Search Results

Search found 19130 results on 766 pages for 'tariq iphone programmer'.

Page 715/766 | < Previous Page | 711 712 713 714 715 716 717 718 719 720 721 722  | Next Page >

  • Mobile web app, styling in percentages; I can't get height to work [migrated]

    - by Mick79
    I am building a mobile app for a band and obviously want it to display well in all the plethora of handsets out there today. I built it at first for my own device and it looks and works great, so now I am reworking it in percentages so that it works in all devices. I have a slider (jquerytools) going on and if i set width to 100% then it is perfectly wide in my iphone and my ipad... success, however I am not having any luck with height. It seems to only accept a height in px. If i set a height in percent it just doesn't display. any ideas? #header{ width:100%; height:198px; position:relative; z-index: 20; box-shadow: 0 0 10px white; } .scrollable { /* required settings */ position:relative; overflow:hidden; width: 100%; height:100%; box-shadow: 0 0 20px purple; z-index: 20; } .scrollable .items { /* this cannot be too large */ width:500%; height:100%; position:absolute; clear:both; box-shadow: 0 0 30px green; } .items div { float:left; width:20%; height:100%; } /* single scrollable item */ .scrollable img { float:left; width:100%; height:100%; /* height:198px; */ } /* active item */ .scrollable .active { border:2px solid #000; position:relative; cursor:default; } `

    Read the article

  • Artists and music - Need Help Deciding on a CMS

    - by infty
    A friend has asked me to build a site with the following options: staff members must be able to add new music and artists to the page a gallery must be provided - it is also good if each artist has the ability to have his/her own smaller gallery users must be able to vote for artists users must be able to alter in discussions (forums or comments sections) staff members must be able to blog staff members must be able to write articles I did a small project where i actually implemented all of these features, but I want to use an existing content management system for all of these features so that future developers can, hopefully, more easy extend the website. And also, so that I don't have to provide too much documentation. I have never developed a website using an external CMS like Drupal or Wordpress and after seeing hours of tutorial videos of both systems, I still can't make up my mind on whether i should : a) use Drupal 7 b) use Wordpress 3 c) create my own cms I can imagine that staff members would also want to create content using iPhone or android based mobile devices, but this is not a required feature. Can someone, with experience, please tell me about their experiences with larger projects like this? The site will have approximately 400 000 - 500 000 visitors (not daily visitors, based on numbers from last year in a period of 4 months)

    Read the article

  • C#, .NET 4.5 and Visual Studio 2012

    - by subodhnpushpak
    While I continue my affair with iOS / Android (which is now my bread / butter literally ); I also have managed to keep myself excited enough for all of new windows Stuff. Thanks to Priti Pushpak (my wife) for all the amazing Windows Phone 7 apps she is creating and uploading on appHub… I kind of like refreshing feel of win8 and apps. I also have fair bit of exposure on iPhone / iPad; Mac apps and I do put my two cents for win8 as well. If not an instant hit; win8 apps surely grows on you. So eventually win8 platform is here to stay. (oh yes and I cannot tell you how much hope I have for WP8 platform as well). Nevertheless; here is few topics I covered in a session on .Net 4.5  and on popular demand I am posting it all here… Note that for the demo you must have Win8 installed along with VS2012. The Demo includes a ASP .NET Web API http://www.slideshare.net/spushpak/new-features-in-net-45-c-and-vs2012 New features in .NET 4.5, C# and VS2012 from Subodh Pushpak The slide deck, demo and the session recording is at: http://sdrv.ms/R1thCf and https://www.dropbox.com/sh/0ogfayv0djfafyg/hfw5mNLaz9

    Read the article

  • Oracle Voice, the Virtual Assistant for Sales Reps

    - by Richard Lefebvre
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Wish there was a Siri-like virtual assistant for sales reps? The Oracle Voice for Sales Cloud application is now available in the iTunes Store. Selling from your iPhone has never been this fast, friendly & fun! See Oracle Voice for Sales Cloud in action. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman","serif";}

    Read the article

  • I want to make "stuff" on the web, is a BsC. in Computers necessary/overkill? [on hold]

    - by notypist
    I'm 24 and have a lead role in a major news outlet in my country, with a good pay and public image in the horizon. I hold a job that was previously held by people with 15-20 years of experience and considered one of the top 5 news anchors in my country. My passion though, is computers. The web, to be precise. I was a problogger at a very young age. I hacked my way through CSS and some basic HTML and PHP. But I want to move forward - I want to CREATE not just STRUCTURE things. Giving up the present (and especially the seemingly promising future) in my current industry is hard, my friends raise their eyebrows... I'm considering a BsC. in computer Engineering - but my stats are short of getting into a good university for this discipline. Plus, I'm not the best with math - although I do exceptionally well in statistics and other numbers that are more applicable to real life. I tried learning PHP through online websites, but that just "doesn't cut it" for me. Nope. So what are my options here? if I don't want to build hardware or and deal with overly-complex algorithmic but would like, for example - to build a well functioning iPhone and iPad app, or a SaaS, a startup...do I have to go the BsC. route? I don't see any option to get an "official" education in strictly "web" concepts and languages.. Note: I'm well off financially, so I'm doing this more to be able to create stuff, rather than get a job in a corporations. Although if I land somewhere high, that might be an option. But my main concern is getting the tools.

    Read the article

  • MWE function error message saying "use of undeclared indentifier" [migrated]

    - by nimbus
    I'm unsure about how to make MWE with Objective C, so if you need anything else let me know. I am trying running through a tutorial on building an iPhone app and have gotten stuck defining a function. I keep getting an error message saying "use of undeclared indentifier". However I believe I have initiated the function. In the view controller I have: if (scrollAmount > 0) { moveViewUp = YES; [scrollTheView:YES]; } else{ moveViewUp = NO; } with the function under it - (void)scrollTheView:(BOOL)movedUp { [UIView beginAnimations:nil context:NULL]; [UIView setAnimationDuration:0.3]; CGRect rect = self.view.frame; if (movedUp){ rect.origin.y -= scrollAmount; } else { rect.origin.y += scrollAmount; } self.view.frame = rect; [UIView commitAnimations]; } I have initiated the function in the header file (that I have imported). - (void)scrollTheView:(BOOL)movedUp;

    Read the article

  • Unifier 10.0 ????!

    - by hhata
    2012??Skire???????Primavera???????Unifier???????????????????????????? ???????????????R10.0???????????????????????????Unifier????????????????????????????????????????????????????????????? ???????10.0???????????? ??????????? ??????????????? ??????????????? Unifier Mobile??? Bid???????OIM(Oracle Integration Manager)????  ??????????? ???????????????????????????????? Internet Explorer 9.x, 10.x and 11.x Mozilla Firefox 24.x (ESR) Google Chrome 30.x Safari (Mac only) 5.1.7+  ???????OS???????????????????????????????  MS Windows 2012, IIS8+ Solaris 11 Windows 8 Oracle DB 12c Oracle Weblogic 12c Mac OS X 10.9 SGC 5.0 and iPad2+ Weblogic as Proxy RAC, Oracle Dataguard and Hardening features ??????????????? ??????? ????????????? HTML5??? ??????????????? ???????????????????? ????CBS (Cost Breakdown Structure)???????????????????????????? Unifier Mobile??? ??????(??iPhone??)????????????Unifier???????? Bid???????OIM(Oracle Integration Manager)???? Bid????????????Unifier????????OIM?????????????????????????????????

    Read the article

  • Apple push Notification Feedback service Not working

    - by Yassmeen
    Hi, I am developing an iPhone App that uses Apple Push Notifications. On the iPhone side everything is fine, on the server side I have a problem. Notifications are sent correctly however when I try to query the feedback service to obtain a list of devices from which the App has been uninstalled, I always get zero results. I know that I should obtain one result as the App has been uninstalled from one of my test devices. After 24 hours and more I still have no results from the feedback service.. Any ideas? Does anybody know how long it takes for the feedback service to recognize that my App has been uninstalled from my test device? Note: I have another push notification applications on the device so I know that my app is not the only app. The code - C#: public static string CheckFeedbackService(string certaName, string hostName) { SYLogger.Log("Check Feedback Service Started"); ServicePointManager.ServerCertificateValidationCallback = new RemoteCertificateValidationCallback(ValidateServerCertificate); // Create a TCP socket connection to the Apple server on port 2196 TcpClient tcpClientF = null; SslStream sslStreamF = null; string result = string.Empty; //Contect to APNS& Add the Apple cert to our collection X509Certificate2Collection certs = new X509Certificate2Collection { GetServerCert(certaName) }; //Set up byte[] buffer = new byte[38]; int recd = 0; DateTime minTimestamp = DateTime.Now.AddYears(-1); // Create a TCP socket connection to the Apple server on port 2196 try { using (tcpClientF = new TcpClient(hostName, 2196)) { SYLogger.Log("Client Connected ::" + tcpClientF.Connected); // Create a new SSL stream over the connection sslStreamF = new SslStream(tcpClientF.GetStream(), true,ValidateServerCertificate); // Authenticate using the Apple cert sslStreamF.AuthenticateAsClient(hostName, certs, SslProtocols.Default, false); SYLogger.Log("Stream Readable ::" + sslStreamF.CanRead); SYLogger.Log("Host Name ::"+hostName); SYLogger.Log("Cert Name ::" + certs[0].FriendlyName); if (sslStreamF != null) { SYLogger.Log("Connection Started"); //Get the first feedback recd = sslStreamF.Read(buffer, 0, buffer.Length); SYLogger.Log("Buffer length ::" + recd); //Continue while we have results and are not disposing while (recd > 0) { SYLogger.Log("Reading Started"); //Get our seconds since 1970 ? byte[] bSeconds = new byte[4]; byte[] bDeviceToken = new byte[32]; Array.Copy(buffer, 0, bSeconds, 0, 4); //Check endianness if (BitConverter.IsLittleEndian) Array.Reverse(bSeconds); int tSeconds = BitConverter.ToInt32(bSeconds, 0); //Add seconds since 1970 to that date, in UTC and then get it locally var Timestamp = new DateTime(1970, 1, 1, 0, 0, 0, DateTimeKind.Utc).AddSeconds(tSeconds).ToLocalTime(); //Now copy out the device token Array.Copy(buffer, 6, bDeviceToken, 0, 32); string deviceToken = BitConverter.ToString(bDeviceToken).Replace("-", "").ToLower().Trim(); //Make sure we have a good feedback tuple if (deviceToken.Length == 64 && Timestamp > minTimestamp) { SYLogger.Log("Feedback " + deviceToken); result = deviceToken; } //Clear array to reuse it Array.Clear(buffer, 0, buffer.Length); //Read the next feedback recd = sslStreamF.Read(buffer, 0, buffer.Length); } SYLogger.Log("Reading Ended"); } } } catch (Exception e) { SYLogger.Log("Authentication failed - closing the connection::" + e); return "NOAUTH"; } finally { // The client stream will be closed with the sslStream // because we specified this behavior when creating the sslStream. if (sslStreamF != null) sslStreamF.Close(); if (tcpClientF != null) tcpClientF.Close(); //Clear array on error Array.Clear(buffer, 0, buffer.Length); } SYLogger.Log("Feedback ended "); return result; }

    Read the article

  • delete elements in xml?

    - by fayer
    i've got some elements in a xml document i want to delete. so i want to create another xml document without those elements. here is an example of how it looks like at the moment: <entity id="1000070"> <name>apple</name> <type>category</type> <entities> <entity id="7002870"> <name>mac</name> <type>category</type> <entities> <entity id="7002907"> <name>leopard</name> <type>sub-category</type> <entities> <entity id="7024080"> <name>safari</name> <type>subject</type> </entity> <entity id="7024701"> <name>finder</name> <type>subject</type> </entity> </entities> </entity> </entities> </entity> <entity id="7024080"> <name>iphone</name> <type>category</type> <entities> <entity id="7024080"> <name>3g</name> <type>sub-category</type> </entity> <entity id="7024701"> <name>3gs</name> <type>sub-category</type> </entity> </entities> </entity> <entity id="7024080"> <name>ipad</name> <type>category</type> </entity> </entities> </entity> i want to create another xml document without the sub-category and subject elements. so the new one will look like this: <entity id="1000070"> <name>apple</name> <type>category</type> <entities> <entity id="7002870"> <name>mac</name> <type>category</type> </entity> <entity id="7024080"> <name>iphone</name> <type>category</type> </entity> <entity id="7024080"> <name>ipad</name> <type>category</type> </entity> </entities> </entity> should i use simplexml/php or xslt to do this? are there other ways? would be great with some code examples...thanks!

    Read the article

  • Problem with large number of markers on the map...

    - by bobetko
    I am working on an Android app that already exists on iPhone. In the app, there is a Map activity that has (I counted) around 800 markers in four groups marked by drawable in four different colors. Each group can be turned on or off. Information about markers I have inside List. I create a mapOverlay for each group, then I attach that overlay to the map. I strongly believe that coding part I did properly. But I will attach my code anyway... The thing is, my Nexus One can't handle map with all those markers. It takes around 15 seconds just to draw 500 markers. Then when all drawn, map is not quite smooth. It is sort of hard to zoom and navigate around. It can be done, but experience is bad and I would like to see if something can be done there. iPhone seems doesn't have problems showing all these markers. It takes roughly about 1-2 seconds to show all of them and zooming and panning is not that bad. Slow down is noticeable but still acceptable. I personally think it is no good to draw all those markers, but app is designed by somebody else and I am not supposed to make any drastic changes. I am not sure what to do here. It seems I will have to come up with different functionality, maybe use GPS location, if known, and draw only markers within some radius, or, if location not known, use center of the screen(map) and draw markers around that. I will have to have reasonable explanation for my bosses in case I make these changes. I appreciate if anybody has any idas. And the code: ... for (int m = 0; m < ArrList.size(); m++) { tName = ArrList.get(m).get("name").toString(); tId = ArrList.get(m).get("id").toString(); tLat = ArrList.get(m).get("lat").toString();; tLng = ArrList.get(m).get("lng").toString();; try { lat = Double.parseDouble(tLat); lng = Double.parseDouble(tLng); p1 = new GeoPoint( (int) (lat * 1E6), (int) (lng * 1E6)); OverlayItem overlayitem = new OverlayItem(p1, tName, tId); itemizedoverlay.addOverlay(overlayitem); } catch (NumberFormatException e) { Log.d(TAG, "NumberFormatException" + e); } } mapOverlays.add(itemizedoverlay); mapView.postInvalidate(); ................................ public class HelloItemizedOverlay extends ItemizedOverlay<OverlayItem> { private ArrayList<OverlayItem> mOverlays = new ArrayList<OverlayItem>(); private Context mContext; public HelloItemizedOverlay(Drawable defaultMarker, Context context) { super(boundCenterBottom(defaultMarker)); mContext = context; } public void addOverlay(OverlayItem overlay) { mOverlays.add(overlay); populate(); } @Override protected OverlayItem createItem(int i) { return mOverlays.get(i); } @Override public int size() { return mOverlays.size(); } @Override protected boolean onTap(int index) { final OverlayItem item = mOverlays.get(index); ... EACH MARKER WILL HAVE ONCLICK EVENT THAT WILL PRODUCE CLICABLE ... BALOON WITH MARKER'S NAME. return true; } }

    Read the article

  • what persistence layer (xml or mysql) should i use for this xml data?

    - by fayer
    i wonder how i could store a xml structure in a persistence layer. cause the relational data looks like: <entity id="1000070"> <name>apple</name> <entities> <entity id="7002870"> <name>mac</name> <entities> <entity id="7002907"> <name>leopard</name> <entities> <entity id="7024080"> <name>safari</name> </entity> <entity id="7024701"> <name>finder</name> </entity> </entities> </entity> </entities> </entity> <entity id="7024080"> <name>iphone</name> <entities> <entity id="7024080"> <name>3g</name> </entity> <entity id="7024701"> <name>3gs</name> </entity> </entities> </entity> <entity id="7024080"> <name>ipad</name> </entity> </entities> </entity> as you can see, it has no static structure but a dynamical one. mac got 2 descendant levels while iphone got 1 and ipad got 0. i wonder how i could store this data the best way? what are my options. cause it seems impossible to store it in a mysql database due to this dynamical structure. is the only way to store it as a xml file then? is the speed of getting information (xpath/xquery/simplexml) from a xml file worse or greater than from mysql? what are the pros and cons? do i have other options? is storing information in xml files, suited for a lot of users accessing it at the same time? would be great with feedbacks!! thanks! EDIT: now i noticed that i could use something called xml database to store xml data. could someone shed a light on this issue? cause apparently its not as simple as just store data in a xml file?

    Read the article

  • Performance and Optimization Isn’t Evil

    - by Reed
    Donald Knuth is a fairly amazing guy.  I consider him one of the most influential contributors to computer science of all time.  Unfortunately, most of the time I hear his name, I cringe.  This is because it’s typically somebody quoting a small portion of one of his famous statements on optimization: “premature optimization is the root of all evil.” I mention that this is only a portion of the entire quote, and, as such, I feel that Knuth is being quoted out of context.  Optimization is important.  It is a critical part of every software development effort, and should never be ignored.  A developer who ignores optimization is not a professional.  Every developer should understand optimization – know what to optimize, when to optimize it, and how to think about code in a way that is intelligent and productive from day one. I want to start by discussing my own, personal motivation here.  I recently wrote about a performance issue I ran across, and was slammed by multiple comments and emails that effectively boiled down to: “You’re an idiot.  Premature optimization is the root of all evil.  This doesn’t matter.”  It didn’t matter that I discovered this while measuring in a profiler, and that it was a portion of my code base that can take “many hours to complete.”  Even so, multiple people instantly jump to “it’s premature – it doesn’t matter.” This is a common thread I see.  For example, StackOverflow has many pages of posts with answers that boil down to (mis)quoting Knuth.  In fact, just about any question relating to a performance related issue gets this quote thrown at it immediately – whether it deserves it or not.  That being said, I did receive some positive comments and emails as well.  Many people want to understand how to optimize their code, approaches to take, tools and techniques they can use, and any other advice they can discover. First, lets get back to Knuth – I mentioned before that Knuth is being quoted out of context.  Lets start by looking at the entire quote from his 1974 paper Structured Programming with go to Statements: “We should forget about small efficiencies, say about 97% of the time: premature optimization is the root of all evil. Yet we should not pass up our opportunities in that critical 3%. A good programmer will not be lulled into complacency by such reasoning, he will be wise to look carefully at the critical code; but only after that code has been identified.” Ironically, if you read Knuth’s original paper, this statement was made in the middle of a discussion of how Knuth himself had changed how he approaches optimization.  It was never a statement saying “don’t optimize”, but rather, “optimizing intelligently provides huge advantages.”  His approach had three benefits: “a) it doesn’t take long” … “b) the payoff is real”, c) you can “be less efficient in the other parts of my programs, which therefore are more readable and more easily written and debugged.” Looking at Knuth’s premise here, and reading that section of his paper, really leads to a few observations: Optimization is important  “he will be wise to look carefully at the critical code” Normally, 3% of your code – three lines out of every 100 you write, are “critical code” and will require some optimization: “we should not pass up our opportunities in that critical 3%” Optimization, if done well, should not be time consuming: “it doesn’t take long” Optimization, if done correctly, provides real benefits: “the payoff is real” None of this is new information.  People who care about optimization have been discussing this for years – for example, Rico Mariani’s Designing For Performance (a fantastic article) discusses many of the same issues very intelligently. That being said, many developers seem unable or unwilling to consider optimization.  Many others don’t seem to know where to start.  As such, I’m going to spend some time writing about optimization – what is it, how should we think about it, and what can we do to improve our own code.

    Read the article

  • ASP.NET Error Handling: Creating an extension method to send error email

    - by Jalpesh P. Vadgama
    Error handling in asp.net required to handle any kind of error occurred. We all are using that in one or another scenario. But some errors are there which will occur in some specific scenario in production environment in this case We can’t show our programming errors to the End user. So we are going to put a error page over there or whatever best suited as per our requirement. But as a programmer we should know that error so we can track the scenario and we can solve that error or can handle error. In this kind of situation an Error Email comes handy. Whenever any occurs in system it will going to send error in our email. Here I am going to write a extension method which will send errors in email. From asp.net 3.5 or higher version of .NET framework  its provides a unique way to extend your classes. Here you can fine more information about extension method. So lets create extension method via implementing a static class like following. I am going to use same code for sending email via my Gmail account from here. Following is code for that. using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Net.Mail; namespace Experiement { public static class MyExtension { public static void SendErrorEmail(this Exception ex) { MailMessage mailMessage = new MailMessage(new MailAddress("[email protected]") , new MailAddress("[email protected]")); mailMessage.Subject = "Exception Occured in your site"; mailMessage.IsBodyHtml = true; System.Text.StringBuilder errorMessage = new System.Text.StringBuilder(); errorMessage.AppendLine(string.Format("<B>{0}</B>:{1}<BR/>","Exception",ex.Message)); errorMessage.AppendLine(string.Format("<B>{0}</B>:{1}<BR/>", "Stack Trace", ex.StackTrace)); if (ex.InnerException != null) { errorMessage.AppendLine(string.Format("<B>{0}</B>:{1}<BR/>", " Inner Exception", ex.InnerException.Message)); errorMessage.AppendLine(string.Format("<B>{0}</B>:{1}<BR/>", "Inner Stack Trace", ex.InnerException.StackTrace)); } mailMessage.Body = errorMessage.ToString(); System.Net.NetworkCredential networkCredentials = new System.Net.NetworkCredential("[email protected]", "password"); SmtpClient smtpClient = new SmtpClient(); smtpClient.EnableSsl = true; smtpClient.UseDefaultCredentials = false; smtpClient.Credentials = networkCredentials; smtpClient.Host = "smtp.gmail.com"; smtpClient.Port = 587; smtpClient.Send(mailMessage); } } } After creating an extension method let us that extension method to handle error like following in page load event of page. using System; namespace Experiement { public partial class WebForm1 : System.Web.UI.Page { protected void Page_Load(object sender,System.EventArgs e) { try { throw new Exception("My custom Exception"); } catch (Exception ex) { ex.SendErrorEmail(); Response.Write(ex.Message); } } } } Now in above code I have generated custom exception for example but in production It can be any Exception. And you can see I have use ex.SendErrorEmail() function in catch block to send email. That’s it.. Now it will throw exception and you will email in your email box like below.   That’s its. It’s so simple…Stay tuned for more.. Happy programming.. Technorati Tags: Exception,Extension Mehtod,Error Handling,ASP.NET

    Read the article

  • Tuxedo 11gR1 Client Server Affinity

    - by todd.little
    One of the major new features in Oracle Tuxedo 11gR1 is the ability to define an affinity between clients and servers. In previous releases of Tuxedo, the only way to ensure that multiple requests from a client went to the same server was to establish a conversation with tpconnect() and then use tpsend() and tprecv(). Although this works it has some drawbacks. First for single-threaded servers, the server is tied up for the entire duration of the conversation and cannot service other clients, an obvious scalability issue. I believe the more significant drawback is that the application programmer has to switch from the simple request/response model provided by tpcall() to the half duplex tpsend() and tprecv() calls used with conversations. Switching between the two typically requires a fair amount of redesign and recoding. The Client Server Affinity feature in Tuxedo 11gR1 allows by way of configuration an application to define affinities that can exist between clients and servers. This is done in the *SERVICES section of the UBBCONFIG file. Using new parameters for services defined in the *SERVICES section, customers can determine when an affinity session is created or deleted, the scope of the affinity, and whether requests can be routed outside the affinity scope. The AFFINITYSCOPE parameter can be MACHINE, GROUP, or SERVER, meaning that while the affinity session is in place, all requests from the client will be routed to the same MACHINE, GROUP, or SERVER. The creation and deletion of affinity is defined by the SESSIONROLE parameter and a service can be defined as either BEGIN, END, or NONE, where BEGIN starts an affinity session, END deletes the affinity session, and NONE does not impact the affinity session. Finally customers can define how strictly they want the affinity scope adhered to using the AFFINITYSTRICT parameter. If set to MANDATORY, all requests made during an affinity session will be routed to a server in the affinity scope. Thus if the affinity scope is SERVER, all subsequent tpcall() requests will be sent to the same server the affinity scope was established with. If the server doesn't offer that service, even though other servers do offer the service, the call will fail with TPNOENT. Setting AFFINITYSTRICT to PRECEDENT tells Tuxedo to try and route the request to a server in the affinity scope, but if that's not possible, then Tuxedo can try to route the request to servers out of scope. All of this begs the question, why? Why have this feature? There many uses for this capability, but the most common is when there is state that is maintained in a server, group of servers, or in a machine and subsequent requests from a client must be routed to where that state is maintained. This might be something as simple as a database cursor maintained by a server on behalf of a client. Alternatively it might be that the server has a connection to an external system and subsequent requests need to go back to the server that has that connection. A more sophisticated case is where a group of servers maintains some sort of cache in shared memory and subsequent requests need to be routed to where the cache is maintained. Although this last case might be able to be handled by data dependent routing, using client server affinity allows the cache to be partitioned dynamically instead of statically.

    Read the article

  • What’s the use of code reuse?

    - by Tony Davis
    All great developers write reusable code, don’t they? Well, maybe, but as with all statements regarding what “great” developers do or don’t do, it’s probably an over-simplification. A novice programmer, in particular, will encounter in the literature a general assumption of the importance of code reusability. They spend time worrying about DRY (don’t repeat yourself), moving logic into specific “helper” modules that they can then reuse, agonizing about the minutiae of the class structure, inheritance and interface design that will promote easy reuse. Unfortunately, writing code specifically for reuse often leads to complicated object hierarchies and inheritance models that are anything but reusable. If, instead, one strives to write simple code units that are highly maintainable and perform a single function, in a concise, isolated fashion then the potential for reuse simply “drops out” as a natural by-product. Programmers, of course, care about these principles, about encapsulation and clean interfaces that don’t expose inner workings and allow easy pluggability. This is great when it helps with the maintenance and development of code but how often, in practice, do we actually reuse our code? Most DBAs and database developers are familiar with the practical reasons for the limited opportunities to reuse database code and its potential downsides. However, surely elsewhere in our code base, reuse happens often. After all, we can all name examples, such as date/time handling modules, which if we write with enough care we can plug in to many places. I spoke to a developer just yesterday who looked me in the eye and told me that in 30+ years as a developer (a successful one, I’d add), he’d never once reused his own code. As I sat blinking in disbelief, he explained that, of course, he always thought he would reuse it. He’d often agonized over its design, certain that he was creating code of great significance that he and other generations would reuse, with grateful tears misting their eyes. In fact, it never happened. He had in his head, most of the algorithms he needed and would simply write the code from scratch each time, refining the algorithms and tailoring the code to meet the specific requirements. It was, he said, simply quicker to do that than dig out the old code, check it, correct the mistakes, and adapt it. Is this a common experience, or just a strange anomaly? Viewed in a certain light, building code with a focus on reusability seems to hark to a past age where people built cars and music systems with the idea that someone else could and would replace and reuse the parts. Technology advances so rapidly that the next time you need the “same” code, it’s likely a new technique, or a whole new language, has emerged in the meantime, better equipped to tackle the task. Maybe we should be less fearful of the idea that we could write code well suited to the system requirements, but with little regard for reuse potential, and then rewrite a better version from scratch the next time.

    Read the article

  • Guest (and occasional co-host) on Jesse Liberty's Yet Another Podcast

    - by Jon Galloway
    I was a recent guest on Jesse Liberty's Yet Another Podcast talking about the latest Visual Studio, ASP.NET and Azure releases. Download / Listen: Yet Another Podcast #75–Jon Galloway on ASP.NET/ MVC/ Azure Co-hosted shows: Jesse's been inviting me to co-host shows and I told him I'd show up when I was available. It's a nice change to be a drive-by co-host on a show (compared with the work that goes into organizing / editing / typing show notes for Herding Code shows). My main focus is on Herding Code, but it's nice to pop in and talk to Jesse's excellent guests when it works out. Some shows I've co-hosted over the past year: Yet Another Podcast #76–Glenn Block on Node.js & Technology in China Yet Another Podcast  #73 - Adam Kinney on developing for Windows 8 with HTML5 Yet Another Podcast #64 - John Papa & Javascript Yet Another Podcast #60 - Steve Sanderson and John Papa on Knockout.js Yet Another Podcast #54–Damian Edwards on ASP.NET Yet Another Podcast #53–Scott Hanselman on Blogging Yet Another Podcast #52–Peter Torr on Windows Phone Multitasking Yet Another Podcast #51–Shawn Wildermuth: //build, Xaml Programming & Beyond And some more on the way that haven't been released yet. Some of these I'm pretty quiet, on others I get wacky and hassle the guests because, hey, not my podcast so not my problem. Show notes from the ASP.NET / MVC / Azure show: What was just released Visual Studio 2012 Web Developer features ASP.NET 4.5 Web Forms Strongly Typed data controls Data access via command methods Similar Binding syntax to ASP.NET MVC Some context: Damian Edwards and WebFormsMVP Two questions from Jesse: Q: Are you making this harder or more complicated for Web Forms developers? Short answer: Nothing's removed, it's just a new option History of SqlDataSource, ObjectDataSource Q: If I'm using some MVC patterns, why not just move to MVC? Short answer: This works really well in hybrid applications, doesn't require a rewrite Allows sharing models, validation, other code between Web Forms and MVC ASP.NET MVC Adaptive Rendering (oh, also, this is in Web Forms 4.5 as well) Display Modes Mobile project template using jQuery Mobile OAuth login to allow Twitter, Google, Facebook, etc. login Jon (and friends') MVC 4 book on the way: Professional ASP.NET MVC 4 Windows 8 development Jesse and Jon announce they're working on a new book: Pro Windows 8 Development with XAML and C# Jon and Jesse agree that it's nice to be able to write Windows 8 applications using the same skills they picked up for Silverlight, WPF, and Windows Phone development. Compare / contrast ASP.NET MVC and Windows 8 development Q: Does ASP.NET and HTML5 development overlap? Jon thinks they overlap in the MVC world because you're writing HTML views without controls Jon describes how his web development career moved from a preoccupation with server code to a focus on user interaction, which occurs in the browser Jon mentions his NDC Oslo presentation on Learning To Love HTML as Beautiful Code Q: How do you apply C# / XAML or HTML5 skills to Windows 8 development? Q: If I'm a XAML programmer, what's the learning curve on getting up to speed on ASP.NET MVC? Jon describes the difference in application lifecycle and state management Jon says it's nice that web development is really interactive compared to application development Q: Can you learn MVC by reading a book? Or is it a lot bigger than that? What is Azure, and why would I use it? Jon describes the traditional Azure platform mode and how Azure Web Sites fits in Q: Why wouldn't Jesse host his blog on Azure Web Sites? Domain names on Azure Web Sites File hosting options Q: Is Azure just another host? How is it different from any of the other shared hosting options? A: Azure gives you the ability to scale up or down whenever you want A: Other services are available if or when you want them

    Read the article

  • Building a Mafia&hellip;TechFest Style

    - by David Hoerster
    It’s been a few months since I last blogged (not that I blog much to begin with), but things have been busy.  We all have a lot going on in our lives, but I’ve had one item that has taken up a surprising amount of time – Pittsburgh TechFest 2012.  After the event, I went through some minutes of the first meetings for TechFest, and I started to think about how it all came together.  I think what inspired me the most about TechFest was how people from various technical communities were able to come together and build and promote a common event.  As a result, I wanted to blog about this to show that people from different communities can work together to build something that benefits all communities.  (Hopefully I've got all my facts straight.)  TechFest started as an idea Eric Kepes and myself had when we were planning our next Pittsburgh Code Camp, probably in the summer of 2011.  Our Spring 2011 Code Camp was a little different because we had a great infusion of some folks from the Pittsburgh Agile group (especially with a few speakers from LeanDog).  The line-up was great, but we felt our audience wasn’t as broad as it should have been.  We thought it would be great to somehow attract other user groups around town and have a big, polyglot conference. We started contacting leaders from Pittsburgh’s various user groups.  Eric and I split up the ones that we knew about, and we just started making contacts.  Most of the people we started contacting never heard of us, nor we them.  But we all had one thing in common – we ran user groups who’s primary goal is educating our members to make them better at what they do. Amazingly, and I say this because I wasn’t sure what to expect, we started getting some interest from the various leaders.  One leader, Greg Akins, is, in my opinion, Pittsburgh’s poster boy for the polyglot programmer.  He’s helped us in the past with .NET Code Camps, is a Java developer (and leader in Pittsburgh’s Java User Group), works with Ruby and I’m sure a handful of other languages.  He helped make some e-introductions to other user group leaders, and the whole thing just started to snowball. Once we realized we had enough interest with the user group leaders, we decided to not have a Fall Code Camp and instead focus on this new entity. Flash-forward to October of 2011.  I set up a meeting, with the help of Jeremy Jarrell (Pittsburgh Agile leader) to hold a meeting with the leaders of many of Pittsburgh technical user groups.  We had representatives from 12 technical user groups (Python, JavaScript, Clojure, Ruby, PittAgile, jQuery, PHP, Perl, SQL, .NET, Java and PowerShell) – 14 people.  We likened it to a scene from a Godfather movie where the heads of all the families come together to make some deal.  As a result, the name “TechFest Mafia” was born and kind of stuck. Over the next 7 months or so, we had our starts and stops.  There were moments where I thought this event would not happen either because we wouldn’t have the right mix of topics (was I off there!), or enough people register (OK, I was wrong there, too!) or find an appropriate venue (hmm…wrong there, too) or find enough sponsors to help support the event (wow…not doing so well).  Overall, everything fell into place with a lot of hard work from Eric, Jen, Greg, Jeremy, Sean, Nicholas, Gina and probably a few others that I’m forgetting.  We also had a bit of luck, too.  But in the end, the passion that we had to put together an event that was really about making ourselves better at what we do really paid off. I’ve never been more excited about a project coming together than I have been with Pittsburgh TechFest 2012.  From the moment the first person arrived at the event to the final minutes of my closing remarks (where I almost lost my voice – I ended up being diagnosed with bronchitis the next day!), it was an awesome event.  I’m glad to have been part of bringing something like this to Pittsburgh…and I’m looking forward to Pittsburgh TechFest 2013.  See you there!

    Read the article

  • Review: ComponentOne Studio for Entity Framework

    - by Tim Murphy
    While I have always been a fan of libraries that improve coding efficiency and reduce code redundancy I have mostly been using ones that were in the public domain.  As part of the Geeks With Blogs Influencers program a got my hands on ComponentOne’s Studio for Entity Framework.  Below are my thought after working with the product for several weeks. My coding preference has always been maintainable code that is reusable across an enterprises protfolio.  Because of this my focus in reviewing this product is less on the RAD components and more on its benefits for layered applications using code first Entity Framework. Before we get into the pros and cons here is a summary of the main feature listed for SEF. Unified Data Context Virtual Data Access More Powerful Data Binding Pros The first thing that I found to my liking is the C1DataSource. It basically manages a cache for your Entity Model context.  Under RAD conditions this is setup automatically when you drop the object on a your design surface.  If you are like me and want to abstract you data management into a library it takes a little more work, but it is still acceptable and gains the same benefits. The second feature that I found beneficial is the definition of views with improved sorting and filtering.  Again the ease of use of these features is greater on the RAD side but no capabilities are missing when manipulating object in code. Linq has become my friend over the last couple of years and it was great to see that ComponentOne had ensured that it remained a first class citizen in their design.  When you look into this product yourself I would suggest taking a dive into LiveLinq which allow the joining of different data source types. As I went through discovering the features of this framework I appreciated the number of examples that they supplied for different uses.  Besides showing how to use SEF with WinForms, WPF and Silverlight they also showed how to accomplish tasks both RAD, code only and MVVM approaches. Cons The only area that I would really like to see improvement is in there level of detail in their documentation.  Specifically I would like to have seen some of the supporting code explained, such as what some supporting object did, in the examples instead of having to go to the programmer’s reference. I did find some times where currently existing projects had some trouble determining scope that the RAD controls were allowed, but I expect this is something that is in part end user related. Summary Overall I found the Studio for Entity Framework capable and well thought out.  If you are already using the Entity Framework this product will fit into your environment with little effort in return for greater flexibility and greater robustness in your solutions. Whether the $895 list price for a standard version works for you will depend on your return on investment. Smaller companies with only a small number of projects may not be able to stomach it, you get a full featured product that is supported by a well established company.  The more projects and the more code you have the greater your return on investment will be. Personally I intend to apply this product to some production systems and will probably have some tips and tricks in the future. del.icio.us Tags: ComponentOne,Studio for Entity Framework,Geeks With Blogs,Influencers,Product Reviews

    Read the article

  • TiVo Follow-up&hellip;Training Opportunities

    - by MightyZot
    A few posts ago I talked about my experience with TiVo Customer Service. While I didn’t receive bad service per se, I felt like the reps could have communicated better. I made the argument that it should be just as easy to leave a company as it is to engage with a company, even though my intention is to remain a TiVo fan. I worked for DataStorm Technologies in the early 90s. I pointed out to another developer that we were leaving files behind in our installations. My opinion was that, if the customer is uninstalling our application, there should be no trace of it left after uninstall except for the customer’s data. He replied with, “screw ‘em. They’re leaving us. Why do we care if we left anything behind?” Wow. Surely there is a lot of arrogance in that statement. Think about this…how often do you change your services, devices, or whatever?  Personally, I change things up about once every two or three years. If I don’t change things up, I at least think about it. So, every two or three years there is an opportunity for you (as a vendor or business) to sell me something. (That opportunity actually exists all the time, because there are many of these two or three year periods overlapping.) Likewise, you have the opportunity to win back my business every two or three years as well. Customer service on exit is just as important as customer service during engagement because, every so often, you have another chance to gain back my loyalty. If you screw that up on exit, your chances are close to zero. In addition, you need to consider all of the potential or existing customers that are part of or affected by my social organizations. “Melissa” at TiVo gave me a call last week and set up some time to talk about my experience. We talked yesterday and she gave me a few moments to pontificate about my thoughts on the importance of a complete customer experience. She had listened to my customer support calls and agreed that I had made it clear that I intended to remain a TiVo customer even though suddenLink is handling my subscription. She said that suddenLink is a very important partner for them and, of course, they want to do everything they can to support TiVo / suddenLink customers.  “Melissa” also said that they had turned this experience into a training opportunity for the reps involved. I hope that is true, because that “programmer arrogance” that I mentioned above (which was somewhat pervasive back then) may be part of the reason why that company is no longer around. Good job “Melissa”!  And, like I said, I am still a TiVo fan. In fact, we love our new TiVo and many of the great new features. In addition, if you’re one of the two people that read these posts, please remember that these are just opinions. Your experiences may be, and likely will be, completely unique to you.

    Read the article

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

  • Algorithm to Find the Aggregate Mass of "Granola Bar"-Like Structures?

    - by Stuart Robbins
    I'm a planetary science researcher and one project I'm working on is N-body simulations of Saturn's rings. The goal of this particular study is to watch as particles clump together under their own self-gravity and measure the aggregate mass of the clumps versus the mean velocity of all particles in the cell. We're trying to figure out if this can explain some observations made by the Cassini spacecraft during the Saturnian summer solstice when large structures were seen casting shadows on the nearly edge-on rings. Below is a screenshot of what any given timestep looks like. (Each particle is 2 m in diameter and the simulation cell itself is around 700 m across.) The code I'm using already spits out the mean velocity at every timestep. What I need to do is figure out a way to determine the mass of particles in the clumps and NOT the stray particles between them. I know every particle's position, mass, size, etc., but I don't know easily that, say, particles 30,000-40,000 along with 102,000-105,000 make up one strand that to the human eye is obvious. So, the algorithm I need to write would need to be a code with as few user-entered parameters as possible (for replicability and objectivity) that would go through all the particle positions, figure out what particles belong to clumps, and then calculate the mass. It would be great if it could do it for "each" clump/strand as opposed to everything over the cell, but I don't think I actually need it to separate them out. The only thing I was thinking of was doing some sort of N2 distance calculation where I'd calculate the distance between every particle and if, say, the closest 100 particles were within a certain distance, then that particle would be considered part of a cluster. But that seems pretty sloppy and I was hoping that you CS folks and programmers might know of a more elegant solution? Edited with My Solution: What I did was to take a sort of nearest-neighbor / cluster approach and do the quick-n-dirty N2 implementation first. So, take every particle, calculate distance to all other particles, and the threshold for in a cluster or not was whether there were N particles within d distance (two parameters that have to be set a priori, unfortunately, but as was said by some responses/comments, I wasn't going to get away with not having some of those). I then sped it up by not sorting distances but simply doing an order N search and increment a counter for the particles within d, and that sped stuff up by a factor of 6. Then I added a "stupid programmer's tree" (because I know next to nothing about tree codes). I divide up the simulation cell into a set number of grids (best results when grid size ˜7 d) where the main grid lines up with the cell, one grid is offset by half in x and y, and the other two are offset by 1/4 in ±x and ±y. The code then divides particles into the grids, then each particle N only has to have distances calculated to the other particles in that cell. Theoretically, if this were a real tree, I should get order N*log(N) as opposed to N2 speeds. I got somewhere between the two, where for a 50,000-particle sub-set I got a 17x increase in speed, and for a 150,000-particle cell, I got a 38x increase in speed. 12 seconds for the first, 53 seconds for the second, 460 seconds for a 500,000-particle cell. Those are comparable speeds to how long the code takes to run the simulation 1 timestep forward, so that's reasonable at this point. Oh -- and it's fully threaded, so it'll take as many processors as I can throw at it.

    Read the article

  • Extend Your Applications Your Way: Oracle OpenWorld Live Poll Results

    - by Applications User Experience
    Lydia Naylor, Oracle Applications User Experience Manager At OpenWorld 2012, I attended one of our team’s very exciting sessions: “Extend Your Applications, Your Way”. It was clear that customers were engaged by the topics presented. Not only did we see many heads enthusiastically nodding in agreement during the presentation, and witness a large crowd surround our speakers Killian Evers, Kristin Desmond and Greg Nerpouni afterwards, but we can prove it…with data! Figure 1. Killian Evers, Kristin Desmond, and Greg Nerpouni of Oracle at the OOW 2012 session. At the beginning of our OOW 2012 journey, Greg Nerpouni, Fusion HCM Principal Product Manager, told me he really wanted to get feedback from the audience on our extensibility direction. Initially, we were thinking of doing a group activity at the OOW UX labs events that we hold every year, but Greg was adamant- he wanted “real-time” feedback. So, after a little tinkering, we came up with a way to use an online survey tool, a simple QR code (Quick Response code: a matrix barcode that can include information like URLs and can be read by mobile device cameras), and the audience’s mobile devices to do just that. Figure 2. Actual QR Code for survey Prior to the session, we developed a short survey in Vovici (an online survey tool), with questions to gather feedback on certain points in the presentation, as well as demographic data from our participants. We used Vovici’s feature to generate a mobile HTML version of the survey. At the session, attendees accessed the survey by simply scanning a QR code or typing in a TinyURL (a shorthand web address that is easily accessible through mobile devices). Killian, Kristin and Greg paused at certain points during the session and asked participants to answer a few survey questions about what they just presented. Figure 3. Session survey deployed on a mobile phone The nice thing about Vovici’s survey tool is that you can see the data real-time as participants are responding to questions - so we knew during the session that not only was our direction on track but we were hitting the mark and fulfilling Greg’s request. We planned on showing the live polling results to the audience at the end of the presentation but it ran just a little over time, and we were gently nudged out of the room by the session attendants. We’ve included a quick summary below and this link to the full results for your enjoyment. Figure 4. Most important extensions to Fusion Applications So what did participants think of our direction for extensibility? A total of 94% agreed that it was an improvement upon their current process. The vast majority, 80%, concurred that the extensibility model accounts for the major roles involved: end user, business systems analyst and programmer. Attendees suggested a few supporting roles such as systems administrator, data architect and integrator. Customers and partners in the audience verified that Oracle‘s Fusion Composers allow them to make changes in the most common areas they need to: user interface, business processes, reporting and analytics. Integrations were also suggested. All top 10 things customers can do on a page rated highly in importance, with all but two getting an average rating above 4.4 on a 5 point scale. The kinds of layout changes our composers allow customers to make align well with customers’ needs. The most common were adding columns to a table (94%) and resizing regions and drag and drop content (both selected by 88% of participants). We want to thank the attendees of the session for allowing us another great opportunity to gather valuable feedback from our customers! If you didn’t have a chance to attend the session, we will provide a link to the OOW presentation when it becomes available.

    Read the article

  • SQLAuthority News – History of the Database – 5 Years of Blogging at SQLAuthority

    - by pinaldave
    Don’t miss the Contest:Participate in 5th Anniversary Contest   Today is this blog’s birthday, and I want to do a fun, informative blog post. Five years ago this day I started this blog. Intention – my personal web blog. I wrote this blog for me and still today whatever I learn I share here. I don’t want to wander too far off topic, though, so I will write about two of my favorite things – history and databases.  And what better way to cover these two topics than to talk about the history of databases. If you want to be technical, databases as we know them today only date back to the late 1960’s and early 1970’s, when computers began to keep records and store memories.  But the idea of memory storage didn’t just appear 40 years ago – there was a history behind wanting to keep these records. In fact, the written word originated as a way to keep records – ancient man didn’t decide they suddenly wanted to read novels, they needed a way to keep track of the harvest, of their flocks, and of the tributes paid to the local lord.  And that is how writing and the database began.  You could consider the cave paintings from 17,0000 years ago at Lascaux, France, or the clay token from the ancient Sumerians in 8,000 BC to be the first instances of record keeping – and thus databases. If you prefer, you can consider the advent of written language to be the first database.  Many historians believe the first written language appeared in the 37th century BC, with Egyptian hieroglyphics. The ancient Sumerians, not to be outdone, also created their own written language within a few hundred years. Databases could be more closely described as collections of information, in which case the Sumerians win the prize for the first archive.  A collection of 20,000 stone tablets was unearthed in 1964 near the modern day city Tell Mardikh, in Syria.  This ancient database is from 2,500 BC, and appears to be a sort of law library where apprentice-scribes copied important documents.  Further archaeological digs hope to uncover the palace library, and thus an even larger database. Of course, the most famous ancient database would have to be the Royal Library of Alexandria, the great collection of records and wisdom in ancient Egypt.  It was created by Ptolemy I, and existed from 300 BC through 30 AD, when Julius Caesar effectively erased the hard drives when he accidentally set fire to it.  As any programmer knows who has forgotten to hit “save” or has experienced a sudden power outage, thousands of hours of work was lost in a single instant. Databases existed in very similar conditions up until recently.  Cuneiform tablets gave way to papyrus, which led to vellum, and eventually modern paper and the printing press.  Someday the databases we rely on so much today will become another chapter in the history of record keeping.  Who knows what the databases of tomorrow will look like! Reference:  Pinal Dave (http://blog.SQLAuthority.com) Filed under: About Me, Database, Pinal Dave, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, SQLServer, T SQL, Technology

    Read the article

  • The busy developers guide to the Kinect SDK Beta

    - by mbcrump
    The Kinect is awesome. From day one, I’ve said this thing has got potential. After playing with several open-source Kinect projects, I am please to announce that Microsoft has released the official SDK beta on 6/16/2011. I’ve created this quick start guide to get you up to speed in no time flat. Let’s begin: What is it? The Kinect for Windows SDK beta is a starter kit for applications developers that includes APIs, sample code, and drivers. This SDK enables the academic research and enthusiast communities to create rich experiences by using Microsoft Xbox 360 Kinect sensor technology on computers running Windows 7. (defined by Microsoft) Links worth checking out: Download Kinect for Windows SDK beta – You can either download a 32 or 64 bit SDK depending on your OS. Readme for Kinect for Windows SDK Beta from Microsoft Research  Programming Guide: Getting Started with the Kinect for Windows SDK Beta Code Walkthroughs of the samples that ship with the Kinect for Windows SDK beta (Found in \Samples Folder) Coding4Fun Kinect Toolkit – Lots of extension methods and controls for WPF and WinForms. Kinect Mouse Cursor – Use your hands to control things like a mouse created by Brian Peek. Kinect Paint – Basically MS Paint but use your hands! Kinect for Windows SDK Quickstarts Installing and Using the Kinect Sensor Getting it installed: After downloading the Kinect SDK Beta, double click the installer to get the ball rolling. Hit the next button a few times and it should complete installing. Once you have everything installed then simply plug in your Kinect device into the USB Port on your computer and hopefully you will get the following screen: Once installed, you are going to want to check out the following folders: C:\Program Files (x86)\Microsoft Research KinectSDK – This contains the actual Kinect Sample Executables along with the documentation as a CHM file. Also check out the C:\Users\Public\Documents\Microsoft Research KinectSDK Samples directory: The main thing to note here is that these folders contain the source code to the applications where you can compile/build them yourself. Audio NUI DEMO Time Let’s get started with some demos. Navigate to the C:\Program Files (x86)\Microsoft Research KinectSDK folder and double click on ShapeGame.exe. Next up is SkeletalViewer.exe (image taken from http://www.i-programmer.info/news/91-hardware/2619-microsoft-launch-kinect-sdk-beta.html as I could not get a good image using SnagIt) At this point, you will have to download Kinect Mouse Cursor – This is really cool because you can use your hands to control the mouse cursor. I actually used this to resize itself. Last up is Kinect Paint – This is very cool, just make sure you read the instructions! MS Paint on steroids! A few tips for getting started building Kinect Applications. It appears WPF is the way to go with building Kinect Applications. You must also use a version of Visual Studio 2010.  Your going to need to reference Microsoft.Research.Kinect.dll when building a Kinect Application. Right click on References and then goto Browse and navigate to C:\Program Files (x86)\Microsoft Research KinectSDK and select Microsoft.Research.Kinect.dll. You are going to want to make sure your project has the Platform target set to x86. The Coding4Fun Kinect Toolkit really makes things easier with extension methods and controls. Just note that this is for WinForms or WPF. Conclusion It looks like we have a lot of fun in store with the Kinect SDK. I’m very excited about the release and have already been thinking about all the applications that I can begin building. It seems that development will be easier now that we have an official SDK and the great work from Coding4Fun. Please subscribe to my blog or follow me on twitter for more information about Kinect, Silverlight and other great technology.  Subscribe to my feed

    Read the article

  • Guessing Excel Data Types

    - by AjarnMark
    Note to Self HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Jet\4.0\Engines\Excel: TypeGuessRows = 0 means scan everything. Note to Others About 10 years ago I stumbled across this bit of information just when I needed it and it saved my project.  Then for some reason, a few years later when it would have been nice, but not critical, for some reason I could not find it again anywhere.  Well, now I have stumbled across it again, and to preserve my future self from nightmares and sudden baldness due to pulling my hair out, I have decided to blog it in the hopes that I can find it again this way. Here’s the story…  When you query data from an Excel spreadsheet, such as with old-fashioned DTS packages in SQL 2000 (my first reference) or simply with an OLEDB Data Adapter from ASP.NET (recent task) and if you are using the Microsoft Jet 4.0 driver (newer ones may deal with this differently) then you can get funny results where the query reports back that a cell value is null even when you know it contains data. What happens is that Excel doesn’t really have data types.  While you can format information in cells to appear like certain data types (e.g. Date, Time, Decimal, Text, etc.) that is not really defining the cell as being of a certain type like we think of when working with databases.  But, presumably, to make things more convenient for the user (programmer) when you issue a query against Excel, the query processor tries to guess what type of data is contained in each column and returns it in an appropriate manner.  This is all well and good IF your data is consistent in every row and matches what the processor guessed.  And, for efficiency’s sake, when the query processor is trying to figure out each column’s data type, it does so by analyzing only the first 8 rows of data (default setting). Now here’s the problem, suppose that your spreadsheet contains information about clothing, and one of the columns is Size.  Now suppose that in the first 8 rows, all of your sizes look like 32, 34, 18, 10, and so on, using numbers, but then, somewhere after the 8th row, you have some rows with sizes like S, M, L, XL.  What happens is that by examining only the first 8 rows, the query processor inferred that the column contained numerical data, and then when it hits the non-numerical data in later rows, it comes back blank.  Major bummer, and a real pain to track down if you don’t know that Excel is doing this, because you study the spreadsheet and say, “the data is RIGHT THERE!  WHY doesn’t the query see it?!?!”  And the hair-pulling begins. So, what’s a developer to do?  One option is to go to the registry setting noted above and change the DWORD value of TypeGuessRows from the default of 8 to 0 (zero).  Setting this value to zero will force Jet to scan every row in the spreadsheet before making its determination as to what type of data the column contains.  And that means that in the example above, it would have treated the column as a string rather than as numeric, and presto! your query now returns all of the values that you know are in there. Of course, there is a caveat… if you are querying large spreadsheets, making Jet scan every row can be quite a performance hit.  You could enter a different number (more than 8) that you believe is a better sampling of rows to make the guess, but you still have the possibility that every row scanned looks alike, but that later rows are different, and that you might get blanks when there really is data there.  That’s the type of gamble, I really don’t like to take with my data. Anyone with a better approach, or with experience with more recent drivers that have a better way of handling data types, please chime in!

    Read the article

< Previous Page | 711 712 713 714 715 716 717 718 719 720 721 722  | Next Page >