Search Results

Search found 17610 results on 705 pages for 'specific'.

Page 701/705 | < Previous Page | 697 698 699 700 701 702 703 704 705  | Next Page >

  • Windows Azure: Backup Services Release, Hyper-V Recovery Manager, VM Enhancements, Enhanced Enterprise Management Support

    - by ScottGu
    This morning we released a huge set of updates to Windows Azure.  These new capabilities include: Backup Services: General Availability of Windows Azure Backup Services Hyper-V Recovery Manager: Public preview of Windows Azure Hyper-V Recovery Manager Virtual Machines: Delete Attached Disks, Availability Set Warnings, SQL AlwaysOn Configuration Active Directory: Securely manage hundreds of SaaS applications Enterprise Management: Use Active Directory to Better Manage Windows Azure Windows Azure SDK 2.2: A massive update of our SDK + Visual Studio tooling support All of these improvements are now available to use immediately.  Below are more details about them. Backup Service: General Availability Release of Windows Azure Backup Today we are releasing Windows Azure Backup Service as a general availability service.  This release is now live in production, backed by an enterprise SLA, supported by Microsoft Support, and is ready to use for production scenarios. Windows Azure Backup is a cloud based backup solution for Windows Server which allows files and folders to be backed up and recovered from the cloud, and provides off-site protection against data loss. The service provides IT administrators and developers with the option to back up and protect critical data in an easily recoverable way from any location with no upfront hardware cost. Windows Azure Backup is built on the Windows Azure platform and uses Windows Azure blob storage for storing customer data. Windows Server uses the downloadable Windows Azure Backup Agent to transfer file and folder data securely and efficiently to the Windows Azure Backup Service. Along with providing cloud backup for Windows Server, Windows Azure Backup Service also provides capability to backup data from System Center Data Protection Manager and Windows Server Essentials, to the cloud. All data is encrypted onsite before it is sent to the cloud, and customers retain and manage the encryption key (meaning the data is stored entirely secured and can’t be decrypted by anyone but yourself). Getting Started To get started with the Windows Azure Backup Service, create a new Backup Vault within the Windows Azure Management Portal.  Click New->Data Services->Recovery Services->Backup Vault to do this: Once the backup vault is created you’ll be presented with a simple tutorial that will help guide you on how to register your Windows Servers with it: Once the servers you want to backup are registered, you can use the appropriate local management interface (such as the Microsoft Management Console snap-in, System Center Data Protection Manager Console, or Windows Server Essentials Dashboard) to configure the scheduled backups and to optionally initiate recoveries. You can follow these tutorials to learn more about how to do this: Tutorial: Schedule Backups Using the Windows Azure Backup Agent This tutorial helps you with setting up a backup schedule for your registered Windows Servers. Additionally, it also explains how to use Windows PowerShell cmdlets to set up a custom backup schedule. Tutorial: Recover Files and Folders Using the Windows Azure Backup Agent This tutorial helps you with recovering data from a backup. Additionally, it also explains how to use Windows PowerShell cmdlets to do the same tasks. Below are some of the key benefits the Windows Azure Backup Service provides: Simple configuration and management. Windows Azure Backup Service integrates with the familiar Windows Server Backup utility in Windows Server, the Data Protection Manager component in System Center and Windows Server Essentials, in order to provide a seamless backup and recovery experience to a local disk, or to the cloud. Block level incremental backups. The Windows Azure Backup Agent performs incremental backups by tracking file and block level changes and only transferring the changed blocks, hence reducing the storage and bandwidth utilization. Different point-in-time versions of the backups use storage efficiently by only storing the changes blocks between these versions. Data compression, encryption and throttling. The Windows Azure Backup Agent ensures that data is compressed and encrypted on the server before being sent to the Windows Azure Backup Service over the network. As a result, the Windows Azure Backup Service only stores encrypted data in the cloud storage. The encryption key is not available to the Windows Azure Backup Service, and as a result the data is never decrypted in the service. Also, users can setup throttling and configure how the Windows Azure Backup service utilizes the network bandwidth when backing up or restoring information. Data integrity is verified in the cloud. In addition to the secure backups, the backed up data is also automatically checked for integrity once the backup is done. As a result, any corruptions which may arise due to data transfer can be easily identified and are fixed automatically. Configurable retention policies for storing data in the cloud. The Windows Azure Backup Service accepts and implements retention policies to recycle backups that exceed the desired retention range, thereby meeting business policies and managing backup costs. Hyper-V Recovery Manager: Now Available in Public Preview I’m excited to also announce the public preview of a new Windows Azure Service – the Windows Azure Hyper-V Recovery Manager (HRM). Windows Azure Hyper-V Recovery Manager helps protect your business critical services by coordinating the replication and recovery of System Center Virtual Machine Manager 2012 SP1 and System Center Virtual Machine Manager 2012 R2 private clouds at a secondary location. With automated protection, asynchronous ongoing replication, and orderly recovery, the Hyper-V Recovery Manager service can help you implement Disaster Recovery and restore important services accurately, consistently, and with minimal downtime. Application data in an Hyper-V Recovery Manager scenarios always travels on your on-premise replication channel. Only metadata (such as names of logical clouds, virtual machines, networks etc.) that is needed for orchestration is sent to Azure. All traffic sent to/from Azure is encrypted. You can begin using Windows Azure Hyper-V Recovery today by clicking New->Data Services->Recovery Services->Hyper-V Recovery Manager within the Windows Azure Management Portal.  You can read more about Windows Azure Hyper-V Recovery Manager in Brad Anderson’s 9-part series, Transform the datacenter. To learn more about setting up Hyper-V Recovery Manager follow our detailed step-by-step guide. Virtual Machines: Delete Attached Disks, Availability Set Warnings, SQL AlwaysOn Today’s Windows Azure release includes a number of nice updates to Windows Azure Virtual Machines.  These improvements include: Ability to Delete both VM Instances + Attached Disks in One Operation Prior to today’s release, when you deleted VMs within Windows Azure we would delete the VM instance – but not delete the drives attached to the VM.  You had to manually delete these yourself from the storage account.  With today’s update we’ve added a convenience option that now allows you to either retain or delete the attached disks when you delete the VM:   We’ve also added the ability to delete a cloud service, its deployments, and its role instances with a single action. This can either be a cloud service that has production and staging deployments with web and worker roles, or a cloud service that contains virtual machines.  To do this, simply select the Cloud Service within the Windows Azure Management Portal and click the “Delete” button: Warnings on Availability Sets with Only One Virtual Machine In Them One of the nice features that Windows Azure Virtual Machines supports is the concept of “Availability Sets”.  An “availability set” allows you to define a tier/role (e.g. webfrontends, databaseservers, etc) that you can map Virtual Machines into – and when you do this Windows Azure separates them across fault domains and ensures that at least one of them is always available during servicing operations.  This enables you to deploy applications in a high availability way. One issue we’ve seen some customers run into is where they define an availability set, but then forget to map more than one VM into it (which defeats the purpose of having an availability set).  With today’s release we now display a warning in the Windows Azure Management Portal if you have only one virtual machine deployed in an availability set to help highlight this: You can learn more about configuring the availability of your virtual machines here. Configuring SQL Server Always On SQL Server Always On is a great feature that you can use with Windows Azure to enable high availability and DR scenarios with SQL Server. Today’s Windows Azure release makes it even easier to configure SQL Server Always On by enabling “Direct Server Return” endpoints to be configured and managed within the Windows Azure Management Portal.  Previously, setting this up required using PowerShell to complete the endpoint configuration.  Starting today you can enable this simply by checking the “Direct Server Return” checkbox: You can learn more about how to use direct server return for SQL Server AlwaysOn availability groups here. Active Directory: Application Access Enhancements This summer we released our initial preview of our Application Access Enhancements for Windows Azure Active Directory.  This service enables you to securely implement single-sign-on (SSO) support against SaaS applications (including Office 365, SalesForce, Workday, Box, Google Apps, GitHub, etc) as well as LOB based applications (including ones built with the new Windows Azure AD support we shipped last week with ASP.NET and VS 2013). Since the initial preview we’ve enhanced our SAML federation capabilities, integrated our new password vaulting system, and shipped multi-factor authentication support. We've also turned on our outbound identity provisioning system and have it working with hundreds of additional SaaS Applications: Earlier this month we published an update on dates and pricing for when the service will be released in general availability form.  In this blog post we announced our intention to release the service in general availability form by the end of the year.  We also announced that the below features would be available in a free tier with it: SSO to every SaaS app we integrate with – Users can Single Sign On to any app we are integrated with at no charge. This includes all the top SAAS Apps and every app in our application gallery whether they use federation or password vaulting. Application access assignment and removal – IT Admins can assign access privileges to web applications to the users in their active directory assuring that every employee has access to the SAAS Apps they need. And when a user leaves the company or changes jobs, the admin can just as easily remove their access privileges assuring data security and minimizing IP loss User provisioning (and de-provisioning) – IT admins will be able to automatically provision users in 3rd party SaaS applications like Box, Salesforce.com, GoToMeeting, DropBox and others. We are working with key partners in the ecosystem to establish these connections, meaning you no longer have to continually update user records in multiple systems. Security and auditing reports – Security is a key priority for us. With the free version of these enhancements you'll get access to our standard set of access reports giving you visibility into which users are using which applications, when they were using them and where they are using them from. In addition, we'll alert you to un-usual usage patterns for instance when a user logs in from multiple locations at the same time. Our Application Access Panel – Users are logging in from every type of devices including Windows, iOS, & Android. Not all of these devices handle authentication in the same manner but the user doesn't care. They need to access their apps from the devices they love. Our Application Access Panel will support the ability for users to access access and launch their apps from any device and anywhere. You can learn more about our plans for application management with Windows Azure Active Directory here.  Try out the preview and start using it today. Enterprise Management: Use Active Directory to Better Manage Windows Azure Windows Azure Active Directory provides the ability to manage your organization in a directory which is hosted entirely in the cloud, or alternatively kept in sync with an on-premises Windows Server Active Directory solution (allowing you to seamlessly integrate with the directory you already have).  With today’s Windows Azure release we are integrating Windows Azure Active Directory even more within the core Windows Azure management experience, and enabling an even richer enterprise security offering.  Specifically: 1) All Windows Azure accounts now have a default Windows Azure Active Directory created for them.  You can create and map any users you want into this directory, and grant administrative rights to manage resources in Windows Azure to these users. 2) You can keep this directory entirely hosted in the cloud – or optionally sync it with your on-premises Windows Server Active Directory.  Both options are free.  The later approach is ideal for companies that wish to use their corporate user identities to sign-in and manage Windows Azure resources.  It also ensures that if an employee leaves an organization, his or her access control rights to the company’s Windows Azure resources are immediately revoked. 3) The Windows Azure Service Management APIs have been updated to support using Windows Azure Active Directory credentials to sign-in and perform management operations.  Prior to today’s release customers had to download and use management certificates (which were not scoped to individual users) to perform management operations.  We still support this management certificate approach (don’t worry – nothing will stop working).  But we think the new Windows Azure Active Directory authentication support enables an even easier and more secure way for customers to manage resources going forward.  4) The Windows Azure SDK 2.2 release (which is also shipping today) includes built-in support for the new Service Management APIs that authenticate with Windows Azure Active Directory, and now allow you to create and manage Windows Azure applications and resources directly within Visual Studio using your Active Directory credentials.  This, combined with updated PowerShell scripts that also support Active Directory, enables an end-to-end enterprise authentication story with Windows Azure. Below are some details on how all of this works: Subscriptions within a Directory As part of today’s update, we have associated all existing Window Azure accounts with a Windows Azure Active Directory (and created one for you if you don’t already have one). When you login to the Windows Azure Management Portal you’ll now see the directory name in the URI of the browser.  For example, in the screen-shot below you can see that I have a “scottgu” directory that my subscriptions are hosted within: Note that you can continue to use Microsoft Accounts (formerly known as Microsoft Live IDs) to sign-into Windows Azure.  These map just fine to a Windows Azure Active Directory – so there is no need to create new usernames that are specific to a directory if you don’t want to.  In the scenario above I’m actually logged in using my @hotmail.com based Microsoft ID which is now mapped to a “scottgu” active directory that was created for me.  By default everything will continue to work just like you used to before. Manage your Directory You can manage an Active Directory (including the one we now create for you by default) by clicking the “Active Directory” tab in the left-hand side of the portal.  This will list all of the directories in your account.  Clicking one the first time will display a getting started page that provides documentation and links to perform common tasks with it: You can use the built-in directory management support within the Windows Azure Management Portal to add/remove/manage users within the directory, enable multi-factor authentication, associate a custom domain (e.g. mycompanyname.com) with the directory, and/or rename the directory to whatever friendly name you want (just click the configure tab to do this).  You can also setup the directory to automatically sync with an on-premises Active Directory using the “Directory Integration” tab. Note that users within a directory by default do not have admin rights to login or manage Windows Azure based resources.  You still need to explicitly grant them co-admin permissions on a subscription for them to login or manage resources in Windows Azure.  You can do this by clicking the Settings tab on the left-hand side of the portal and then by clicking the administrators tab within it. Sign-In Integration within Visual Studio If you install the new Windows Azure SDK 2.2 release, you can now connect to Windows Azure from directly inside Visual Studio without having to download any management certificates.  You can now just right-click on the “Windows Azure” icon within the Server Explorer and choose the “Connect to Windows Azure” context menu option to do so: Doing this will prompt you to enter the email address of the username you wish to sign-in with (make sure this account is a user in your directory with co-admin rights on a subscription): You can use either a Microsoft Account (e.g. Windows Live ID) or an Active Directory based Organizational account as the email.  The dialog will update with an appropriate login prompt depending on which type of email address you enter: Once you sign-in you’ll see the Windows Azure resources that you have permissions to manage show up automatically within the Visual Studio server explorer and be available to start using: No downloading of management certificates required.  All of the authentication was handled using your Windows Azure Active Directory! Manage Subscriptions across Multiple Directories If you have already have multiple directories and multiple subscriptions within your Windows Azure account, we have done our best to create a good default mapping of your subscriptions->directories as part of today’s update.  If you don’t like the default subscription-to-directory mapping we have done you can click the Settings tab in the left-hand navigation of the Windows Azure Management Portal and browse to the Subscriptions tab within it: If you want to map a subscription under a different directory in your account, simply select the subscription from the list, and then click the “Edit Directory” button to choose which directory to map it to.  Mapping a subscription to a different directory takes only seconds and will not cause any of the resources within the subscription to recycle or stop working.  We’ve made the directory->subscription mapping process self-service so that you always have complete control and can map things however you want. Filtering By Directory and Subscription Within the Windows Azure Management Portal you can filter resources in the portal by subscription (allowing you to show/hide different subscriptions).  If you have subscriptions mapped to multiple directory tenants, we also now have a filter drop-down that allows you to filter the subscription list by directory tenant.  This filter is only available if you have multiple subscriptions mapped to multiple directories within your Windows Azure Account:   Windows Azure SDK 2.2 Today we are also releasing a major update of our Windows Azure SDK.  The Windows Azure SDK 2.2 release adds some great new features including: Visual Studio 2013 Support Integrated Windows Azure Sign-In support within Visual Studio Remote Debugging Cloud Services with Visual Studio Firewall Management support within Visual Studio for SQL Databases Visual Studio 2013 RTM VM Images for MSDN Subscribers Windows Azure Management Libraries for .NET Updated Windows Azure PowerShell Cmdlets and ScriptCenter I’ll post a follow-up blog shortly with more details about all of the above. Additional Updates In addition to the above enhancements, today’s release also includes a number of additional improvements: AutoScale: Richer time and date based scheduling support (set different rules on different dates) AutoScale: Ability to Scale to Zero Virtual Machines (very useful for Dev/Test scenarios) AutoScale: Support for time-based scheduling of Mobile Service AutoScale rules Operation Logs: Auditing support for Service Bus management operations Today we also shipped a major update to the Windows Azure SDK – Windows Azure SDK 2.2.  It has so much goodness in it that I have a whole second blog post coming shortly on it! :-) Summary Today’s Windows Azure release enables a bunch of great new scenarios, and enables a much richer enterprise authentication offering. If you don’t already have a Windows Azure account, you can sign-up for a free trial and start using all of the above features today.  Then visit the Windows Azure Developer Center to learn more about how to build apps with it. Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • Red Gate Coder interviews: Alex Davies

    - by Michael Williamson
    Alex Davies has been a software engineer at Red Gate since graduating from university, and is currently busy working on .NET Demon. We talked about tackling parallel programming with his actors framework, a scientific approach to debugging, and how JavaScript is going to affect the programming languages we use in years to come. So, if we start at the start, how did you get started in programming? When I was seven or eight, I was given a BBC Micro for Christmas. I had asked for a Game Boy, but my dad thought it would be better to give me a proper computer. For a year or so, I only played games on it, but then I found the user guide for writing programs in it. I gradually started doing more stuff on it and found it fun. I liked creating. As I went into senior school I continued to write stuff on there, trying to write games that weren’t very good. I got a real computer when I was fourteen and found ways to write BASIC on it. Visual Basic to start with, and then something more interesting than that. How did you learn to program? Was there someone helping you out? Absolutely not! I learnt out of a book, or by experimenting. I remember the first time I found a loop, I was like “Oh my God! I don’t have to write out the same line over and over and over again any more. It’s amazing!” When did you think this might be something that you actually wanted to do as a career? For a long time, I thought it wasn’t something that you would do as a career, because it was too much fun to be a career. I thought I’d do chemistry at university and some kind of career based on chemical engineering. And then I went to a careers fair at school when I was seventeen or eighteen, and it just didn’t interest me whatsoever. I thought “I could be a programmer, and there’s loads of money there, and I’m good at it, and it’s fun”, but also that I shouldn’t spoil my hobby. Now I don’t really program in my spare time any more, which is a bit of a shame, but I program all the rest of the time, so I can live with it. Do you think you learnt much about programming at university? Yes, definitely! I went into university knowing how to make computers do anything I wanted them to do. However, I didn’t have the language to talk about algorithms, so the algorithms course in my first year was massively important. Learning other language paradigms like functional programming was really good for breadth of understanding. Functional programming influences normal programming through design rather than actually using it all the time. I draw inspiration from it to write imperative programs which I think is actually becoming really fashionable now, but I’ve been doing it for ages. I did it first! There were also some courses on really odd programming languages, a bit of Prolog, a little bit of C. Having a little bit of each of those is something that I would have never done on my own, so it was important. And then there are knowledge-based courses which are about not programming itself but things that have been programmed like TCP. Those are really important for examples for how to approach things. Did you do any internships while you were at university? Yeah, I spent both of my summers at the same company. I thought I could code well before I went there. Looking back at the crap that I produced, it was only surpassed in its crappiness by all of the other code already in that company. I’m so much better at writing nice code now than I used to be back then. Was there just not a culture of looking after your code? There was, they just didn’t hire people for their abilities in that area. They hired people for raw IQ. The first indicator of it going wrong was that they didn’t have any computer scientists, which is a bit odd in a programming company. But even beyond that they didn’t have people who learnt architecture from anyone else. Most of them had started straight out of university, so never really had experience or mentors to learn from. There wasn’t the experience to draw from to teach each other. In the second half of my second internship, I was being given tasks like looking at new technologies and teaching people stuff. Interns shouldn’t be teaching people how to do their jobs! All interns are going to have little nuggets of things that you don’t know about, but they shouldn’t consistently be the ones who know the most. It’s not a good environment to learn. I was going to ask how you found working with people who were more experienced than you… When I reached Red Gate, I found some people who were more experienced programmers than me, and that was difficult. I’ve been coding since I was tiny. At university there were people who were cleverer than me, but there weren’t very many who were more experienced programmers than me. During my internship, I didn’t find anyone who I classed as being a noticeably more experienced programmer than me. So, it was a shock to the system to have valid criticisms rather than just formatting criticisms. However, Red Gate’s not so big on the actual code review, at least it wasn’t when I started. We did an entire product release and then somebody looked over all of the UI of that product which I’d written and say what they didn’t like. By that point, it was way too late and I’d disagree with them. Do you think the lack of code reviews was a bad thing? I think if there’s going to be any oversight of new people, then it should be continuous rather than chunky. For me I don’t mind too much, I could go out and get oversight if I wanted it, and in those situations I felt comfortable without it. If I was managing the new person, then maybe I’d be keener on oversight and then the right way to do it is continuously and in very, very small chunks. Have you had any significant projects you’ve worked on outside of a job? When I was a teenager I wrote all sorts of stuff. I used to write games, I derived how to do isomorphic projections myself once. I didn’t know what the word was so I couldn’t Google for it, so I worked it out myself. It was horrifically complicated. But it sort of tailed off when I started at university, and is now basically zero. If I do side-projects now, they tend to be work-related side projects like my actors framework, NAct, which I started in a down tools week. Could you explain a little more about NAct? It is a little C# framework for writing parallel code more easily. Parallel programming is difficult when you need to write to shared data. Sometimes parallel programming is easy because you don’t need to write to shared data. When you do need to access shared data, you could just have your threads pile in and do their work, but then you would screw up the data because the threads would trample on each other’s toes. You could lock, but locks are really dangerous if you’re using more than one of them. You get interactions like deadlocks, and that’s just nasty. Actors instead allows you to say this piece of data belongs to this thread of execution, and nobody else can read it. If you want to read it, then ask that thread of execution for a piece of it by sending a message, and it will send the data back by a message. And that avoids deadlocks as long as you follow some obvious rules about not making your actors sit around waiting for other actors to do something. There are lots of ways to write actors, NAct allows you to do it as if it was method calls on other objects, which means you get all the strong type-safety that C# programmers like. Do you think that this is suitable for the majority of parallel programming, or do you think it’s only suitable for specific cases? It’s suitable for most difficult parallel programming. If you’ve just got a hundred web requests which are all independent of each other, then I wouldn’t bother because it’s easier to just spin them up in separate threads and they can proceed independently of each other. But where you’ve got difficult parallel programming, where you’ve got multiple threads accessing multiple bits of data in multiple ways at different times, then actors is at least as good as all other ways, and is, I reckon, easier to think about. When you’re using actors, you presumably still have to write your code in a different way from you would otherwise using single-threaded code. You can’t use actors with any methods that have return types, because you’re not allowed to call into another actor and wait for it. If you want to get a piece of data out of another actor, then you’ve got to use tasks so that you can use “async” and “await” to await asynchronously for it. But other than that, you can still stick things in classes so it’s not too different really. Rather than having thousands of objects with mutable state, you can use component-orientated design, where there are only a few mutable classes which each have a small number of instances. Then there can be thousands of immutable objects. If you tend to do that anyway, then actors isn’t much of a jump. If I’ve already built my system without any parallelism, how hard is it to add actors to exploit all eight cores on my desktop? Usually pretty easy. If you can identify even one boundary where things look like messages and you have components where some objects live on one side and these other objects live on the other side, then you can have a granddaddy object on one side be an actor and it will parallelise as it goes across that boundary. Not too difficult. If we do get 1000-core desktop PCs, do you think actors will scale up? It’s hard. There are always in the order of twenty to fifty actors in my whole program because I tend to write each component as actors, and I tend to have one instance of each component. So this won’t scale to a thousand cores. What you can do is write data structures out of actors. I use dictionaries all over the place, and if you need a dictionary that is going to be accessed concurrently, then you could build one of those out of actors in no time. You can use queuing to marshal requests between different slices of the dictionary which are living on different threads. So it’s like a distributed hash table but all of the chunks of it are on the same machine. That means that each of these thousand processors has cached one small piece of the dictionary. I reckon it wouldn’t be too big a leap to start doing proper parallelism. Do you think it helps if actors get baked into the language, similarly to Erlang? Erlang is excellent in that it has thread-local garbage collection. C# doesn’t, so there’s a limit to how well C# actors can possibly scale because there’s a single garbage collected heap shared between all of them. When you do a global garbage collection, you’ve got to stop all of the actors, which is seriously expensive, whereas in Erlang garbage collections happen per-actor, so they’re insanely cheap. However, Erlang deviated from all the sensible language design that people have used recently and has just come up with crazy stuff. You can definitely retrofit thread-local garbage collection to .NET, and then it’s quite well-suited to support actors, even if it’s not baked into the language. Speaking of language design, do you have a favourite programming language? I’ll choose a language which I’ve never written before. I like the idea of Scala. It sounds like C#, only with some of the niggles gone. I enjoy writing static types. It means you don’t have to writing tests so much. When you say it doesn’t have some of the niggles? C# doesn’t allow the use of a property as a method group. It doesn’t have Scala case classes, or sum types, where you can do a switch statement and the compiler checks that you’ve checked all the cases, which is really useful in functional-style programming. Pattern-matching, in other words. That’s actually the major niggle. C# is pretty good, and I’m quite happy with C#. And what about going even further with the type system to remove the need for tests to something like Haskell? Or is that a step too far? I’m quite a pragmatist, I don’t think I could deal with trying to write big systems in languages with too few other users, especially when learning how to structure things. I just don’t know anyone who can teach me, and the Internet won’t teach me. That’s the main reason I wouldn’t use it. If I turned up at a company that writes big systems in Haskell, I would have no objection to that, but I wouldn’t instigate it. What about things in C#? For instance, there’s contracts in C#, so you can try to statically verify a bit more about your code. Do you think that’s useful, or just not worthwhile? I’ve not really tried it. My hunch is that it needs to be built into the language and be quite mathematical for it to work in real life, and that doesn’t seem to have ended up true for C# contracts. I don’t think anyone who’s tried them thinks they’re any good. I might be wrong. On a slightly different note, how do you like to debug code? I think I’m quite an odd debugger. I use guesswork extremely rarely, especially if something seems quite difficult to debug. I’ve been bitten spending hours and hours on guesswork and not being scientific about debugging in the past, so now I’m scientific to a fault. What I want is to see the bug happening in the debugger, to step through the bug happening. To watch the program going from a valid state to an invalid state. When there’s a bug and I can’t work out why it’s happening, I try to find some piece of evidence which places the bug in one section of the code. From that experiment, I binary chop on the possible causes of the bug. I suppose that means binary chopping on places in the code, or binary chopping on a stage through a processing cycle. Basically, I’m very stupid about how I debug. I won’t make any guesses, I won’t use any intuition, I will only identify the experiment that’s going to binary chop most effectively and repeat rather than trying to guess anything. I suppose it’s quite top-down. Is most of the time then spent in the debugger? Absolutely, if at all possible I will never debug using print statements or logs. I don’t really hold much stock in outputting logs. If there’s any bug which can be reproduced locally, I’d rather do it in the debugger than outputting logs. And with SmartAssembly error reporting, there’s not a lot that can’t be either observed in an error report and just fixed, or reproduced locally. And in those other situations, maybe I’ll use logs. But I hate using logs. You stare at the log, trying to guess what’s going on, and that’s exactly what I don’t like doing. You have to just look at it and see does this look right or wrong. We’ve covered how you get to grip with bugs. How do you get to grips with an entire codebase? I watch it in the debugger. I find little bugs and then try to fix them, and mostly do it by watching them in the debugger and gradually getting an understanding of how the code works using my process of binary chopping. I have to do a lot of reading and watching code to choose where my slicing-in-half experiment is going to be. The last time I did it was SmartAssembly. The old code was a complete mess, but at least it did things top to bottom. There wasn’t too much of some of the big abstractions where flow of control goes all over the place, into a base class and back again. Code’s really hard to understand when that happens. So I like to choose a little bug and try to fix it, and choose a bigger bug and try to fix it. Definitely learn by doing. I want to always have an aim so that I get a little achievement after every few hours of debugging. Once I’ve learnt the codebase I might be able to fix all the bugs in an hour, but I’d rather be using them as an aim while I’m learning the codebase. If I was a maintainer of a codebase, what should I do to make it as easy as possible for you to understand? Keep distinct concepts in different places. And name your stuff so that it’s obvious which concepts live there. You shouldn’t have some variable that gets set miles up the top of somewhere, and then is read miles down to choose some later behaviour. I’m talking from a very much SmartAssembly point of view because the old SmartAssembly codebase had tons and tons of these things, where it would read some property of the code and then deal with it later. Just thousands of variables in scope. Loads of things to think about. If you can keep concepts separate, then it aids me in my process of fixing bugs one at a time, because each bug is going to more or less be understandable in the one place where it is. And what about tests? Do you think they help at all? I’ve never had the opportunity to learn a codebase which has had tests, I don’t know what it’s like! What about when you’re actually developing? How useful do you find tests in finding bugs or regressions? Finding regressions, absolutely. Running bits of code that would be quite hard to run otherwise, definitely. It doesn’t happen very often that a test finds a bug in the first place. I don’t really buy nebulous promises like tests being a good way to think about the spec of the code. My thinking goes something like “This code works at the moment, great, ship it! Ah, there’s a way that this code doesn’t work. Okay, write a test, demonstrate that it doesn’t work, fix it, use the test to demonstrate that it’s now fixed, and keep the test for future regressions.” The most valuable tests are for bugs that have actually happened at some point, because bugs that have actually happened at some point, despite the fact that you think you’ve fixed them, are way more likely to appear again than new bugs are. Does that mean that when you write your code the first time, there are no tests? Often. The chance of there being a bug in a new feature is relatively unaffected by whether I’ve written a test for that new feature because I’m not good enough at writing tests to think of bugs that I would have written into the code. So not writing regression tests for all of your code hasn’t affected you too badly? There are different kinds of features. Some of them just always work, and are just not flaky, they just continue working whatever you throw at them. Maybe because the type-checker is particularly effective around them. Writing tests for those features which just tend to always work is a waste of time. And because it’s a waste of time I’ll tend to wait until a feature has demonstrated its flakiness by having bugs in it before I start trying to test it. You can get a feel for whether it’s going to be flaky code as you’re writing it. I try to write it to make it not flaky, but there are some things that are just inherently flaky. And very occasionally, I’ll think “this is going to be flaky” as I’m writing, and then maybe do a test, but not most of the time. How do you think your programming style has changed over time? I’ve got clearer about what the right way of doing things is. I used to flip-flop a lot between different ideas. Five years ago I came up with some really good ideas and some really terrible ideas. All of them seemed great when I thought of them, but they were quite diverse ideas, whereas now I have a smaller set of reliable ideas that are actually good for structuring code. So my code is probably more similar to itself than it used to be back in the day, when I was trying stuff out. I’ve got more disciplined about encapsulation, I think. There are operational things like I use actors more now than I used to, and that forces me to use immutability more than I used to. The first code that I wrote in Red Gate was the memory profiler UI, and that was an actor, I just didn’t know the name of it at the time. I don’t really use object-orientation. By object-orientation, I mean having n objects of the same type which are mutable. I want a constant number of objects that are mutable, and they should be different types. I stick stuff in dictionaries and then have one thing that owns the dictionary and puts stuff in and out of it. That’s definitely a pattern that I’ve seen recently. I think maybe I’m doing functional programming. Possibly. It’s plausible. If you had to summarise the essence of programming in a pithy sentence, how would you do it? Programming is the form of art that, without losing any of the beauty of architecture or fine art, allows you to produce things that people love and you make money from. So you think it’s an art rather than a science? It’s a little bit of engineering, a smidgeon of maths, but it’s not science. Like architecture, programming is on that boundary between art and engineering. If you want to do it really nicely, it’s mostly art. You can get away with doing architecture and programming entirely by having a good engineering mind, but you’re not going to produce anything nice. You’re not going to have joy doing it if you’re an engineering mind. Architects who are just engineering minds are not going to enjoy their job. I suppose engineering is the foundation on which you build the art. Exactly. How do you think programming is going to change over the next ten years? There will be an unfortunate shift towards dynamically-typed languages, because of JavaScript. JavaScript has an unfair advantage. JavaScript’s unfair advantage will cause more people to be exposed to dynamically-typed languages, which means other dynamically-typed languages crop up and the best features go into dynamically-typed languages. Then people conflate the good features with the fact that it’s dynamically-typed, and more investment goes into dynamically-typed languages. They end up better, so people use them. What about the idea of compiling other languages, possibly statically-typed, to JavaScript? It’s a reasonable idea. I would like to do it, but I don’t think enough people in the world are going to do it to make it pick up. The hordes of beginners are the lifeblood of a language community. They are what makes there be good tools and what makes there be vibrant community websites. And any particular thing which is the same as JavaScript only with extra stuff added to it, although it might be technically great, is not going to have the hordes of beginners. JavaScript is always to be quickest and easiest way for a beginner to start programming in the browser. And dynamically-typed languages are great for beginners. Compilers are pretty scary and beginners don’t write big code. And having your errors come up in the same place, whether they’re statically checkable errors or not, is quite nice for a beginner. If someone asked me to teach them some programming, I’d teach them JavaScript. If dynamically-typed languages are great for beginners, when do you think the benefits of static typing start to kick in? The value of having a statically typed program is in the tools that rely on the static types to produce a smooth IDE experience rather than actually telling me my compile errors. And only once you’re experienced enough a programmer that having a really smooth IDE experience makes a blind bit of difference, does static typing make a blind bit of difference. So it’s not really about size of codebase. If I go and write up a tiny program, I’m still going to get value out of writing it in C# using ReSharper because I’m experienced with C# and ReSharper enough to be able to write code five times faster if I have that help. Any other visions of the future? Nobody’s going to use actors. Because everyone’s going to be running on single-core VMs connected over network-ready protocols like JSON over HTTP. So, parallelism within one operating system is going to die. But until then, you should use actors. More Red Gater Coder interviews

    Read the article

  • How LINQ to Object statements work

    - by rajbk
    This post goes into detail as to now LINQ statements work when querying a collection of objects. This topic assumes you have an understanding of how generics, delegates, implicitly typed variables, lambda expressions, object/collection initializers, extension methods and the yield statement work. I would also recommend you read my previous two posts: Using Delegates in C# Part 1 Using Delegates in C# Part 2 We will start by writing some methods to filter a collection of data. Assume we have an Employee class like so: 1: public class Employee { 2: public int ID { get; set;} 3: public string FirstName { get; set;} 4: public string LastName {get; set;} 5: public string Country { get; set; } 6: } and a collection of employees like so: 1: var employees = new List<Employee> { 2: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 3: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 4: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 5: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" }, 6: }; Filtering We wish to  find all employees that have an even ID. We could start off by writing a method that takes in a list of employees and returns a filtered list of employees with an even ID. 1: static List<Employee> GetEmployeesWithEvenID(List<Employee> employees) { 2: var filteredEmployees = new List<Employee>(); 3: foreach (Employee emp in employees) { 4: if (emp.ID % 2 == 0) { 5: filteredEmployees.Add(emp); 6: } 7: } 8: return filteredEmployees; 9: } The method can be rewritten to return an IEnumerable<Employee> using the yield return keyword. 1: static IEnumerable<Employee> GetEmployeesWithEvenID(IEnumerable<Employee> employees) { 2: foreach (Employee emp in employees) { 3: if (emp.ID % 2 == 0) { 4: yield return emp; 5: } 6: } 7: } We put these together in a console application. 1: using System; 2: using System.Collections.Generic; 3: //No System.Linq 4:  5: public class Program 6: { 7: [STAThread] 8: static void Main(string[] args) 9: { 10: var employees = new List<Employee> { 11: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 12: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 13: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 14: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" }, 15: }; 16: var filteredEmployees = GetEmployeesWithEvenID(employees); 17:  18: foreach (Employee emp in filteredEmployees) { 19: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 20: emp.ID, emp.FirstName, emp.LastName, emp.Country); 21: } 22:  23: Console.ReadLine(); 24: } 25: 26: static IEnumerable<Employee> GetEmployeesWithEvenID(IEnumerable<Employee> employees) { 27: foreach (Employee emp in employees) { 28: if (emp.ID % 2 == 0) { 29: yield return emp; 30: } 31: } 32: } 33: } 34:  35: public class Employee { 36: public int ID { get; set;} 37: public string FirstName { get; set;} 38: public string LastName {get; set;} 39: public string Country { get; set; } 40: } Output: ID 2 First_Name Jim Last_Name Ashlock Country UK ID 4 First_Name Jill Last_Name Anderson Country AUS Our filtering method is too specific. Let us change it so that it is capable of doing different types of filtering and lets give our method the name Where ;-) We will add another parameter to our Where method. This additional parameter will be a delegate with the following declaration. public delegate bool Filter(Employee emp); The idea is that the delegate parameter in our Where method will point to a method that contains the logic to do our filtering thereby freeing our Where method from any dependency. The method is shown below: 1: static IEnumerable<Employee> Where(IEnumerable<Employee> employees, Filter filter) { 2: foreach (Employee emp in employees) { 3: if (filter(emp)) { 4: yield return emp; 5: } 6: } 7: } Making the change to our app, we create a new instance of the Filter delegate on line 14 with a target set to the method EmployeeHasEvenId. Running the code will produce the same output. 1: public delegate bool Filter(Employee emp); 2:  3: public class Program 4: { 5: [STAThread] 6: static void Main(string[] args) 7: { 8: var employees = new List<Employee> { 9: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 10: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 11: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 12: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 13: }; 14: var filterDelegate = new Filter(EmployeeHasEvenId); 15: var filteredEmployees = Where(employees, filterDelegate); 16:  17: foreach (Employee emp in filteredEmployees) { 18: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 19: emp.ID, emp.FirstName, emp.LastName, emp.Country); 20: } 21: Console.ReadLine(); 22: } 23: 24: static bool EmployeeHasEvenId(Employee emp) { 25: return emp.ID % 2 == 0; 26: } 27: 28: static IEnumerable<Employee> Where(IEnumerable<Employee> employees, Filter filter) { 29: foreach (Employee emp in employees) { 30: if (filter(emp)) { 31: yield return emp; 32: } 33: } 34: } 35: } 36:  37: public class Employee { 38: public int ID { get; set;} 39: public string FirstName { get; set;} 40: public string LastName {get; set;} 41: public string Country { get; set; } 42: } Lets use lambda expressions to inline the contents of the EmployeeHasEvenId method in place of the method. The next code snippet shows this change (see line 15).  For brevity, the Employee class declaration has been skipped. 1: public delegate bool Filter(Employee emp); 2:  3: public class Program 4: { 5: [STAThread] 6: static void Main(string[] args) 7: { 8: var employees = new List<Employee> { 9: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 10: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 11: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 12: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 13: }; 14: var filterDelegate = new Filter(EmployeeHasEvenId); 15: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 16:  17: foreach (Employee emp in filteredEmployees) { 18: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 19: emp.ID, emp.FirstName, emp.LastName, emp.Country); 20: } 21: Console.ReadLine(); 22: } 23: 24: static bool EmployeeHasEvenId(Employee emp) { 25: return emp.ID % 2 == 0; 26: } 27: 28: static IEnumerable<Employee> Where(IEnumerable<Employee> employees, Filter filter) { 29: foreach (Employee emp in employees) { 30: if (filter(emp)) { 31: yield return emp; 32: } 33: } 34: } 35: } 36:  The output displays the same two employees.  Our Where method is too restricted since it works with a collection of Employees only. Lets change it so that it works with any IEnumerable<T>. In addition, you may recall from my previous post,  that .NET 3.5 comes with a lot of predefined delegates including public delegate TResult Func<T, TResult>(T arg); We will get rid of our Filter delegate and use the one above instead. We apply these two changes to our code. 1: public class Program 2: { 3: [STAThread] 4: static void Main(string[] args) 5: { 6: var employees = new List<Employee> { 7: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 8: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 9: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 10: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 11: }; 12:  13: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 14:  15: foreach (Employee emp in filteredEmployees) { 16: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 17: emp.ID, emp.FirstName, emp.LastName, emp.Country); 18: } 19: Console.ReadLine(); 20: } 21: 22: static IEnumerable<T> Where<T>(IEnumerable<T> source, Func<T, bool> filter) { 23: foreach (var x in source) { 24: if (filter(x)) { 25: yield return x; 26: } 27: } 28: } 29: } We have successfully implemented a way to filter any IEnumerable<T> based on a  filter criteria. Projection Now lets enumerate on the items in the IEnumerable<Employee> we got from the Where method and copy them into a new IEnumerable<EmployeeFormatted>. The EmployeeFormatted class will only have a FullName and ID property. 1: public class EmployeeFormatted { 2: public int ID { get; set; } 3: public string FullName {get; set;} 4: } We could “project” our existing IEnumerable<Employee> into a new collection of IEnumerable<EmployeeFormatted> with the help of a new method. We will call this method Select ;-) 1: static IEnumerable<EmployeeFormatted> Select(IEnumerable<Employee> employees) { 2: foreach (var emp in employees) { 3: yield return new EmployeeFormatted { 4: ID = emp.ID, 5: FullName = emp.LastName + ", " + emp.FirstName 6: }; 7: } 8: } The changes are applied to our app. 1: public class Program 2: { 3: [STAThread] 4: static void Main(string[] args) 5: { 6: var employees = new List<Employee> { 7: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 8: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 9: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 10: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 11: }; 12:  13: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 14: var formattedEmployees = Select(filteredEmployees); 15:  16: foreach (EmployeeFormatted emp in formattedEmployees) { 17: Console.WriteLine("ID {0} Full_Name {1}", 18: emp.ID, emp.FullName); 19: } 20: Console.ReadLine(); 21: } 22:  23: static IEnumerable<T> Where<T>(IEnumerable<T> source, Func<T, bool> filter) { 24: foreach (var x in source) { 25: if (filter(x)) { 26: yield return x; 27: } 28: } 29: } 30: 31: static IEnumerable<EmployeeFormatted> Select(IEnumerable<Employee> employees) { 32: foreach (var emp in employees) { 33: yield return new EmployeeFormatted { 34: ID = emp.ID, 35: FullName = emp.LastName + ", " + emp.FirstName 36: }; 37: } 38: } 39: } 40:  41: public class Employee { 42: public int ID { get; set;} 43: public string FirstName { get; set;} 44: public string LastName {get; set;} 45: public string Country { get; set; } 46: } 47:  48: public class EmployeeFormatted { 49: public int ID { get; set; } 50: public string FullName {get; set;} 51: } Output: ID 2 Full_Name Ashlock, Jim ID 4 Full_Name Anderson, Jill We have successfully selected employees who have an even ID and then shaped our data with the help of the Select method so that the final result is an IEnumerable<EmployeeFormatted>.  Lets make our Select method more generic so that the user is given the freedom to shape what the output would look like. We can do this, like before, with lambda expressions. Our Select method is changed to accept a delegate as shown below. TSource will be the type of data that comes in and TResult will be the type the user chooses (shape of data) as returned from the selector delegate. 1:  2: static IEnumerable<TResult> Select<TSource, TResult>(IEnumerable<TSource> source, Func<TSource, TResult> selector) { 3: foreach (var x in source) { 4: yield return selector(x); 5: } 6: } We see the new changes to our app. On line 15, we use lambda expression to specify the shape of the data. In this case the shape will be of type EmployeeFormatted. 1:  2: public class Program 3: { 4: [STAThread] 5: static void Main(string[] args) 6: { 7: var employees = new List<Employee> { 8: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 9: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 10: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 11: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 12: }; 13:  14: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 15: var formattedEmployees = Select(filteredEmployees, (emp) => 16: new EmployeeFormatted { 17: ID = emp.ID, 18: FullName = emp.LastName + ", " + emp.FirstName 19: }); 20:  21: foreach (EmployeeFormatted emp in formattedEmployees) { 22: Console.WriteLine("ID {0} Full_Name {1}", 23: emp.ID, emp.FullName); 24: } 25: Console.ReadLine(); 26: } 27: 28: static IEnumerable<T> Where<T>(IEnumerable<T> source, Func<T, bool> filter) { 29: foreach (var x in source) { 30: if (filter(x)) { 31: yield return x; 32: } 33: } 34: } 35: 36: static IEnumerable<TResult> Select<TSource, TResult>(IEnumerable<TSource> source, Func<TSource, TResult> selector) { 37: foreach (var x in source) { 38: yield return selector(x); 39: } 40: } 41: } The code outputs the same result as before. On line 14 we filter our data and on line 15 we project our data. What if we wanted to be more expressive and concise? We could combine both line 14 and 15 into one line as shown below. Assuming you had to perform several operations like this on our collection, you would end up with some very unreadable code! 1: var formattedEmployees = Select(Where(employees, emp => emp.ID % 2 == 0), (emp) => 2: new EmployeeFormatted { 3: ID = emp.ID, 4: FullName = emp.LastName + ", " + emp.FirstName 5: }); A cleaner way to write this would be to give the appearance that the Select and Where methods were part of the IEnumerable<T>. This is exactly what extension methods give us. Extension methods have to be defined in a static class. Let us make the Select and Where extension methods on IEnumerable<T> 1: public static class MyExtensionMethods { 2: static IEnumerable<T> Where<T>(this IEnumerable<T> source, Func<T, bool> filter) { 3: foreach (var x in source) { 4: if (filter(x)) { 5: yield return x; 6: } 7: } 8: } 9: 10: static IEnumerable<TResult> Select<TSource, TResult>(this IEnumerable<TSource> source, Func<TSource, TResult> selector) { 11: foreach (var x in source) { 12: yield return selector(x); 13: } 14: } 15: } The creation of the extension method makes the syntax much cleaner as shown below. We can write as many extension methods as we want and keep on chaining them using this technique. 1: var formattedEmployees = employees 2: .Where(emp => emp.ID % 2 == 0) 3: .Select (emp => new EmployeeFormatted { ID = emp.ID, FullName = emp.LastName + ", " + emp.FirstName }); Making these changes and running our code produces the same result. 1: using System; 2: using System.Collections.Generic; 3:  4: public class Program 5: { 6: [STAThread] 7: static void Main(string[] args) 8: { 9: var employees = new List<Employee> { 10: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 11: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 12: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 13: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 14: }; 15:  16: var formattedEmployees = employees 17: .Where(emp => emp.ID % 2 == 0) 18: .Select (emp => 19: new EmployeeFormatted { 20: ID = emp.ID, 21: FullName = emp.LastName + ", " + emp.FirstName 22: } 23: ); 24:  25: foreach (EmployeeFormatted emp in formattedEmployees) { 26: Console.WriteLine("ID {0} Full_Name {1}", 27: emp.ID, emp.FullName); 28: } 29: Console.ReadLine(); 30: } 31: } 32:  33: public static class MyExtensionMethods { 34: static IEnumerable<T> Where<T>(this IEnumerable<T> source, Func<T, bool> filter) { 35: foreach (var x in source) { 36: if (filter(x)) { 37: yield return x; 38: } 39: } 40: } 41: 42: static IEnumerable<TResult> Select<TSource, TResult>(this IEnumerable<TSource> source, Func<TSource, TResult> selector) { 43: foreach (var x in source) { 44: yield return selector(x); 45: } 46: } 47: } 48:  49: public class Employee { 50: public int ID { get; set;} 51: public string FirstName { get; set;} 52: public string LastName {get; set;} 53: public string Country { get; set; } 54: } 55:  56: public class EmployeeFormatted { 57: public int ID { get; set; } 58: public string FullName {get; set;} 59: } Let’s change our code to return a collection of anonymous types and get rid of the EmployeeFormatted type. We see that the code produces the same output. 1: using System; 2: using System.Collections.Generic; 3:  4: public class Program 5: { 6: [STAThread] 7: static void Main(string[] args) 8: { 9: var employees = new List<Employee> { 10: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 11: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 12: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 13: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 14: }; 15:  16: var formattedEmployees = employees 17: .Where(emp => emp.ID % 2 == 0) 18: .Select (emp => 19: new { 20: ID = emp.ID, 21: FullName = emp.LastName + ", " + emp.FirstName 22: } 23: ); 24:  25: foreach (var emp in formattedEmployees) { 26: Console.WriteLine("ID {0} Full_Name {1}", 27: emp.ID, emp.FullName); 28: } 29: Console.ReadLine(); 30: } 31: } 32:  33: public static class MyExtensionMethods { 34: public static IEnumerable<T> Where<T>(this IEnumerable<T> source, Func<T, bool> filter) { 35: foreach (var x in source) { 36: if (filter(x)) { 37: yield return x; 38: } 39: } 40: } 41: 42: public static IEnumerable<TResult> Select<TSource, TResult>(this IEnumerable<TSource> source, Func<TSource, TResult> selector) { 43: foreach (var x in source) { 44: yield return selector(x); 45: } 46: } 47: } 48:  49: public class Employee { 50: public int ID { get; set;} 51: public string FirstName { get; set;} 52: public string LastName {get; set;} 53: public string Country { get; set; } 54: } To be more expressive, C# allows us to write our extension method calls as a query expression. Line 16 can be rewritten a query expression like so: 1: var formattedEmployees = from emp in employees 2: where emp.ID % 2 == 0 3: select new { 4: ID = emp.ID, 5: FullName = emp.LastName + ", " + emp.FirstName 6: }; When the compiler encounters an expression like the above, it simply rewrites it as calls to our extension methods.  So far we have been using our extension methods. The System.Linq namespace contains several extension methods for objects that implement the IEnumerable<T>. You can see a listing of these methods in the Enumerable class in the System.Linq namespace. Let’s get rid of our extension methods (which I purposefully wrote to be of the same signature as the ones in the Enumerable class) and use the ones provided in the Enumerable class. Our final code is shown below: 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; //Added 4:  5: public class Program 6: { 7: [STAThread] 8: static void Main(string[] args) 9: { 10: var employees = new List<Employee> { 11: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 12: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 13: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 14: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 15: }; 16:  17: var formattedEmployees = from emp in employees 18: where emp.ID % 2 == 0 19: select new { 20: ID = emp.ID, 21: FullName = emp.LastName + ", " + emp.FirstName 22: }; 23:  24: foreach (var emp in formattedEmployees) { 25: Console.WriteLine("ID {0} Full_Name {1}", 26: emp.ID, emp.FullName); 27: } 28: Console.ReadLine(); 29: } 30: } 31:  32: public class Employee { 33: public int ID { get; set;} 34: public string FirstName { get; set;} 35: public string LastName {get; set;} 36: public string Country { get; set; } 37: } 38:  39: public class EmployeeFormatted { 40: public int ID { get; set; } 41: public string FullName {get; set;} 42: } This post has shown you a basic overview of LINQ to Objects work by showning you how an expression is converted to a sequence of calls to extension methods when working directly with objects. It gets more interesting when working with LINQ to SQL where an expression tree is constructed – an in memory data representation of the expression. The C# compiler compiles these expressions into code that builds an expression tree at runtime. The provider can then traverse the expression tree and generate the appropriate SQL query. You can read more about expression trees in this MSDN article.

    Read the article

  • NTFS Corruption: Files created in Linux corrupted when Windows Boots

    - by Logan Mayfield
    I'm getting some file loss and corruption on my Win7/Ubuntu 12.04 dual boot setup. I have a large shared NTFS partition. I have my Windows Docs/Music/etc. directories on that file and have the comparable directors in Linux setup as a sym. link. I'm using ntfs-3g on the linux side of things to manage the ntfs partition. The shared partition is on a logical partition along with my Linux /home / and /swap partitions. The ntfs partition is mounted at boot time via fstab with the following options: ntfs-3g users,nls=utf8,locale=en_US.UTF-8,exec,rw The problem seems to be confined to newly created and recently edited files. I have not see data loss or corruption when creating/editing files in Windows and then moving over to Ubuntu. I've been using the sync command aggressively in Ubuntu to try to ensure everything is getting written to the HDD. I do not use hibernate in Windows so I know it's not the usual missing files due to Hibernation problem. I'm not seeing any mount related issues on dmesg. Most recently I had a set of files related to a LaTeX document go bad. Some of them show up in Ubuntu but I am unable to delete them. In the GUI file browser they are given thumbnails associated with files I created on my last boot of Windows. To be more specific: I created a few png files in Windows. The files corrupted by that Windows boot are associated with running PdfLatex on a file and are not image files. However, two of the corrupted files show up with the thumbnail image of one of the previously mentioned png files. The png files are not in the same directory as the latex files but they are both win the Document Folder tree. I've had sucess with using NTFS for shared data in the past and am hoping there's some quirk here I'm missing and it's not just bad luck. On one hand this appears to be some kind of Windows problem as data loss occurs when I boot to Windows after having worked in Ubuntu for a while. However, I'm assuming it's more on the Ubuntu end as it requires the special NTFS drivers. Edit for more info: This is a Lenovo Thinkpad L430. Purchased new in the last month. So it's a fairly fresh install. Many of the files on the shared partition were copied over from a previous NTFS formatted shared partition on another HDD. As requested: here's a sample chkdsk log. Some of the files its mentioning were files that got deleted off the partition while in Ubuntu. Others were created/edited but not deleted. Checking file system on D: Volume dismounted. All opened handles to this volume are now invalid. Volume label is Files. CHKDSK is verifying files (stage 1 of 3)... Attribute record of type 0x80 and instance tag 0x2 is cross linked starting at 0x789f47 for possibly 0x21 clusters. Some clusters occupied by attribute of type 0x80 and instance tag 0x2 in file 0x42 is already in use. Deleting corrupt attribute record (128, "") from file record segment 66. 86496 file records processed. File verification completed. 385 large file records processed. 0 bad file records processed. 0 EA records processed. 0 reparse records processed. CHKDSK is verifying indexes (stage 2 of 3)... Deleted invalid filename Screenshot from 2012-09-09 09:51:27.png (72) in directory 46. The NTFS file name attribute in file 0x48 is incorrect. 53 00 63 00 72 00 65 00 65 00 6e 00 73 00 68 00 S.c.r.e.e.n.s.h. 6f 00 74 00 20 00 66 00 72 00 6f 00 6d 00 20 00 o.t. .f.r.o.m. . 32 00 30 00 31 00 32 00 2d 00 30 00 39 00 2d 00 2.0.1.2.-.0.9.-. 30 00 39 00 20 00 30 00 39 00 3a 00 35 00 31 00 0.9. .0.9.:.5.1. 3a 00 32 00 37 00 2e 00 70 00 6e 00 67 00 0d 00 :.2.7...p.n.g... 00 00 00 00 00 00 90 94 49 1f 5e 00 00 80 d4 00 ......I.^.... File 72 has been orphaned since all its filenames were invalid Windows will recover the file in the orphan recovery phase. Correcting minor file name errors in file 72. Index entry found.000 of index $I30 in file 0x5 points to unused file 0x11. Deleting index entry found.000 in index $I30 of file 5. Index entry found.001 of index $I30 in file 0x5 points to unused file 0x16. Deleting index entry found.001 in index $I30 of file 5. Index entry found.002 of index $I30 in file 0x5 points to unused file 0x15. Deleting index entry found.002 in index $I30 of file 5. Index entry DOWNLO~1 of index $I30 in file 0x28 points to unused file 0x2b6. Deleting index entry DOWNLO~1 in index $I30 of file 40. Unable to locate the file name attribute of index entry Screenshot from 2012-09-09 09:51:27.png of index $I30 with parent 0x2e in file 0x48. Deleting index entry Screenshot from 2012-09-09 09:51:27.png in index $I30 of file 46. An index entry of index $I30 in file 0x32 points to file 0x151e8 which is beyond the MFT. Deleting index entry latexsheet.tex in index $I30 of file 50. An index entry of index $I30 in file 0x58bc points to file 0x151eb which is beyond the MFT. Deleting index entry D8CZ82PK in index $I30 of file 22716. An index entry of index $I30 in file 0x58bc points to file 0x151f7 which is beyond the MFT. Deleting index entry EGA4QEAX in index $I30 of file 22716. An index entry of index $I30 in file 0x58bc points to file 0x151e9 which is beyond the MFT. Deleting index entry NGTB469M in index $I30 of file 22716. An index entry of index $I30 in file 0x58bc points to file 0x151fb which is beyond the MFT. Deleting index entry WU5RKXAB in index $I30 of file 22716. Index entry comp220-lab3.synctex.gz of index $I30 in file 0xda69 points to unused file 0xd098. Deleting index entry comp220-lab3.synctex.gz in index $I30 of file 55913. Unable to locate the file name attribute of index entry comp220-numberGrammars.aux of index $I30 with parent 0xda69 in file 0xa276. Deleting index entry comp220-numberGrammars.aux in index $I30 of file 55913. The file reference 0x500000000cd43 of index entry comp220-numberGrammars.out of index $I30 with parent 0xda69 is not the same as 0x600000000cd43. Deleting index entry comp220-numberGrammars.out in index $I30 of file 55913. The file reference 0x500000000cd45 of index entry comp220-numberGrammars.pdf of index $I30 with parent 0xda69 is not the same as 0xc00000000cd45. Deleting index entry comp220-numberGrammars.pdf in index $I30 of file 55913. An index entry of index $I30 in file 0xda69 points to file 0x15290 which is beyond the MFT. Deleting index entry gram.aux in index $I30 of file 55913. An index entry of index $I30 in file 0xda69 points to file 0x15291 which is beyond the MFT. Deleting index entry gram.out in index $I30 of file 55913. An index entry of index $I30 in file 0xda69 points to file 0x15292 which is beyond the MFT. Deleting index entry gram.pdf in index $I30 of file 55913. Unable to locate the file name attribute of index entry comp230-quiz1.synctex.gz of index $I30 with parent 0xda6f in file 0xd183. Deleting index entry comp230-quiz1.synctex.gz in index $I30 of file 55919. An index entry of index $I30 in file 0xf3cc points to file 0x15283 which is beyond the MFT. Deleting index entry require-transform.rkt in index $I30 of file 62412. An index entry of index $I30 in file 0xf3cc points to file 0x15284 which is beyond the MFT. Deleting index entry set.rkt in index $I30 of file 62412. An index entry of index $I30 in file 0xf497 points to file 0x15280 which is beyond the MFT. Deleting index entry logger.rkt in index $I30 of file 62615. An index entry of index $I30 in file 0xf497 points to file 0x15281 which is beyond the MFT. Deleting index entry misc.rkt in index $I30 of file 62615. An index entry of index $I30 in file 0xf497 points to file 0x15282 which is beyond the MFT. Deleting index entry more-scheme.rkt in index $I30 of file 62615. An index entry of index $I30 in file 0xf5bf points to file 0x15285 which is beyond the MFT. Deleting index entry core-layout.rkt in index $I30 of file 62911. An index entry of index $I30 in file 0xf5e0 points to file 0x15286 which is beyond the MFT. Deleting index entry ref.scrbl in index $I30 of file 62944. An index entry of index $I30 in file 0xf6f0 points to file 0x15287 which is beyond the MFT. Deleting index entry base-render.rkt in index $I30 of file 63216. An index entry of index $I30 in file 0xf6f0 points to file 0x15288 which is beyond the MFT. Deleting index entry html-properties.rkt in index $I30 of file 63216. An index entry of index $I30 in file 0xf6f0 points to file 0x15289 which is beyond the MFT. Deleting index entry html-render.rkt in index $I30 of file 63216. An index entry of index $I30 in file 0xf6f0 points to file 0x1528b which is beyond the MFT. Deleting index entry latex-prefix.rkt in index $I30 of file 63216. An index entry of index $I30 in file 0xf6f0 points to file 0x1528c which is beyond the MFT. Deleting index entry latex-render.rkt in index $I30 of file 63216. An index entry of index $I30 in file 0xf6f0 points to file 0x1528e which is beyond the MFT. Deleting index entry scribble.tex in index $I30 of file 63216. An index entry of index $I30 in file 0xf717 points to file 0x1528a which is beyond the MFT. Deleting index entry lang.rkt in index $I30 of file 63255. An index entry of index $I30 in file 0xf721 points to file 0x1528d which is beyond the MFT. Deleting index entry lang.rkt in index $I30 of file 63265. An index entry of index $I30 in file 0xf764 points to file 0x1528f which is beyond the MFT. Deleting index entry lang.rkt in index $I30 of file 63332. An index entry of index $I30 in file 0x14261 points to file 0x15270 which is beyond the MFT. Deleting index entry fddff3ae9ae2221207f144821d475c08ec3d05 in index $I30 of file 82529. An index entry of index $I30 in file 0x14621 points to file 0x15268 which is beyond the MFT. Deleting index entry FETCH_HEAD in index $I30 of file 83489. An index entry of index $I30 in file 0x14650 points to file 0x15272 which is beyond the MFT. Deleting index entry 86 in index $I30 of file 83536. An index entry of index $I30 in file 0x14651 points to file 0x15266 which is beyond the MFT. Deleting index entry pack-7f54ce9f8218d2cd8d6815b8c07461b50584027f.idx in index $I30 of file 83537. An index entry of index $I30 in file 0x14651 points to file 0x15265 which is beyond the MFT. Deleting index entry pack-7f54ce9f8218d2cd8d6815b8c07461b50584027f.pack in index $I30 of file 83537. An index entry of index $I30 in file 0x146f1 points to file 0x15275 which is beyond the MFT. Deleting index entry master in index $I30 of file 83697. An index entry of index $I30 in file 0x146f6 points to file 0x15276 which is beyond the MFT. Deleting index entry remotes in index $I30 of file 83702. An index entry of index $I30 in file 0x1477d points to file 0x15278 which is beyond the MFT. Deleting index entry pad.rkt in index $I30 of file 83837. An index entry of index $I30 in file 0x14797 points to file 0x1527c which is beyond the MFT. Deleting index entry pad1.rkt in index $I30 of file 83863. An index entry of index $I30 in file 0x14810 points to file 0x1527d which is beyond the MFT. Deleting index entry cm.rkt in index $I30 of file 83984. An index entry of index $I30 in file 0x14926 points to file 0x1527e which is beyond the MFT. Deleting index entry multi-file-search.rkt in index $I30 of file 84262. An index entry of index $I30 in file 0x149ef points to file 0x1527f which is beyond the MFT. Deleting index entry com.rkt in index $I30 of file 84463. An index entry of index $I30 in file 0x14b47 points to file 0x15202 which is beyond the MFT. Deleting index entry COMMIT_EDITMSG in index $I30 of file 84807. An index entry of index $I30 in file 0x14b47 points to file 0x15279 which is beyond the MFT. Deleting index entry index in index $I30 of file 84807. An index entry of index $I30 in file 0x14b4c points to file 0x15274 which is beyond the MFT. Deleting index entry master in index $I30 of file 84812. An index entry of index $I30 in file 0x14b61 points to file 0x1520b which is beyond the MFT. Deleting index entry 02 in index $I30 of file 84833. An index entry of index $I30 in file 0x14b61 points to file 0x1525a which is beyond the MFT. Deleting index entry 28 in index $I30 of file 84833. An index entry of index $I30 in file 0x14b61 points to file 0x15208 which is beyond the MFT. Deleting index entry 29 in index $I30 of file 84833. An index entry of index $I30 in file 0x14b61 points to file 0x1521f which is beyond the MFT. Deleting index entry 2c in index $I30 of file 84833. An index entry of index $I30 in file 0x14b61 points to file 0x15261 which is beyond the MFT. Deleting index entry 2e in index $I30 of file 84833. An index entry of index $I30 in file 0x14b61 points to file 0x151f0 which is beyond the MFT. Deleting index entry 45 in index $I30 of file 84833. An index entry of index $I30 in file 0x14b61 points to file 0x1523e which is beyond the MFT. Deleting index entry 47 in index $I30 of file 84833. An index entry of index $I30 in file 0x14b61 points to file 0x151e5 which is beyond the MFT. Deleting index entry 49 in index $I30 of file 84833. An index entry of index $I30 in file 0x14b61 points to file 0x15214 which is beyond the MFT. Deleting index entry 58 in index $I30 of file 84833. Index entry 6e of index $I30 in file 0x14b61 points to unused file 0xd182. Deleting index entry 6e in index $I30 of file 84833. Unable to locate the file name attribute of index entry a0 of index $I30 with parent 0x14b61 in file 0xd29c. Deleting index entry a0 in index $I30 of file 84833. An index entry of index $I30 in file 0x14b61 points to file 0x1521b which is beyond the MFT. Deleting index entry cd in index $I30 of file 84833. An index entry of index $I30 in file 0x14b61 points to file 0x15249 which is beyond the MFT. Deleting index entry d6 in index $I30 of file 84833. An index entry of index $I30 in file 0x14b61 points to file 0x15242 which is beyond the MFT. Deleting index entry df in index $I30 of file 84833. An index entry of index $I30 in file 0x14b61 points to file 0x15227 which is beyond the MFT. Deleting index entry ea in index $I30 of file 84833. An index entry of index $I30 in file 0x14b61 points to file 0x1522e which is beyond the MFT. Deleting index entry f3 in index $I30 of file 84833. An index entry of index $I30 in file 0x14b61 points to file 0x151f2 which is beyond the MFT. Deleting index entry ff in index $I30 of file 84833. An index entry of index $I30 in file 0x14b62 points to file 0x15254 which is beyond the MFT. Deleting index entry 1ed39b36ad4bd48c91d22cbafd7390f1ea38da in index $I30 of file 84834. An index entry of index $I30 in file 0x14b75 points to file 0x15224 which is beyond the MFT. Deleting index entry 96260247010fe9811fea773c08c5f3a314df3f in index $I30 of file 84853. An index entry of index $I30 in file 0x14b79 points to file 0x15219 which is beyond the MFT. Deleting index entry 8f689724ca23528dd4f4ab8b475ace6edcb8f5 in index $I30 of file 84857. An index entry of index $I30 in file 0x14b7c points to file 0x15223 which is beyond the MFT. Deleting index entry 1df17cf850656be42c947cba6295d29c248d94 in index $I30 of file 84860. An index entry of index $I30 in file 0x14b7c points to file 0x15217 which is beyond the MFT. Deleting index entry 31db8a3c72a3e44769bbd8db58d36f8298242c in index $I30 of file 84860. An index entry of index $I30 in file 0x14b7c points to file 0x15267 which is beyond the MFT. Deleting index entry 8e1254d755ff1882d61c07011272bac3612f57 in index $I30 of file 84860. An index entry of index $I30 in file 0x14b82 points to file 0x15246 which is beyond the MFT. Deleting index entry f959bfaf9643c1b9e78d5ecf8f669133efdbf3 in index $I30 of file 84866. An index entry of index $I30 in file 0x14b88 points to file 0x151fe which is beyond the MFT. Deleting index entry 7e9aa15b1196b2c60116afa4ffa613397f2185 in index $I30 of file 84872. An index entry of index $I30 in file 0x14b8a points to file 0x151ea which is beyond the MFT. Deleting index entry 73cb0cd248e494bb508f41b55d862e84cdd6e0 in index $I30 of file 84874. An index entry of index $I30 in file 0x14b8e points to file 0x15264 which is beyond the MFT. Deleting index entry bd555d9f0383cc14c317120149e9376a8094c4 in index $I30 of file 84878. An index entry of index $I30 in file 0x14b96 points to file 0x15212 which is beyond the MFT. Deleting index entry 630dba40562d991bc6cbb6fed4ba638542e9c5 in index $I30 of file 84886. An index entry of index $I30 in file 0x14b99 points to file 0x151ec which is beyond the MFT. Deleting index entry 478be31ca8e538769246e22bba3330d81dc3c8 in index $I30 of file 84889. An index entry of index $I30 in file 0x14b99 points to file 0x15258 which is beyond the MFT. Deleting index entry 66c60c0a0f3253bc9a5112697e4cbb0dfc0c78 in index $I30 of file 84889. An index entry of index $I30 in file 0x14b9c points to file 0x15238 which is beyond the MFT. Deleting index entry 1c7ceeddc2953496f9ffbfc0b6fb28846e3fe3 in index $I30 of file 84892. An index entry of index $I30 in file 0x14b9c points to file 0x15247 which is beyond the MFT. Deleting index entry ae6e32ffc49d897d8f8aeced970a90d3653533 in index $I30 of file 84892. An index entry of index $I30 in file 0x14ba0 points to file 0x15233 which is beyond the MFT. Deleting index entry f71c7d874e45179a32e138b49bf007e5bbf514 in index $I30 of file 84896. Index entry 2e04fefbd794f050d45e7a717d009e39204431 of index $I30 in file 0x14ba7 points to unused file 0xd097. Deleting index entry 2e04fefbd794f050d45e7a717d009e39204431 in index $I30 of file 84903. An index entry of index $I30 in file 0x14baa points to file 0x15241 which is beyond the MFT. Deleting index entry 0dda7dec1c635cd646dfef308e403c2843d5dc in index $I30 of file 84906. An index entry of index $I30 in file 0x14baa points to file 0x151fc which is beyond the MFT. Deleting index entry 98151e654dd546edcfdec630bc82d90619ac8e in index $I30 of file 84906. An index entry of index $I30 in file 0x14bb1 points to file 0x151e9 which is beyond the MFT. Deleting index entry 1997c5be62ffeebc99253cced7608415e38e4e in index $I30 of file 84913. An index entry of index $I30 in file 0x14bb1 points to file 0x1521d which is beyond the MFT. Deleting index entry 6bf3aedefd3ac62d9c49cad72d05e8c0ad242c in index $I30 of file 84913. An index entry of index $I30 in file 0x14bb1 points to file 0x151f4 which is beyond the MFT. Deleting index entry 907b755afdca14c00be0010962d0861af29264 in index $I30 of file 84913. An index entry of index $I30 in file 0x14bb3 points to file 0x15218 which is beyond the MFT. Deleting index entry

    Read the article

  • Windows Azure: Import/Export Hard Drives, VM ACLs, Web Sockets, Remote Debugging, Continuous Delivery, New Relic, Billing Alerts and More

    - by ScottGu
    Two weeks ago we released a giant set of improvements to Windows Azure, as well as a significant update of the Windows Azure SDK. This morning we released another massive set of enhancements to Windows Azure.  Today’s new capabilities include: Storage: Import/Export Hard Disk Drives to your Storage Accounts HDInsight: General Availability of our Hadoop Service in the cloud Virtual Machines: New VM Gallery, ACL support for VIPs Web Sites: WebSocket and Remote Debugging Support Notification Hubs: Segmented customer push notification support with tag expressions TFS & GIT: Continuous Delivery Support for Web Sites + Cloud Services Developer Analytics: New Relic support for Web Sites + Mobile Services Service Bus: Support for partitioned queues and topics Billing: New Billing Alert Service that sends emails notifications when your bill hits a threshold you define All of these improvements are now available to use immediately (note that some features are still in preview).  Below are more details about them. Storage: Import/Export Hard Disk Drives to Windows Azure I am excited to announce the preview of our new Windows Azure Import/Export Service! The Windows Azure Import/Export Service enables you to move large amounts of on-premises data into and out of your Windows Azure Storage accounts. It does this by enabling you to securely ship hard disk drives directly to our Windows Azure data centers. Once we receive the drives we’ll automatically transfer the data to or from your Windows Azure Storage account.  This enables you to import or export massive amounts of data more quickly and cost effectively (and not be constrained by available network bandwidth). Encrypted Transport Our Import/Export service provides built-in support for BitLocker disk encryption – which enables you to securely encrypt data on the hard drives before you send it, and not have to worry about it being compromised even if the disk is lost/stolen in transit (since the content on the transported hard drives is completely encrypted and you are the only one who has the key to it).  The drive preparation tool we are shipping today makes setting up bitlocker encryption on these hard drives easy. How to Import/Export your first Hard Drive of Data You can read our Getting Started Guide to learn more about how to begin using the import/export service.  You can create import and export jobs via the Windows Azure Management Portal as well as programmatically using our Server Management APIs. It is really easy to create a new import or export job using the Windows Azure Management Portal.  Simply navigate to a Windows Azure storage account, and then click the new Import/Export tab now available within it (note: if you don’t have this tab make sure to sign-up for the Import/Export preview): Then click the “Create Import Job” or “Create Export Job” commands at the bottom of it.  This will launch a wizard that easily walks you through the steps required: For more comprehensive information about Import/Export, refer to Windows Azure Storage team blog.  You can also send questions and comments to the [email protected] email address. We think you’ll find this new service makes it much easier to move data into and out of Windows Azure, and it will dramatically cut down the network bandwidth required when working on large data migration projects.  We hope you like it. HDInsight: 100% Compatible Hadoop Service in the Cloud Last week we announced the general availability release of Windows Azure HDInsight. HDInsight is a 100% compatible Hadoop service that allows you to easily provision and manage Hadoop clusters for big data processing in Windows Azure.  This release is now live in production, backed by an enterprise SLA, supported 24x7 by Microsoft Support, and is ready to use for production scenarios. HDInsight allows you to use Apache Hadoop tools, such as Pig and Hive, to process large amounts of data in Windows Azure Blob Storage. Because data is stored in Windows Azure Blob Storage, you can choose to dynamically create Hadoop clusters only when you need them, and then shut them down when they are no longer required (since you pay only for the time the Hadoop cluster instances are running this provides a super cost effective way to use them).  You can create Hadoop clusters using either the Windows Azure Management Portal (see below) or using our PowerShell and Cross Platform Command line tools: The import/export hard drive support that came out today is a perfect companion service to use with HDInsight – the combination allows you to easily ingest, process and optionally export a limitless amount of data.  We’ve also integrated HDInsight with our Business Intelligence tools, so users can leverage familiar tools like Excel in order to analyze the output of jobs.  You can find out more about how to get started with HDInsight here. Virtual Machines: VM Gallery Enhancements Today’s update of Windows Azure brings with it a new Virtual Machine gallery that you can use to create new VMs in the cloud.  You can launch the gallery by doing New->Compute->Virtual Machine->From Gallery within the Windows Azure Management Portal: The new Virtual Machine Gallery includes some nice enhancements that make it even easier to use: Search: You can now easily search and filter images using the search box in the top-right of the dialog.  For example, simply type “SQL” and we’ll filter to show those images in the gallery that contain that substring. Category Tree-view: Each month we add more built-in VM images to the gallery.  You can continue to browse these using the “All” view within the VM Gallery – or now quickly filter them using the category tree-view on the left-hand side of the dialog.  For example, by selecting “Oracle” in the tree-view you can now quickly filter to see the official Oracle supplied images. MSDN and Supported checkboxes: With today’s update we are also introducing filters that makes it easy to filter out types of images that you may not be interested in. The first checkbox is MSDN: using this filter you can exclude any image that is not part of the Windows Azure benefits for MSDN subscribers (which have highly discounted pricing - you can learn more about the MSDN pricing here). The second checkbox is Supported: this filter will exclude any image that contains prerelease software, so you can feel confident that the software you choose to deploy is fully supported by Windows Azure and our partners. Sort options: We sort gallery images by what we think customers are most interested in, but sometimes you might want to sort using different views. So we’re providing some additional sort options, like “Newest,” to customize the image list for what suits you best. Pricing information: We now provide additional pricing information about images and options on how to cost effectively run them directly within the VM Gallery. The above improvements make it even easier to use the VM Gallery and quickly create launch and run Virtual Machines in the cloud. Virtual Machines: ACL Support for VIPs A few months ago we exposed the ability to configure Access Control Lists (ACLs) for Virtual Machines using Windows PowerShell cmdlets and our Service Management API. With today’s release, you can now configure VM ACLs using the Windows Azure Management Portal as well. You can now do this by clicking the new Manage ACL command in the Endpoints tab of a virtual machine instance: This will enable you to configure an ordered list of permit and deny rules to scope the traffic that can access your VM’s network endpoints. For example, if you were on a virtual network, you could limit RDP access to a Windows Azure virtual machine to only a few computers attached to your enterprise. Or if you weren’t on a virtual network you could alternatively limit traffic from public IPs that can access your workloads: Here is the default behaviors for ACLs in Windows Azure: By default (i.e. no rules specified), all traffic is permitted. When using only Permit rules, all other traffic is denied. When using only Deny rules, all other traffic is permitted. When there is a combination of Permit and Deny rules, all other traffic is denied. Lastly, remember that configuring endpoints does not automatically configure them within the VM if it also has firewall rules enabled at the OS level.  So if you create an endpoint using the Windows Azure Management Portal, Windows PowerShell, or REST API, be sure to also configure your guest VM firewall appropriately as well. Web Sites: Web Sockets Support With today’s release you can now use Web Sockets with Windows Azure Web Sites.  This feature enables you to easily integrate real-time communication scenarios within your web based applications, and is available at no extra charge (it even works with the free tier).  Higher level programming libraries like SignalR and socket.io are also now supported with it. You can enable Web Sockets support on a web site by navigating to the Configure tab of a Web Site, and by toggling Web Sockets support to “on”: Once Web Sockets is enabled you can start to integrate some really cool scenarios into your web applications.  Check out the new SignalR documentation hub on www.asp.net to learn more about some of the awesome scenarios you can do with it. Web Sites: Remote Debugging Support The Windows Azure SDK 2.2 we released two weeks ago introduced remote debugging support for Windows Azure Cloud Services. With today’s Windows Azure release we are extending this remote debugging support to also work with Windows Azure Web Sites. With live, remote debugging support inside of Visual Studio, you are able to have more visibility than ever before into how your code is operating live in Windows Azure. It is now super easy to attach the debugger and quickly see what is going on with your application in the cloud. Remote Debugging of a Windows Azure Web Site using VS 2013 Enabling the remote debugging of a Windows Azure Web Site using VS 2013 is really easy.  Start by opening up your web application’s project within Visual Studio. Then navigate to the “Server Explorer” tab within Visual Studio, and click on the deployed web-site you want to debug that is running within Windows Azure using the Windows Azure->Web Sites node in the Server Explorer.  Then right-click and choose the “Attach Debugger” option on it: When you do this Visual Studio will remotely attach the debugger to the Web Site running within Windows Azure.  The debugger will then stop the web site’s execution when it hits any break points that you have set within your web application’s project inside Visual Studio.  For example, below I set a breakpoint on the “ViewBag.Message” assignment statement within the HomeController of the standard ASP.NET MVC project template.  When I hit refresh on the “About” page of the web site within the browser, the breakpoint was triggered and I am now able to debug the app remotely using Visual Studio: Note above how we can debug variables (including autos/watchlist/etc), as well as use the Immediate and Command Windows. In the debug session above I used the Immediate Window to explore some of the request object state, as well as to dynamically change the ViewBag.Message property.  When we click the the “Continue” button (or press F5) the app will continue execution and the Web Site will render the content back to the browser.  This makes it super easy to debug web apps remotely. Tips for Better Debugging To get the best experience while debugging, we recommend publishing your site using the Debug configuration within Visual Studio’s Web Publish dialog. This will ensure that debug symbol information is uploaded to the Web Site which will enable a richer debug experience within Visual Studio.  You can find this option on the Web Publish dialog on the Settings tab: When you ultimately deploy/run the application in production we recommend using the “Release” configuration setting – the release configuration is memory optimized and will provide the best production performance.  To learn more about diagnosing and debugging Windows Azure Web Sites read our new Troubleshooting Windows Azure Web Sites in Visual Studio guide. Notification Hubs: Segmented Push Notification support with tag expressions In August we announced the General Availability of Windows Azure Notification Hubs - a powerful Mobile Push Notifications service that makes it easy to send high volume push notifications with low latency from any mobile app back-end.  Notification hubs can be used with any mobile app back-end (including ones built using our Mobile Services capability) and can also be used with back-ends that run in the cloud as well as on-premises. Beginning with the initial release, Notification Hubs allowed developers to send personalized push notifications to both individual users as well as groups of users by interest, by associating their devices with tags representing the logical target of the notification. For example, by registering all devices of customers interested in a favorite MLB team with a corresponding tag, it is possible to broadcast one message to millions of Boston Red Sox fans and another message to millions of St. Louis Cardinals fans with a single API call respectively. New support for using tag expressions to enable advanced customer segmentation With today’s release we are adding support for even more advanced customer targeting.  You can now identify customers that you want to send push notifications to by defining rich tag expressions. With tag expressions, you can now not only broadcast notifications to Boston Red Sox fans, but take that segmenting a step farther and reach more granular segments. This opens up a variety of scenarios, for example: Offers based on multiple preferences—e.g. send a game day vegetarian special to users tagged as both a Boston Red Sox fan AND a vegetarian Push content to multiple segments in a single message—e.g. rain delay information only to users who are tagged as either a Boston Red Sox fan OR a St. Louis Cardinal fan Avoid presenting subsets of a segment with irrelevant content—e.g. season ticket availability reminder to users who are tagged as a Boston Red Sox fan but NOT also a season ticket holder To illustrate with code, consider a restaurant chain app that sends an offer related to a Red Sox vs Cardinals game for users in Boston. Devices can be tagged by your app with location tags (e.g. “Loc:Boston”) and interest tags (e.g. “Follows:RedSox”, “Follows:Cardinals”), and then a notification can be sent by your back-end to “(Follows:RedSox || Follows:Cardinals) && Loc:Boston” in order to deliver an offer to all devices in Boston that follow either the RedSox or the Cardinals. This can be done directly in your server backend send logic using the code below: var notification = new WindowsNotification(messagePayload); hub.SendNotificationAsync(notification, "(Follows:RedSox || Follows:Cardinals) && Loc:Boston"); In your expressions you can use all Boolean operators: AND (&&), OR (||), and NOT (!).  Some other cool use cases for tag expressions that are now supported include: Social: To “all my group except me” - group:id && !user:id Events: Touchdown event is sent to everybody following either team or any of the players involved in the action: Followteam:A || Followteam:B || followplayer:1 || followplayer:2 … Hours: Send notifications at specific times. E.g. Tag devices with time zone and when it is 12pm in Seattle send to: GMT8 && follows:thaifood Versions and platforms: Send a reminder to people still using your first version for Android - version:1.0 && platform:Android For help on getting started with Notification Hubs, visit the Notification Hub documentation center.  Then download the latest NuGet package (or use the Notification Hubs REST APIs directly) to start sending push notifications using tag expressions.  They are really powerful and enable a bunch of great new scenarios. TFS & GIT: Continuous Delivery Support for Web Sites + Cloud Services With today’s Windows Azure release we are making it really easy to enable continuous delivery support with Windows Azure and Team Foundation Services.  Team Foundation Services is a cloud based offering from Microsoft that provides integrated source control (with both TFS and Git support), build server, test execution, collaboration tools, and agile planning support.  It makes it really easy to setup a team project (complete with automated builds and test runners) in the cloud, and it has really rich integration with Visual Studio. With today’s Windows Azure release it is now really easy to enable continuous delivery support with both TFS and Git based repositories hosted using Team Foundation Services.  This enables a workflow where when code is checked in, built successfully on an automated build server, and all tests pass on it – I can automatically have the app deployed on Windows Azure with zero manual intervention or work required. The below screen-shots demonstrate how to quickly setup a continuous delivery workflow to Windows Azure with a Git-based ASP.NET MVC project hosted using Team Foundation Services. Enabling Continuous Delivery to Windows Azure with Team Foundation Services The project I’m going to enable continuous delivery with is a simple ASP.NET MVC project whose source code I’m hosting using Team Foundation Services.  I did this by creating a “SimpleContinuousDeploymentTest” repository there using Git – and then used the new built-in Git tooling support within Visual Studio 2013 to push the source code to it.  Below is a screen-shot of the Git repository hosted within Team Foundation Services: I can access the repository within Visual Studio 2013 and easily make commits with it (as well as branch, merge and do other tasks).  Using VS 2013 I can also setup automated builds to take place in the cloud using Team Foundation Services every time someone checks in code to the repository: The cool thing about this is that I don’t have to buy or rent my own build server – Team Foundation Services automatically maintains its own build server farm and can automatically queue up a build for me (for free) every time someone checks in code using the above settings.  This build server (and automated testing) support now works with both TFS and Git based source control repositories. Connecting a Team Foundation Services project to Windows Azure Once I have a source repository hosted in Team Foundation Services with Automated Builds and Testing set up, I can then go even further and set it up so that it will be automatically deployed to Windows Azure when a source code commit is made to the repository (assuming the Build + Tests pass).  Enabling this is now really easy.  To set this up with a Windows Azure Web Site simply use the New->Compute->Web Site->Custom Create command inside the Windows Azure Management Portal.  This will create a dialog like below.  I gave the web site a name and then made sure the “Publish from source control” checkbox was selected: When we click next we’ll be prompted for the location of the source repository.  We’ll select “Team Foundation Services”: Once we do this we’ll be prompted for our Team Foundation Services account that our source repository is hosted under (in this case my TFS account is “scottguthrie”): When we click the “Authorize Now” button we’ll be prompted to give Windows Azure permissions to connect to the Team Foundation Services account.  Once we do this we’ll be prompted to pick the source repository we want to connect to.  Starting with today’s Windows Azure release you can now connect to both TFS and Git based source repositories.  This new support allows me to connect to the “SimpleContinuousDeploymentTest” respository we created earlier: Clicking the finish button will then create the Web Site with the continuous delivery hooks setup with Team Foundation Services.  Now every time someone pushes source control to the repository in Team Foundation Services, it will kick off an automated build, run all of the unit tests in the solution , and if they pass the app will be automatically deployed to our Web Site in Windows Azure.  You can monitor the history and status of these automated deployments using the Deployments tab within the Web Site: This enables a really slick continuous delivery workflow, and enables you to build and deploy apps in a really nice way. Developer Analytics: New Relic support for Web Sites + Mobile Services With today’s Windows Azure release we are making it really easy to enable Developer Analytics and Monitoring support with both Windows Azure Web Site and Windows Azure Mobile Services.  We are partnering with New Relic, who provide a great dev analytics and app performance monitoring offering, to enable this - and we have updated the Windows Azure Management Portal to make it really easy to configure. Enabling New Relic with a Windows Azure Web Site Enabling New Relic support with a Windows Azure Web Site is now really easy.  Simply navigate to the Configure tab of a Web Site and scroll down to the “developer analytics” section that is now within it: Clicking the “add-on” button will display some additional UI.  If you don’t already have a New Relic subscription, you can click the “view windows azure store” button to obtain a subscription (note: New Relic has a perpetually free tier so you can enable it even without paying anything): Clicking the “view windows azure store” button will launch the integrated Windows Azure Store experience we have within the Windows Azure Management Portal.  You can use this to browse from a variety of great add-on services – including New Relic: Select “New Relic” within the dialog above, then click the next button, and you’ll be able to choose which type of New Relic subscription you wish to purchase.  For this demo we’ll simply select the “Free Standard Version” – which does not cost anything and can be used forever:  Once we’ve signed-up for our New Relic subscription and added it to our Windows Azure account, we can go back to the Web Site’s configuration tab and choose to use the New Relic add-on with our Windows Azure Web Site.  We can do this by simply selecting it from the “add-on” dropdown (it is automatically populated within it once we have a New Relic subscription in our account): Clicking the “Save” button will then cause the Windows Azure Management Portal to automatically populate all of the needed New Relic configuration settings to our Web Site: Deploying the New Relic Agent as part of a Web Site The final step to enable developer analytics using New Relic is to add the New Relic runtime agent to our web app.  We can do this within Visual Studio by right-clicking on our web project and selecting the “Manage NuGet Packages” context menu: This will bring up the NuGet package manager.  You can search for “New Relic” within it to find the New Relic agent.  Note that there is both a 32-bit and 64-bit edition of it – make sure to install the version that matches how your Web Site is running within Windows Azure (note: you can configure your Web Site to run in either 32-bit or 64-bit mode using the Web Site’s “Configuration” tab within the Windows Azure Management Portal): Once we install the NuGet package we are all set to go.  We’ll simply re-publish the web site again to Windows Azure and New Relic will now automatically start monitoring the application Monitoring a Web Site using New Relic Now that the application has developer analytics support with New Relic enabled, we can launch the New Relic monitoring portal to start monitoring the health of it.  We can do this by clicking on the “Add Ons” tab in the left-hand side of the Windows Azure Management Portal.  Then select the New Relic add-on we signed-up for within it.  The Windows Azure Management Portal will provide some default information about the add-on when we do this.  Clicking the “Manage” button in the tray at the bottom will launch a new browser tab and single-sign us into the New Relic monitoring portal associated with our account: When we do this a new browser tab will launch with the New Relic admin tool loaded within it: We can now see insights into how our app is performing – without having to have written a single line of monitoring code.  The New Relic service provides a ton of great built-in monitoring features allowing us to quickly see: Performance times (including browser rendering speed) for the overall site and individual pages.  You can optionally set alert thresholds to trigger if the speed does not meet a threshold you specify. Information about where in the world your customers are hitting the site from (and how performance varies by region) Details on the latency performance of external services your web apps are using (for example: SQL, Storage, Twitter, etc) Error information including call stack details for exceptions that have occurred at runtime SQL Server profiling information – including which queries executed against your database and what their performance was And a whole bunch more… The cool thing about New Relic is that you don’t need to write monitoring code within your application to get all of the above reports (plus a lot more).  The New Relic agent automatically enables the CLR profiler within applications and automatically captures the information necessary to identify these.  This makes it super easy to get started and immediately have a rich developer analytics view for your solutions with very little effort. If you haven’t tried New Relic out yet with Windows Azure I recommend you do so – I think you’ll find it helps you build even better cloud applications.  Following the above steps will help you get started and deliver you a really good application monitoring solution in only minutes. Service Bus: Support for partitioned queues and topics With today’s release, we are enabling support within Service Bus for partitioned queues and topics. Enabling partitioning enables you to achieve a higher message throughput and better availability from your queues and topics. Higher message throughput is achieved by implementing multiple message brokers for each partitioned queue and topic.  The  multiple messaging stores will also provide higher availability. You can create a partitioned queue or topic by simply checking the Enable Partitioning option in the custom create wizard for a Queue or Topic: Read this article to learn more about partitioned queues and topics and how to take advantage of them today. Billing: New Billing Alert Service Today’s Windows Azure update enables a new Billing Alert Service Preview that enables you to get proactive email notifications when your Windows Azure bill goes above a certain monetary threshold that you configure.  This makes it easier to manage your bill and avoid potential surprises at the end of the month. With the Billing Alert Service Preview, you can now create email alerts to monitor and manage your monetary credits or your current bill total.  To set up an alert first sign-up for the free Billing Alert Service Preview.  Then visit the account management page, click on a subscription you have setup, and then navigate to the new Alerts tab that is available: The alerts tab allows you to setup email alerts that will be sent automatically once a certain threshold is hit.  For example, by clicking the “add alert” button above I can setup a rule to send myself email anytime my Windows Azure bill goes above $100 for the month: The Billing Alert Service will evolve to support additional aspects of your bill as well as support multiple forms of alerts such as SMS.  Try out the new Billing Alert Service Preview today and give us feedback. Summary Today’s Windows Azure release enables a ton of great new scenarios, and makes building applications hosted in the cloud even easier. If you don’t already have a Windows Azure account, you can sign-up for a free trial and start using all of the above features today.  Then visit the Windows Azure Developer Center to learn more about how to build apps with it. Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • Web Browser Control &ndash; Specifying the IE Version

    - by Rick Strahl
    I use the Internet Explorer Web Browser Control in a lot of my applications to display document type layout. HTML happens to be one of the most common document formats and displaying data in this format – even in desktop applications, is often way easier than using normal desktop technologies. One issue the Web Browser Control has that it’s perpetually stuck in IE 7 rendering mode by default. Even though IE 8 and now 9 have significantly upgraded the IE rendering engine to be more CSS and HTML compliant by default the Web Browser control will have none of it. IE 9 in particular – with its much improved CSS support and basic HTML 5 support is a big improvement and even though the IE control uses some of IE’s internal rendering technology it’s still stuck in the old IE 7 rendering by default. This applies whether you’re using the Web Browser control in a WPF application, a WinForms app, a FoxPro or VB classic application using the ActiveX control. Behind the scenes all these UI platforms use the COM interfaces and so you’re stuck by those same rules. Rendering Challenged To see what I’m talking about here are two screen shots rendering an HTML 5 doctype page that includes some CSS 3 functionality – rounded corners and border shadows - from an earlier post. One uses IE 9 as a standalone browser, and one uses a simple WPF form that includes the Web Browser control. IE 9 Browser:   Web Browser control in a WPF form: The IE 9 page displays this HTML correctly – you see the rounded corners and shadow displayed. Obviously the latter rendering using the Web Browser control in a WPF application is a bit lacking. Not only are the new CSS features missing but the page also renders in Internet Explorer’s quirks mode so all the margins, padding etc. behave differently by default, even though there’s a CSS reset applied on this page. If you’re building an application that intends to use the Web Browser control for a live preview of some HTML this is clearly undesirable. Feature Delegation via Registry Hacks Fortunately starting with Internet Explore 8 and later there’s a fix for this problem via a registry setting. You can specify a registry key to specify which rendering mode and version of IE should be used by that application. These are not global mind you – they have to be enabled for each application individually. There are two different sets of keys for 32 bit and 64 bit applications. 32 bit: HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Internet Explorer\MAIN\FeatureControl\FEATURE_BROWSER_EMULATION Value Key: yourapplication.exe 64 bit: HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Microsoft\Internet Explorer\MAIN\FeatureControl\FEATURE_BROWSER_EMULATION Value Key: yourapplication.exe The value to set this key to is (taken from MSDN here) as decimal values: 9999 (0x270F) Internet Explorer 9. Webpages are displayed in IE9 Standards mode, regardless of the !DOCTYPE directive. 9000 (0x2328) Internet Explorer 9. Webpages containing standards-based !DOCTYPE directives are displayed in IE9 mode. 8888 (0x22B8) Webpages are displayed in IE8 Standards mode, regardless of the !DOCTYPE directive. 8000 (0x1F40) Webpages containing standards-based !DOCTYPE directives are displayed in IE8 mode. 7000 (0x1B58) Webpages containing standards-based !DOCTYPE directives are displayed in IE7 Standards mode.   The added key looks something like this in the Registry Editor: With this in place my Html Html Help Builder application which has wwhelp.exe as its main executable now works with HTML 5 and CSS 3 documents in the same way that Internet Explorer 9 does. Incidentally I accidentally added an ‘empty’ DWORD value of 0 to my EXE name and that worked as well giving me IE 9 rendering. Although not documented I suspect 0 (or an invalid value) will default to the installed browser. Don’t have a good way to test this but if somebody could try this with IE 8 installed that would be great: What happens when setting 9000 with IE 8 installed? What happens when setting 0 with IE 8 installed? Don’t forget to add Keys for Host Environments If you’re developing your application in Visual Studio and you run the debugger you may find that your application is still not rendering right, but if you run the actual generated EXE from Explorer or the OS command prompt it works. That’s because when you run the debugger in Visual Studio it wraps your application into a debugging host container. For this reason you might want to also add another registry key for yourapp.vshost.exe on your development machine. If you’re developing in Visual FoxPro make sure you add a key for vfp9.exe to see the rendering adjustments in the Visual FoxPro development environment. Cleaner HTML - no more HTML mangling! There are a number of additional benefits to setting up rendering of the Web Browser control to the IE 9 engine (or even the IE 8 engine) beyond the obvious rendering functionality. IE 9 actually returns your HTML in something that resembles the original HTML formatting, as opposed to the IE 7 default format which mangled the original HTML content. If you do the following in the WPF application: private void button2_Click(object sender, RoutedEventArgs e) { dynamic doc = this.webBrowser.Document; MessageBox.Show(doc.body.outerHtml); } you get different output depending on the rendering mode active. With the default IE 7 rendering you get: <BODY><DIV> <H1>Rounded Corners and Shadows - Creating Dialogs in CSS</H1> <DIV class=toolbarcontainer><A class=hoverbutton href="./"><IMG src="../../css/images/home.gif"> Home</A> <A class=hoverbutton href="RoundedCornersAndShadows.htm"><IMG src="../../css/images/refresh.gif"> Refresh</A> </DIV> <DIV class=containercontent> <FIELDSET><LEGEND>Plain Box</LEGEND><!-- Simple Box with rounded corners and shadow --> <DIV style="BORDER-BOTTOM: steelblue 2px solid; BORDER-LEFT: steelblue 2px solid; WIDTH: 550px; BORDER-TOP: steelblue 2px solid; BORDER-RIGHT: steelblue 2px solid" class="roundbox boxshadow"> <DIV style="BACKGROUND: khaki" class="boxcontenttext roundbox">Simple Rounded Corner Box. </DIV></DIV></FIELDSET> <FIELDSET><LEGEND>Box with Header</LEGEND> <DIV style="BORDER-BOTTOM: steelblue 2px solid; BORDER-LEFT: steelblue 2px solid; WIDTH: 550px; BORDER-TOP: steelblue 2px solid; BORDER-RIGHT: steelblue 2px solid" class="roundbox boxshadow"> <DIV class="gridheaderleft roundbox-top">Box with a Header</DIV> <DIV style="BACKGROUND: khaki" class="boxcontenttext roundbox-bottom">Simple Rounded Corner Box. </DIV></DIV></FIELDSET> <FIELDSET><LEGEND>Dialog Style Window</LEGEND> <DIV style="POSITION: relative; WIDTH: 450px" id=divDialog class="dialog boxshadow" jQuery16107208195684204002="2"> <DIV style="POSITION: relative" class=dialog-header> <DIV class=closebox></DIV>User Sign-in <DIV class=closebox jQuery16107208195684204002="3"></DIV></DIV> <DIV class=descriptionheader>This dialog is draggable and closable</DIV> <DIV class=dialog-content><LABEL>Username:</LABEL> <INPUT name=txtUsername value=" "> <LABEL>Password</LABEL> <INPUT name=txtPassword value=" "> <HR> <INPUT id=btnLogin value=Login type=button> </DIV> <DIV class=dialog-statusbar>Ready</DIV></DIV></FIELDSET> </DIV> <SCRIPT type=text/javascript>     $(document).ready(function () {         $("#divDialog")             .draggable({ handle: ".dialog-header" })             .closable({ handle: ".dialog-header",                 closeHandler: function () {                     alert("Window about to be closed.");                     return true;  // true closes - false leaves open                 }             });     }); </SCRIPT> </DIV></BODY> Now lest you think I’m out of my mind and create complete whacky HTML rooted in the last century, here’s the IE 9 rendering mode output which looks a heck of a lot cleaner and a lot closer to my original HTML of the page I’m accessing: <body> <div>         <h1>Rounded Corners and Shadows - Creating Dialogs in CSS</h1>     <div class="toolbarcontainer">         <a class="hoverbutton" href="./"> <img src="../../css/images/home.gif"> Home</a>         <a class="hoverbutton" href="RoundedCornersAndShadows.htm"> <img src="../../css/images/refresh.gif"> Refresh</a>     </div>         <div class="containercontent">     <fieldset>         <legend>Plain Box</legend>                <!-- Simple Box with rounded corners and shadow -->             <div style="border: 2px solid steelblue; width: 550px;" class="roundbox boxshadow">                              <div style="background: khaki;" class="boxcontenttext roundbox">                     Simple Rounded Corner Box.                 </div>             </div>     </fieldset>     <fieldset>         <legend>Box with Header</legend>         <div style="border: 2px solid steelblue; width: 550px;" class="roundbox boxshadow">                          <div class="gridheaderleft roundbox-top">Box with a Header</div>             <div style="background: khaki;" class="boxcontenttext roundbox-bottom">                 Simple Rounded Corner Box.             </div>         </div>     </fieldset>       <fieldset>         <legend>Dialog Style Window</legend>         <div style="width: 450px; position: relative;" id="divDialog" class="dialog boxshadow">             <div style="position: relative;" class="dialog-header">                 <div class="closebox"></div>                 User Sign-in             <div class="closebox"></div></div>             <div class="descriptionheader">This dialog is draggable and closable</div>                    <div class="dialog-content">                             <label>Username:</label>                 <input name="txtUsername" value=" " type="text">                 <label>Password</label>                 <input name="txtPassword" value=" " type="text">                                 <hr/>                                 <input id="btnLogin" value="Login" type="button">                        </div>             <div class="dialog-statusbar">Ready</div>         </div>     </fieldset>     </div> <script type="text/javascript">     $(document).ready(function () {         $("#divDialog")             .draggable({ handle: ".dialog-header" })             .closable({ handle: ".dialog-header",                 closeHandler: function () {                     alert("Window about to be closed.");                     return true;  // true closes - false leaves open                 }             });     }); </script>        </div> </body> IOW, in IE9 rendering mode IE9 is much closer (but not identical) to the original HTML from the page on the Web that we’re reading from. As a side note: Unfortunately, the browser feature emulation can't be applied against the Html Help (CHM) Engine in Windows which uses the Web Browser control (or COM interfaces anyway) to render Html Help content. I tried setting up hh.exe which is the help viewer, to use IE 9 rendering but a help file generated with CSS3 features will simply show in IE 7 mode. Bummer - this would have been a nice quick fix to allow help content served from CHM files to look better. HTML Editing leaves HTML formatting intact In the same vane, if you do any inline HTML editing in the control by setting content to be editable, IE 9’s control does a much more reasonable job of creating usable and somewhat valid HTML. It also leaves the original content alone other than the text your are editing or adding. No longer is the HTML output stripped of excess spaces and reformatted in IEs format. So if I do: private void button3_Click(object sender, RoutedEventArgs e) { dynamic doc = this.webBrowser.Document; doc.body.contentEditable = true; } and then make some changes to the document by typing into it using IE 9 mode, the document formatting stays intact and only the affected content is modified. The created HTML is reasonably clean (although it does lack proper XHTML formatting for things like <br/> <hr/>). This is very different from IE 7 mode which mangled the HTML as soon as the page was loaded into the control. Any editing you did stripped out all white space and lost all of your existing XHTML formatting. In IE 9 mode at least *most* of your original formatting stays intact. This is huge! In Html Help Builder I have supported HTML editing for a long time but the HTML mangling by the Web Browser control made it very difficult to edit the HTML later. Previously IE would mangle the HTML by stripping out spaces, upper casing all tags and converting many XHTML safe tags to its HTML 3 tags. Now IE leaves most of my document alone while editing, and creates cleaner and more compliant markup (with exception of self-closing elements like BR/HR). The end result is that I now have HTML editing in place that's much cleaner and actually capable of being manually edited. Caveats, Caveats, Caveats It wouldn't be Internet Explorer if there weren't some major compatibility issues involved in using this various browser version interaction. The biggest thing I ran into is that there are odd differences in some of the COM interfaces and what they return. I specifically ran into a problem with the document.selection.createRange() function which with IE 7 compatibility returns an expected text range object. When running in IE 8 or IE 9 mode however. I could not retrieve a valid text range with this code where loEdit is the WebBrowser control: loRange = loEdit.document.selection.CreateRange() The loRange object returned (here in FoxPro) had a length property of 0 but none of the other properties of the TextRange or TextRangeCollection objects were available. I figured this was due to some changed security settings but even after elevating the Intranet Security Zone and mucking with the other browser feature flags pertaining to security I had no luck. In the end I relented and used a JavaScript function in my editor document that returns a selection range object: function getselectionrange() { var range = document.selection.createRange(); return range; } and call that JavaScript function from my host applications code: *** Use a function in the document to get around HTML Editing issues loRange = loEdit.document.parentWindow.getselectionrange(.f.) and that does work correctly. This wasn't a big deal as I'm already loading a support script file into the editor page so all I had to do is add the function to this existing script file. You can find out more how to call script code in the Web Browser control from a host application in a previous post of mine. IE 8 and 9 also clamp down the security environment a little more than the default IE 7 control, so there may be other issues you run into. Other than the createRange() problem above I haven't seen anything else that is breaking in my code so far though and that's encouraging at least since it uses a lot of HTML document manipulation for the custom editor I've created (and would love to replace - any PROFESSIONAL alternatives anybody?) Registry Key Installation for your Application It’s important to remember that this registry setting is made per application, so most likely this is something you want to set up with your installer. Also remember that 32 and 64 bit settings require separate settings in the registry so if you’re creating your installer you most likely will want to set both keys in the registry preemptively for your application. I use Tarma Installer for all of my application installs and in Tarma I configure registry keys for both and set a flag to only install the latter key group in the 64 bit version: Because this setting is application specific you have to do this for every application you install unfortunately, but this also means that you can safely configure this setting in the registry because it is after only applied to your application. Another problem with install based installation is version detection. If IE 8 is installed I’d want 8000 for the value, if IE 9 is installed I want 9000. I can do this easily in code but in the installer this is much more difficult. I don’t have a good solution for this at the moment, but given that the app works with IE 7 mode now, IE 9 mode is just a bonus for the moment. If IE 9 is not installed and 9000 is used the default rendering will remain in use.   It sure would be nice if we could specify the IE rendering mode as a property, but I suspect the ActiveX container has to know before it loads what actual version to load up and once loaded can only load a single version of IE. This would account for this annoying application level configuration… Summary The registry feature emulation has been available for quite some time, but I just found out about it today and started experimenting around with it. I’m stoked to see that this is available as I’d pretty much given up in ever seeing any better rendering in the Web Browser control. Now at least my apps can take advantage of newer HTML features. Now if we could only get better HTML Editing support somehow <snicker>… ah can’t have everything.© Rick Strahl, West Wind Technologies, 2005-2011Posted in .NET  FoxPro  Windows  

    Read the article

  • What Every Developer Should Know About MSI Components

    - by Alois Kraus
    Hopefully nothing. But if you have to do more than simple XCopy deployment and you need to support updates, upgrades and perhaps side by side scenarios there is no way around MSI. You can create Msi files with a Visual Studio Setup project which is severely limited or you can use the Windows Installer Toolset. I cannot talk about WIX with my German colleagues because WIX has a very special meaning. It is funny to always use the long name when I talk about deployment possibilities. Alternatively you can buy commercial tools which help you to author Msi files but I am not sure how good they are. Given enough pain with existing solutions you can also learn the MSI Apis and create your own packaging solution. If I were you I would use either a commercial visual tool when you do easy deployments or use the free Windows Installer Toolset. Once you know the WIX schema you can create well formed wix xml files easily with any editor. Then you can “compile” from the wxs files your Msi package. Recently I had the “pleasure” to get my hands dirty with C++ (again) and the MSI technology. Installation is a complex topic but after several month of digging into arcane MSI issues I can safely say that there should exist an easier way to install and update files as today. I am not alone with this statement as John Robbins (creator of the cool tool Paraffin) states: “.. It's a brittle and scary API in Windows …”. To help other people struggling with installation issues I present you the advice I (and others) found useful and what will happen if you ignore this advice. What is a MSI file? A MSI file is basically a database with tables which reference each other to control how your un/installation should work. The basic idea is that you declare via these tables what you want to install and MSI controls the how to get your stuff onto or off your machine. Your “stuff” consists usually of files, registry keys, shortcuts and environment variables. Therefore the most important tables are File, Registry, Environment and Shortcut table which define what will be un/installed. The key to master MSI is that every resource (file, registry key ,…) is associated with a MSI component. The actual payload consists of compressed files in the CAB format which can either be embedded into the MSI file or reside beside the MSI file or in a subdirectory below it. To examine MSI files you need Orca a free MSI editor provided by MS. There is also another free editor called Super Orca which does support diffs between MSI and it does not lock the MSI files. But since Orca comes with a shell extension I tend to use only Orca because it is so easy to right click on a MSI file and open it with this tool. How Do I Install It? Double click it. This does work for fresh installations as well as major upgrades. Updates need to be installed via the command line via msiexec /i <msi> REINSTALL=ALL REINSTALLMODE=vomus   This tells the installer to reinstall all already installed features (new features will NOT be installed). The reinstallmode letters do force an overwrite of the old cached package in the %WINDIR%\Installer folder. All files, shortcuts and registry keys are redeployed if they are missing or need to be replaced with a newer version. When things did go really wrong and you want to overwrite everything unconditionally use REINSTALLMODE=vamus. How To Enable MSI Logs? You can download a MSI from Microsoft which installs some registry keys to enable full MSI logging. The log files can be found in your %TEMP% folder and are called MSIxxxx.log. Alternatively you can add to your msiexec command line the option msiexec …. /l*vx <LogFileName> Personally I find it rather strange that * does not mean full logging. To really get all logs I need to add v and x which is documented in the msiexec help but I still find this behavior unintuitive. What are MSI components? The whole MSI logic is bound to the concept of MSI components. Nearly every msi table has a Component column which binds an installable resource to a component. Below are the screenshots of the FeatureComponents and Component table of an example MSI. The Feature table defines basically the feature hierarchy.  To find out what belongs to a feature you need to look at the FeatureComponents table where for each feature the components are listed which will be installed when a feature is installed. The MSI components are defined in the  Component table. This table has as first column the component name and as second column the component id which is a GUID. All resources you want to install belong to a MSI component. Therefore nearly all MSI tables have a Component_ column which contains the component name. If you look e.g. a the File table you see that every file belongs to a component which is true for all other tables which install resources. The component table is the glue between all other tables which contain the resources you want to install. So far so easy. Why is MSI then so complex? Most MSI problems arise from the fact that you did violate a MSI component rule in one or the other way. When you install a feature the reference count for all components belonging to this feature will increase by one. If your component is installed by more than one feature it will get a higher refcount. When you uninstall a feature its refcount will drop by one. Interesting things happen if the component reference count reaches zero: Then all associated resources will be deleted. That looks like a reasonable thing and it is. What it makes complex are the strange component rules you have to follow. Below are some important component rules from the Tao of the Windows Installer … Rule 16: Follow Component Rules Components are a very important part of the Installer technology. They are the means whereby the Installer manages the resources that make up your application. The SDK provides the following guidelines for creating components in your package: Never create two components that install a resource under the same name and target location. If a resource must be duplicated in multiple components, change its name or target location in each component. This rule should be applied across applications, products, product versions, and companies. Two components must not have the same key path file. This is a consequence of the previous rule. The key path value points to a particular file or folder belonging to the component that the installer uses to detect the component. If two components had the same key path file, the installer would be unable to distinguish which component is installed. Two components however may share a key path folder. Do not create a version of a component that is incompatible with all previous versions of the component. This rule should be applied across applications, products, product versions, and companies. Do not create components containing resources that will need to be installed into more than one directory on the user’s system. The installer installs all of the resources in a component into the same directory. It is not possible to install some resources into subdirectories. Do not include more than one COM server per component. If a component contains a COM server, this must be the key path for the component. Do not specify more than one file per component as a target for the Start menu or a Desktop shortcut. … And these rules do not even talk about component ids, update packages and upgrades which you need to understand as well. Lets suppose you install two MSIs (MSI1 and MSI2) which have the same ComponentId but different component names. Both do install the same file. What will happen when you uninstall MSI2?   Hm the file should stay there. But the component names are different. Yes and yes. But MSI uses not use the component name as key for the refcount. Instead the ComponentId column of the Component table which contains a GUID is used as identifier under which the refcount is stored. The components Comp1 and Comp2 are identical from the MSI perspective. After the installation of both MSIs the Component with the Id {100000….} has a refcount of two. After uninstallation of one MSI there is still a refcount of one which drops to zero just as expected when we uninstall the last msi. Then the file which was the same for both MSIs is deleted. You should remember that MSI keeps a refcount across MSIs for components with the same component id. MSI does manage components not the resources you did install. The resources associated with a component are then and only then deleted when the refcount of the component reaches zero.   The dependencies between features, components and resources can be described as relations. m,k are numbers >= 1, n can be 0. Inside a MSI the following relations are valid Feature    1  –> n Components Component    1 –> m Features Component      1  –>  k Resources These relations express that one feature can install several components and features can share components between them. Every (meaningful) component will install at least one resource which means that its name (primary key to stay in database speak) does occur in some other table in the Component column as value which installs some resource. Lets make it clear with an example. We want to install with the feature MainFeature some files a registry key and a shortcut. We can then create components Comp1..3 which are referenced by the resources defined in the corresponding tables.   Feature Component Registry File Shortcuts MainFeature Comp1 RegistryKey1     MainFeature Comp2   File.txt   MainFeature Comp3   File2.txt Shortcut to File2.txt   It is illegal that the same resource is part of more than one component since this would break the refcount mechanism. Lets illustrate this:            Feature ComponentId Resource Reference Count Feature1 {1000-…} File1.txt 1 Feature2 {2000-….} File1.txt 1 The installation part works well but what happens when you uninstall Feature2? Component {20000…} gets a refcount of zero where MSI deletes all resources belonging to this component. In this case File1.txt will be deleted. But Feature1 still has another component {10000…} with a refcount of one which means that the file was deleted too early. You just have ruined your installation. To fix it you then need to click on the Repair button under Add/Remove Programs to let MSI reinstall any missing registry keys, files or shortcuts. The vigilant reader might has noticed that there is more in the Component table. Beside its name and GUID it has also an installation directory, attributes and a KeyPath. The KeyPath is a reference to a file or registry key which is used to detect if the component is already installed. This becomes important when you repair or uninstall a component. To find out if the component is already installed MSI checks if the registry key or file referenced by the KeyPath property does exist. When it does not exist it assumes that it was either already uninstalled (can lead to problems during uninstall) or that it is already installed and all is fine. Why is this detail so important? Lets put all files into one component. The KeyPath should be then one of the files of your component to check if it was installed or not. When your installation becomes corrupt because a file was deleted you cannot repair it with the Repair button under Add/Remove Programs because MSI checks the component integrity via the Resource referenced by its KeyPath. As long as you did not delete the KeyPath file MSI thinks all resources with your component are installed and never executes any repair action. You get even more trouble when you try to remove files during an upgrade (you cannot remove files during an update) from your super component which contains all files. The only way out and therefore best practice is to assign for every resource you want to install an extra component. This ensures painless updatability and repairs and you have much less effort to remove specific files during an upgrade. In effect you get this best practice relation Feature 1  –> n Components Component   1  –>  1 Resources MSI Component Rules Rule 1 – One component per resource Every resource you want to install (file, registry key, value, environment value, shortcut, directory, …) must get its own component which does never change between versions as long as the install location is the same. Penalty If you add more than one resources to a component you will break the repair capability of MSI because the KeyPath is used to check if the component needs repair. MSI ComponentId Files MSI 1.0 {1000} File1-5 MSI 2.0 {2000} File2-5 You want to remove File1 in version 2.0 of your MSI. Since you want to keep the other files you create a new component and add them there. MSI will delete all files if the component refcount of {1000} drops to zero. The files you want to keep are added to the new component {2000}. Ok that does work if your upgrade does uninstall the old MSI first. This will cause the refcount of all previously installed components to reach zero which means that all files present in version 1.0 are deleted. But there is a faster way to perform your upgrade by first installing your new MSI and then remove the old one.  If you choose this upgrade path then you will loose File1-5 after your upgrade and not only File1 as intended by your new component design.   Rule 2 – Only add, never remove resources from a component If you did follow rule 1 you will not need Rule 2. You can add in a patch more resources to one component. That is ok. But you can never remove anything from it. There are tricky ways around that but I do not want to encourage bad component design. Penalty Lets assume you have 2 MSI files which install under the same component one file   MSI1 MSI2 {1000} - ComponentId {1000} – ComponentId File1.txt File2.txt   When you install and uninstall both MSIs you will end up with an installation where either File1 or File2 will be left. Why? It seems that MSI does not store the resources associated with each component in its internal database. Instead Windows will simply query the MSI that is currently uninstalled for all resources belonging to this component. Since it will find only one file and not two it will only uninstall one file. That is the main reason why you never can remove resources from a component!   Rule 3 Never Remove A Component From an Update MSI. This is the same as if you change the GUID of a component by accident for your new update package. The resulting update package will not contain all components from the previously installed package. Penalty When you remove a component from a feature MSI will set the feature state during update to Advertised and log a warning message into its log file when you did enable MSI logging. SELMGR: ComponentId '{2DCEA1BA-3E27-E222-484C-D0D66AEA4F62}' is registered to feature 'xxxxxxx, but is not present in the Component table.  Removal of components from a feature is not supported! MSI (c) (24:44) [07:53:13:436]: SELMGR: Removal of a component from a feature is not supported Advertised means that MSI treats all components of this feature as not installed. As a consequence during uninstall nothing will be removed since it is not installed! This is not only bad because uninstall does no longer work but this feature will also not get the required patches. All other features which have followed component versioning rules for update packages will be updated but the one faulty feature will not. This results in very hard to find bugs why an update was only partially successful. Things got better with Windows Installer 4.5 but you cannot rely on that nobody will use an older installer. It is a good idea to add to your update msiexec call MSIENFORCEUPGRADECOMPONENTRULES=1 which will abort the installation if you did violate this rule.

    Read the article

  • Developing Spring Portlet for use inside Weblogic Portal / Webcenter Portal

    - by Murali Veligeti
    We need to understand the main difference between portlet workflow and servlet workflow.The main difference between portlet workflow and servlet workflow is that, the request to the portlet can have two distinct phases: 1) Action phase 2) Render phase. The Action phase is executed only once and is where any 'backend' changes or actions occur, such as making changes in a database. The Render phase then produces what is displayed to the user each time the display is refreshed. The critical point here is that for a single overall request, the action phase is executed only once, but the render phase may be executed multiple times. This provides a clean separation between the activities that modify the persistent state of your system and the activities that generate what is displayed to the user.The dual phases of portlet requests are one of the real strengths of the JSR-168 specification. For example, dynamic search results can be updated routinely on the display without the user explicitly re-running the search. Most other portlet MVC frameworks attempt to completely hide the two phases from the developer and make it look as much like traditional servlet development as possible - we think this approach removes one of the main benefits of using portlets. So, the separation of the two phases is preserved throughout the Spring Portlet MVC framework. The primary manifestation of this approach is that where the servlet version of the MVC classes will have one method that deals with the request, the portlet version of the MVC classes will have two methods that deal with the request: one for the action phase and one for the render phase. For example, where the servlet version of AbstractController has the handleRequestInternal(..) method, the portlet version of AbstractController has handleActionRequestInternal(..) and handleRenderRequestInternal(..) methods.The Spring Portlet Framework is designed around a DispatcherPortlet that dispatches requests to handlers, with configurable handler mappings and view resolution, just as the DispatcherServlet in the Spring Web Framework does.  Developing portlet.xml Let's start the sample development by creating the portlet.xml file in the /WebContent/WEB-INF/ folder as shown below: <?xml version="1.0" encoding="UTF-8"?> <portlet-app version="2.0" xmlns="http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <portlet> <portlet-name>SpringPortletName</portlet-name> <portlet-class>org.springframework.web.portlet.DispatcherPortlet</portlet-class> <supports> <mime-type>text/html</mime-type> <portlet-mode>view</portlet-mode> </supports> <portlet-info> <title>SpringPortlet</title> </portlet-info> </portlet> </portlet-app> DispatcherPortlet is responsible for handling every client request. When it receives a request, it finds out which Controller class should be used for handling this request, and then it calls its handleActionRequest() or handleRenderRequest() method based on the request processing phase. The Controller class executes business logic and returns a View name that should be used for rendering markup to the user. The DispatcherPortlet then forwards control to that View for actual markup generation. As you can see, DispatcherPortlet is the central dispatcher for use within Spring Portlet MVC Framework. Note that your portlet application can define more than one DispatcherPortlet. If it does so, then each of these portlets operates its own namespace, loading its application context and handler mapping. The DispatcherPortlet is also responsible for loading application context (Spring configuration file) for this portlet. First, it tries to check the value of the configLocation portlet initialization parameter. If that parameter is not specified, it takes the portlet name (that is, the value of the <portlet-name> element), appends "-portlet.xml" to it, and tries to load that file from the /WEB-INF folder. In the portlet.xml file, we did not specify the configLocation initialization parameter, so let's create SpringPortletName-portlet.xml file in the next section. Developing SpringPortletName-portlet.xml Create the SpringPortletName-portlet.xml file in the /WebContent/WEB-INF folder of your application as shown below: <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.0.xsd"> <bean id="viewResolver" class="org.springframework.web.servlet.view.InternalResourceViewResolver"> <property name="viewClass" value="org.springframework.web.servlet.view.JstlView"/> <property name="prefix" value="/jsp/"/> <property name="suffix" value=".jsp"/> </bean> <bean id="pointManager" class="com.wlp.spring.bo.internal.PointManagerImpl"> <property name="users"> <list> <ref bean="point1"/> <ref bean="point2"/> <ref bean="point3"/> <ref bean="point4"/> </list> </property> </bean> <bean id="point1" class="com.wlp.spring.bean.User"> <property name="name" value="Murali"/> <property name="points" value="6"/> </bean> <bean id="point2" class="com.wlp.spring.bean.User"> <property name="name" value="Sai"/> <property name="points" value="13"/> </bean> <bean id="point3" class="com.wlp.spring.bean.User"> <property name="name" value="Rama"/> <property name="points" value="43"/> </bean> <bean id="point4" class="com.wlp.spring.bean.User"> <property name="name" value="Krishna"/> <property name="points" value="23"/> </bean> <bean id="messageSource" class="org.springframework.context.support.ResourceBundleMessageSource"> <property name="basename" value="messages"/> </bean> <bean name="/users.htm" id="userController" class="com.wlp.spring.controller.UserController"> <property name="pointManager" ref="pointManager"/> </bean> <bean name="/pointincrease.htm" id="pointIncreaseController" class="com.wlp.spring.controller.IncreasePointsFormController"> <property name="sessionForm" value="true"/> <property name="pointManager" ref="pointManager"/> <property name="commandName" value="pointIncrease"/> <property name="commandClass" value="com.wlp.spring.bean.PointIncrease"/> <property name="formView" value="pointincrease"/> <property name="successView" value="users"/> </bean> <bean id="parameterMappingInterceptor" class="org.springframework.web.portlet.handler.ParameterMappingInterceptor" /> <bean id="portletModeParameterHandlerMapping" class="org.springframework.web.portlet.handler.PortletModeParameterHandlerMapping"> <property name="order" value="1" /> <property name="interceptors"> <list> <ref bean="parameterMappingInterceptor" /> </list> </property> <property name="portletModeParameterMap"> <map> <entry key="view"> <map> <entry key="pointincrease"> <ref bean="pointIncreaseController" /> </entry> <entry key="users"> <ref bean="userController" /> </entry> </map> </entry> </map> </property> </bean> <bean id="portletModeHandlerMapping" class="org.springframework.web.portlet.handler.PortletModeHandlerMapping"> <property name="order" value="2" /> <property name="portletModeMap"> <map> <entry key="view"> <ref bean="userController" /> </entry> </map> </property> </bean> </beans> The SpringPortletName-portlet.xml file is an application context file for your MVC portlet. It has a couple of bean definitions: viewController. At this point, remember that the viewController bean definition points to the com.ibm.developerworks.springmvc.ViewController.java class. portletModeHandlerMapping. As we discussed in the last section, whenever DispatcherPortlet gets a client request, it tries to find a suitable Controller class for handling that request. That is where PortletModeHandlerMapping comes into the picture. The PortletModeHandlerMapping class is a simple implementation of the HandlerMapping interface and is used by DispatcherPortlet to find a suitable Controller for every request. The PortletModeHandlerMapping class uses Portlet mode for the current request to find a suitable Controller class to use for handling the request. The portletModeMap property of portletModeHandlerMapping bean is the place where we map the Portlet mode name against the Controller class. In the sample code, we show that viewController is responsible for handling View mode requests. Developing UserController.java In the preceding section, you learned that the viewController bean is responsible for handling all the View mode requests. Your next step is to create the UserController.java class as shown below: public class UserController extends AbstractController { private PointManager pointManager; public void handleActionRequest(ActionRequest request, ActionResponse response) throws Exception { } public ModelAndView handleRenderRequest(RenderRequest request, RenderResponse response) throws ServletException, IOException { String now = (new java.util.Date()).toString(); Map<String, Object> myModel = new HashMap<String, Object>(); myModel.put("now", now); myModel.put("users", this.pointManager.getUsers()); return new ModelAndView("users", "model", myModel); } public void setPointManager(PointManager pointManager) { this.pointManager = pointManager; } } Every controller class in Spring Portlet MVC Framework must implement the org.springframework.web. portlet.mvc.Controller interface directly or indirectly. To make things easier, Spring Framework provides AbstractController class, which is the default implementation of the Controller interface. As a developer, you should always extend your controller from either AbstractController or one of its more specific subclasses. Any implementation of the Controller class should be reusable, thread-safe, and capable of handling multiple requests throughout the lifecycle of the portlet. In the sample code, we create the ViewController class by extending it from AbstractController. Because we don't want to do any action processing in the HelloSpringPortletMVC portlet, we override only the handleRenderRequest() method of AbstractController. Now, the only thing that HelloWorldPortletMVC should do is render the markup of View.jsp to the user when it receives a user request to do so. To do that, return the object of ModelAndView with a value of view equal to View. Developing web.xml According to Portlet Specification 1.0, every portlet application is also a Servlet Specification 2.3-compliant Web application, and it needs a Web application deployment descriptor (that is, web.xml). Let’s create the web.xml file in the /WEB-INF/ folder as shown in listing 4. Follow these steps: Open the existing web.xml file located at /WebContent/WEB-INF/web.xml. Replace the contents of this file with the code as shown below: <servlet> <servlet-name>ViewRendererServlet</servlet-name> <servlet-class>org.springframework.web.servlet.ViewRendererServlet</servlet-class> </servlet> <servlet-mapping> <servlet-name>ViewRendererServlet</servlet-name> <url-pattern>/WEB-INF/servlet/view</url-pattern> </servlet-mapping> <context-param> <param-name>contextConfigLocation</param-name> <param-value>/WEB-INF/applicationContext.xml</param-value> </context-param> <listener> <listener-class>org.springframework.web.context.ContextLoaderListener</listener-class> </listener> The web.xml file for the sample portlet declares two things: ViewRendererServlet. The ViewRendererServlet is the bridge servlet for portlet support. During the render phase, DispatcherPortlet wraps PortletRequest into ServletRequest and forwards control to ViewRendererServlet for actual rendering. This process allows Spring Portlet MVC Framework to use the same View infrastructure as that of its servlet version, that is, Spring Web MVC Framework. ContextLoaderListener. The ContextLoaderListener class takes care of loading Web application context at the time of the Web application startup. The Web application context is shared by all the portlets in the portlet application. In case of duplicate bean definition, the bean definition in the portlet application context takes precedence over the Web application context. The ContextLoader class tries to read the value of the contextConfigLocation Web context parameter to find out the location of the context file. If the contextConfigLocation parameter is not set, then it uses the default value, which is /WEB-INF/applicationContext.xml, to load the context file. The Portlet Controller interface requires two methods that handle the two phases of a portlet request: the action request and the render request. The action phase should be capable of handling an action request and the render phase should be capable of handling a render request and returning an appropriate model and view. While the Controller interface is quite abstract, Spring Portlet MVC offers a lot of controllers that already contain a lot of the functionality you might need – most of these are very similar to controllers from Spring Web MVC. The Controller interface just defines the most common functionality required of every controller - handling an action request, handling a render request, and returning a model and a view. How rendering works As you know, when the user tries to access a page with PointSystemPortletMVC portlet on it or when the user performs some action on any other portlet on that page or tries to refresh that page, a render request is sent to the PointSystemPortletMVC portlet. In the sample code, because DispatcherPortlet is the main portlet class, Weblogic Portal / Webcenter Portal calls its render() method and then the following sequence of events occurs: The render() method of DispatcherPortlet calls the doDispatch() method, which in turn calls the doRender() method. After the doRenderService() method gets control, first it tries to find out the locale of the request by calling the PortletRequest.getLocale() method. This locale is used while making all the locale-related decisions for choices such as which resource bundle should be loaded or which JSP should be displayed to the user based on the locale. After that, the doRenderService() method starts iterating through all the HandlerMapping classes configured for this portlet, calling their getHandler() method to identify the appropriate Controller for handling this request. In the sample code, we have configured only PortletModeHandlerMapping as a HandlerMapping class. The PortletModeHandlerMapping class reads the value of the current portlet mode, and based on that, it finds out, the Controller class that should be used to handle this request. In the sample code, ViewController is configured to handle the View mode request so that the PortletModeHandlerMapping class returns the object of ViewController. After the object of ViewController is returned, the doRenderService() method calls its handleRenderRequestInternal() method. Implementation of the handleRenderRequestInternal() method in ViewController.java is very simple. It logs a message saying that it got control, and then it creates an instance of ModelAndView with a value equal to View and returns it to DispatcherPortlet. After control returns to doRenderService(), the next task is to figure out how to render View. For that, DispatcherPortlet starts iterating through all the ViewResolvers configured in your portlet application, calling their resolveViewName() method. In the sample code we have configured only one ViewResolver, InternalResourceViewResolver. When its resolveViewName() method is called with viewName, it tries to add /WEB-INF/jsp as a prefix to the view name and to add JSP as a suffix. And it checks if /WEB-INF/jsp/View.jsp exists. If it does exist, it returns the object of JstlView wrapping View.jsp. After control is returned to the doRenderService() method, it creates the object PortletRequestDispatcher, which points to /WEB-INF/servlet/view – that is, ViewRendererServlet. Then it sets the object of JstlView in the request and dispatches the request to ViewRendererServlet. After ViewRendererServlet gets control, it reads the JstlView object from the request attribute and creates another RequestDispatcher pointing to the /WEB-INF/jsp/View.jsp URL and passes control to it for actual markup generation. The markup generated by View.jsp is returned to user. At this point, you may question the need for ViewRendererServlet. Why can't DispatcherPortlet directly forward control to View.jsp? Adding ViewRendererServlet in between allows Spring Portlet MVC Framework to reuse the existing View infrastructure. You may appreciate this more when we discuss how easy it is to integrate Apache Tiles Framework with your Spring Portlet MVC Framework. The attached project SpringPortlet.zip should be used to import the project in to your OEPE Workspace. SpringPortlet_Jars.zip contains jar files required for the application. Project is written on Spring 2.5.  The same JSR 168 portlet should work on Webcenter Portal as well.  Downloads: Download WeblogicPotal Project which consists of Spring Portlet. Download Spring Jars In-addition to above you need to download Spring.jar (Spring2.5)

    Read the article

  • An Honest look at SharePoint Web Services

    - by juanlarios
    INTRODUCTION If you are a SharePoint developer you know that there are two basic ways to develop against SharePoint. 1) The object Model 2) Web services. SharePoint object model has the advantage of being quite rich. Anything you can do through the SharePoint UI as an administrator or end user, you can do through the object model. In fact everything that is done through the UI is done through the object model behind the scenes. The major disadvantage to getting at SharePoint this way is that the code needs to run on the server. This means that all web parts, event receivers, features, etc… all of this is code that is deployed to the server. The second way to get to SharePoint is through the built in web services. There are many articles on how to manipulate web services, how to authenticate to them and interact with them. The basic idea is that a remote application or process can contact SharePoint through a web service. Lots has been written about how great these web services are. This article is written to document the limitations, some of the issues and frustrations with working with SharePoint built in web services. Ultimately, for the tasks I was given to , SharePoint built in web services did not suffice. My evaluation of SharePoint built in services was compared against creating my own WCF Services to do what I needed. The current project I'm working on right now involved several "integration points". A remote application, installed on a separate server was to contact SharePoint and perform an task or operation. So I decided to start up Visual Studio and built a DLL and basically have 2 layers of logic. An integration layer and a data layer. A good friend of mine pointed me to SOLID principles and referred me to some videos and tutorials about it. I decided to implement the methodology (although a lot of the principles are common sense and I already incorporated in my coding practices). I was to deliver this dll to the application team and they would simply call the methods exposed by this dll and voila! it would do some task or operation in SharePoint. SOLUTION My integration layer implemented an interface that defined some of the basic integration tasks that I was to put together. My data layer was about the same, it implemented an interface with some of the tasks that I was going to develop. This gave me the opportunity to develop different data layers, ultimately different ways to get at SharePoint if I needed to. This is a classic SOLID principle. In this case it proved to be quite helpful because I wrote one data layer completely implementing SharePoint built in Web Services and another implementing my own WCF Service that I wrote. I should mention there is another layer underneath the data layer. In referencing SharePoint or WCF services in my visual studio project I created a class for every web service call. So for example, if I used List.asx. I created a class called "DocumentRetreival" this class would do the grunt work to connect to the correct URL, It would perform the basic operation of contacting the service and so on. If I used a view.asmx, I implemented a class called "ViewRetrieval" with the same idea as the last class but it would now interact with all he operations in view.asmx. This gave my data layer the ability to perform multiple calls without really worrying about some of the grunt work each class performs. This again, is a classic SOLID principle. So, in order to compare them side by side we can look at both data layers and with is involved in each. Lets take a look at the "Create Project" task or operation. The integration point is described as , "dll is to provide a way to create a project in SharePoint". Projects , in this case are basically document libraries. I am to implement a way in which a remote application can create a document library in SharePoint. Easy enough right? Use the list.asmx Web service in SharePoint. So here we go! Lets take a look at the code. I added the List.asmx web service reference to my project and this is the class that contacts it:  class DocumentRetrieval     {         private ListsSoapClient _service;      d   private bool _impersonation;         public DocumentRetrieval(bool impersonation, string endpt)         {             _service = new ListsSoapClient();             this.SetEndPoint(string.Format("{0}/{1}", endpt, ConfigurationManager.AppSettings["List"]));             _impersonation = impersonation;             if (_impersonation)             {                 _service.ClientCredentials.Windows.ClientCredential.Password = ConfigurationManager.AppSettings["password"];                 _service.ClientCredentials.Windows.ClientCredential.UserName = ConfigurationManager.AppSettings["username"];                 _service.ClientCredentials.Windows.AllowedImpersonationLevel =                     System.Security.Principal.TokenImpersonationLevel.Impersonation;             }     private void SetEndPoint(string p)          {             _service.Endpoint.Address = new EndpointAddress(p);          }          /// <summary>         /// Creates a document library with specific name and templateID         /// </summary>         /// <param name="listName">New list name</param>         /// <param name="templateID">Template ID</param>         /// <returns></returns>         public XmlElement CreateLibrary(string listName, int templateID, ref ExceptionContract exContract)         {             XmlDocument sample = new XmlDocument();             XmlElement viewCol = sample.CreateElement("Empty");             try             {                 _service.Open();                 viewCol = _service.AddList(listName, "", templateID);             }             catch (Exception ex)             {                 exContract = new ExceptionContract("DocumentRetrieval/CreateLibrary", ex.GetType(), "Connection Error", ex.StackTrace, ExceptionContract.ExceptionCode.error);                             }finally             {                 _service.Close();             }                                      return viewCol;         } } There was a lot more in this class (that I am not including) because i was reusing the grunt work and making other operations with LIst.asmx, For example, updating content types, changing or configuring lists or document libraries. One of the first things I noticed about working with the built in services is that you are really at the mercy of what is available to you. Before creating a document library (Project) I wanted to expose a IsProjectExisting method. This way the integration or data layer could recognize if a library already exists. Well there is no service call or method available to do that check. So this is what I wrote:   public bool DocLibExists(string listName, ref ExceptionContract exContract)         {             try             {                 var allLists = _service.GetListCollection();                                return allLists.ChildNodes.OfType<XmlElement>().ToList().Exists(x => x.Attributes["Title"].Value ==listName);             }             catch (Exception ex)             {                 exContract = new ExceptionContract("DocumentRetrieval/GetList/GetListWSCall", ex.GetType(), "Unable to Retrieve List Collection", ex.StackTrace, ExceptionContract.ExceptionCode.error);             }             return false;         } This really just gets an XMLElement with all the lists. It was then up to me to sift through the clutter and noise and see if Document library already existed. This took a little bit of getting used to. Now instead of working with code, you are working with XMLElement response format from web service. I wrote a LINQ query to go through and find if the attribute "Title" existed and had a value of the listname then it would return True, if not False. I didn't particularly like working this way. Dealing with XMLElement responses and then having to manipulate it to get at the exact data I was looking for. Once the check for the DocLibExists, was done, I would either create the document library or send back an error indicating the document library already existed. Now lets examine the code that actually creates the document library. It does what you are really after, it creates a document library. Notice how the template ID is really an integer. Every document library template in SharePoint has an ID associated with it. Document libraries, Image Library, Custom List, Project Tasks, etc… they all he a unique integer associated with it. Well, that's great but the client came back to me and gave me some specifics that each "project" or document library, should have. They specified they had 3 types of projects. Each project would have unique views, about 10 views for each project. Each Project specified unique configurations (auditing, versioning, content types, etc…) So what turned out to be a simple implementation of creating a document library as a repository for a project, turned out to be quite involved.  The first thing I thought of was to create a template for document library. There are other ways you can do this too. Using the web Service call, you could configure views, versioning, even content types, etc… the only catch is, you have to be working quite extensively with CAML. I am not fond of CAML. I can do it and work with it, I just don't like doing it. It is quite touchy and at times it is quite tough to understand where errors were made with CAML statements. Working with Web Services and CAML proved to be quite annoying. The service call would return a generic error message that did not particularly point me to a CAML statement syntax error, or even a CAML error. I was not sure if it was a security , performance or code based issue. It was quite tough to work with. At times it was difficult to work with because of the way SharePoint handles metadata. There are "Names", "Display Name", and "StaticName" fields. It was quite tough to understand at times, which one to use. So it took a lot of trial and error. There are tools that can help with CAML generation. There is also now intellisense for CAML statements in Visual Studio that might help but ultimately I'm not fond of CAML with Web Services.   So I decided on the template. So my plan was to create create a document library, configure it accordingly and then use The Template Builder that comes with the SharePoint SDK. This tool allows you to create site templates, list template etc… It is quite interesting because it does not generate an STP file, it actually generates an xml definition and a feature you can activate and make that template available on a site or site collection. The first issue I experienced with this is that one of the specifications to this template was that the "All Documents" view was to have 2 web parts on it. Well, it turns out that using the template builder , it did not include the web parts as part of the list template definition it generated. It backed up the settings, the views, the content types but not the custom web parts. I still decided to try this even without the web parts on the page. This new template defined a new Document library definition with a unique ID. The problem was that the service call accepts an int but it only has access to the built in library int definitions. Any new ones added or created will not be available to create. So this made it impossible for me to approach the problem this way.     I should also mention that one of the nice features about SharePoint is the ability to create list templates, back them up and then create lists based on that template. It can all be done by end user administrators. These templates are quite unique because they are saved as an STP file and not an xml definition. I also went this route and tried to see if there was another service call where I could create a document library based no given template name. Nope! none.      After some thinking I decide to implement a WCF service to do this creation for me. I was quite certain that the object model would allow me to create document libraries base on a template in which an ID was required and also templates saved as STP files. Now I don't want to bother with posting the code to contact WCF service because it's self explanatory, but I will post the code that I used to create a list with custom template. public ServiceResult CreateProject(string name, string templateName, string projectId)         {             string siteurl = SPContext.Current.Site.Url;             Guid webguid = SPContext.Current.Web.ID;                        using (SPSite site = new SPSite(siteurl))             {                 using (SPWeb rootweb = site.RootWeb)                 {                     SPListTemplateCollection temps = site.GetCustomListTemplates(rootweb);                     ProcessWeb(siteurl, webguid, web => Act_CreateProject(web, name, templateName, projectId, temps));                 }//SpWeb             }//SPSite              return _globalResult;                   }         private void Act_CreateProject(SPWeb targetsite, string name, string templateName, string projectId, SPListTemplateCollection temps) {                         var temp = temps.Cast<SPListTemplate>().FirstOrDefault(x => x.Name.Equals(templateName));             if (temp != null)             {                             try                 {                                         Guid listGuid = targetsite.Lists.Add(name, "", temp);                     SPList newList = targetsite.Lists[listGuid];                     _globalResult = new ServiceResult(true, "Success", "Success");                 }                 catch (Exception ex)                 {                     _globalResult = new ServiceResult(false, (string.IsNullOrEmpty(ex.Message) ? "None" : ex.Message + " " + templateName), ex.StackTrace.ToString());                 }                                       }        private void ProcessWeb(string siteurl, Guid webguid, Action<SPWeb> action) {                        using (SPSite sitecollection = new SPSite(siteurl)) {                 using (SPWeb web = sitecollection.AllWebs[webguid]) {                     action(web);                 }                     }                  } This code is actually some of the code I implemented for the service. there was a lot more I did on Project Creation which I will cover in my next blog post. I implemented an ACTION method to process the web. This allowed me to properly dispose the SPWEb and SPSite objects and not rewrite this code over and over again. So I implemented a WCF service to create projects for me, this allowed me to do a lot more than just create a document library with a template, it now gave me the flexibility to do just about anything the client wanted at project creation. Once this was implemented , the client came back to me and said, "we reference all our projects with ID's in our application. we want SharePoint to do the same". This has been something I have been doing for a little while now but I do hope that SharePoint 2010 can have more of an answer to this and address it properly. I have been adding metadata to SPWebs through property bag. I believe I have blogged about it before. This time it required metadata added to a document library. No problem!!! I also mentioned these web parts that were to go on the "All Documents" View. I took the opportunity to configure them to the appropriate settings. There were two settings that needed to be set on these web parts. One of them was a Project ID configured in the webpart properties. The following code enhances and replaces the "Act_CreateProject " method above:  private void Act_CreateProject(SPWeb targetsite, string name, string templateName, string projectId, SPListTemplateCollection temps) {                         var temp = temps.Cast<SPListTemplate>().FirstOrDefault(x => x.Name.Equals(templateName));             if (temp != null)             {                 SPLimitedWebPartManager wpmgr = null;                               try                 {                                         Guid listGuid = targetsite.Lists.Add(name, "", temp);                     SPList newList = targetsite.Lists[listGuid];                     SPFolder rootFolder = newList.RootFolder;                     rootFolder.Properties.Add(KEY, projectId);                     rootFolder.Update();                     if (rootFolder.ParentWeb != targetsite)                         rootFolder.ParentWeb.Dispose();                     if (!templateName.Contains("Natural"))                     {                         SPView alldocumentsview = newList.Views.Cast<SPView>().FirstOrDefault(x => x.Title.Equals(ALLDOCUMENTS));                         SPFile alldocfile = targetsite.GetFile(alldocumentsview.ServerRelativeUrl);                         wpmgr = alldocfile.GetLimitedWebPartManager(PersonalizationScope.Shared);                         ConfigureWebPart(wpmgr, projectId, CUSTOMWPNAME);                                              alldocfile.Update();                     }                                        if (newList.ParentWeb != targetsite)                         newList.ParentWeb.Dispose();                     _globalResult = new ServiceResult(true, "Success", "Success");                 }                 catch (Exception ex)                 {                     _globalResult = new ServiceResult(false, (string.IsNullOrEmpty(ex.Message) ? "None" : ex.Message + " " + templateName), ex.StackTrace.ToString());                 }                 finally                 {                     if (wpmgr != null)                     {                         wpmgr.Web.Dispose();                         wpmgr.Dispose();                     }                 }             }                         }       private void ConfigureWebPart(SPLimitedWebPartManager mgr, string prjId, string webpartname)         {             var wp = mgr.WebParts.Cast<System.Web.UI.WebControls.WebParts.WebPart>().FirstOrDefault(x => x.DisplayTitle.Equals(webpartname));             if (wp != null)             {                           (wp as ListRelationshipWebPart.ListRelationshipWebPart).ProjectID = prjId;                 mgr.SaveChanges(wp);             }         }   This Shows you how I was able to set metadata on the document library. It has to be added to the RootFolder of the document library, Unfortunately, the SPList does not have a Property bag that I can add a key\value pair to. It has to be done on the root folder. Now everything in the integration will reference projects by ID's and will not care about names. My, "DocLibExists" will now need to be changed because a web service is not set up to look at property bags.  I had to write another method on the Service to do the equivalent but with ID's instead of names.  The second thing you will notice about the code is the use of the Webpartmanager. I have seen several examples online, and also read a lot about memory leaks, The above code does not produce memory leaks. The web part manager creates an SPWeb, so just dispose it like I did. CONCLUSION This is a long long post so I will stop here for now, I will continue with more comparisons and limitations in my next post. My conclusion for this example is that Web Services will do the trick if you can suffer through CAML and if you are doing some simple operations. For Everything else, there's WCF! **** fireI apologize for the disorganization of this post, I was on a bus on a 12 hour trip to IOWA while I wrote it, I was half asleep and half awake, hopefully it makes enough sense to someone.

    Read the article

  • XNA Screen Manager problem with transitions

    - by NexAddo
    I'm having issues using the game statemanagement example in the game I am developing. I have no issues with my first three screens transitioning between one another. I have a main menu screen, a splash screen and a high score screen that cycle: mainMenuScreen->splashScreen->highScoreScreen->mainMenuScreen The screens change every 15 seconds. Transition times public MainMenuScreen() { TransitionOnTime = TimeSpan.FromSeconds(0.5); TransitionOffTime = TimeSpan.FromSeconds(0.0); currentCreditAmount = Global.CurrentCredits; } public SplashScreen() { TransitionOnTime = TimeSpan.FromSeconds(0.5); TransitionOffTime = TimeSpan.FromSeconds(0.5); } public HighScoreScreen() { TransitionOnTime = TimeSpan.FromSeconds(0.5); TransitionOffTime = TimeSpan.FromSeconds(0.5); } public GamePlayScreen() { TransitionOnTime = TimeSpan.FromSeconds(0.5); TransitionOffTime = TimeSpan.FromSeconds(0.5); } When a user inserts credits they can play the game after pressing start mainMenuScreen->splashScreen->highScoreScreen->(loops forever) || || || ===========Credits In============= || Start || \/ LoadingScreen || Start || \/ GamePlayScreen During each of these transitions, between screens, the same code is used, which exits(removes) all current active screens and respects transitions, then adds the new screen to the screen manager: foreach (GameScreen screen in ScreenManager.GetScreens()) screen.ExitScreen(); //AddScreen takes a new screen to manage and the controlling player ScreenManager.AddScreen(new NameOfScreenHere(), null); Each screen is removed from the ScreenManager with ExitScreen() and using this function, each screen transition is respected. The problem I am having is with my gamePlayScreen. When the current game is finished and the transition is complete for the gamePlayScreen, it should be removed and the next screens should be added to the ScreenManager. GamePlayScreen Code Snippet private void FinishCurrentGame() { AudioManager.StopSounds(); this.UnloadContent(); if (Global.SaveDevice.IsReady) Stats.Save(); if (HighScoreScreen.IsInHighscores(timeLimit)) { foreach (GameScreen screen in ScreenManager.GetScreens()) screen.ExitScreen(); Global.TimeRemaining = timeLimit; ScreenManager.AddScreen(new BackgroundScreen(), null); ScreenManager.AddScreen(new MessageBoxScreen("Enter your Initials", true), null); } else { foreach (GameScreen screen in ScreenManager.GetScreens()) screen.ExitScreen(); ScreenManager.AddScreen(new BackgroundScreen(), null); ScreenManager.AddScreen(new MainMenuScreen(), null); } } The problem is that when isExiting is set to true by screen.ExitScreen() for the gamePlayScreen, the transition never completes the transition and removes the screen from the ScreenManager. Every other screen that I use the same technique to add and remove each screen fully transitions On/Off and is removed at the appropriate time from the ScreenManager, but noy my GamePlayScreen. Has anyone that has used the GameStateManagement example experienced this issue or can someone see the mistake I am making? EDIT This is what I tracked down. When the game is done, I call foreach (GameScreen screen in ScreenManager.GetScreens()) screen.ExitScreen(); to start the transition off process for the gameplay screen. At this point there is only 1 screen on the ScreenManager stack. The gamePlay screen gets isExiting set to true and starts to transition off. Right after the above call to ExitScreen() I add a background screen and menu screen to the screenManager: ScreenManager.AddScreen(new background(), null); ScreenManager.AddScreen(new Menu(), null); The count of the ScreenManager is now 3. What I noticed while stepping through the updates for GameScreen and ScreenManager, the gameplay screen never gets to the point where the transistion process finishes so the ScreenManager can remove it from the stack. This anomaly does not happen to any of my other screens when I switch between them. Screen Manager Code #region File Description //----------------------------------------------------------------------------- // ScreenManager.cs // // Microsoft XNA Community Game Platform // Copyright (C) Microsoft Corporation. All rights reserved. //----------------------------------------------------------------------------- #endregion #define DEMO #region Using Statements using System; using System.Diagnostics; using System.Collections.Generic; using Microsoft.Xna.Framework; using Microsoft.Xna.Framework.Content; using Microsoft.Xna.Framework.Graphics; using PerformanceUtility.GameDebugTools; #endregion namespace GameStateManagement { /// <summary> /// The screen manager is a component which manages one or more GameScreen /// instances. It maintains a stack of screens, calls their Update and Draw /// methods at the appropriate times, and automatically routes input to the /// topmost active screen. /// </summary> public class ScreenManager : DrawableGameComponent { #region Fields List<GameScreen> screens = new List<GameScreen>(); List<GameScreen> screensToUpdate = new List<GameScreen>(); InputState input = new InputState(); SpriteBatch spriteBatch; SpriteFont font; Texture2D blankTexture; bool isInitialized; bool getOut; bool traceEnabled; #if DEBUG DebugSystem debugSystem; Stopwatch stopwatch = new Stopwatch(); bool debugTextEnabled; #endif #endregion #region Properties /// <summary> /// A default SpriteBatch shared by all the screens. This saves /// each screen having to bother creating their own local instance. /// </summary> public SpriteBatch SpriteBatch { get { return spriteBatch; } } /// <summary> /// A default font shared by all the screens. This saves /// each screen having to bother loading their own local copy. /// </summary> public SpriteFont Font { get { return font; } } public Rectangle ScreenRectangle { get { return new Rectangle(0, 0, GraphicsDevice.Viewport.Width, GraphicsDevice.Viewport.Height); } } /// <summary> /// If true, the manager prints out a list of all the screens /// each time it is updated. This can be useful for making sure /// everything is being added and removed at the right times. /// </summary> public bool TraceEnabled { get { return traceEnabled; } set { traceEnabled = value; } } #if DEBUG public bool DebugTextEnabled { get { return debugTextEnabled; } set { debugTextEnabled = value; } } public DebugSystem DebugSystem { get { return debugSystem; } } #endif #endregion #region Initialization /// <summary> /// Constructs a new screen manager component. /// </summary> public ScreenManager(Game game) : base(game) { // we must set EnabledGestures before we can query for them, but // we don't assume the game wants to read them. //TouchPanel.EnabledGestures = GestureType.None; } /// <summary> /// Initializes the screen manager component. /// </summary> public override void Initialize() { base.Initialize(); #if DEBUG debugSystem = DebugSystem.Initialize(Game, "Fonts/MenuFont"); #endif isInitialized = true; } /// <summary> /// Load your graphics content. /// </summary> protected override void LoadContent() { // Load content belonging to the screen manager. ContentManager content = Game.Content; spriteBatch = new SpriteBatch(GraphicsDevice); font = content.Load<SpriteFont>(@"Fonts\menufont"); blankTexture = content.Load<Texture2D>(@"Textures\Backgrounds\blank"); // Tell each of the screens to load their content. foreach (GameScreen screen in screens) { screen.LoadContent(); } } /// <summary> /// Unload your graphics content. /// </summary> protected override void UnloadContent() { // Tell each of the screens to unload their content. foreach (GameScreen screen in screens) { screen.UnloadContent(); } } #endregion #region Update and Draw /// <summary> /// Allows each screen to run logic. /// </summary> public override void Update(GameTime gameTime) { #if DEBUG debugSystem.TimeRuler.StartFrame(); debugSystem.TimeRuler.BeginMark("Update", Color.Blue); if (debugTextEnabled && getOut == false) { debugSystem.FpsCounter.Visible = true; debugSystem.TimeRuler.Visible = true; debugSystem.TimeRuler.ShowLog = true; getOut = true; } else if (debugTextEnabled == false) { getOut = false; debugSystem.FpsCounter.Visible = false; debugSystem.TimeRuler.Visible = false; debugSystem.TimeRuler.ShowLog = false; } #endif // Read the keyboard and gamepad. input.Update(); // Make a copy of the master screen list, to avoid confusion if // the process of updating one screen adds or removes others. screensToUpdate.Clear(); foreach (GameScreen screen in screens) screensToUpdate.Add(screen); bool otherScreenHasFocus = !Game.IsActive; bool coveredByOtherScreen = false; // Loop as long as there are screens waiting to be updated. while (screensToUpdate.Count > 0) { // Pop the topmost screen off the waiting list. GameScreen screen = screensToUpdate[screensToUpdate.Count - 1]; screensToUpdate.RemoveAt(screensToUpdate.Count - 1); // Update the screen. screen.Update(gameTime, otherScreenHasFocus, coveredByOtherScreen); if (screen.ScreenState == ScreenState.TransitionOn || screen.ScreenState == ScreenState.Active) { // If this is the first active screen we came across, // give it a chance to handle input. if (!otherScreenHasFocus) { screen.HandleInput(input); otherScreenHasFocus = true; } // If this is an active non-popup, inform any subsequent // screens that they are covered by it. if (!screen.IsPopup) coveredByOtherScreen = true; } } // Print debug trace? if (traceEnabled) TraceScreens(); #if DEBUG debugSystem.TimeRuler.EndMark("Update"); #endif } /// <summary> /// Prints a list of all the screens, for debugging. /// </summary> void TraceScreens() { List<string> screenNames = new List<string>(); foreach (GameScreen screen in screens) screenNames.Add(screen.GetType().Name); Debug.WriteLine(string.Join(", ", screenNames.ToArray())); } /// <summary> /// Tells each screen to draw itself. /// </summary> public override void Draw(GameTime gameTime) { #if DEBUG debugSystem.TimeRuler.StartFrame(); debugSystem.TimeRuler.BeginMark("Draw", Color.Yellow); #endif foreach (GameScreen screen in screens) { if (screen.ScreenState == ScreenState.Hidden) continue; screen.Draw(gameTime); } #if DEBUG debugSystem.TimeRuler.EndMark("Draw"); #endif #if DEMO SpriteBatch.Begin(); SpriteBatch.DrawString(font, "DEMO - NOT FOR RESALE", new Vector2(20, 80), Color.White); SpriteBatch.End(); #endif } #endregion #region Public Methods /// <summary> /// Adds a new screen to the screen manager. /// </summary> public void AddScreen(GameScreen screen, PlayerIndex? controllingPlayer) { screen.ControllingPlayer = controllingPlayer; screen.ScreenManager = this; screen.IsExiting = false; // If we have a graphics device, tell the screen to load content. if (isInitialized) { screen.LoadContent(); } screens.Add(screen); } /// <summary> /// Removes a screen from the screen manager. You should normally /// use GameScreen.ExitScreen instead of calling this directly, so /// the screen can gradually transition off rather than just being /// instantly removed. /// </summary> public void RemoveScreen(GameScreen screen) { // If we have a graphics device, tell the screen to unload content. if (isInitialized) { screen.UnloadContent(); } screens.Remove(screen); screensToUpdate.Remove(screen); } /// <summary> /// Expose an array holding all the screens. We return a copy rather /// than the real master list, because screens should only ever be added /// or removed using the AddScreen and RemoveScreen methods. /// </summary> public GameScreen[] GetScreens() { return screens.ToArray(); } /// <summary> /// Helper draws a translucent black fullscreen sprite, used for fading /// screens in and out, and for darkening the background behind popups. /// </summary> public void FadeBackBufferToBlack(float alpha) { Viewport viewport = GraphicsDevice.Viewport; spriteBatch.Begin(); spriteBatch.Draw(blankTexture, new Rectangle(0, 0, viewport.Width, viewport.Height), Color.Black * alpha); spriteBatch.End(); } #endregion } } Game Screen Parent of GamePlayScreen #region File Description //----------------------------------------------------------------------------- // GameScreen.cs // // Microsoft XNA Community Game Platform // Copyright (C) Microsoft Corporation. All rights reserved. //----------------------------------------------------------------------------- #endregion #region Using Statements using System; using Microsoft.Xna.Framework; using Microsoft.Xna.Framework.Input; //using Microsoft.Xna.Framework.Input.Touch; using System.IO; #endregion namespace GameStateManagement { /// <summary> /// Enum describes the screen transition state. /// </summary> public enum ScreenState { TransitionOn, Active, TransitionOff, Hidden, } /// <summary> /// A screen is a single layer that has update and draw logic, and which /// can be combined with other layers to build up a complex menu system. /// For instance the main menu, the options menu, the "are you sure you /// want to quit" message box, and the main game itself are all implemented /// as screens. /// </summary> public abstract class GameScreen { #region Properties /// <summary> /// Normally when one screen is brought up over the top of another, /// the first screen will transition off to make room for the new /// one. This property indicates whether the screen is only a small /// popup, in which case screens underneath it do not need to bother /// transitioning off. /// </summary> public bool IsPopup { get { return isPopup; } protected set { isPopup = value; } } bool isPopup = false; /// <summary> /// Indicates how long the screen takes to /// transition on when it is activated. /// </summary> public TimeSpan TransitionOnTime { get { return transitionOnTime; } protected set { transitionOnTime = value; } } TimeSpan transitionOnTime = TimeSpan.Zero; /// <summary> /// Indicates how long the screen takes to /// transition off when it is deactivated. /// </summary> public TimeSpan TransitionOffTime { get { return transitionOffTime; } protected set { transitionOffTime = value; } } TimeSpan transitionOffTime = TimeSpan.Zero; /// <summary> /// Gets the current position of the screen transition, ranging /// from zero (fully active, no transition) to one (transitioned /// fully off to nothing). /// </summary> public float TransitionPosition { get { return transitionPosition; } protected set { transitionPosition = value; } } float transitionPosition = 1; /// <summary> /// Gets the current alpha of the screen transition, ranging /// from 1 (fully active, no transition) to 0 (transitioned /// fully off to nothing). /// </summary> public float TransitionAlpha { get { return 1f - TransitionPosition; } } /// <summary> /// Gets the current screen transition state. /// </summary> public ScreenState ScreenState { get { return screenState; } protected set { screenState = value; } } ScreenState screenState = ScreenState.TransitionOn; /// <summary> /// There are two possible reasons why a screen might be transitioning /// off. It could be temporarily going away to make room for another /// screen that is on top of it, or it could be going away for good. /// This property indicates whether the screen is exiting for real: /// if set, the screen will automatically remove itself as soon as the /// transition finishes. /// </summary> public bool IsExiting { get { return isExiting; } protected internal set { isExiting = value; } } bool isExiting = false; /// <summary> /// Checks whether this screen is active and can respond to user input. /// </summary> public bool IsActive { get { return !otherScreenHasFocus && (screenState == ScreenState.TransitionOn || screenState == ScreenState.Active); } } bool otherScreenHasFocus; /// <summary> /// Gets the manager that this screen belongs to. /// </summary> public ScreenManager ScreenManager { get { return screenManager; } internal set { screenManager = value; } } ScreenManager screenManager; public KeyboardState KeyboardState { get {return Keyboard.GetState();} } /// <summary> /// Gets the index of the player who is currently controlling this screen, /// or null if it is accepting input from any player. This is used to lock /// the game to a specific player profile. The main menu responds to input /// from any connected gamepad, but whichever player makes a selection from /// this menu is given control over all subsequent screens, so other gamepads /// are inactive until the controlling player returns to the main menu. /// </summary> public PlayerIndex? ControllingPlayer { get { return controllingPlayer; } internal set { controllingPlayer = value; } } PlayerIndex? controllingPlayer; /// <summary> /// Gets whether or not this screen is serializable. If this is true, /// the screen will be recorded into the screen manager's state and /// its Serialize and Deserialize methods will be called as appropriate. /// If this is false, the screen will be ignored during serialization. /// By default, all screens are assumed to be serializable. /// </summary> public bool IsSerializable { get { return isSerializable; } protected set { isSerializable = value; } } bool isSerializable = true; #endregion #region Initialization /// <summary> /// Load graphics content for the screen. /// </summary> public virtual void LoadContent() { } /// <summary> /// Unload content for the screen. /// </summary> public virtual void UnloadContent() { } #endregion #region Update and Draw /// <summary> /// Allows the screen to run logic, such as updating the transition position. /// Unlike HandleInput, this method is called regardless of whether the screen /// is active, hidden, or in the middle of a transition. /// </summary> public virtual void Update(GameTime gameTime, bool otherScreenHasFocus, bool coveredByOtherScreen) { this.otherScreenHasFocus = otherScreenHasFocus; if (isExiting) { // If the screen is going away to die, it should transition off. screenState = ScreenState.TransitionOff; if (!UpdateTransition(gameTime, transitionOffTime, 1)) { // When the transition finishes, remove the screen. ScreenManager.RemoveScreen(this); } } else if (coveredByOtherScreen) { // If the screen is covered by another, it should transition off. if (UpdateTransition(gameTime, transitionOffTime, 1)) { // Still busy transitioning. screenState = ScreenState.TransitionOff; } else { // Transition finished! screenState = ScreenState.Hidden; } } else { // Otherwise the screen should transition on and become active. if (UpdateTransition(gameTime, transitionOnTime, -1)) { // Still busy transitioning. screenState = ScreenState.TransitionOn; } else { // Transition finished! screenState = ScreenState.Active; } } } /// <summary> /// Helper for updating the screen transition position. /// </summary> bool UpdateTransition(GameTime gameTime, TimeSpan time, int direction) { // How much should we move by? float transitionDelta; if (time == TimeSpan.Zero) transitionDelta = 1; else transitionDelta = (float)(gameTime.ElapsedGameTime.TotalMilliseconds / time.TotalMilliseconds); // Update the transition position. transitionPosition += transitionDelta * direction; // Did we reach the end of the transition? if (((direction < 0) && (transitionPosition <= 0)) || ((direction > 0) && (transitionPosition >= 1))) { transitionPosition = MathHelper.Clamp(transitionPosition, 0, 1); return false; } // Otherwise we are still busy transitioning. return true; } /// <summary> /// Allows the screen to handle user input. Unlike Update, this method /// is only called when the screen is active, and not when some other /// screen has taken the focus. /// </summary> public virtual void HandleInput(InputState input) { } public KeyboardState currentKeyState; public KeyboardState lastKeyState; public bool IsKeyHit(Keys key) { if (currentKeyState.IsKeyDown(key) && lastKeyState.IsKeyUp(key)) return true; return false; } /// <summary> /// This is called when the screen should draw itself. /// </summary> public virtual void Draw(GameTime gameTime) { } #endregion #region Public Methods /// <summary> /// Tells the screen to serialize its state into the given stream. /// </summary> public virtual void Serialize(Stream stream) { } /// <summary> /// Tells the screen to deserialize its state from the given stream. /// </summary> public virtual void Deserialize(Stream stream) { } /// <summary> /// Tells the screen to go away. Unlike ScreenManager.RemoveScreen, which /// instantly kills the screen, this method respects the transition timings /// and will give the screen a chance to gradually transition off. /// </summary> public void ExitScreen() { if (TransitionOffTime == TimeSpan.Zero) { // If the screen has a zero transition time, remove it immediately. ScreenManager.RemoveScreen(this); } else { // Otherwise flag that it should transition off and then exit. isExiting = true; } } #endregion #region Helper Methods /// <summary> /// A helper method which loads assets using the screen manager's /// associated game content loader. /// </summary> /// <typeparam name="T">Type of asset.</typeparam> /// <param name="assetName">Asset name, relative to the loader root /// directory, and not including the .xnb extension.</param> /// <returns></returns> public T Load<T>(string assetName) { return ScreenManager.Game.Content.Load<T>(assetName); } #endregion } }

    Read the article

  • WLS MBeans

    - by Jani Rautiainen
    WLS provides a set of Managed Beans (MBeans) to configure, monitor and manage WLS resources. We can use the WLS MBeans to automate some of the tasks related to the configuration and maintenance of the WLS instance. The MBeans can be accessed a number of ways; using various UIs and programmatically using Java or WLST Python scripts.For customization development we can use the features to e.g. manage the deployed customization in MDS, control logging levels, automate deployment of dependent libraries etc. This article is an introduction on how to access and use the WLS MBeans. The goal is to illustrate the various access methods in a single article; the details of the features are left to the linked documentation.This article covers Windows based environment, steps for Linux would be similar however there would be some differences e.g. on how the file paths are defined. MBeansThe WLS MBeans can be categorized to runtime and configuration MBeans.The Runtime MBeans can be used to access the runtime information about the server and its resources. The data from runtime beans is only available while the server is running. The runtime beans can be used to e.g. check the state of the server or deployment.The Configuration MBeans contain information about the configuration of servers and resources. The configuration of the domain is stored in the config.xml file and the configuration MBeans can be used to access and modify the configuration data. For more information on the WLS MBeans refer to: Understanding WebLogic Server MBeans WLS MBean reference Java Management Extensions (JMX)We can use JMX APIs to access the WLS MBeans. This allows us to create Java programs to configure, monitor, and manage WLS resources. In order to use the WLS MBeans we need to add the following library into the class-path: WL_HOME\lib\wljmxclient.jar Connecting to a WLS MBean server The WLS MBeans are contained in a Mbean server, depending on the requirement we can connect to (MBean Server / JNDI Name): Domain Runtime MBean Server weblogic.management.mbeanservers.domainruntime Runtime MBean Server weblogic.management.mbeanservers.runtime Edit MBean Server weblogic.management.mbeanservers.edit To connect to the WLS MBean server first we need to create a map containing the credentials; Hashtable<String, String> param = new Hashtable<String, String>(); param.put(Context.SECURITY_PRINCIPAL, "weblogic");        param.put(Context.SECURITY_CREDENTIALS, "weblogic1");        param.put(JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES, "weblogic.management.remote"); These define the user, password and package containing the protocol. Next we create the connection: JMXServiceURL serviceURL =     new JMXServiceURL("t3","127.0.0.1",7101,     "/jndi/weblogic.management.mbeanservers.domainruntime"); JMXConnector connector = JMXConnectorFactory.connect(serviceURL, param); MBeanServerConnection connection = connector.getMBeanServerConnection(); With the connection we can now access the MBeans for the WLS instance. For a complete example see Appendix A of this post. For more details refer to Accessing WebLogic Server MBeans with JMX Accessing WLS MBeans The WLS MBeans are structured hierarchically; in order to access content we need to know the path to the MBean we are interested in. The MBean is accessed using “MBeanServerConnection. getAttribute” API.  WLS provides entry points to the hierarchy allowing us to navigate all the WLS MBeans in the hierarchy (MBean Server / JMX object name): Domain Runtime MBean Server com.bea:Name=DomainRuntimeService,Type=weblogic.management.mbeanservers.domainruntime.DomainRuntimeServiceMBean Runtime MBean Servers com.bea:Name=RuntimeService,Type=weblogic.management.mbeanservers.runtime.RuntimeServiceMBean Edit MBean Server com.bea:Name=EditService,Type=weblogic.management.mbeanservers.edit.EditServiceMBean For example we can access the Domain Runtime MBean using: ObjectName service = new ObjectName( "com.bea:Name=DomainRuntimeService," + "Type=weblogic.management.mbeanservers.domainruntime.DomainRuntimeServiceMBean"); Same syntax works for any “child” WLS MBeans e.g. to find out all application deployments we can: ObjectName domainConfig = (ObjectName)connection.getAttribute(service,"DomainConfiguration"); ObjectName[] appDeployments = (ObjectName[])connection.getAttribute(domainConfig,"AppDeployments"); Alternatively we could access the same MBean using the full syntax: ObjectName domainConfig = new ObjectName("com.bea:Location=DefaultDomain,Name=DefaultDomain,Type=Domain"); ObjectName[] appDeployments = (ObjectName[])connection.getAttribute(domainConfig,"AppDeployments"); For more details refer to Accessing WebLogic Server MBeans with JMX Invoking operations on WLS MBeans The WLS MBean operations can be invoked with MBeanServerConnection. invoke API; in the following example we query the state of “AppsLoggerService” application: ObjectName appRuntimeStateRuntime = new ObjectName("com.bea:Name=AppRuntimeStateRuntime,Type=AppRuntimeStateRuntime"); Object[] parameters = { "AppsLoggerService", "DefaultServer" }; String[] signature = { "java.lang.String", "java.lang.String" }; String result = (String)connection.invoke(appRuntimeStateRuntime,"getCurrentState",parameters, signature); The result returned should be "STATE_ACTIVE" assuming the "AppsLoggerService" application is up and running. WebLogic Scripting Tool (WLST) The WebLogic Scripting Tool (WLST) is a command-line scripting environment that we can access the same WLS MBeans. The tool is located under: $MW_HOME\oracle_common\common\bin\wlst.bat Do note that there are several instances of the wlst script under the $MW_HOME, each of them works, however the commands available vary, so we want to use the one under “oracle_common”. The tool is started in offline mode. In offline mode we can access and manipulate the domain configuration. In online mode we can access the runtime information. We connect to the Administration Server : connect("weblogic","weblogic1", "t3://127.0.0.1:7101") In both online and offline modes we can navigate the WLS MBean using commands like "ls" to print content and "cd" to navigate between objects, for example: All the commands available can be obtained with: help('all') For details of the tool refer to WebLogic Scripting Tool and for the commands available WLST Command and Variable Reference. Also do note that the WLST tool can be invoked from Java code in Embedded Mode. Running Scripts The WLST tool allows us to automate tasks using Python scripts in Script Mode. The script can be manually created or recorded by the WLST tool. Example commands of recording a script: startRecording("c:/temp/recording.py") <commands that we want to record> stopRecording() We can run the script from WLST: execfile("c:/temp/recording.py") We can also run the script from the command line: C:\apps\Oracle\Middleware\oracle_common\common\bin\wlst.cmd c:/temp/recording.py There are various sample scripts are provided with the WLS instance. UI to Access the WLS MBeans There are various UIs through which we can access the WLS MBeans. Oracle Enterprise Manager Fusion Middleware Control Oracle WebLogic Server Administration Console Fusion Middleware Control MBean Browser In the integrated JDeveloper environment only the Oracle WebLogic Server Administration Console is available to us. For more information refer to the documentation, one noteworthy feature in the console is the ability to record WLST scripts based on the navigation. In addition to the UIs above the JConsole included in the JDK can be used to access the WLS MBeans. The JConsole needs to be started with specific parameter to force WLS objects to be used and jar files in the classpath: "C:\apps\Oracle\Middleware\jdk160_24\bin\jconsole" -J-Djava.class.path=C:\apps\Oracle\Middleware\jdk160_24\lib\jconsole.jar;C:\apps\Oracle\Middleware\jdk160_24\lib\tools.jar;C:\apps\Oracle\Middleware\wlserver_10.3\server\lib\wljmxclient.jar -J-Djmx.remote.protocol.provider.pkgs=weblogic.management.remote For more details refer to the Accessing Custom MBeans from JConsole. Summary In this article we have covered various ways we can access and use the WLS MBeans in context of integrated WLS in JDeveloper to be used for Fusion Application customization development. References Developing Custom Management Utilities With JMX for Oracle WebLogic Server Accessing WebLogic Server MBeans with JMX WebLogic Server MBean Reference WebLogic Scripting Tool WLST Command and Variable Reference Appendix A package oracle.apps.test; import java.io.IOException;import java.net.MalformedURLException;import java.util.Hashtable;import javax.management.MBeanServerConnection;import javax.management.MalformedObjectNameException;import javax.management.ObjectName;import javax.management.remote.JMXConnector;import javax.management.remote.JMXConnectorFactory;import javax.management.remote.JMXServiceURL;import javax.naming.Context;/** * This class contains simple examples on how to access WLS MBeans using JMX. */public class BlogExample {    /**     * Connection to the WLS MBeans     */    private MBeanServerConnection connection;    /**     * Constructor that takes in the connection information for the      * domain and obtains the resources from WLS MBeans using JMX.     * @param hostName host name to connect to for the WLS server     * @param port port to connect to for the WLS server     * @param userName user name to connect to for the WLS server     * @param password password to connect to for the WLS server     */    public BlogExample(String hostName, String port, String userName,                       String password) {        super();        try {            initConnection(hostName, port, userName, password);        } catch (Exception e) {            throw new RuntimeException("Unable to connect to the domain " +                                       hostName + ":" + port);        }    }    /**     * Default constructor.     * Tries to create connection with default values. Runtime exception will be     * thrown if the default values are not used in the local instance.     */    public BlogExample() {        this("127.0.0.1", "7101", "weblogic", "weblogic1");    }    /**     * Initializes the JMX connection to the WLS Beans     * @param hostName host name to connect to for the WLS server     * @param port port to connect to for the WLS server     * @param userName user name to connect to for the WLS server     * @param password password to connect to for the WLS server     * @throws IOException error connecting to the WLS MBeans     * @throws MalformedURLException error connecting to the WLS MBeans     * @throws MalformedObjectNameException error connecting to the WLS MBeans     */    private void initConnection(String hostName, String port, String userName,                                String password)                                 throws IOException, MalformedURLException,                                        MalformedObjectNameException {        String protocol = "t3";        String jndiroot = "/jndi/";        String mserver = "weblogic.management.mbeanservers.domainruntime";        JMXServiceURL serviceURL =            new JMXServiceURL(protocol, hostName, Integer.valueOf(port),                              jndiroot + mserver);        Hashtable<String, String> h = new Hashtable<String, String>();        h.put(Context.SECURITY_PRINCIPAL, userName);        h.put(Context.SECURITY_CREDENTIALS, password);        h.put(JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES,              "weblogic.management.remote");        JMXConnector connector = JMXConnectorFactory.connect(serviceURL, h);        connection = connector.getMBeanServerConnection();    }    /**     * Main method used to invoke the logic for testing     * @param args arguments passed to the program     */    public static void main(String[] args) {        BlogExample blogExample = new BlogExample();        blogExample.testEntryPoint();        blogExample.testDirectAccess();        blogExample.testInvokeOperation();    }    /**     * Example of using an entry point to navigate the WLS MBean hierarchy.     */    public void testEntryPoint() {        try {            System.out.println("testEntryPoint");            ObjectName service =             new ObjectName("com.bea:Name=DomainRuntimeService,Type=" +"weblogic.management.mbeanservers.domainruntime.DomainRuntimeServiceMBean");            ObjectName domainConfig =                (ObjectName)connection.getAttribute(service,                                                    "DomainConfiguration");            ObjectName[] appDeployments =                (ObjectName[])connection.getAttribute(domainConfig,                                                      "AppDeployments");            for (ObjectName appDeployment : appDeployments) {                String resourceIdentifier =                    (String)connection.getAttribute(appDeployment,                                                    "SourcePath");                System.out.println(resourceIdentifier);            }        } catch (Exception e) {            throw new RuntimeException(e);        }    }    /**     * Example of accessing WLS MBean directly with a full reference.     * This does the same thing as testEntryPoint in slightly difference way.     */    public void testDirectAccess() {        try {            System.out.println("testDirectAccess");            ObjectName appDeployment =                new ObjectName("com.bea:Location=DefaultDomain,"+                               "Name=AppsLoggerService,Type=AppDeployment");            String resourceIdentifier =                (String)connection.getAttribute(appDeployment, "SourcePath");            System.out.println(resourceIdentifier);        } catch (Exception e) {            throw new RuntimeException(e);        }    }    /**     * Example of invoking operation on a WLS MBean.     */    public void testInvokeOperation() {        try {            System.out.println("testInvokeOperation");            ObjectName appRuntimeStateRuntime =                new ObjectName("com.bea:Name=AppRuntimeStateRuntime,"+                               "Type=AppRuntimeStateRuntime");            String identifier = "AppsLoggerService";            String serverName = "DefaultServer";            Object[] parameters = { identifier, serverName };            String[] signature = { "java.lang.String", "java.lang.String" };            String result =                (String)connection.invoke(appRuntimeStateRuntime, "getCurrentState",                                          parameters, signature);            System.out.println("State of " + identifier + " = " + result);        } catch (Exception e) {            throw new RuntimeException(e);        }    }}

    Read the article

  • Syncing Data with a Server using Silverlight and HTTP Polling Duplex

    - by dwahlin
    Many applications have the need to stay in-sync with data provided by a service. Although web applications typically rely on standard polling techniques to check if data has changed, Silverlight provides several interesting options for keeping an application in-sync that rely on server “push” technologies. A few years back I wrote several blog posts covering different “push” technologies available in Silverlight that rely on sockets or HTTP Polling Duplex. We recently had a project that looked like it could benefit from pushing data from a server to one or more clients so I thought I’d revisit the subject and provide some updates to the original code posted. If you’ve worked with AJAX before in Web applications then you know that until browsers fully support web sockets or other duplex (bi-directional communication) technologies that it’s difficult to keep applications in-sync with a server without relying on polling. The problem with polling is that you have to check for changes on the server on a timed-basis which can often be wasteful and take up unnecessary resources. With server “push” technologies, data can be pushed from the server to the client as it changes. Once the data is received, the client can update the user interface as appropriate. Using “push” technologies allows the client to listen for changes from the data but stay 100% focused on client activities as opposed to worrying about polling and asking the server if anything has changed. Silverlight provides several options for pushing data from a server to a client including sockets, TCP bindings and HTTP Polling Duplex.  Each has its own strengths and weaknesses as far as performance and setup work with HTTP Polling Duplex arguably being the easiest to setup and get going.  In this article I’ll demonstrate how HTTP Polling Duplex can be used in Silverlight 4 applications to push data and show how you can create a WCF server that provides an HTTP Polling Duplex binding that a Silverlight client can consume.   What is HTTP Polling Duplex? Technologies that allow data to be pushed from a server to a client rely on duplex functionality. Duplex (or bi-directional) communication allows data to be passed in both directions.  A client can call a service and the server can call the client. HTTP Polling Duplex (as its name implies) allows a server to communicate with a client without forcing the client to constantly poll the server. It has the benefit of being able to run on port 80 making setup a breeze compared to the other options which require specific ports to be used and cross-domain policy files to be exposed on port 943 (as with sockets and TCP bindings). Having said that, if you’re looking for the best speed possible then sockets and TCP bindings are the way to go. But, they’re not the only game in town when it comes to duplex communication. The first time I heard about HTTP Polling Duplex (initially available in Silverlight 2) I wasn’t exactly sure how it was any better than standard polling used in AJAX applications. I read the Silverlight SDK, looked at various resources and generally found the following definition unhelpful as far as understanding the actual benefits that HTTP Polling Duplex provided: "The Silverlight client periodically polls the service on the network layer, and checks for any new messages that the service wants to send on the callback channel. The service queues all messages sent on the client callback channel and delivers them to the client when the client polls the service." Although the previous definition explained the overall process, it sounded as if standard polling was used. Fortunately, Microsoft’s Scott Guthrie provided me with a more clear definition several years back that explains the benefits provided by HTTP Polling Duplex quite well (used with his permission): "The [HTTP Polling Duplex] duplex support does use polling in the background to implement notifications – although the way it does it is different than manual polling. It initiates a network request, and then the request is effectively “put to sleep” waiting for the server to respond (it doesn’t come back immediately). The server then keeps the connection open but not active until it has something to send back (or the connection times out after 90 seconds – at which point the duplex client will connect again and wait). This way you are avoiding hitting the server repeatedly – but still get an immediate response when there is data to send." After hearing Scott’s definition the light bulb went on and it all made sense. A client makes a request to a server to check for changes, but instead of the request returning immediately, it parks itself on the server and waits for data. It’s kind of like waiting to pick up a pizza at the store. Instead of calling the store over and over to check the status, you sit in the store and wait until the pizza (the request data) is ready. Once it’s ready you take it back home (to the client). This technique provides a lot of efficiency gains over standard polling techniques even though it does use some polling of its own as a request is initially made from a client to a server. So how do you implement HTTP Polling Duplex in your Silverlight applications? Let’s take a look at the process by starting with the server. Creating an HTTP Polling Duplex WCF Service Creating a WCF service that exposes an HTTP Polling Duplex binding is straightforward as far as coding goes. Add some one way operations into an interface, create a client callback interface and you’re ready to go. The most challenging part comes into play when configuring the service to properly support the necessary binding and that’s more of a cut and paste operation once you know the configuration code to use. To create an HTTP Polling Duplex service you’ll need to expose server-side and client-side interfaces and reference the System.ServiceModel.PollingDuplex assembly (located at C:\Program Files (x86)\Microsoft SDKs\Silverlight\v4.0\Libraries\Server on my machine) in the server project. For the demo application I upgraded a basketball simulation service to support the latest polling duplex assemblies. The service simulates a simple basketball game using a Game class and pushes information about the game such as score, fouls, shots and more to the client as the game changes over time. Before jumping too far into the game push service, it’s important to discuss two interfaces used by the service to communicate in a bi-directional manner. The first is called IGameStreamService and defines the methods/operations that the client can call on the server (see Listing 1). The second is IGameStreamClient which defines the callback methods that a server can use to communicate with a client (see Listing 2).   [ServiceContract(Namespace = "Silverlight", CallbackContract = typeof(IGameStreamClient))] public interface IGameStreamService { [OperationContract(IsOneWay = true)] void GetTeamData(); } Listing 1. The IGameStreamService interface defines server operations that can be called on the server.   [ServiceContract] public interface IGameStreamClient { [OperationContract(IsOneWay = true)] void ReceiveTeamData(List<Team> teamData); [OperationContract(IsOneWay = true, AsyncPattern=true)] IAsyncResult BeginReceiveGameData(GameData gameData, AsyncCallback callback, object state); void EndReceiveGameData(IAsyncResult result); } Listing 2. The IGameStreamClient interfaces defines client operations that a server can call.   The IGameStreamService interface is decorated with the standard ServiceContract attribute but also contains a value for the CallbackContract property.  This property is used to define the interface that the client will expose (IGameStreamClient in this example) and use to receive data pushed from the service. Notice that each OperationContract attribute in both interfaces sets the IsOneWay property to true. This means that the operation can be called and passed data as appropriate, however, no data will be passed back. Instead, data will be pushed back to the client as it’s available.  Looking through the IGameStreamService interface you can see that the client can request team data whereas the IGameStreamClient interface allows team and game data to be received by the client. One interesting point about the IGameStreamClient interface is the inclusion of the AsyncPattern property on the BeginReceiveGameData operation. I initially created this operation as a standard one way operation and it worked most of the time. However, as I disconnected clients and reconnected new ones game data wasn’t being passed properly. After researching the problem more I realized that because the service could take up to 7 seconds to return game data, things were getting hung up. By setting the AsyncPattern property to true on the BeginReceivedGameData operation and providing a corresponding EndReceiveGameData operation I was able to get around this problem and get everything running properly. I’ll provide more details on the implementation of these two methods later in this post. Once the interfaces were created I moved on to the game service class. The first order of business was to create a class that implemented the IGameStreamService interface. Since the service can be used by multiple clients wanting game data I added the ServiceBehavior attribute to the class definition so that I could set its InstanceContextMode to InstanceContextMode.Single (in effect creating a Singleton service object). Listing 3 shows the game service class as well as its fields and constructor.   [ServiceBehavior(ConcurrencyMode = ConcurrencyMode.Multiple, InstanceContextMode = InstanceContextMode.Single)] public class GameStreamService : IGameStreamService { object _Key = new object(); Game _Game = null; Timer _Timer = null; Random _Random = null; Dictionary<string, IGameStreamClient> _ClientCallbacks = new Dictionary<string, IGameStreamClient>(); static AsyncCallback _ReceiveGameDataCompleted = new AsyncCallback(ReceiveGameDataCompleted); public GameStreamService() { _Game = new Game(); _Timer = new Timer { Enabled = false, Interval = 2000, AutoReset = true }; _Timer.Elapsed += new ElapsedEventHandler(_Timer_Elapsed); _Timer.Start(); _Random = new Random(); }} Listing 3. The GameStreamService implements the IGameStreamService interface which defines a callback contract that allows the service class to push data back to the client. By implementing the IGameStreamService interface, GameStreamService must supply a GetTeamData() method which is responsible for supplying information about the teams that are playing as well as individual players.  GetTeamData() also acts as a client subscription method that tracks clients wanting to receive game data.  Listing 4 shows the GetTeamData() method. public void GetTeamData() { //Get client callback channel var context = OperationContext.Current; var sessionID = context.SessionId; var currClient = context.GetCallbackChannel<IGameStreamClient>(); context.Channel.Faulted += Disconnect; context.Channel.Closed += Disconnect; IGameStreamClient client; if (!_ClientCallbacks.TryGetValue(sessionID, out client)) { lock (_Key) { _ClientCallbacks[sessionID] = currClient; } } currClient.ReceiveTeamData(_Game.GetTeamData()); //Start timer which when fired sends updated score information to client if (!_Timer.Enabled) { _Timer.Enabled = true; } } Listing 4. The GetTeamData() method subscribes a given client to the game service and returns. The key the line of code in the GetTeamData() method is the call to GetCallbackChannel<IGameStreamClient>().  This method is responsible for accessing the calling client’s callback channel. The callback channel is defined by the IGameStreamClient interface shown earlier in Listing 2 and used by the server to communicate with the client. Before passing team data back to the client, GetTeamData() grabs the client’s session ID and checks if it already exists in the _ClientCallbacks dictionary object used to track clients wanting callbacks from the server. If the client doesn’t exist it adds it into the collection. It then pushes team data from the Game class back to the client by calling ReceiveTeamData().  Since the service simulates a basketball game, a timer is then started if it’s not already enabled which is then used to randomly send data to the client. When the timer fires, game data is pushed down to the client. Listing 5 shows the _Timer_Elapsed() method that is called when the timer fires as well as the SendGameData() method used to send data to the client. void _Timer_Elapsed(object sender, ElapsedEventArgs e) { int interval = _Random.Next(3000, 7000); lock (_Key) { _Timer.Interval = interval; _Timer.Enabled = false; } SendGameData(_Game.GetGameData()); } private void SendGameData(GameData gameData) { var cbs = _ClientCallbacks.Where(cb => ((IContextChannel)cb.Value).State == CommunicationState.Opened); for (int i = 0; i < cbs.Count(); i++) { var cb = cbs.ElementAt(i).Value; try { cb.BeginReceiveGameData(gameData, _ReceiveGameDataCompleted, cb); } catch (TimeoutException texp) { //Log timeout error } catch (CommunicationException cexp) { //Log communication error } } lock (_Key) _Timer.Enabled = true; } private static void ReceiveGameDataCompleted(IAsyncResult result) { try { ((IGameStreamClient)(result.AsyncState)).EndReceiveGameData(result); } catch (CommunicationException) { // empty } catch (TimeoutException) { // empty } } LIsting 5. _Timer_Elapsed is used to simulate time in a basketball game. When _Timer_Elapsed() fires the SendGameData() method is called which iterates through the clients wanting to be notified of changes. As each client is identified, their respective BeginReceiveGameData() method is called which ultimately pushes game data down to the client. Recall that this method was defined in the client callback interface named IGameStreamClient shown earlier in Listing 2. Notice that BeginReceiveGameData() accepts _ReceiveGameDataCompleted as its second parameter (an AsyncCallback delegate defined in the service class) and passes the client callback as the third parameter. The initial version of the sample application had a standard ReceiveGameData() method in the client callback interface. However, sometimes the client callbacks would work properly and sometimes they wouldn’t which was a little baffling at first glance. After some investigation I realized that I needed to implement an asynchronous pattern for client callbacks to work properly since 3 – 7 second delays are occurring as a result of the timer. Once I added the BeginReceiveGameData() and ReceiveGameDataCompleted() methods everything worked properly since each call was handled in an asynchronous manner. The final task that had to be completed to get the server working properly with HTTP Polling Duplex was adding configuration code into web.config. In the interest of brevity I won’t post all of the code here since the sample application includes everything you need. However, Listing 6 shows the key configuration code to handle creating a custom binding named pollingDuplexBinding and associate it with the service’s endpoint.   <bindings> <customBinding> <binding name="pollingDuplexBinding"> <binaryMessageEncoding /> <pollingDuplex maxPendingSessions="2147483647" maxPendingMessagesPerSession="2147483647" inactivityTimeout="02:00:00" serverPollTimeout="00:05:00"/> <httpTransport /> </binding> </customBinding> </bindings> <services> <service name="GameService.GameStreamService" behaviorConfiguration="GameStreamServiceBehavior"> <endpoint address="" binding="customBinding" bindingConfiguration="pollingDuplexBinding" contract="GameService.IGameStreamService"/> <endpoint address="mex" binding="mexHttpBinding" contract="IMetadataExchange" /> </service> </services>   Listing 6. Configuring an HTTP Polling Duplex binding in web.config and associating an endpoint with it. Calling the Service and Receiving “Pushed” Data Calling the service and handling data that is pushed from the server is a simple and straightforward process in Silverlight. Since the service is configured with a MEX endpoint and exposes a WSDL file, you can right-click on the Silverlight project and select the standard Add Service Reference item. After the web service proxy is created you may notice that the ServiceReferences.ClientConfig file only contains an empty configuration element instead of the normal configuration elements created when creating a standard WCF proxy. You can certainly update the file if you want to read from it at runtime but for the sample application I fed the service URI directly to the service proxy as shown next: var address = new EndpointAddress("http://localhost.:5661/GameStreamService.svc"); var binding = new PollingDuplexHttpBinding(); _Proxy = new GameStreamServiceClient(binding, address); _Proxy.ReceiveTeamDataReceived += _Proxy_ReceiveTeamDataReceived; _Proxy.ReceiveGameDataReceived += _Proxy_ReceiveGameDataReceived; _Proxy.GetTeamDataAsync(); This code creates the proxy and passes the endpoint address and binding to use to its constructor. It then wires the different receive events to callback methods and calls GetTeamDataAsync().  Calling GetTeamDataAsync() causes the server to store the client in the server-side dictionary collection mentioned earlier so that it can receive data that is pushed.  As the server-side timer fires and game data is pushed to the client, the user interface is updated as shown in Listing 7. Listing 8 shows the _Proxy_ReceiveGameDataReceived() method responsible for handling the data and calling UpdateGameData() to process it.   Listing 7. The Silverlight interface. Game data is pushed from the server to the client using HTTP Polling Duplex. void _Proxy_ReceiveGameDataReceived(object sender, ReceiveGameDataReceivedEventArgs e) { UpdateGameData(e.gameData); } private void UpdateGameData(GameData gameData) { //Update Score this.tbTeam1Score.Text = gameData.Team1Score.ToString(); this.tbTeam2Score.Text = gameData.Team2Score.ToString(); //Update ball visibility if (gameData.Action != ActionsEnum.Foul) { if (tbTeam1.Text == gameData.TeamOnOffense) { AnimateBall(this.BB1, this.BB2); } else //Team 2 { AnimateBall(this.BB2, this.BB1); } } if (this.lbActions.Items.Count > 9) this.lbActions.Items.Clear(); this.lbActions.Items.Add(gameData.LastAction); if (this.lbActions.Visibility == Visibility.Collapsed) this.lbActions.Visibility = Visibility.Visible; } private void AnimateBall(Image onBall, Image offBall) { this.FadeIn.Stop(); Storyboard.SetTarget(this.FadeInAnimation, onBall); Storyboard.SetTarget(this.FadeOutAnimation, offBall); this.FadeIn.Begin(); } Listing 8. As the server pushes game data, the client’s _Proxy_ReceiveGameDataReceived() method is called to process the data. In a real-life application I’d go with a ViewModel class to handle retrieving team data, setup data bindings and handle data that is pushed from the server. However, for the sample application I wanted to focus on HTTP Polling Duplex and keep things as simple as possible.   Summary Silverlight supports three options when duplex communication is required in an application including TCP bindins, sockets and HTTP Polling Duplex. In this post you’ve seen how HTTP Polling Duplex interfaces can be created and implemented on the server as well as how they can be consumed by a Silverlight client. HTTP Polling Duplex provides a nice way to “push” data from a server while still allowing the data to flow over port 80 or another port of your choice.   Sample Application Download

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

  • Configuring Oracle iPlanet WebServer / Oracle Traffic Director to use crypto accelerators on T4-1 servers

    - by mv
    Configuring Oracle iPlanet Web Server / Oracle Traffic Director to use crypto accelerators on T4-1 servers Jyri had written a technical article on Configuring Solaris Cryptographic Framework and Sun Java System Web Server 7 on Systems With UltraSPARC T1 Processors. I tried to find out what has changed since then in T4. I have used a T4-1 SPARC system with Solaris 10. Results slightly vary for Solaris 11.  For Solaris 11, the T4 optimization was implemented in libsoftcrypto.so while it was in pkcs11_softtoken_extra.so for Solaris 10. Overview of T4 processors is here in this blog. Many thanx to Chi-Chang Lin and Julien for their help. 1. Install Oracle iPlanet Web Server / Oracle Traffic Director.  Go to instance/config directory.  # cd /opt/oracle/webserver7/https-hostname.fqdn/config 2. List default PKCS#11 Modules # ../../bin/modutil -dbdir . -listListing of PKCS #11 Modules-----------------------------------------------------------1. NSS Internal PKCS #11 Moduleslots: 2 slots attachedstatus: loadedslot: NSS Internal Cryptographic Servicestoken: NSS Generic Crypto Servicesslot: NSS User Private Key and Certificate Servicestoken: NSS Certificate DB2. Root Certslibrary name: libnssckbi.soslots: 1 slot attachedstatus: loadedslot: NSS Builtin Objectstoken: Builtin Object Token----------------------------------------------------------- 3. Initialize the soft token data store in the $HOME/.sunw/pkcs11_softtoken/ directory # pktool setpin keystore=pkcs11Enter token passphrase: olderpasswordCreate new passphrase: passwordRe-enter new passphrase: passwordPassphrase changed. 4. Offload crypto operations to Solaris Crypto Framework on T4 $ ../../bin/modutil -dbdir . -nocertdb -add SCF -libfile /usr/lib/libpkcs11.so -mechanisms RSA:AES:SHA1:MD5 Module "SCF" added to database. Note that -nocertdb means modutil won't try to open the NSS softoken key database. It doesn't even have to be present. PKCS#11 library used is /usr/lib/libpkcs11.so. If the server is running in 64 bit mode, we have to use /usr/lib/64/libpkcs11.so Unlike T1 and T2, in T4 we do not have to disable mechanisms in softtoken provider using cryptoadm. 5. List again to check that a new module SCF is added # ../../bin/modutil -dbdir . -list Listing of PKCS #11 Modules-----------------------------------------------------------1. NSS Internal PKCS #11 Moduleslots: 2 slots attachedstatus: loadedslot: NSS Internal Cryptographic Servicestoken: NSS Generic Crypto Servicesslot: NSS User Private Key and Certificate Servicestoken: NSS Certificate DB2. SCFlibrary name: /usr/lib/libpkcs11.soslots: 2 slots attachedstatus: loadedslot: Sun Metaslottoken: Sun Metaslotslot: n2rng/0 SUNW_N2_Random_Number_Generator token: n2rng/0 SUNW_N2_RNG 3. Root Certs library name: libnssckbi.so slots: 1 slot attached status: loaded slot: NSS Builtin Objects token: Builtin Object Token----------------------------------------------------------- 6.  Create certificate in “Sun Metaslot” : I have used certutil, but you must use Admin Server CLI / GUI # ../../bin/certutil -S -x -n "Server-Cert" -t "CT,CT,CT" -s "CN=*.fqdn" -d . -h "Sun Metaslot"Enter Password or Pin for "Sun Metaslot": password 7. Verify that the certificate is created properly in “Sun Metslaot” # ../../bin/certutil -L -d . -h "Sun Metaslot"Certificate Nickname Trust AttributesSSL,S/MIME,JAR/XPIEnter Password or Pin for "Sun Metaslot": passwordSun Metaslot:Server-Cert CTu,Cu,Cu# 8. Associate this newly created certificate to http listener using Admin CLI/GUI. After that server.xml should have <http-listener> ...    <ssl>        <server-cert-nickname>Sun Metaslot:Server-Cert</server-cert-nicknamer>    </ssl> Note the prefix "Sun Metaslot" 9. Disable PKCS#11 bypass To use the accelerated AES algorithm, turn off PKCS#11 bypass, and configure modutil to have the AES mechanism go to the Metaslot. After you disable PKCS#11 bypasss using Admin GUI/CLI,  check that server.xml should have <server> ....    <pkcs11>         <enabled>1</enabled>         <allow-bypass>0</allow-bypass>     </pkcs11> With PKCS#11 bypass enabled, Oracle iPlanet Web Server will only use the RSA capability of the T4, provided certificate and key are stored in the T4 slot (Metaslot). Actually, the RSA op is never bypassed in NSS, it's always done with PKCS#11 calls. So the bypass settings won't affect the behavior of the probes for RSA at all. The only thing that matters if where the RSA key and certificate live, ie. which PKCS#11 token, and thus which PKCS#11 module gets called to do the work. If your certificate/key are in the NSS certificate/key db, you will see libsoftokn3/libfreebl libraries doing the RSA work. If they are in the Sun Metaslot, it should be the Solaris code. 10. Start the server instance # ../bin/startserv Oracle iPlanet Web Server 7.0.16 B09/14/2012 03:33Please enter the PIN for the "Sun Metaslot" token: password...info: HTTP3072: http-listener-1: https://hostname.fqdn:80 ready to accept requestsinfo: CORE3274: successful server startup 11. Figure out which process to run this DTrace script on # ps -eaf | grep webservd | grep -v dogwebservd 18224 18223 0 13:17:25 ? 0:07 webservd -d /opt/oracle/webserver7/https-hostname.fqdn/config -r /opt/root 18225 18224 0 13:17:25 ? 0:00 webservd -d /opt/oracle/webserver7/https-hostname.fqdn/config -r /opt/ (For Oracle Traffic Director look for process named "trafficd") We see that the child process id is “18225” 12. Clients for testing : You can use any browser. I used NSS tool tstclnt for testing $cat > req.txtGET /index.html HTTP/1.0 For checking both RSA and AES, I used cipher “:0035” which is TLS_RSA_WITH_AES_256_CBC_SHA $./tstclnt -h hostname -p 80 -d . -T -f -o -v -c “:0035” < req.txt 13. How do I make sure that crypto accelerator is being used 13.1 Create DTrace script The following D script should be able to uncover whether T4-specific crypto routine are being called or not. It also displays stats per second. # cat > t4crypto.d#!/usr/sbin/dtrace -spid$target::*rsa*:entry,pid$target::*yf*:entry{    @ops[probemod, probefunc] = count();}tick-1sec{    printa(@ops);    trunc(@ops);} Invoke with './t4crypto.d -p <pid> ' 13.2 EXPECTED PROBES FOR Solaris 10 : If offloading to T4 HW are correctly set up, the expected DTrace output would have these probes and libraries library Operations PROBES pkcs11_softtoken_extra.so RSA soft_decrypt_rsa_pkcs_decode, soft_encrypt_rsa_pkcs_encode soft_rsa_crypt_init_common soft_rsa_decrypt, soft_rsa_encrypt soft_rsa_decrypt_common, soft_rsa_encrypt_common AES yf_aes_instructions_present yf_aes_expand256, yf_aes256_cbc_decrypt, yf_aes256_cbc_encrypt, yf_aes256_load_keys_for_decrypt, yf_aes256_load_keys_for_encrypt, Note that these are for 256, same for 128, 192... these are for cbc, same for ecb, ctr, cfb128... DES yf_des_expand, yf_des_instructions_present yf_des_encrypt libmd_psr.so MD5 yf_md5_multiblock, yf_md5_instruction_present SHA1 yf_sha1_instruction_present, yf_sha1_multibloc 13.3 SAMPLE OUTPUT FOR CIPHER TLS_RSA_WITH_AES_256_CBC_SHA (0x0035) ON T4 SPARC SOLARIS 10 WITHOUT PKCS#11 BYPASS # ./t4crypto.d -p 18225 pkcs11_softtoken_extra.so.1   soft_decrypt_rsa_pkcs_decode    1 pkcs11_softtoken_extra.so.1   soft_rsa_crypt_init_common      1 pkcs11_softtoken_extra.so.1   soft_rsa_decrypt                1 pkcs11_softtoken_extra.so.1   big_mp_mul_yf                   2 pkcs11_softtoken_extra.so.1   mpm_yf_mpmul                    2 pkcs11_softtoken_extra.so.1   mpmul_arr_yf                    2 pkcs11_softtoken_extra.so.1   rijndael_key_setup_enc_yf       2 pkcs11_softtoken_extra.so.1   soft_rsa_decrypt_common         2 pkcs11_softtoken_extra.so.1   yf_aes_expand256                2 pkcs11_softtoken_extra.so.1   yf_aes256_cbc_decrypt           3 pkcs11_softtoken_extra.so.1   yf_aes256_load_keys_for_decrypt 3 pkcs11_softtoken_extra.so.1   big_mont_mul_yf                 6 pkcs11_softtoken_extra.so.1   mm_yf_montmul                   6 pkcs11_softtoken_extra.so.1   yf_des_instructions_present     6 pkcs11_softtoken_extra.so.1   yf_aes256_cbc_encrypt           8 pkcs11_softtoken_extra.so.1   yf_aes256_load_keys_for_encrypt 8 pkcs11_softtoken_extra.so.1   yf_mpmul_present                8 pkcs11_softtoken_extra.so.1   yf_aes_instructions_present    13 pkcs11_softtoken_extra.so.1   yf_des_encrypt                 18 libmd_psr.so.1                yf_md5_multiblock              41 libmd_psr.so.1                yf_md5_instruction_present     72 libmd_psr.so.1                yf_sha1_instruction_present    82 libmd_psr.so.1                yf_sha1_multiblock             82 This indicates that both RSA and AES ops are done in Solaris Crypto Framework. 13.4 SAMPLE OUTPUT FOR CIPHER TLS_RSA_WITH_AES_256_CBC_SHA (0x0035) ON T4 SPARC SOLARIS 10 WITH PKCS#11 BYPASS # ./t4crypto.d -p 18225 pkcs11_softtoken_extra.so.1   soft_decrypt_rsa_pkcs_decode 1 pkcs11_softtoken_extra.so.1   soft_rsa_crypt_init_common   1 pkcs11_softtoken_extra.so.1   soft_rsa_decrypt             1 pkcs11_softtoken_extra.so.1   soft_rsa_decrypt_common      1 pkcs11_softtoken_extra.so.1   big_mp_mul_yf                2 pkcs11_softtoken_extra.so.1   mpm_yf_mpmul                 2 pkcs11_softtoken_extra.so.1   mpmul_arr_yf                 2 pkcs11_softtoken_extra.so.1   big_mont_mul_yf              6 pkcs11_softtoken_extra.so.1   mm_yf_montmul                6 pkcs11_softtoken_extra.so.1   yf_mpmul_present             8 For this cipher, when I enable PKCS#11 bypass, Only RSA probes are being hit AES probes are not being hit. 13.5 ustack() for RSA operations / probefunc == "soft_rsa_decrypt" / Shows that libnss3.so is calling C_* functions of libpkcs11.so which is calling functions of pkcs11_softtoken_extra.so for both cases with and without bypass. When PKCS#11 bypass is disabled (allow-bypass is 0) pkcs11_softtoken_extra.so.1`soft_rsa_decrypt pkcs11_softtoken_extra.so.1`soft_rsa_decrypt_common+0x94 pkcs11_softtoken_extra.so.1`soft_unwrapkey+0x258 pkcs11_softtoken_extra.so.1`C_UnwrapKey+0x1ec libpkcs11.so.1`meta_unwrap_key+0x17c libpkcs11.so.1`meta_UnwrapKey+0xc4 libpkcs11.so.1`C_UnwrapKey+0xfc libnss3.so`pk11_AnyUnwrapKey+0x6b8 libnss3.so`PK11_PubUnwrapSymKey+0x8c libssl3.so`ssl3_HandleRSAClientKeyExchange+0x1a0 libssl3.so`ssl3_HandleClientKeyExchange+0x154 libssl3.so`ssl3_HandleHandshakeMessage+0x440 libssl3.so`ssl3_HandleHandshake+0x11c libssl3.so`ssl3_HandleRecord+0x5e8 libssl3.so`ssl3_GatherCompleteHandshake+0x5c libssl3.so`ssl_GatherRecord1stHandshake+0x30 libssl3.so`ssl_Do1stHandshake+0xec libssl3.so`ssl_SecureRecv+0x1c8 libssl3.so`ssl_Recv+0x9c libns-httpd40.so`__1cNDaemonSessionDrun6M_v_+0x2dc When PKCS#11 bypass is enabled (allow-bypass is 1) pkcs11_softtoken_extra.so.1`soft_rsa_decrypt pkcs11_softtoken_extra.so.1`soft_rsa_decrypt_common+0x94 pkcs11_softtoken_extra.so.1`C_Decrypt+0x164 libpkcs11.so.1`meta_do_operation+0x27c libpkcs11.so.1`meta_Decrypt+0x4c libpkcs11.so.1`C_Decrypt+0xcc libnss3.so`PK11_PrivDecryptPKCS1+0x1ac libssl3.so`ssl3_HandleRSAClientKeyExchange+0xe4 libssl3.so`ssl3_HandleClientKeyExchange+0x154 libssl3.so`ssl3_HandleHandshakeMessage+0x440 libssl3.so`ssl3_HandleHandshake+0x11c libssl3.so`ssl3_HandleRecord+0x5e8 libssl3.so`ssl3_GatherCompleteHandshake+0x5c libssl3.so`ssl_GatherRecord1stHandshake+0x30 libssl3.so`ssl_Do1stHandshake+0xec libssl3.so`ssl_SecureRecv+0x1c8 libssl3.so`ssl_Recv+0x9c libns-httpd40.so`__1cNDaemonSessionDrun6M_v_+0x2dc libnsprwrap.so`ThreadMain+0x1c libnspr4.so`_pt_root+0xe8 13.6 ustack() FOR AES operations / probefunc == "yf_aes256_cbc_encrypt" / When PKCS#11 bypass is disabled (allow-bypass is 0) pkcs11_softtoken_extra.so.1`yf_aes256_cbc_encrypt pkcs11_softtoken_extra.so.1`aes_block_process_contiguous_whole_blocks+0xb4 pkcs11_softtoken_extra.so.1`aes_crypt_contiguous_blocks+0x1cc pkcs11_softtoken_extra.so.1`soft_aes_encrypt_common+0x22c pkcs11_softtoken_extra.so.1`C_EncryptUpdate+0x10c libpkcs11.so.1`meta_do_operation+0x1fc libpkcs11.so.1`meta_EncryptUpdate+0x4c libpkcs11.so.1`C_EncryptUpdate+0xcc libnss3.so`PK11_CipherOp+0x1a0 libssl3.so`ssl3_CompressMACEncryptRecord+0x264 libssl3.so`ssl3_SendRecord+0x300 libssl3.so`ssl3_FlushHandshake+0x54 libssl3.so`ssl3_SendFinished+0x1fc libssl3.so`ssl3_HandleFinished+0x314 libssl3.so`ssl3_HandleHandshakeMessage+0x4ac libssl3.so`ssl3_HandleHandshake+0x11c libssl3.so`ssl3_HandleRecord+0x5e8 libssl3.so`ssl3_GatherCompleteHandshake+0x5c libssl3.so`ssl_GatherRecord1stHandshake+0x30 libssl3.so`ssl_Do1stHandshake+0xec Shows that libnss3.so is calling C_* functions of libpkcs11.so which is calling functions of pkcs11_softtoken_extra.so However when PKCS#11 bypass is disabled (allow-bypass is 1) this stack isn't getting called. 14. LIST OF ALL THE PROBES MATCHED BY D SCRIPT FOR REFERENCE # ./t4crypto.d -p 18225 -l ID PROVIDER MODULE FUNCTION NAME ... 55720 pid18225 libmd_psr.so.1 yf_md5_instruction_present entry 55721 pid18225 libmd_psr.so.1 yf_sha256_instruction_present entry 55722 pid18225 libmd_psr.so.1 yf_sha512_instruction_present entry 55723 pid18225 libmd_psr.so.1 yf_sha1_instruction_present entry 55724 pid18225 libmd_psr.so.1 yf_sha256 entry 55725 pid18225 libmd_psr.so.1 yf_sha256_multiblock entry 55726 pid18225 libmd_psr.so.1 yf_sha512 entry 55727 pid18225 libmd_psr.so.1 yf_sha512_multiblock entry 55728 pid18225 libmd_psr.so.1 yf_sha1 entry 55729 pid18225 libmd_psr.so.1 yf_sha1_multiblock entry 55730 pid18225 libmd_psr.so.1 yf_md5 entry 55731 pid18225 libmd_psr.so.1 yf_md5_multiblock entry 55732 pid18225 pkcs11_softtoken_extra.so.1 yf_aes_instructions_present entry 55733 pid18225 pkcs11_softtoken_extra.so.1 rijndael_key_setup_enc_yf entry 55734 pid18225 pkcs11_softtoken_extra.so.1 yf_aes_expand128 entry 55735 pid18225 pkcs11_softtoken_extra.so.1 yf_aes_encrypt128 entry 55736 pid18225 pkcs11_softtoken_extra.so.1 yf_aes_decrypt128 entry 55737 pid18225 pkcs11_softtoken_extra.so.1 yf_aes_expand192 entry 55738 pid18225 pkcs11_softtoken_extra.so.1 yf_aes_encrypt192 entry 55739 pid18225 pkcs11_softtoken_extra.so.1 yf_aes_decrypt192 entry 55740 pid18225 pkcs11_softtoken_extra.so.1 yf_aes_expand256 entry 55741 pid18225 pkcs11_softtoken_extra.so.1 yf_aes_encrypt256 entry 55742 pid18225 pkcs11_softtoken_extra.so.1 yf_aes_decrypt256 entry 55743 pid18225 pkcs11_softtoken_extra.so.1 yf_aes128_load_keys_for_encrypt entry 55744 pid18225 pkcs11_softtoken_extra.so.1 yf_aes192_load_keys_for_encrypt entry 55745 pid18225 pkcs11_softtoken_extra.so.1 yf_aes256_load_keys_for_encrypt entry 55746 pid18225 pkcs11_softtoken_extra.so.1 yf_aes128_ecb_encrypt entry 55747 pid18225 pkcs11_softtoken_extra.so.1 yf_aes192_ecb_encrypt entry 55748 pid18225 pkcs11_softtoken_extra.so.1 yf_aes256_ecb_encrypt entry 55749 pid18225 pkcs11_softtoken_extra.so.1 yf_aes128_cbc_encrypt entry 55750 pid18225 pkcs11_softtoken_extra.so.1 yf_aes192_cbc_encrypt entry 55751 pid18225 pkcs11_softtoken_extra.so.1 yf_aes256_cbc_encrypt entry 55752 pid18225 pkcs11_softtoken_extra.so.1 yf_aes128_ctr_crypt entry 55753 pid18225 pkcs11_softtoken_extra.so.1 yf_aes192_ctr_crypt entry 55754 pid18225 pkcs11_softtoken_extra.so.1 yf_aes256_ctr_crypt entry 55755 pid18225 pkcs11_softtoken_extra.so.1 yf_aes128_cfb128_encrypt entry 55756 pid18225 pkcs11_softtoken_extra.so.1 yf_aes192_cfb128_encrypt entry 55757 pid18225 pkcs11_softtoken_extra.so.1 yf_aes256_cfb128_encrypt entry 55758 pid18225 pkcs11_softtoken_extra.so.1 yf_aes128_load_keys_for_decrypt entry 55759 pid18225 pkcs11_softtoken_extra.so.1 yf_aes192_load_keys_for_decrypt entry 55760 pid18225 pkcs11_softtoken_extra.so.1 yf_aes256_load_keys_for_decrypt entry 55761 pid18225 pkcs11_softtoken_extra.so.1 yf_aes128_ecb_decrypt entry 55762 pid18225 pkcs11_softtoken_extra.so.1 yf_aes192_ecb_decrypt entry 55763 pid18225 pkcs11_softtoken_extra.so.1 yf_aes256_ecb_decrypt entry 55764 pid18225 pkcs11_softtoken_extra.so.1 yf_aes128_cbc_decrypt entry 55765 pid18225 pkcs11_softtoken_extra.so.1 yf_aes192_cbc_decrypt entry 55766 pid18225 pkcs11_softtoken_extra.so.1 yf_aes256_cbc_decrypt entry 55767 pid18225 pkcs11_softtoken_extra.so.1 yf_aes128_cfb128_decrypt entry 55768 pid18225 pkcs11_softtoken_extra.so.1 yf_aes192_cfb128_decrypt entry 55769 pid18225 pkcs11_softtoken_extra.so.1 yf_aes256_cfb128_decrypt entry 55771 pid18225 pkcs11_softtoken_extra.so.1 yf_des_instructions_present entry 55772 pid18225 pkcs11_softtoken_extra.so.1 yf_des_expand entry 55773 pid18225 pkcs11_softtoken_extra.so.1 yf_des_encrypt entry 55774 pid18225 pkcs11_softtoken_extra.so.1 yf_mpmul_present entry 55775 pid18225 pkcs11_softtoken_extra.so.1 yf_montmul_present entry 55776 pid18225 pkcs11_softtoken_extra.so.1 mm_yf_montmul entry 55777 pid18225 pkcs11_softtoken_extra.so.1 mm_yf_montsqr entry 55778 pid18225 pkcs11_softtoken_extra.so.1 mm_yf_restore_func entry 55779 pid18225 pkcs11_softtoken_extra.so.1 mm_yf_ret_from_mont_func entry 55780 pid18225 pkcs11_softtoken_extra.so.1 mm_yf_execute_slp entry 55781 pid18225 pkcs11_softtoken_extra.so.1 big_modexp_ncp_yf entry 55782 pid18225 pkcs11_softtoken_extra.so.1 big_mont_mul_yf entry 55783 pid18225 pkcs11_softtoken_extra.so.1 mpmul_arr_yf entry 55784 pid18225 pkcs11_softtoken_extra.so.1 big_mp_mul_yf entry 55785 pid18225 pkcs11_softtoken_extra.so.1 mpm_yf_mpmul entry 55786 pid18225 libns-httpd40.so nsapi_rsa_set_priv_fn entry ... 55795 pid18225 libnss3.so prepare_rsa_priv_key_export_for_asn1 entry 55796 pid18225 libresolv.so.2 sunw_dst_rsaref_init entry 55797 pid18225 libnssutil3.so NSS_Get_SEC_UniversalStringTemplate entry ... 55813 pid18225 libsoftokn3.so prepare_low_rsa_priv_key_for_asn1 entry 55814 pid18225 libsoftokn3.so rsa_FormatOneBlock entry 55815 pid18225 libsoftokn3.so rsa_FormatBlock entry 55816 pid18225 libnssdbm3.so lg_prepare_low_rsa_priv_key_for_asn1 entry 55817 pid18225 libfreebl_32fpu_3.so rsa_build_from_primes entry 55818 pid18225 libfreebl_32fpu_3.so rsa_is_prime entry 55819 pid18225 libfreebl_32fpu_3.so rsa_get_primes_from_exponents entry 55820 pid18225 libfreebl_32fpu_3.so rsa_PrivateKeyOpNoCRT entry 55821 pid18225 libfreebl_32fpu_3.so rsa_PrivateKeyOpCRTNoCheck entry 55822 pid18225 libfreebl_32fpu_3.so rsa_PrivateKeyOpCRTCheckedPubKey entry 55823 pid18225 pkcs11_kernel.so.1 key_gen_rsa_by_value entry 55824 pid18225 pkcs11_kernel.so.1 get_rsa_private_key entry 55825 pid18225 pkcs11_kernel.so.1 get_rsa_public_key entry 55826 pid18225 pkcs11_softtoken_extra.so.1 soft_rsa_encrypt entry 55827 pid18225 pkcs11_softtoken_extra.so.1 soft_rsa_decrypt entry 55828 pid18225 pkcs11_softtoken_extra.so.1 soft_rsa_crypt_init_common entry 55829 pid18225 pkcs11_softtoken_extra.so.1 soft_rsa_encrypt_common entry 55830 pid18225 pkcs11_softtoken_extra.so.1 soft_rsa_decrypt_common entry 55831 pid18225 pkcs11_softtoken_extra.so.1 soft_rsa_sign_verify_init_common entry 55832 pid18225 pkcs11_softtoken_extra.so.1 soft_rsa_sign_common entry 55833 pid18225 pkcs11_softtoken_extra.so.1 soft_rsa_verify_common entry 55834 pid18225 pkcs11_softtoken_extra.so.1 generate_rsa_key entry 55835 pid18225 pkcs11_softtoken_extra.so.1 soft_rsa_genkey_pair entry 55836 pid18225 pkcs11_softtoken_extra.so.1 get_rsa_sha1_prefix entry 55837 pid18225 pkcs11_softtoken_extra.so.1 soft_rsa_digest_sign_common entry 55838 pid18225 pkcs11_softtoken_extra.so.1 soft_rsa_digest_verify_common entry 55839 pid18225 pkcs11_softtoken_extra.so.1 soft_rsa_verify_recover entry 55840 pid18225 pkcs11_softtoken_extra.so.1 rsa_pri_to_asn1 entry 55841 pid18225 pkcs11_softtoken_extra.so.1 asn1_to_rsa_pri entry 55842 pid18225 pkcs11_softtoken_extra.so.1 soft_encrypt_rsa_pkcs_encode entry 55843 pid18225 pkcs11_softtoken_extra.so.1 soft_decrypt_rsa_pkcs_decode entry 55844 pid18225 pkcs11_softtoken_extra.so.1 soft_sign_rsa_pkcs_encode entry 55845 pid18225 pkcs11_softtoken_extra.so.1 soft_verify_rsa_pkcs_decode entry 55770 profile tick-1sec

    Read the article

  • Automatic Standby Recreation for Data Guard

    - by pablo.boixeda(at)oracle.com
    Hi,Unfortunately sometimes a Standby Instance needs to be recreated. This can happen for many reasons such as lost archive logs, standby data files, failover, among others.This is why we wanted to have one script to recreate standby instances in an easy way.This script recreates the standby considering some prereqs:-Database Version should be at least 11gR1-Dummy instance started on the standby node (Seeking to improve this so it won't be needed)-Broker configuration hasn't been removed-In our case we have two TNSNAMES files, one for the Standby creation (using SID) and the other one for production using service names (including broker service name)-Some environment variables set up by the environment db script (like ORACLE_HOME, PATH...)-The directory tree should not have been modified in the stanby hostWe are currently using it on our 11gR2 Data Guard tests.Any improvements will be welcome! Normal 0 21 false false false ES X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} #!/bin/ksh ###    NOMBRE / VERSION ###       recrea_dg.sh   v.1.00 ### ###    DESCRIPCION ###       reacreacion de la Standby ### ###    DEVUELVE ###       0 Creacion de STANDBY correcta ###       1 Fallo ### ###    NOTAS ###       Este shell script NO DEBE MODIFICARSE. ###       Todas las variables y constantes necesarias se toman del entorno. ### ###    MODIFICADO POR:    FECHA:        COMENTARIOS: ###    ---------------    ----------    ------------------------------------- ###      Oracle           15/02/2011    Creacion. ### ### ### Cargar entorno ### V_ADMIN_DIR=`dirname $0` . ${V_ADMIN_DIR}/entorno_bd.sh 1>>/dev/null if [ $? -ne 0 ] then   echo "Error Loading the environment."   exit 1 fi V_RET=0 V_DATE=`/bin/date` V_DATE_F=`/bin/date +%Y%m%d_%H%M%S` V_LOGFILE=${V_TRAZAS}/recrea_dg_${V_DATE_F}.log exec 4>&1 tee ${V_FICH_LOG} >&4 |& exec 1>&p 2>&1 ### ### Variables para Recrear el Data Guard ### V_DB_BR=`echo ${V_DB_NAME}|tr '[:lower:]' '[:upper:]'` if [ "${ORACLE_SID}" = "${V_DB_NAME}01" ] then         V_LOCAL_BR=${V_DB_BR}'01'         V_REMOTE_BR=${V_DB_BR}'02' else         V_LOCAL_BR=${V_DB_BR}'02'         V_REMOTE_BR=${V_DB_BR}'01' fi echo " Getting local instance ROLE ${ORACLE_SID} ..." sqlplus -s /nolog 1>>/dev/null 2>&1 <<-! whenever sqlerror exit 1 connect / as sysdba variable salida number declare   v_database_role v\$database.database_role%type; begin   select database_role into v_database_role from v\$database;   :salida := case v_database_role        when 'PRIMARY' then 2        when 'PHYSICAL STANDBY' then 3        else 4      end; end; / exit :salida ! case $? in 1) echo " ERROR: Cannot get instance ROLE ." | tee -a ${V_LOGFILE}   2>&1    V_RET=1 ;; 2) echo " Local Instance with PRIMARY role." | tee -a ${V_LOGFILE}   2>&1    V_DB_ROLE_LCL=PRIMARY ;; 3) echo " Local Instance with PHYSICAL STANDBY role." | tee -a ${V_LOGFILE}   2>&1    V_DB_ROLE_LCL=STANDBY ;; *) echo " ERROR: UNKNOWN ROLE." | tee -a ${V_LOGFILE}   2>&1    V_RET=1 ;; esac if [ "${V_DB_ROLE_LCL}" = "PRIMARY" ] then         echo "####################################################################" | tee -a ${V_LOGFILE}   2>&1         echo "${V_DATE} - Reacreating  STANDBY Instance." | tee -a ${V_LOGFILE}   2>&1         echo "" | tee -a ${V_LOGFILE}   2>&1         echo "DATAFILES, CONTROL FILES, REDO LOGS and ARCHIVE LOGS in standby instance ${V_REMOTE_BR} will be removed" | tee -a ${V_LOGFILE}   2>&1         echo "" | tee -a ${V_LOGFILE}   2>&1         V_PRIMARY=${V_LOCAL_BR}         V_STANDBY=${V_REMOTE_BR} fi if [ "${V_DB_ROLE_LCL}" = "STANDBY" ] then         echo "####################################################################" | tee -a ${V_LOGFILE}   2>&1         echo "${V_DATE} - Reacreating  STANDBY Instance." | tee -a ${V_LOGFILE}   2>&1         echo "" | tee -a ${V_LOGFILE}   2>&1         echo "DATAFILES, CONTROL FILES, REDO LOGS and ARCHIVE LOGS in standby instance ${V_LOCAL_BR} will be removed" | tee -a ${V_LOGFILE}   2>&1         echo "" | tee -a ${V_LOGFILE}   2>&1         V_PRIMARY=${V_REMOTE_BR}         V_STANDBY=${V_LOCAL_BR} fi # Cargamos las variables de los hosts # Cargamos las variables de los hosts PRY_HOST=`sqlplus  /nolog << EOF | grep KEEP | sed 's/KEEP//;s/[   ]//g' connect sys/${V_DB_PWD}@${V_PRIMARY} as sysdba select 'KEEP',host_name from v\\$instance; EOF` SBY_HOST=`sqlplus  /nolog << EOF | grep KEEP | sed 's/KEEP//;s/[   ]//g' connect sys/${V_DB_PWD}@${V_STANDBY} as sysdba select 'KEEP',host_name from v\\$instance; EOF` echo "el HOST primary es: ${PRY_HOST}" | tee -a ${V_LOGFILE}   2>&1 echo "el HOST standby es: ${SBY_HOST}" | tee -a ${V_LOGFILE}   2>&1 echo "" | tee -a ${V_LOGFILE}   2>&1 ## ## Paramos la instancia STANDBY ## V_DATE=`/bin/date` echo "${V_DATE} - Shutting down Standby instance" | tee -a ${V_LOGFILE}   2>&1 echo "" | tee -a ${V_LOGFILE}   2>&1 echo "********************************************************************************" | tee -a ${V_LOGFILE}   2>&1 ## ## Paramos la instancia STANDBY ## SBY_STATUS=`sqlplus  /nolog << EOF | grep KEEP | sed 's/KEEP//;s/[   ]//g' connect sys/${V_DB_PWD}@${V_STANDBY} as sysdba select 'KEEP',status from v\\$instance; EOF` if [ ${SBY_STATUS} = 'STARTED' ] || [ ${SBY_STATUS} = 'MOUNTED' ] || [ ${SBY_STATUS} = 'OPEN' ] then         echo "${V_DATE} - Standby instance shutdown in progress..." | tee -a ${V_LOGFILE}   2>&1         echo "" | tee -a ${V_LOGFILE}   2>&1         echo "********************************************************************************" | tee -a ${V_LOGFILE}   2>&1         sqlplus -s /nolog 1>>/dev/null 2>&1 <<-!         whenever sqlerror exit 1         connect sys/${V_DB_PWD}@${V_STANDBY} as sysdba         shutdown abort         ! fi V_DATE=`/bin/date` echo "" echo "${V_DATE} - Standby instance stopped" | tee -a ${V_LOGFILE}   2>&1 echo "" | tee -a ${V_LOGFILE}   2>&1 echo "********************************************************************************" | tee -a ${V_LOGFILE}   2>&1 ## ## Eliminamos los ficheros de la base de datos ## V_SBY_SID=`echo ${V_STANDBY}|tr '[:upper:]' '[:lower:]'` V_PRY_SID=`echo ${V_PRIMARY}|tr '[:upper:]' '[:lower:]'` ssh ${SBY_HOST} rm /opt/oracle/db/db${V_DB_NAME}/${V_SBY_SID}/data/*.dbf ssh ${SBY_HOST} rm /opt/oracle/db/db${V_DB_NAME}/${V_SBY_SID}/arch/*.arc ssh ${SBY_HOST} rm /opt/oracle/db/db${V_DB_NAME}/${V_SBY_SID}/ctl/*.ctl ssh ${SBY_HOST} rm /opt/oracle/db/db${V_DB_NAME}/${V_SBY_SID}/redo/*.ctl ssh ${SBY_HOST} rm /opt/oracle/db/db${V_DB_NAME}/${V_SBY_SID}/redo/*.rdo ## ## Startup nomount stby instance ## V_DATE=`/bin/date` echo "" | tee -a ${V_LOGFILE}   2>&1 echo "${V_DATE} - Starting  DUMMY Standby Instance " | tee -a ${V_LOGFILE}   2>&1 echo "" | tee -a ${V_LOGFILE}   2>&1 echo "********************************************************************************" | tee -a ${V_LOGFILE}   2>&1 ssh ${SBY_HOST} touch /home/oracle/init_dg.ora ssh ${SBY_HOST} 'echo "DB_NAME='${V_DB_NAME}'">>/home/oracle/init_dg.ora' ssh ${SBY_HOST} touch /home/oracle/start_dummy.sh ssh ${SBY_HOST} 'echo "ORACLE_HOME=/opt/oracle/db/db'${V_DB_NAME}'/soft/db11.2.0.2 ">>/home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'echo "export ORACLE_HOME">>/home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'echo "PATH=\$ORACLE_HOME/bin:\$PATH">>/home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'echo "export PATH">>/home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'echo "ORACLE_SID='${V_SBY_SID}'">>/home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'echo "export ORACLE_SID">>/home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'echo "sqlplus -s /nolog <<-!" >>/home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'echo "      whenever sqlerror exit 1 ">>/home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'echo "      connect / as sysdba ">>/home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'echo "      startup nomount pfile='\''/home/oracle/init_dg.ora'\''">>/home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'echo "! ">>/home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'chmod 744 /home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'sh /home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'rm /home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'rm /home/oracle/init_dg.ora' ## ## TNSNAMES change, specific for RMAN duplicate ## V_DATE=`/bin/date` echo "" | tee -a ${V_LOGFILE}   2>&1 echo "${V_DATE} - Setting up TNSNAMES in PRIMARY host " | tee -a ${V_LOGFILE}   2>&1 echo "" | tee -a ${V_LOGFILE}   2>&1 echo "********************************************************************************" | tee -a ${V_LOGFILE}   2>&1 ssh ${PRY_HOST} 'cp /opt/oracle/db/db'${V_DB_NAME}'/soft/db11.2.0.2/network/admin/tnsnames.ora.inst  /opt/oracle/db/db'${V_DB_NAME}'/soft/db11.2.0.2/network/admin/tnsnames.ora' V_DATE=`/bin/date` echo "" | tee -a ${V_LOGFILE}   2>&1 echo "${V_DATE} - Starting STANDBY creation with RMAN.. " | tee -a ${V_LOGFILE}   2>&1 echo "" | tee -a ${V_LOGFILE}   2>&1 echo "********************************************************************************" | tee -a ${V_LOGFILE}   2>&1 rman<<-! >>${V_LOGFILE} connect target sys/${V_DB_PWD}@${V_PRIMARY} connect auxiliary sys/${V_DB_PWD}@${V_STANDBY} run { allocate channel prmy1 type disk; allocate channel prmy2 type disk; allocate channel prmy3 type disk; allocate channel prmy4 type disk; allocate auxiliary channel stby type disk; duplicate target database for standby from active database dorecover spfile parameter_value_convert '${V_PRY_SID}','${V_SBY_SID}' set control_files='/opt/oracle/db/db${V_DB_NAME}/${V_SBY_SID}/ctl/control01.ctl','/opt/oracle/db/db${V_DB_NAME}/${V_SBY_SID}/redo/control02.ctl' set db_file_name_convert='/opt/oracle/db/db${V_DB_NAME}/${V_PRY_SID}/','/opt/oracle/db/db${V_DB_NAME}/${V_SBY_SID}/' set log_file_name_convert='/opt/oracle/db/db${V_DB_NAME}/${V_PRY_SID}/','/opt/oracle/db/db${V_DB_NAME}/${V_SBY_SID}/' set 'db_unique_name'='${V_SBY_SID}' set log_archive_config='DG_CONFIG=(${V_PRIMARY},${V_STANDBY})' set fal_client='${V_STANDBY}' set fal_server='${V_PRIMARY}' set log_archive_dest_1='LOCATION=/opt/oracle/db/db${V_DB_NAME}/${V_SBY_SID}/arch DB_UNIQUE_NAME=${V_SBY_SID} MANDATORY VALID_FOR=(ALL_LOGFILES,ALL_ROLES)' set log_archive_dest_2='SERVICE="${V_PRIMARY}"','SYNC AFFIRM DB_UNIQUE_NAME=${V_PRY_SID} DELAY=0 MAX_FAILURE=0 REOPEN=300 REGISTER VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)' nofilenamecheck ; } ! V_DATE=`/bin/date` if [ $? -ne 0 ] then         echo ""         echo "${V_DATE} - Error creating STANDBY instance"         echo ""         echo "********************************************************************************" else         echo ""         echo "${V_DATE} - STANDBY instance created SUCCESSFULLY "         echo ""         echo "********************************************************************************" fi sqlplus -s /nolog 1>>/dev/null 2>&1 <<-!         whenever sqlerror exit 1         connect sys/${V_DB_PWD}@${V_STANDBY} as sysdba         alter system set local_listener='(ADDRESS=(PROTOCOL=TCP)(HOST=${SBY_HOST})(PORT=1544))' scope=both;         alter system set service_names='${V_DB_NAME}.eu.roca.net,${V_SBY_SID}.eu.roca.net,${V_SBY_SID}_DGMGRL.eu.roca.net' scope=both;         alter database recover managed standby database using current logfile disconnect from session;         alter system set dg_broker_start=true scope=both; ! ## ## TNSNAMES change, back to Production Mode ## V_DATE=`/bin/date` echo " " | tee -a ${V_LOGFILE}   2>&1 echo "${V_DATE} - Restoring TNSNAMES in PRIMARY "  | tee -a ${V_LOGFILE}   2>&1 echo ""  | tee -a ${V_LOGFILE}   2>&1 echo "********************************************************************************"  | tee -a ${V_LOGFILE}   2>&1 ssh ${PRY_HOST} 'cp /opt/oracle/db/db'${V_DB_NAME}'/soft/db11.2.0.2/network/admin/tnsnames.ora.prod  /opt/oracle/db/db'${V_DB_NAME}'/soft/db11.2.0.2/network/admin/tnsnames.ora' echo ""  | tee -a ${V_LOGFILE}   2>&1 echo "${V_DATE} -  Waiting for media recovery before check the DATA GUARD Broker"  | tee -a ${V_LOGFILE}   2>&1 echo ""  | tee -a ${V_LOGFILE}   2>&1 echo "********************************************************************************"  | tee -a ${V_LOGFILE}   2>&1 sleep 200 dgmgrl <<-! | grep SUCCESS 1>/dev/null 2>&1     connect ${V_DB_USR}/${V_DB_PWD}@${V_STANDBY}     show configuration verbose; ! if [ $? -ne 0 ] ; then         echo "       ERROR: El status del Broker no es SUCCESS" | tee -a ${V_LOGFILE}   2>&1 ;         V_RET=1 else          echo "      DATA GUARD OK " | tee -a ${V_LOGFILE}   2>&1 ; Normal 0 21 false false false ES X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}         V_RET=0 fi Hope it helps.

    Read the article

  • Java Cloud Service Integration to REST Service

    - by Jani Rautiainen
    Service (JCS) provides a platform to develop and deploy business applications in the cloud. In Fusion Applications Cloud deployments customers do not have the option to deploy custom applications developed with JDeveloper to ensure the integrity and supportability of the hosted application service. Instead the custom applications can be deployed to the JCS and integrated to the Fusion Application Cloud instance. This series of articles will go through the features of JCS, provide end-to-end examples on how to develop and deploy applications on JCS and how to integrate them with the Fusion Applications instance. In this article a custom application integrating with REST service will be implemented. We will use REST services provided by Taleo as an example; however the same approach will work with any REST service. In this example the data from the REST service is used to populate a dynamic table. Pre-requisites Access to Cloud instance In order to deploy the application access to a JCS instance is needed, a free trial JCS instance can be obtained from Oracle Cloud site. To register you will need a credit card even if the credit card will not be charged. To register simply click "Try it" and choose the "Java" option. The confirmation email will contain the connection details. See this video for example of the registration.Once the request is processed you will be assigned 2 service instances; Java and Database. Applications deployed to the JCS must use Oracle Database Cloud Service as their underlying database. So when JCS instance is created a database instance is associated with it using a JDBC data source.The cloud services can be monitored and managed through the web UI. For details refer to Getting Started with Oracle Cloud. JDeveloper JDeveloper contains Cloud specific features related to e.g. connection and deployment. To use these features download the JDeveloper from JDeveloper download site by clicking the "Download JDeveloper 11.1.1.7.1 for ADF deployment on Oracle Cloud" link, this version of JDeveloper will have the JCS integration features that will be used in this article. For versions that do not include the Cloud integration features the Oracle Java Cloud Service SDK or the JCS Java Console can be used for deployment. For details on installing and configuring the JDeveloper refer to the installation guideFor details on SDK refer to Using the Command-Line Interface to Monitor Oracle Java Cloud Service and Using the Command-Line Interface to Manage Oracle Java Cloud Service. Access to a local database The database associated with the JCS instance cannot be connected to with JDBC.  Since creating ADFbc business component requires a JDBC connection we will need access to a local database. 3rd party libraries This example will use some 3rd party libraries for implementing the REST service call and processing the input / output content. Other libraries may also be used, however these are tested to work. Jersey 1.x Jersey library will be used as a client to make the call to the REST service. JCS documentation for supported specifications states: Java API for RESTful Web Services (JAX-RS) 1.1 So Jersey 1.x will be used. Download the single-JAR Jersey bundle; in this example Jersey 1.18 JAR bundle is used. Json-simple Jjson-simple library will be used to process the json objects. Download the  JAR file; in this example json-simple-1.1.1.jar is used. Accessing data in Taleo Before implementing the application it is beneficial to familiarize oneself with the data in Taleo. Easiest way to do this is by using a RESTClient on your browser. Once added to the browser you can access the UI: The client can be used to call the REST services to test the URLs and data before adding them into the application. First derive the base URL for the service this can be done with: Method: GET URL: https://tbe.taleo.net/MANAGER/dispatcher/api/v1/serviceUrl/<company name> The response will contain the base URL to be used for the service calls for the company. Next obtain authentication token with: Method: POST URL: https://ch.tbe.taleo.net/CH07/ats/api/v1/login?orgCode=<company>&userName=<user name>&password=<password> The response includes an authentication token that can be used for few hours to authenticate with the service: {   "response": {     "authToken": "webapi26419680747505890557"   },   "status": {     "detail": {},     "success": true   } } To authenticate the service calls navigate to "Headers -> Custom Header": And add a new request header with: Name: Cookie Value: authToken=webapi26419680747505890557 Once authentication token is defined the tool can be used to invoke REST services; for example: Method: GET URL: https://ch.tbe.taleo.net/CH07/ats/api/v1/object/candidate/search.xml?status=16 This data will be used on the application to be created. For details on the Taleo REST services refer to the Taleo Business Edition REST API Guide. Create Application First Fusion Web Application is created and configured. Start JDeveloper and click "New Application": Application Name: JcsRestDemo Application Package Prefix: oracle.apps.jcs.test Application Template: Fusion Web Application (ADF) Configure Local Cloud Connection Follow the steps documented in the "Java Cloud Service ADF Web Application" article to configure a local database connection needed to create the ADFbc objects. Configure Libraries Add the 3rd party libraries into the class path. Create the following directory and copy the jar files into it: <JDEV_USER_HOME>/JcsRestDemo/lib  Select the "Model" project, navigate "Application -> Project Properties -> Libraries and Classpath -> Add JAR / Directory" and add the 2 3rd party libraries: Accessing Data from Taleo To access data from Taleo using the REST service the 3rd party libraries will be used. 2 Java classes are implemented, one representing the Candidate object and another for accessing the Taleo repository Candidate Candidate object is a POJO object used to represent the candidate data obtained from the Taleo repository. The data obtained will be used to populate the ADFbc object used to display the data on the UI. The candidate object contains simply the variables we obtain using the REST services and the getters / setters for them: Navigate "New -> General -> Java -> Java Class", enter "Candidate" as the name and create it in the package "oracle.apps.jcs.test.model".  Copy / paste the following as the content: import oracle.jbo.domain.Number; public class Candidate { private Number candId; private String firstName; private String lastName; public Candidate() { super(); } public Candidate(Number candId, String firstName, String lastName) { super(); this.candId = candId; this.firstName = firstName; this.lastName = lastName; } public void setCandId(Number candId) { this.candId = candId; } public Number getCandId() { return candId; } public void setFirstName(String firstName) { this.firstName = firstName; } public String getFirstName() { return firstName; } public void setLastName(String lastName) { this.lastName = lastName; } public String getLastName() { return lastName; } } Taleo Repository Taleo repository class will interact with the Taleo REST services. The logic will query data from Taleo and populate Candidate objects with the data. The Candidate object will then be used to populate the ADFbc object used to display data on the UI. Navigate "New -> General -> Java -> Java Class", enter "TaleoRepository" as the name and create it in the package "oracle.apps.jcs.test.model".  Copy / paste the following as the content (for details of the implementation refer to the documentation in the code): import com.sun.jersey.api.client.Client; import com.sun.jersey.api.client.ClientResponse; import com.sun.jersey.api.client.WebResource; import com.sun.jersey.core.util.MultivaluedMapImpl; import java.io.StringReader; import java.util.ArrayList; import java.util.Iterator; import java.util.List; import java.util.Map; import javax.ws.rs.core.MediaType; import javax.ws.rs.core.MultivaluedMap; import oracle.jbo.domain.Number; import org.json.simple.JSONArray; import org.json.simple.JSONObject; import org.json.simple.parser.JSONParser; /** * This class interacts with the Taleo REST services */ public class TaleoRepository { /** * Connection information needed to access the Taleo services */ String _company = null; String _userName = null; String _password = null; /** * Jersey client used to access the REST services */ Client _client = null; /** * Parser for processing the JSON objects used as * input / output for the services */ JSONParser _parser = null; /** * The base url for constructing the REST URLs. This is obtained * from Taleo with a service call */ String _baseUrl = null; /** * Authentication token obtained from Taleo using a service call. * The token can be used to authenticate on subsequent * service calls. The token will expire in 4 hours */ String _authToken = null; /** * Static url that can be used to obtain the url used to construct * service calls for a given company */ private static String _taleoUrl = "https://tbe.taleo.net/MANAGER/dispatcher/api/v1/serviceUrl/"; /** * Default constructor for the repository * Authentication details are passed as parameters and used to generate * authentication token. Note that each service call will * generate its own token. This is done to avoid dealing with the expiry * of the token. Also only 20 tokens are allowed per user simultaneously. * So instead for each call there is login / logout. * * @param company the company for which the service calls are made * @param userName the user name to authenticate with * @param password the password to authenticate with. */ public TaleoRepository(String company, String userName, String password) { super(); _company = company; _userName = userName; _password = password; _client = Client.create(); _parser = new JSONParser(); _baseUrl = getBaseUrl(); } /** * This obtains the base url for a company to be used * to construct the urls for service calls * @return base url for the service calls */ private String getBaseUrl() { String result = null; if (null != _baseUrl) { result = _baseUrl; } else { try { String company = _company; WebResource resource = _client.resource(_taleoUrl + company); ClientResponse response = resource.type(MediaType.APPLICATION_FORM_URLENCODED_TYPE).get(ClientResponse.class); String entity = response.getEntity(String.class); JSONObject jsonObject = (JSONObject)_parser.parse(new StringReader(entity)); JSONObject jsonResponse = (JSONObject)jsonObject.get("response"); result = (String)jsonResponse.get("URL"); } catch (Exception ex) { ex.printStackTrace(); } } return result; } /** * Generates authentication token, that can be used to authenticate on * subsequent service calls. Note that each service call will * generate its own token. This is done to avoid dealing with the expiry * of the token. Also only 20 tokens are allowed per user simultaneously. * So instead for each call there is login / logout. * @return authentication token that can be used to authenticate on * subsequent service calls */ private String login() { String result = null; try { MultivaluedMap<String, String> formData = new MultivaluedMapImpl(); formData.add("orgCode", _company); formData.add("userName", _userName); formData.add("password", _password); WebResource resource = _client.resource(_baseUrl + "login"); ClientResponse response = resource.type(MediaType.APPLICATION_FORM_URLENCODED_TYPE).post(ClientResponse.class, formData); String entity = response.getEntity(String.class); JSONObject jsonObject = (JSONObject)_parser.parse(new StringReader(entity)); JSONObject jsonResponse = (JSONObject)jsonObject.get("response"); result = (String)jsonResponse.get("authToken"); } catch (Exception ex) { throw new RuntimeException("Unable to login ", ex); } if (null == result) throw new RuntimeException("Unable to login "); return result; } /** * Releases a authentication token. Each call to login must be followed * by call to logout after the processing is done. This is required as * the tokens are limited to 20 per user and if not released the tokens * will only expire after 4 hours. * @param authToken */ private void logout(String authToken) { WebResource resource = _client.resource(_baseUrl + "logout"); resource.header("cookie", "authToken=" + authToken).post(ClientResponse.class); } /** * This method is used to obtain a list of candidates using a REST * service call. At this example the query is hard coded to query * based on status. The url constructed to access the service is: * <_baseUrl>/object/candidate/search.xml?status=16 * @return List of candidates obtained with the service call */ public List<Candidate> getCandidates() { List<Candidate> result = new ArrayList<Candidate>(); try { // First login, note that in finally block we must have logout _authToken = "authToken=" + login(); /** * Construct the URL, the resulting url will be: * <_baseUrl>/object/candidate/search.xml?status=16 */ MultivaluedMap<String, String> formData = new MultivaluedMapImpl(); formData.add("status", "16"); JSONArray searchResults = (JSONArray)getTaleoResource("object/candidate/search", "searchResults", formData); /** * Process the results, the resulting JSON object is something like * this (simplified for readability): * * { * "response": * { * "searchResults": * [ * { * "candidate": * { * "candId": 211, * "firstName": "Mary", * "lastName": "Stochi", * logic here will find the candidate object(s), obtain the desired * data from them, construct a Candidate object based on the data * and add it to the results. */ for (Object object : searchResults) { JSONObject temp = (JSONObject)object; JSONObject candidate = (JSONObject)findObject(temp, "candidate"); Long candIdTemp = (Long)candidate.get("candId"); Number candId = (null == candIdTemp ? null : new Number(candIdTemp)); String firstName = (String)candidate.get("firstName"); String lastName = (String)candidate.get("lastName"); result.add(new Candidate(candId, firstName, lastName)); } } catch (Exception ex) { ex.printStackTrace(); } finally { if (null != _authToken) logout(_authToken); } return result; } /** * Convenience method to construct url for the service call, invoke the * service and obtain a resource from the response * @param path the path for the service to be invoked. This is combined * with the base url to construct a url for the service * @param resource the key for the object in the response that will be * obtained * @param parameters any parameters used for the service call. The call * is slightly different depending whether parameters exist or not. * @return the resource from the response for the service call */ private Object getTaleoResource(String path, String resource, MultivaluedMap<String, String> parameters) { Object result = null; try { WebResource webResource = _client.resource(_baseUrl + path); ClientResponse response = null; if (null == parameters) response = webResource.header("cookie", _authToken).get(ClientResponse.class); else response = webResource.queryParams(parameters).header("cookie", _authToken).get(ClientResponse.class); String entity = response.getEntity(String.class); JSONObject jsonObject = (JSONObject)_parser.parse(new StringReader(entity)); result = findObject(jsonObject, resource); } catch (Exception ex) { ex.printStackTrace(); } return result; } /** * Convenience method to recursively find a object with an key * traversing down from a given root object. This will traverse a * JSONObject / JSONArray recursively to find a matching key, if found * the object with the key is returned. * @param root root object which contains the key searched for * @param key the key for the object to search for * @return the object matching the key */ private Object findObject(Object root, String key) { Object result = null; if (root instanceof JSONObject) { JSONObject rootJSON = (JSONObject)root; if (rootJSON.containsKey(key)) { result = rootJSON.get(key); } else { Iterator children = rootJSON.entrySet().iterator(); while (children.hasNext()) { Map.Entry entry = (Map.Entry)children.next(); Object child = entry.getValue(); if (child instanceof JSONObject || child instanceof JSONArray) { result = findObject(child, key); if (null != result) break; } } } } else if (root instanceof JSONArray) { JSONArray rootJSON = (JSONArray)root; for (Object child : rootJSON) { if (child instanceof JSONObject || child instanceof JSONArray) { result = findObject(child, key); if (null != result) break; } } } return result; } }   Creating Business Objects While JCS application can be created without a local database, the local database is required when using ADFbc objects even if database objects are not referred. For this example we will create a "Transient" view object that will be programmatically populated based the data obtained from Taleo REST services. Creating ADFbc objects Choose the "Model" project and navigate "New -> Business Tier : ADF Business Components : View Object". On the "Initialize Business Components Project" choose the local database connection created in previous step. On Step 1 enter "JcsRestDemoVO" on the "Name" and choose "Rows populated programmatically, not based on query": On step 2 create the following attributes: CandId Type: Number Updatable: Always Key Attribute: checked Name Type: String Updatable: Always On steps 3 and 4 accept defaults and click "Next".  On step 5 check the "Application Module" checkbox and enter "JcsRestDemoAM" as the name: Click "Finish" to generate the objects. Populating the VO To display the data on the UI the "transient VO" is populated programmatically based on the data obtained from the Taleo REST services. Open the "JcsRestDemoVOImpl.java". Copy / paste the following as the content (for details of the implementation refer to the documentation in the code): import java.sql.ResultSet; import java.util.List; import java.util.ListIterator; import oracle.jbo.server.ViewObjectImpl; import oracle.jbo.server.ViewRowImpl; import oracle.jbo.server.ViewRowSetImpl; // --------------------------------------------------------------------- // --- File generated by Oracle ADF Business Components Design Time. // --- Tue Feb 18 09:40:25 PST 2014 // --- Custom code may be added to this class. // --- Warning: Do not modify method signatures of generated methods. // --------------------------------------------------------------------- public class JcsRestDemoVOImpl extends ViewObjectImpl { /** * This is the default constructor (do not remove). */ public JcsRestDemoVOImpl() { } @Override public void executeQuery() { /** * For some reason we need to reset everything, otherwise * 2nd entry to the UI screen may fail with * "java.util.NoSuchElementException" in createRowFromResultSet * call to "candidates.next()". I am not sure why this is happening * as the Iterator is new and "hasNext" is true at the point * of the execution. My theory is that since the iterator object is * exactly the same the VO cache somehow reuses the iterator including * the pointer that has already exhausted the iterable elements on the * previous run. Working around the issue * here by cleaning out everything on the VO every time before query * is executed on the VO. */ getViewDef().setQuery(null); getViewDef().setSelectClause(null); setQuery(null); this.reset(); this.clearCache(); super.executeQuery(); } /** * executeQueryForCollection - overridden for custom java data source support. */ protected void executeQueryForCollection(Object qc, Object[] params, int noUserParams) { /** * Integrate with the Taleo REST services using TaleoRepository class. * A list of candidates matching a hard coded query is obtained. */ TaleoRepository repository = new TaleoRepository(<company>, <username>, <password>); List<Candidate> candidates = repository.getCandidates(); /** * Store iterator for the candidates as user data on the collection. * This will be used in createRowFromResultSet to create rows based on * the custom iterator. */ ListIterator<Candidate> candidatescIterator = candidates.listIterator(); setUserDataForCollection(qc, candidatescIterator); super.executeQueryForCollection(qc, params, noUserParams); } /** * hasNextForCollection - overridden for custom java data source support. */ protected boolean hasNextForCollection(Object qc) { boolean result = false; /** * Determines whether there are candidates for which to create a row */ ListIterator<Candidate> candidates = (ListIterator<Candidate>)getUserDataForCollection(qc); result = candidates.hasNext(); /** * If all candidates to be created indicate that processing is done */ if (!result) { setFetchCompleteForCollection(qc, true); } return result; } /** * createRowFromResultSet - overridden for custom java data source support. */ protected ViewRowImpl createRowFromResultSet(Object qc, ResultSet resultSet) { /** * Obtain the next candidate from the collection and create a row * for it. */ ListIterator<Candidate> candidates = (ListIterator<Candidate>)getUserDataForCollection(qc); ViewRowImpl row = createNewRowForCollection(qc); try { Candidate candidate = candidates.next(); row.setAttribute("CandId", candidate.getCandId()); row.setAttribute("Name", candidate.getFirstName() + " " + candidate.getLastName()); } catch (Exception e) { e.printStackTrace(); } return row; } /** * getQueryHitCount - overridden for custom java data source support. */ public long getQueryHitCount(ViewRowSetImpl viewRowSet) { /** * For this example this is not implemented rather we always return 0. */ return 0; } } Creating UI Choose the "ViewController" project and navigate "New -> Web Tier : JSF : JSF Page". On the "Create JSF Page" enter "JcsRestDemo" as name and ensure that the "Create as XML document (*.jspx)" is checked.  Open "JcsRestDemo.jspx" and navigate to "Data Controls -> JcsRestDemoAMDataControl -> JcsRestDemoVO1" and drag & drop the VO to the "<af:form> " as a "ADF Read-only Table": Accept the defaults in "Edit Table Columns". To execute the query navigate to to "Data Controls -> JcsRestDemoAMDataControl -> JcsRestDemoVO1 -> Operations -> Execute" and drag & drop the operation to the "<af:form> " as a "Button": Deploying to JCS Follow the same steps as documented in previous article"Java Cloud Service ADF Web Application". Once deployed the application can be accessed with URL: https://java-[identity domain].java.[data center].oraclecloudapps.com/JcsRestDemo-ViewController-context-root/faces/JcsRestDemo.jspx The UI displays a list of candidates obtained from the Taleo REST Services: Summary In this article we learned how to integrate with REST services using Jersey library in JCS. In future articles various other integration techniques will be covered.

    Read the article

  • ANTS Memory Profiler 7.0 Review

    - by Michael B. McLaughlin
    (This is my first review as a part of the GeeksWithBlogs.net Influencers program. It’s a program in which I (and the others who have been selected for it) get the opportunity to check out new products and services and write reviews about them. We don’t get paid for this, but we do generally get to keep a copy of the software or retain an account for some period of time on the service that we review. In this case I received a copy of Red Gate Software’s ANTS Memory Profiler 7.0, which was released in January. I don’t have any upgrade rights nor is my review guided, restrained, influenced, or otherwise controlled by Red Gate or anyone else. But I do get to keep the software license. I will always be clear about what I received whenever I do a review – I leave it up to you to decide whether you believe I can be objective. I believe I can be. If I used something and really didn’t like it, keeping a copy of it wouldn’t be worth anything to me. In that case though, I would simply uninstall/deactivate/whatever the software or service and tell the company what I didn’t like about it so they could (hopefully) make it better in the future. I don’t think it’d be polite to write up a terrible review, nor do I think it would be a particularly good use of my time. There are people who get paid for a living to review things, so I leave it to them to tell you what they think is bad and why. I’ll only spend my time telling you about things I think are good.) Overview of Common .NET Memory Problems When coming to land of managed memory from the wilds of unmanaged code, it’s easy to say to one’s self, “Wow! Now I never have to worry about memory problems again!” But this simply isn’t true. Managed code environments, such as .NET, make many, many things easier. You will never have to worry about memory corruption due to a bad pointer, for example (unless you’re working with unsafe code, of course). But managed code has its own set of memory concerns. For example, failing to unsubscribe from events when you are done with them leaves the publisher of an event with a reference to the subscriber. If you eliminate all your own references to the subscriber, then that memory is effectively lost since the GC won’t delete it because of the publishing object’s reference. When the publishing object itself becomes subject to garbage collection then you’ll get that memory back finally, but that could take a very long time depending of the life of the publisher. Another common source of resource leaks is failing to properly release unmanaged resources. When writing a class that contains members that hold unmanaged resources (e.g. any of the Stream-derived classes, IsolatedStorageFile, most classes ending in “Reader” or “Writer”), you should always implement IDisposable, making sure to use a properly written Dispose method. And when you are using an instance of a class that implements IDisposable, you should always make sure to use a 'using' statement in order to ensure that the object’s unmanaged resources are disposed of properly. (A ‘using’ statement is a nicer, cleaner looking, and easier to use version of a try-finally block. The compiler actually translates it as though it were a try-finally block. Note that Code Analysis warning 2202 (CA2202) will often be triggered by nested using blocks. A properly written dispose method ensures that it only runs once such that calling dispose multiple times should not be a problem. Nonetheless, CA2202 exists and if you want to avoid triggering it then you should write your code such that only the innermost IDisposable object uses a ‘using’ statement, with any outer code making use of appropriate try-finally blocks instead). Then, of course, there are situations where you are operating in a memory-constrained environment or else you want to limit or even eliminate allocations within a certain part of your program (e.g. within the main game loop of an XNA game) in order to avoid having the GC run. On the Xbox 360 and Windows Phone 7, for example, for every 1 MB of heap allocations you make, the GC runs; the added time of a GC collection can cause a game to drop frames or run slowly thereby making it look bad. Eliminating allocations (or else minimizing them and calling an explicit Collect at an appropriate time) is a common way of avoiding this (the other way is to simplify your heap so that the GC’s latency is low enough not to cause performance issues). ANTS Memory Profiler 7.0 When the opportunity to review Red Gate’s recently released ANTS Memory Profiler 7.0 arose, I jumped at it. In order to review it, I was given a free copy (which does not include upgrade rights for future versions) which I am allowed to keep. For those of you who are familiar with ANTS Memory Profiler, you can find a list of new features and enhancements here. If you are an experienced .NET developer who is familiar with .NET memory management issues, ANTS Memory Profiler is great. More importantly still, if you are new to .NET development or you have no experience or limited experience with memory profiling, ANTS Memory Profiler is awesome. From the very beginning, it guides you through the process of memory profiling. If you’re experienced and just want dive in however, it doesn’t get in your way. The help items GAHSFLASHDAJLDJA are well designed and located right next to the UI controls so that they are easy to find without being intrusive. When you first launch it, it presents you with a “Getting Started” screen that contains links to “Memory profiling video tutorials”, “Strategies for memory profiling”, and the “ANTS Memory Profiler forum”. I’m normally the kind of person who looks at a screen like that only to find the “Don’t show this again” checkbox. Since I was doing a review, though, I decided I should examine them. I was pleasantly surprised. The overview video clocks in at three minutes and fifty seconds. It begins by showing you how to get started profiling an application. It explains that profiling is done by taking memory snapshots periodically while your program is running and then comparing them. ANTS Memory Profiler (I’m just going to call it “ANTS MP” from here) analyzes these snapshots in the background while your application is running. It briefly mentions a new feature in Version 7, a new API that give you the ability to trigger snapshots from within your application’s source code (more about this below). You can also, and this is the more common way you would do it, take a memory snapshot at any time from within the ANTS MP window by clicking the “Take Memory Snapshot” button in the upper right corner. The overview video goes on to demonstrate a basic profiling session on an application that pulls information from a database and displays it. It shows how to switch which snapshots you are comparing, explains the different sections of the Summary view and what they are showing, and proceeds to show you how to investigate memory problems using the “Instance Categorizer” to track the path from an object (or set of objects) to the GC’s root in order to find what things along the path are holding a reference to it/them. For a set of objects, you can then click on it and get the “Instance List” view. This displays all of the individual objects (including their individual sizes, values, etc.) of that type which share the same path to the GC root. You can then click on one of the objects to generate an “Instance Retention Graph” view. This lets you track directly up to see the reference chain for that individual object. In the overview video, it turned out that there was an event handler which was holding on to a reference, thereby keeping a large number of strings that should have been freed in memory. Lastly the video shows the “Class List” view, which lets you dig in deeply to find problems that might not have been clear when following the previous workflow. Once you have at least one memory snapshot you can begin analyzing. The main interface is in the “Analysis” tab. You can also switch to the “Session Overview” tab, which gives you several bar charts highlighting basic memory data about the snapshots you’ve taken. If you hover over the individual bars (and the individual colors in bars that have more than one), you will see a detailed text description of what the bar is representing visually. The Session Overview is good for a quick summary of memory usage and information about the different heaps. You are going to spend most of your time in the Analysis tab, but it’s good to remember that the Session Overview is there to give you some quick feedback on basic memory usage stats. As described above in the summary of the overview video, there is a certain natural workflow to the Analysis tab. You’ll spin up your application and take some snapshots at various times such as before and after clicking a button to open a window or before and after closing a window. Taking these snapshots lets you examine what is happening with memory. You would normally expect that a lot of memory would be freed up when closing a window or exiting a document. By taking snapshots before and after performing an action like that you can see whether or not the memory is really being freed. If you already know an area that’s giving you trouble, you can run your application just like normal until just before getting to that part and then you can take a few strategic snapshots that should help you pin down the problem. Something the overview didn’t go into is how to use the “Filters” section at the bottom of ANTS MP together with the Class List view in order to narrow things down. The video tutorials page has a nice 3 minute intro video called “How to use the filters”. It’s a nice introduction and covers some of the basics. I’m going to cover a bit more because I think they’re a really neat, really helpful feature. Large programs can bring up thousands of classes. Even simple programs can instantiate far more classes than you might realize. In a basic .NET 4 WPF application for example (and when I say basic, I mean just MainWindow.xaml with a button added to it), the unfiltered Class List view will have in excess of 1000 classes (my simple test app had anywhere from 1066 to 1148 classes depending on which snapshot I was using as the “Current” snapshot). This is amazing in some ways as it shows you how in stark detail just how immensely powerful the WPF framework is. But hunting through 1100 classes isn’t productive, no matter how cool it is that there are that many classes instantiated and doing all sorts of awesome things. Let’s say you wanted to examine just the classes your application contains source code for (in my simple example, that would be the MainWindow and App). Under “Basic Filters”, click on “Classes with source” under “Show only…”. Voilà. Down from 1070 classes in the snapshot I was using as “Current” to 2 classes. If you then click on a class’s name, it will show you (to the right of the class name) two little icon buttons. Hover over them and you will see that you can click one to view the Instance Categorizer for the class and another to view the Instance List for the class. You can also show classes based on which heap they live on. If you chose both a Baseline snapshot and a Current snapshot then you can use the “Comparing snapshots” filters to show only: “New objects”; “Surviving objects”; “Survivors in growing classes”; or “Zombie objects” (if you aren’t sure what one of these means, you can click the helpful “?” in a green circle icon to bring up a popup that explains them and provides context). Remember that your selection(s) under the “Show only…” heading will still apply, so you should update those selections to make sure you are seeing the view you want. There are also links under the “What is my memory problem?” heading that can help you diagnose the problems you are seeing including one for “I don’t know which kind I have” for situations where you know generally that your application has some problems but aren’t sure what the behavior you have been seeing (OutOfMemoryExceptions, continually growing memory usage, larger memory use than expected at certain points in the program). The Basic Filters are not the only filters there are. “Filter by Object Type” gives you the ability to filter by: “Objects that are disposable”; “Objects that are/are not disposed”; “Objects that are/are not GC roots” (GC roots are things like static variables); and “Objects that implement _______”. “Objects that implement” is particularly neat. Once you check the box, you can then add one or more classes and interfaces that an object must implement in order to survive the filtering. Lastly there is “Filter by Reference”, which gives you the option to pare down the list based on whether an object is “Kept in memory exclusively by” a particular item, a class/interface, or a namespace; whether an object is “Referenced by” one or more of those choices; and whether an object is “Never referenced by” one or more of those choices. Remember that filtering is cumulative, so anything you had set in one of the filter sections still remains in effect unless and until you go back and change it. There’s quite a bit more to ANTS MP – it’s a very full featured product – but I think I touched on all of the most significant pieces. You can use it to debug: a .NET executable; an ASP.NET web application (running on IIS); an ASP.NET web application (running on Visual Studio’s built-in web development server); a Silverlight 4 browser application; a Windows service; a COM+ server; and even something called an XBAP (local XAML browser application). You can also attach to a .NET 4 process to profile an application that’s already running. The startup screen also has a large number of “Charting Options” that let you adjust which statistics ANTS MP should collect. The default selection is a good, minimal set. It’s worth your time to browse through the charting options to examine other statistics that may also help you diagnose a particular problem. The more statistics ANTS MP collects, the longer it will take to collect statistics. So just turning everything on is probably a bad idea. But the option to selectively add in additional performance counters from the extensive list could be a very helpful thing for your memory profiling as it lets you see additional data that might provide clues about a particular problem that has been bothering you. ANTS MP integrates very nicely with all versions of Visual Studio that support plugins (i.e. all of the non-Express versions). Just note that if you choose “Profile Memory” from the “ANTS” menu that it will launch profiling for whichever project you have set as the Startup project. One quick tip from my experience so far using ANTS MP: if you want to properly understand your memory usage in an application you’ve written, first create an “empty” version of the type of project you are going to profile (a WPF application, an XNA game, etc.) and do a quick profiling session on that so that you know the baseline memory usage of the framework itself. By “empty” I mean just create a new project of that type in Visual Studio then compile it and run it with profiling – don’t do anything special or add in anything (except perhaps for any external libraries you’re planning to use). The first thing I tried ANTS MP out on was a demo XNA project of an editor that I’ve been working on for quite some time that involves a custom extension to XNA’s content pipeline. The first time I ran it and saw the unmanaged memory usage I was convinced I had some horrible bug that was creating extra copies of texture data (the demo project didn’t have a lot of texture data so when I saw a lot of unmanaged memory I instantly figured I was doing something wrong). Then I thought to run an empty project through and when I saw that the amount of unmanaged memory was virtually identical, it dawned on me that the CLR itself sits in unmanaged memory and that (thankfully) there was nothing wrong with my code! Quite a relief. Earlier, when discussing the overview video, I mentioned the API that lets you take snapshots from within your application. I gave it a quick trial and it’s very easy to integrate and make use of and is a really nice addition (especially for projects where you want to know what, if any, allocations there are in a specific, complicated section of code). The only concern I had was that if I hadn’t watched the overview video I might never have known it existed. Even then it took me five minutes of hunting around Red Gate’s website before I found the “Taking snapshots from your code" article that explains what DLL you need to add as a reference and what method of what class you should call in order to take an automatic snapshot (including the helpful warning to wrap it in a try-catch block since, under certain circumstances, it can raise an exception, such as trying to call it more than 5 times in 30 seconds. The difficulty in discovering and then finding information about the automatic snapshots API was one thing I thought could use improvement. Another thing I think would make it even better would be local copies of the webpages it links to. Although I’m generally always connected to the internet, I imagine there are more than a few developers who aren’t or who are behind very restrictive firewalls. For them (and for me, too, if my internet connection happens to be down), it would be nice to have those documents installed locally or to have the option to download an additional “documentation” package that would add local copies. Another thing that I wish could be easier to manage is the Filters area. Finding and setting individual filters is very easy as is understanding what those filter do. And breaking it up into three sections (basic, by object, and by reference) makes sense. But I could easily see myself running a long profiling session and forgetting that I had set some filter a long while earlier in a different filter section and then spending quite a bit of time trying to figure out why some problem that was clearly visible in the data wasn’t showing up in, e.g. the instance list before remembering to check all the filters for that one setting that was only culling a few things from view. Some sort of indicator icon next to the filter section names that appears you have at least one filter set in that area would be a nice visual clue to remind me that “oh yeah, I told it to only show objects on the Gen 2 heap! That’s why I’m not seeing those instances of the SuperMagic class!” Something that would be nice (but that Red Gate cannot really do anything about) would be if this could be used in Windows Phone 7 development. If Microsoft and Red Gate could work together to make this happen (even if just on the WP7 emulator), that would be amazing. Especially given the memory constraints that apps and games running on mobile devices need to work within, a good memory profiler would be a phenomenally helpful tool. If anyone at Microsoft reads this, it’d be really great if you could make something like that happen. Perhaps even a (subsidized) custom version just for WP7 development. (For XNA games, of course, you can create a Windows version of the game and use ANTS MP on the Windows version in order to get a better picture of your memory situation. For Silverlight on WP7, though, there’s quite a bit of educated guess work and WeakReference creation followed by forced collections in order to find the source of a memory problem.) The only other thing I found myself wanting was a “Back” button. Between my Windows Phone 7, Zune, and other things, I’ve grown very used to having a “back stack” that lets me just navigate back to where I came from. The ANTS MP interface is surprisingly easy to use given how much it lets you do, and once you start using it for any amount of time, you learn all of the different areas such that you know where to go. And it does remember the state of the areas you were previously in, of course. So if you go to, e.g., the Instance Retention Graph from the Class List and then return back to the Class List, it will remember which class you had selected and all that other state information. Still, a “Back” button would be a welcome addition to a future release. Bottom Line ANTS Memory Profiler is not an inexpensive tool. But my time is valuable. I can easily see ANTS MP saving me enough time tracking down memory problems to justify it on a cost basis. More importantly to me, knowing what is happening memory-wise in my programs and having the confidence that my code doesn’t have any hidden time bombs in it that will cause it to OOM if I leave it running for longer than I do when I spin it up real quickly for debugging or just to see how a new feature looks and feels is a good feeling. It’s a feeling that I like having and want to continue to have. I got the current version for free in order to review it. Having done so, I’ve now added it to my must-have tools and will gladly lay out the money for the next version when it comes out. It has a 14 day free trial, so if you aren’t sure if it’s right for you or if you think it seems interesting but aren’t really sure if it’s worth shelling out the money for it, give it a try.

    Read the article

  • Using TPL and PLINQ to raise performance of feed aggregator

    - by DigiMortal
    In this posting I will show you how to use Task Parallel Library (TPL) and PLINQ features to boost performance of simple RSS-feed aggregator. I will use here only very basic .NET classes that almost every developer starts from when learning parallel programming. Of course, we will also measure how every optimization affects performance of feed aggregator. Feed aggregator Our feed aggregator works as follows: Load list of blogs Download RSS-feed Parse feed XML Add new posts to database Our feed aggregator is run by task scheduler after every 15 minutes by example. We will start our journey with serial implementation of feed aggregator. Second step is to use task parallelism and parallelize feeds downloading and parsing. And our last step is to use data parallelism to parallelize database operations. We will use Stopwatch class to measure how much time it takes for aggregator to download and insert all posts from all registered blogs. After every run we empty posts table in database. Serial aggregation Before doing parallel stuff let’s take a look at serial implementation of feed aggregator. All tasks happen one after other. internal class FeedClient {     private readonly INewsService _newsService;     private const int FeedItemContentMaxLength = 255;       public FeedClient()     {          ObjectFactory.Initialize(container =>          {              container.PullConfigurationFromAppConfig = true;          });           _newsService = ObjectFactory.GetInstance<INewsService>();     }       public void Execute()     {         var blogs = _newsService.ListPublishedBlogs();           for (var index = 0; index <blogs.Count; index++)         {              ImportFeed(blogs[index]);         }     }       private void ImportFeed(BlogDto blog)     {         if(blog == null)             return;         if (string.IsNullOrEmpty(blog.RssUrl))             return;           var uri = new Uri(blog.RssUrl);         SyndicationContentFormat feedFormat;           feedFormat = SyndicationDiscoveryUtility.SyndicationContentFormatGet(uri);           if (feedFormat == SyndicationContentFormat.Rss)             ImportRssFeed(blog);         if (feedFormat == SyndicationContentFormat.Atom)             ImportAtomFeed(blog);                 }       private void ImportRssFeed(BlogDto blog)     {         var uri = new Uri(blog.RssUrl);         var feed = RssFeed.Create(uri);           foreach (var item in feed.Channel.Items)         {             SaveRssFeedItem(item, blog.Id, blog.CreatedById);         }     }       private void ImportAtomFeed(BlogDto blog)     {         var uri = new Uri(blog.RssUrl);         var feed = AtomFeed.Create(uri);           foreach (var item in feed.Entries)         {             SaveAtomFeedEntry(item, blog.Id, blog.CreatedById);         }     } } Serial implementation of feed aggregator downloads and inserts all posts with 25.46 seconds. Task parallelism Task parallelism means that separate tasks are run in parallel. You can find out more about task parallelism from MSDN page Task Parallelism (Task Parallel Library) and Wikipedia page Task parallelism. Although finding parts of code that can run safely in parallel without synchronization issues is not easy task we are lucky this time. Feeds import and parsing is perfect candidate for parallel tasks. We can safely parallelize feeds import because importing tasks doesn’t share any resources and therefore they don’t also need any synchronization. After getting the list of blogs we iterate through the collection and start new TPL task for each blog feed aggregation. internal class FeedClient {     private readonly INewsService _newsService;     private const int FeedItemContentMaxLength = 255;       public FeedClient()     {          ObjectFactory.Initialize(container =>          {              container.PullConfigurationFromAppConfig = true;          });           _newsService = ObjectFactory.GetInstance<INewsService>();     }       public void Execute()     {         var blogs = _newsService.ListPublishedBlogs();                var tasks = new Task[blogs.Count];           for (var index = 0; index <blogs.Count; index++)         {             tasks[index] = new Task(ImportFeed, blogs[index]);             tasks[index].Start();         }           Task.WaitAll(tasks);     }       private void ImportFeed(object blogObject)     {         if(blogObject == null)             return;         var blog = (BlogDto)blogObject;         if (string.IsNullOrEmpty(blog.RssUrl))             return;           var uri = new Uri(blog.RssUrl);         SyndicationContentFormat feedFormat;           feedFormat = SyndicationDiscoveryUtility.SyndicationContentFormatGet(uri);           if (feedFormat == SyndicationContentFormat.Rss)             ImportRssFeed(blog);         if (feedFormat == SyndicationContentFormat.Atom)             ImportAtomFeed(blog);                }       private void ImportRssFeed(BlogDto blog)     {          var uri = new Uri(blog.RssUrl);          var feed = RssFeed.Create(uri);           foreach (var item in feed.Channel.Items)          {              SaveRssFeedItem(item, blog.Id, blog.CreatedById);          }     }     private void ImportAtomFeed(BlogDto blog)     {         var uri = new Uri(blog.RssUrl);         var feed = AtomFeed.Create(uri);           foreach (var item in feed.Entries)         {             SaveAtomFeedEntry(item, blog.Id, blog.CreatedById);         }     } } You should notice first signs of the power of TPL. We made only minor changes to our code to parallelize blog feeds aggregating. On my machine this modification gives some performance boost – time is now 17.57 seconds. Data parallelism There is one more way how to parallelize activities. Previous section introduced task or operation based parallelism, this section introduces data based parallelism. By MSDN page Data Parallelism (Task Parallel Library) data parallelism refers to scenario in which the same operation is performed concurrently on elements in a source collection or array. In our code we have independent collections we can process in parallel – imported feed entries. As checking for feed entry existence and inserting it if it is missing from database doesn’t affect other entries the imported feed entries collection is ideal candidate for parallelization. internal class FeedClient {     private readonly INewsService _newsService;     private const int FeedItemContentMaxLength = 255;       public FeedClient()     {          ObjectFactory.Initialize(container =>          {              container.PullConfigurationFromAppConfig = true;          });           _newsService = ObjectFactory.GetInstance<INewsService>();     }       public void Execute()     {         var blogs = _newsService.ListPublishedBlogs();                var tasks = new Task[blogs.Count];           for (var index = 0; index <blogs.Count; index++)         {             tasks[index] = new Task(ImportFeed, blogs[index]);             tasks[index].Start();         }           Task.WaitAll(tasks);     }       private void ImportFeed(object blogObject)     {         if(blogObject == null)             return;         var blog = (BlogDto)blogObject;         if (string.IsNullOrEmpty(blog.RssUrl))             return;           var uri = new Uri(blog.RssUrl);         SyndicationContentFormat feedFormat;           feedFormat = SyndicationDiscoveryUtility.SyndicationContentFormatGet(uri);           if (feedFormat == SyndicationContentFormat.Rss)             ImportRssFeed(blog);         if (feedFormat == SyndicationContentFormat.Atom)             ImportAtomFeed(blog);                }       private void ImportRssFeed(BlogDto blog)     {         var uri = new Uri(blog.RssUrl);         var feed = RssFeed.Create(uri);           feed.Channel.Items.AsParallel().ForAll(a =>         {             SaveRssFeedItem(a, blog.Id, blog.CreatedById);         });      }        private void ImportAtomFeed(BlogDto blog)      {         var uri = new Uri(blog.RssUrl);         var feed = AtomFeed.Create(uri);           feed.Entries.AsParallel().ForAll(a =>         {              SaveAtomFeedEntry(a, blog.Id, blog.CreatedById);         });      } } We did small change again and as the result we parallelized checking and saving of feed items. This change was data centric as we applied same operation to all elements in collection. On my machine I got better performance again. Time is now 11.22 seconds. Results Let’s visualize our measurement results (numbers are given in seconds). As we can see then with task parallelism feed aggregation takes about 25% less time than in original case. When adding data parallelism to task parallelism our aggregation takes about 2.3 times less time than in original case. More about TPL and PLINQ Adding parallelism to your application can be very challenging task. You have to carefully find out parts of your code where you can safely go to parallel processing and even then you have to measure the effects of parallel processing to find out if parallel code performs better. If you are not careful then troubles you will face later are worse than ones you have seen before (imagine error that occurs by average only once per 10000 code runs). Parallel programming is something that is hard to ignore. Effective programs are able to use multiple cores of processors. Using TPL you can also set degree of parallelism so your application doesn’t use all computing cores and leaves one or more of them free for host system and other processes. And there are many more things in TPL that make it easier for you to start and go on with parallel programming. In next major version all .NET languages will have built-in support for parallel programming. There will be also new language constructs that support parallel programming. Currently you can download Visual Studio Async to get some idea about what is coming. Conclusion Parallel programming is very challenging but good tools offered by Visual Studio and .NET Framework make it way easier for us. In this posting we started with feed aggregator that imports feed items on serial mode. With two steps we parallelized feed importing and entries inserting gaining 2.3 times raise in performance. Although this number is specific to my test environment it shows clearly that parallel programming may raise the performance of your application significantly.

    Read the article

  • Part 2&ndash;Load Testing In The Cloud

    - by Tarun Arora
    Welcome to Part 2, In Part 1 we discussed the advantages of creating a Test Rig in the cloud, the Azure edge and the Test Rig Topology we want to get to. In Part 2, Let’s start by understanding the components of Azure we’ll be making use of followed by manually putting them together to create the test rig, so… let’s get down dirty start setting up the Test Rig.  What Components of Azure will I be using for building the Test Rig in the Cloud? To run the Test Agents we’ll make use of Windows Azure Compute and to enable communication between Test Controller and Test Agents we’ll make use of Windows Azure Connect.  Azure Connect The Test Controller is on premise and the Test Agents are in the cloud (How will they talk?). To enable communication between the two, we’ll make use of Windows Azure Connect. With Windows Azure Connect, you can use a simple user interface to configure IPsec protected connections between computers or virtual machines (VMs) in your organization’s network, and roles running in Windows Azure. With this you can now join Windows Azure role instances to your domain, so that you can use your existing methods for domain authentication, name resolution, or other domain-wide maintenance actions. For more details refer to an overview of Windows Azure connect. A very useful video explaining everything you wanted to know about Windows Azure connect.  Azure Compute Windows Azure compute provides developers a platform to host and manage applications in Microsoft’s data centres across the globe. A Windows Azure application is built from one or more components called ‘roles.’ Roles come in three different types: Web role, Worker role, and Virtual Machine (VM) role, we’ll be using the Worker role to set up the Test Agents. A very nice blog post discussing the difference between the 3 role types. Developers are free to use the .NET framework or other software that runs on Windows with the Worker role or Web role. Developers can also create applications using languages such as PHP and Java. More on Windows Azure Compute. Each Windows Azure compute instance represents a virtual server... Virtual Machine Size CPU Cores Memory Cost Per Hour Extra Small Shared 768 MB $0.04 Small 1 1.75 GB $0.12 Medium 2 3.50 GB $0.24 Large 4 7.00 GB $0.48 Extra Large 8 14.00 GB $0.96   You might want to review the Windows Azure Pricing FAQ. Let’s Get Started building the Test Rig… Configuration Machine Role Comments VM – 1 Domain Controller for Playpit.com On Premise VM – 2 TFS, Test Controller On Premise VM – 3 Test Agent Cloud   In this blog post I would assume that you have the domain, Team Foundation Server and Test Controller Installed and set up already. If not, please refer to the TFS 2010 Installation Guide and this walkthrough on MSDN to set up your Test Controller. You can also download a preconfigured TFS 2010 VM from Brian Keller's blog, Brian also has some great hands on Labs on TFS 2010 that you may want to explore. I. Lets start building VM – 3: The Test Agent Download the Windows Azure SDK and Tools Open Visual Studio and create a new Windows Azure Project using the Cloud Template                   Choose the Worker Role for reasons explained in the earlier post         The WorkerRole.cs implements the Run() and OnStart() methods, no code changes required. You should be able to compile the project and run it in the compute emulator (The compute emulator should have been installed as part of the Windows Azure Toolkit) on your local machine.                   We will only be making changes to WindowsAzureProject, open ServiceDefinition.csdef. Ensure that the vmsize is small (remember the cost chart above). Import the “Connect” module. I am importing the Connect module because I need to join the Worker role VM to the Playpit domain. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="WindowsAzureProject2" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceDefinition"> <WorkerRole name="WorkerRole1" vmsize="Small"> <Imports> <Import moduleName="Diagnostics" /> <Import moduleName="Connect"/> </Imports> </WorkerRole> </ServiceDefinition> Go to the ServiceConfiguration.Cloud.cscfg and note that settings with key ‘Microsoft.WindowsAzure.Plugins.Connect.%%%%’ have been added to the configuration file. This is because you decided to import the connect module. See the config below. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="WindowsAzureProject2" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*"> <Role name="WorkerRole1"> <Instances count="1" /> <ConfigurationSettings> <Setting name="Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString" value="UseDevelopmentStorage=true" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.ActivationToken" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Refresh" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.WaitForConnectivity" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Upgrade" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.EnableDomainJoin" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainFQDN" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainControllerFQDN" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainAccountName" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainPassword" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainOU" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Administrators" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainSiteName" value="" /> </ConfigurationSettings> </Role> </ServiceConfiguration>             Let’s go step by step and understand all the highlighted parameters and where you can find the values for them.       osFamily – By default this is set to 1 (Windows Server 2008 SP2). Change this to 2 if you want the Windows Server 2008 R2 operating system. The Advantage of using osFamily = “2” is that you get Powershell 2.0 rather than Powershell 1.0. In Powershell 2.0 you could simply use “powershell -ExecutionPolicy Unrestricted ./myscript.ps1” and it will work while in Powershell 1.0 you will have to change the registry key by including the following in your command file “reg add HKLM\Software\Microsoft\PowerShell\1\ShellIds\Microsoft.PowerShell /v ExecutionPolicy /d Unrestricted /f” before you can execute any power shell. The other reason you might want to move to os2 is if you wanted IIS 7.5.       Activation Token – To enable communication between the on premise machine and the Windows Azure Worker role VM both need to have the same token. Log on to Windows Azure Management Portal, click on Connect, click on Get Activation Token, this should give you the activation token, copy the activation token to the clipboard and paste it in the configuration file. Note – Later in the blog I’ll be showing you how to install connect on the on premise machine.                       EnableDomainJoin – Set the value to true, ofcourse we want to join the on windows azure worker role VM to the domain.       DomainFQDN, DomainControllerFQDN, DomainAccountName, DomainPassword, DomainOU, Administrators – This information is specific to your domain. I have extracted this information from the ‘service manager’ and ‘Active Directory Users and Computers’. Also, i created a new Domain-OU namely ‘CloudInstances’ so all my cloud instances joined to my domain show up here, this is optional. You can encrypt the DomainPassword – refer to the instructions here. Or hold fire, I’ll be covering that when i come to certificates and encryption in the coming section.       Now once you have filled all this information up, the configuration file should look something like below, <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="WindowsAzureProject2" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="2" osVersion="*"> <Role name="WorkerRole1"> <Instances count="1" /> <ConfigurationSettings> <Setting name="Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString" value="UseDevelopmentStorage=true" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.ActivationToken" value="45f55fea-f194-4fbc-b36e-25604faac784" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Refresh" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.WaitForConnectivity" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Upgrade" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.EnableDomainJoin" value="true" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainFQDN" value="play.pit.com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainControllerFQDN" value="WIN-KUDQMQFGQOL.play.pit.com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainAccountName" value="playpit\Administrator" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainPassword" value="************************" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainOU" value="OU=CloudInstances, DC=Play, DC=Pit, DC=com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Administrators" value="Playpit\Administrator" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainSiteName" value="" /> </ConfigurationSettings> </Role> </ServiceConfiguration> Next we will be enabling the Remote Desktop module in to the ServiceDefinition.csdef, we could make changes manually or allow a beautiful wizard to help us make changes. I prefer the second option. So right click on the Windows Azure project and choose Publish       Now once you get the publish wizard, if you haven’t already you would be asked to import your Windows Azure subscription, this is simply the Msdn subscription activation key xml. Once you have done click Next to go to the Settings page and check ‘Enable Remote Desktop for all roles’.       As soon as you do that you get another pop up asking you the details for the user that you would be logging in with (make sure you enter a reasonable expiry date, you do not want the user account to expire today). Notice the more information tag at the bottom, click that to get access to the certificate section. See screen shot below.       From the drop down select the option to create a new certificate        In the pop up window enter the friendly name for your certificate. In my case I entered ‘WAC – Test Rig’ and click ok. This will create a new certificate for you. Click on the view button to see the certificate details. Do you see the Thumbprint, this is the value that will go in the config file (very important). Now click on the Copy to File button to copy the certificate, we will need to import the certificate to the windows Azure Management portal later. So, make sure you save it a safe location.                                Click Finish and enter details of the user you would like to create with permissions for remote desktop access, once you have entered the details on the ‘Remote desktop configuration’ screen click on Ok. From the Publish Windows Azure Wizard screen press Cancel. Cancel because we don’t want to publish the role just yet and Yes because we want to save all the changes in the config file.       Now if you go to the ServiceDefinition.csdef file you will see that the RemoteAccess and RemoteForwarder roles have been imported for you. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="WindowsAzureProject2" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceDefinition"> <WorkerRole name="WorkerRole1" vmsize="Small"> <Imports> <Import moduleName="Diagnostics" /> <Import moduleName="Connect" /> <Import moduleName="RemoteAccess" /> <Import moduleName="RemoteForwarder" /> </Imports> </WorkerRole> </ServiceDefinition> Now go to the ServiceConfiguration.Cloud.cscfg file and you see a whole bunch for setting “Microsoft.WindowsAzure.Plugins.RemoteAccess.%%%” values added for you. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="WindowsAzureProject2" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="2" osVersion="*"> <Role name="WorkerRole1"> <Instances count="1" /> <ConfigurationSettings> <Setting name="Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString" value="UseDevelopmentStorage=true" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.ActivationToken" value="45f55fea-f194-4fbc-b36e-25604faac784" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Refresh" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.WaitForConnectivity" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Upgrade" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.EnableDomainJoin" value="true" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainFQDN" value="play.pit.com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainControllerFQDN" value="WIN-KUDQMQFGQOL.play.pit.com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainAccountName" value="playpit\Administrator" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainPassword" value="************************" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainOU" value="OU=CloudInstances, DC=Play, DC=Pit, DC=com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Administrators" value="Playpit\Administrator" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainSiteName" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.RemoteAccess.Enabled" value="true" /> <Setting name="Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountUsername" value="Administrator" /> <Setting name="Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountEncryptedPassword" value="MIIBnQYJKoZIhvcNAQcDoIIBjjCCAYoCAQAxggFOMIIBSgIBADAyMB4xHDAaBgNVBAMME1dpbmRvd 3MgQXp1cmUgVG9vbHMCEGa+B46voeO5T305N7TSG9QwDQYJKoZIhvcNAQEBBQAEggEABg4ol5Xol66Ip6QKLbAPWdmD4ae ADZ7aKj6fg4D+ATr0DXBllZHG5Umwf+84Sj2nsPeCyrg3ZDQuxrfhSbdnJwuChKV6ukXdGjX0hlowJu/4dfH4jTJC7sBWS AKaEFU7CxvqYEAL1Hf9VPL5fW6HZVmq1z+qmm4ecGKSTOJ20Fptb463wcXgR8CWGa+1w9xqJ7UmmfGeGeCHQ4QGW0IDSBU6ccg vzF2ug8/FY60K1vrWaCYOhKkxD3YBs8U9X/kOB0yQm2Git0d5tFlIPCBT2AC57bgsAYncXfHvPesI0qs7VZyghk8LVa9g5IqaM Cp6cQ7rmY/dLsKBMkDcdBHuCTAzBgkqhkiG9w0BBwEwFAYIKoZIhvcNAwcECDRVifSXbA43gBApNrp40L1VTVZ1iGag+3O1" /> <Setting name="Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountExpiration" value="2012-11-27T23:59:59.0000000+00:00" /> <Setting name="Microsoft.WindowsAzure.Plugins.RemoteForwarder.Enabled" value="true" /> </ConfigurationSettings> <Certificates> <Certificate name="Microsoft.WindowsAzure.Plugins.RemoteAccess.PasswordEncryption" thumbprint="AA23016CF0BDFC344400B5B82706B608B92E4217" thumbprintAlgorithm="sha1" /> </Certificates> </Role> </ServiceConfiguration>          Okay let’s look at them one at a time,       Enabled - Yes, we would like to enable Remote Access.       AccountUserName – This is the user name you entered while you were on the publish windows azure role screen, as detailed above.       AccountEncrytedPassword – Try and decode that, the certificate is used to encrypt the password you specified for the user account. Remember earlier i said, either use the instructions or wait and i’ll be showing you encryption, now the user account i am using for rdp has the same password as my domain password, so i can simply copy the value of the AccountEncryptedPassword to the DomainPassword as well.       AccountExpiration – This is the expiration as you specified in the wizard earlier, make sure your account does not expire today.       Remote Forwarder – Check out the documentation, below is how I understand it, -- One role in an application that implements a remote desktop connection must import the RemoteForwarder module. The two modules work together to enable the remote desktop connections to role instances. -- If you have multiple roles defined in the service model, it does not matter which role you add the RemoteForwarder module to, but you must add it to only one of the role definitions.       Certificate – Remember the certificate thumbprint from the wizard, the on premise machine and windows azure role machine that need to speak to each other must have the same thumbprint. More on that when we install Windows Azure connect Endpoints on the on premise machine. As i said earlier, in this blog post, I’ll be showing you the manual process so i won’t be scripting any star up tasks to install the test agent or register the test agent with the TFS Server. I’ll be showing you all this cool stuff in the next blog post, that’s because it’s important to understand the manual side of it, it becomes easier for you to troubleshoot in case something fails. Having said that, the changes we have made are sufficient to spin up the Windows Azure Worker Role aka Test Agent VM, have it connected with the play.pit.com domain and have remote access enabled on it. Before we deploy the Test Agent VM we need to set up Windows Azure Connect on the TFS Server. II. Windows Azure Connect: Setting up Connect on VM – 2 i.e. TFS & Test Controller Glad you made it so far, now to enable communication between the on premise TFS/Test Controller and Azure-ed Test Agent we need to enable communication. We have set up the Azure connect module in the Test Agent configuration, now the connect end points need to be enabled on the on premise machines, let’s have a look at how we can do this. Log on to VM – 2 running the TFS Server and Test Controller Log on to the Windows Azure Management Portal and click on Virtual Network Click on Virtual Network, if you already have a subscription you should see the below screen shot, if not, you would be asked to complete the subscription first        Click on Install Local Endpoints from the top left on the panel and you get a url appended with a token id in it, remember the token i showed you earlier, in theory the token you get here should match the token you added to the Test Agent config file.        Copy the url to the clip board and paste it in IE explorer (important, the installation at present only works out of IE and you need to have cookies enabled in order to complete the installation). As stated in the pop up, you can NOT download and run the software later, you need to run it as is, since it contains a token. Once the installation completes you should see the Windows Azure connect icon in the system tray.                         Right click the Azure Connect icon, choose Diagnostics and refer to this link for diagnostic detail terminology. NOTE – Unfortunately I could not see the Windows Azure connect icon in the system tray, a bit of binging with Google revealed that the azure connect icon is only shown when the ‘Windows Azure Connect Endpoint’ Service is started. So go to services.msc and make sure that the service is started, if not start it, unfortunately again, the service did not start for me on a manual start and i realised that one of the dependant services was disabled, you can look at the service dependencies and start them and then start windows azure connect. Bottom line, you need to start Windows Azure connect service before you can proceed. Please refer here on MSDN for more on Troubleshooting Windows Azure connect. (Follow the next step as well)   Now go back to the Windows Azure Management Portal and from Groups and Roles create a new group, lets call it ‘Test Rig’. Make sure you add the VM – 2 (the TFS Server VM where you just installed the endpoint).       Now if you go back to the Azure Connect icon in the system tray and click ‘Refresh Policy’ you will notice that the disconnected status of the icon should change to ready for connection. III. Importing Certificate in to Windows Azure Management Portal But before that you need to import the certificate you created in Step I in to the Windows Azure Management Portal. Log on to the Windows Azure Management Portal and click on ‘Hosted Services, Storage Accounts & CDN’ and then ‘Management Certificates’ followed by Add Certificates as shown in the screen shot below        Browse to the location where you saved the certificate earlier, remember… Refer to Step I in case you forgot.        Now you should be able to see the imported certificate here, make sure the thumbprint of the certificate matches the one you inserted in the config files        IV. Publish Windows Azure Worker Role aka Test Agent Having completed I, II and III, you are ready to publish the Test Agent VM – 3 to the cloud. Go to Visual Studio and right click the Windows Azure project and select Publish. Verify the infomration in the wizard, from the advanced settings tab, you can also enabled capture of intellitrace or profiling information.         Click Next and Click Publish! From the view menu bar select the Windows Azure Activity Log window.       Now you should be able to see the deployment progress in real time.             In the Windows Azure Management Portal, you should also be able to see the progress of creation of a new Worker Role.       Once the deployment is complete you should be able to RDP (go to run prompt type mstsc and in the pop up the machine name) in to the Test Agent Worker Role VM from the Playpit network using the domain admin user account. In case you are unable to log in to the Test Agent using the domain admin user account it means the process of joining the Test Agent to the domain has failed! But the good news is, because you imported the connect module, you can connect to the Test Agent machine using Windows Azure Management Portal and troubleshoot the reason for failure, you will be able to log in with the user name and password you specified in the config file for the keys ‘RemoteAccess.AccountUsername, RemoteAccess.EncryptedPassword (just that enter the password unencrypted)’, fix it or manually join the machine to the domain. Once you have managed to Join the Test Agent VM to the Domain move to the next step.      So, log in to the Test Agent Worker Role VM with the Playpit Domain Administrator and verify that you can log in, the machine is connected to the domain and the connect service is successfully running. If yes, give your self a pat on the back, you are 80% mission accomplished!         Go to the Windows Azure Management Portal and click on Virtual Network, click on Groups and Roles and click on Test Rig, click Edit Group, the edit the Test Rig group you created earlier. In the Connect to section, click on Add to select the worker role you have just deployed. Also, check the ‘Allow connections between endpoints in the group’ with this you will enable to communication between test controller and test agents and test agents/test agents. Click Save.      Now, you are ready to deploy the Test Agent software on the Worker Role Test Agent VM and configure it to work with the Test Controller. V. Configuring VM – 3: Installing Test Agent and Associating Test Agent to Controller Log in to the Worker Role Test Agent VM that you have just successfully deployed, make sure you log in with the domain administrator account. Download the All Agents software from MSDN, ‘en_visual_studio_agents_2010_x86_x64_dvd_509679.iso’, extract the iso and navigate to where you have extracted the iso. In my case, i have extracted the iso to “C:\Resources\Temp\VsAgentSetup”. Open the Test Agent folder and double click on setup.exe. Once you have installed the Test Agent you should reach the configuration window. If you face any issues installing TFS Test Agent on the VM, refer to the walkthrough on MSDN.       Once you have successfully installed the Test Agent software you will need to configure the test agent. Right click the test agent configuration tool and run as a different user. i.e. an Administrator. This is really to run the configuration wizard with elevated privileges (you might have UAC block something's otherwise).        In the run options, you can select ‘service’ you do not need to run the agent as interactive un less you are running coded UI tests. I have specified the domain administrator to connect to the TFS Test Controller. In real life, i would never do that, i would create a separate test user service account for this purpose. But for the blog post, we are using the most powerful user so that any policies or restrictions don’t block you.        Click the Apply Settings button and you should be all green! If not, the summary usually gives helpful error messages that you can resolve and proceed. As per my experience, you may run in to either a permission or a firewall blocking communication issue.        And now the moment of truth! Go to VM –2 open up Visual Studio and from the Test Menu select Manage Test Controller       Mission Accomplished! You should be able to see the Test Agent that you have just configured here,         VI. Creating and Running Load Tests on your brand new Azure-ed Test Rig I have various blog posts on Performance Testing with Visual Studio Ultimate, you can follow the links and videos below, Blog Posts: - Part 1 – Performance Testing using Visual Studio 2010 Ultimate - Part 2 – Performance Testing using Visual Studio 2010 Ultimate - Part 3 – Performance Testing using Visual Studio 2010 Ultimate Videos: - Test Tools Configuration & Settings in Visual Studio - Why & How to Record Web Performance Tests in Visual Studio Ultimate - Goal Driven Load Testing using Visual Studio Ultimate Now that you have created your load tests, there is one last change you need to make before you can run the tests on your Azure Test Rig, create a new Test settings file, and change the Test Execution method to ‘Remote Execution’ and select the test controller you have configured the Worker Role Test Agent against in our case VM – 2 So, go on, fire off a test run and see the results of the test being executed on the Azur-ed Test Rig. Review and What’s next? A quick recap of the benefits of running the Test Rig in the cloud and what i will be covering in the next blog post AND I would love to hear your feedback! Advantages Utilizing the power of Azure compute to run a heavy virtual user load. Benefiting from the Azure flexibility, destroy Test Agents when not in use, takes < 25 minutes to spin up a new Test Agent. Most important test Network Latency, (network latency and speed of connection are two different things – usually network latency is very hard to test), by placing the Test Agents in Microsoft Data centres around the globe, one can actually test the lag in transferring the bytes not because of a slow connection but because the page has been requested from the other side of the globe. Next Steps The process of spinning up the Test Agents in windows Azure is not 100% automated. I am working on the Worker process and power shell scripts to make the role deployment, unattended install of test agent software and registration of the test agent to the test controller automated. In the next blog post I will show you how to make the complete process unattended and automated. Remember to subscribe to http://feeds.feedburner.com/TarunArora. Hope you enjoyed this post, I would love to hear your feedback! If you have any recommendations on things that I should consider or any questions or feedback, feel free to leave a comment. See you in Part III.   Share this post : CodeProject

    Read the article

  • Using Stub Objects

    - by user9154181
    Having told the long and winding tale of where stub objects came from and how we use them to build Solaris, I'd like to focus now on the the nuts and bolts of building and using them. The following new features were added to the Solaris link-editor (ld) to support the production and use of stub objects: -z stub This new command line option informs ld that it is to build a stub object rather than a normal object. In this mode, it accepts the same command line arguments as usual, but will quietly ignore any objects and sharable object dependencies. STUB_OBJECT Mapfile Directive In order to build a stub version of an object, its mapfile must specify the STUB_OBJECT directive. When producing a non-stub object, the presence of STUB_OBJECT causes the link-editor to perform extra validation to ensure that the stub and non-stub objects will be compatible. ASSERT Mapfile Directive All data symbols exported from the object must have an ASSERT symbol directive in the mapfile that declares them as data and supplies the size, binding, bss attributes, and symbol aliasing details. When building the stub objects, the information in these ASSERT directives is used to create the data symbols. When building the real object, these ASSERT directives will ensure that the real object matches the linking interface presented by the stub. Although ASSERT was added to the link-editor in order to support stub objects, they are a general purpose feature that can be used independently of stub objects. For instance you might choose to use an ASSERT directive if you have a symbol that must have a specific address in order for the object to operate properly and you want to automatically ensure that this will always be the case. The material presented here is derived from a document I originally wrote during the development effort, which had the dual goals of providing supplemental materials for the stub object PSARC case, and as a set of edits that were eventually applied to the Oracle Solaris Linker and Libraries Manual (LLM). The Solaris 11 LLM contains this information in a more polished form. Stub Objects A stub object is a shared object, built entirely from mapfiles, that supplies the same linking interface as the real object, while containing no code or data. Stub objects cannot be used at runtime. However, an application can be built against a stub object, where the stub object provides the real object name to be used at runtime, and then use the real object at runtime. When building a stub object, the link-editor ignores any object or library files specified on the command line, and these files need not exist in order to build a stub. Since the compilation step can be omitted, and because the link-editor has relatively little work to do, stub objects can be built very quickly. Stub objects can be used to solve a variety of build problems: Speed Modern machines, using a version of make with the ability to parallelize operations, are capable of compiling and linking many objects simultaneously, and doing so offers significant speedups. However, it is typical that a given object will depend on other objects, and that there will be a core set of objects that nearly everything else depends on. It is necessary to impose an ordering that builds each object before any other object that requires it. This ordering creates bottlenecks that reduce the amount of parallelization that is possible and limits the overall speed at which the code can be built. Complexity/Correctness In a large body of code, there can be a large number of dependencies between the various objects. The makefiles or other build descriptions for these objects can become very complex and difficult to understand or maintain. The dependencies can change as the system evolves. This can cause a given set of makefiles to become slightly incorrect over time, leading to race conditions and mysterious rare build failures. Dependency Cycles It might be desirable to organize code as cooperating shared objects, each of which draw on the resources provided by the other. Such cycles cannot be supported in an environment where objects must be built before the objects that use them, even though the runtime linker is fully capable of loading and using such objects if they could be built. Stub shared objects offer an alternative method for building code that sidesteps the above issues. Stub objects can be quickly built for all the shared objects produced by the build. Then, all the real shared objects and executables can be built in parallel, in any order, using the stub objects to stand in for the real objects at link-time. Afterwards, the executables and real shared objects are kept, and the stub shared objects are discarded. Stub objects are built from a mapfile, which must satisfy the following requirements. The mapfile must specify the STUB_OBJECT directive. This directive informs the link-editor that the object can be built as a stub object, and as such causes the link-editor to perform validation and sanity checking intended to guarantee that an object and its stub will always provide identical linking interfaces. All function and data symbols that make up the external interface to the object must be explicitly listed in the mapfile. The mapfile must use symbol scope reduction ('*'), to remove any symbols not explicitly listed from the external interface. All global data exported from the object must have an ASSERT symbol attribute in the mapfile to specify the symbol type, size, and bss attributes. In the case where there are multiple symbols that reference the same data, the ASSERT for one of these symbols must specify the TYPE and SIZE attributes, while the others must use the ALIAS attribute to reference this primary symbol. Given such a mapfile, the stub and real versions of the shared object can be built using the same command line for each, adding the '-z stub' option to the link for the stub object, and omiting the option from the link for the real object. To demonstrate these ideas, the following code implements a shared object named idx5, which exports data from a 5 element array of integers, with each element initialized to contain its zero-based array index. This data is available as a global array, via an alternative alias data symbol with weak binding, and via a functional interface. % cat idx5.c int _idx5[5] = { 0, 1, 2, 3, 4 }; #pragma weak idx5 = _idx5 int idx5_func(int index) { if ((index 4)) return (-1); return (_idx5[index]); } A mapfile is required to describe the interface provided by this shared object. % cat mapfile $mapfile_version 2 STUB_OBJECT; SYMBOL_SCOPE { _idx5 { ASSERT { TYPE=data; SIZE=4[5] }; }; idx5 { ASSERT { BINDING=weak; ALIAS=_idx5 }; }; idx5_func; local: *; }; The following main program is used to print all the index values available from the idx5 shared object. % cat main.c #include <stdio.h> extern int _idx5[5], idx5[5], idx5_func(int); int main(int argc, char **argv) { int i; for (i = 0; i The following commands create a stub version of this shared object in a subdirectory named stublib. elfdump is used to verify that the resulting object is a stub. The command used to build the stub differs from that of the real object only in the addition of the -z stub option, and the use of a different output file name. This demonstrates the ease with which stub generation can be added to an existing makefile. % cc -Kpic -G -M mapfile -h libidx5.so.1 idx5.c -o stublib/libidx5.so.1 -zstub % ln -s libidx5.so.1 stublib/libidx5.so % elfdump -d stublib/libidx5.so | grep STUB [11] FLAGS_1 0x4000000 [ STUB ] The main program can now be built, using the stub object to stand in for the real shared object, and setting a runpath that will find the real object at runtime. However, as we have not yet built the real object, this program cannot yet be run. Attempts to cause the system to load the stub object are rejected, as the runtime linker knows that stub objects lack the actual code and data found in the real object, and cannot execute. % cc main.c -L stublib -R '$ORIGIN/lib' -lidx5 -lc % ./a.out ld.so.1: a.out: fatal: libidx5.so.1: open failed: No such file or directory Killed % LD_PRELOAD=stublib/libidx5.so.1 ./a.out ld.so.1: a.out: fatal: stublib/libidx5.so.1: stub shared object cannot be used at runtime Killed We build the real object using the same command as we used to build the stub, omitting the -z stub option, and writing the results to a different file. % cc -Kpic -G -M mapfile -h libidx5.so.1 idx5.c -o lib/libidx5.so.1 Once the real object has been built in the lib subdirectory, the program can be run. % ./a.out [0] 0 0 0 [1] 1 1 1 [2] 2 2 2 [3] 3 3 3 [4] 4 4 4 Mapfile Changes The version 2 mapfile syntax was extended in a number of places to accommodate stub objects. Conditional Input The version 2 mapfile syntax has the ability conditionalize mapfile input using the $if control directive. As you might imagine, these directives are used frequently with ASSERT directives for data, because a given data symbol will frequently have a different size in 32 or 64-bit code, or on differing hardware such as x86 versus sparc. The link-editor maintains an internal table of names that can be used in the logical expressions evaluated by $if and $elif. At startup, this table is initialized with items that describe the class of object (_ELF32 or _ELF64) and the type of the target machine (_sparc or _x86). We found that there were a small number of cases in the Solaris code base in which we needed to know what kind of object we were producing, so we added the following new predefined items in order to address that need: NameMeaning ...... _ET_DYNshared object _ET_EXECexecutable object _ET_RELrelocatable object ...... STUB_OBJECT Directive The new STUB_OBJECT directive informs the link-editor that the object described by the mapfile can be built as a stub object. STUB_OBJECT; A stub shared object is built entirely from the information in the mapfiles supplied on the command line. When the -z stub option is specified to build a stub object, the presence of the STUB_OBJECT directive in a mapfile is required, and the link-editor uses the information in symbol ASSERT attributes to create global symbols that match those of the real object. When the real object is built, the presence of STUB_OBJECT causes the link-editor to verify that the mapfiles accurately describe the real object interface, and that a stub object built from them will provide the same linking interface as the real object it represents. All function and data symbols that make up the external interface to the object must be explicitly listed in the mapfile. The mapfile must use symbol scope reduction ('*'), to remove any symbols not explicitly listed from the external interface. All global data in the object is required to have an ASSERT attribute that specifies the symbol type and size. If the ASSERT BIND attribute is not present, the link-editor provides a default assertion that the symbol must be GLOBAL. If the ASSERT SH_ATTR attribute is not present, or does not specify that the section is one of BITS or NOBITS, the link-editor provides a default assertion that the associated section is BITS. All data symbols that describe the same address and size are required to have ASSERT ALIAS attributes specified in the mapfile. If aliased symbols are discovered that do not have an ASSERT ALIAS specified, the link fails and no object is produced. These rules ensure that the mapfiles contain a description of the real shared object's linking interface that is sufficient to produce a stub object with a completely compatible linking interface. SYMBOL_SCOPE/SYMBOL_VERSION ASSERT Attribute The SYMBOL_SCOPE and SYMBOL_VERSION mapfile directives were extended with a symbol attribute named ASSERT. The syntax for the ASSERT attribute is as follows: ASSERT { ALIAS = symbol_name; BINDING = symbol_binding; TYPE = symbol_type; SH_ATTR = section_attributes; SIZE = size_value; SIZE = size_value[count]; }; The ASSERT attribute is used to specify the expected characteristics of the symbol. The link-editor compares the symbol characteristics that result from the link to those given by ASSERT attributes. If the real and asserted attributes do not agree, a fatal error is issued and the output object is not created. In normal use, the link editor evaluates the ASSERT attribute when present, but does not require them, or provide default values for them. The presence of the STUB_OBJECT directive in a mapfile alters the interpretation of ASSERT to require them under some circumstances, and to supply default assertions if explicit ones are not present. See the definition of the STUB_OBJECT Directive for the details. When the -z stub command line option is specified to build a stub object, the information provided by ASSERT attributes is used to define the attributes of the global symbols provided by the object. ASSERT accepts the following: ALIAS Name of a previously defined symbol that this symbol is an alias for. An alias symbol has the same type, value, and size as the main symbol. The ALIAS attribute is mutually exclusive to the TYPE, SIZE, and SH_ATTR attributes, and cannot be used with them. When ALIAS is specified, the type, size, and section attributes are obtained from the alias symbol. BIND Specifies an ELF symbol binding, which can be any of the STB_ constants defined in <sys/elf.h>, with the STB_ prefix removed (e.g. GLOBAL, WEAK). TYPE Specifies an ELF symbol type, which can be any of the STT_ constants defined in <sys/elf.h>, with the STT_ prefix removed (e.g. OBJECT, COMMON, FUNC). In addition, for compatibility with other mapfile usage, FUNCTION and DATA can be specified, for STT_FUNC and STT_OBJECT, respectively. TYPE is mutually exclusive to ALIAS, and cannot be used in conjunction with it. SH_ATTR Specifies attributes of the section associated with the symbol. The section_attributes that can be specified are given in the following table: Section AttributeMeaning BITSSection is not of type SHT_NOBITS NOBITSSection is of type SHT_NOBITS SH_ATTR is mutually exclusive to ALIAS, and cannot be used in conjunction with it. SIZE Specifies the expected symbol size. SIZE is mutually exclusive to ALIAS, and cannot be used in conjunction with it. The syntax for the size_value argument is as described in the discussion of the SIZE attribute below. SIZE The SIZE symbol attribute existed before support for stub objects was introduced. It is used to set the size attribute of a given symbol. This attribute results in the creation of a symbol definition. Prior to the introduction of the ASSERT SIZE attribute, the value of a SIZE attribute was always numeric. While attempting to apply ASSERT SIZE to the objects in the Solaris ON consolidation, I found that many data symbols have a size based on the natural machine wordsize for the class of object being produced. Variables declared as long, or as a pointer, will be 4 bytes in size in a 32-bit object, and 8 bytes in a 64-bit object. Initially, I employed the conditional $if directive to handle these cases as follows: $if _ELF32 foo { ASSERT { TYPE=data; SIZE=4 } }; bar { ASSERT { TYPE=data; SIZE=20 } }; $elif _ELF64 foo { ASSERT { TYPE=data; SIZE=8 } }; bar { ASSERT { TYPE=data; SIZE=40 } }; $else $error UNKNOWN ELFCLASS $endif I found that the situation occurs frequently enough that this is cumbersome. To simplify this case, I introduced the idea of the addrsize symbolic name, and of a repeat count, which together make it simple to specify machine word scalar or array symbols. Both the SIZE, and ASSERT SIZE attributes support this syntax: The size_value argument can be a numeric value, or it can be the symbolic name addrsize. addrsize represents the size of a machine word capable of holding a memory address. The link-editor substitutes the value 4 for addrsize when building 32-bit objects, and the value 8 when building 64-bit objects. addrsize is useful for representing the size of pointer variables and C variables of type long, as it automatically adjusts for 32 and 64-bit objects without requiring the use of conditional input. The size_value argument can be optionally suffixed with a count value, enclosed in square brackets. If count is present, size_value and count are multiplied together to obtain the final size value. Using this feature, the example above can be written more naturally as: foo { ASSERT { TYPE=data; SIZE=addrsize } }; bar { ASSERT { TYPE=data; SIZE=addrsize[5] } }; Exported Global Data Is Still A Bad Idea As you can see, the additional plumbing added to the Solaris link-editor to support stub objects is minimal. Furthermore, about 90% of that plumbing is dedicated to handling global data. We have long advised against global data exported from shared objects. There are many ways in which global data does not fit well with dynamic linking. Stub objects simply provide one more reason to avoid this practice. It is always better to export all data via a functional interface. You should always hide your data, and make it available to your users via a function that they can call to acquire the address of the data item. However, If you do have to support global data for a stub, perhaps because you are working with an already existing object, it is still easilily done, as shown above. Oracle does not like us to discuss hypothetical new features that don't exist in shipping product, so I'll end this section with a speculation. It might be possible to do more in this area to ease the difficulty of dealing with objects that have global data that the users of the library don't need. Perhaps someday... Conclusions It is easy to create stub objects for most objects. If your library only exports function symbols, all you have to do to build a faithful stub object is to add STUB_OBJECT; and then to use the same link command you're currently using, with the addition of the -z stub option. Happy Stubbing!

    Read the article

  • Towards Database Continuous Delivery – What Next after Continuous Integration? A Checklist

    - by Ben Rees
    .dbd-banner p{ font-size:0.75em; padding:0 0 10px; margin:0 } .dbd-banner p span{ color:#675C6D; } .dbd-banner p:last-child{ padding:0; } @media ALL and (max-width:640px){ .dbd-banner{ background:#f0f0f0; padding:5px; color:#333; margin-top: 5px; } } -- Database delivery patterns & practices STAGE 4 AUTOMATED DEPLOYMENT If you’ve been fortunate enough to get to the stage where you’ve implemented some sort of continuous integration process for your database updates, then hopefully you’re seeing the benefits of that investment – constant feedback on changes your devs are making, advanced warning of data loss (prior to the production release on Saturday night!), a nice suite of automated tests to check business logic, so you know it’s going to work when it goes live, and so on. But what next? What can you do to improve your delivery process further, moving towards a full continuous delivery process for your database? In this article I describe some of the issues you might need to tackle on the next stage of this journey, and how to plan to overcome those obstacles before they appear. Our Database Delivery Learning Program consists of four stages, really three – source controlling a database, running continuous integration processes, then how to set up automated deployment (the middle stage is split in two – basic and advanced continuous integration, making four stages in total). If you’ve managed to work through the first three of these stages – source control, basic, then advanced CI, then you should have a solid change management process set up where, every time one of your team checks in a change to your database (whether schema or static reference data), this change gets fully tested automatically by your CI server. But this is only part of the story. Great, we know that our updates work, that the upgrade process works, that the upgrade isn’t going to wipe our 4Tb of production data with a single DROP TABLE. But – how do you get this (fully tested) release live? Continuous delivery means being always ready to release your software at any point in time. There’s a significant gap between your latest version being tested, and it being easily releasable. Just a quick note on terminology – there’s a nice piece here from Atlassian on the difference between continuous integration, continuous delivery and continuous deployment. This piece also gives a nice description of the benefits of continuous delivery. These benefits have been summed up by Jez Humble at Thoughtworks as: “Continuous delivery is a set of principles and practices to reduce the cost, time, and risk of delivering incremental changes to users” There’s another really useful piece here on Simple-Talk about the need for continuous delivery and how it applies to the database written by Phil Factor – specifically the extra needs and complexities of implementing a full CD solution for the database (compared to just implementing CD for, say, a web app). So, hopefully you’re convinced of moving on the the next stage! The next step after CI is to get some sort of automated deployment (or “release management”) process set up. But what should I do next? What do I need to plan and think about for getting my automated database deployment process set up? Can’t I just install one of the many release management tools available and hey presto, I’m ready! If only it were that simple. Below I list some of the areas that it’s worth spending a little time on, where a little planning and prep could go a long way. It’s also worth pointing out, that this should really be an evolving process. Depending on your starting point of course, it can be a long journey from your current setup to a full continuous delivery pipeline. If you’ve got a CI mechanism in place, you’re certainly a long way down that path. Nevertheless, we’d recommend evolving your process incrementally. Pages 157 and 129-141 of the book on Continuous Delivery (by Jez Humble and Dave Farley) have some great guidance on building up a pipeline incrementally: http://www.amazon.com/Continuous-Delivery-Deployment-Automation-Addison-Wesley/dp/0321601912 For now, in this post, we’ll look at the following areas for your checklist: You and Your Team Environments The Deployment Process Rollback and Recovery Development Practices You and Your Team It’s a cliché in the DevOps community that “It’s not all about processes and tools, really it’s all about a culture”. As stated in this DevOps report from Puppet Labs: “DevOps processes and tooling contribute to high performance, but these practices alone aren’t enough to achieve organizational success. The most common barriers to DevOps adoption are cultural: lack of manager or team buy-in, or the value of DevOps isn’t understood outside of a specific group”. Like most clichés, there’s truth in there – if you want to set up a database continuous delivery process, you need to get your boss, your department, your company (if relevant) onside. Why? Because it’s an investment with the benefits coming way down the line. But the benefits are huge – for HP, in the book A Practical Approach to Large-Scale Agile Development: How HP Transformed LaserJet FutureSmart Firmware, these are summarized as: -2008 to present: overall development costs reduced by 40% -Number of programs under development increased by 140% -Development costs per program down 78% -Firmware resources now driving innovation increased by a factor of 8 (from 5% working on new features to 40% But what does this mean? It means that, when moving to the next stage, to make that extra investment in automating your deployment process, it helps a lot if everyone is convinced that this is a good thing. That they understand the benefits of automated deployment and are willing to make the effort to transform to a new way of working. Incidentally, if you’re ever struggling to convince someone of the value I’d strongly recommend just buying them a copy of this book – a great read, and a very practical guide to how it can really work at a large org. I’ve spoken to many customers who have implemented database CI who describe their deployment process as “The point where automation breaks down. Up to that point, the CI process runs, untouched by human hand, but as soon as that’s finished we revert to manual.” This deployment process can involve, for example, a DBA manually comparing an environment (say, QA) to production, creating the upgrade scripts, reading through them, checking them against an Excel document emailed to him/her the night before, turning to page 29 in his/her notebook to double-check how replication is switched off and on for deployments, and so on and so on. Painful, error-prone and lengthy. But the point is, if this is something like your deployment process, telling your DBA “We’re changing everything you do and your toolset next week, to automate most of your role – that’s okay isn’t it?” isn’t likely to go down well. There’s some work here to bring him/her onside – to explain what you’re doing, why there will still be control of the deployment process and so on. Or of course, if you’re the DBA looking after this process, you have to do a similar job in reverse. You may have researched and worked out how you’d like to change your methodology to start automating your painful release process, but do the dev team know this? What if they have to start producing different artifacts for you? Will they be happy with this? Worth talking to them, to find out. As well as talking to your DBA/dev team, the other group to get involved before implementation is your manager. And possibly your manager’s manager too. As mentioned, unless there’s buy-in “from the top”, you’re going to hit problems when the implementation starts to get rocky (and what tool/process implementations don’t get rocky?!). You need to have support from someone senior in your organisation – someone you can turn to when you need help with a delayed implementation, lack of resources or lack of progress. Actions: Get your DBA involved (or whoever looks after live deployments) and discuss what you’re planning to do or, if you’re the DBA yourself, get the dev team up-to-speed with your plans, Get your boss involved too and make sure he/she is bought in to the investment. Environments Where are you going to deploy to? And really this question is – what environments do you want set up for your deployment pipeline? Assume everyone has “Production”, but do you have a QA environment? Dedicated development environments for each dev? Proper pre-production? I’ve seen every setup under the sun, and there is often a big difference between “What we want, to do continuous delivery properly” and “What we’re currently stuck with”. Some of these differences are: What we want What we’ve got Each developer with their own dedicated database environment A single shared “development” environment, used by everyone at once An Integration box used to test the integration of all check-ins via the CI process, along with a full suite of unit-tests running on that machine In fact if you have a CI process running, you’re likely to have some sort of integration server running (even if you don’t call it that!). Whether you have a full suite of unit tests running is a different question… Separate QA environment used explicitly for manual testing prior to release “We just test on the dev environments, or maybe pre-production” A proper pre-production (or “staging”) box that matches production as closely as possible Hopefully a pre-production box of some sort. But does it match production closely!? A production environment reproducible from source control A production box which has drifted significantly from anything in source control The big question is – how much time and effort are you going to invest in fixing these issues? In reality this just involves figuring out which new databases you’re going to create and where they’ll be hosted – VMs? Cloud-based? What about size/data issues – what data are you going to include on dev environments? Does it need to be masked to protect access to production data? And often the amount of work here really depends on whether you’re working on a new, greenfield project, or trying to update an existing, brownfield application. There’s a world if difference between starting from scratch with 4 or 5 clean environments (reproducible from source control of course!), and trying to re-purpose and tweak a set of existing databases, with all of their surrounding processes and quirks. But for a proper release management process, ideally you have: Dedicated development databases, An Integration server used for testing continuous integration and running unit tests. [NB: This is the point at which deployments are automatic, without human intervention. Each deployment after this point is a one-click (but human) action], QA – QA engineers use a one-click deployment process to automatically* deploy chosen releases to QA for testing, Pre-production. The environment you use to test the production release process, Production. * A note on the use of the word “automatic” – when carrying out automated deployments this does not mean that the deployment is happening without human intervention (i.e. that something is just deploying over and over again). It means that the process of carrying out the deployment is automatic in that it’s not a person manually running through a checklist or set of actions. The deployment still requires a single-click from a user. Actions: Get your environments set up and ready, Set access permissions appropriately, Make sure everyone understands what the environments will be used for (it’s not a “free-for-all” with all environments to be accessed, played with and changed by development). The Deployment Process As described earlier, most existing database deployment processes are pretty manual. The following is a description of a process we hear very often when we ask customers “How do your database changes get live? How does your manual process work?” Check pre-production matches production (use a schema compare tool, like SQL Compare). Sometimes done by taking a backup from production and restoring in to pre-prod, Again, use a schema compare tool to find the differences between the latest version of the database ready to go live (i.e. what the team have been developing). This generates a script, User (generally, the DBA), reviews the script. This often involves manually checking updates against a spreadsheet or similar, Run the script on pre-production, and check there are no errors (i.e. it upgrades pre-production to what you hoped), If all working, run the script on production.* * this assumes there’s no problem with production drifting away from pre-production in the interim time period (i.e. someone has hacked something in to the production box without going through the proper change management process). This difference could undermine the validity of your pre-production deployment test. Red Gate is currently working on a free tool to detect this problem – sign up here at www.sqllighthouse.com, if you’re interested in testing early versions. There are several variations on this process – some better, some much worse! How do you automate this? In particular, step 3 – surely you can’t automate a DBA checking through a script, that everything is in order!? The key point here is to plan what you want in your new deployment process. There are so many options. At one extreme, pure continuous deployment – whenever a dev checks something in to source control, the CI process runs (including extensive and thorough testing!), before the deployment process keys in and automatically deploys that change to the live box. Not for the faint hearted – and really not something we recommend. At the other extreme, you might be more comfortable with a semi-automated process – the pre-production/production matching process is automated (with an error thrown if these environments don’t match), followed by a manual intervention, allowing for script approval by the DBA. One he/she clicks “Okay, I’m happy for that to go live”, the latter stages automatically take the script through to live. And anything in between of course – and other variations. But we’d strongly recommended sitting down with a whiteboard and your team, and spending a couple of hours mapping out “What do we do now?”, “What do we actually want?”, “What will satisfy our needs for continuous delivery, but still maintaining some sort of continuous control over the process?” NB: Most of what we’re discussing here is about production deployments. It’s important to note that you will also need to map out a deployment process for earlier environments (for example QA). However, these are likely to be less onerous, and many customers opt for a much more automated process for these boxes. Actions: Sit down with your team and a whiteboard, and draw out the answers to the questions above for your production deployments – “What do we do now?”, “What do we actually want?”, “What will satisfy our needs for continuous delivery, but still maintaining some sort of continuous control over the process?” Repeat for earlier environments (QA and so on). Rollback and Recovery If only every deployment went according to plan! Unfortunately they don’t – and when things go wrong, you need a rollback or recovery plan for what you’re going to do in that situation. Once you move in to a more automated database deployment process, you’re far more likely to be deploying more frequently than before. No longer once every 6 months, maybe now once per week, or even daily. Hence the need for a quick rollback or recovery process becomes paramount, and should be planned for. NB: These are mainly scenarios for handling rollbacks after the transaction has been committed. If a failure is detected during the transaction, the whole transaction can just be rolled back, no problem. There are various options, which we’ll explore in subsequent articles, things like: Immediately restore from backup, Have a pre-tested rollback script (remembering that really this is a “roll-forward” script – there’s not really such a thing as a rollback script for a database!) Have fallback environments – for example, using a blue-green deployment pattern. Different options have pros and cons – some are easier to set up, some require more investment in infrastructure; and of course some work better than others (the key issue with using backups, is loss of the interim transaction data that has been added between the failed deployment and the restore). The best mechanism will be primarily dependent on how your application works and how much you need a cast-iron failsafe mechanism. Actions: Work out an appropriate rollback strategy based on how your application and business works, your appetite for investment and requirements for a completely failsafe process. Development Practices This is perhaps the more difficult area for people to tackle. The process by which you can deploy database updates is actually intrinsically linked with the patterns and practices used to develop that database and linked application. So you need to decide whether you want to implement some changes to the way your developers actually develop the database (particularly schema changes) to make the deployment process easier. A good example is the pattern “Branch by abstraction”. Explained nicely here, by Martin Fowler, this is a process that can be used to make significant database changes (e.g. splitting a table) in a step-wise manner so that you can always roll back, without data loss – by making incremental updates to the database backward compatible. Slides 103-108 of the following slidedeck, from Niek Bartholomeus explain the process: https://speakerdeck.com/niekbartho/orchestration-in-meatspace As these slides show, by making a significant schema change in multiple steps – where each step can be rolled back without any loss of new data – this affords the release team the opportunity to have zero-downtime deployments with considerably less stress (because if an increment goes wrong, they can roll back easily). There are plenty more great patterns that can be implemented – the book Refactoring Databases, by Scott Ambler and Pramod Sadalage is a great read, if this is a direction you want to go in: http://www.amazon.com/Refactoring-Databases-Evolutionary-paperback-Addison-Wesley/dp/0321774515 But the question is – how much of this investment are you willing to make? How often are you making significant schema changes that would require these best practices? Again, there’s a difference here between migrating old projects and starting afresh – with the latter it’s much easier to instigate best practice from the start. Actions: For your business, work out how far down the path you want to go, amending your database development patterns to “best practice”. It’s a trade-off between implementing quality processes, and the necessity to do so (depending on how often you make complex changes). Socialise these changes with your development group. No-one likes having “best practice” changes imposed on them, so good to introduce these ideas and the rationale behind them early.   Summary The next stages of implementing a continuous delivery pipeline for your database changes (once you have CI up and running) require a little pre-planning, if you want to get the most out of the work, and for the implementation to go smoothly. We’ve covered some of the checklist of areas to consider – mainly in the areas of “Getting the team ready for the changes that are coming” and “Planning our your pipeline, environments, patterns and practices for development”, though there will be more detail, depending on where you’re coming from – and where you want to get to. This article is part of our database delivery patterns & practices series on Simple Talk. Find more articles for version control, automated testing, continuous integration & deployment.

    Read the article

  • Error compiling GLib in Ubuntu 14.04 (trying to install GimpShop)

    - by Nicolás Salvarrey
    I'm kinda new in Linux, so please take it easy on the most complicated stuff. I'm trying to install GimpShop. Installation guide asks me to install GLib first, and when I try to compile it using the make command I get errors. When I run the ./configure --prefix=/usr command, I get this: checking for a BSD-compatible install... /usr/bin/install -c checking whether build environment is sane... yes checking for gawk... no checking for mawk... mawk checking whether make sets $(MAKE)... yes checking whether to enable maintainer-specific portions of Makefiles... no checking build system type... x86_64-unknown-linux-gnu checking host system type... x86_64-unknown-linux-gnu checking for the BeOS... no checking for Win32... no checking whether to enable garbage collector friendliness... no checking whether to disable memory pools... no checking for gcc... gcc checking for C compiler default output file name... a.out checking whether the C compiler works... yes checking whether we are cross compiling... no checking for suffix of executables... checking for suffix of object files... o checking whether we are using the GNU C compiler... yes checking whether gcc accepts -g... yes checking for gcc option to accept ANSI C... none needed checking for style of include used by make... GNU checking dependency style of gcc... gcc3 checking for c++... no checking for g++... no checking for gcc... gcc checking whether we are using the GNU C++ compiler... no checking whether gcc accepts -g... no checking dependency style of gcc... gcc3 checking for gcc option to accept ANSI C... none needed checking for a BSD-compatible install... /usr/bin/install -c checking for special C compiler options needed for large files... no checking for _FILE_OFFSET_BITS value needed for large files... no checking for _LARGE_FILES value needed for large files... no checking for pkg-config... /usr/bin/pkg-config checking for gawk... (cached) mawk checking for perl5... no checking for perl... perl checking for indent... no checking for perl... /usr/bin/perl checking for iconv_open... yes checking how to run the C preprocessor... gcc -E checking for egrep... grep -E checking for ANSI C header files... yes checking for sys/types.h... yes checking for sys/stat.h... yes checking for stdlib.h... yes checking for string.h... yes checking for memory.h... yes checking for strings.h... yes checking for inttypes.h... yes checking for stdint.h... yes checking for unistd.h... yes checking locale.h usability... yes checking locale.h presence... yes checking for locale.h... yes checking for LC_MESSAGES... yes checking libintl.h usability... yes checking libintl.h presence... yes checking for libintl.h... yes checking for ngettext in libc... yes checking for dgettext in libc... yes checking for bind_textdomain_codeset... yes checking for msgfmt... /usr/bin/msgfmt checking for dcgettext... yes checking for gmsgfmt... /usr/bin/msgfmt checking for xgettext... /usr/bin/xgettext checking for catalogs to be installed... am ar az be bg bn bs ca cs cy da de el en_CA en_GB eo es et eu fa fi fr ga gl gu he hi hr id is it ja ko lt lv mk mn ms nb ne nl nn no or pa pl pt pt_BR ro ru sk sl sq sr sr@ije sr@Latn sv ta tl tr uk vi wa xh yi zh_CN zh_TW checking for a sed that does not truncate output... /bin/sed checking for ld used by gcc... /usr/bin/ld checking if the linker (/usr/bin/ld) is GNU ld... yes checking for /usr/bin/ld option to reload object files... -r checking for BSD-compatible nm... /usr/bin/nm -B checking whether ln -s works... yes checking how to recognise dependent libraries... pass_all checking dlfcn.h usability... yes checking dlfcn.h presence... yes checking for dlfcn.h... yes checking for g77... no checking for f77... no checking for xlf... no checking for frt... no checking for pgf77... no checking for fort77... no checking for fl32... no checking for af77... no checking for f90... no checking for xlf90... no checking for pgf90... no checking for epcf90... no checking for f95... no checking for fort... no checking for xlf95... no checking for ifc... no checking for efc... no checking for pgf95... no checking for lf95... no checking for gfortran... no checking whether we are using the GNU Fortran 77 compiler... no checking whether accepts -g... no checking the maximum length of command line arguments... 32768 checking command to parse /usr/bin/nm -B output from gcc object... ok checking for objdir... .libs checking for ar... ar checking for ranlib... ranlib checking for strip... strip checking if gcc static flag works... yes checking if gcc supports -fno-rtti -fno-exceptions... no checking for gcc option to produce PIC... -fPIC checking if gcc PIC flag -fPIC works... yes checking if gcc supports -c -o file.o... yes checking whether the gcc linker (/usr/bin/ld -m elf_x86_64) supports shared libraries... yes checking whether -lc should be explicitly linked in... no checking dynamic linker characteristics... GNU/Linux ld.so checking how to hardcode library paths into programs... immediate checking whether stripping libraries is possible... yes checking if libtool supports shared libraries... yes checking whether to build shared libraries... yes checking whether to build static libraries... no configure: creating libtool appending configuration tag "CXX" to libtool appending configuration tag "F77" to libtool checking for extra flags to get ANSI library prototypes... none needed checking for extra flags for POSIX compliance... none needed checking for ANSI C header files... (cached) yes checking for vprintf... yes checking for _doprnt... no checking for working alloca.h... yes checking for alloca... yes checking for atexit... yes checking for on_exit... yes checking for char... yes checking size of char... 1 checking for short... yes checking size of short... 2 checking for long... yes checking size of long... 8 checking for int... yes checking size of int... 4 checking for void *... yes checking size of void *... 8 checking for long long... yes checking size of long long... 8 checking for __int64... no checking size of __int64... 0 checking for format to printf and scanf a guint64... %llu checking for an ANSI C-conforming const... yes checking if malloc() and friends prototypes are gmem.h compatible... no checking for growing stack pointer... yes checking for __inline... yes checking for __inline__... yes checking for inline... yes checking if inline functions in headers work... yes checking for ISO C99 varargs macros in C... yes checking for ISO C99 varargs macros in C++... no checking for GNUC varargs macros... yes checking for GNUC visibility attribute... yes checking whether byte ordering is bigendian... no checking dirent.h usability... yes checking dirent.h presence... yes checking for dirent.h... yes checking float.h usability... yes checking float.h presence... yes checking for float.h... yes checking limits.h usability... yes checking limits.h presence... yes checking for limits.h... yes checking pwd.h usability... yes checking pwd.h presence... yes checking for pwd.h... yes checking sys/param.h usability... yes checking sys/param.h presence... yes checking for sys/param.h... yes checking sys/poll.h usability... yes checking sys/poll.h presence... yes checking for sys/poll.h... yes checking sys/select.h usability... yes checking sys/select.h presence... yes checking for sys/select.h... yes checking for sys/types.h... (cached) yes checking sys/time.h usability... yes checking sys/time.h presence... yes checking for sys/time.h... yes checking sys/times.h usability... yes checking sys/times.h presence... yes checking for sys/times.h... yes checking for unistd.h... (cached) yes checking values.h usability... yes checking values.h presence... yes checking for values.h... yes checking for stdint.h... (cached) yes checking sched.h usability... yes checking sched.h presence... yes checking for sched.h... yes checking langinfo.h usability... yes checking langinfo.h presence... yes checking for langinfo.h... yes checking for nl_langinfo... yes checking for nl_langinfo and CODESET... yes checking whether we are using the GNU C Library 2.1 or newer... yes checking stddef.h usability... yes checking stddef.h presence... yes checking for stddef.h... yes checking for stdlib.h... (cached) yes checking for string.h... (cached) yes checking for setlocale... yes checking for size_t... yes checking size of size_t... 8 checking for the appropriate definition for size_t... unsigned long checking for lstat... yes checking for strerror... yes checking for strsignal... yes checking for memmove... yes checking for mkstemp... yes checking for vsnprintf... yes checking for stpcpy... yes checking for strcasecmp... yes checking for strncasecmp... yes checking for poll... yes checking for getcwd... yes checking for nanosleep... yes checking for vasprintf... yes checking for setenv... yes checking for unsetenv... yes checking for getc_unlocked... yes checking for readlink... yes checking for symlink... yes checking for C99 vsnprintf... yes checking whether printf supports positional parameters... yes checking for signed... yes checking for long long... (cached) yes checking for long double... yes checking for wchar_t... yes checking for wint_t... yes checking for size_t... (cached) yes checking for ptrdiff_t... yes checking for inttypes.h... yes checking for stdint.h... yes checking for snprintf... yes checking for C99 snprintf... yes checking for sys_errlist... yes checking for sys_siglist... yes checking for sys_siglist declaration... yes checking for fd_set... yes, found in sys/types.h checking whether realloc (NULL,) will work... yes checking for nl_langinfo (CODESET)... yes checking for OpenBSD strlcpy/strlcat... no checking for an implementation of va_copy()... yes checking for an implementation of __va_copy()... yes checking whether va_lists can be copied by value... no checking for dlopen... no checking for NSLinkModule... no checking for dlopen in -ldl... yes checking for dlsym in -ldl... yes checking for RTLD_GLOBAL brokenness... no checking for preceeding underscore in symbols... no checking for dlerror... yes checking for the suffix of shared libraries... .so checking for gspawn implementation... gspawn.lo checking for GIOChannel implementation... giounix.lo checking for platform-dependent source... checking whether to compile timeloop... yes checking if building for some Win32 platform... no checking for thread implementation... posix checking thread related cflags... -pthread checking for sched_get_priority_min... yes checking thread related libraries... -pthread checking for localtime_r... yes checking for posix getpwuid_r... yes checking size of pthread_t... 8 checking for pthread_attr_setstacksize... yes checking for minimal/maximal thread priority... sched_get_priority_min(SCHED_OTHER)/sched_get_priority_max(SCHED_OTHER) checking for pthread_setschedparam... yes checking for posix yield function... sched_yield checking size of pthread_mutex_t... 40 checking byte contents of PTHREAD_MUTEX_INITIALIZER... 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 checking whether to use assembler code for atomic operations... x86_64 checking value of POLLIN... 1 checking value of POLLOUT... 4 checking value of POLLPRI... 2 checking value of POLLERR... 8 checking value of POLLHUP... 16 checking value of POLLNVAL... 32 checking for EILSEQ... yes configure: creating ./config.status config.status: creating glib-2.0.pc config.status: creating glib-2.0-uninstalled.pc config.status: creating gmodule-2.0.pc config.status: creating gmodule-no-export-2.0.pc config.status: creating gmodule-2.0-uninstalled.pc config.status: creating gthread-2.0.pc config.status: creating gthread-2.0-uninstalled.pc config.status: creating gobject-2.0.pc config.status: creating gobject-2.0-uninstalled.pc config.status: creating glib-zip config.status: creating glib-gettextize config.status: creating Makefile config.status: creating build/Makefile config.status: creating build/win32/Makefile config.status: creating build/win32/dirent/Makefile config.status: creating glib/Makefile config.status: creating glib/libcharset/Makefile config.status: creating glib/gnulib/Makefile config.status: creating gmodule/Makefile config.status: creating gmodule/gmoduleconf.h config.status: creating gobject/Makefile config.status: creating gobject/glib-mkenums config.status: creating gthread/Makefile config.status: creating po/Makefile.in config.status: creating docs/Makefile config.status: creating docs/reference/Makefile config.status: creating docs/reference/glib/Makefile config.status: creating docs/reference/glib/version.xml config.status: creating docs/reference/gobject/Makefile config.status: creating docs/reference/gobject/version.xml config.status: creating tests/Makefile config.status: creating tests/gobject/Makefile config.status: creating m4macros/Makefile config.status: creating config.h config.status: config.h is unchanged config.status: executing depfiles commands config.status: executing default-1 commands config.status: executing glibconfig.h commands config.status: glibconfig.h is unchanged config.status: executing chmod-scripts commands nsalvarrey@Delleuze:~/glib-2.6.3$ ^C nsalvarrey@Delleuze:~/glib-2.6.3$ And then, with the make command, I get this: galias.h:83:39: error: 'g_ascii_digit_value' aliased to undefined symbol 'IA__g_ascii_digit_value' extern __typeof (g_ascii_digit_value) g_ascii_digit_value __attribute((alias("IA__g_ascii_digit_value"), visibility("default"))); ^ In file included from garray.c:35:0: galias.h:31:35: error: 'g_allocator_new' aliased to undefined symbol 'IA__g_allocator_new' extern __typeof (g_allocator_new) g_allocator_new __attribute((alias("IA__g_allocator_new"), visibility("default"))); ^ make[4]: *** [garray.lo] Error 1 make[4]: se sale del directorio «/home/nsalvarrey/glib-2.6.3/glib» make[3]: *** [all-recursive] Error 1 make[3]: se sale del directorio «/home/nsalvarrey/glib-2.6.3/glib» make[2]: *** [all] Error 2 make[2]: se sale del directorio «/home/nsalvarrey/glib-2.6.3/glib» make[1]: *** [all-recursive] Error 1 make[1]: se sale del directorio «/home/nsalvarrey/glib-2.6.3» make: *** [all] Error 2 nsalvarrey@Delleuze:~/glib-2.6.3$ (it's actually a lot longer) Can somebody help me?

    Read the article

  • Informed TDD &ndash; Kata &ldquo;To Roman Numerals&rdquo;

    - by Ralf Westphal
    Originally posted on: http://geekswithblogs.net/theArchitectsNapkin/archive/2014/05/28/informed-tdd-ndash-kata-ldquoto-roman-numeralsrdquo.aspxIn a comment on my article on what I call Informed TDD (ITDD) reader gustav asked how this approach would apply to the kata “To Roman Numerals”. And whether ITDD wasn´t a violation of TDD´s principle of leaving out “advanced topics like mocks”. I like to respond with this article to his questions. There´s more to say than fits into a commentary. Mocks and TDD I don´t see in how far TDD is avoiding or opposed to mocks. TDD and mocks are orthogonal. TDD is about pocess, mocks are about structure and costs. Maybe by moving forward in tiny red+green+refactor steps less need arises for mocks. But then… if the functionality you need to implement requires “expensive” resource access you can´t avoid using mocks. Because you don´t want to constantly run all your tests against the real resource. True, in ITDD mocks seem to be in almost inflationary use. That´s not what you usually see in TDD demonstrations. However, there´s a reason for that as I tried to explain. I don´t use mocks as proxies for “expensive” resource. Rather they are stand-ins for functionality not yet implemented. They allow me to get a test green on a high level of abstraction. That way I can move forward in a top-down fashion. But if you think of mocks as “advanced” or if you don´t want to use a tool like JustMock, then you don´t need to use mocks. You just need to stand the sight of red tests for a little longer ;-) Let me show you what I mean by that by doing a kata. ITDD for “To Roman Numerals” gustav asked for the kata “To Roman Numerals”. I won´t explain the requirements again. You can find descriptions and TDD demonstrations all over the internet, like this one from Corey Haines. Now here is, how I would do this kata differently. 1. Analyse A demonstration of TDD should never skip the analysis phase. It should be made explicit. The requirements should be formalized and acceptance test cases should be compiled. “Formalization” in this case to me means describing the API of the required functionality. “[D]esign a program to work with Roman numerals” like written in this “requirement document” is not enough to start software development. Coding should only begin, if the interface between the “system under development” and its context is clear. If this interface is not readily recognizable from the requirements, it has to be developed first. Exploration of interface alternatives might be in order. It might be necessary to show several interface mock-ups to the customer – even if that´s you fellow developer. Designing the interface is a task of it´s own. It should not be mixed with implementing the required functionality behind the interface. Unfortunately, though, this happens quite often in TDD demonstrations. TDD is used to explore the API and implement it at the same time. To me that´s a violation of the Single Responsibility Principle (SRP) which not only should hold for software functional units but also for tasks or activities. In the case of this kata the API fortunately is obvious. Just one function is needed: string ToRoman(int arabic). And it lives in a class ArabicRomanConversions. Now what about acceptance test cases? There are hardly any stated in the kata descriptions. Roman numerals are explained, but no specific test cases from the point of view of a customer. So I just “invent” some acceptance test cases by picking roman numerals from a wikipedia article. They are supposed to be just “typical examples” without special meaning. Given the acceptance test cases I then try to develop an understanding of the problem domain. I´ll spare you that. The domain is trivial and is explain in almost all kata descriptions. How roman numerals are built is not difficult to understand. What´s more difficult, though, might be to find an efficient solution to convert into them automatically. 2. Solve The usual TDD demonstration skips a solution finding phase. Like the interface exploration it´s mixed in with the implementation. But I don´t think this is how it should be done. I even think this is not how it really works for the people demonstrating TDD. They´re simplifying their true software development process because they want to show a streamlined TDD process. I doubt this is helping anybody. Before you code you better have a plan what to code. This does not mean you have to do “Big Design Up-Front”. It just means: Have a clear picture of the logical solution in your head before you start to build a physical solution (code). Evidently such a solution can only be as good as your understanding of the problem. If that´s limited your solution will be limited, too. Fortunately, in the case of this kata your understanding does not need to be limited. Thus the logical solution does not need to be limited or preliminary or tentative. That does not mean you need to know every line of code in advance. It just means you know the rough structure of your implementation beforehand. Because it should mirror the process described by the logical or conceptual solution. Here´s my solution approach: The arabic “encoding” of numbers represents them as an ordered set of powers of 10. Each digit is a factor to multiply a power of ten with. The “encoding” 123 is the short form for a set like this: {1*10^2, 2*10^1, 3*10^0}. And the number is the sum of the set members. The roman “encoding” is different. There is no base (like 10 for arabic numbers), there are just digits of different value, and they have to be written in descending order. The “encoding” XVI is short for [10, 5, 1]. And the number is still the sum of the members of this list. The roman “encoding” thus is simpler than the arabic. Each “digit” can be taken at face value. No multiplication with a base required. But what about IV which looks like a contradiction to the above rule? It is not – if you accept roman “digits” not to be limited to be single characters only. Usually I, V, X, L, C, D, M are viewed as “digits”, and IV, IX etc. are viewed as nuisances preventing a simple solution. All looks different, though, once IV, IX etc. are taken as “digits”. Then MCMLIV is just a sum: M+CM+L+IV which is 1000+900+50+4. Whereas before it would have been understood as M-C+M+L-I+V – which is more difficult because here some “digits” get subtracted. Here´s the list of roman “digits” with their values: {1, I}, {4, IV}, {5, V}, {9, IX}, {10, X}, {40, XL}, {50, L}, {90, XC}, {100, C}, {400, CD}, {500, D}, {900, CM}, {1000, M} Since I take IV, IX etc. as “digits” translating an arabic number becomes trivial. I just need to find the values of the roman “digits” making up the number, e.g. 1954 is made up of 1000, 900, 50, and 4. I call those “digits” factors. If I move from the highest factor (M=1000) to the lowest (I=1) then translation is a two phase process: Find all the factors Translate the factors found Compile the roman representation Translation is just a look-up. Finding, though, needs some calculation: Find the highest remaining factor fitting in the value Remember and subtract it from the value Repeat with remaining value and remaining factors Please note: This is just an algorithm. It´s not code, even though it might be close. Being so close to code in my solution approach is due to the triviality of the problem. In more realistic examples the conceptual solution would be on a higher level of abstraction. With this solution in hand I finally can do what TDD advocates: find and prioritize test cases. As I can see from the small process description above, there are two aspects to test: Test the translation Test the compilation Test finding the factors Testing the translation primarily means to check if the map of factors and digits is comprehensive. That´s simple, even though it might be tedious. Testing the compilation is trivial. Testing factor finding, though, is a tad more complicated. I can think of several steps: First check, if an arabic number equal to a factor is processed correctly (e.g. 1000=M). Then check if an arabic number consisting of two consecutive factors (e.g. 1900=[M,CM]) is processed correctly. Then check, if a number consisting of the same factor twice is processed correctly (e.g. 2000=[M,M]). Finally check, if an arabic number consisting of non-consecutive factors (e.g. 1400=[M,CD]) is processed correctly. I feel I can start an implementation now. If something becomes more complicated than expected I can slow down and repeat this process. 3. Implement First I write a test for the acceptance test cases. It´s red because there´s no implementation even of the API. That´s in conformance with “TDD lore”, I´d say: Next I implement the API: The acceptance test now is formally correct, but still red of course. This will not change even now that I zoom in. Because my goal is not to most quickly satisfy these tests, but to implement my solution in a stepwise manner. That I do by “faking” it: I just “assume” three functions to represent the transformation process of my solution: My hypothesis is that those three functions in conjunction produce correct results on the API-level. I just have to implement them correctly. That´s what I´m trying now – one by one. I start with a simple “detail function”: Translate(). And I start with all the test cases in the obvious equivalence partition: As you can see I dare to test a private method. Yes. That´s a white box test. But as you´ll see it won´t make my tests brittle. It serves a purpose right here and now: it lets me focus on getting one aspect of my solution right. Here´s the implementation to satisfy the test: It´s as simple as possible. Right how TDD wants me to do it: KISS. Now for the second equivalence partition: translating multiple factors. (It´a pattern: if you need to do something repeatedly separate the tests for doing it once and doing it multiple times.) In this partition I just need a single test case, I guess. Stepping up from a single translation to multiple translations is no rocket science: Usually I would have implemented the final code right away. Splitting it in two steps is just for “educational purposes” here. How small your implementation steps are is a matter of your programming competency. Some “see” the final code right away before their mental eye – others need to work their way towards it. Having two tests I find more important. Now for the next low hanging fruit: compilation. It´s even simpler than translation. A single test is enough, I guess. And normally I would not even have bothered to write that one, because the implementation is so simple. I don´t need to test .NET framework functionality. But again: if it serves the educational purpose… Finally the most complicated part of the solution: finding the factors. There are several equivalence partitions. But still I decide to write just a single test, since the structure of the test data is the same for all partitions: Again, I´m faking the implementation first: I focus on just the first test case. No looping yet. Faking lets me stay on a high level of abstraction. I can write down the implementation of the solution without bothering myself with details of how to actually accomplish the feat. That´s left for a drill down with a test of the fake function: There are two main equivalence partitions, I guess: either the first factor is appropriate or some next. The implementation seems easy. Both test cases are green. (Of course this only works on the premise that there´s always a matching factor. Which is the case since the smallest factor is 1.) And the first of the equivalence partitions on the higher level also is satisfied: Great, I can move on. Now for more than a single factor: Interestingly not just one test becomes green now, but all of them. Great! You might say, then I must have done not the simplest thing possible. And I would reply: I don´t care. I did the most obvious thing. But I also find this loop very simple. Even simpler than a recursion of which I had thought briefly during the problem solving phase. And by the way: Also the acceptance tests went green: Mission accomplished. At least functionality wise. Now I´ve to tidy up things a bit. TDD calls for refactoring. Not uch refactoring is needed, because I wrote the code in top-down fashion. I faked it until I made it. I endured red tests on higher levels while lower levels weren´t perfected yet. But this way I saved myself from refactoring tediousness. At the end, though, some refactoring is required. But maybe in a different way than you would expect. That´s why I rather call it “cleanup”. First I remove duplication. There are two places where factors are defined: in Translate() and in Find_factors(). So I factor the map out into a class constant. Which leads to a small conversion in Find_factors(): And now for the big cleanup: I remove all tests of private methods. They are scaffolding tests to me. They only have temporary value. They are brittle. Only acceptance tests need to remain. However, I carry over the single “digit” tests from Translate() to the acceptance test. I find them valuable to keep, since the other acceptance tests only exercise a subset of all roman “digits”. This then is my final test class: And this is the final production code: Test coverage as reported by NCrunch is 100%: Reflexion Is this the smallest possible code base for this kata? Sure not. You´ll find more concise solutions on the internet. But LOC are of relatively little concern – as long as I can understand the code quickly. So called “elegant” code, however, often is not easy to understand. The same goes for KISS code – especially if left unrefactored, as it is often the case. That´s why I progressed from requirements to final code the way I did. I first understood and solved the problem on a conceptual level. Then I implemented it top down according to my design. I also could have implemented it bottom-up, since I knew some bottom of the solution. That´s the leaves of the functional decomposition tree. Where things became fuzzy, since the design did not cover any more details as with Find_factors(), I repeated the process in the small, so to speak: fake some top level, endure red high level tests, while first solving a simpler problem. Using scaffolding tests (to be thrown away at the end) brought two advantages: Encapsulation of the implementation details was not compromised. Naturally private methods could stay private. I did not need to make them internal or public just to be able to test them. I was able to write focused tests for small aspects of the solution. No need to test everything through the solution root, the API. The bottom line thus for me is: Informed TDD produces cleaner code in a systematic way. It conforms to core principles of programming: Single Responsibility Principle and/or Separation of Concerns. Distinct roles in development – being a researcher, being an engineer, being a craftsman – are represented as different phases. First find what, what there is. Then devise a solution. Then code the solution, manifest the solution in code. Writing tests first is a good practice. But it should not be taken dogmatic. And above all it should not be overloaded with purposes. And finally: moving from top to bottom through a design produces refactored code right away. Clean code thus almost is inevitable – and not left to a refactoring step at the end which is skipped often for different reasons.   PS: Yes, I have done this kata several times. But that has only an impact on the time needed for phases 1 and 2. I won´t skip them because of that. And there are no shortcuts during implementation because of that.

    Read the article

  • Using the jQuery UI Library in a MVC 3 Application to Build a Dialog Form

    - by ChrisD
    Using a simulated dialog window is a nice way to handle inline data editing. The jQuery UI has a UI widget for a dialog window that makes it easy to get up and running with it in your application. With the release of ASP.NET MVC 3, Microsoft included the jQuery UI scripts and files in the MVC 3 project templates for Visual Studio. With the release of the MVC 3 Tools Update, Microsoft implemented the inclusion of those with NuGet as packages. That means we can get up and running using the latest version of the jQuery UI with minimal effort. To the code! Another that might interested you about JQuery Mobile and ASP.NET MVC 3 with C#. If you are starting with a new MVC 3 application and have the Tools Update then you are a NuGet update and a <link> and <script> tag away from adding the jQuery UI to your project. If you are using an existing MVC project you can still get the jQuery UI library added to your project via NuGet and then add the link and script tags. Assuming that you have pulled down the latest version (at the time of this publish it was 1.8.13) you can add the following link and script tags to your <head> tag: < link href = "@Url.Content(" ~ / Content / themes / base / jquery . ui . all . css ")" rel = "Stylesheet" type = "text/css" /> < script src = "@Url.Content(" ~ / Scripts / jquery-ui-1 . 8 . 13 . min . js ")" type = "text/javascript" ></ script > The jQuery UI library relies upon the CSS scripts and some image files to handle rendering of its widgets (you can choose a different theme or role your own if you like). Adding these to the stock _Layout.cshtml file results in the following markup: <!DOCTYPE html> < html > < head >     < meta charset = "utf-8" />     < title > @ViewBag.Title </ title >     < link href = "@Url.Content(" ~ / Content / Site . css ")" rel = "stylesheet" type = "text/css" />     <link href="@Url.Content("~/Content/themes/base/jquery.ui.all.css")" rel="Stylesheet" type="text/css" />     <script src="@Url.Content("~/Scripts/jquery-1.5.1.min.js")" type="text/javascript"></script>     <script src="@Url.Content("~/Scripts/modernizr-1.7.min . js ")" type = "text/javascript" ></ script >     < script src = "@Url.Content(" ~ / Scripts / jquery-ui-1 . 8 . 13 . min . js ")" type = "text/javascript" ></ script > </ head > < body >     @RenderBody() </ body > </ html > Our example will involve building a list of notes with an id, title and description. Each note can be edited and new notes can be added. The user will never have to leave the single page of notes to manage the note data. The add and edit forms will be delivered in a jQuery UI dialog widget and the note list content will get reloaded via an AJAX call after each change to the list. To begin, we need to craft a model and a data management class. We will do this so we can simulate data storage and get a feel for the workflow of the user experience. The first class named Note will have properties to represent our data model. namespace Website . Models {     public class Note     {         public int Id { get ; set ; }         public string Title { get ; set ; }         public string Body { get ; set ; }     } } The second class named NoteManager will be used to set up our simulated data storage and provide methods for querying and updating the data. We will take a look at the class content as a whole and then walk through each method after. using System . Collections . ObjectModel ; using System . Linq ; using System . Web ; namespace Website . Models {     public class NoteManager     {         public Collection < Note > Notes         {             get             {                 if ( HttpRuntime . Cache [ "Notes" ] == null )                     this . loadInitialData ();                 return ( Collection < Note >) HttpRuntime . Cache [ "Notes" ];             }         }         private void loadInitialData ()         {             var notes = new Collection < Note >();             notes . Add ( new Note                           {                               Id = 1 ,                               Title = "Set DVR for Sunday" ,                               Body = "Don't forget to record Game of Thrones!"                           });             notes . Add ( new Note                           {                               Id = 2 ,                               Title = "Read MVC article" ,                               Body = "Check out the new iwantmymvc.com post"                           });             notes . Add ( new Note                           {                               Id = 3 ,                               Title = "Pick up kid" ,                               Body = "Daughter out of school at 1:30pm on Thursday. Don't forget!"                           });             notes . Add ( new Note                           {                               Id = 4 ,                               Title = "Paint" ,                               Body = "Finish the 2nd coat in the bathroom"                           });             HttpRuntime . Cache [ "Notes" ] = notes ;         }         public Collection < Note > GetAll ()         {             return Notes ;         }         public Note GetById ( int id )         {             return Notes . Where ( i => i . Id == id ). FirstOrDefault ();         }         public int Save ( Note item )         {             if ( item . Id <= 0 )                 return saveAsNew ( item );             var existingNote = Notes . Where ( i => i . Id == item . Id ). FirstOrDefault ();             existingNote . Title = item . Title ;             existingNote . Body = item . Body ;             return existingNote . Id ;         }         private int saveAsNew ( Note item )         {             item . Id = Notes . Count + 1 ;             Notes . Add ( item );             return item . Id ;         }     } } The class has a property named Notes that is read only and handles instantiating a collection of Note objects in the runtime cache if it doesn't exist, and then returns the collection from the cache. This property is there to give us a simulated storage so that we didn't have to add a full blown database (beyond the scope of this post). The private method loadInitialData handles pre-filling the collection of Note objects with some initial data and stuffs them into the cache. Both of these chunks of code would be refactored out with a move to a real means of data storage. The GetAll and GetById methods access our simulated data storage to return all of our notes or a specific note by id. The Save method takes in a Note object, checks to see if it has an Id less than or equal to zero (we assume that an Id that is not greater than zero represents a note that is new) and if so, calls the private method saveAsNew . If the Note item sent in has an Id , the code finds that Note in the simulated storage, updates the Title and Description , and returns the Id value. The saveAsNew method sets the Id , adds it to the simulated storage, and returns the Id value. The increment of the Id is simulated here by getting the current count of the note collection and adding 1 to it. The setting of the Id is the only other chunk of code that would be refactored out when moving to a different data storage approach. With our model and data manager code in place we can turn our attention to the controller and views. We can do all of our work in a single controller. If we use a HomeController , we can add an action method named Index that will return our main view. An action method named List will get all of our Note objects from our manager and return a partial view. We will use some jQuery to make an AJAX call to that action method and update our main view with the partial view content returned. Since the jQuery AJAX call will cache the call to the content in Internet Explorer by default (a setting in jQuery), we will decorate the List, Create and Edit action methods with the OutputCache attribute and a duration of 0. This will send the no-cache flag back in the header of the content to the browser and jQuery will pick that up and not cache the AJAX call. The Create action method instantiates a new Note model object and returns a partial view, specifying the NoteForm.cshtml view file and passing in the model. The NoteForm view is used for the add and edit functionality. The Edit action method takes in the Id of the note to be edited, loads the Note model object based on that Id , and does the same return of the partial view as the Create method. The Save method takes in the posted Note object and sends it to the manager to save. It is decorated with the HttpPost attribute to ensure that it will only be available via a POST. It returns a Json object with a property named Success that can be used by the UX to verify everything went well (we won't use that in our example). Both the add and edit actions in the UX will post to the Save action method, allowing us to reduce the amount of unique jQuery we need to write in our view. The contents of the HomeController.cs file: using System . Web . Mvc ; using Website . Models ; namespace Website . Controllers {     public class HomeController : Controller     {         public ActionResult Index ()         {             return View ();         }         [ OutputCache ( Duration = 0 )]         public ActionResult List ()         {             var manager = new NoteManager ();             var model = manager . GetAll ();             return PartialView ( model );         }         [ OutputCache ( Duration = 0 )]         public ActionResult Create ()         {             var model = new Note ();             return PartialView ( "NoteForm" , model );         }         [ OutputCache ( Duration = 0 )]         public ActionResult Edit ( int id )         {             var manager = new NoteManager ();             var model = manager . GetById ( id );             return PartialView ( "NoteForm" , model );         }         [ HttpPost ]         public JsonResult Save ( Note note )         {             var manager = new NoteManager ();             var noteId = manager . Save ( note );             return Json ( new { Success = noteId > 0 });         }     } } The view for the note form, NoteForm.cshtml , looks like so: @model Website . Models . Note @using ( Html . BeginForm ( "Save" , "Home" , FormMethod . Post , new { id = "NoteForm" })) { @Html . Hidden ( "Id" ) < label class = "Title" >     < span > Title < /span><br / >     @Html . TextBox ( "Title" ) < /label> <label class="Body">     <span>Body</ span >< br />     @Html . TextArea ( "Body" ) < /label> } It is a strongly typed view for our Note model class. We give the <form> element an id attribute so that we can reference it via jQuery. The <label> and <span> tags give our UX some structure that we can style with some CSS. The List.cshtml view is used to render out a <ul> element with all of our notes. @model IEnumerable < Website . Models . Note > < ul class = "NotesList" >     @foreach ( var note in Model )     {     < li >         @note . Title < br />         @note . Body < br />         < span class = "EditLink ButtonLink" noteid = "@note.Id" > Edit < /span>     </ li >     } < /ul> This view is strongly typed as well. It includes a <span> tag that we will use as an edit button. We add a custom attribute named noteid to the <span> tag that we can use in our jQuery to identify the Id of the note object we want to edit. The view, Index.cshtml , contains a bit of html block structure and all of our jQuery logic code. @ {     ViewBag . Title = "Index" ; } < h2 > Notes < /h2> <div id="NoteListBlock"></ div > < span class = "AddLink ButtonLink" > Add New Note < /span> <div id="NoteDialog" title="" class="Hidden"></ div > < script type = "text/javascript" >     $ ( function () {         $ ( "#NoteDialog" ). dialog ({             autoOpen : false , width : 400 , height : 330 , modal : true ,             buttons : {                 "Save" : function () {                     $ . post ( "/Home/Save" ,                         $ ( "#NoteForm" ). serialize (),                         function () {                             $ ( "#NoteDialog" ). dialog ( "close" );                             LoadList ();                         });                 },                 Cancel : function () { $ ( this ). dialog ( "close" ); }             }         });         $ ( ".EditLink" ). live ( "click" , function () {             var id = $ ( this ). attr ( "noteid" );             $ ( "#NoteDialog" ). html ( "" )                 . dialog ( "option" , "title" , "Edit Note" )                 . load ( "/Home/Edit/" + id , function () { $ ( "#NoteDialog" ). dialog ( "open" ); });         });         $ ( ".AddLink" ). click ( function () {             $ ( "#NoteDialog" ). html ( "" )                 . dialog ( "option" , "title" , "Add Note" )                 . load ( "/Home/Create" , function () { $ ( "#NoteDialog" ). dialog ( "open" ); });         });         LoadList ();     });     function LoadList () {         $ ( "#NoteListBlock" ). load ( "/Home/List" );     } < /script> The <div> tag with the id attribute of "NoteListBlock" is used as a container target for the load of the partial view content of our List action method. It starts out empty and will get loaded with content via jQuery once the DOM is loaded. The <div> tag with the id attribute of "NoteDialog" is the element for our dialog widget. The jQuery UI library will use the title attribute for the text in the dialog widget top header bar. We start out with it empty here and will dynamically change the text via jQuery based on the request to either add or edit a note. This <div> tag is given a CSS class named "Hidden" that will set the display:none style on the element. Since our call to the jQuery UI method to make the element a dialog widget will occur in the jQuery document ready code block, the end user will see the <div> element rendered in their browser as the page renders and then it will hide after that jQuery call. Adding the display:hidden to the <div> element via CSS will ensure that it is never rendered until the user triggers the request to open the dialog. The jQuery document load block contains the setup for the dialog node, click event bindings for the edit and add links, and a call to a JavaScript function called LoadList that handles the AJAX call to the List action method. The .dialog() method is called on the "NoteDialog" <div> element and the options are set for the dialog widget. The buttons option defines 2 buttons and their click actions. The first is the "Save" button (the text in quotations is used as the text for the button) that will do an AJAX post to our Save action method and send the serialized form data from the note form (targeted with the id attribute "NoteForm"). Upon completion it will close the dialog widget and call the LoadList to update the UX without a redirect. The "Cancel" button simply closes the dialog widget. The .live() method handles binding a function to the "click" event on all elements with the CSS class named EditLink . We use the .live() method because it will catch and bind our function to elements even as the DOM changes. Since we will be constantly changing the note list as we add and edit we want to ensure that the edit links get wired up with click events. The function for the click event on the edit links gets the noteid attribute and stores it in a local variable. Then it clears out the HTML in the dialog element (to ensure a fresh start), calls the .dialog() method and sets the "title" option (this sets the title attribute value), and then calls the .load() AJAX method to hit our Edit action method and inject the returned content into the "NoteDialog" <div> element. Once the .load() method is complete it opens the dialog widget. The click event binding for the add link is similar to the edit, only we don't need to get the id value and we load the Create action method. This binding is done via the .click() method because it will only be bound on the initial load of the page. The add button will always exist. Finally, we toss in some CSS in the Content/Site.css file to style our form and the add/edit links. . ButtonLink { color : Blue ; cursor : pointer ; } . ButtonLink : hover { text - decoration : underline ; } . Hidden { display : none ; } #NoteForm label { display:block; margin-bottom:6px; } #NoteForm label > span { font-weight:bold; } #NoteForm input[type=text] { width:350px; } #NoteForm textarea { width:350px; height:80px; } With all of our code in place we can do an F5 and see our list of notes: If we click on an edit link we will get the dialog widget with the correct note data loaded: And if we click on the add new note link we will get the dialog widget with the empty form: The end result of our solution tree for our sample:

    Read the article

  • How to create Custom ListForm WebPart

    - by DipeshBhanani
    Mostly all who works extensively on SharePoint (including meJ) don’t like to use out-of-box list forms (DispForm.aspx, EditForm.aspx, NewForm.aspx) as interface. Actually these OOB list forms bind hands of developers for the customization. It gives headache to developers to add just one post back event, for a dropdown field and to populate other fields in NewForm.aspx or EditForm.aspx. On top of that clients always ask such stuff. So here I am going to give you guys a flight for SharePoint Customization world. In this blog, I will explain, how to create CustomListForm WebPart. In my next blogs, I am going to explain easy deployment of List Forms through features and last, guidance on using SharePoint web controls. 1.       First thing, create a class library project through Visual Studio and inherit the class with WebPart class.     public class CustomListForm : WebPart   2.       Declare the public variables and properties which we are going to use throughout the class. You will get to know these once you see them in use.         #region "Variable Declaration"           Table spTableCntl;         FormToolBar formToolBar;         Literal ltAlertMessage;         Guid SiteId;         Guid ListId;         int ItemId;         string ListName;           #endregion           #region "Properties"           SPControlMode _ControlMode = SPControlMode.New;         [Personalizable(PersonalizationScope.Shared),          WebBrowsable(true),          WebDisplayName("Control Mode"),          WebDescription("Set Control Mode"),          DefaultValue(""),          Category("Miscellaneous")]         public SPControlMode ControlMode         {             get { return _ControlMode; }             set { _ControlMode = value; }         }           #endregion     The property “ControlMode” is used to identify the mode of the List Form. The property is of type SPControlMode which is an enum type with values (Display, Edit, New and Invalid). When we will add this WebPart to DispForm.aspx, EditForm.aspx and NewForm.aspx, we will set the WebPart property “ControlMode” to Display, Edit and New respectively.     3.       Now, we need to override the CreateChildControl method and write code to manually add SharePoint Web Controls related to each list fields as well as ToolBar controls.         protected override void CreateChildControls()         {             base.CreateChildControls();               try             {                 SiteId = SPContext.Current.Site.ID;                 ListId = SPContext.Current.ListId;                 ListName = SPContext.Current.List.Title;                   if (_ControlMode == SPControlMode.Display || _ControlMode == SPControlMode.Edit)                     ItemId = SPContext.Current.ItemId;                   SPSecurity.RunWithElevatedPrivileges(delegate()                 {                     using (SPSite site = new SPSite(SiteId))                     {                         //creating a new SPSite with credentials of System Account                         using (SPWeb web = site.OpenWeb())                         {                               //<Custom Code for creating form controls>                         }                     }                 });             }             catch (Exception ex)             {                 ShowError(ex, "CreateChildControls");             }         }   Here we are assuming that we are developing this WebPart to plug into List Forms. Hence we will get the List Id and List Name from the current context. We can have Item Id only in case of Display and Edit Mode. We are putting our code into “RunWithElevatedPrivileges” to elevate privileges to System Account. Now, let’s get deep down into the main code and expand “//<Custom Code for creating form controls>”. Before initiating any SharePoint control, we need to set context of SharePoint web controls explicitly so that it will be instantiated with elevated System Account user. Following line does the job.     //To create SharePoint controls with new web object and System Account credentials     SPControl.SetContextWeb(Context, web);   First thing, let’s add main table as container for all controls.     //Table to render webpart     Table spTableMain = new Table();     spTableMain.CellPadding = 0;     spTableMain.CellSpacing = 0;     spTableMain.Width = new Unit(100, UnitType.Percentage);     this.Controls.Add(spTableMain);   Now we need to add Top toolbar with Save and Cancel button at top as you see in the below screen shot.       // Add Row and Cell for Top ToolBar     TableRow spRowTopToolBar = new TableRow();     spTableMain.Rows.Add(spRowTopToolBar);     TableCell spCellTopToolBar = new TableCell();     spRowTopToolBar.Cells.Add(spCellTopToolBar);     spCellTopToolBar.Width = new Unit(100, UnitType.Percentage);         ToolBar toolBarTop = (ToolBar)Page.LoadControl("/_controltemplates/ToolBar.ascx");     toolBarTop.CssClass = "ms-formtoolbar";     toolBarTop.ID = "toolBarTbltop";     toolBarTop.RightButtons.SeparatorHtml = "<td class=ms-separator> </td>";       if (_ControlMode != SPControlMode.Display)     {         SaveButton btnSave = new SaveButton();         btnSave.ControlMode = _ControlMode;         btnSave.ListId = ListId;           if (_ControlMode == SPControlMode.New)             btnSave.RenderContext = SPContext.GetContext(web);         else         {             btnSave.RenderContext = SPContext.GetContext(this.Context, ItemId, ListId, web);             btnSave.ItemContext = SPContext.GetContext(this.Context, ItemId, ListId, web);             btnSave.ItemId = ItemId;         }         toolBarTop.RightButtons.Controls.Add(btnSave);     }       GoBackButton goBackButtonTop = new GoBackButton();     toolBarTop.RightButtons.Controls.Add(goBackButtonTop);     goBackButtonTop.ControlMode = SPControlMode.Display;       spCellTopToolBar.Controls.Add(toolBarTop);   Here we have use “SaveButton” and “GoBackButton” which are internal SharePoint web controls for save and cancel functionality. I have set some of the properties of Save Button with if-else condition because we will not have Item Id in case of New Mode. Item Id property is used to identify which SharePoint List Item need to be saved. Now, add Form Toolbar to the page which contains “Attach File”, “Delete Item” etc buttons.       // Add Row and Cell for FormToolBar     TableRow spRowFormToolBar = new TableRow();     spTableMain.Rows.Add(spRowFormToolBar);     TableCell spCellFormToolBar = new TableCell();     spRowFormToolBar.Cells.Add(spCellFormToolBar);     spCellFormToolBar.Width = new Unit(100, UnitType.Percentage);       FormToolBar formToolBar = new FormToolBar();     formToolBar.ID = "formToolBar";     formToolBar.ListId = ListId;     if (_ControlMode == SPControlMode.New)         formToolBar.RenderContext = SPContext.GetContext(web);     else     {         formToolBar.RenderContext = SPContext.GetContext(this.Context, ItemId, ListId, web);         formToolBar.ItemContext = SPContext.GetContext(this.Context, ItemId, ListId, web);         formToolBar.ItemId = ItemId;     }     formToolBar.ControlMode = _ControlMode;     formToolBar.EnableViewState = true;       spCellFormToolBar.Controls.Add(formToolBar);     The ControlMode property will take care of which button to be displayed on the toolbar. E.g. “Attach files”, “Delete Item” in new/edit forms and “New Item”, “Edit Item”, “Delete Item”, “Manage Permissions” etc in display forms. Now add main section which contains form field controls.     //Create Form Field controls and add them in Table "spCellCntl"     CreateFieldControls(web);     //Add public variable "spCellCntl" containing all form controls to the page     spRowCntl.Cells.Add(spCellCntl);     spCellCntl.Width = new Unit(100, UnitType.Percentage);     spCellCntl.Controls.Add(spTableCntl);       //Add a Blank Row with height of 5px to render space between ToolBar table and Control table     TableRow spRowLine1 = new TableRow();     spTableMain.Rows.Add(spRowLine1);     TableCell spCellLine1 = new TableCell();     spRowLine1.Cells.Add(spCellLine1);     spCellLine1.Height = new Unit(5, UnitType.Pixel);     spCellLine1.Controls.Add(new LiteralControl("<IMG SRC='/_layouts/images/blank.gif' width=1 height=1 alt=''>"));       //Add Row and Cell for Form Controls Section     TableRow spRowCntl = new TableRow();     spTableMain.Rows.Add(spRowCntl);     TableCell spCellCntl = new TableCell();       //Create Form Field controls and add them in Table "spCellCntl"     CreateFieldControls(web);     //Add public variable "spCellCntl" containing all form controls to the page     spRowCntl.Cells.Add(spCellCntl);     spCellCntl.Width = new Unit(100, UnitType.Percentage);     spCellCntl.Controls.Add(spTableCntl);       TableRow spRowLine2 = new TableRow();     spTableMain.Rows.Add(spRowLine2);     TableCell spCellLine2 = new TableCell();     spRowLine2.Cells.Add(spCellLine2);     spCellLine2.CssClass = "ms-formline";     spCellLine2.Controls.Add(new LiteralControl("<IMG SRC='/_layouts/images/blank.gif' width=1 height=1 alt=''>"));       // Add Blank row with height of 5 pixel     TableRow spRowLine3 = new TableRow();     spTableMain.Rows.Add(spRowLine3);     TableCell spCellLine3 = new TableCell();     spRowLine3.Cells.Add(spCellLine3);     spCellLine3.Height = new Unit(5, UnitType.Pixel);     spCellLine3.Controls.Add(new LiteralControl("<IMG SRC='/_layouts/images/blank.gif' width=1 height=1 alt=''>"));   You can add bottom toolbar also to get same look and feel as OOB forms. I am not adding here as the blog will be much lengthy. At last, you need to write following lines to allow unsafe updates for Save and Delete button.     // Allow unsafe update on web for save button and delete button     if (this.Page.IsPostBack && this.Page.Request["__EventTarget"] != null         && (this.Page.Request["__EventTarget"].Contains("IOSaveItem")         || this.Page.Request["__EventTarget"].Contains("IODeleteItem")))     {         SPContext.Current.Web.AllowUnsafeUpdates = true;     }   So that’s all. We have finished writing Custom Code for adding field control. But something most important is skipped. In above code, I have called function “CreateFieldControls(web);” to add SharePoint field controls to the page. Let’s see the implementation of the function:     private void CreateFieldControls(SPWeb pWeb)     {         SPList listMain = pWeb.Lists[ListId];         SPFieldCollection fields = listMain.Fields;           //Main Table to render all fields         spTableCntl = new Table();         spTableCntl.BorderWidth = new Unit(0);         spTableCntl.CellPadding = 0;         spTableCntl.CellSpacing = 0;         spTableCntl.Width = new Unit(100, UnitType.Percentage);         spTableCntl.CssClass = "ms-formtable";           SPContext controlContext = SPContext.GetContext(this.Context, ItemId, ListId, pWeb);           foreach (SPField listField in fields)         {             string fieldDisplayName = listField.Title;             string fieldInternalName = listField.InternalName;               //Skip if the field is system field or hidden             if (listField.Hidden || listField.ShowInVersionHistory == false)                 continue;               //Skip if the control mode is display and field is read-only             if (_ControlMode != SPControlMode.Display && listField.ReadOnlyField == true)                 continue;               FieldLabel fieldLabel = new FieldLabel();             fieldLabel.FieldName = listField.InternalName;             fieldLabel.ListId = ListId;               BaseFieldControl fieldControl = listField.FieldRenderingControl;             fieldControl.ListId = ListId;             //Assign unique id using Field Internal Name             fieldControl.ID = string.Format("Field_{0}", fieldInternalName);             fieldControl.EnableViewState = true;               //Assign control mode             fieldLabel.ControlMode = _ControlMode;             fieldControl.ControlMode = _ControlMode;             switch (_ControlMode)             {                 case SPControlMode.New:                     fieldLabel.RenderContext = SPContext.GetContext(pWeb);                     fieldControl.RenderContext = SPContext.GetContext(pWeb);                     break;                 case SPControlMode.Edit:                 case SPControlMode.Display:                     fieldLabel.RenderContext = controlContext;                     fieldLabel.ItemContext = controlContext;                     fieldLabel.ItemId = ItemId;                       fieldControl.RenderContext = controlContext;                     fieldControl.ItemContext = controlContext;                     fieldControl.ItemId = ItemId;                     break;             }               //Add row to display a field row             TableRow spCntlRow = new TableRow();             spTableCntl.Rows.Add(spCntlRow);               //Add the cells for containing field lable and control             TableCell spCellLabel = new TableCell();             spCellLabel.Width = new Unit(30, UnitType.Percentage);             spCellLabel.CssClass = "ms-formlabel";             spCntlRow.Cells.Add(spCellLabel);             TableCell spCellControl = new TableCell();             spCellControl.Width = new Unit(70, UnitType.Percentage);             spCellControl.CssClass = "ms-formbody";             spCntlRow.Cells.Add(spCellControl);               //Add the control to the table cells             spCellLabel.Controls.Add(fieldLabel);             spCellControl.Controls.Add(fieldControl);               //Add description if there is any in case of New and Edit Mode             if (_ControlMode != SPControlMode.Display && listField.Description != string.Empty)             {                 FieldDescription fieldDesc = new FieldDescription();                 fieldDesc.FieldName = fieldInternalName;                 fieldDesc.ListId = ListId;                 spCellControl.Controls.Add(fieldDesc);             }               //Disable Name(Title) in Edit Mode             if (_ControlMode == SPControlMode.Edit && fieldDisplayName == "Name")             {                 TextBox txtTitlefield = (TextBox)fieldControl.Controls[0].FindControl("TextField");                 txtTitlefield.Enabled = false;             }         }         fields = null;     }   First of all, I have declared List object and got list fields in field collection object called “fields”. Then I have added a table for the container of all controls and assign CSS class as "ms-formtable" so that it gives consistent look and feel of SharePoint. Now it’s time to navigate through all fields and add them if required. Here we don’t need to add hidden or system fields. We also don’t want to display read-only fields in new and edit forms. Following lines does this job.             //Skip if the field is system field or hidden             if (listField.Hidden || listField.ShowInVersionHistory == false)                 continue;               //Skip if the control mode is display and field is read-only             if (_ControlMode != SPControlMode.Display && listField.ReadOnlyField == true)                 continue;   Let’s move to the next line of code.             FieldLabel fieldLabel = new FieldLabel();             fieldLabel.FieldName = listField.InternalName;             fieldLabel.ListId = ListId;               BaseFieldControl fieldControl = listField.FieldRenderingControl;             fieldControl.ListId = ListId;             //Assign unique id using Field Internal Name             fieldControl.ID = string.Format("Field_{0}", fieldInternalName);             fieldControl.EnableViewState = true;               //Assign control mode             fieldLabel.ControlMode = _ControlMode;             fieldControl.ControlMode = _ControlMode;   We have used “FieldLabel” control for displaying field title. The advantage of using Field Label is, SharePoint automatically adds red star besides field label to identify it as mandatory field if there is any. Here is most important part to understand. The “BaseFieldControl”. It will render the respective web controls according to type of the field. For example, if it’s single line of text, then Textbox, if it’s look up then it renders dropdown. Additionally, the “ControlMode” property tells compiler that which mode (display/edit/new) controls need to be rendered with. In display mode, it will render label with field value. In edit mode, it will render respective control with item value and in new mode it will render respective control with empty value. Please note that, it’s not always the case when dropdown field will be rendered for Lookup field or Choice field. You need to understand which controls are rendered for which list fields. I am planning to write a separate blog which I hope to publish it very soon. Moreover, we also need to assign list field specific properties like List Id, Field Name etc to identify which SharePoint List field is attached with the control.             switch (_ControlMode)             {                 case SPControlMode.New:                     fieldLabel.RenderContext = SPContext.GetContext(pWeb);                     fieldControl.RenderContext = SPContext.GetContext(pWeb);                     break;                 case SPControlMode.Edit:                 case SPControlMode.Display:                     fieldLabel.RenderContext = controlContext;                     fieldLabel.ItemContext = controlContext;                     fieldLabel.ItemId = ItemId;                       fieldControl.RenderContext = controlContext;                     fieldControl.ItemContext = controlContext;                     fieldControl.ItemId = ItemId;                     break;             }   Here, I have separate code for new mode and Edit/Display mode because we will not have Item Id to assign in New Mode. We also need to set CSS class for cell containing Label and Controls so that those controls get rendered with SharePoint theme.             spCellLabel.CssClass = "ms-formlabel";             spCellControl.CssClass = "ms-formbody";   “FieldDescription” control is used to add field description if there is any.    Now it’s time to add some more customization,               //Disable Name(Title) in Edit Mode             if (_ControlMode == SPControlMode.Edit && fieldDisplayName == "Name")             {                 TextBox txtTitlefield = (TextBox)fieldControl.Controls[0].FindControl("TextField");                 txtTitlefield.Enabled = false;             }   The above code will disable the title field in edit mode. You can add more code here to achieve more customization according to your requirement. Some of the examples are as follow:             //Adding post back event on UserField to auto populate some other dependent field             //in new mode and disable it in edit mode             if (_ControlMode != SPControlMode.Display && fieldDisplayName == "Manager")             {                 if (fieldControl.Controls[0].FindControl("UserField") != null)                 {                     PeopleEditor pplEditor = (PeopleEditor)fieldControl.Controls[0].FindControl("UserField");                     if (_ControlMode == SPControlMode.New)                         pplEditor.AutoPostBack = true;                     else                         pplEditor.Enabled = false;                 }             }               //Add JavaScript Event on Dropdown field. Don't forget to add the JavaScript function on the page.             if (_ControlMode == SPControlMode.Edit && fieldDisplayName == "Designation")             {                 DropDownList ddlCategory = (DropDownList)fieldControl.Controls[0];                 ddlCategory.Attributes.Add("onchange", string.Format("javascript:DropdownChangeEvent('{0}');return false;", ddlCategory.ClientID));             }    Following are the screenshots of my Custom ListForm WebPart. Let’s play a game, check out your OOB List forms of SharePoint, compare with these screens and find out differences.   DispForm.aspx:   EditForm.aspx:   NewForm.aspx:   Enjoy the SharePoint Soup!!! ­­­­­­­­­­­­­­­­­­­­

    Read the article

< Previous Page | 697 698 699 700 701 702 703 704 705  | Next Page >