modify weblogic.xml with following content: <?xml version="1.0" encoding="UTF-8"?> <wls:weblogic-web-app xmlns:wls=http://xmlns.oracle.com/weblogic/weblogic-web-app xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd http://xmlns.oracle.com/weblogic/weblogic-web-app http://xmlns.oracle.com/weblogic/weblogic-web-app/1.0/weblogic-web-app.xsd"> <wls:weblogic-version>10.3.2</wls:weblogic-version> <wls:context-root>CoherenceWeb</wls:context-root> <wls:library-ref> <wls:library-name>coherence-web-spi</wls:library-name> <wls:specification-version>1.0.0.0</wls:specification-version> <wls:exact-match>true</wls:exact-match> </wls:library-ref> </wls:weblogic-web-app> deploy the web app to domain_a and domain_b change session varaible vlaue at domain_a and check whethe if changed at domain_b References Using Oracle Coherence*Web 3.4.2 with Oracle WebLogic Server 10gR3 Oracle Coherence*Web 3.4.2 with Oracle WebLogic Server 10gR3

    Read the article

  • Tips on Migrating from AquaLogic .NET Accelerator to WebCenter WSRP Producer for .NET

    - by user647124
    This year I embarked on a journey to migrate a group of ASP.NET web applications developed to integrate with WebLogic Portal 9.2 via the AquaLogic® Interaction .NET Application Accelerator 1.0 to instead use the Oracle WebCenter WSRP Producer for .NET and integrated with WebLogic Portal 10.3.4. It has been a very winding path and this blog entry is intended to share both the lessons learned and relevant approaches that led to those learnings. Like most journeys of discovery, it was not a direct path, and there are notes to let you know when it is practical to skip a section if you are in a hurry to get from here to there. For the Curious From the perspective of necessity, this section would be better at the end. If it were there, though, it would probably be read by far fewer people, including those that are actually interested in these types of sections. Those in a hurry may skip past and be none the worst for it in dealing with the hands-on bits of performing a migration from .NET Accelerator to WSRP Producer. For others who want to talk about why they did what they did after they did it, or just want to know for themselves, enjoy. A Brief (and edited) History of the WSRP for .NET Technologies (as Relevant to the this Post) Note: This section is for those who are curious about why the migration path is not as simple as many other Oracle technologies. You can skip this section in its entirety and still be just as competent in performing a migration as if you had read it. The currently deployed architecture that was to be migrated and upgraded achieved initial integration between .NET and J2EE over the WSRP protocol through the use of The AquaLogic Interaction .NET Application Accelerator. The .NET Accelerator allowed the applications that were written in ASP.NET and deployed on a Microsoft Internet Information Server (IIS) to interact with a WebLogic Portal application deployed on a WebLogic (J2EE application) Server (both version 9.2, the state of the art at the time of its creation). At the time this architectural decision for the application was made, both the AquaLogic and WebLogic brands were owned by BEA Systems. The AquaLogic brand included products acquired by BEA through the acquisition of Plumtree, whose flagship product was a portal platform available in both J2EE and .NET versions. As part of this dual technology support an adaptor was created to facilitate the use of WSRP as a communication protocol where customers wished to integrate components from both versions of the Plumtree portal. The adapter evolved over several product generations to include a broad array of both standard and proprietary WSRP integration capabilities. Later, BEA Systems was acquired by Oracle. Over the course of several years Oracle has acquired a large number of portal applications and has taken the strategic direction to migrate users of these myriad (and formerly competitive) products to the Oracle WebCenter technology stack. As part of Oracle’s strategic technology roadmap, older portal products are being schedule for end of life, including the portal products that were part of the BEA acquisition. The .NET Accelerator has been modified over a very long period of time with features driven by users of that product and developed under three different vendors (each a direct competitor in the same solution space prior to merger). The Oracle WebCenter WSRP Producer for .NET was introduced much more recently with the key objective to specifically address the needs of the WebCenter customers developing solutions accessible through both J2EE and .NET platforms utilizing the WSRP specifications. The Oracle Product Development Team also provides these insights on the drivers for developing the WSRP Producer: ***************************************** Support for ASP.NET AJAX. Controls using the ASP.NET AJAX script manager do not function properly in the Application Accelerator for .NET. Support 2 way SSL in WLP. This was not possible with the proxy/bridge set up in the existing Application Accelerator for .NET. Allow developers to code portlets (Web Parts) using the .NET framework rather than a proprietary framework. Developers had to use the Application Accelerator for .NET plug-ins to Visual Studio to manage preferences and profile data. This is now replaced with the .NET Framework Personalization (for preferences) and Profile providers. The WSRP Producer for .NET was created as a new way of developing .NET portlets. It was never designed to be an upgrade path for the Application Accelerator for .NET. .NET developers would create new .NET portlets with the WSRP Producer for .NET and leave any existing .NET portlets running in the Application Accelerator for .NET. ***************************************** The advantage to creating a new solution for WSRP is a product that is far easier for Oracle to maintain and support which in turn improves quality, reliability and maintainability for their customers. No changes to J2EE applications consuming the WSRP portlets previously rendered by the.NET Accelerator is required to migrate from the Aqualogic WSRP solution. For some customers using the .NET Accelerator the challenge is adapting their current .NET applications to work with the WSRP Producer (or any other WSRP adapter as they are proprietary by nature). Part of this adaptation is the need to deploy the .NET applications as a child to the WSRP producer web application as root. Differences between .NET Accelerator and WSRP Producer Note: This section is for those who are curious about why the migration is not as pluggable as something such as changing security providers in WebLogic Server. You can skip this section in its entirety and still be just as competent in performing a migration as if you had read it. The basic terminology used to describe the participating applications in a WSRP environment are the same when applied to either the .NET Accelerator or the WSRP Producer: Producer and Consumer. In both cases the .NET application serves as what is referred to as a WSRP environment as the Producer. The difference lies in how the two adapters create the WSRP translation of the .NET application. The .NET Accelerator, as the name implies, is meant to serve as a quick way of adding WSRP capability to a .NET application. As such, at a high level, the .NET Accelerator behaves as a proxy for requests between the .NET application and the WSRP Consumer. A WSRP request is sent from the consumer to the .NET Accelerator, the.NET Accelerator transforms this request into an ASP.NET request, receives the response, then transforms the response into a WSRP response. The .NET Accelerator is deployed as a stand-alone application on IIS. The WSRP Producer is deployed as a parent application on IIS and all ASP.NET modules that will be made available over WSRP are deployed as children of the WSRP Producer application. In this manner, the WSRP Producer acts more as a Request Filter than a proxy in the WSRP transactions between Producer and Consumer. Highly Recommended Enabling Logging Note: You can skip this section now, but you will most likely want to come back to it later, so why not just read it now? Logging is very helpful in tracking down the causes of any anomalies during testing of migrated portlets. To enable the WSRP Producer logging, update the Application_Start method in the Global.asax.cs for your .NET application by adding log4net.Config.XmlConfigurator.Configure(); IIS logs will usually (in a standard configuration) be in a sub folder under C:\WINDOWS\system32\LogFiles\W3SVC. WSRP Producer logs will be found at C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdefault\Logs\WSRPProducer.log InputTrace.webinfo and OutputTrace.webinfo are located under C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdefault and can be useful in debugging issues related to markup transformations. Things You Must Do Merge Web.Config Note: If you have been skipping all the sections that you can, now is the time to stop and pay attention J Because the existing .NET application will become a sub-application to the WSRP Producer, you will want to merge required settings from the existing Web.Config to the one in the WSRP Producer. Use the WSRP Producer Master Page The Master Page installed for the WSRP Producer provides common, hiddenform fields and JavaScripts to facilitate portlet instance management and display configuration when the child page is being rendered over WSRP. You add the Master Page by including it in the <@ Page declaration with MasterPageFile="~/portlets/Resources/MasterPages/WSRP.Master" . You then replace: <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" > <HTML> <HEAD> With <asp:Content ID="ContentHead1" ContentPlaceHolderID="wsrphead" Runat="Server"> And </HEAD> <body> <form id="theForm" method="post" runat="server"> With </asp:Content> <asp:Content ID="ContentBody1" ContentPlaceHolderID="Main" Runat="Server"> And finally </form> </body> </HTML> With </asp:Content> In the event you already use Master Pages, adapt your existing Master Pages to be sub masters. See Nested ASP.NET Master Pages for a detailed reference of how to do this. It Happened to Me, It Might Happen to You…Or Not Watch for Use of Session or Request in OnInit In the event the .NET application being modified has pages developed to assume the user has been authenticated in an earlier page request there may be direct or indirect references in the OnInit method to request or session objects that may not have been created yet. This will vary from application to application, so the recommended approach is to test first. If there is an issue with a page running as a WSRP portlet then check for potential references in the OnInit method (including references by methods called within OnInit) to session or request objects. If there are, the simplest solution is to create a new method and then call that method once the necessary object(s) is fully available. I find doing this at the start of the Page_Load method to be the simplest solution. Case Sensitivity .NET languages are not case sensitive, but Java is. This means it is possible to have many variations of SRC= and src= or .JPG and .jpg. The preferred solution is to make these mark up instances all lower case in your .NET application. This will allow the default Rewriter rules in wsrp-producer.xml to work as is. If this is not practical, then make duplicates of any rules where an issue is occurring due to upper or mixed case usage in the .NET application markup and match the case in use with the duplicate rule. For example: <RewriterRule> <LookFor>(href=\"([^\"]+)</LookFor> <ChangeToAbsolute>true</ChangeToAbsolute> <ApplyTo>.axd,.css</ApplyTo> <MakeResource>true</MakeResource> </RewriterRule> May need to be duplicated as: <RewriterRule> <LookFor>(HREF=\"([^\"]+)</LookFor> <ChangeToAbsolute>true</ChangeToAbsolute> <ApplyTo>.axd,.css</ApplyTo> <MakeResource>true</MakeResource> </RewriterRule> While it is possible to write a regular expression that will handle mixed case usage, it would be long and strenous to test and maintain, so the recommendation is to use duplicate rules. Is it Still Relative? Some .NET applications base relative paths with a fixed root location. With the introduction of the WSRP Producer, the root has moved up one level. References to ~/ will need to be updated to ~/portlets and many ../ paths will need another ../ in front. I Can See You But I Can’t Find You This issue was first discovered while debugging modules with code that referenced the form on a page from the code-behind by name and/or id. The initial error presented itself as run-time error that was difficult to interpret over WSRP but seemed clear when run as straight ASP.NET as it indicated that the object with the form name did not exist. Since the form name was no longer valid after implementing the WSRP Master Page, the likely fix seemed to simply update the references in the code. However, as the WSRP Master Page is external to the code, a compile time error resulted: Error      155         The name 'form1' does not exist in the current context                C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdefault\portlets\legacywebsite\module\Screens \Reporting.aspx.cs                51           52           legacywebsite.module Much hair-pulling research later it was discovered that it was the use of the FindControl method causing the issue. FindControl doesn’t work quite as expected once a Master Page has been introduced as the controls become embedded in controls, require a recursion to find them that is not part of the FindControl method. In code where the page form is referenced by name, there are two steps to the solution. First, the form needs to be referenced in code generically with Page.Form. For example, this: ToggleControl ctrl = new ToggleControl(frmManualEntry, FunctionLibrary.ParseArrayLst(userObj.Roles)); Becomes this: ToggleControl ctrl = new ToggleControl(Page.Form, FunctionLibrary.ParseArrayLst(userObj.Roles)); Generally the form id is referenced in most ASP.NET applications as a path to a control on the form. To reach the control once a MasterPage has been added requires an additional method to recurse through the controls collections within the form and find the control ID. The following method (found at Rick Strahl's Web Log) corrects this very nicely: public static Control FindControlRecursive(Control Root, string Id) { if (Root.ID == Id) return Root; foreach (Control Ctl in Root.Controls) { Control FoundCtl = FindControlRecursive(Ctl, Id); if (FoundCtl != null) return FoundCtl; } return null; } Where the form name is not referenced, simply using the FindControlRecursive method in place of FindControl will be all that is necessary. Following the second part of the example referenced earlier, the method called with Page.Form changes its value extraction code block from this: Label lblErrMsg = (Label)frmRef.FindControl("lblBRMsg" To this: Label lblErrMsg = (Label) FunctionLibrary.FindControlRecursive(frmRef, "lblBRMsg" The Master That Won’t Step Aside In most migrations it is preferable to make as few changes as possible. In one case I ran across an existing Master Page that would not function as a sub-Master Page. While it would probably have been educational to trace down why, the expedient process of updating it to take the place of the WSRP Master Page is the route I took. The changes are highlighted below: … <asp:ContentPlaceHolder ID="wsrphead" runat="server"></asp:ContentPlaceHolder> </head> <body leftMargin="0" topMargin="0"> <form id="TheForm" runat="server"> <input type="hidden" name="key" id="key" value="" /> <input type="hidden" name="formactionurl" id="formactionurl" value="" /> <input type="hidden" name="handle" id="handle" value="" /> <asp:ScriptManager ID="ScriptManager1" runat="server" EnablePartialRendering="true" > </asp:ScriptManager> This approach did not work for all existing Master Pages, but fortunately all of the other existing Master Pages I have run across worked fine as a sub-Master to the WSRP Master Page. Moving On In Enterprise Portals, even after you get everything working, the work is not finished. Next you need to get it where everyone will work with it. Migration Planning Providing that the server where IIS is running is adequately sized, it is possible to run both the .NET Accelerator and the WSRP Producer on the same server during the upgrade process. The upgrade can be performed incrementally, i.e., one portlet at a time, if server administration processes support it. Those processes would include the ability to manage a second producer in the consuming portal and to change over individual portlet instances from one provider to the other. If processes or requirements demand that all portlets be cut over at the same time, it needs to be determined if this cut over should include a new producer, updating all of the portlets in the consumer, or if the WSRP Producer portlet configuration must maintain the naming conventions used by the .NET Accelerator and simply change the WSRP end point configured in the consumer. In some enterprises it may even be necessary to maintain the same WSDL end point, at which point the IIS configuration will be where the updates occur. The downside to such a requirement is that it makes rolling back very difficult, should the need arise. Location, Location, Location Not everyone wants the web application to have the descriptively obvious wsrpdefault location, or needs to create a second WSRP site on the same server. The instructions below are from the product team and, while targeted towards making a second site, will work for creating a site with a different name and then remove the old site. You can also change just the name in IIS. Manually Creating a WSRP Producer Site Instructions (NOTE: all executables used are the same ones used by the installer and “wsrpdev” will be the name of the new instance): 1. Copy C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdefault to C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdev. 2. Bring up a command window as an administrator 3. Run C:\Oracle\Middleware\WSRPProducerForDotNet\uninstall_resources\IISAppAccelSiteCreator.exe install WSRPProducers wsrpdev "C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdev" 8678 2.0.50727 4. Run C:\Oracle\Middleware\WSRPProducerForDotNet\uninstall_resources\PermManage.exe add FileSystem C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdev "NETWORK SERVICE" 3 1 5. Run C:\Oracle\Middleware\WSRPProducerForDotNet\uninstall_resources\PermManage.exe add FileSystem C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdev EVERYONE 1 1 6. Open up C:\Oracle\Middleware\WSRPProducerForDotNet\wsdl\1.0\WSRPService.wsdl and replace wsrpdefault with wsrpdev 7. Open up C:\Oracle\Middleware\WSRPProducerForDotNet\wsdl\2.0\WSRPService.wsdl and replace wsrpdefault with wsrpdev Tests: 1. Bring up a browser on the host itself and go to http://localhost:8678/wsrpdev/wsdl/1.0/WSRPService.wsdl and make sure that the URLs in the XML returned include the wsrpdev changes you made in step 6. 2. Bring up a browser on the host itself and see if the default sample comes up: http://localhost:8678/wsrpdev/portlets/ASPNET_AJAX_sample/default.aspx 3. Register the producer in WLP and test the portlet. Changing the Port used by WSRP Producer The pre-configured port for the WSRP Producer is 8678. You can change this port by updating both the IIS configuration and C:\Oracle\Middleware\WSRPProducerForDotNet\[WSRP_APP_NAME]\wsdl\1.0\WSRPService.wsdl. Do You Need to Migrate? Oracle Premier Support ended in November of 2010 for AquaLogic Interaction .NET Application Accelerator 1.x and Extended Support ends in November 2012 (see http://www.oracle.com/us/support/lifetime-support/lifetime-support-software-342730.html for other related dates). This means that integration with products released after November of 2010 is not supported. If having such support is the policy within your enterprise, you do indeed need to migrate. If changes in your enterprise cause your current solution with the .NET Accelerator to no longer function properly, you may need to migrate. Migration is a choice, and if the goals of your enterprise are to take full advantage of newer technologies then migration is certainly one activity you should be planning for.

    Read the article

  • The right way to start out in game development/design [closed]

    - by Marco Sacristão
    Greetings everyone I'm a 19 year old student looking for some help in the field of game development. This question may or may not seem a bit overused, but the fact is that game development has been my life long dream, and after several hours of search I've realized that I've been going in circles for the past three or four months whilst doing such research on how to really get down and dirty with game development, therefor I decided to ask you guys if you could help me out at all. Let me start off with some information about me and things i've already learned about GameDev which might help you out on helping me out (wordplay!): I'm not an expert programmer, but I do have knowledge on how to program in several languages including C and Java (Currently learning Java in my degree in Computer Engineering), but my methodology might not be most correct in terms of syntax (hence my difficulty in starting out, i'm afraid that the starting point might not be the most correct, and it would deploy a wrongful development methodology that would be to corrected later on, in terms of game development or other projects). I have yet to work in a project as large as a game, never in my learning curve of programming I've done a project to the scale of a video game, only very small software (PHP Front-ends and Back-ends, with some basic JQuery and CSS knowledge). I'm not the biggest mathematician or physicist, but I already know that is not a problem, because there are several game engines already available for use and integration with home-made projects (Box2D, etc). I've also learned about some libraries that could be included in said projects, to ease out some process in game development, like SDL for example. I do not know how sprites, states, particles or any specific game-related techniques work. With that being said, you can see that I have some ideas on game development, but I have absolutely no clue on how to design and produce a game, or even how game-like mechanics work. It does not have to be a complex game just to start out, I'd rather learn the basic of game design (Like 2D drawing, tiling, object collision) and test that out in a language that I feel comfortable in which could be later on migrated to other platforms, as long that what I've learned is the correct way to do things, and not just something that I've learned from some guy on Youtube by replicating that code on the video. I'm sorry if my question is not in the best format possible, but I've got so many questions on my mind that are still un-answered that I don't know were to start! Thank you for reading.

    Read the article

  • Sixeyed.Caching available now on NuGet and GitHub!

    - by Elton Stoneman
    Originally posted on: http://geekswithblogs.net/EltonStoneman/archive/2013/10/22/sixeyed.caching-available-now-on-nuget-and-github.aspxThe good guys at Pluralsight have okayed me to publish my caching framework (as seen in Caching in the .NET Stack: Inside-Out) as an open-source library, and it’s out now. You can get it here: Sixeyed.Caching source code on GitHub, and here: Sixeyed.Caching package v1.0.0 on NuGet. If you haven’t seen the course, there’s a preview here on YouTube: In-Process and Out-of-Process Caches, which gives a good flavour. The library is a wrapper around various cache providers, including the .NET MemoryCache, AppFabric cache, and  memcached*. All the wrappers inherit from a base class which gives you a set of common functionality against all the cache implementations: •    inherits OutputCacheProvider, so you can use your chosen cache provider as an ASP.NET output cache; •    serialization and encryption, so you can configure whether you want your cache items serialized (XML, JSON or binary) and encrypted; •    instrumentation, you can optionally use performance counters to monitor cache attempts and hits, at a low level. The framework wraps up different caches into an ICache interface, and it lets you use a provider directly like this: Cache.Memory.Get<RefData>(refDataKey); - or with configuration to use the default cache provider: Cache.Default.Get<RefData>(refDataKey); The library uses Unity’s interception framework to implement AOP caching, which you can use by flagging methods with the [Cache] attribute: [Cache] public RefData GetItem(string refDataKey) - and you can be more specific on the required cache behaviour: [Cache(CacheType=CacheType.Memory, Days=1] public RefData GetItem(string refDataKey) - or really specific: [Cache(CacheType=CacheType.Disk, SerializationFormat=SerializationFormat.Json, Hours=2, Minutes=59)] public RefData GetItem(string refDataKey) Provided you get instances of classes with cacheable methods from the container, the attributed method results will be cached, and repeated calls will be fetched from the cache. You can also set a bunch of cache defaults in application config, like whether to use encryption and instrumentation, and whether the cache system is enabled at all: <sixeyed.caching enabled="true"> <performanceCounters instrumentCacheTotalCounts="true" instrumentCacheTargetCounts="true" categoryNamePrefix ="Sixeyed.Caching.Tests"/> <encryption enabled="true" key="1234567890abcdef1234567890abcdef" iv="1234567890abcdef"/> <!-- key must be 32 characters, IV must be 16 characters--> </sixeyed.caching> For AOP and methods flagged with the cache attribute, you can override the compile-time cache settings at runtime with more config (keyed by the class and method name): <sixeyed.caching enabled="true"> <targets> <target keyPrefix="MethodLevelCachingStub.GetRandomIntCacheConfiguredInternal" enabled="false"/> <target keyPrefix="MethodLevelCachingStub.GetRandomIntCacheExpiresConfiguredInternal" seconds="1"/> </targets> It’s released under the MIT license, so you can use it freely in your own apps and modify as required. I’ll be adding more content to the GitHub wiki, which will be the main source of documentation, but for now there’s an FAQ to get you started. * - in the course the framework library also wraps NCache Express, but there's no public redistributable library that I can find, so it's not in Sixeyed.Caching.

    Read the article

  • Use Extension method to write cleaner code

    - by Fredrik N
    This blog post will show you step by step to refactoring some code to be more readable (at least what I think). Patrik Löwnedahl gave me some of the ideas when we where talking about making code much cleaner. The following is an simple application that will have a list of movies (Normal and Transfer). The task of the application is to calculate the total sum of each movie and also display the price of each movie. class Program { enum MovieType { Normal, Transfer } static void Main(string[] args) { var movies = GetMovies(); int totalPriceOfNormalMovie = 0; int totalPriceOfTransferMovie = 0; foreach (var movie in movies) { if (movie == MovieType.Normal) { totalPriceOfNormalMovie += 2; Console.WriteLine("$2"); } else if (movie == MovieType.Transfer) { totalPriceOfTransferMovie += 3; Console.WriteLine("$3"); } } } private static IEnumerable<MovieType> GetMovies() { return new List<MovieType>() { MovieType.Normal, MovieType.Transfer, MovieType.Normal }; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } In the code above I’m using an enum, a good way to add types (isn’t it ;)). I also use one foreach loop to calculate the price, the loop has a condition statement to check what kind of movie is added to the list of movies. I want to reuse the foreach only to increase performance and let it do two things (isn’t that smart of me?! ;)). First of all I can admit, I’m not a big fan of enum. Enum often results in ugly condition statements and can be hard to maintain (if a new type is added we need to check all the code in our app to see if we use the enum somewhere else). I don’t often care about pre-optimizations when it comes to write code (of course I have performance in mind). I rather prefer to use two foreach to let them do one things instead of two. So based on what I don’t like and Martin Fowler’s Refactoring catalog, I’m going to refactoring this code to what I will call a more elegant and cleaner code. First of all I’m going to use Split Loop to make sure the foreach will do one thing not two, it will results in two foreach (Don’t care about performance here, if the results will results in bad performance, you can refactoring later, but computers are so fast to day, so iterating through a list is not often so time consuming.) Note: The foreach actually do four things, will come to is later. var movies = GetMovies(); int totalPriceOfNormalMovie = 0; int totalPriceOfTransferMovie = 0; foreach (var movie in movies) { if (movie == MovieType.Normal) { totalPriceOfNormalMovie += 2; Console.WriteLine("$2"); } } foreach (var movie in movies) { if (movie == MovieType.Transfer) { totalPriceOfTransferMovie += 3; Console.WriteLine("$3"); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } To remove the condition statement we can use the Where extension method added to the IEnumerable<T> and is located in the System.Linq namespace: foreach (var movie in movies.Where( m => m == MovieType.Normal)) { totalPriceOfNormalMovie += 2; Console.WriteLine("$2"); } foreach (var movie in movies.Where( m => m == MovieType.Transfer)) { totalPriceOfTransferMovie += 3; Console.WriteLine("$3"); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The above code will still do two things, calculate the total price, and display the price of the movie. I will not take care of it at the moment, instead I will focus on the enum and try to remove them. One way to remove enum is by using the Replace Conditional with Polymorphism. So I will create two classes, one base class called Movie, and one called MovieTransfer. The Movie class will have a property called Price, the Movie will now hold the price:   public class Movie { public virtual int Price { get { return 2; } } } public class MovieTransfer : Movie { public override int Price { get { return 3; } } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The following code has no enum and will use the new Movie classes instead: class Program { static void Main(string[] args) { var movies = GetMovies(); int totalPriceOfNormalMovie = 0; int totalPriceOfTransferMovie = 0; foreach (var movie in movies.Where( m => m is Movie)) { totalPriceOfNormalMovie += movie.Price; Console.WriteLine(movie.Price); } foreach (var movie in movies.Where( m => m is MovieTransfer)) { totalPriceOfTransferMovie += movie.Price; Console.WriteLine(movie.Price); } } private static IEnumerable<Movie> GetMovies() { return new List<Movie>() { new Movie(), new MovieTransfer(), new Movie() }; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   If you take a look at the foreach now, you can see it still actually do two things, calculate the price and display the price. We can do some more refactoring here by using the Sum extension method to calculate the total price of the movies:   static void Main(string[] args) { var movies = GetMovies(); int totalPriceOfNormalMovie = movies.Where(m => m is Movie) .Sum(m => m.Price); int totalPriceOfTransferMovie = movies.Where(m => m is MovieTransfer) .Sum(m => m.Price); foreach (var movie in movies.Where( m => m is Movie)) Console.WriteLine(movie.Price); foreach (var movie in movies.Where( m => m is MovieTransfer)) Console.WriteLine(movie.Price); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Now when the Movie object will hold the price, there is no need to use two separate foreach to display the price of the movies in the list, so we can use only one instead: foreach (var movie in movies) Console.WriteLine(movie.Price); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } If we want to increase the Maintainability index we can use the Extract Method to move the Sum of the prices into two separate methods. The name of the method will explain what we are doing: static void Main(string[] args) { var movies = GetMovies(); int totalPriceOfMovie = TotalPriceOfMovie(movies); int totalPriceOfTransferMovie = TotalPriceOfMovieTransfer(movies); foreach (var movie in movies) Console.WriteLine(movie.Price); } private static int TotalPriceOfMovieTransfer(IEnumerable<Movie> movies) { return movies.Where(m => m is MovieTransfer) .Sum(m => m.Price); } private static int TotalPriceOfMovie(IEnumerable<Movie> movies) { return movies.Where(m => m is Movie) .Sum(m => m.Price); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Now to the last thing, I love the ForEach method of the List<T>, but the IEnumerable<T> doesn’t have it, so I created my own ForEach extension, here is the code of the ForEach extension method: public static class LoopExtensions { public static void ForEach<T>(this IEnumerable<T> values, Action<T> action) { Contract.Requires(values != null); Contract.Requires(action != null); foreach (var v in values) action(v); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } I will now replace the foreach by using this ForEach method: static void Main(string[] args) { var movies = GetMovies(); int totalPriceOfMovie = TotalPriceOfMovie(movies); int totalPriceOfTransferMovie = TotalPriceOfMovieTransfer(movies); movies.ForEach(m => Console.WriteLine(m.Price)); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The ForEach on the movies will now display the price of the movie, but maybe we want to display the name of the movie etc, so we can use Extract Method by moving the lamdba expression into a method instead, and let the method explains what we are displaying: movies.ForEach(DisplayMovieInfo); private static void DisplayMovieInfo(Movie movie) { Console.WriteLine(movie.Price); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Now the refactoring is done! Here is the complete code:   class Program { static void Main(string[] args) { var movies = GetMovies(); int totalPriceOfMovie = TotalPriceOfMovie(movies); int totalPriceOfTransferMovie = TotalPriceOfMovieTransfer(movies); movies.ForEach(DisplayMovieInfo); } private static void DisplayMovieInfo(Movie movie) { Console.WriteLine(movie.Price); } private static int TotalPriceOfMovieTransfer(IEnumerable<Movie> movies) { return movies.Where(m => m is MovieTransfer) .Sum(m => m.Price); } private static int TotalPriceOfMovie(IEnumerable<Movie> movies) { return movies.Where(m => m is Movie) .Sum(m => m.Price); } private static IEnumerable<Movie> GetMovies() { return new List<Movie>() { new Movie(), new MovieTransfer(), new Movie() }; } } public class Movie { public virtual int Price { get { return 2; } } } public class MovieTransfer : Movie { public override int Price { get { return 3; } } } pulbic static class LoopExtensions { public static void ForEach<T>(this IEnumerable<T> values, Action<T> action) { Contract.Requires(values != null); Contract.Requires(action != null); foreach (var v in values) action(v); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } I think the new code is much cleaner than the first one, and I love the ForEach extension on the IEnumerable<T>, I can use it for different kind of things, for example: movies.Where(m => m is Movie) .ForEach(DoSomething); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } By using the Where and ForEach extension method, some if statements can be removed and will make the code much cleaner. But the beauty is in the eye of the beholder. What would you have done different, what do you think will make the first example in the blog post look much cleaner than my results, comments are welcome! If you want to know when I will publish a new blog post, you can follow me on twitter: http://www.twitter.com/fredrikn

    Read the article

  • Preview of MSDN Library Changes

    - by ScottGu
    The MSDN team has been working some potential changes to the online MSDN Library designed to help streamline the navigation experience and make it easier to find the .NET Framework information you need. To solicit feedback on the proposed changes while they are still in development, they’ve posted a preview version of some proposed changes to a new MSDN Library Preview site which you can check out.  They’ve also created a survey that leads you through the ideas and asks for your opinions on some of the changes.  We’d very much like to have as many people as possible people take the survey and give us feedback. Quick Preview of Some of the Changes Below are some examples of a few of the changes being proposed: Streamlined .NET Namespaces Navigation The current MSDN Class Library lists all .NET namespaces in a flat-namespace (sorted alphabetically): Two downsides of the above approach are: Some of the least-used namespaces are listed first (like Microsoft.Aspnet.Snapin and Microsoft.Build.BuildEngine) All sub-namespaces are listed, which makes the list a little overwhelming, and page-load times to be slow The new MSDN Library Preview Site now lists “System” namespaces first (since those are the most used), and the home-page lists just top-level namespace groups – which makes it easier to find things, and enables the page to load faster:   Class overview and members pages merged into a single topic about each class Previously you had to navigate to several different pages to find member information about types: Links to these are still available in the MSDN Library Preview Site TOC – but the members are also now listed on the overview page, which makes it easy to quickly find everything in one place: Commonly used things are nearer the top of the page One of the other usability improvements with the new MSDN Library Preview Site is that common elements like “Code Examples” and “Inheritance Hierarchy” (for classes) are now listed near the top of the help page – making them easy to quickly find: Give Us Feedback with a Survey Above are just a few of the changes made with the new MSDN preview site – there are many other changes also rolled into it.  The MSDN team is doing usability studies on the new layout and navigation right now, and would very much like feedback on it. If you have 15 minutes and want to help vote on which of these ideas makes it into the production MSDN site, please visit this survey before June 30, play with the changes a bit, and let the MSDN team know what you think. Important Note: the MSDN preview site is not a fully functional version of MSDN – it’s really only there to preview the new ideas themselves, so please don’t expect it to be integrated with the rest of MSDN, with search, etc.  Once the MSDN team gets feedback on some of the changes being proposed they will roll them into the live site for everyone to use. Hope this helps, Scott

    Read the article

  • Accessing JMX for Oracle WebLogic 11g

    - by Anthony Shorten
    In Oracle Utilities Application Framework V4, we use the latest Oracle WebLogic release (11g). The instructions below illustrate a way of allowing a console like jconsole to remotely monitor and manage Oracle WebLogic using the JMX Mbeans. Typically management of Oracle WebLogic is done from Oracle Enterprise Manager or the Oracle Weblogic console application but you can also use JMX. To access the JMX capability for Oracle WebLogic 11g, for an Oracle Utilities Application Framework based product, using a JMX console (such as jconsole) the following process needs to be performed: Enable the JMX Management Server in the Oracle WebLogic console at splapp - Configuration - General - Advanced Settings option. Enable both Compatibility Mbean Server Enabled and Management EJB Enabled (this enables the legacy and new JMX interface). Save the changes This change will require a restart. In the startup of the Oracle WebLogic server in the $SPLSYSTEMLOGS/myserver.log (or %SPLESYSTEMLOGS%\myserver.log on Windows) you will see the BEA-149512 message indicating the Mbean servers have been started. The message will indicate the JMX URL that can be used to access the JMX Mbeans. The URL is in the format: service:jmx:iiop://host:port/jndi/mbeanserver where: host - Oracle WebLogic host name port - Oracle WebLogic port number mbeanserver - Mbean Server to access. Valid Values: weblogic.management.mbeanservers.runtime weblogic.management.mbeanservers.edit weblogic.management.mbeanservers.domainruntime For illustrative purposes we will use the domainruntime Mbean. Ensure that you execute the splenviron[.sh] utility to set the appropriate environment variables for the desired environment. Execute the following jconsole command to initiate the connection to the JMX Mbean server Windows: jconsole -J-Djava.class.path=%JAVA_HOME%\lib\jconsole.jar;%WL_HOME%\server\lib\wljmxclient.jar -J-Djmx.remote.protocol.provider.pkgs=weblogic.management.remote Linux/Unix jconsole -J-Djava.class.path=$JAVA_HOME/lib/jconsole.jar;$WL_HOME/server/lib/wljmxclient.jar -J-Djmx.remote.protocol.provider.pkgs=weblogic.management.remote You will see a New Connection Dialog. Specify the URL from the previous steps into the Remote process (i.,e. service:jmx:iiop...). The credentials are the credentials specified for the Oracle WebLogic console. You are now able to view the JMX classes available. Here is an example from my demonstration machine: Refer to the Oracle WebLogic Mbean documentation to understand the output.

    Read the article

  • Vodacom Call Center Management on the NetBeans Platform

    - by Geertjan
    If you live in South Africa, you know about Vodacom. Vodacom is one of the dominant mobile communication companies in South Africa, and beyond, providing voice, messaging, data, and similar mobile services. Inside Vodacom there's an application named Helios, which is a call centre application that had its inception in 2009 and consists of two parts. Firstly, a web-based front-end that allows a call centre agent to service subscribers using a Google-like search on a knowledge base structured as a collection of FAQs. The web-based front-end uses plain-old HTML + CSS + a good helping of JQuery and JQueryUI. This is delivered via JSR-168 portlets running on a cluster of IBM Portal 6 servers. In turn, the portlets communicate via RMI with several back-end EJB's containing the business logic. These EJB's are deployed on a cluster of Weblogic Application Servers, version 10.3.6. The second part is a NetBeans Platform application used for maintaining and constructing the knowledge base, i.e., the back-end of the web-based front-end. Helios is also used for a number of other maintenance functions, such as access permissions, user maintenance, and news bulletins. Below, in the web-based front-end, call centre agents can enter search terms and are presented with a number of FAQs from the knowledge base. Upon selecting a FAQ article, the agent is presented with the article text, the process to guide the subscriber, system checks that display information specific to the subscriber, and links to related applications and articles: Below, you can see that applications are searchable and can be accessed using the same web-based front-end as shown above. And, as can be seen below, knowledge base FAQs are maintained using the Helios Maintenance Application, which is the Vodacom application built on the NetBeans Platform: Several thousand call centre agent user accounts are administered using the Helios Maintenance Application. Below the main FAQ page is shown, together with the About dialog: Vodacom is happy with the back-end NetBeans Platform application. However, the front-end stack runs on quite old technology. Ideally Vodacom would like to migrate the portlets to Oracle Weblogic Portal or Oracle WebCenter, but this hasn't been accomplished yet. Migrating makes sense as the rest of the application server environment consists entirely of Oracle products.

    Read the article

  • Creating a bare bone web-browser: After the html parser, javascript parser, etc have done their work, how do I display the content of the webpage?

    - by aste123
    This is a personal project to learn computer programming. I took a look at this: https://www.udacity.com/course/viewer#!/c-cs262 The following is the approach taken in it: Abstract Syntax Tree is created. But javascript is still not completely broken down in order not to confuse with the html tags. Then the javascript interpreter is called on it. Javascript interpreter stores the text from the write() and document.write() to be used later. Then a graphics library in Python is called which will convert everything to a pdf file and then we convert it into png or jpeg and then display it. My Question: I want to display the actual text in a window (which I will design later) like firefox or chrome does instead of image files so that the data can be selected, copied, etc by the user of the browser. How do I accomplish this? In other words, what are the other elements of a bare bone web browser that I am missing? I would prefer to implement most of the stuff in C++ although if things seem too complicated I might go with Python to save time and create a prototype and later creating another bare bone browser in C++ and add more features. This is a project to learn more. I do realize we already have lots of reliable browsers like firefox, etc. The way I feel it is done: I think after all the broken down contents have been created by the parsers and interpreters, I will need to access them individually from within the window's code (like qt) and then decide upon a good way to display them. I am not sure if it is the way this should be done. Additions after useful comment by Kilian Foth: I found this page: http://friendlybit.com/css/rendering-a-web-page-step-by-step/ 14. A DOM tree is built out of the broken HTML 15. New requests are made to the server for each new resource that is found in the HTML source (typically images, style sheets, and JavaScript files). Go back to step 3 and repeat for each resource. 16. Stylesheets are parsed, and the rendering information in each gets attached to the matching node in the DOM tree 17. Javascript is parsed and executed, and DOM nodes are moved and style information is updated accordingly 18. The browser renders the page on the screen according to the DOM tree and the style information for each node 19. You see the page on the screen I need help with step 18. How do I do that? How much work do Webkit and Gecko do? I want to use a readymade layout renderer for step number 18 and not for anything that comes before that.

    Read the article

  • MVC Architecture

    Model-View-Controller (MVC) is an architectural design pattern first written about and implemented by  in 1978. Trygve developed this pattern during the year he spent working with Xerox PARC on a small talk application. According to Trygve, “The essential purpose of MVC is to bridge the gap between the human user's mental model and the digital model that exists in the computer. The ideal MVC solution supports the user illusion of seeing and manipulating the domain information directly. The structure is useful if the user needs to see the same model element simultaneously in different contexts and/or from different viewpoints.”  Trygve Reenskaug on MVC The MVC pattern is composed of 3 core components. Model View Controller The Model component referenced in the MVC pattern pertains to the encapsulation of core application data and functionality. The primary goal of the model is to maintain its independence from the View and Controller components which together form the user interface of the application. The View component retrieves data from the Model and displays it to the user. The View component represents the output of the application to the user. Traditionally the View has read-only access to the Model component because it should not change the Model’s data. The Controller component receives and translates input to requests on the Model or View components. The Controller is responsible for requesting methods on the model that can change the state of the model. The primary benefit to using MVC as an architectural pattern in a project compared to other patterns is flexibility. The flexibility of MVC is due to the distinct separation of concerns it establishes with three distinct components.  Because of the distinct separation between the components interaction is limited through the use of interfaces instead of classes. This allows each of the components to be hot swappable when the needs of the application change or needs of availability change. MVC can easily be applied to C# and the .Net Framework. In fact, Microsoft created a MVC project template that will allow new project of this type to be created with the standard MVC structure in place before any coding begins. The project also creates folders for the three key components along with default Model, View and Controller classed added to the project. Personally I think that MVC is a great pattern in regards to dealing with web applications because they could be viewed from a myriad of devices. Examples of devices include: standard web browsers, text only web browsers, mobile phones, smart phones, IPads, IPhones just to get started. Due to the potentially increasing accessibility needs and the ability for components to be hot swappable is a perfect fit because the core functionality of the application can be retained and the View component can be altered based on the client’s environment and the View component could be swapped out based on the calling device so that the display is targeted to that specific device.

    Read the article

< Previous Page | 661 662 663 664 665 666 667 668 669 670 671 672  | Next Page >