Search Results

Search found 53294 results on 2132 pages for 'null pointers etc'.

Page 69/2132 | < Previous Page | 65 66 67 68 69 70 71 72 73 74 75 76  | Next Page >

  • casting void* to float* creates only zeros

    - by Paperflyer
    I am reading an audio file using CoreAudio (Extended Audio File Read Services). The audio data gets converted to 4-byte float and handed to me as a void* buffer. It can be played with Audio Queue Services, so its content is correct. Next, I want to draw a waveform and thus need access to the actual samples. So, I cast void* audioData to float*: Float32 *floatData = (Float32 *)audioData; When accessing this data however, I only get 0.0 regardless of the index. Float32 value = floatData[index]; // Is always zero for any index Am I doing something wrong with the cast?

    Read the article

  • Function lfit in numerical recipes, providing a test function

    - by Simon Walker
    Hi I am trying to fit collected data to a polynomial equation and I found the lfit function from Numerical Recipes. I only have access to the second edition, so am using that. I have read about the lfit function and its parameters, one of which is a function pointer, given in the documentation as void (*funcs)(float, float [], int)) with the help The user supplies a routine funcs(x,afunc,ma) that returns the ma basis functions evaluated at x = x in the array afunc[1..ma]. I am struggling to understand how this lfit function works. An example function I found is given below: void fpoly(float x, float p[], int np) /*Fitting routine for a polynomial of degree np-1, with coe?cients in the array p[1..np].*/ { int j; p[1]=1.0; for (j=2;j<=np;j++) p[j]=p[j-1]*x; } When I run through the source code for the lfit function in gdb I can see no reference to the funcs pointer. When I try and fit a simple data set with the function, I get the following error message. Numerical Recipes run-time error... gaussj: Singular Matrix ...now exiting to system... Clearly somehow a matrix is getting defined with all zeroes. I am going to involve this function fitting in a large loop so using another language is not really an option. Hence why I am planning on using C/C++. For reference, the test program is given here: int main() { float x[5] = {0., 0., 1., 2., 3.}; float y[5] = {0., 0., 1.2, 3.9, 7.5}; float sig[5] = {1., 1., 1., 1., 1.}; int ndat = 4; int ma = 4; /* parameters in equation */ float a[5] = {1, 1, 1, 0.1, 1.5}; int ia[5] = {1, 1, 1, 1, 1}; float **covar = matrix(1, ma, 1, ma); float chisq = 0; lfit(x,y,sig,ndat,a,ia,ma,covar,&chisq,fpoly); printf("%f\n", chisq); free_matrix(covar, 1, ma, 1, ma); return 0; } Also confusing the issue, all the Numerical Recipes functions are 1 array-indexed so if anyone has corrections to my array declarations let me know also! Cheers

    Read the article

  • Problem with memset after an instance of a user defined class is created and a file is opened

    - by Liberalkid
    I'm having a weird problem with memset, that was something to do with a class I'm creating before it and a file I'm opening in the constructor. The class I'm working with normally reads in an array and transforms it into another array, but that's not important. The class I'm working with is: #include <vector> #include <algorithm> using namespace std; class PreProcess { public: PreProcess(char* fileName,char* outFileName); void SortedOrder(); private: vector< vector<double > > matrix; void SortRow(vector<double> &row); char* newFileName; vector< pair<double,int> > rowSorted; }; The other functions aren't important, because I've stopped calling them and the problem persists. Essentially I've narrowed it down to my constructor: PreProcess::PreProcess(char* fileName,char* outFileName):newFileName(outFileName){ ifstream input(fileName); input.close(); //this statement is inconsequential } I also read in the file in my constructor, but I've found that the problem persists if I don't read in the matrix and just open the file. Essentially I've narrowed it down to if I comment out those two lines the memset works properly, otherwise it doesn't. Now to the context of the problem I'm having with it: I wrote my own simple wrapper class for matrices. It doesn't have much functionality, I just need 2D arrays in the next part of my project and having a class handle everything makes more sense to me. The header file: #include <iostream> using namespace std; class Matrix{ public: Matrix(int r,int c); int &operator()(int i,int j) {//I know I should check my bounds here return matrix[i*columns+j]; } ~Matrix(); const void Display(); private: int *matrix; const int rows; const int columns; }; Driver: #include "Matrix.h" #include <string> using namespace std; Matrix::Matrix(int r,int c):rows(r),columns(c) { matrix=new int[rows*columns]; memset(matrix,0,sizeof(matrix)); } const void Matrix::Display(){ for(int i=0;i<rows;i++){ for(int j=0;j<columns;j++) cout << (*this)(i,j) << " "; cout << endl; } } Matrix::~Matrix() { delete matrix; } My main program runs: PreProcess test1(argv[1],argv[2]); //test1.SortedOrder(); Matrix test(10,10); test.Display(); And when I run this with the input line uncommented I get: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1371727776 32698 -1 0 0 0 0 0 6332656 0 -1 -1 0 0 6332672 0 0 0 0 0 0 0 0 0 0 0 0 0 -1371732704 32698 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I really don't have a clue what's going on in memory to cause this, on a side note if I replace memset with: for(int i=0;i<rows*columns;i++) *(matrix+i) &= 0x0; Then it works perfectly, it also works if I don't open the file. If it helps I'm running GCC 64-bit version 4.2.4 on Ubuntu.I assume there's some functionality of memset that I'm not properly understanding.

    Read the article

  • Pointer initialization doubt

    - by Jestin Joy
    We could initialize a character pointer like this in C. char *c="test"; Where c points to the first character(t). But when I gave code like below. It gives segmentation fault. #include<stdio.h> #include<stdlib.h> main() { int *i=0; printf("%d",*i); } Also when I give #include<stdio.h> #include<stdlib.h> main() { int *i; i=(int *)malloc(2); printf("%d",*i); } It worked(gave output 0). When I gave malloc(0), it worked(gave output 0). Please tell what is happening

    Read the article

  • Getting the start address of the current process's heap?

    - by beta
    Hey, I am exploring the lower level workings of the system, and was wondering how malloc determines the start address of the heap. Is the heap a constant offset or is there a call of some sort to get the start address? Does the stack effect the start address of the heap? Thanks, Braden McDorman

    Read the article

  • What's correct way to remove a boost::shared_ptr from a list?

    - by Catskul
    I have a std::list of boost::shared_ptr<T> and I want to remove an item from it but I only have a pointer of type T* which matches one of the items in the list. However I cant use myList.remove( tPtr ) I'm guessing because shared_ptr does not implement == for its template argument type. My immediate thought was to try myList.remove( shared_ptr<T>(tPtr) ) which is syntactically correct but it will crash from a double delete since the temporary shared_ptr has a separate use_count. std::list< boost::shared_ptr<T> > myList; T* tThisPtr = new T(); // This is wrong; only done for example code. // stand-in for actual code in T using // T's actual "this" pointer from within T { boost::shared_ptr<T> toAdd( tThisPtr ); // typically would be new T() myList.push_back( toAdd ); } { //T has pointer to myList so that upon a certain action, // it will remove itself romt the list //myList.remove( tThisPtr); //doesn't compile myList.remove( boost::shared_ptr<T>(tThisPtr) ); // compiles, but causes // double delete } The only options I see remaining are to use std::find with a custom compare, or to loop through the list brute force and find it myself, but it seems there should be a better way. Am I missing something obvious, or is this just too non-standard a use to be doing a remove the clean/normal way?

    Read the article

  • C: How come an array's address is equal to its value?

    - by Alexandre
    In the following bit of code, pointer values and pointer addresses differ as expected. But array values and addresses don't! How can this be? Output my_array = 0022FF00 &my_array = 0022FF00 pointer_to_array = 0022FF00 &pointer_to_array = 0022FEFC ... #include <stdio.h> int main() { char my_array[100] = "some cool string"; printf("my_array = %p\n", my_array); printf("&my_array = %p\n", &my_array); char *pointer_to_array = my_array; printf("pointer_to_array = %p\n", pointer_to_array); printf("&pointer_to_array = %p\n", &pointer_to_array); printf("Press ENTER to continue...\n"); getchar(); return 0; }

    Read the article

  • Does C99 guarantee that arrays are contiguous ?

    - by kriss
    Following an hot comment thread in another question, I came to debate of what is and what is not defined in C99 standard about C arrays. Basically when I define a 2D array like int a[5][5], does the standard C99 garantee or not that it will be a contiguous block of ints, can I cast it to (int *)a and be sure I will have a valid 1D array of 25 ints. As I understand the standard the above property is implicit in the sizeof definition and in pointer arithmetic, but others seems to disagree and says casting to (int*) the above structure give an undefined behavior (even if they agree that all existing implementations actually allocate contiguous values). More specifically, if we think an implementation that would instrument arrays to check array boundaries for all dimensions and return some kind of error when accessing 1D array, or does not give correct access to elements above 1st row. Could such implementation be standard compilant ? And in this case what parts of the C99 standard are relevant.

    Read the article

  • Operator precedence and struct definition in C

    - by Yktula
    struct struct0 { int a; }; struct struct1 { struct struct0 structure0; int b; } rho; &rho->structure0; /* Reference 1 */ (struct struct0 *)rho; /* Reference 2 */ (struct struct0)rho; /* Reference 3 */ From reference 1, does the compiler take the address of rho, and then access structure0, or vice-versa? What does the line at reference 2 do? Since structure0 is the first member of struct1, would reference 3 be equivalent to reference 1?

    Read the article

  • How to use void*

    - by Rondogiannis Aristophanes
    I am imlementing a simple merge function and I have got stuck, as the compiler gives me errors that I cannot explain. Here is my merge function: void merge(void *a, int beg, int middle, int end, int (*cmp)(const void*, const void* { std::stack<void*> first; std::stack<void*> second; for(int i = beg; i < middle; i++) { first.push(a+i); } for(int i = middle; i < end; i++) { second.push(a+i); } for(int i = beg; i < end; i++) { if(first.empty()) { void *tmp = second.top(); second.pop(); a+i = tmp; } else if(second.empty()) { void *tmp = first.top(); first.pop(); a+i = tmp; } else if(cmp(first.top(), second.top())) { void *tmp = first.top(); first.pop(); a+i = tmp; } else { void *tmp = second.top(); second.pop(); a+i = tmp; } } } And here is the error: sort.h: In function `void merge(void*, int, int, int, int (*)(const void*, const void*))': sort.h:9: error: pointer of type `void *' used in arithmetic sort.h:12: error: pointer of type `void *' used in arithmetic sort.h:19: error: pointer of type `void *' used in arithmetic sort.h:19: error: non-lvalue in assignment sort.h:23: error: pointer of type `void *' used in arithmetic sort.h:23: error: non-lvalue in assignment sort.h:27: error: pointer of type `void *' used in arithmetic sort.h:27: error: non-lvalue in assignment sort.h:31: error: pointer of type `void *' used in arithmetic sort.h:31: error: non-lvalue in assignment Can anyone help me? TIA.

    Read the article

  • Deleting a non-owned dynamic array through a pointer

    - by ayanzo
    Hello all, I'm relatively novice when it comes to C++ as I was weened on Java for much of my undergraduate curriculum (tis a shame). Memory management has been a hassle, but I've purchased a number books on ansi C and C++. I've poked around the related questions, but couldn't find one that matched this particular criteria. Maybe it's so obvious nobody mentions it? This question has been bugging me, but I feel as if there's a conceptual point i'm not utilizing. Suppose: char original[56]; cstr[0] = 'a'; cstr[1] = 'b'; cstr[2] = 'c'; cstr[3] = 'd'; cstr[4] = 'e'; cstr[5] = '\0'; char *shaved = shavecstr(cstr); delete[] cstrn; where char* shavecstr(char* cstr) { size_t len = strlen(cstr); char* ncstr = new char[len]; strcpy(ncstr,cstr); return ncstr; } In that the whole point is to have 'original' be a buffer that fills with characters and routinely has its copy shaved and used elsewhere. To prevent leaks, I want to free up the memory held by 'shaved' to be used again after it passes through some arguments. There is probably a good reason for why this is restricted, but there should be some way to free the memory as by this configuration, there is no way to access the original owner (pointer) of the data.

    Read the article

  • How to gain Access to member variables of a class using void pointer but Not Object

    - by mahesh
    Hi, I am trying to access member variables of a class without using object. please let me know how to go about. class TestMem { int a; int b; public: TestMem(){} void TestMem1() { a = 10; b = 20; } }; void (TestMem::*pMem)(); int main(int argc, char* argv[]) { TestMem o1; pMem = &(TestMem::TestMem1); void *p = (void*)&pMem; // How to access a & b member variables using variable p getch(); return 0; }

    Read the article

  • How to convert struct to char array in C

    - by falcojr
    I'm trying to convert a struct to a char array to send over the network. However, I get some weird output from the char array when I do. #include <stdio.h> struct x { int x; } __attribute__((packed)); int main() { struct x a; a.x=127; char *b = (char *)&a; int i; for (i=0; i<4; i++) printf("%02x ", b[i]); printf("\n"); for (i=0; i<4; i++) printf("%d ", b[i]); printf("\n"); return 0; } Here is the output for various values of a.x (on an X86 using gcc): 127: 7f 00 00 00 127 0 0 0 128: ffffff80 00 00 00 -128 0 0 0 255: ffffffff 00 00 00 -1 0 0 0 256: 00 01 00 00 0 1 0 0 I understand the values for 127 and 256, but why do the numbers change when going to 128? Why wouldn't it just be: 80 00 00 00 128 0 0 0 Am I forgetting to do something in the conversion process or am I forgetting something about integer representation? *Note: This is just a small test program. In a real program I have more in the struct, better variable names, and I convert to little-endian. *Edit: formatting

    Read the article

  • Segmentation fault on writing char to char* address

    - by Lukas Dojcak
    hi guys, i've got problem with my little C program. Maybe you could help me. char* shiftujVzorku(char* text, char* pattern, int offset){ char* pom = text; int size = 0; int index = 0; while(*(text + size) != '\0'){ size++; } while(*(pom + index) != '\0'){ if(overVzorku(pom + index, pattern)){ while(*pattern != '\0'){ //vyment *pom s *pom + offset if(pom + index + offset < text + size){ char x = *(pom + index + offset); char y = *(pom + index); int adresa = *(pom + index + offset); *(pom + index + offset) = y; <<<<<< SEGMENTATION FAULT *(pom + index) = x; //*pom = *pom - *(pom + offset); //*(pom + offset) = *(pom + offset) + *pom; //*pom = *(pom + offset) - *pom; } else{ *pom = *pom - *(pom + offset - size); *(pom + offset - size) = *(pom + offset - size) + *pom; *pom = *(pom + offset - size) - *pom; } pattern++; } break; } index++; } return text; } Isn't important what's the programm doing. Mayby there's lot of bugs. But, why do I get SEGMENTATION FAULT (for destination see code) at this line? I'm, trying to write some char value to memory space, with help of address "pom + offset + index". Thanks for everything helpful. :)

    Read the article

  • Scanf fails with bus error

    - by Mikulas Dite
    I'm playing with C and I've run into this error: #include <stdio.h> int main () { char* foo; scanf("%s", foo); printf("entered %s", foo); return 0; } scanf takes pointer, foo is pointer, yet I get bus error. How can I make it work?

    Read the article

  • std::cin >> *aa results in a bus error

    - by Koning Baard XIV
    I have this a class called PPString: PPString.h #ifndef __CPP_PPString #define __CPP_PPString #include "PPObject.h" class PPString : public PPObject { char *stringValue[]; public: char *pointerToCharString(); void setCharString(char *charString[]); void setCharString(const char charString[]); }; #endif PPString.cpp #include "PPString.h" char *PPString::pointerToCharString() { return *stringValue; } void PPString::setCharString(char *charString[]) { *stringValue = *charString; } void PPString::setCharString(const char charString[]) { *stringValue = (char *)charString; } I'm trying to set the stringValue using std::cin: main.cpp PPString myString; myString.setCharString("LOLZ"); std::cout << myString.pointerToCharString() << std::endl; char *aa[1000]; std::cin >> *aa; myString.setCharString(aa); std::cout << myString.pointerToCharString() << std::endl; The first one, which uses a const char works, but the second one, with a char doesn't, and I get this output: copy and paste from STDOUT LOLZ im entering a string now... Bus error where the second line is what I entered, followed by pressing the return key. Can anyone help me fixing this? Thanks...

    Read the article

  • Whats the problem with int *p; *p=23;

    - by piemesons
    Yesterday in my interview I was asked this question. (At that time I was highly pressurized by so many abrupt questions). int *p; *p=23; printf('%d',*p); Is there any problem with this code? I explained him that you are trying to assign value to a pointer to whom memory is not allocated. But the way he reacted, it was like I am wrong. Although I got the job but after that he said Mohit think about this question again. I don't know what he was trying to say. Please let me know is there any problem in my answer?

    Read the article

  • Get Function Pointer to function in a shared library I didn't directly load

    - by bdk
    My Linux application (A) links against a Third Party shared Library (B) which I don't have source code to. This library makes use of another third party shared library that I don't have source code to (C). I believe that (B) uses dlopen to access (C) instead of directly linking. My reasoning for this is that 'ldd' on (B) does not show (C) and objdump -X (B) shows references to dlopen/dlclose/dlsym. My requirement is that I need to in my code for (A) get a function pointer to a function foo() located in (C). Normally I'd use dlsym for this, but I need to pass it the handle returned from dlopen which I don't have since (B) does not expose this. - For the larger context: I need to modify the function in (C) such that everytime it calls its helper function bar() (also located in (C)), it also calls a function with the same signature located in (A) with the same parameters (Basically inject my code into the codepath of (C) foo()-bar(). I believe I've found a way to accomplish this using gdb, but in order to port my gdb command list, but I'm stuck on the step of getting the function pointer. I'm also open to alternatives to accomplish the same task rather than the exact problem as stated above Edit: After writing this I realized I can probably just do another dlopen on the file in my code and the symbols returned via dlsym on that handle should be the same as received via the original dlopen, If I'm reading the dlopen man page correctly. However I'm still interested in advice or assistance with the my larger context, If theres a better way to go about this

    Read the article

  • generic programming in C with void pointer.

    - by Nyan
    Hi everyone, even though it is possible to write generic code in C using void pointer(generic pointer), I find that it is quite difficult to debug the code since void pointer can take any pointer type without warning from compiler. (e.g function foo() take void pointer which is supposed to be pointer to struct, but compiler won't complain if char array is passed.) What kind of approach/strategy do you all use when using void pointer in C?

    Read the article

< Previous Page | 65 66 67 68 69 70 71 72 73 74 75 76  | Next Page >