Search Results

Search found 88404 results on 3537 pages for 'code cleanup'.

Page 71/3537 | < Previous Page | 67 68 69 70 71 72 73 74 75 76 77 78  | Next Page >

  • code cowboy on the team

    - by MK01
    How do you deal with a team member who is senior to you and always jumps on other people's projects and completes them over night or over the weekend? She seems to work 80 hour weeks whether there is an emergency or not and it is somewhat difficult to predict which part of your todo list she is going to strike next. Sometimes days of your work are wasted because on Monday morning you find a checkin completing the project you've spent most of the previous week working on. To people asking of the quality: Usually it is quite good but: there is also a lot of refactoring of code involved, including code 'owned' by other team members, w/o regard for the test coverage, with the obvious results.

    Read the article

  • Entity Framework, Code First: where is the database?

    - by Marko Apfel
    With Entity Framework 5 in Visual Studio 2012 the code first feature could let you come to the question “Where is the automatically created database located?” I run in the question after changing the model which throws during the next run this error: “The model backing the 'MyContext' context has changed since the database was created. Consider using Code First Migrations to update the database (http://go.microsoft.com/fwlink/?LinkId=238269).” Okay – clear I thought “delete the database”. But where is the database and what type is it??? In this constellation the frameworks generates a localDB. You could access this database via SQL Server Object Explorer. For the first time you have to add this localDB. The server name is “(localdb)\v11.0”: And so we could browse through the content of this database. It got the same name like the context class.

    Read the article

  • How to properly code in Unity? [on hold]

    - by Vincent B.
    I'm fairly new to Unity (yet I touched it and made a few proto with it) and I'd like to know how I'm supposed to work with it. I'm student in programming so I'm used to C/C++ with SDL/SFML, writing code and only using Input/Graphics/Network libs. I followed a few Unity guides and it was way more around drag & drop on scenes and a bit of scripting to activate it all, which disturbed me. So I fond a way to only use one GameObject and use a Singleton to launch code and display stuff (for 2d games at least). At the end of the day I make games not using "Instantiate" or such at all. Is it the right way ? Am I supposed to do this ? How much are your scenes populated (in a professional environment) ? When should I stop coding and start using the editor ?

    Read the article

  • Returning status code where one of many errors could have occured

    - by yttriuszzerbus
    I'm developing a PHP login component which includes functions to manipulate the User object, such as $User->changePassword(string $old, string $new) What I need some advice with is how to return a status, as the function can either succeed (no further information needs to be given) or fail (and the calling code needs to know why, for example incorrect password, database problem etc.) I've come up with the following ideas: Unix-style: return 0 on success, another code on failure. This doesn't seem particularly common in PHP and the language's type-coercion messes with this (a function returning FALSE on success?) This seems to be the best I can think of. Throw an exception on error. PHP's exception support is limited, and this will make life harder for anybody trying to use the functions. Return an array, containing a boolean for "success" or not, and a string or an int for "failure status" if applicable. None of these seem particularly appealing, does anyone have any advice or better ideas?

    Read the article

  • spliiting code in java-don't know what's wrong [closed]

    - by ???? ?????
    I'm writing a code to split a file into many files with a size specified in the code, and then it will join these parts later. The problem is with the joining code, it doesn't work and I can't figure what is wrong! This is my code: import java.io.*; import java.util.*; public class StupidSplit { static final int Chunk_Size = 10; static int size =0; public static void main(String[] args) throws IOException { String file = "b.txt"; int chunks = DivideFile(file); System.out.print((new File(file)).delete()); System.out.print(JoinFile(file, chunks)); } static boolean JoinFile(String fname, int nChunks) { /* * Joins the chunks together. Chunks have been divided using DivideFile * function so the last part of filename will ".partxxxx" Checks if all * parts are together by matching number of chunks found against * "nChunks", then joins the file otherwise throws an error. */ boolean successful = false; File currentDirectory = new File(System.getProperty("user.dir")); // File[] fileList = currentDirectory.listFiles(); /* populate only the files having extension like "partxxxx" */ List<File> lst = new ArrayList<File>(); // Arrays.sort(fileList); for (File file : fileList) { if (file.isFile()) { String fnm = file.getName(); int lastDot = fnm.lastIndexOf('.'); // add to list which match the name given by "fname" and have //"partxxxx" as extension" if (fnm.substring(0, lastDot).equalsIgnoreCase(fname) && (fnm.substring(lastDot + 1)).substring(0, 4).equals("part")) { lst.add(file); } } } /* * sort the list - it will be sorted by extension only because we have * ensured that list only contains those files that have "fname" and * "part" */ File[] files = (File[]) lst.toArray(new File[0]); Arrays.sort(files); System.out.println("size ="+files.length); System.out.println("hello"); /* Ensure that number of chunks match the length of array */ if (files.length == nChunks-1) { File ofile = new File(fname); FileOutputStream fos; FileInputStream fis; byte[] fileBytes; int bytesRead = 0; try { fos = new FileOutputStream(ofile,true); for (File file : files) { fis = new FileInputStream(file); fileBytes = new byte[(int) file.length()]; bytesRead = fis.read(fileBytes, 0, (int) file.length()); assert(bytesRead == fileBytes.length); assert(bytesRead == (int) file.length()); fos.write(fileBytes); fos.flush(); fileBytes = null; fis.close(); fis = null; } fos.close(); fos = null; } catch (FileNotFoundException fnfe) { System.out.println("Could not find file"); successful = false; return successful; } catch (IOException ioe) { System.out.println("Cannot write to disk"); successful = false; return successful; } /* ensure size of file matches the size given by server */ successful = (ofile.length() == StupidSplit.size) ? true : false; } else { successful = false; } return successful; } static int DivideFile(String fname) { File ifile = new File(fname); FileInputStream fis; String newName; FileOutputStream chunk; //int fileSize = (int) ifile.length(); double fileSize = (double) ifile.length(); //int nChunks = 0, read = 0, readLength = Chunk_Size; int nChunks = 0, read = 0, readLength = Chunk_Size; byte[] byteChunk; try { fis = new FileInputStream(ifile); StupidSplit.size = (int)ifile.length(); while (fileSize > 0) { if (fileSize <= Chunk_Size) { readLength = (int) fileSize; } byteChunk = new byte[readLength]; read = fis.read(byteChunk, 0, readLength); fileSize -= read; assert(read==byteChunk.length); nChunks++; //newName = fname + ".part" + Integer.toString(nChunks - 1); newName = String.format("%s.part%09d", fname, nChunks - 1); chunk = new FileOutputStream(new File(newName)); chunk.write(byteChunk); chunk.flush(); chunk.close(); byteChunk = null; chunk = null; } fis.close(); System.out.println(nChunks); // fis = null; } catch (FileNotFoundException fnfe) { System.out.println("Could not find the given file"); System.exit(-1); } catch (IOException ioe) { System.out .println("Error while creating file chunks. Exiting program"); System.exit(-1); }System.out.println(nChunks); return nChunks; } } }

    Read the article

  • Lost in Code?

    - by Geertjan
    Sometimes you're coding and you find yourself forgetting your context. For example, look at this situation: The cursor is on line 52. Imagine you're coding there and you're puzzling on some problem for some time. Wouldn't it be handy to know, without scrolling up (and then back down again to where you were working), what the method signature looks like? And does the method begin two lines above the visible code or 10 lines? That information can now, in NetBeans iDE 7.3 (and already in the 7.3 Beta) very easily be ascertained, by putting the cursor on the closing brace of the code block: As you can see, a new vertical line is shown parallel to the line numbers, connecting the end of the method with its start, as well as, at the top of the editor, the complete method signature, together with the number of the line on which it's found. Very handy. Same support is found for other file types, such as in JavaScript files.

    Read the article

  • Do you sign each of your source files with your name? [duplicate]

    - by regularfry
    Possible Duplicate: How do you keep track of the authors of code? One of my colleagues is in the habit of putting his name and email address in the head of each source file he works on, as author metadata. I am not; I prefer to rely on source control to tell me who I should be speaking to about a given set of functionality. Should I also be signing files I work on for any other reasons? Do you? If so, why? To be clear, this is in addition to whatever metadata for copyright and licensing information is included, and applies to both open sourced and proprietary code.

    Read the article

  • How do I imply code contracts of chained methods to avoid superfluous checks while chaining?

    - by Sandor Drieënhuizen
    I'm using Code Contracts in C# 4.0. I'm applying the usual static method chaining to simulate optional parameters (I know C# 4.0 supports optional parameters but I really don't want to use them). The thing is that my contract requirements are executed twice (or possibly the number of chained overloads I'd implement) if I call the Init(string , string[]) method -- an obvious effect from the sample source code below. This can be expensive, especially due to relatively expensive requirements like the File.Exists I use. public static void Init(string configurationPath, string[] mappingAssemblies) { // The static contract checker 'makes' me put these here as well as // in the overload below. Contract.Requires<ArgumentNullException>(configurationPath != null, "configurationPath"); Contract.Requires<ArgumentException>(configurationPath.Length > 0, "configurationPath is an empty string."); Contract.Requires<FileNotFoundException>(File.Exists(configurationPath), configurationPath); Contract.Requires<ArgumentNullException>(mappingAssemblies != null, "mappingAssemblies"); Contract.ForAll<string>(mappingAssemblies, (n) => File.Exists(n)); Init(configurationPath, mappingAssemblies, null); } public static void Init(string configurationPath, string[] mappingAssemblies, string optionalArgument) { // This is the main implementation of Init and all calls to chained // overloads end up here. Contract.Requires<ArgumentNullException>(configurationPath != null, "configurationPath"); Contract.Requires<ArgumentException>(configurationPath.Length > 0, "configurationPath is an empty string."); Contract.Requires<FileNotFoundException>(File.Exists(configurationPath), configurationPath); Contract.Requires<ArgumentNullException>(mappingAssemblies != null, "mappingAssemblies"); Contract.ForAll<string>(mappingAssemblies, (n) => File.Exists(n)); //... } If however, I remove the requirements from that method, the static checker complains that the requirements of the Init(string, string[], string) overload are not met. I reckon that the static checker doesn't understand that there requirements of the Init(string, string[], string) overload implicitly apply to the Init(string, string[]) method as well; something that would be perfectly deductable from the code IMO. This is the situation I would like to achieve: public static void Init(string configurationPath, string[] mappingAssemblies) { // I don't want to repeat the requirements here because they will always // be checked in the overload called here. Init(configurationPath, mappingAssemblies, null); } public static void Init(string configurationPath, string[] mappingAssemblies, string optionalArgument) { // This is the main implementation of Init and all calls to chained // overloads end up here. Contract.Requires<ArgumentNullException>(configurationPath != null, "configurationPath"); Contract.Requires<ArgumentException>(configurationPath.Length > 0, "configurationPath is an empty string."); Contract.Requires<FileNotFoundException>(File.Exists(configurationPath), configurationPath); Contract.Requires<ArgumentNullException>(mappingAssemblies != null, "mappingAssemblies"); Contract.ForAll<string>(mappingAssemblies, (n) => File.Exists(n)); //... } So, my question is this: is there a way to have the requirements of Init(string, string[], string) implicitly apply to Init(string, string[]) automatically?

    Read the article

  • Can someone code review my small SDL app? Want to make sure I didn't make any beginner mistakes

    - by SDLFunTimes
    In an effort to teach myself the SDL library (hence my stack overflow handle :) ) I wanted to try my hand at a side-scroller. My code is complete but I want some feedback (mostly because I have an atrocious amount of if and else statements for what seems like some simple logic). My "program" is a c++ side-scroller where you move a single sprite across the screen. No jumping, bad guys, guns, scores, levels or anything. I wanted to use this as a base to build up upon. So I figured if my base is wrong I could end up with some pretty bad future apps. It's also multi-threaded. Next up on this I would like to make the person sprite animated (so it looks like he's walking rather than sliding) as well as make the person go faster when the arrow buttons are held down longer). The code is kind of long but here's my main method. There's a link at the bottom for the whole program: #include <iostream> #include "SDL.h" #include "game.hpp" using std::cout; using std::endl; const int SCREENW = 200; const int SCREENH = 200; const int BPP = 32; const int FPS = 24; int event_loop(void* stuff); int display_loop(void* stuff); int main(int argc, char** argv) { SDL_Init(SDL_INIT_EVERYTHING | SDL_INIT_EVENTTHREAD); SDL_Thread* events_thurd; SDL_Thread* display_thurd; SDL_Surface* screen = SDL_SetVideoMode(SCREENW, SCREENH, BPP, SDL_SWSURFACE); SDL_EnableKeyRepeat(SDL_DEFAULT_REPEAT_DELAY, SDL_DEFAULT_REPEAT_INTERVAL); SDL_Event event; Game* thug_aim = new Game(&event, screen, SCREENW, SCREENH, BPP); events_thurd = SDL_CreateThread(event_loop, (void*)thug_aim); display_thurd = SDL_CreateThread(display_loop, (void*)thug_aim); SDL_WaitThread(events_thurd, NULL); SDL_KillThread(display_thurd); delete thug_aim; return 0; } int event_loop(void* stuff) { Game* gamez = (Game*)stuff; SDL_Event* event = gamez->get_event(); while(1) { while(SDL_PollEvent(event)) { if(event->type == SDL_QUIT) { return 0; } else if(event->type == SDL_KEYDOWN) { if(event->key.keysym.sym == SDLK_LEFT || event->key.keysym.sym == SDLK_RIGHT) { gamez->move(event->key.keysym.sym); } } else if(event->type == SDL_KEYUP) { if(event->key.keysym.sym == SDLK_LEFT || event->key.keysym.sym == SDLK_RIGHT) { gamez->stop_move(event->key.keysym.sym); } } else { //not an event that concerns this game } } } } int display_loop(void* stuff) { Game* gamez = (Game*)stuff; double period = 1 / FPS * 1000; Uint32 milli_period = (Uint32)period; //get some of the attributes from gamez SDL_Rect* background_rect = gamez->get_background_rect(); SDL_Rect* person_rect = gamez->get_person_rect(); SDL_Surface* screen = gamez->get_screen(); SDL_Surface* background = gamez->get_background(); SDL_Surface* person = gamez->get_person(); Uint32 start, end; int sleep; while(1) { start = SDL_GetTicks(); //blit background SDL_BlitSurface(background, background_rect, screen, NULL); //blit person SDL_BlitSurface(person, NULL, screen, person_rect); end = SDL_GetTicks(); sleep = milli_period - (end - start); if(sleep < 0) { sleep = 0; } SDL_Delay((Uint32)sleep); if(SDL_Flip(gamez->get_screen()) != 0) { cout << "error drawing to screen: " << SDL_GetError() << endl; } } } Here's the link to the .zip file of all my code (please ignore some of the variable names ;-) ): Anyway can you guys take a look and tell me what you think? url edit: holy crap I didn't know 2shared was such a shitty site. Looking for a better uploader than that or rapidshare / mediafire.

    Read the article

  • Generating code -- is there an easy way to get a proper string representation of nullable type?

    - by Cory Larson
    So I'm building an application that is going to do a ton of code generation with both C# and VB output (depending on project settings). I've got a CodeTemplateEngine, with two derived classes VBTemplateEngine and CSharpTemplateEngine. This question regards creating the property signatures based on columns in a database table. Using the IDataReader's GetSchemaTable method I gather the CLR type of the column, such as "System.Int32", and whether it IsNullable. However, I'd like to keep the code simple, and instead of having a property that looks like: public System.Int32? SomeIntegerColumn { get; set; } or public Nullable<System.Int32> SomeIntegerColumn { get; set; }, where the property type would be resolved with this function (from my VBTemplateEngine), public override string ResolveCLRType(bool? isNullable, string runtimeType) { Type type = TypeUtils.ResolveType(runtimeType); if (isNullable.HasValue && isNullable.Value == true && type.IsValueType) { return "System.Nullable(Of " + type.FullName + ")"; // or, for example... return type.FullName + "?"; } else { return type.FullName; } }, I would like to generate a simpler property. I hate the idea of building a Type string from nothing, and I would rather have something like: public int? SomeIntegerColumn { get; set; } Is there anything built-in anywhere, such as in the VBCodeProvider or CSharpCodeProvider classes that would somehow take care of this for me? Or is there a way to get a type alias of int? from a type string like System.Nullable'1[System.Int32]? Thanks!

    Read the article

  • Where do I input a piece of code in Emacs?

    - by Vivi
    Hi there, I have just started using Emacs for the specific purpose of editing latex documents. I was attracted to Emacs because I want to be able to customize syntax highlighting even to the point of defining the colors of specific words. I am new to Emacs and not a programmer, so I having an extreme difficulty in doing what I want to do because most help I find assume too much knowledge for my level (it took me days just to be able to install emacs + auctex and change the first face color). I found something that I think will help me but I don't know how to do it. The post below is what I want to do, but what I am supposed to do with this code? Where should I insert it or where should I type it? I am using GNU Emacs in Windows. Thank you so much for you help :) M-x what-face will print the face found at the current point. And the code for that is: (defun what-face (pos) (interactive "d") (let ((face (or (get-char-property (point) 'read-face-name) (get-char-property (point) 'face)))) (if face (message "Face: %s" face) (message "No face at %d" pos)))) By the way, I found this in another post that can be found here: http://stackoverflow.com/questions/1242352/get-font-face-under-cursor-in-emacs

    Read the article

  • Return lines in input code causing gaps/whitespace between elements in output?

    - by Jenny Zhang
    I am trying to put images next to each other on a webpage. Here is my HTML: <img class="pt" src="Yellow Tulip.jpg" title="Yellow Tulip" alt="Yellow Tulip" /> <img class="pt" src="Pink Tulip.jpg" title="Pink Tulip" alt="Pink Tulip" /> <img class="pt" src="Purple Tulip.jpg" title="Purple Tulip" alt="Purple Tulip" /> However, on my webpage, this shows a gap between each image. I've noticed that once I remove the return line that makes the elements separate and readable and instead just put all the elements on one line, the gaps go away. <img class="pt" src="Yellow Tulip.jpg" title="Yellow Tulip" alt="Yellow Tulip" /><img class="pt" src="Pink Tulip.jpg" title="Pink Tulip" alt="Pink Tulip" /><img class="pt" src="Purple Tulip.jpg" title="Purple Tulip" alt="Purple Tulip" /> Is there anyway I can achieve the output of the latter but still have the code/input look like the former? I really like the readability that the return lines (enter spaces) bring to the code, but I don't want the whitespace it creates on the actual page. If someone could explain why this is and/or how to fix it, I'd be really grateful! :)

    Read the article

  • Intelligent search and generation of Java code, preferrably using Python?

    - by Ipsquiggle
    Basically, I do lots of one-off code generation, large-scale refactorings, etc. etc. in Java. My tool language of choice is Python, but I'll take whatever solutions you can offer. Here is a simplified illustration of what I would like, in a pseudocode Generating an implementation for an interface search within my project: for each Interface as iName: write class(name=iName+"Impl", implements=iName) search within the body of iName: for each Method as mName: write method(name=mName, body="// TODO implement this...") Basically, the tool I'm searching for would allow me to: parse files according to their Java structure ("search for interfaces") search for words contextualized by language elements and types ("variables of type SomeClass", "doStuff() method calls on SomeClass instances") to run searches with structural context ("within the body of the current result") easily replace or generate code (with helpers to generate, as above, or functions for replacing, "rename the interface to Foo", "insert the line Blah.Blah()", etc.) The point is, I don't want to spend a lot of time writing these things, as they are usually throwaway. But sometimes I need something just a little smarter than what grep offers. It wouldn't be too hard to write up a simplistic version of this, but if I'm going to use something like this at all, I'd expect it to be robust. Any suggestions of a tool/library that will help me accomplish this?

    Read the article

  • Code Contracts: Hiding ContractException

    - by DigiMortal
    It’s time to move on and improve my randomizer I wrote for an example of static checking of code contracts. In this posting I will modify contracts and give some explanations about pre-conditions and post-conditions. Also I will show you how to avoid ContractExceptions and how to replace them with your own exceptions. As a first thing let’s take a look at my randomizer. public class Randomizer {     public static int GetRandomFromRange(int min, int max)     {         var rnd = new Random();         return rnd.Next(min, max);     }       public static int GetRandomFromRangeContracted(int min, int max)     {         Contract.Requires(min < max, "Min must be less than max");           var rnd = new Random();         return rnd.Next(min, max);     } } We have some problems here. We need contract for method output and we also need some better exception handling mechanism. As ContractException as type is hidden from us we have to switch from ContractException to some other Exception type that we can catch. Adding post-condition Pre-conditions are contracts for method’s input interface. Read it as follows: pre-conditions make sure that all conditions for method’s successful run are met. Post-conditions are contracts for output interface of method. So, post-conditions are for output arguments and return value. My code misses the post-condition that checks return value. Return value in this case must be greater or equal to minimum value and less or equal to maximum value. To make sure that method can run only the correct value I added call to Contract.Ensures() method. public static int GetRandomFromRangeContracted(int min, int max) {     Contract.Requires(min < max, "Min must be less than max");       Contract.Ensures(         Contract.Result<int>() >= min &&         Contract.Result<int>() <= max,         "Return value is out of range"     );       var rnd = new Random();     return rnd.Next(min, max); } I think that the line I added does not need any further comments. Avoiding ContractException for input interface ContractException lives in hidden namespace and we cannot see it at design time. But it is common exception type for all contract exceptions that we do not switch over to some other type. The case of Contract.Requires() method is simple: we can tell it what kind of exception we need if something goes wrong with contract it ensures. public static int GetRandomFromRangeContracted(int min, int max) {     Contract.Requires<ArgumentOutOfRangeException>(         min < max,         "Min must be less than max"     );       Contract.Ensures(         Contract.Result<int>() >= min &&         Contract.Result<int>() <= max,         "Return value is out of range"     );       var rnd = new Random();     return rnd.Next(min, max); } Now, if we violate the input interface contract giving min value that is not less than max value we get ArgumentOutOfRangeException. Avoiding ContractException for output interface Output interface is more complex to control. We cannot give exception type there and hope that this type of exception will be thrown if something goes wrong. Instead we have to use delegate that gathers information about problem and throws the exception we expect to be thrown. From documentation you can find the following example about the delegate I mentioned. Contract.ContractFailed += (sender, e) => {     e.SetHandled();     e.SetUnwind(); // cause code to abort after event     Assert.Fail(e.FailureKind.ToString() + ":" + e.DebugMessage); }; We can use this delegate to throw the Exception. Let’s move the code to separate method too. Here is our method that uses now ContractException hiding. public static int GetRandomFromRangeContracted(int min, int max) {     Contract.Requires(min < max, "Min must be less than max");       Contract.Ensures(         Contract.Result<int>() >= min &&         Contract.Result<int>() <= max,         "Return value is out of range"     );     Contract.ContractFailed += Contract_ContractFailed;       var rnd = new Random();     return rnd.Next(min, max)+1000; } And here is the delegate that creates exception. public static void Contract_ContractFailed(object sender,     ContractFailedEventArgs e) {     e.SetHandled();     e.SetUnwind();       throw new Exception(e.FailureKind.ToString() + ":" + e.Message); } Basically we can do in this delegate whatever we like to do with output interface errors. We can even introduce our own contract exception type. As you can see later then ContractFailed event is very useful at unit testing.

    Read the article

  • Understanding G1 GC Logs

    - by poonam
    The purpose of this post is to explain the meaning of GC logs generated with some tracing and diagnostic options for G1 GC. We will take a look at the output generated with PrintGCDetails which is a product flag and provides the most detailed level of information. Along with that, we will also look at the output of two diagnostic flags that get enabled with -XX:+UnlockDiagnosticVMOptions option - G1PrintRegionLivenessInfo that prints the occupancy and the amount of space used by live objects in each region at the end of the marking cycle and G1PrintHeapRegions that provides detailed information on the heap regions being allocated and reclaimed. We will be looking at the logs generated with JDK 1.7.0_04 using these options. Option -XX:+PrintGCDetails Here's a sample log of G1 collection generated with PrintGCDetails. 0.522: [GC pause (young), 0.15877971 secs] [Parallel Time: 157.1 ms] [GC Worker Start (ms): 522.1 522.2 522.2 522.2 Avg: 522.2, Min: 522.1, Max: 522.2, Diff: 0.1] [Ext Root Scanning (ms): 1.6 1.5 1.6 1.9 Avg: 1.7, Min: 1.5, Max: 1.9, Diff: 0.4] [Update RS (ms): 38.7 38.8 50.6 37.3 Avg: 41.3, Min: 37.3, Max: 50.6, Diff: 13.3] [Processed Buffers : 2 2 3 2 Sum: 9, Avg: 2, Min: 2, Max: 3, Diff: 1] [Scan RS (ms): 9.9 9.7 0.0 9.7 Avg: 7.3, Min: 0.0, Max: 9.9, Diff: 9.9] [Object Copy (ms): 106.7 106.8 104.6 107.9 Avg: 106.5, Min: 104.6, Max: 107.9, Diff: 3.3] [Termination (ms): 0.0 0.0 0.0 0.0 Avg: 0.0, Min: 0.0, Max: 0.0, Diff: 0.0] [Termination Attempts : 1 4 4 6 Sum: 15, Avg: 3, Min: 1, Max: 6, Diff: 5] [GC Worker End (ms): 679.1 679.1 679.1 679.1 Avg: 679.1, Min: 679.1, Max: 679.1, Diff: 0.1] [GC Worker (ms): 156.9 157.0 156.9 156.9 Avg: 156.9, Min: 156.9, Max: 157.0, Diff: 0.1] [GC Worker Other (ms): 0.3 0.3 0.3 0.3 Avg: 0.3, Min: 0.3, Max: 0.3, Diff: 0.0] [Clear CT: 0.1 ms] [Other: 1.5 ms] [Choose CSet: 0.0 ms] [Ref Proc: 0.3 ms] [Ref Enq: 0.0 ms] [Free CSet: 0.3 ms] [Eden: 12M(12M)->0B(10M) Survivors: 0B->2048K Heap: 13M(64M)->9739K(64M)] [Times: user=0.59 sys=0.02, real=0.16 secs] This is the typical log of an Evacuation Pause (G1 collection) in which live objects are copied from one set of regions (young OR young+old) to another set. It is a stop-the-world activity and all the application threads are stopped at a safepoint during this time. This pause is made up of several sub-tasks indicated by the indentation in the log entries. Here's is the top most line that gets printed for the Evacuation Pause. 0.522: [GC pause (young), 0.15877971 secs] This is the highest level information telling us that it is an Evacuation Pause that started at 0.522 secs from the start of the process, in which all the regions being evacuated are Young i.e. Eden and Survivor regions. This collection took 0.15877971 secs to finish. Evacuation Pauses can be mixed as well. In which case the set of regions selected include all of the young regions as well as some old regions. 1.730: [GC pause (mixed), 0.32714353 secs] Let's take a look at all the sub-tasks performed in this Evacuation Pause. [Parallel Time: 157.1 ms] Parallel Time is the total elapsed time spent by all the parallel GC worker threads. The following lines correspond to the parallel tasks performed by these worker threads in this total parallel time, which in this case is 157.1 ms. [GC Worker Start (ms): 522.1 522.2 522.2 522.2Avg: 522.2, Min: 522.1, Max: 522.2, Diff: 0.1] The first line tells us the start time of each of the worker thread in milliseconds. The start times are ordered with respect to the worker thread ids – thread 0 started at 522.1ms and thread 1 started at 522.2ms from the start of the process. The second line tells the Avg, Min, Max and Diff of the start times of all of the worker threads. [Ext Root Scanning (ms): 1.6 1.5 1.6 1.9 Avg: 1.7, Min: 1.5, Max: 1.9, Diff: 0.4] This gives us the time spent by each worker thread scanning the roots (globals, registers, thread stacks and VM data structures). Here, thread 0 took 1.6ms to perform the root scanning task and thread 1 took 1.5 ms. The second line clearly shows the Avg, Min, Max and Diff of the times spent by all the worker threads. [Update RS (ms): 38.7 38.8 50.6 37.3 Avg: 41.3, Min: 37.3, Max: 50.6, Diff: 13.3] Update RS gives us the time each thread spent in updating the Remembered Sets. Remembered Sets are the data structures that keep track of the references that point into a heap region. Mutator threads keep changing the object graph and thus the references that point into a particular region. We keep track of these changes in buffers called Update Buffers. The Update RS sub-task processes the update buffers that were not able to be processed concurrently, and updates the corresponding remembered sets of all regions. [Processed Buffers : 2 2 3 2Sum: 9, Avg: 2, Min: 2, Max: 3, Diff: 1] This tells us the number of Update Buffers (mentioned above) processed by each worker thread. [Scan RS (ms): 9.9 9.7 0.0 9.7 Avg: 7.3, Min: 0.0, Max: 9.9, Diff: 9.9] These are the times each worker thread had spent in scanning the Remembered Sets. Remembered Set of a region contains cards that correspond to the references pointing into that region. This phase scans those cards looking for the references pointing into all the regions of the collection set. [Object Copy (ms): 106.7 106.8 104.6 107.9 Avg: 106.5, Min: 104.6, Max: 107.9, Diff: 3.3] These are the times spent by each worker thread copying live objects from the regions in the Collection Set to the other regions. [Termination (ms): 0.0 0.0 0.0 0.0 Avg: 0.0, Min: 0.0, Max: 0.0, Diff: 0.0] Termination time is the time spent by the worker thread offering to terminate. But before terminating, it checks the work queues of other threads and if there are still object references in other work queues, it tries to steal object references, and if it succeeds in stealing a reference, it processes that and offers to terminate again. [Termination Attempts : 1 4 4 6 Sum: 15, Avg: 3, Min: 1, Max: 6, Diff: 5] This gives the number of times each thread has offered to terminate. [GC Worker End (ms): 679.1 679.1 679.1 679.1 Avg: 679.1, Min: 679.1, Max: 679.1, Diff: 0.1] These are the times in milliseconds at which each worker thread stopped. [GC Worker (ms): 156.9 157.0 156.9 156.9 Avg: 156.9, Min: 156.9, Max: 157.0, Diff: 0.1] These are the total lifetimes of each worker thread. [GC Worker Other (ms): 0.3 0.3 0.3 0.3Avg: 0.3, Min: 0.3, Max: 0.3, Diff: 0.0] These are the times that each worker thread spent in performing some other tasks that we have not accounted above for the total Parallel Time. [Clear CT: 0.1 ms] This is the time spent in clearing the Card Table. This task is performed in serial mode. [Other: 1.5 ms] Time spent in the some other tasks listed below. The following sub-tasks (which individually may be parallelized) are performed serially. [Choose CSet: 0.0 ms] Time spent in selecting the regions for the Collection Set. [Ref Proc: 0.3 ms] Total time spent in processing Reference objects. [Ref Enq: 0.0 ms] Time spent in enqueuing references to the ReferenceQueues. [Free CSet: 0.3 ms] Time spent in freeing the collection set data structure. [Eden: 12M(12M)->0B(13M) Survivors: 0B->2048K Heap: 14M(64M)->9739K(64M)] This line gives the details on the heap size changes with the Evacuation Pause. This shows that Eden had the occupancy of 12M and its capacity was also 12M before the collection. After the collection, its occupancy got reduced to 0 since everything is evacuated/promoted from Eden during a collection, and its target size grew to 13M. The new Eden capacity of 13M is not reserved at this point. This value is the target size of the Eden. Regions are added to Eden as the demand is made and when the added regions reach to the target size, we start the next collection. Similarly, Survivors had the occupancy of 0 bytes and it grew to 2048K after the collection. The total heap occupancy and capacity was 14M and 64M receptively before the collection and it became 9739K and 64M after the collection. Apart from the evacuation pauses, G1 also performs concurrent-marking to build the live data information of regions. 1.416: [GC pause (young) (initial-mark), 0.62417980 secs] ….... 2.042: [GC concurrent-root-region-scan-start] 2.067: [GC concurrent-root-region-scan-end, 0.0251507] 2.068: [GC concurrent-mark-start] 3.198: [GC concurrent-mark-reset-for-overflow] 4.053: [GC concurrent-mark-end, 1.9849672 sec] 4.055: [GC remark 4.055: [GC ref-proc, 0.0000254 secs], 0.0030184 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.088: [GC cleanup 117M->106M(138M), 0.0015198 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.090: [GC concurrent-cleanup-start] 4.091: [GC concurrent-cleanup-end, 0.0002721] The first phase of a marking cycle is Initial Marking where all the objects directly reachable from the roots are marked and this phase is piggy-backed on a fully young Evacuation Pause. 2.042: [GC concurrent-root-region-scan-start] This marks the start of a concurrent phase that scans the set of root-regions which are directly reachable from the survivors of the initial marking phase. 2.067: [GC concurrent-root-region-scan-end, 0.0251507] End of the concurrent root region scan phase and it lasted for 0.0251507 seconds. 2.068: [GC concurrent-mark-start] Start of the concurrent marking at 2.068 secs from the start of the process. 3.198: [GC concurrent-mark-reset-for-overflow] This indicates that the global marking stack had became full and there was an overflow of the stack. Concurrent marking detected this overflow and had to reset the data structures to start the marking again. 4.053: [GC concurrent-mark-end, 1.9849672 sec] End of the concurrent marking phase and it lasted for 1.9849672 seconds. 4.055: [GC remark 4.055: [GC ref-proc, 0.0000254 secs], 0.0030184 secs] This corresponds to the remark phase which is a stop-the-world phase. It completes the left over marking work (SATB buffers processing) from the previous phase. In this case, this phase took 0.0030184 secs and out of which 0.0000254 secs were spent on Reference processing. 4.088: [GC cleanup 117M->106M(138M), 0.0015198 secs] Cleanup phase which is again a stop-the-world phase. It goes through the marking information of all the regions, computes the live data information of each region, resets the marking data structures and sorts the regions according to their gc-efficiency. In this example, the total heap size is 138M and after the live data counting it was found that the total live data size dropped down from 117M to 106M. 4.090: [GC concurrent-cleanup-start] This concurrent cleanup phase frees up the regions that were found to be empty (didn't contain any live data) during the previous stop-the-world phase. 4.091: [GC concurrent-cleanup-end, 0.0002721] Concurrent cleanup phase took 0.0002721 secs to free up the empty regions. Option -XX:G1PrintRegionLivenessInfo Now, let's look at the output generated with the flag G1PrintRegionLivenessInfo. This is a diagnostic option and gets enabled with -XX:+UnlockDiagnosticVMOptions. G1PrintRegionLivenessInfo prints the live data information of each region during the Cleanup phase of the concurrent-marking cycle. 26.896: [GC cleanup ### PHASE Post-Marking @ 26.896### HEAP committed: 0x02e00000-0x0fe00000 reserved: 0x02e00000-0x12e00000 region-size: 1048576 Cleanup phase of the concurrent-marking cycle started at 26.896 secs from the start of the process and this live data information is being printed after the marking phase. Committed G1 heap ranges from 0x02e00000 to 0x0fe00000 and the total G1 heap reserved by JVM is from 0x02e00000 to 0x12e00000. Each region in the G1 heap is of size 1048576 bytes. ### type address-range used prev-live next-live gc-eff### (bytes) (bytes) (bytes) (bytes/ms) This is the header of the output that tells us about the type of the region, address-range of the region, used space in the region, live bytes in the region with respect to the previous marking cycle, live bytes in the region with respect to the current marking cycle and the GC efficiency of that region. ### FREE 0x02e00000-0x02f00000 0 0 0 0.0 This is a Free region. ### OLD 0x02f00000-0x03000000 1048576 1038592 1038592 0.0 Old region with address-range from 0x02f00000 to 0x03000000. Total used space in the region is 1048576 bytes, live bytes as per the previous marking cycle are 1038592 and live bytes with respect to the current marking cycle are also 1038592. The GC efficiency has been computed as 0. ### EDEN 0x03400000-0x03500000 20992 20992 20992 0.0 This is an Eden region. ### HUMS 0x0ae00000-0x0af00000 1048576 1048576 1048576 0.0### HUMC 0x0af00000-0x0b000000 1048576 1048576 1048576 0.0### HUMC 0x0b000000-0x0b100000 1048576 1048576 1048576 0.0### HUMC 0x0b100000-0x0b200000 1048576 1048576 1048576 0.0### HUMC 0x0b200000-0x0b300000 1048576 1048576 1048576 0.0### HUMC 0x0b300000-0x0b400000 1048576 1048576 1048576 0.0### HUMC 0x0b400000-0x0b500000 1001480 1001480 1001480 0.0 These are the continuous set of regions called Humongous regions for storing a large object. HUMS (Humongous starts) marks the start of the set of humongous regions and HUMC (Humongous continues) tags the subsequent regions of the humongous regions set. ### SURV 0x09300000-0x09400000 16384 16384 16384 0.0 This is a Survivor region. ### SUMMARY capacity: 208.00 MB used: 150.16 MB / 72.19 % prev-live: 149.78 MB / 72.01 % next-live: 142.82 MB / 68.66 % At the end, a summary is printed listing the capacity, the used space and the change in the liveness after the completion of concurrent marking. In this case, G1 heap capacity is 208MB, total used space is 150.16MB which is 72.19% of the total heap size, live data in the previous marking was 149.78MB which was 72.01% of the total heap size and the live data as per the current marking is 142.82MB which is 68.66% of the total heap size. Option -XX:+G1PrintHeapRegions G1PrintHeapRegions option logs the regions related events when regions are committed, allocated into or are reclaimed. COMMIT/UNCOMMIT events G1HR COMMIT [0x6e900000,0x6ea00000]G1HR COMMIT [0x6ea00000,0x6eb00000] Here, the heap is being initialized or expanded and the region (with bottom: 0x6eb00000 and end: 0x6ec00000) is being freshly committed. COMMIT events are always generated in order i.e. the next COMMIT event will always be for the uncommitted region with the lowest address. G1HR UNCOMMIT [0x72700000,0x72800000]G1HR UNCOMMIT [0x72600000,0x72700000] Opposite to COMMIT. The heap got shrunk at the end of a Full GC and the regions are being uncommitted. Like COMMIT, UNCOMMIT events are also generated in order i.e. the next UNCOMMIT event will always be for the committed region with the highest address. GC Cycle events G1HR #StartGC 7G1HR CSET 0x6e900000G1HR REUSE 0x70500000G1HR ALLOC(Old) 0x6f800000G1HR RETIRE 0x6f800000 0x6f821b20G1HR #EndGC 7 This shows start and end of an Evacuation pause. This event is followed by a GC counter tracking both evacuation pauses and Full GCs. Here, this is the 7th GC since the start of the process. G1HR #StartFullGC 17G1HR UNCOMMIT [0x6ed00000,0x6ee00000]G1HR POST-COMPACTION(Old) 0x6e800000 0x6e854f58G1HR #EndFullGC 17 Shows start and end of a Full GC. This event is also followed by the same GC counter as above. This is the 17th GC since the start of the process. ALLOC events G1HR ALLOC(Eden) 0x6e800000 The region with bottom 0x6e800000 just started being used for allocation. In this case it is an Eden region and allocated into by a mutator thread. G1HR ALLOC(StartsH) 0x6ec00000 0x6ed00000G1HR ALLOC(ContinuesH) 0x6ed00000 0x6e000000 Regions being used for the allocation of Humongous object. The object spans over two regions. G1HR ALLOC(SingleH) 0x6f900000 0x6f9eb010 Single region being used for the allocation of Humongous object. G1HR COMMIT [0x6ee00000,0x6ef00000]G1HR COMMIT [0x6ef00000,0x6f000000]G1HR COMMIT [0x6f000000,0x6f100000]G1HR COMMIT [0x6f100000,0x6f200000]G1HR ALLOC(StartsH) 0x6ee00000 0x6ef00000G1HR ALLOC(ContinuesH) 0x6ef00000 0x6f000000G1HR ALLOC(ContinuesH) 0x6f000000 0x6f100000G1HR ALLOC(ContinuesH) 0x6f100000 0x6f102010 Here, Humongous object allocation request could not be satisfied by the free committed regions that existed in the heap, so the heap needed to be expanded. Thus new regions are committed and then allocated into for the Humongous object. G1HR ALLOC(Old) 0x6f800000 Old region started being used for allocation during GC. G1HR ALLOC(Survivor) 0x6fa00000 Region being used for copying old objects into during a GC. Note that Eden and Humongous ALLOC events are generated outside the GC boundaries and Old and Survivor ALLOC events are generated inside the GC boundaries. Other Events G1HR RETIRE 0x6e800000 0x6e87bd98 Retire and stop using the region having bottom 0x6e800000 and top 0x6e87bd98 for allocation. Note that most regions are full when they are retired and we omit those events to reduce the output volume. A region is retired when another region of the same type is allocated or we reach the start or end of a GC(depending on the region). So for Eden regions: For example: 1. ALLOC(Eden) Foo2. ALLOC(Eden) Bar3. StartGC At point 2, Foo has just been retired and it was full. At point 3, Bar was retired and it was full. If they were not full when they were retired, we will have a RETIRE event: 1. ALLOC(Eden) Foo2. RETIRE Foo top3. ALLOC(Eden) Bar4. StartGC G1HR CSET 0x6e900000 Region (bottom: 0x6e900000) is selected for the Collection Set. The region might have been selected for the collection set earlier (i.e. when it was allocated). However, we generate the CSET events for all regions in the CSet at the start of a GC to make sure there's no confusion about which regions are part of the CSet. G1HR POST-COMPACTION(Old) 0x6e800000 0x6e839858 POST-COMPACTION event is generated for each non-empty region in the heap after a full compaction. A full compaction moves objects around, so we don't know what the resulting shape of the heap is (which regions were written to, which were emptied, etc.). To deal with this, we generate a POST-COMPACTION event for each non-empty region with its type (old/humongous) and the heap boundaries. At this point we should only have Old and Humongous regions, as we have collapsed the young generation, so we should not have eden and survivors. POST-COMPACTION events are generated within the Full GC boundary. G1HR CLEANUP 0x6f400000G1HR CLEANUP 0x6f300000G1HR CLEANUP 0x6f200000 These regions were found empty after remark phase of Concurrent Marking and are reclaimed shortly afterwards. G1HR #StartGC 5G1HR CSET 0x6f400000G1HR CSET 0x6e900000G1HR REUSE 0x6f800000 At the end of a GC we retire the old region we are allocating into. Given that its not full, we will carry on allocating into it during the next GC. This is what REUSE means. In the above case 0x6f800000 should have been the last region with an ALLOC(Old) event during the previous GC and should have been retired before the end of the previous GC. G1HR ALLOC-FORCE(Eden) 0x6f800000 A specialization of ALLOC which indicates that we have reached the max desired number of the particular region type (in this case: Eden), but we decided to allocate one more. Currently it's only used for Eden regions when we extend the young generation because we cannot do a GC as the GC-Locker is active. G1HR EVAC-FAILURE 0x6f800000 During a GC, we have failed to evacuate an object from the given region as the heap is full and there is no space left to copy the object. This event is generated within GC boundaries and exactly once for each region from which we failed to evacuate objects. When Heap Regions are reclaimed ? It is also worth mentioning when the heap regions in the G1 heap are reclaimed. All regions that are in the CSet (the ones that appear in CSET events) are reclaimed at the end of a GC. The exception to that are regions with EVAC-FAILURE events. All regions with CLEANUP events are reclaimed. After a Full GC some regions get reclaimed (the ones from which we moved the objects out). But that is not shown explicitly, instead the non-empty regions that are left in the heap are printed out with the POST-COMPACTION events.

    Read the article

  • Does EF 4 Code First's ContextBuilder Dispose its SqlConnection?

    - by Eric J.
    Looking at Code First in ADO.Net EF 4 CTP 3 and wondered how the SqlConnection in their walkthrough is disposed. Is that the responsibility of ContextBuilder? Is it missing from the example? var connection = new SqlConnection(DB_CONN); var builder = new ContextBuilder<BloggingModel>(); var connection = new SqlConnection(DB_CONN); using (var ctx = builder.Create(connection)) { //... }

    Read the article

  • xcode 3.2 c++: how can i enable a proper code completion?

    - by ufk
    Hiya. I have snow leopard and I'm building a cpp Application with xcode. I would like to be able to get proper code completion with xcode, and by that i mean the following: std::string f; f. just when I type f. i would like to see all the relevant functions to that string class. is it possible in xcode ?

    Read the article

  • How do I export a PFX Code Signing Key to SPC and PVK under Windows 7?

    - by Greg Finzer
    I have a code signing key in PFX format that I need to export into SPC and PVK files. I tried to install the OpenSSL from Shining light but the install fails under Windows 7. http://www.shininglightpro.com/products/Win32OpenSSL.html Here are the instructions I am using from Comodo as a basis: https://support.comodo.com/index.php?_m=knowledgebase&_a=viewarticle&kbarticleid=1089 Anyone know of an alternate way to do this?

    Read the article

  • Is there any way to find unreferenced code in Flex Builder?

    - by Andrew Aylett
    We've got several Flex projects, one of which has just been refactored. I'm wondering if there's an easy way to tell which classes and functions (if any) aren't being used any more? I've discovered that we've definitely got some unused code, because running ASDoc on the entire project reports some compilation errors which don't get reported by Flex Builder (implying that those classes aren't being used any more). I'm hoping to find a more robust and complete method, and preferably one which can work at function level too.

    Read the article

  • Is there a code-generator to create DataTable definition block from Excel Work sheet?

    - by burak ozdogan
    Hi, Basically the thing I want to achieve is to have a data-table that I want to use in my unit tests. And when I run my unit tests, I do not want to read any excel file into a data-table -or any call to Db-. So, I would like to have method that returns a data-table with the values that I can use in my test. Is there already any written tool to read an excel sheet and generate a code that defines an ADO.Net DataTable? Thanks, burak ozdogan

    Read the article

  • What Source Code License to use for your project?

    - by Andreas Grech
    I am starting this question to try and make a central point developers can use to choose what Source Code License to use for their projects. What I am looking for out of this question are the following for the Licenses: A short description of the License What type of projects should this License be used for Examples of existing projects that use this License Some of the Licenses that I have in mind are the following: Apache License 2.0 Artistic License/GPL Eclipse Public License 1.0 GNU General Public License v2 GNU General Public License v3 GNU Lesser General Public License MIT License Mozilla Public License 1.1 New BSD License

    Read the article

< Previous Page | 67 68 69 70 71 72 73 74 75 76 77 78  | Next Page >