Search Results

Search found 19134 results on 766 pages for 'support contract'.

Page 762/766 | < Previous Page | 758 759 760 761 762 763 764 765 766  | Next Page >

  • Linux server is only using 60% of memory, then swapping

    - by Kamil Kisiel
    I've got a Linux server that's running our bacula backup system. The machine is grinding like mad because it's going heavy in to swap. The problem is, it's only using 60% of its physical memory! Here's the output from free -m: free -m total used free shared buffers cached Mem: 3949 2356 1593 0 0 1 -/+ buffers/cache: 2354 1595 Swap: 7629 1804 5824 and some sample output from vmstat 1: procs -----------memory---------- ---swap-- -----io---- -system-- -----cpu------ r b swpd free buff cache si so bi bo in cs us sy id wa st 0 2 1843536 1634512 0 4188 54 13 2524 666 2 1 1 1 89 9 0 1 11 1845916 1640724 0 388 2700 4816 221880 4879 14409 170721 4 3 63 30 0 0 9 1846096 1643952 0 0 4956 756 174832 804 12357 159306 3 4 63 30 0 0 11 1846104 1643532 0 0 4916 540 174320 580 10609 139960 3 4 64 29 0 0 4 1846084 1640272 0 2336 4080 524 140408 548 9331 118287 3 4 63 30 0 0 8 1846104 1642096 0 1488 2940 432 102516 457 7023 82230 2 4 65 29 0 0 5 1846104 1642268 0 1276 3704 452 126520 452 9494 119612 3 5 65 27 0 3 12 1846104 1641528 0 328 6092 608 187776 636 8269 113059 4 3 64 29 0 2 2 1846084 1640960 0 724 5948 0 111480 0 7751 116370 4 4 63 29 0 0 4 1846100 1641484 0 404 4144 1476 125760 1500 10668 105358 2 3 71 25 0 0 13 1846104 1641932 0 0 5872 828 153808 840 10518 128447 3 4 70 22 0 0 8 1846096 1639172 0 3164 3556 556 74884 580 5082 65362 2 2 73 23 0 1 4 1846080 1638676 0 396 4512 28 50928 44 2672 38277 2 2 80 16 0 0 3 1846080 1628808 0 7132 2636 0 28004 8 1358 14090 0 1 78 20 0 0 2 1844728 1618552 0 11140 7680 0 12740 8 763 2245 0 0 82 18 0 0 2 1837764 1532056 0 101504 2952 0 95644 24 802 3817 0 1 87 12 0 0 11 1842092 1633324 0 4416 1748 10900 143144 11024 6279 134442 3 3 70 24 0 2 6 1846104 1642756 0 0 4768 468 78752 468 4672 60141 2 2 76 20 0 1 12 1846104 1640792 0 236 4752 440 140712 464 7614 99593 3 5 58 34 0 0 3 1846084 1630368 0 6316 5104 0 20336 0 1703 22424 1 1 72 26 0 2 17 1846104 1638332 0 3168 4080 1720 211960 1744 11977 155886 3 4 65 28 0 1 10 1846104 1640800 0 132 4488 556 126016 584 8016 106368 3 4 63 29 0 0 14 1846104 1639740 0 2248 3436 428 114188 452 7030 92418 3 3 59 35 0 1 6 1846096 1639504 0 1932 5500 436 141412 460 8261 112210 4 4 63 29 0 0 10 1846104 1640164 0 3052 4028 448 147684 472 7366 109554 4 4 61 30 0 0 10 1846100 1641040 0 2332 4952 632 147452 664 8767 118384 3 4 63 30 0 4 8 1846084 1641092 0 664 4948 276 152264 292 6448 98813 5 5 62 28 0 Furthermore, the output of top sorted by CPU time seems to support the theory that swap is what's bogging down the system: top - 09:05:32 up 37 days, 23:24, 1 user, load average: 9.75, 8.24, 7.12 Tasks: 173 total, 1 running, 172 sleeping, 0 stopped, 0 zombie Cpu(s): 1.6%us, 1.4%sy, 0.0%ni, 76.1%id, 20.6%wa, 0.1%hi, 0.2%si, 0.0%st Mem: 4044632k total, 2405628k used, 1639004k free, 0k buffers Swap: 7812492k total, 1851852k used, 5960640k free, 436k cached PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ TIME COMMAND 4174 root 17 0 63156 176 56 S 8 0.0 2138:52 35,38 bacula-fd 4185 root 17 0 63352 284 104 S 6 0.0 1709:25 28,29 bacula-sd 240 root 15 0 0 0 0 D 3 0.0 831:55.19 831:55 kswapd0 2852 root 10 -5 0 0 0 S 1 0.0 126:35.59 126:35 xfsbufd 2849 root 10 -5 0 0 0 S 0 0.0 119:50.94 119:50 xfsbufd 1364 root 10 -5 0 0 0 S 0 0.0 117:05.39 117:05 xfsbufd 21 root 10 -5 0 0 0 S 1 0.0 48:03.44 48:03 events/3 6940 postgres 16 0 43596 8 8 S 0 0.0 46:50.35 46:50 postmaster 1342 root 10 -5 0 0 0 S 0 0.0 23:14.34 23:14 xfsdatad/4 5415 root 17 0 1770m 108 48 S 0 0.0 15:03.74 15:03 bacula-dir 23 root 10 -5 0 0 0 S 0 0.0 13:09.71 13:09 events/5 5604 root 17 0 1216m 500 200 S 0 0.0 12:38.20 12:38 java 5552 root 16 0 1194m 580 248 S 0 0.0 11:58.00 11:58 java Here's the same sorted by virtual memory image size: top - 09:08:32 up 37 days, 23:27, 1 user, load average: 8.43, 8.26, 7.32 Tasks: 173 total, 1 running, 172 sleeping, 0 stopped, 0 zombie Cpu(s): 3.6%us, 3.4%sy, 0.0%ni, 62.2%id, 30.2%wa, 0.2%hi, 0.3%si, 0.0%st Mem: 4044632k total, 2404212k used, 1640420k free, 0k buffers Swap: 7812492k total, 1852548k used, 5959944k free, 100k cached PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ TIME COMMAND 5415 root 17 0 1770m 56 44 S 0 0.0 15:03.78 15:03 bacula-dir 5604 root 17 0 1216m 492 200 S 0 0.0 12:38.30 12:38 java 5552 root 16 0 1194m 476 200 S 0 0.0 11:58.20 11:58 java 4598 root 16 0 117m 44 44 S 0 0.0 0:13.37 0:13 eventmond 9614 gdm 16 0 93188 0 0 S 0 0.0 0:00.30 0:00 gdmgreeter 5527 root 17 0 78716 0 0 S 0 0.0 0:00.30 0:00 gdm 4185 root 17 0 63352 284 104 S 20 0.0 1709:52 28,29 bacula-sd 4174 root 17 0 63156 208 88 S 24 0.0 2139:25 35,39 bacula-fd 10849 postgres 18 0 54740 216 108 D 0 0.0 0:31.40 0:31 postmaster 6661 postgres 17 0 49432 0 0 S 0 0.0 0:03.50 0:03 postmaster 5507 root 15 0 47980 0 0 S 0 0.0 0:00.00 0:00 gdm 6940 postgres 16 0 43596 16 16 S 0 0.0 46:51.39 46:51 postmaster 5304 postgres 16 0 40580 132 88 S 0 0.0 6:21.79 6:21 postmaster 5301 postgres 17 0 40448 24 24 S 0 0.0 0:32.17 0:32 postmaster 11280 root 16 0 40288 28 28 S 0 0.0 0:00.11 0:00 sshd 5534 root 17 0 37580 0 0 S 0 0.0 0:56.18 0:56 X 30870 root 30 15 31668 28 28 S 0 0.0 1:13.38 1:13 snmpd 5305 postgres 17 0 30628 16 16 S 0 0.0 0:11.60 0:11 postmaster 27403 postfix 17 0 30248 0 0 S 0 0.0 0:02.76 0:02 qmgr 10815 postfix 15 0 30208 16 16 S 0 0.0 0:00.02 0:00 pickup 5306 postgres 16 0 29760 20 20 S 0 0.0 0:52.89 0:52 postmaster 5302 postgres 17 0 29628 64 32 S 0 0.0 1:00.64 1:00 postmaster I've tried tuning the swappiness kernel parameter to both high and low values, but nothing appears to change the behavior here. I'm at a loss to figure out what's going on. How can I find out what's causing this? Update: The system is a fully 64-bit system, so there should be no question of memory limitations due to 32-bit issues. Update2: As I mentioned in the original question, I've already tried tuning swappiness to all sorts of values, including 0. The result is always the same, with approximately 1.6 GB of memory remaining unused. Update3: Added top output to the above info.

    Read the article

  • Building applications with WPF, MVVM and Prism(aka CAG)

    - by skjagini
    In this article I am going to walk through an application using WPF and Prism (aka composite application guidance, CAG) which simulates engaging a taxi (cab).  The rules are simple, the app would have3 screens A login screen to authenticate the user An information screen. A screen to engage the cab and roam around and calculating the total fare Metered Rate of Fare The meter is required to be engaged when a cab is occupied by anyone $3.00 upon entry $0.35 for each additional unit The unit fare is: one-fifth of a mile, when the cab is traveling at 6 miles an hour or more; or 60 seconds when not in motion or traveling at less than 12 miles per hour. Night surcharge of $.50 after 8:00 PM & before 6:00 AM Peak hour Weekday Surcharge of $1.00 Monday - Friday after 4:00 PM & before 8:00 PM New York State Tax Surcharge of $.50 per ride. Example: Friday (2010-10-08) 5:30pm Start at Lexington Ave & E 57th St End at Irving Pl & E 15th St Start = $3.00 Travels 2 miles at less than 6 mph for 15 minutes = $3.50 Travels at more than 12 mph for 5 minutes = $1.75 Peak hour Weekday Surcharge = $1.00 (ride started at 5:30 pm) New York State Tax Surcharge = $0.50 Before we dive into the app, I would like to give brief description about the framework.  If you want to jump on to the source code, scroll all the way to the end of the post. MVVM MVVM pattern is in no way related to the usage of PRISM in your application and should be considered if you are using WPF irrespective of PRISM or not. Lets say you are not familiar with MVVM, your typical UI would involve adding some UI controls like text boxes, a button, double clicking on the button,  generating event handler, calling a method from business layer and updating the user interface, it works most of the time for developing small scale applications. The problem with this approach is that there is some amount of code specific to business logic wrapped in UI specific code which is hard to unit test it, mock it and MVVM helps to solve the exact problem. MVVM stands for Model(M) – View(V) – ViewModel(VM),  based on the interactions with in the three parties it should be called VVMM,  MVVM sounds more like MVC (Model-View-Controller) so the name. Why it should be called VVMM: View – View Model - Model WPF allows to create user interfaces using XAML and MVVM takes it to the next level by allowing complete separation of user interface and business logic. In WPF each view will have a property, DataContext when set to an instance of a class (which happens to be your view model) provides the data the view is interested in, i.e., view interacts with view model and at the same time view model interacts with view through DataContext. Sujith, if view and view model are interacting directly with each other how does MVVM is helping me separation of concerns? Well, the catch is DataContext is of type Object, since it is of type object view doesn’t know exact type of view model allowing views and views models to be loosely coupled. View models aggregate data from models (data access layer, services, etc) and make it available for views through properties, methods etc, i.e., View Models interact with Models. PRISM Prism is provided by Microsoft Patterns and Practices team and it can be downloaded from codeplex for source code,  samples and documentation on msdn.  The name composite implies, to compose user interface from different modules (views) without direct dependencies on each other, again allowing  loosely coupled development. Well Sujith, I can already do that with user controls, why shall I learn another framework?  That’s correct, you can decouple using user controls, but you still have to manage some amount of coupling, like how to do you communicate between the controls, how do you subscribe/unsubscribe, loading/unloading views dynamically. Prism is not a replacement for user controls, provides the following features which greatly help in designing the composite applications. Dependency Injection (DI)/ Inversion of Control (IoC) Modules Regions Event Aggregator  Commands Simply put, MVVM helps building a single view and Prism helps building an application using the views There are other open source alternatives to Prism, like MVVMLight, Cinch, take a look at them as well. Lets dig into the source code.  1. Solution The solution is made of the following projects Framework: Holds the common functionality in building applications using WPF and Prism TaxiClient: Start up project, boot strapping and app styling TaxiCommon: Helps with the business logic TaxiModules: Holds the meat of the application with views and view models TaxiTests: To test the application 2. DI / IoC Dependency Injection (DI) as the name implies refers to injecting dependencies and Inversion of Control (IoC) means the calling code has no direct control on the dependencies, opposite of normal way of programming where dependencies are passed by caller, i.e inversion; aside from some differences in terminology the concept is same in both the cases. The idea behind DI/IoC pattern is to reduce the amount of direct coupling between different components of the application, the higher the dependency the more tightly coupled the application resulting in code which is hard to modify, unit test and mock.  Initializing Dependency Injection through BootStrapper TaxiClient is the starting project of the solution and App (App.xaml)  is the starting class that gets called when you run the application. From the App’s OnStartup method we will invoke BootStrapper.   namespace TaxiClient { /// <summary> /// Interaction logic for App.xaml /// </summary> public partial class App : Application { protected override void OnStartup(StartupEventArgs e) { base.OnStartup(e);   (new BootStrapper()).Run(); } } } BootStrapper is your contact point for initializing the application including dependency injection, creating Shell and other frameworks. We are going to use Unity for DI and there are lot of open source DI frameworks like Spring.Net, StructureMap etc with different feature set  and you can choose a framework based on your preferences. Note that Prism comes with in built support for Unity, for example we are deriving from UnityBootStrapper in our case and for any other DI framework you have to extend the Prism appropriately   namespace TaxiClient { public class BootStrapper: UnityBootstrapper { protected override IModuleCatalog CreateModuleCatalog() { return new ConfigurationModuleCatalog(); } protected override DependencyObject CreateShell() { Framework.FrameworkBootStrapper.Run(Container, Application.Current.Dispatcher);   Shell shell = new Shell(); shell.ResizeMode = ResizeMode.NoResize; shell.Show();   return shell; } } } Lets take a look into  FrameworkBootStrapper to check out how to register with unity container. namespace Framework { public class FrameworkBootStrapper { public static void Run(IUnityContainer container, Dispatcher dispatcher) { UIDispatcher uiDispatcher = new UIDispatcher(dispatcher); container.RegisterInstance<IDispatcherService>(uiDispatcher);   container.RegisterType<IInjectSingleViewService, InjectSingleViewService>( new ContainerControlledLifetimeManager());   . . . } } } In the above code we are registering two components with unity container. You shall observe that we are following two different approaches, RegisterInstance and RegisterType.  With RegisterInstance we are registering an existing instance and the same instance will be returned for every request made for IDispatcherService   and with RegisterType we are requesting unity container to create an instance for us when required, i.e., when I request for an instance for IInjectSingleViewService, unity will create/return an instance of InjectSingleViewService class and with RegisterType we can configure the life time of the instance being created. With ContaienrControllerLifetimeManager, the unity container caches the instance and reuses for any subsequent requests, without recreating a new instance. Lets take a look into FareViewModel.cs and it’s constructor. The constructor takes one parameter IEventAggregator and if you try to find all references in your solution for IEventAggregator, you will not find a single location where an instance of EventAggregator is passed directly to the constructor. The compiler still finds an instance and works fine because Prism is already configured when used with Unity container to return an instance of EventAggregator when requested for IEventAggregator and in this particular case it is called constructor injection. public class FareViewModel:ObservableBase, IDataErrorInfo { ... private IEventAggregator _eventAggregator;   public FareViewModel(IEventAggregator eventAggregator) { _eventAggregator = eventAggregator; InitializePropertyNames(); InitializeModel(); PropertyChanged += OnPropertyChanged; } ... 3. Shell Shells are very similar in operation to Master Pages in asp.net or MDI in Windows Forms. And shells contain regions which display the views, you can have as many regions as you wish in a given view. You can also nest regions. i.e, one region can load a view which in itself may contain other regions. We have to create a shell at the start of the application and are doing it by overriding CreateShell method from BootStrapper From the following Shell.xaml you shall notice that we have two content controls with Region names as ‘MenuRegion’ and ‘MainRegion’.  The idea here is that you can inject any user controls into the regions dynamically, i.e., a Menu User Control for MenuRegion and based on the user action you can load appropriate view into MainRegion.    <Window x:Class="TaxiClient.Shell" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:Regions="clr-namespace:Microsoft.Practices.Prism.Regions;assembly=Microsoft.Practices.Prism" Title="Taxi" Height="370" Width="800"> <Grid Margin="2"> <ContentControl Regions:RegionManager.RegionName="MenuRegion" HorizontalAlignment="Stretch" VerticalAlignment="Stretch" HorizontalContentAlignment="Stretch" VerticalContentAlignment="Stretch" />   <ContentControl Grid.Row="1" Regions:RegionManager.RegionName="MainRegion" HorizontalAlignment="Stretch" VerticalAlignment="Stretch" HorizontalContentAlignment="Stretch" VerticalContentAlignment="Stretch" /> <!--<Border Grid.ColumnSpan="2" BorderThickness="2" CornerRadius="3" BorderBrush="LightBlue" />-->   </Grid> </Window> 4. Modules Prism provides the ability to build composite applications and modules play an important role in it. For example if you are building a Mortgage Loan Processor application with 3 components, i.e. customer’s credit history,  existing mortgages, new home/loan information; and consider that the customer’s credit history component involves gathering data about his/her address, background information, job details etc. The idea here using Prism modules is to separate the implementation of these 3 components into their own visual studio projects allowing to build components with no dependency on each other and independently. If we need to add another component to the application, the component can be developed by in house team or some other team in the organization by starting with a new Visual Studio project and adding to the solution at the run time with very little knowledge about the application. Prism modules are defined by implementing the IModule interface and each visual studio project to be considered as a module should implement the IModule interface.  From the BootStrapper.cs you shall observe that we are overriding the method by returning a ConfiguratingModuleCatalog which returns the modules that are registered for the application using the app.config file  and you can also add module using code. Lets take a look into configuration file.   <?xml version="1.0"?> <configuration> <configSections> <section name="modules" type="Microsoft.Practices.Prism.Modularity.ModulesConfigurationSection, Microsoft.Practices.Prism"/> </configSections> <modules> <module assemblyFile="TaxiModules.dll" moduleType="TaxiModules.ModuleInitializer, TaxiModules" moduleName="TaxiModules"/> </modules> </configuration> Here we are adding TaxiModules project to our solution and TaxiModules.ModuleInitializer implements IModule interface   5. Module Mapper With Prism modules you can dynamically add or remove modules from the regions, apart from that Prism also provides API to control adding/removing the views from a region within the same module. Taxi Information Screen: Engage the Taxi Screen: The sample application has two screens, ‘Taxi Information’ and ‘Engage the Taxi’ and they both reside in same module, TaxiModules. ‘Engage the Taxi’ is again made of two user controls, FareView on the left and TotalView on the right. We have created a Shell with two regions, MenuRegion and MainRegion with menu loaded into MenuRegion. We can create a wrapper user control called EngageTheTaxi made of FareView and TotalView and load either TaxiInfo or EngageTheTaxi into MainRegion based on the user action. Though it will work it tightly binds the user controls and for every combination of user controls, we need to create a dummy wrapper control to contain them. Instead we can apply the principles we learned so far from Shell/regions and introduce another template (LeftAndRightRegionView.xaml) made of two regions Region1 (left) and Region2 (right) and load  FareView and TotalView dynamically.  To help with loading of the views dynamically I have introduce an helper an interface, IInjectSingleViewService,  idea suggested by Mike Taulty, a must read blog for .Net developers. using System; using System.Collections.Generic; using System.ComponentModel;   namespace Framework.PresentationUtility.Navigation {   public interface IInjectSingleViewService : INotifyPropertyChanged { IEnumerable<CommandViewDefinition> Commands { get; } IEnumerable<ModuleViewDefinition> Modules { get; }   void RegisterViewForRegion(string commandName, string viewName, string regionName, Type viewType); void ClearViewFromRegion(string viewName, string regionName); void RegisterModule(string moduleName, IList<ModuleMapper> moduleMappers); } } The Interface declares three methods to work with views: RegisterViewForRegion: Registers a view with a particular region. You can register multiple views and their regions under one command.  When this particular command is invoked all the views registered under it will be loaded into their regions. ClearViewFromRegion: To unload a specific view from a region. RegisterModule: The idea is when a command is invoked you can load the UI with set of controls in their default position and based on the user interaction, you can load different contols in to different regions on the fly.  And it is supported ModuleViewDefinition and ModuleMappers as shown below. namespace Framework.PresentationUtility.Navigation { public class ModuleViewDefinition { public string ModuleName { get; set; } public IList<ModuleMapper> ModuleMappers; public ICommand Command { get; set; } }   public class ModuleMapper { public string ViewName { get; set; } public string RegionName { get; set; } public Type ViewType { get; set; } } } 6. Event Aggregator Prism event aggregator enables messaging between components as in Observable pattern, Notifier notifies the Observer which receives notification it is interested in. When it comes to Observable pattern, Observer has to unsubscribes for notifications when it no longer interested in notifications, which allows the Notifier to remove the Observer’s reference from it’s local cache. Though .Net has managed garbage collection it cannot remove inactive the instances referenced by an active instance resulting in memory leak, keeping the Observers in memory as long as Notifier stays in memory.  Developers have to be very careful to unsubscribe when necessary and it often gets overlooked, to overcome these problems Prism Event Aggregator uses weak references to cache the reference (Observer in this case)  and releases the reference (memory) once the instance goes out of scope. Using event aggregator is very simple, declare a generic type of CompositePresenationEvent by inheriting from it. using Microsoft.Practices.Prism.Events; using TaxiCommon.BAO;   namespace TaxiCommon.CompositeEvents { public class TaxiOnMoveEvent:CompositePresentationEvent<TaxiOnMove> { } }   TaxiOnMove.cs includes the properties which we want to exchange between the parties, FareView and TotalView. using System;   namespace TaxiCommon.BAO { public class TaxiOnMove { public TimeSpan MinutesAtTweleveMPH { get; set; } public double MilesAtSixMPH { get; set; } } }   Lets take a look into FareViewodel (Notifier) and how it raises the event.  Here we are raising the event by getting the event through GetEvent<..>() and publishing it with the payload private void OnAddMinutes(object obj) { TaxiOnMove payload = new TaxiOnMove(); if(MilesAtSixMPH != null) payload.MilesAtSixMPH = MilesAtSixMPH.Value; if(MinutesAtTweleveMPH != null) payload.MinutesAtTweleveMPH = new TimeSpan(0,0,MinutesAtTweleveMPH.Value,0);   _eventAggregator.GetEvent<TaxiOnMoveEvent>().Publish(payload); ResetMinutesAndMiles(); } And TotalViewModel(Observer) subscribes to notifications by getting the event through GetEvent<..>() namespace TaxiModules.ViewModels { public class TotalViewModel:ObservableBase { .... private IEventAggregator _eventAggregator;   public TotalViewModel(IEventAggregator eventAggregator) { _eventAggregator = eventAggregator; ... }   private void SubscribeToEvents() { _eventAggregator.GetEvent<TaxiStartedEvent>() .Subscribe(OnTaxiStarted, ThreadOption.UIThread,false,(filter) => true); _eventAggregator.GetEvent<TaxiOnMoveEvent>() .Subscribe(OnTaxiMove, ThreadOption.UIThread, false, (filter) => true); _eventAggregator.GetEvent<TaxiResetEvent>() .Subscribe(OnTaxiReset, ThreadOption.UIThread, false, (filter) => true); }   ... private void OnTaxiMove(TaxiOnMove taxiOnMove) { OnMoveFare fare = new OnMoveFare(taxiOnMove); Fares.Add(fare); SetTotalFare(new []{fare}); }   .... 7. MVVM through example In this section we are going to look into MVVM implementation through example.  I have all the modules declared in a single project, TaxiModules, again it is not necessary to have them into one project. Once the user logs into the application, will be greeted with the ‘Engage the Taxi’ screen which is made of two user controls, FareView.xaml and TotalView.Xaml. As you can see from the solution explorer, each of them have their own code behind files and  ViewModel classes, FareViewMode.cs, TotalViewModel.cs Lets take a look in to the FareView and how it interacts with FareViewModel using MVVM implementation. FareView.xaml acts as a view and FareViewMode.cs is it’s view model. The FareView code behind class   namespace TaxiModules.Views { /// <summary> /// Interaction logic for FareView.xaml /// </summary> public partial class FareView : UserControl { public FareView(FareViewModel viewModel) { InitializeComponent(); this.Loaded += (s, e) => { this.DataContext = viewModel; }; } } } The FareView is bound to FareViewModel through the data context  and you shall observe that DataContext is of type Object, i.e. the FareView doesn’t really know the type of ViewModel (FareViewModel). This helps separation of View and ViewModel as View and ViewModel are independent of each other, you can bind FareView to FareViewModel2 as well and the application compiles just fine. Lets take a look into FareView xaml file  <UserControl x:Class="TaxiModules.Views.FareView" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:Toolkit="clr-namespace:Microsoft.Windows.Controls;assembly=WPFToolkit" xmlns:Commands="clr-namespace:Microsoft.Practices.Prism.Commands;assembly=Microsoft.Practices.Prism"> <Grid Margin="10" > ....   <Border Style="{DynamicResource innerBorder}" Grid.Row="0" Grid.Column="0" Grid.RowSpan="11" Grid.ColumnSpan="2" Panel.ZIndex="1"/>   <Label Grid.Row="0" Content="Engage the Taxi" Style="{DynamicResource innerHeader}"/> <Label Grid.Row="1" Content="Select the State"/> <ComboBox Grid.Row="1" Grid.Column="1" ItemsSource="{Binding States}" Height="auto"> <ComboBox.ItemTemplate> <DataTemplate> <TextBlock Text="{Binding Name}"/> </DataTemplate> </ComboBox.ItemTemplate> <ComboBox.SelectedItem> <Binding Path="SelectedState" Mode="TwoWay"/> </ComboBox.SelectedItem> </ComboBox> <Label Grid.Row="2" Content="Select the Date of Entry"/> <Toolkit:DatePicker Grid.Row="2" Grid.Column="1" SelectedDate="{Binding DateOfEntry, ValidatesOnDataErrors=true}" /> <Label Grid.Row="3" Content="Enter time 24hr format"/> <TextBox Grid.Row="3" Grid.Column="1" Text="{Binding TimeOfEntry, TargetNullValue=''}"/> <Button Grid.Row="4" Grid.Column="1" Content="Start the Meter" Commands:Click.Command="{Binding StartMeterCommand}" />   <Label Grid.Row="5" Content="Run the Taxi" Style="{DynamicResource innerHeader}"/> <Label Grid.Row="6" Content="Number of Miles &lt;@6mph"/> <TextBox Grid.Row="6" Grid.Column="1" Text="{Binding MilesAtSixMPH, TargetNullValue='', ValidatesOnDataErrors=true}"/> <Label Grid.Row="7" Content="Number of Minutes @12mph"/> <TextBox Grid.Row="7" Grid.Column="1" Text="{Binding MinutesAtTweleveMPH, TargetNullValue=''}"/> <Button Grid.Row="8" Grid.Column="1" Content="Add Minutes and Miles " Commands:Click.Command="{Binding AddMinutesCommand}"/> <Label Grid.Row="9" Content="Other Operations" Style="{DynamicResource innerHeader}"/> <Button Grid.Row="10" Grid.Column="1" Content="Reset the Meter" Commands:Click.Command="{Binding ResetCommand}"/>   </Grid> </UserControl> The highlighted code from the above code shows data binding, for example ComboBox which displays list of states has it’s ItemsSource bound to States property, with DataTemplate bound to Name and SelectedItem  to SelectedState. You might be wondering what are all these properties and how it is able to bind to them.  The answer lies in data context, i.e., when you bound a control, WPF looks for data context on the root object (Grid in this case) and if it can’t find data context it will look into root’s root, i.e. FareView UserControl and it is bound to FareViewModel.  Each of those properties have be declared on the ViewModel for the View to bind correctly. To put simply, View is bound to ViewModel through data context of type object and every control that is bound on the View actually binds to the public property on the ViewModel. Lets look into the ViewModel code (the following code is not an exact copy of FareViewMode.cs, pasted relevant code for this section)   namespace TaxiModules.ViewModels { public class FareViewModel:ObservableBase, IDataErrorInfo { public List<USState> States { get { return USStates.StateList; } }   public USState SelectedState { get { return _selectedState; } set { _selectedState = value; RaisePropertyChanged(_selectedStatePropertyName); } }   public DateTime? DateOfEntry { get { return _dateOfEntry; } set { _dateOfEntry = value; RaisePropertyChanged(_dateOfEntryPropertyName); } }   public TimeSpan? TimeOfEntry { get { return _timeOfEntry; } set { _timeOfEntry = value; RaisePropertyChanged(_timeOfEntryPropertyName); } }   public double? MilesAtSixMPH { get { return _milesAtSixMPH; } set { _milesAtSixMPH = value; RaisePropertyChanged(_distanceAtSixMPHPropertyName); } }   public int? MinutesAtTweleveMPH { get { return _minutesAtTweleveMPH; } set { _minutesAtTweleveMPH = value; RaisePropertyChanged(_minutesAtTweleveMPHPropertyName); } }   public ICommand StartMeterCommand { get { if(_startMeterCommand == null) { _startMeterCommand = new DelegateCommand<object>(OnStartMeter, CanStartMeter); } return _startMeterCommand; } }   public ICommand AddMinutesCommand { get { if(_addMinutesCommand == null) { _addMinutesCommand = new DelegateCommand<object>(OnAddMinutes, CanAddMinutes); } return _addMinutesCommand; } }   public ICommand ResetCommand { get { if(_resetCommand == null) { _resetCommand = new DelegateCommand<object>(OnResetCommand); } return _resetCommand; } }   } private void OnStartMeter(object obj) { _eventAggregator.GetEvent<TaxiStartedEvent>().Publish( new TaxiStarted() { EngagedOn = DateOfEntry.Value.Date + TimeOfEntry.Value, EngagedState = SelectedState.Value });   _isMeterStarted = true; OnPropertyChanged(this,null); } And views communicate user actions like button clicks, tree view item selections, etc using commands. When user clicks on ‘Start the Meter’ button it invokes the method StartMeterCommand, which calls the method OnStartMeter which publishes the event to TotalViewModel using event aggregator  and TaxiStartedEvent. namespace TaxiModules.ViewModels { public class TotalViewModel:ObservableBase { ... private IEventAggregator _eventAggregator;   public TotalViewModel(IEventAggregator eventAggregator) { _eventAggregator = eventAggregator;   InitializePropertyNames(); InitializeModel(); SubscribeToEvents(); }   public decimal? TotalFare { get { return _totalFare; } set { _totalFare = value; RaisePropertyChanged(_totalFarePropertyName); } } .... private void SubscribeToEvents() { _eventAggregator.GetEvent<TaxiStartedEvent>().Subscribe(OnTaxiStarted, ThreadOption.UIThread,false,(filter) => true); _eventAggregator.GetEvent<TaxiOnMoveEvent>().Subscribe(OnTaxiMove, ThreadOption.UIThread, false, (filter) => true); _eventAggregator.GetEvent<TaxiResetEvent>().Subscribe(OnTaxiReset, ThreadOption.UIThread, false, (filter) => true); }   private void OnTaxiStarted(TaxiStarted taxiStarted) { Fares.Add(new EntryFare()); Fares.Add(new StateTaxFare(taxiStarted)); Fares.Add(new NightSurchargeFare(taxiStarted)); Fares.Add(new PeakHourWeekdayFare(taxiStarted));   SetTotalFare(Fares); }   private void SetTotalFare(IEnumerable<IFare> fares) { TotalFare = (_totalFare ?? 0) + TaxiFareHelper.GetTotalFare(fares); } ....   } }   TotalViewModel subscribes to events, TaxiStartedEvent and rest. When TaxiStartedEvent gets invoked it calls the OnTaxiStarted method which sets the total fare which includes entry fee, state tax, nightly surcharge, peak hour weekday fare.   Note that TotalViewModel derives from ObservableBase which implements the method RaisePropertyChanged which we are invoking in Set of TotalFare property, i.e, once we update the TotalFare property it raises an the event that  allows the TotalFare text box to fetch the new value through the data context. ViewModel is communicating with View through data context and it has no knowledge about View, helping in loose coupling of ViewModel and View.   I have attached the source code (.Net 4.0, Prism 4.0, VS 2010) , download and play with it and don’t forget to leave your comments.  

    Read the article

  • Metro: Declarative Data Binding

    - by Stephen.Walther
    The goal of this blog post is to describe how declarative data binding works in the WinJS library. In particular, you learn how to use both the data-win-bind and data-win-bindsource attributes. You also learn how to use calculated properties and converters to format the value of a property automatically when performing data binding. By taking advantage of WinJS data binding, you can use the Model-View-ViewModel (MVVM) pattern when building Metro style applications with JavaScript. By using the MVVM pattern, you can prevent your JavaScript code from spinning into chaos. The MVVM pattern provides you with a standard pattern for organizing your JavaScript code which results in a more maintainable application. Using Declarative Bindings You can use the data-win-bind attribute with any HTML element in a page. The data-win-bind attribute enables you to bind (associate) an attribute of an HTML element to the value of a property. Imagine, for example, that you want to create a product details page. You want to show a product object in a page. In that case, you can create the following HTML page to display the product details: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>Application1</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- Application1 references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> </head> <body> <h1>Product Details</h1> <div class="field"> Product Name: <span data-win-bind="innerText:name"></span> </div> <div class="field"> Product Price: <span data-win-bind="innerText:price"></span> </div> <div class="field"> Product Picture: <br /> <img data-win-bind="src:photo;alt:name" /> </div> </body> </html> The HTML page above contains three data-win-bind attributes – one attribute for each product property displayed. You use the data-win-bind attribute to set properties of the HTML element associated with the data-win-attribute. The data-win-bind attribute takes a semicolon delimited list of element property names and data source property names: data-win-bind=”elementPropertyName:datasourcePropertyName; elementPropertyName:datasourcePropertyName;…” In the HTML page above, the first two data-win-bind attributes are used to set the values of the innerText property of the SPAN elements. The last data-win-bind attribute is used to set the values of the IMG element’s src and alt attributes. By the way, using data-win-bind attributes is perfectly valid HTML5. The HTML5 standard enables you to add custom attributes to an HTML document just as long as the custom attributes start with the prefix data-. So you can add custom attributes to an HTML5 document with names like data-stephen, data-funky, or data-rover-dog-is-hungry and your document will validate. The product object displayed in the page above with the data-win-bind attributes is created in the default.js file: (function () { "use strict"; var app = WinJS.Application; app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { var product = { name: "Tesla", price: 80000, photo: "/images/TeslaPhoto.png" }; WinJS.Binding.processAll(null, product); } }; app.start(); })(); In the code above, a product object is created with a name, price, and photo property. The WinJS.Binding.processAll() method is called to perform the actual binding (Don’t confuse WinJS.Binding.processAll() and WinJS.UI.processAll() – these are different methods). The first parameter passed to the processAll() method represents the root element for the binding. In other words, binding happens on this element and its child elements. If you provide the value null, then binding happens on the entire body of the document (document.body). The second parameter represents the data context. This is the object that has the properties which are displayed with the data-win-bind attributes. In the code above, the product object is passed as the data context parameter. Another word for data context is view model.  Creating Complex View Models In the previous section, we used the data-win-bind attribute to display the properties of a simple object: a single product. However, you can use binding with more complex view models including view models which represent multiple objects. For example, the view model in the following default.js file represents both a customer and a product object. Furthermore, the customer object has a nested address object: (function () { "use strict"; var app = WinJS.Application; app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { var viewModel = { customer: { firstName: "Fred", lastName: "Flintstone", address: { street: "1 Rocky Way", city: "Bedrock", country: "USA" } }, product: { name: "Bowling Ball", price: 34.55 } }; WinJS.Binding.processAll(null, viewModel); } }; app.start(); })(); The following page displays the customer (including the customer address) and the product. Notice that you can use dot notation to refer to child objects in a view model such as customer.address.street. <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>Application1</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- Application1 references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> </head> <body> <h1>Customer Details</h1> <div class="field"> First Name: <span data-win-bind="innerText:customer.firstName"></span> </div> <div class="field"> Last Name: <span data-win-bind="innerText:customer.lastName"></span> </div> <div class="field"> Address: <address> <span data-win-bind="innerText:customer.address.street"></span> <br /> <span data-win-bind="innerText:customer.address.city"></span> <br /> <span data-win-bind="innerText:customer.address.country"></span> </address> </div> <h1>Product</h1> <div class="field"> Name: <span data-win-bind="innerText:product.name"></span> </div> <div class="field"> Price: <span data-win-bind="innerText:product.price"></span> </div> </body> </html> A view model can be as complicated as you need and you can bind the view model to a view (an HTML document) by using declarative bindings. Creating Calculated Properties You might want to modify a property before displaying the property. For example, you might want to format the product price property before displaying the property. You don’t want to display the raw product price “80000”. Instead, you want to display the formatted price “$80,000”. You also might need to combine multiple properties. For example, you might need to display the customer full name by combining the values of the customer first and last name properties. In these situations, it is tempting to call a function when performing binding. For example, you could create a function named fullName() which concatenates the customer first and last name. Unfortunately, the WinJS library does not support the following syntax: <span data-win-bind=”innerText:fullName()”></span> Instead, in these situations, you should create a new property in your view model that has a getter. For example, the customer object in the following default.js file includes a property named fullName which combines the values of the firstName and lastName properties: (function () { "use strict"; var app = WinJS.Application; app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { var customer = { firstName: "Fred", lastName: "Flintstone", get fullName() { return this.firstName + " " + this.lastName; } }; WinJS.Binding.processAll(null, customer); } }; app.start(); })(); The customer object has a firstName, lastName, and fullName property. Notice that the fullName property is defined with a getter function. When you read the fullName property, the values of the firstName and lastName properties are concatenated and returned. The following HTML page displays the fullName property in an H1 element. You can use the fullName property in a data-win-bind attribute in exactly the same way as any other property. <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>Application1</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- Application1 references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> </head> <body> <h1 data-win-bind="innerText:fullName"></h1> <div class="field"> First Name: <span data-win-bind="innerText:firstName"></span> </div> <div class="field"> Last Name: <span data-win-bind="innerText:lastName"></span> </div> </body> </html> Creating a Converter In the previous section, you learned how to format the value of a property by creating a property with a getter. This approach makes sense when the formatting logic is specific to a particular view model. If, on the other hand, you need to perform the same type of formatting for multiple view models then it makes more sense to create a converter function. A converter function is a function which you can apply whenever you are using the data-win-bind attribute. Imagine, for example, that you want to create a general function for displaying dates. You always want to display dates using a short format such as 12/25/1988. The following JavaScript file – named converters.js – contains a shortDate() converter: (function (WinJS) { var shortDate = WinJS.Binding.converter(function (date) { return date.getMonth() + 1 + "/" + date.getDate() + "/" + date.getFullYear(); }); // Export shortDate WinJS.Namespace.define("MyApp.Converters", { shortDate: shortDate }); })(WinJS); The file above uses the Module Pattern, a pattern which is used through the WinJS library. To learn more about the Module Pattern, see my blog entry on namespaces and modules: http://stephenwalther.com/blog/archive/2012/02/22/windows-web-applications-namespaces-and-modules.aspx The file contains the definition for a converter function named shortDate(). This function converts a JavaScript date object into a short date string such as 12/1/1988. The converter function is created with the help of the WinJS.Binding.converter() method. This method takes a normal function and converts it into a converter function. Finally, the shortDate() converter is added to the MyApp.Converters namespace. You can call the shortDate() function by calling MyApp.Converters.shortDate(). The default.js file contains the customer object that we want to bind. Notice that the customer object has a firstName, lastName, and birthday property. We will use our new shortDate() converter when displaying the customer birthday property: (function () { "use strict"; var app = WinJS.Application; app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { var customer = { firstName: "Fred", lastName: "Flintstone", birthday: new Date("12/1/1988") }; WinJS.Binding.processAll(null, customer); } }; app.start(); })(); We actually use our shortDate converter in the HTML document. The following HTML document displays all of the customer properties: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>Application1</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- Application1 references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> <script type="text/javascript" src="js/converters.js"></script> </head> <body> <h1>Customer Details</h1> <div class="field"> First Name: <span data-win-bind="innerText:firstName"></span> </div> <div class="field"> Last Name: <span data-win-bind="innerText:lastName"></span> </div> <div class="field"> Birthday: <span data-win-bind="innerText:birthday MyApp.Converters.shortDate"></span> </div> </body> </html> Notice the data-win-bind attribute used to display the birthday property. It looks like this: <span data-win-bind="innerText:birthday MyApp.Converters.shortDate"></span> The shortDate converter is applied to the birthday property when the birthday property is bound to the SPAN element’s innerText property. Using data-win-bindsource Normally, you pass the view model (the data context) which you want to use with the data-win-bind attributes in a page by passing the view model to the WinJS.Binding.processAll() method like this: WinJS.Binding.processAll(null, viewModel); As an alternative, you can specify the view model declaratively in your markup by using the data-win-datasource attribute. For example, the following default.js script exposes a view model with the fully-qualified name of MyWinWebApp.viewModel: (function () { "use strict"; var app = WinJS.Application; app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { // Create view model var viewModel = { customer: { firstName: "Fred", lastName: "Flintstone" }, product: { name: "Bowling Ball", price: 12.99 } }; // Export view model to be seen by universe WinJS.Namespace.define("MyWinWebApp", { viewModel: viewModel }); // Process data-win-bind attributes WinJS.Binding.processAll(); } }; app.start(); })(); In the code above, a view model which represents a customer and a product is exposed as MyWinWebApp.viewModel. The following HTML page illustrates how you can use the data-win-bindsource attribute to bind to this view model: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>Application1</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- Application1 references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> </head> <body> <h1>Customer Details</h1> <div data-win-bindsource="MyWinWebApp.viewModel.customer"> <div class="field"> First Name: <span data-win-bind="innerText:firstName"></span> </div> <div class="field"> Last Name: <span data-win-bind="innerText:lastName"></span> </div> </div> <h1>Product</h1> <div data-win-bindsource="MyWinWebApp.viewModel.product"> <div class="field"> Name: <span data-win-bind="innerText:name"></span> </div> <div class="field"> Price: <span data-win-bind="innerText:price"></span> </div> </div> </body> </html> The data-win-bindsource attribute is used twice in the page above: it is used with the DIV element which contains the customer details and it is used with the DIV element which contains the product details. If an element has a data-win-bindsource attribute then all of the child elements of that element are affected. The data-win-bind attributes of all of the child elements are bound to the data source represented by the data-win-bindsource attribute. Summary The focus of this blog entry was data binding using the WinJS library. You learned how to use the data-win-bind attribute to bind the properties of an HTML element to a view model. We also discussed several advanced features of data binding. We examined how to create calculated properties by including a property with a getter in your view model. We also discussed how you can create a converter function to format the value of a view model property when binding the property. Finally, you learned how to use the data-win-bindsource attribute to specify a view model declaratively.

    Read the article

  • Rendering ASP.NET Script References into the Html Header

    - by Rick Strahl
    One thing that I’ve come to appreciate in control development in ASP.NET that use JavaScript is the ability to have more control over script and script include placement than ASP.NET provides natively. Specifically in ASP.NET you can use either the ClientScriptManager or ScriptManager to embed scripts and script references into pages via code. This works reasonably well, but the script references that get generated are generated into the HTML body and there’s very little operational control for placement of scripts. If you have multiple controls or several of the same control that need to place the same scripts onto the page it’s not difficult to end up with scripts that render in the wrong order and stop working correctly. This is especially critical if you load script libraries with dependencies either via resources or even if you are rendering referenced to CDN resources. Natively ASP.NET provides a host of methods that help embedding scripts into the page via either Page.ClientScript or the ASP.NET ScriptManager control (both with slightly different syntax): RegisterClientScriptBlock Renders a script block at the top of the HTML body and should be used for embedding callable functions/classes. RegisterStartupScript Renders a script block just prior to the </form> tag and should be used to for embedding code that should execute when the page is first loaded. Not recommended – use jQuery.ready() or equivalent load time routines. RegisterClientScriptInclude Embeds a reference to a script from a url into the page. RegisterClientScriptResource Embeds a reference to a Script from a resource file generating a long resource file string All 4 of these methods render their <script> tags into the HTML body. The script blocks give you a little bit of control by having a ‘top’ and ‘bottom’ of the document location which gives you some flexibility over script placement and precedence. Script includes and resource url unfortunately do not even get that much control – references are simply rendered into the page in the order of declaration. The ASP.NET ScriptManager control facilitates this task a little bit with the abililty to specify scripts in code and the ability to programmatically check what scripts have already been registered, but it doesn’t provide any more control over the script rendering process itself. Further the ScriptManager is a bear to deal with generically because generic code has to always check and see if it is actually present. Some time ago I posted a ClientScriptProxy class that helps with managing the latter process of sending script references either to ClientScript or ScriptManager if it’s available. Since I last posted about this there have been a number of improvements in this API, one of which is the ability to control placement of scripts and script includes in the page which I think is rather important and a missing feature in the ASP.NET native functionality. Handling ScriptRenderModes One of the big enhancements that I’ve come to rely on is the ability of the various script rendering functions described above to support rendering in multiple locations: /// <summary> /// Determines how scripts are included into the page /// </summary> public enum ScriptRenderModes { /// <summary> /// Inherits the setting from the control or from the ClientScript.DefaultScriptRenderMode /// </summary> Inherit, /// Renders the script include at the location of the control /// </summary> Inline, /// <summary> /// Renders the script include into the bottom of the header of the page /// </summary> Header, /// <summary> /// Renders the script include into the top of the header of the page /// </summary> HeaderTop, /// <summary> /// Uses ClientScript or ScriptManager to embed the script include to /// provide standard ASP.NET style rendering in the HTML body. /// </summary> Script, /// <summary> /// Renders script at the bottom of the page before the last Page.Controls /// literal control. Note this may result in unexpected behavior /// if /body and /html are not the last thing in the markup page. /// </summary> BottomOfPage } This enum is then applied to the various Register functions to allow more control over where scripts actually show up. Why is this useful? For me I often render scripts out of control resources and these scripts often include things like a JavaScript Library (jquery) and a few plug-ins. The order in which these can be loaded is critical so that jQuery.js always loads before any plug-in for example. Typically I end up with a general script layout like this: Core Libraries- HeaderTop Plug-ins: Header ScriptBlocks: Header or Script depending on other dependencies There’s also an option to render scripts and CSS at the very bottom of the page before the last Page control on the page which can be useful for speeding up page load when lots of scripts are loaded. The API syntax of the ClientScriptProxy methods is closely compatible with ScriptManager’s using static methods and control references to gain access to the page and embedding scripts. For example, to render some script into the current page in the header: // Create script block in header ClientScriptProxy.Current.RegisterClientScriptBlock(this, typeof(ControlResources), "hello_function", "function helloWorld() { alert('hello'); }", true, ScriptRenderModes.Header); // Same again - shouldn't be rendered because it's the same id ClientScriptProxy.Current.RegisterClientScriptBlock(this, typeof(ControlResources), "hello_function", "function helloWorld() { alert('hello'); }", true, ScriptRenderModes.Header); // Create a second script block in header ClientScriptProxy.Current.RegisterClientScriptBlock(this, typeof(ControlResources), "hello_function2", "function helloWorld2() { alert('hello2'); }", true, ScriptRenderModes.Header); // This just calls ClientScript and renders into bottom of document ClientScriptProxy.Current.RegisterStartupScript(this,typeof(ControlResources), "call_hello", "helloWorld();helloWorld2();", true); which generates: <html xmlns="http://www.w3.org/1999/xhtml" > <head><title> </title> <script type="text/javascript"> function helloWorld() { alert('hello'); } </script> <script type="text/javascript"> function helloWorld2() { alert('hello2'); } </script> </head> <body> … <script type="text/javascript"> //<![CDATA[ helloWorld();helloWorld2();//]]> </script> </form> </body> </html> Note that the scripts are generated into the header rather than the body except for the last script block which is the call to RegisterStartupScript. In general I wouldn’t recommend using RegisterStartupScript – ever. It’s a much better practice to use a script base load event to handle ‘startup’ code that should fire when the page first loads. So instead of the code above I’d actually recommend doing: ClientScriptProxy.Current.RegisterClientScriptBlock(this, typeof(ControlResources), "call_hello", "$().ready( function() { alert('hello2'); });", true, ScriptRenderModes.Header); assuming you’re using jQuery on the page. For script includes from a Url the following demonstrates how to embed scripts into the header. This example injects a jQuery and jQuery.UI script reference from the Google CDN then checks each with a script block to ensure that it has loaded and if not loads it from a server local location: // load jquery from CDN ClientScriptProxy.Current.RegisterClientScriptInclude(this, typeof(ControlResources), "http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jquery.min.js", ScriptRenderModes.HeaderTop); // check if jquery loaded - if it didn't we're not online string scriptCheck = @"if (typeof jQuery != 'object') document.write(unescape(""%3Cscript src='{0}' type='text/javascript'%3E%3C/script%3E""));"; string jQueryUrl = ClientScriptProxy.Current.GetWebResourceUrl(this, typeof(ControlResources), ControlResources.JQUERY_SCRIPT_RESOURCE); ClientScriptProxy.Current.RegisterClientScriptBlock(this, typeof(ControlResources), "jquery_register", string.Format(scriptCheck,jQueryUrl),true, ScriptRenderModes.HeaderTop); // Load jquery-ui from cdn ClientScriptProxy.Current.RegisterClientScriptInclude(this, typeof(ControlResources), "http://ajax.googleapis.com/ajax/libs/jqueryui/1.7.2/jquery-ui.min.js", ScriptRenderModes.Header); // check if we need to load from local string jQueryUiUrl = ResolveUrl("~/scripts/jquery-ui-custom.min.js"); ClientScriptProxy.Current.RegisterClientScriptBlock(this, typeof(ControlResources), "jqueryui_register", string.Format(scriptCheck, jQueryUiUrl), true, ScriptRenderModes.Header); // Create script block in header ClientScriptProxy.Current.RegisterClientScriptBlock(this, typeof(ControlResources), "hello_function", "$().ready( function() { alert('hello'); });", true, ScriptRenderModes.Header); which in turn generates this HTML: <html xmlns="http://www.w3.org/1999/xhtml" > <head> <script src="http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jquery.min.js" type="text/javascript"></script> <script type="text/javascript"> if (typeof jQuery != 'object') document.write(unescape("%3Cscript src='/WestWindWebToolkitWeb/WebResource.axd?d=DIykvYhJ_oXCr-TA_dr35i4AayJoV1mgnQAQGPaZsoPM2LCdvoD3cIsRRitHKlKJfV5K_jQvylK7tsqO3lQIFw2&t=633979863959332352' type='text/javascript'%3E%3C/script%3E")); </script> <title> </title> <script src="http://ajax.googleapis.com/ajax/libs/jqueryui/1.7.2/jquery-ui.min.js" type="text/javascript"></script> <script type="text/javascript"> if (typeof jQuery != 'object') document.write(unescape("%3Cscript src='/WestWindWebToolkitWeb/scripts/jquery-ui-custom.min.js' type='text/javascript'%3E%3C/script%3E")); </script> <script type="text/javascript"> $().ready(function() { alert('hello'); }); </script> </head> <body> …</body> </html> As you can see there’s a bit more control in this process as you can inject both script includes and script blocks into the document at the top or bottom of the header, plus if necessary at the usual body locations. This is quite useful especially if you create custom server controls that interoperate with script and have certain dependencies. The above is a good example of a useful switchable routine where you can switch where scripts load from by default – the above pulls from Google CDN but a configuration switch may automatically switch to pull from the local development copies if your doing development for example. How does it work? As mentioned the ClientScriptProxy object mimicks many of the ScriptManager script related methods and so provides close API compatibility with it although it contains many additional overloads that enhance functionality. It does however work against ScriptManager if it’s available on the page, or Page.ClientScript if it’s not so it provides a single unified frontend to script access. There are however many overloads of the original SM methods like the above to provide additional functionality. The implementation of script header rendering is pretty straight forward – as long as a server header (ie. it has to have runat=”server” set) is available. Otherwise these routines fall back to using the default document level insertions of ScriptManager/ClientScript. Given that there is a server header it’s relatively easy to generate the script tags and code and append them to the header either at the top or bottom. I suspect Microsoft didn’t provide header rendering functionality precisely because a runat=”server” header is not required by ASP.NET so behavior would be slightly unpredictable. That’s not really a problem for a custom implementation however. Here’s the RegisterClientScriptBlock implementation that takes a ScriptRenderModes parameter to allow header rendering: /// <summary> /// Renders client script block with the option of rendering the script block in /// the Html header /// /// For this to work Header must be defined as runat="server" /// </summary> /// <param name="control">any control that instance typically page</param> /// <param name="type">Type that identifies this rendering</param> /// <param name="key">unique script block id</param> /// <param name="script">The script code to render</param> /// <param name="addScriptTags">Ignored for header rendering used for all other insertions</param> /// <param name="renderMode">Where the block is rendered</param> public void RegisterClientScriptBlock(Control control, Type type, string key, string script, bool addScriptTags, ScriptRenderModes renderMode) { if (renderMode == ScriptRenderModes.Inherit) renderMode = DefaultScriptRenderMode; if (control.Page.Header == null || renderMode != ScriptRenderModes.HeaderTop && renderMode != ScriptRenderModes.Header && renderMode != ScriptRenderModes.BottomOfPage) { RegisterClientScriptBlock(control, type, key, script, addScriptTags); return; } // No dupes - ref script include only once const string identifier = "scriptblock_"; if (HttpContext.Current.Items.Contains(identifier + key)) return; HttpContext.Current.Items.Add(identifier + key, string.Empty); StringBuilder sb = new StringBuilder(); // Embed in header sb.AppendLine("\r\n<script type=\"text/javascript\">"); sb.AppendLine(script); sb.AppendLine("</script>"); int? index = HttpContext.Current.Items["__ScriptResourceIndex"] as int?; if (index == null) index = 0; if (renderMode == ScriptRenderModes.HeaderTop) { control.Page.Header.Controls.AddAt(index.Value, new LiteralControl(sb.ToString())); index++; } else if(renderMode == ScriptRenderModes.Header) control.Page.Header.Controls.Add(new LiteralControl(sb.ToString())); else if (renderMode == ScriptRenderModes.BottomOfPage) control.Page.Controls.AddAt(control.Page.Controls.Count-1,new LiteralControl(sb.ToString())); HttpContext.Current.Items["__ScriptResourceIndex"] = index; } Note that the routine has to keep track of items inserted by id so that if the same item is added again with the same key it won’t generate two script entries. Additionally the code has to keep track of how many insertions have been made at the top of the document so that entries are added in the proper order. The RegisterScriptInclude method is similar but there’s some additional logic in here to deal with script file references and ClientScriptProxy’s (optional) custom resource handler that provides script compression /// <summary> /// Registers a client script reference into the page with the option to specify /// the script location in the page /// </summary> /// <param name="control">Any control instance - typically page</param> /// <param name="type">Type that acts as qualifier (uniqueness)</param> /// <param name="url">the Url to the script resource</param> /// <param name="ScriptRenderModes">Determines where the script is rendered</param> public void RegisterClientScriptInclude(Control control, Type type, string url, ScriptRenderModes renderMode) { const string STR_ScriptResourceIndex = "__ScriptResourceIndex"; if (string.IsNullOrEmpty(url)) return; if (renderMode == ScriptRenderModes.Inherit) renderMode = DefaultScriptRenderMode; // Extract just the script filename string fileId = null; // Check resource IDs and try to match to mapped file resources // Used to allow scripts not to be loaded more than once whether // embedded manually (script tag) or via resources with ClientScriptProxy if (url.Contains(".axd?r=")) { string res = HttpUtility.UrlDecode( StringUtils.ExtractString(url, "?r=", "&", false, true) ); foreach (ScriptResourceAlias item in ScriptResourceAliases) { if (item.Resource == res) { fileId = item.Alias + ".js"; break; } } if (fileId == null) fileId = url.ToLower(); } else fileId = Path.GetFileName(url).ToLower(); // No dupes - ref script include only once const string identifier = "script_"; if (HttpContext.Current.Items.Contains( identifier + fileId ) ) return; HttpContext.Current.Items.Add(identifier + fileId, string.Empty); // just use script manager or ClientScriptManager if (control.Page.Header == null || renderMode == ScriptRenderModes.Script || renderMode == ScriptRenderModes.Inline) { RegisterClientScriptInclude(control, type,url, url); return; } // Retrieve script index in header int? index = HttpContext.Current.Items[STR_ScriptResourceIndex] as int?; if (index == null) index = 0; StringBuilder sb = new StringBuilder(256); url = WebUtils.ResolveUrl(url); // Embed in header sb.AppendLine("\r\n<script src=\"" + url + "\" type=\"text/javascript\"></script>"); if (renderMode == ScriptRenderModes.HeaderTop) { control.Page.Header.Controls.AddAt(index.Value, new LiteralControl(sb.ToString())); index++; } else if (renderMode == ScriptRenderModes.Header) control.Page.Header.Controls.Add(new LiteralControl(sb.ToString())); else if (renderMode == ScriptRenderModes.BottomOfPage) control.Page.Controls.AddAt(control.Page.Controls.Count-1, new LiteralControl(sb.ToString())); HttpContext.Current.Items[STR_ScriptResourceIndex] = index; } There’s a little more code here that deals with cleaning up the passed in Url and also some custom handling of script resources that run through the ScriptCompressionModule – any script resources loaded in this fashion are automatically cached based on the resource id. Raw urls extract just the filename from the URL and cache based on that. All of this to avoid doubling up of scripts if called multiple times by multiple instances of the same control for example or several controls that all load the same resources/includes. Finally RegisterClientScriptResource utilizes the previous method to wrap the WebResourceUrl as well as some custom functionality for the resource compression module: /// <summary> /// Returns a WebResource or ScriptResource URL for script resources that are to be /// embedded as script includes. /// </summary> /// <param name="control">Any control</param> /// <param name="type">A type in assembly where resources are located</param> /// <param name="resourceName">Name of the resource to load</param> /// <param name="renderMode">Determines where in the document the link is rendered</param> public void RegisterClientScriptResource(Control control, Type type, string resourceName, ScriptRenderModes renderMode) { string resourceUrl = GetClientScriptResourceUrl(control, type, resourceName); RegisterClientScriptInclude(control, type, resourceUrl, renderMode); } /// <summary> /// Works like GetWebResourceUrl but can be used with javascript resources /// to allow using of resource compression (if the module is loaded). /// </summary> /// <param name="control"></param> /// <param name="type"></param> /// <param name="resourceName"></param> /// <returns></returns> public string GetClientScriptResourceUrl(Control control, Type type, string resourceName) { #if IncludeScriptCompressionModuleSupport // If wwScriptCompression Module through Web.config is loaded use it to compress // script resources by using wcSC.axd Url the module intercepts if (ScriptCompressionModule.ScriptCompressionModuleActive) { string url = "~/wwSC.axd?r=" + HttpUtility.UrlEncode(resourceName); if (type.Assembly != GetType().Assembly) url += "&t=" + HttpUtility.UrlEncode(type.FullName); return WebUtils.ResolveUrl(url); } #endif return control.Page.ClientScript.GetWebResourceUrl(type, resourceName); } This code merely retrieves the resource URL and then simply calls back to RegisterClientScriptInclude with the URL to be embedded which means there’s nothing specific to deal with other than the custom compression module logic which is nice and easy. What else is there in ClientScriptProxy? ClientscriptProxy also provides a few other useful services beyond what I’ve already covered here: Transparent ScriptManager and ClientScript calls ClientScriptProxy includes a host of routines that help figure out whether a script manager is available or not and all functions in this class call the appropriate object – ScriptManager or ClientScript – that is available in the current page to ensure that scripts get embedded into pages properly. This is especially useful for control development where controls have no control over the scripting environment in place on the page. RegisterCssLink and RegisterCssResource Much like the script embedding functions these two methods allow embedding of CSS links. CSS links are appended to the header or to a form declared with runat=”server”. LoadControlScript Is a high level resource loading routine that can be used to easily switch between different script linking modes. It supports loading from a WebResource, a url or not loading anything at all. This is very useful if you build controls that deal with specification of resource urls/ids in a standard way. Check out the full Code You can check out the full code to the ClientScriptProxyClass here: ClientScriptProxy.cs ClientScriptProxy Documentation (class reference) Note that the ClientScriptProxy has a few dependencies in the West Wind Web Toolkit of which it is part of. ControlResources holds a few standard constants and script resource links and the ScriptCompressionModule which is referenced in a few of the script inclusion methods. There’s also another useful ScriptContainer companion control  to the ClientScriptProxy that allows scripts to be placed onto the page’s markup including the ability to specify the script location and script minification options. You can find all the dependencies in the West Wind Web Toolkit repository: West Wind Web Toolkit Repository West Wind Web Toolkit Home Page© Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  JavaScript  

    Read the article

  • Rendering ASP.NET MVC Views to String

    - by Rick Strahl
    It's not uncommon in my applications that I require longish text output that does not have to be rendered into the HTTP output stream. The most common scenario I have for 'template driven' non-Web text is for emails of all sorts. Logon confirmations and verifications, email confirmations for things like orders, status updates or scheduler notifications - all of which require merged text output both within and sometimes outside of Web applications. On other occasions I also need to capture the output from certain views for logging purposes. Rather than creating text output in code, it's much nicer to use the rendering mechanism that ASP.NET MVC already provides by way of it's ViewEngines - using Razor or WebForms views - to render output to a string. This is nice because it uses the same familiar rendering mechanism that I already use for my HTTP output and it also solves the problem of where to store the templates for rendering this content in nothing more than perhaps a separate view folder. The good news is that ASP.NET MVC's rendering engine is much more modular than the full ASP.NET runtime engine which was a real pain in the butt to coerce into rendering output to string. With MVC the rendering engine has been separated out from core ASP.NET runtime, so it's actually a lot easier to get View output into a string. Getting View Output from within an MVC Application If you need to generate string output from an MVC and pass some model data to it, the process to capture this output is fairly straight forward and involves only a handful of lines of code. The catch is that this particular approach requires that you have an active ControllerContext that can be passed to the view. This means that the following approach is limited to access from within Controller methods. Here's a class that wraps the process and provides both instance and static methods to handle the rendering:/// <summary> /// Class that renders MVC views to a string using the /// standard MVC View Engine to render the view. /// /// Note: This class can only be used within MVC /// applications that have an active ControllerContext. /// </summary> public class ViewRenderer { /// <summary> /// Required Controller Context /// </summary> protected ControllerContext Context { get; set; } public ViewRenderer(ControllerContext controllerContext) { Context = controllerContext; } /// <summary> /// Renders a full MVC view to a string. Will render with the full MVC /// View engine including running _ViewStart and merging into _Layout /// </summary> /// <param name="viewPath"> /// The path to the view to render. Either in same controller, shared by /// name or as fully qualified ~/ path including extension /// </param> /// <param name="model">The model to render the view with</param> /// <returns>String of the rendered view or null on error</returns> public string RenderView(string viewPath, object model) { return RenderViewToStringInternal(viewPath, model, false); } /// <summary> /// Renders a partial MVC view to string. Use this method to render /// a partial view that doesn't merge with _Layout and doesn't fire /// _ViewStart. /// </summary> /// <param name="viewPath"> /// The path to the view to render. Either in same controller, shared by /// name or as fully qualified ~/ path including extension /// </param> /// <param name="model">The model to pass to the viewRenderer</param> /// <returns>String of the rendered view or null on error</returns> public string RenderPartialView(string viewPath, object model) { return RenderViewToStringInternal(viewPath, model, true); } public static string RenderView(string viewPath, object model, ControllerContext controllerContext) { ViewRenderer renderer = new ViewRenderer(controllerContext); return renderer.RenderView(viewPath, model); } public static string RenderPartialView(string viewPath, object model, ControllerContext controllerContext) { ViewRenderer renderer = new ViewRenderer(controllerContext); return renderer.RenderPartialView(viewPath, model); } protected string RenderViewToStringInternal(string viewPath, object model, bool partial = false) { // first find the ViewEngine for this view ViewEngineResult viewEngineResult = null; if (partial) viewEngineResult = ViewEngines.Engines.FindPartialView(Context, viewPath); else viewEngineResult = ViewEngines.Engines.FindView(Context, viewPath, null); if (viewEngineResult == null) throw new FileNotFoundException(Properties.Resources.ViewCouldNotBeFound); // get the view and attach the model to view data var view = viewEngineResult.View; Context.Controller.ViewData.Model = model; string result = null; using (var sw = new StringWriter()) { var ctx = new ViewContext(Context, view, Context.Controller.ViewData, Context.Controller.TempData, sw); view.Render(ctx, sw); result = sw.ToString(); } return result; } } The key is the RenderViewToStringInternal method. The method first tries to find the view to render based on its path which can either be in the current controller's view path or the shared view path using its simple name (PasswordRecovery) or alternately by its full virtual path (~/Views/Templates/PasswordRecovery.cshtml). This code should work both for Razor and WebForms views although I've only tried it with Razor Views. Note that WebForms Views might actually be better for plain text as Razor adds all sorts of white space into its output when there are code blocks in the template. The Web Forms engine provides more accurate rendering for raw text scenarios. Once a view engine is found the view to render can be retrieved. Views in MVC render based on data that comes off the controller like the ViewData which contains the model along with the actual ViewData and ViewBag. From the View and some of the Context data a ViewContext is created which is then used to render the view with. The View picks up the Model and other data from the ViewContext internally and processes the View the same it would be processed if it were to send its output into the HTTP output stream. The difference is that we can override the ViewContext's output stream which we provide and capture into a StringWriter(). After rendering completes the result holds the output string. If an error occurs the error behavior is similar what you see with regular MVC errors - you get a full yellow screen of death including the view error information with the line of error highlighted. It's your responsibility to handle the error - or let it bubble up to your regular Controller Error filter if you have one. To use the simple class you only need a single line of code if you call the static methods. Here's an example of some Controller code that is used to send a user notification to a customer via email in one of my applications:[HttpPost] public ActionResult ContactSeller(ContactSellerViewModel model) { InitializeViewModel(model); var entryBus = new busEntry(); var entry = entryBus.LoadByDisplayId(model.EntryId); if ( string.IsNullOrEmpty(model.Email) ) entryBus.ValidationErrors.Add("Email address can't be empty.","Email"); if ( string.IsNullOrEmpty(model.Message)) entryBus.ValidationErrors.Add("Message can't be empty.","Message"); model.EntryId = entry.DisplayId; model.EntryTitle = entry.Title; if (entryBus.ValidationErrors.Count > 0) { ErrorDisplay.AddMessages(entryBus.ValidationErrors); ErrorDisplay.ShowError("Please correct the following:"); } else { string message = ViewRenderer.RenderView("~/views/template/ContactSellerEmail.cshtml",model, ControllerContext); string title = entry.Title + " (" + entry.DisplayId + ") - " + App.Configuration.ApplicationName; AppUtils.SendEmail(title, message, model.Email, entry.User.Email, false, false)) } return View(model); } Simple! The view in this case is just a plain MVC view and in this case it's a very simple plain text email message (edited for brevity here) that is created and sent off:@model ContactSellerViewModel @{ Layout = null; }re: @Model.EntryTitle @Model.ListingUrl @Model.Message ** SECURITY ADVISORY - AVOID SCAMS ** Avoid: wiring money, cross-border deals, work-at-home ** Beware: cashier checks, money orders, escrow, shipping ** More Info: @(App.Configuration.ApplicationBaseUrl)scams.html Obviously this is a very simple view (I edited out more from this page to keep it brief) -  but other template views are much more complex HTML documents or long messages that are occasionally updated and they are a perfect fit for Razor rendering. It even works with nested partial views and _layout pages. Partial Rendering Notice that I'm rendering a full View here. In the view I explicitly set the Layout=null to avoid pulling in _layout.cshtml for this view. This can also be controlled externally by calling the RenderPartial method instead: string message = ViewRenderer.RenderPartialView("~/views/template/ContactSellerEmail.cshtml",model, ControllerContext); with this line of code no layout page (or _viewstart) will be loaded, so the output generated is just what's in the view. I find myself using Partials most of the time when rendering templates, since the target of templates usually tend to be emails or other HTML fragment like output, so the RenderPartialView() method is definitely useful to me. Rendering without a ControllerContext The preceding class is great when you're need template rendering from within MVC controller actions or anywhere where you have access to the request Controller. But if you don't have a controller context handy - maybe inside a utility function that is static, a non-Web application, or an operation that runs asynchronously in ASP.NET - which makes using the above code impossible. I haven't found a way to manually create a Controller context to provide the ViewContext() what it needs from outside of the MVC infrastructure. However, there are ways to accomplish this,  but they are a bit more complex. It's possible to host the RazorEngine on your own, which side steps all of the MVC framework and HTTP and just deals with the raw rendering engine. I wrote about this process in Hosting the Razor Engine in Non-Web Applications a long while back. It's quite a process to create a custom Razor engine and runtime, but it allows for all sorts of flexibility. There's also a RazorEngine CodePlex project that does something similar. I've been meaning to check out the latter but haven't gotten around to it since I have my own code to do this. The trick to hosting the RazorEngine to have it behave properly inside of an ASP.NET application and properly cache content so templates aren't constantly rebuild and reparsed. Anyway, in the same app as above I have one scenario where no ControllerContext is available: I have a background scheduler running inside of the app that fires on timed intervals. This process could be external but because it's lightweight we decided to fire it right inside of the ASP.NET app on a separate thread. In my app the code that renders these templates does something like this:var model = new SearchNotificationViewModel() { Entries = entries, Notification = notification, User = user }; // TODO: Need logging for errors sending string razorError = null; var result = AppUtils.RenderRazorTemplate("~/views/template/SearchNotificationTemplate.cshtml", model, razorError); which references a couple of helper functions that set up my RazorFolderHostContainer class:public static string RenderRazorTemplate(string virtualPath, object model,string errorMessage = null) { var razor = AppUtils.CreateRazorHost(); var path = virtualPath.Replace("~/", "").Replace("~", "").Replace("/", "\\"); var merged = razor.RenderTemplateToString(path, model); if (merged == null) errorMessage = razor.ErrorMessage; return merged; } /// <summary> /// Creates a RazorStringHostContainer and starts it /// Call .Stop() when you're done with it. /// /// This is a static instance /// </summary> /// <param name="virtualPath"></param> /// <param name="binBasePath"></param> /// <param name="forceLoad"></param> /// <returns></returns> public static RazorFolderHostContainer CreateRazorHost(string binBasePath = null, bool forceLoad = false) { if (binBasePath == null) { if (HttpContext.Current != null) binBasePath = HttpContext.Current.Server.MapPath("~/"); else binBasePath = AppDomain.CurrentDomain.BaseDirectory; } if (_RazorHost == null || forceLoad) { if (!binBasePath.EndsWith("\\")) binBasePath += "\\"; //var razor = new RazorStringHostContainer(); var razor = new RazorFolderHostContainer(); razor.TemplatePath = binBasePath; binBasePath += "bin\\"; razor.BaseBinaryFolder = binBasePath; razor.UseAppDomain = false; razor.ReferencedAssemblies.Add(binBasePath + "ClassifiedsBusiness.dll"); razor.ReferencedAssemblies.Add(binBasePath + "ClassifiedsWeb.dll"); razor.ReferencedAssemblies.Add(binBasePath + "Westwind.Utilities.dll"); razor.ReferencedAssemblies.Add(binBasePath + "Westwind.Web.dll"); razor.ReferencedAssemblies.Add(binBasePath + "Westwind.Web.Mvc.dll"); razor.ReferencedAssemblies.Add("System.Web.dll"); razor.ReferencedNamespaces.Add("System.Web"); razor.ReferencedNamespaces.Add("ClassifiedsBusiness"); razor.ReferencedNamespaces.Add("ClassifiedsWeb"); razor.ReferencedNamespaces.Add("Westwind.Web"); razor.ReferencedNamespaces.Add("Westwind.Utilities"); _RazorHost = razor; _RazorHost.Start(); //_RazorHost.Engine.Configuration.CompileToMemory = false; } return _RazorHost; } The RazorFolderHostContainer essentially is a full runtime that mimics a folder structure like a typical Web app does including caching semantics and compiling code only if code changes on disk. It maps a folder hierarchy to views using the ~/ path syntax. The host is then configured to add assemblies and namespaces. Unfortunately the engine is not exactly like MVC's Razor - the expression expansion and code execution are the same, but some of the support methods like sections, helpers etc. are not all there so templates have to be a bit simpler. There are other folder hosts provided as well to directly execute templates from strings (using RazorStringHostContainer). The following is an example of an HTML email template @inherits RazorHosting.RazorTemplateFolderHost <ClassifiedsWeb.SearchNotificationViewModel> <html> <head> <title>Search Notifications</title> <style> body { margin: 5px;font-family: Verdana, Arial; font-size: 10pt;} h3 { color: SteelBlue; } .entry-item { border-bottom: 1px solid grey; padding: 8px; margin-bottom: 5px; } </style> </head> <body> Hello @Model.User.Name,<br /> <p>Below are your Search Results for the search phrase:</p> <h3>@Model.Notification.SearchPhrase</h3> <small>since @TimeUtils.ShortDateString(Model.Notification.LastSearch)</small> <hr /> You can see that the syntax is a little different. Instead of the familiar @model header the raw Razor  @inherits tag is used to specify the template base class (which you can extend). I took a quick look through the feature set of RazorEngine on CodePlex (now Github I guess) and the template implementation they use is closer to MVC's razor but there are other differences. In the end don't expect exact behavior like MVC templates if you use an external Razor rendering engine. This is not what I would consider an ideal solution, but it works well enough for this project. My biggest concern is the overhead of hosting a second razor engine in a Web app and the fact that here the differences in template rendering between 'real' MVC Razor views and another RazorEngine really are noticeable. You win some, you lose some It's extremely nice to see that if you have a ControllerContext handy (which probably addresses 99% of Web app scenarios) rendering a view to string using the native MVC Razor engine is pretty simple. Kudos on making that happen - as it solves a problem I see in just about every Web application I work on. But it is a bummer that a ControllerContext is required to make this simple code work. It'd be really sweet if there was a way to render views without being so closely coupled to the ASP.NET or MVC infrastructure that requires a ControllerContext. Alternately it'd be nice to have a way for an MVC based application to create a minimal ControllerContext from scratch - maybe somebody's been down that path. I tried for a few hours to come up with a way to make that work but gave up in the soup of nested contexts (MVC/Controller/View/Http). I suspect going down this path would be similar to hosting the ASP.NET runtime requiring a WorkerRequest. Brrr…. The sad part is that it seems to me that a View should really not require much 'context' of any kind to render output to string. Yes there are a few things that clearly are required like paths to the virtual and possibly the disk paths to the root of the app, but beyond that view rendering should not require much. But, no such luck. For now custom RazorHosting seems to be the only way to make Razor rendering go outside of the MVC context… Resources Full ViewRenderer.cs source code from Westwind.Web.Mvc library Hosting the Razor Engine for Non-Web Applications RazorEngine on GitHub© Rick Strahl, West Wind Technologies, 2005-2012Posted in ASP.NET   ASP.NET  MVC   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Camera for 2.5D Game

    - by me--
    I'm hoping someone can explain this to me like I'm 5, because I've been struggling with this for hours and simply cannot understand what I'm doing wrong. I've written a Camera class for my 2.5D game. The intention is to support world and screen spaces like this: The camera is the black thing on the right. The +Z axis is upwards in that image, with -Z heading downwards. As you can see, both world space and screen space have (0, 0) at their top-left. I started writing some unit tests to prove that my camera was working as expected, and that's where things started getting...strange. My tests plot coordinates in world, view, and screen spaces. Eventually I will use image comparison to assert that they are correct, but for now my test just displays the result. The render logic uses Camera.ViewMatrix to transform world space to view space, and Camera.WorldPointToScreen to transform world space to screen space. Here is an example test: [Fact] public void foo() { var camera = new Camera(new Viewport(0, 0, 250, 100)); DrawingVisual worldRender; DrawingVisual viewRender; DrawingVisual screenRender; this.Render(camera, out worldRender, out viewRender, out screenRender, new Vector3(30, 0, 0), new Vector3(30, 40, 0)); this.ShowRenders(camera, worldRender, viewRender, screenRender); } And here's what pops up when I run this test: World space looks OK, although I suspect the z axis is going into the screen instead of towards the viewer. View space has me completely baffled. I was expecting the camera to be sitting above (0, 0) and looking towards the center of the scene. Instead, the z axis seems to be the wrong way around, and the camera is positioned in the opposite corner to what I expect! I suspect screen space will be another thing altogether, but can anyone explain what I'm doing wrong in my Camera class? UPDATE I made some progress in terms of getting things to look visually as I expect, but only through intuition: not an actual understanding of what I'm doing. Any enlightenment would be greatly appreciated. I realized that my view space was flipped both vertically and horizontally compared to what I expected, so I changed my view matrix to scale accordingly: this.viewMatrix = Matrix.CreateLookAt(this.location, this.target, this.up) * Matrix.CreateScale(this.zoom, this.zoom, 1) * Matrix.CreateScale(-1, -1, 1); I could combine the two CreateScale calls, but have left them separate for clarity. Again, I have no idea why this is necessary, but it fixed my view space: But now my screen space needs to be flipped vertically, so I modified my projection matrix accordingly: this.projectionMatrix = Matrix.CreatePerspectiveFieldOfView(0.7853982f, viewport.AspectRatio, 1, 2) * Matrix.CreateScale(1, -1, 1); And this results in what I was expecting from my first attempt: I have also just tried using Camera to render sprites via a SpriteBatch to make sure everything works there too, and it does. But the question remains: why do I need to do all this flipping of axes to get the space coordinates the way I expect? UPDATE 2 I've since improved my rendering logic in my test suite so that it supports geometries and so that lines get lighter the further away they are from the camera. I wanted to do this to avoid optical illusions and to further prove to myself that I'm looking at what I think I am. Here is an example: In this case, I have 3 geometries: a cube, a sphere, and a polyline on the top face of the cube. Notice how the darkening and lightening of the lines correctly identifies those portions of the geometries closer to the camera. If I remove the negative scaling I had to put in, I see: So you can see I'm still in the same boat - I still need those vertical and horizontal flips in my matrices to get things to appear correctly. In the interests of giving people a repro to play with, here is the complete code needed to generate the above. If you want to run via the test harness, just install the xunit package: Camera.cs: using Microsoft.Xna.Framework; using Microsoft.Xna.Framework.Graphics; using System.Diagnostics; public sealed class Camera { private readonly Viewport viewport; private readonly Matrix projectionMatrix; private Matrix? viewMatrix; private Vector3 location; private Vector3 target; private Vector3 up; private float zoom; public Camera(Viewport viewport) { this.viewport = viewport; // for an explanation of the negative scaling, see: http://gamedev.stackexchange.com/questions/63409/ this.projectionMatrix = Matrix.CreatePerspectiveFieldOfView(0.7853982f, viewport.AspectRatio, 1, 2) * Matrix.CreateScale(1, -1, 1); // defaults this.location = new Vector3(this.viewport.Width / 2, this.viewport.Height, 100); this.target = new Vector3(this.viewport.Width / 2, this.viewport.Height / 2, 0); this.up = new Vector3(0, 0, 1); this.zoom = 1; } public Viewport Viewport { get { return this.viewport; } } public Vector3 Location { get { return this.location; } set { this.location = value; this.viewMatrix = null; } } public Vector3 Target { get { return this.target; } set { this.target = value; this.viewMatrix = null; } } public Vector3 Up { get { return this.up; } set { this.up = value; this.viewMatrix = null; } } public float Zoom { get { return this.zoom; } set { this.zoom = value; this.viewMatrix = null; } } public Matrix ProjectionMatrix { get { return this.projectionMatrix; } } public Matrix ViewMatrix { get { if (this.viewMatrix == null) { // for an explanation of the negative scaling, see: http://gamedev.stackexchange.com/questions/63409/ this.viewMatrix = Matrix.CreateLookAt(this.location, this.target, this.up) * Matrix.CreateScale(this.zoom) * Matrix.CreateScale(-1, -1, 1); } return this.viewMatrix.Value; } } public Vector2 WorldPointToScreen(Vector3 point) { var result = viewport.Project(point, this.ProjectionMatrix, this.ViewMatrix, Matrix.Identity); return new Vector2(result.X, result.Y); } public void WorldPointsToScreen(Vector3[] points, Vector2[] destination) { Debug.Assert(points != null); Debug.Assert(destination != null); Debug.Assert(points.Length == destination.Length); for (var i = 0; i < points.Length; ++i) { destination[i] = this.WorldPointToScreen(points[i]); } } } CameraFixture.cs: using Microsoft.Xna.Framework.Graphics; using System; using System.Collections.Generic; using System.Linq; using System.Windows; using System.Windows.Controls; using System.Windows.Media; using Xunit; using XNA = Microsoft.Xna.Framework; public sealed class CameraFixture { [Fact] public void foo() { var camera = new Camera(new Viewport(0, 0, 250, 100)); DrawingVisual worldRender; DrawingVisual viewRender; DrawingVisual screenRender; this.Render( camera, out worldRender, out viewRender, out screenRender, new Sphere(30, 15) { WorldMatrix = XNA.Matrix.CreateTranslation(155, 50, 0) }, new Cube(30) { WorldMatrix = XNA.Matrix.CreateTranslation(75, 60, 15) }, new PolyLine(new XNA.Vector3(0, 0, 0), new XNA.Vector3(10, 10, 0), new XNA.Vector3(20, 0, 0), new XNA.Vector3(0, 0, 0)) { WorldMatrix = XNA.Matrix.CreateTranslation(65, 55, 30) }); this.ShowRenders(worldRender, viewRender, screenRender); } #region Supporting Fields private static readonly Pen xAxisPen = new Pen(Brushes.Red, 2); private static readonly Pen yAxisPen = new Pen(Brushes.Green, 2); private static readonly Pen zAxisPen = new Pen(Brushes.Blue, 2); private static readonly Pen viewportPen = new Pen(Brushes.Gray, 1); private static readonly Pen nonScreenSpacePen = new Pen(Brushes.Black, 0.5); private static readonly Color geometryBaseColor = Colors.Black; #endregion #region Supporting Methods private void Render(Camera camera, out DrawingVisual worldRender, out DrawingVisual viewRender, out DrawingVisual screenRender, params Geometry[] geometries) { var worldDrawingVisual = new DrawingVisual(); var viewDrawingVisual = new DrawingVisual(); var screenDrawingVisual = new DrawingVisual(); const int axisLength = 15; using (var worldDrawingContext = worldDrawingVisual.RenderOpen()) using (var viewDrawingContext = viewDrawingVisual.RenderOpen()) using (var screenDrawingContext = screenDrawingVisual.RenderOpen()) { // draw lines around the camera's viewport var viewportBounds = camera.Viewport.Bounds; var viewportLines = new Tuple<int, int, int, int>[] { Tuple.Create(viewportBounds.Left, viewportBounds.Bottom, viewportBounds.Left, viewportBounds.Top), Tuple.Create(viewportBounds.Left, viewportBounds.Top, viewportBounds.Right, viewportBounds.Top), Tuple.Create(viewportBounds.Right, viewportBounds.Top, viewportBounds.Right, viewportBounds.Bottom), Tuple.Create(viewportBounds.Right, viewportBounds.Bottom, viewportBounds.Left, viewportBounds.Bottom) }; foreach (var viewportLine in viewportLines) { var viewStart = XNA.Vector3.Transform(new XNA.Vector3(viewportLine.Item1, viewportLine.Item2, 0), camera.ViewMatrix); var viewEnd = XNA.Vector3.Transform(new XNA.Vector3(viewportLine.Item3, viewportLine.Item4, 0), camera.ViewMatrix); var screenStart = camera.WorldPointToScreen(new XNA.Vector3(viewportLine.Item1, viewportLine.Item2, 0)); var screenEnd = camera.WorldPointToScreen(new XNA.Vector3(viewportLine.Item3, viewportLine.Item4, 0)); worldDrawingContext.DrawLine(viewportPen, new Point(viewportLine.Item1, viewportLine.Item2), new Point(viewportLine.Item3, viewportLine.Item4)); viewDrawingContext.DrawLine(viewportPen, new Point(viewStart.X, viewStart.Y), new Point(viewEnd.X, viewEnd.Y)); screenDrawingContext.DrawLine(viewportPen, new Point(screenStart.X, screenStart.Y), new Point(screenEnd.X, screenEnd.Y)); } // draw axes var axisLines = new Tuple<int, int, int, int, int, int, Pen>[] { Tuple.Create(0, 0, 0, axisLength, 0, 0, xAxisPen), Tuple.Create(0, 0, 0, 0, axisLength, 0, yAxisPen), Tuple.Create(0, 0, 0, 0, 0, axisLength, zAxisPen) }; foreach (var axisLine in axisLines) { var viewStart = XNA.Vector3.Transform(new XNA.Vector3(axisLine.Item1, axisLine.Item2, axisLine.Item3), camera.ViewMatrix); var viewEnd = XNA.Vector3.Transform(new XNA.Vector3(axisLine.Item4, axisLine.Item5, axisLine.Item6), camera.ViewMatrix); var screenStart = camera.WorldPointToScreen(new XNA.Vector3(axisLine.Item1, axisLine.Item2, axisLine.Item3)); var screenEnd = camera.WorldPointToScreen(new XNA.Vector3(axisLine.Item4, axisLine.Item5, axisLine.Item6)); worldDrawingContext.DrawLine(axisLine.Item7, new Point(axisLine.Item1, axisLine.Item2), new Point(axisLine.Item4, axisLine.Item5)); viewDrawingContext.DrawLine(axisLine.Item7, new Point(viewStart.X, viewStart.Y), new Point(viewEnd.X, viewEnd.Y)); screenDrawingContext.DrawLine(axisLine.Item7, new Point(screenStart.X, screenStart.Y), new Point(screenEnd.X, screenEnd.Y)); } // for all points in all geometries to be rendered, find the closest and furthest away from the camera so we can lighten lines that are further away var distancesToAllGeometrySections = from geometry in geometries let geometryViewMatrix = geometry.WorldMatrix * camera.ViewMatrix from section in geometry.Sections from point in new XNA.Vector3[] { section.Item1, section.Item2 } let viewPoint = XNA.Vector3.Transform(point, geometryViewMatrix) select viewPoint.Length(); var furthestDistance = distancesToAllGeometrySections.Max(); var closestDistance = distancesToAllGeometrySections.Min(); var deltaDistance = Math.Max(0.000001f, furthestDistance - closestDistance); // draw each geometry for (var i = 0; i < geometries.Length; ++i) { var geometry = geometries[i]; // there's probably a more correct name for this, but basically this gets the geometry relative to the camera so we can check how far away each point is from the camera var geometryViewMatrix = geometry.WorldMatrix * camera.ViewMatrix; // we order roughly by those sections furthest from the camera to those closest, so that the closer ones "overwrite" the ones further away var orderedSections = from section in geometry.Sections let startPointRelativeToCamera = XNA.Vector3.Transform(section.Item1, geometryViewMatrix) let endPointRelativeToCamera = XNA.Vector3.Transform(section.Item2, geometryViewMatrix) let startPointDistance = startPointRelativeToCamera.Length() let endPointDistance = endPointRelativeToCamera.Length() orderby (startPointDistance + endPointDistance) descending select new { Section = section, DistanceToStart = startPointDistance, DistanceToEnd = endPointDistance }; foreach (var orderedSection in orderedSections) { var start = XNA.Vector3.Transform(orderedSection.Section.Item1, geometry.WorldMatrix); var end = XNA.Vector3.Transform(orderedSection.Section.Item2, geometry.WorldMatrix); var viewStart = XNA.Vector3.Transform(start, camera.ViewMatrix); var viewEnd = XNA.Vector3.Transform(end, camera.ViewMatrix); worldDrawingContext.DrawLine(nonScreenSpacePen, new Point(start.X, start.Y), new Point(end.X, end.Y)); viewDrawingContext.DrawLine(nonScreenSpacePen, new Point(viewStart.X, viewStart.Y), new Point(viewEnd.X, viewEnd.Y)); // screen rendering is more complicated purely because I wanted geometry to fade the further away it is from the camera // otherwise, it's very hard to tell whether the rendering is actually correct or not var startDistanceRatio = (orderedSection.DistanceToStart - closestDistance) / deltaDistance; var endDistanceRatio = (orderedSection.DistanceToEnd - closestDistance) / deltaDistance; // lerp towards white based on distance from camera, but only to a maximum of 90% var startColor = Lerp(geometryBaseColor, Colors.White, startDistanceRatio * 0.9f); var endColor = Lerp(geometryBaseColor, Colors.White, endDistanceRatio * 0.9f); var screenStart = camera.WorldPointToScreen(start); var screenEnd = camera.WorldPointToScreen(end); var brush = new LinearGradientBrush { StartPoint = new Point(screenStart.X, screenStart.Y), EndPoint = new Point(screenEnd.X, screenEnd.Y), MappingMode = BrushMappingMode.Absolute }; brush.GradientStops.Add(new GradientStop(startColor, 0)); brush.GradientStops.Add(new GradientStop(endColor, 1)); var pen = new Pen(brush, 1); brush.Freeze(); pen.Freeze(); screenDrawingContext.DrawLine(pen, new Point(screenStart.X, screenStart.Y), new Point(screenEnd.X, screenEnd.Y)); } } } worldRender = worldDrawingVisual; viewRender = viewDrawingVisual; screenRender = screenDrawingVisual; } private static float Lerp(float start, float end, float amount) { var difference = end - start; var adjusted = difference * amount; return start + adjusted; } private static Color Lerp(Color color, Color to, float amount) { var sr = color.R; var sg = color.G; var sb = color.B; var er = to.R; var eg = to.G; var eb = to.B; var r = (byte)Lerp(sr, er, amount); var g = (byte)Lerp(sg, eg, amount); var b = (byte)Lerp(sb, eb, amount); return Color.FromArgb(255, r, g, b); } private void ShowRenders(DrawingVisual worldRender, DrawingVisual viewRender, DrawingVisual screenRender) { var itemsControl = new ItemsControl(); itemsControl.Items.Add(new HeaderedContentControl { Header = "World", Content = new DrawingVisualHost(worldRender)}); itemsControl.Items.Add(new HeaderedContentControl { Header = "View", Content = new DrawingVisualHost(viewRender) }); itemsControl.Items.Add(new HeaderedContentControl { Header = "Screen", Content = new DrawingVisualHost(screenRender) }); var window = new Window { Title = "Renders", Content = itemsControl, ShowInTaskbar = true, SizeToContent = SizeToContent.WidthAndHeight }; window.ShowDialog(); } #endregion #region Supporting Types // stupidly simple 3D geometry class, consisting of a series of sections that will be connected by lines private abstract class Geometry { public abstract IEnumerable<Tuple<XNA.Vector3, XNA.Vector3>> Sections { get; } public XNA.Matrix WorldMatrix { get; set; } } private sealed class Line : Geometry { private readonly XNA.Vector3 magnitude; public Line(XNA.Vector3 magnitude) { this.magnitude = magnitude; } public override IEnumerable<Tuple<XNA.Vector3, XNA.Vector3>> Sections { get { yield return Tuple.Create(XNA.Vector3.Zero, this.magnitude); } } } private sealed class PolyLine : Geometry { private readonly XNA.Vector3[] points; public PolyLine(params XNA.Vector3[] points) { this.points = points; } public override IEnumerable<Tuple<XNA.Vector3, XNA.Vector3>> Sections { get { if (this.points.Length < 2) { yield break; } var end = this.points[0]; for (var i = 1; i < this.points.Length; ++i) { var start = end; end = this.points[i]; yield return Tuple.Create(start, end); } } } } private sealed class Cube : Geometry { private readonly float size; public Cube(float size) { this.size = size; } public override IEnumerable<Tuple<XNA.Vector3, XNA.Vector3>> Sections { get { var halfSize = this.size / 2; var frontBottomLeft = new XNA.Vector3(-halfSize, halfSize, -halfSize); var frontBottomRight = new XNA.Vector3(halfSize, halfSize, -halfSize); var frontTopLeft = new XNA.Vector3(-halfSize, halfSize, halfSize); var frontTopRight = new XNA.Vector3(halfSize, halfSize, halfSize); var backBottomLeft = new XNA.Vector3(-halfSize, -halfSize, -halfSize); var backBottomRight = new XNA.Vector3(halfSize, -halfSize, -halfSize); var backTopLeft = new XNA.Vector3(-halfSize, -halfSize, halfSize); var backTopRight = new XNA.Vector3(halfSize, -halfSize, halfSize); // front face yield return Tuple.Create(frontBottomLeft, frontBottomRight); yield return Tuple.Create(frontBottomLeft, frontTopLeft); yield return Tuple.Create(frontTopLeft, frontTopRight); yield return Tuple.Create(frontTopRight, frontBottomRight); // left face yield return Tuple.Create(frontTopLeft, backTopLeft); yield return Tuple.Create(backTopLeft, backBottomLeft); yield return Tuple.Create(backBottomLeft, frontBottomLeft); // right face yield return Tuple.Create(frontTopRight, backTopRight); yield return Tuple.Create(backTopRight, backBottomRight); yield return Tuple.Create(backBottomRight, frontBottomRight); // back face yield return Tuple.Create(backBottomLeft, backBottomRight); yield return Tuple.Create(backTopLeft, backTopRight); } } } private sealed class Sphere : Geometry { private readonly float radius; private readonly int subsections; public Sphere(float radius, int subsections) { this.radius = radius; this.subsections = subsections; } public override IEnumerable<Tuple<XNA.Vector3, XNA.Vector3>> Sections { get { var latitudeLines = this.subsections; var longitudeLines = this.subsections; // see http://stackoverflow.com/a/4082020/5380 var results = from latitudeLine in Enumerable.Range(0, latitudeLines) from longitudeLine in Enumerable.Range(0, longitudeLines) let latitudeRatio = latitudeLine / (float)latitudeLines let longitudeRatio = longitudeLine / (float)longitudeLines let nextLatitudeRatio = (latitudeLine + 1) / (float)latitudeLines let nextLongitudeRatio = (longitudeLine + 1) / (float)longitudeLines let z1 = Math.Cos(Math.PI * latitudeRatio) let z2 = Math.Cos(Math.PI * nextLatitudeRatio) let x1 = Math.Sin(Math.PI * latitudeRatio) * Math.Cos(Math.PI * 2 * longitudeRatio) let y1 = Math.Sin(Math.PI * latitudeRatio) * Math.Sin(Math.PI * 2 * longitudeRatio) let x2 = Math.Sin(Math.PI * nextLatitudeRatio) * Math.Cos(Math.PI * 2 * longitudeRatio) let y2 = Math.Sin(Math.PI * nextLatitudeRatio) * Math.Sin(Math.PI * 2 * longitudeRatio) let x3 = Math.Sin(Math.PI * latitudeRatio) * Math.Cos(Math.PI * 2 * nextLongitudeRatio) let y3 = Math.Sin(Math.PI * latitudeRatio) * Math.Sin(Math.PI * 2 * nextLongitudeRatio) let start = new XNA.Vector3((float)x1 * radius, (float)y1 * radius, (float)z1 * radius) let firstEnd = new XNA.Vector3((float)x2 * radius, (float)y2 * radius, (float)z2 * radius) let secondEnd = new XNA.Vector3((float)x3 * radius, (float)y3 * radius, (float)z1 * radius) select new { First = Tuple.Create(start, firstEnd), Second = Tuple.Create(start, secondEnd) }; foreach (var result in results) { yield return result.First; yield return result.Second; } } } } #endregion }

    Read the article

  • Creating Custom Ajax Control Toolkit Controls

    - by Stephen Walther
    The goal of this blog entry is to explain how you can extend the Ajax Control Toolkit with custom Ajax Control Toolkit controls. I describe how you can create the two halves of an Ajax Control Toolkit control: the server-side control extender and the client-side control behavior. Finally, I explain how you can use the new Ajax Control Toolkit control in a Web Forms page. At the end of this blog entry, there is a link to download a Visual Studio 2010 solution which contains the code for two Ajax Control Toolkit controls: SampleExtender and PopupHelpExtender. The SampleExtender contains the minimum skeleton for creating a new Ajax Control Toolkit control. You can use the SampleExtender as a starting point for your custom Ajax Control Toolkit controls. The PopupHelpExtender control is a super simple custom Ajax Control Toolkit control. This control extender displays a help message when you start typing into a TextBox control. The animated GIF below demonstrates what happens when you click into a TextBox which has been extended with the PopupHelp extender. Here’s a sample of a Web Forms page which uses the control: <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="ShowPopupHelp.aspx.cs" Inherits="MyACTControls.Web.Default" %> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html > <head runat="server"> <title>Show Popup Help</title> </head> <body> <form id="form1" runat="server"> <div> <act:ToolkitScriptManager ID="tsm" runat="server" /> <%-- Social Security Number --%> <asp:Label ID="lblSSN" Text="SSN:" AssociatedControlID="txtSSN" runat="server" /> <asp:TextBox ID="txtSSN" runat="server" /> <act:PopupHelpExtender id="ph1" TargetControlID="txtSSN" HelpText="Please enter your social security number." runat="server" /> <%-- Social Security Number --%> <asp:Label ID="lblPhone" Text="Phone Number:" AssociatedControlID="txtPhone" runat="server" /> <asp:TextBox ID="txtPhone" runat="server" /> <act:PopupHelpExtender id="ph2" TargetControlID="txtPhone" HelpText="Please enter your phone number." runat="server" /> </div> </form> </body> </html> In the page above, the PopupHelp extender is used to extend the functionality of the two TextBox controls. When focus is given to a TextBox control, the popup help message is displayed. An Ajax Control Toolkit control extender consists of two parts: a server-side control extender and a client-side behavior. For example, the PopupHelp extender consists of a server-side PopupHelpExtender control (PopupHelpExtender.cs) and a client-side PopupHelp behavior JavaScript script (PopupHelpBehavior.js). Over the course of this blog entry, I describe how you can create both the server-side extender and the client-side behavior. Writing the Server-Side Code Creating a Control Extender You create a control extender by creating a class that inherits from the abstract ExtenderControlBase class. For example, the PopupHelpExtender control is declared like this: public class PopupHelpExtender: ExtenderControlBase { } The ExtenderControlBase class is part of the Ajax Control Toolkit. This base class contains all of the common server properties and methods of every Ajax Control Toolkit extender control. The ExtenderControlBase class inherits from the ExtenderControl class. The ExtenderControl class is a standard class in the ASP.NET framework located in the System.Web.UI namespace. This class is responsible for generating a client-side behavior. The class generates a call to the Microsoft Ajax Library $create() method which looks like this: <script type="text/javascript"> $create(MyACTControls.PopupHelpBehavior, {"HelpText":"Please enter your social security number.","id":"ph1"}, null, null, $get("txtSSN")); }); </script> The JavaScript $create() method is part of the Microsoft Ajax Library. The reference for this method can be found here: http://msdn.microsoft.com/en-us/library/bb397487.aspx This method accepts the following parameters: type – The type of client behavior to create. The $create() method above creates a client PopupHelpBehavior. Properties – Enables you to pass initial values for the properties of the client behavior. For example, the initial value of the HelpText property. This is how server property values are passed to the client. Events – Enables you to pass client-side event handlers to the client behavior. References – Enables you to pass references to other client components. Element – The DOM element associated with the client behavior. This will be the DOM element associated with the control being extended such as the txtSSN TextBox. The $create() method is generated for you automatically. You just need to focus on writing the server-side control extender class. Specifying the Target Control All Ajax Control Toolkit extenders inherit a TargetControlID property from the ExtenderControlBase class. This property, the TargetControlID property, points at the control that the extender control extends. For example, the Ajax Control Toolkit TextBoxWatermark control extends a TextBox, the ConfirmButton control extends a Button, and the Calendar control extends a TextBox. You must indicate the type of control which your extender is extending. You indicate the type of control by adding a [TargetControlType] attribute to your control. For example, the PopupHelp extender is declared like this: [TargetControlType(typeof(TextBox))] public class PopupHelpExtender: ExtenderControlBase { } The PopupHelp extender can be used to extend a TextBox control. If you try to use the PopupHelp extender with another type of control then an exception is thrown. If you want to create an extender control which can be used with any type of ASP.NET control (Button, DataView, TextBox or whatever) then use the following attribute: [TargetControlType(typeof(Control))] Decorating Properties with Attributes If you decorate a server-side property with the [ExtenderControlProperty] attribute then the value of the property gets passed to the control’s client-side behavior. The value of the property gets passed to the client through the $create() method discussed above. The PopupHelp control contains the following HelpText property: [ExtenderControlProperty] [RequiredProperty] public string HelpText { get { return GetPropertyValue("HelpText", "Help Text"); } set { SetPropertyValue("HelpText", value); } } The HelpText property determines the help text which pops up when you start typing into a TextBox control. Because the HelpText property is decorated with the [ExtenderControlProperty] attribute, any value assigned to this property on the server is passed to the client automatically. For example, if you declare the PopupHelp extender in a Web Form page like this: <asp:TextBox ID="txtSSN" runat="server" /> <act:PopupHelpExtender id="ph1" TargetControlID="txtSSN" HelpText="Please enter your social security number." runat="server" />   Then the PopupHelpExtender renders the call to the the following Microsoft Ajax Library $create() method: $create(MyACTControls.PopupHelpBehavior, {"HelpText":"Please enter your social security number.","id":"ph1"}, null, null, $get("txtSSN")); You can see this call to the JavaScript $create() method by selecting View Source in your browser. This call to the $create() method calls a method named set_HelpText() automatically and passes the value “Please enter your social security number”. There are several attributes which you can use to decorate server-side properties including: ExtenderControlProperty – When a property is marked with this attribute, the value of the property is passed to the client automatically. ExtenderControlEvent – When a property is marked with this attribute, the property represents a client event handler. Required – When a value is not assigned to this property on the server, an error is displayed. DefaultValue – The default value of the property passed to the client. ClientPropertyName – The name of the corresponding property in the JavaScript behavior. For example, the server-side property is named ID (uppercase) and the client-side property is named id (lower-case). IDReferenceProperty – Applied to properties which refer to the IDs of other controls. URLProperty – Calls ResolveClientURL() to convert from a server-side URL to a URL which can be used on the client. ElementReference – Returns a reference to a DOM element by performing a client $get(). The WebResource, ClientResource, and the RequiredScript Attributes The PopupHelp extender uses three embedded resources named PopupHelpBehavior.js, PopupHelpBehavior.debug.js, and PopupHelpBehavior.css. The first two files are JavaScript files and the final file is a Cascading Style sheet file. These files are compiled as embedded resources. You don’t need to mark them as embedded resources in your Visual Studio solution because they get added to the assembly when the assembly is compiled by a build task. You can see that these files get embedded into the MyACTControls assembly by using Red Gate’s .NET Reflector tool: In order to use these files with the PopupHelp extender, you need to work with both the WebResource and the ClientScriptResource attributes. The PopupHelp extender includes the following three WebResource attributes. [assembly: WebResource("PopupHelp.PopupHelpBehavior.js", "text/javascript")] [assembly: WebResource("PopupHelp.PopupHelpBehavior.debug.js", "text/javascript")] [assembly: WebResource("PopupHelp.PopupHelpBehavior.css", "text/css", PerformSubstitution = true)] These WebResource attributes expose the embedded resource from the assembly so that they can be accessed by using the ScriptResource.axd or WebResource.axd handlers. The first parameter passed to the WebResource attribute is the name of the embedded resource and the second parameter is the content type of the embedded resource. The PopupHelp extender also includes the following ClientScriptResource and ClientCssResource attributes: [ClientScriptResource("MyACTControls.PopupHelpBehavior", "PopupHelp.PopupHelpBehavior.js")] [ClientCssResource("PopupHelp.PopupHelpBehavior.css")] Including these attributes causes the PopupHelp extender to request these resources when you add the PopupHelp extender to a page. If you open View Source in a browser which uses the PopupHelp extender then you will see the following link for the Cascading Style Sheet file: <link href="/WebResource.axd?d=0uONMsWXUuEDG-pbJHAC1kuKiIMteQFkYLmZdkgv7X54TObqYoqVzU4mxvaa4zpn5H9ch0RDwRYKwtO8zM5mKgO6C4WbrbkWWidKR07LD1d4n4i_uNB1mHEvXdZu2Ae5mDdVNDV53znnBojzCzwvSw2&amp;t=634417392021676003" type="text/css" rel="stylesheet" /> You also will see the following script include for the JavaScript file: <script src="/ScriptResource.axd?d=pIS7xcGaqvNLFBvExMBQSp_0xR3mpDfS0QVmmyu1aqDUjF06TrW1jVDyXNDMtBHxpRggLYDvgFTWOsrszflZEDqAcQCg-hDXjun7ON0Ol7EXPQIdOe1GLMceIDv3OeX658-tTq2LGdwXhC1-dE7_6g2&amp;t=ffffffff88a33b59" type="text/javascript"></script> The JavaScrpt file returned by this request to ScriptResource.axd contains the combined scripts for any and all Ajax Control Toolkit controls in a page. By default, the Ajax Control Toolkit combines all of the JavaScript files required by a page into a single JavaScript file. Combining files in this way really speeds up how quickly all of the JavaScript files get delivered from the web server to the browser. So, by default, there will be only one ScriptResource.axd include for all of the JavaScript files required by a page. If you want to disable Script Combining, and create separate links, then disable Script Combining like this: <act:ToolkitScriptManager ID="tsm" runat="server" CombineScripts="false" /> There is one more important attribute used by Ajax Control Toolkit extenders. The PopupHelp behavior uses the following two RequirdScript attributes to load the JavaScript files which are required by the PopupHelp behavior: [RequiredScript(typeof(CommonToolkitScripts), 0)] [RequiredScript(typeof(PopupExtender), 1)] The first parameter of the RequiredScript attribute represents either the string name of a JavaScript file or the type of an Ajax Control Toolkit control. The second parameter represents the order in which the JavaScript files are loaded (This second parameter is needed because .NET attributes are intrinsically unordered). In this case, the RequiredScript attribute will load the JavaScript files associated with the CommonToolkitScripts type and the JavaScript files associated with the PopupExtender in that order. The PopupHelp behavior depends on these JavaScript files. Writing the Client-Side Code The PopupHelp extender uses a client-side behavior written with the Microsoft Ajax Library. Here is the complete code for the client-side behavior: (function () { // The unique name of the script registered with the // client script loader var scriptName = "PopupHelpBehavior"; function execute() { Type.registerNamespace('MyACTControls'); MyACTControls.PopupHelpBehavior = function (element) { /// <summary> /// A behavior which displays popup help for a textbox /// </summmary> /// <param name="element" type="Sys.UI.DomElement">The element to attach to</param> MyACTControls.PopupHelpBehavior.initializeBase(this, [element]); this._textbox = Sys.Extended.UI.TextBoxWrapper.get_Wrapper(element); this._cssClass = "ajax__popupHelp"; this._popupBehavior = null; this._popupPosition = Sys.Extended.UI.PositioningMode.BottomLeft; this._popupDiv = null; this._helpText = "Help Text"; this._element$delegates = { focus: Function.createDelegate(this, this._element_onfocus), blur: Function.createDelegate(this, this._element_onblur) }; } MyACTControls.PopupHelpBehavior.prototype = { initialize: function () { MyACTControls.PopupHelpBehavior.callBaseMethod(this, 'initialize'); // Add event handlers for focus and blur var element = this.get_element(); $addHandlers(element, this._element$delegates); }, _ensurePopup: function () { if (!this._popupDiv) { var element = this.get_element(); var id = this.get_id(); this._popupDiv = $common.createElementFromTemplate({ nodeName: "div", properties: { id: id + "_popupDiv" }, cssClasses: ["ajax__popupHelp"] }, element.parentNode); this._popupBehavior = new $create(Sys.Extended.UI.PopupBehavior, { parentElement: element }, {}, {}, this._popupDiv); this._popupBehavior.set_positioningMode(this._popupPosition); } }, get_HelpText: function () { return this._helpText; }, set_HelpText: function (value) { if (this._HelpText != value) { this._helpText = value; this._ensurePopup(); this._popupDiv.innerHTML = value; this.raisePropertyChanged("Text") } }, _element_onfocus: function (e) { this.show(); }, _element_onblur: function (e) { this.hide(); }, show: function () { this._popupBehavior.show(); }, hide: function () { if (this._popupBehavior) { this._popupBehavior.hide(); } }, dispose: function() { var element = this.get_element(); $clearHandlers(element); if (this._popupBehavior) { this._popupBehavior.dispose(); this._popupBehavior = null; } } }; MyACTControls.PopupHelpBehavior.registerClass('MyACTControls.PopupHelpBehavior', Sys.Extended.UI.BehaviorBase); Sys.registerComponent(MyACTControls.PopupHelpBehavior, { name: "popupHelp" }); } // execute if (window.Sys && Sys.loader) { Sys.loader.registerScript(scriptName, ["ExtendedBase", "ExtendedCommon"], execute); } else { execute(); } })();   In the following sections, we’ll discuss how this client-side behavior works. Wrapping the Behavior for the Script Loader The behavior is wrapped with the following script: (function () { // The unique name of the script registered with the // client script loader var scriptName = "PopupHelpBehavior"; function execute() { // Behavior Content } // execute if (window.Sys && Sys.loader) { Sys.loader.registerScript(scriptName, ["ExtendedBase", "ExtendedCommon"], execute); } else { execute(); } })(); This code is required by the Microsoft Ajax Library Script Loader. You need this code if you plan to use a behavior directly from client-side code and you want to use the Script Loader. If you plan to only use your code in the context of the Ajax Control Toolkit then you can leave out this code. Registering a JavaScript Namespace The PopupHelp behavior is declared within a namespace named MyACTControls. In the code above, this namespace is created with the following registerNamespace() method: Type.registerNamespace('MyACTControls'); JavaScript does not have any built-in way of creating namespaces to prevent naming conflicts. The Microsoft Ajax Library extends JavaScript with support for namespaces. You can learn more about the registerNamespace() method here: http://msdn.microsoft.com/en-us/library/bb397723.aspx Creating the Behavior The actual Popup behavior is created with the following code. MyACTControls.PopupHelpBehavior = function (element) { /// <summary> /// A behavior which displays popup help for a textbox /// </summmary> /// <param name="element" type="Sys.UI.DomElement">The element to attach to</param> MyACTControls.PopupHelpBehavior.initializeBase(this, [element]); this._textbox = Sys.Extended.UI.TextBoxWrapper.get_Wrapper(element); this._cssClass = "ajax__popupHelp"; this._popupBehavior = null; this._popupPosition = Sys.Extended.UI.PositioningMode.BottomLeft; this._popupDiv = null; this._helpText = "Help Text"; this._element$delegates = { focus: Function.createDelegate(this, this._element_onfocus), blur: Function.createDelegate(this, this._element_onblur) }; } MyACTControls.PopupHelpBehavior.prototype = { initialize: function () { MyACTControls.PopupHelpBehavior.callBaseMethod(this, 'initialize'); // Add event handlers for focus and blur var element = this.get_element(); $addHandlers(element, this._element$delegates); }, _ensurePopup: function () { if (!this._popupDiv) { var element = this.get_element(); var id = this.get_id(); this._popupDiv = $common.createElementFromTemplate({ nodeName: "div", properties: { id: id + "_popupDiv" }, cssClasses: ["ajax__popupHelp"] }, element.parentNode); this._popupBehavior = new $create(Sys.Extended.UI.PopupBehavior, { parentElement: element }, {}, {}, this._popupDiv); this._popupBehavior.set_positioningMode(this._popupPosition); } }, get_HelpText: function () { return this._helpText; }, set_HelpText: function (value) { if (this._HelpText != value) { this._helpText = value; this._ensurePopup(); this._popupDiv.innerHTML = value; this.raisePropertyChanged("Text") } }, _element_onfocus: function (e) { this.show(); }, _element_onblur: function (e) { this.hide(); }, show: function () { this._popupBehavior.show(); }, hide: function () { if (this._popupBehavior) { this._popupBehavior.hide(); } }, dispose: function() { var element = this.get_element(); $clearHandlers(element); if (this._popupBehavior) { this._popupBehavior.dispose(); this._popupBehavior = null; } } }; The code above has two parts. The first part of the code is used to define the constructor function for the PopupHelp behavior. This is a factory method which returns an instance of a PopupHelp behavior: MyACTControls.PopupHelpBehavior = function (element) { } The second part of the code modified the prototype for the PopupHelp behavior: MyACTControls.PopupHelpBehavior.prototype = { } Any code which is particular to a single instance of the PopupHelp behavior should be placed in the constructor function. For example, the default value of the _helpText field is assigned in the constructor function: this._helpText = "Help Text"; Any code which is shared among all instances of the PopupHelp behavior should be added to the PopupHelp behavior’s prototype. For example, the public HelpText property is added to the prototype: get_HelpText: function () { return this._helpText; }, set_HelpText: function (value) { if (this._HelpText != value) { this._helpText = value; this._ensurePopup(); this._popupDiv.innerHTML = value; this.raisePropertyChanged("Text") } }, Registering a JavaScript Class After you create the PopupHelp behavior, you must register the behavior as a class by using the Microsoft Ajax registerClass() method like this: MyACTControls.PopupHelpBehavior.registerClass('MyACTControls.PopupHelpBehavior', Sys.Extended.UI.BehaviorBase); This call to registerClass() registers PopupHelp behavior as a class which derives from the base Sys.Extended.UI.BehaviorBase class. Like the ExtenderControlBase class on the server side, the BehaviorBase class on the client side contains method used by every behavior. The documentation for the BehaviorBase class can be found here: http://msdn.microsoft.com/en-us/library/bb311020.aspx The most important methods and properties of the BehaviorBase class are the following: dispose() – Use this method to clean up all resources used by your behavior. In the case of the PopupHelp behavior, the dispose() method is used to remote the event handlers created by the behavior and disposed the Popup behavior. get_element() -- Use this property to get the DOM element associated with the behavior. In other words, the DOM element which the behavior extends. get_id() – Use this property to the ID of the current behavior. initialize() – Use this method to initialize the behavior. This method is called after all of the properties are set by the $create() method. Creating Debug and Release Scripts You might have noticed that the PopupHelp behavior uses two scripts named PopupHelpBehavior.js and PopupHelpBehavior.debug.js. However, you never create these two scripts. Instead, you only create a single script named PopupHelpBehavior.pre.js. The pre in PopupHelpBehavior.pre.js stands for preprocessor. When you build the Ajax Control Toolkit (or the sample Visual Studio Solution at the end of this blog entry), a build task named JSBuild generates the PopupHelpBehavior.js release script and PopupHelpBehavior.debug.js debug script automatically. The JSBuild preprocessor supports the following directives: #IF #ELSE #ENDIF #INCLUDE #LOCALIZE #DEFINE #UNDEFINE The preprocessor directives are used to mark code which should only appear in the debug version of the script. The directives are used extensively in the Microsoft Ajax Library. For example, the Microsoft Ajax Library Array.contains() method is created like this: $type.contains = function Array$contains(array, item) { //#if DEBUG var e = Function._validateParams(arguments, [ {name: "array", type: Array, elementMayBeNull: true}, {name: "item", mayBeNull: true} ]); if (e) throw e; //#endif return (indexOf(array, item) >= 0); } Notice that you add each of the preprocessor directives inside a JavaScript comment. The comment prevents Visual Studio from getting confused with its Intellisense. The release version, but not the debug version, of the PopupHelpBehavior script is also minified automatically by the Microsoft Ajax Minifier. The minifier is invoked by a build step in the project file. Conclusion The goal of this blog entry was to explain how you can create custom AJAX Control Toolkit controls. In the first part of this blog entry, you learned how to create the server-side portion of an Ajax Control Toolkit control. You learned how to derive a new control from the ExtenderControlBase class and decorate its properties with the necessary attributes. Next, in the second part of this blog entry, you learned how to create the client-side portion of an Ajax Control Toolkit control by creating a client-side behavior with JavaScript. You learned how to use the methods of the Microsoft Ajax Library to extend your client behavior from the BehaviorBase class. Download the Custom ACT Starter Solution

    Read the article

  • Node.js Adventure - When Node Flying in Wind

    - by Shaun
    In the first post of this series I mentioned some popular modules in the community, such as underscore, async, etc.. I also listed a module named “Wind (zh-CN)”, which is created by one of my friend, Jeff Zhao (zh-CN). Now I would like to use a separated post to introduce this module since I feel it brings a new async programming style in not only Node.js but JavaScript world. If you know or heard about the new feature in C# 5.0 called “async and await”, or you learnt F#, you will find the “Wind” brings the similar async programming experience in JavaScript. By using “Wind”, we can write async code that looks like the sync code. The callbacks, async stats and exceptions will be handled by “Wind” automatically and transparently.   What’s the Problem: Dense “Callback” Phobia Let’s firstly back to my second post in this series. As I mentioned in that post, when we wanted to read some records from SQL Server we need to open the database connection, and then execute the query. In Node.js all IO operation are designed as async callback pattern which means when the operation was done, it will invoke a function which was taken from the last parameter. For example the database connection opening code would be like this. 1: sql.open(connectionString, function(error, conn) { 2: if(error) { 3: // some error handling code 4: } 5: else { 6: // connection opened successfully 7: } 8: }); And then if we need to query the database the code would be like this. It nested in the previous function. 1: sql.open(connectionString, function(error, conn) { 2: if(error) { 3: // some error handling code 4: } 5: else { 6: // connection opened successfully 7: conn.queryRaw(command, function(error, results) { 8: if(error) { 9: // failed to execute this command 10: } 11: else { 12: // records retrieved successfully 13: } 14: }; 15: } 16: }); Assuming if we need to copy some data from this database to another then we need to open another connection and execute the command within the function under the query function. 1: sql.open(connectionString, function(error, conn) { 2: if(error) { 3: // some error handling code 4: } 5: else { 6: // connection opened successfully 7: conn.queryRaw(command, function(error, results) { 8: if(error) { 9: // failed to execute this command 10: } 11: else { 12: // records retrieved successfully 13: target.open(targetConnectionString, function(error, t_conn) { 14: if(error) { 15: // connect failed 16: } 17: else { 18: t_conn.queryRaw(copy_command, function(error, results) { 19: if(error) { 20: // copy failed 21: } 22: else { 23: // and then, what do you want to do now... 24: } 25: }; 26: } 27: }; 28: } 29: }; 30: } 31: }); This is just an example. In the real project the logic would be more complicated. This means our application might be messed up and the business process will be fragged by many callback functions. I would like call this “Dense Callback Phobia”. This might be a challenge how to make code straightforward and easy to read, something like below. 1: try 2: { 3: // open source connection 4: var s_conn = sqlConnect(s_connectionString); 5: // retrieve data 6: var results = sqlExecuteCommand(s_conn, s_command); 7: 8: // open target connection 9: var t_conn = sqlConnect(t_connectionString); 10: // prepare the copy command 11: var t_command = getCopyCommand(results); 12: // execute the copy command 13: sqlExecuteCommand(s_conn, t_command); 14: } 15: catch (ex) 16: { 17: // error handling 18: }   What’s the Problem: Sync-styled Async Programming Similar as the previous problem, the callback-styled async programming model makes the upcoming operation as a part of the current operation, and mixed with the error handling code. So it’s very hard to understand what on earth this code will do. And since Node.js utilizes non-blocking IO mode, we cannot invoke those operations one by one, as they will be executed concurrently. For example, in this post when I tried to copy the records from Windows Azure SQL Database (a.k.a. WASD) to Windows Azure Table Storage, if I just insert the data into table storage one by one and then print the “Finished” message, I will see the message shown before the data had been copied. This is because all operations were executed at the same time. In order to make the copy operation and print operation executed synchronously I introduced a module named “async” and the code was changed as below. 1: async.forEach(results.rows, 2: function (row, callback) { 3: var resource = { 4: "PartitionKey": row[1], 5: "RowKey": row[0], 6: "Value": row[2] 7: }; 8: client.insertEntity(tableName, resource, function (error) { 9: if (error) { 10: callback(error); 11: } 12: else { 13: console.log("entity inserted."); 14: callback(null); 15: } 16: }); 17: }, 18: function (error) { 19: if (error) { 20: error["target"] = "insertEntity"; 21: res.send(500, error); 22: } 23: else { 24: console.log("all done."); 25: res.send(200, "Done!"); 26: } 27: }); It ensured that the “Finished” message will be printed when all table entities had been inserted. But it cannot promise that the records will be inserted in sequence. It might be another challenge to make the code looks like in sync-style? 1: try 2: { 3: forEach(row in rows) { 4: var entity = { /* ... */ }; 5: tableClient.insert(tableName, entity); 6: } 7:  8: console.log("Finished"); 9: } 10: catch (ex) { 11: console.log(ex); 12: }   How “Wind” Helps “Wind” is a JavaScript library which provides the control flow with plain JavaScript for asynchronous programming (and more) without additional pre-compiling steps. It’s available in NPM so that we can install it through “npm install wind”. Now let’s create a very simple Node.js application as the example. This application will take some website URLs from the command arguments and tried to retrieve the body length and print them in console. Then at the end print “Finish”. I’m going to use “request” module to make the HTTP call simple so I also need to install by the command “npm install request”. The code would be like this. 1: var request = require("request"); 2:  3: // get the urls from arguments, the first two arguments are `node.exe` and `fetch.js` 4: var args = process.argv.splice(2); 5:  6: // main function 7: var main = function() { 8: for(var i = 0; i < args.length; i++) { 9: // get the url 10: var url = args[i]; 11: // send the http request and try to get the response and body 12: request(url, function(error, response, body) { 13: if(!error && response.statusCode == 200) { 14: // log the url and the body length 15: console.log( 16: "%s: %d.", 17: response.request.uri.href, 18: body.length); 19: } 20: else { 21: // log error 22: console.log(error); 23: } 24: }); 25: } 26: 27: // finished 28: console.log("Finished"); 29: }; 30:  31: // execute the main function 32: main(); Let’s execute this application. (I made them in multi-lines for better reading.) 1: node fetch.js 2: "http://www.igt.com/us-en.aspx" 3: "http://www.igt.com/us-en/games.aspx" 4: "http://www.igt.com/us-en/cabinets.aspx" 5: "http://www.igt.com/us-en/systems.aspx" 6: "http://www.igt.com/us-en/interactive.aspx" 7: "http://www.igt.com/us-en/social-gaming.aspx" 8: "http://www.igt.com/support.aspx" Below is the output. As you can see the finish message was printed at the beginning, and the pages’ length retrieved in a different order than we specified. This is because in this code the request command, console logging command are executed asynchronously and concurrently. Now let’s introduce “Wind” to make them executed in order, which means it will request the websites one by one, and print the message at the end.   First of all we need to import the “Wind” package and make sure the there’s only one global variant named “Wind”, and ensure it’s “Wind” instead of “wind”. 1: var Wind = require("wind");   Next, we need to tell “Wind” which code will be executed asynchronously so that “Wind” can control the execution process. In this case the “request” operation executed asynchronously so we will create a “Task” by using a build-in helps function in “Wind” named Wind.Async.Task.create. 1: var requestBodyLengthAsync = function(url) { 2: return Wind.Async.Task.create(function(t) { 3: request(url, function(error, response, body) { 4: if(error || response.statusCode != 200) { 5: t.complete("failure", error); 6: } 7: else { 8: var data = 9: { 10: uri: response.request.uri.href, 11: length: body.length 12: }; 13: t.complete("success", data); 14: } 15: }); 16: }); 17: }; The code above created a “Task” from the original request calling code. In “Wind” a “Task” means an operation will be finished in some time in the future. A “Task” can be started by invoke its start() method, but no one knows when it actually will be finished. The Wind.Async.Task.create helped us to create a task. The only parameter is a function where we can put the actual operation in, and then notify the task object it’s finished successfully or failed by using the complete() method. In the code above I invoked the request method. If it retrieved the response successfully I set the status of this task as “success” with the URL and body length. If it failed I set this task as “failure” and pass the error out.   Next, we will change the main() function. In “Wind” if we want a function can be controlled by Wind we need to mark it as “async”. This should be done by using the code below. 1: var main = eval(Wind.compile("async", function() { 2: })); When the application is running, Wind will detect “eval(Wind.compile(“async”, function” and generate an anonymous code from the body of this original function. Then the application will run the anonymous code instead of the original one. In our example the main function will be like this. 1: var main = eval(Wind.compile("async", function() { 2: for(var i = 0; i < args.length; i++) { 3: try 4: { 5: var result = $await(requestBodyLengthAsync(args[i])); 6: console.log( 7: "%s: %d.", 8: result.uri, 9: result.length); 10: } 11: catch (ex) { 12: console.log(ex); 13: } 14: } 15: 16: console.log("Finished"); 17: })); As you can see, when I tried to request the URL I use a new command named “$await”. It tells Wind, the operation next to $await will be executed asynchronously, and the main thread should be paused until it finished (or failed). So in this case, my application will be pause when the first response was received, and then print its body length, then try the next one. At the end, print the finish message.   Finally, execute the main function. The full code would be like this. 1: var request = require("request"); 2: var Wind = require("wind"); 3:  4: var args = process.argv.splice(2); 5:  6: var requestBodyLengthAsync = function(url) { 7: return Wind.Async.Task.create(function(t) { 8: request(url, function(error, response, body) { 9: if(error || response.statusCode != 200) { 10: t.complete("failure", error); 11: } 12: else { 13: var data = 14: { 15: uri: response.request.uri.href, 16: length: body.length 17: }; 18: t.complete("success", data); 19: } 20: }); 21: }); 22: }; 23:  24: var main = eval(Wind.compile("async", function() { 25: for(var i = 0; i < args.length; i++) { 26: try 27: { 28: var result = $await(requestBodyLengthAsync(args[i])); 29: console.log( 30: "%s: %d.", 31: result.uri, 32: result.length); 33: } 34: catch (ex) { 35: console.log(ex); 36: } 37: } 38: 39: console.log("Finished"); 40: })); 41:  42: main().start();   Run our new application. At the beginning we will see the compiled and generated code by Wind. Then we can see the pages were requested one by one, and at the end the finish message was printed. Below is the code Wind generated for us. As you can see the original code, the output code were shown. 1: // Original: 2: function () { 3: for(var i = 0; i < args.length; i++) { 4: try 5: { 6: var result = $await(requestBodyLengthAsync(args[i])); 7: console.log( 8: "%s: %d.", 9: result.uri, 10: result.length); 11: } 12: catch (ex) { 13: console.log(ex); 14: } 15: } 16: 17: console.log("Finished"); 18: } 19:  20: // Compiled: 21: /* async << function () { */ (function () { 22: var _builder_$0 = Wind.builders["async"]; 23: return _builder_$0.Start(this, 24: _builder_$0.Combine( 25: _builder_$0.Delay(function () { 26: /* var i = 0; */ var i = 0; 27: /* for ( */ return _builder_$0.For(function () { 28: /* ; i < args.length */ return i < args.length; 29: }, function () { 30: /* ; i ++) { */ i ++; 31: }, 32: /* try { */ _builder_$0.Try( 33: _builder_$0.Delay(function () { 34: /* var result = $await(requestBodyLengthAsync(args[i])); */ return _builder_$0.Bind(requestBodyLengthAsync(args[i]), function (result) { 35: /* console.log("%s: %d.", result.uri, result.length); */ console.log("%s: %d.", result.uri, result.length); 36: return _builder_$0.Normal(); 37: }); 38: }), 39: /* } catch (ex) { */ function (ex) { 40: /* console.log(ex); */ console.log(ex); 41: return _builder_$0.Normal(); 42: /* } */ }, 43: null 44: ) 45: /* } */ ); 46: }), 47: _builder_$0.Delay(function () { 48: /* console.log("Finished"); */ console.log("Finished"); 49: return _builder_$0.Normal(); 50: }) 51: ) 52: ); 53: /* } */ })   How Wind Works Someone may raise a big concern when you find I utilized “eval” in my code. Someone may assume that Wind utilizes “eval” to execute some code dynamically while “eval” is very low performance. But I would say, Wind does NOT use “eval” to run the code. It only use “eval” as a flag to know which code should be compiled at runtime. When the code was firstly been executed, Wind will check and find “eval(Wind.compile(“async”, function”. So that it knows this function should be compiled. Then it utilized parse-js to analyze the inner JavaScript and generated the anonymous code in memory. Then it rewrite the original code so that when the application was running it will use the anonymous one instead of the original one. Since the code generation was done at the beginning of the application was started, in the future no matter how long our application runs and how many times the async function was invoked, it will use the generated code, no need to generate again. So there’s no significant performance hurt when using Wind.   Wind in My Previous Demo Let’s adopt Wind into one of my previous demonstration and to see how it helps us to make our code simple, straightforward and easy to read and understand. In this post when I implemented the functionality that copied the records from my WASD to table storage, the logic would be like this. 1, Open database connection. 2, Execute a query to select all records from the table. 3, Recreate the table in Windows Azure table storage. 4, Create entities from each of the records retrieved previously, and then insert them into table storage. 5, Finally, show message as the HTTP response. But as the image below, since there are so many callbacks and async operations, it’s very hard to understand my logic from the code. Now let’s use Wind to rewrite our code. First of all, of course, we need the Wind package. Then we need to include the package files into project and mark them as “Copy always”. Add the Wind package into the source code. Pay attention to the variant name, you must use “Wind” instead of “wind”. 1: var express = require("express"); 2: var async = require("async"); 3: var sql = require("node-sqlserver"); 4: var azure = require("azure"); 5: var Wind = require("wind"); Now we need to create some async functions by using Wind. All async functions should be wrapped so that it can be controlled by Wind which are open database, retrieve records, recreate table (delete and create) and insert entity in table. Below are these new functions. All of them are created by using Wind.Async.Task.create. 1: sql.openAsync = function (connectionString) { 2: return Wind.Async.Task.create(function (t) { 3: sql.open(connectionString, function (error, conn) { 4: if (error) { 5: t.complete("failure", error); 6: } 7: else { 8: t.complete("success", conn); 9: } 10: }); 11: }); 12: }; 13:  14: sql.queryAsync = function (conn, query) { 15: return Wind.Async.Task.create(function (t) { 16: conn.queryRaw(query, function (error, results) { 17: if (error) { 18: t.complete("failure", error); 19: } 20: else { 21: t.complete("success", results); 22: } 23: }); 24: }); 25: }; 26:  27: azure.recreateTableAsync = function (tableName) { 28: return Wind.Async.Task.create(function (t) { 29: client.deleteTable(tableName, function (error, successful, response) { 30: console.log("delete table finished"); 31: client.createTableIfNotExists(tableName, function (error, successful, response) { 32: console.log("create table finished"); 33: if (error) { 34: t.complete("failure", error); 35: } 36: else { 37: t.complete("success", null); 38: } 39: }); 40: }); 41: }); 42: }; 43:  44: azure.insertEntityAsync = function (tableName, entity) { 45: return Wind.Async.Task.create(function (t) { 46: client.insertEntity(tableName, entity, function (error, entity, response) { 47: if (error) { 48: t.complete("failure", error); 49: } 50: else { 51: t.complete("success", null); 52: } 53: }); 54: }); 55: }; Then in order to use these functions we will create a new function which contains all steps for data copying. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: } 4: catch (ex) { 5: console.log(ex); 6: res.send(500, "Internal error."); 7: } 8: })); Let’s execute steps one by one with the “$await” keyword introduced by Wind so that it will be invoked in sequence. First is to open the database connection. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: } 7: catch (ex) { 8: console.log(ex); 9: res.send(500, "Internal error."); 10: } 11: })); Then retrieve all records from the database connection. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: // retrieve all records from database 7: var results = $await(sql.queryAsync(conn, "SELECT * FROM [Resource]")); 8: console.log("records selected. count = %d", results.rows.length); 9: } 10: catch (ex) { 11: console.log(ex); 12: res.send(500, "Internal error."); 13: } 14: })); After recreated the table, we need to create the entities and insert them into table storage. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: // retrieve all records from database 7: var results = $await(sql.queryAsync(conn, "SELECT * FROM [Resource]")); 8: console.log("records selected. count = %d", results.rows.length); 9: if (results.rows.length > 0) { 10: // recreate the table 11: $await(azure.recreateTableAsync(tableName)); 12: console.log("table created"); 13: // insert records in table storage one by one 14: for (var i = 0; i < results.rows.length; i++) { 15: var entity = { 16: "PartitionKey": results.rows[i][1], 17: "RowKey": results.rows[i][0], 18: "Value": results.rows[i][2] 19: }; 20: $await(azure.insertEntityAsync(tableName, entity)); 21: console.log("entity inserted"); 22: } 23: } 24: } 25: catch (ex) { 26: console.log(ex); 27: res.send(500, "Internal error."); 28: } 29: })); Finally, send response back to the browser. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: // retrieve all records from database 7: var results = $await(sql.queryAsync(conn, "SELECT * FROM [Resource]")); 8: console.log("records selected. count = %d", results.rows.length); 9: if (results.rows.length > 0) { 10: // recreate the table 11: $await(azure.recreateTableAsync(tableName)); 12: console.log("table created"); 13: // insert records in table storage one by one 14: for (var i = 0; i < results.rows.length; i++) { 15: var entity = { 16: "PartitionKey": results.rows[i][1], 17: "RowKey": results.rows[i][0], 18: "Value": results.rows[i][2] 19: }; 20: $await(azure.insertEntityAsync(tableName, entity)); 21: console.log("entity inserted"); 22: } 23: // send response 24: console.log("all done"); 25: res.send(200, "All done!"); 26: } 27: } 28: catch (ex) { 29: console.log(ex); 30: res.send(500, "Internal error."); 31: } 32: })); If we compared with the previous code we will find now it became more readable and much easy to understand. It’s very easy to know what this function does even though without any comments. When user go to URL “/was/copyRecords” we will execute the function above. The code would be like this. 1: app.get("/was/copyRecords", function (req, res) { 2: copyRecords(req, res).start(); 3: }); And below is the logs printed in local compute emulator console. As we can see the functions executed one by one and then finally the response back to me browser.   Scaffold Functions in Wind Wind provides not only the async flow control and compile functions, but many scaffold methods as well. We can build our async code more easily by using them. I’m going to introduce some basic scaffold functions here. In the code above I created some functions which wrapped from the original async function such as open database, create table, etc.. All of them are very similar, created a task by using Wind.Async.Task.create, return error or result object through Task.complete function. In fact, Wind provides some functions for us to create task object from the original async functions. If the original async function only has a callback parameter, we can use Wind.Async.Binding.fromCallback method to get the task object directly. For example the code below returned the task object which wrapped the file exist check function. 1: var Wind = require("wind"); 2: var fs = require("fs"); 3:  4: fs.existsAsync = Wind.Async.Binding.fromCallback(fs.exists); In Node.js a very popular async function pattern is that, the first parameter in the callback function represent the error object, and the other parameters is the return values. In this case we can use another build-in function in Wind named Wind.Async.Binding.fromStandard. For example, the open database function can be created from the code below. 1: sql.openAsync = Wind.Async.Binding.fromStandard(sql.open); 2:  3: /* 4: sql.openAsync = function (connectionString) { 5: return Wind.Async.Task.create(function (t) { 6: sql.open(connectionString, function (error, conn) { 7: if (error) { 8: t.complete("failure", error); 9: } 10: else { 11: t.complete("success", conn); 12: } 13: }); 14: }); 15: }; 16: */ When I was testing the scaffold functions under Wind.Async.Binding I found for some functions, such as the Azure SDK insert entity function, cannot be processed correctly. So I personally suggest writing the wrapped method manually.   Another scaffold method in Wind is the parallel tasks coordination. In this example, the steps of open database, retrieve records and recreated table should be invoked one by one, but it can be executed in parallel when copying data from database to table storage. In Wind there’s a scaffold function named Task.whenAll which can be used here. Task.whenAll accepts a list of tasks and creates a new task. It will be returned only when all tasks had been completed, or any errors occurred. For example in the code below I used the Task.whenAll to make all copy operation executed at the same time. 1: var copyRecordsInParallel = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: // retrieve all records from database 7: var results = $await(sql.queryAsync(conn, "SELECT * FROM [Resource]")); 8: console.log("records selected. count = %d", results.rows.length); 9: if (results.rows.length > 0) { 10: // recreate the table 11: $await(azure.recreateTableAsync(tableName)); 12: console.log("table created"); 13: // insert records in table storage in parallal 14: var tasks = new Array(results.rows.length); 15: for (var i = 0; i < results.rows.length; i++) { 16: var entity = { 17: "PartitionKey": results.rows[i][1], 18: "RowKey": results.rows[i][0], 19: "Value": results.rows[i][2] 20: }; 21: tasks[i] = azure.insertEntityAsync(tableName, entity); 22: } 23: $await(Wind.Async.Task.whenAll(tasks)); 24: // send response 25: console.log("all done"); 26: res.send(200, "All done!"); 27: } 28: } 29: catch (ex) { 30: console.log(ex); 31: res.send(500, "Internal error."); 32: } 33: })); 34:  35: app.get("/was/copyRecordsInParallel", function (req, res) { 36: copyRecordsInParallel(req, res).start(); 37: });   Besides the task creation and coordination, Wind supports the cancellation solution so that we can send the cancellation signal to the tasks. It also includes exception solution which means any exceptions will be reported to the caller function.   Summary In this post I introduced a Node.js module named Wind, which created by my friend Jeff Zhao. As you can see, different from other async library and framework, adopted the idea from F# and C#, Wind utilizes runtime code generation technology to make it more easily to write async, callback-based functions in a sync-style way. By using Wind there will be almost no callback, and the code will be very easy to understand. Currently Wind is still under developed and improved. There might be some problems but the author, Jeff, should be very happy and enthusiastic to learn your problems, feedback, suggestion and comments. You can contact Jeff by - Email: [email protected] - Group: https://groups.google.com/d/forum/windjs - GitHub: https://github.com/JeffreyZhao/wind/issues   Source code can be download here.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • IIS SSL Certificate Renewal Pain

    - by Rick Strahl
    I’m in the middle of my annual certificate renewal for the West Wind site and I can honestly say that I hate IIS’s certificate system.  When it works it’s fine, but when it doesn’t man can it be a pain. Because I deal with public certificates on my site merely once a year, and you have to perform the certificate dance just the right way, I seem to run into some sort of trouble every year, thinking that Microsoft surely must have addressed the issues I ran into previously – HA! Not so. Don’t ever use the Renew Certificate Feature in IIS! The first rule that I should have never forgotten is that certificate renewals in IIS (7 is what I’m using but I think it’s no different in 7.5 and 8), simply don’t work if you’re submitting to get a public certificate from a certificate authority. I use DNSimple for my DNS domain management and SSL certificates because they provide ridiculously easy domain management and good prices for SSL certs – especially wildcard certificates, which is what I use on west-wind.com. Certificates in IIS can be found pegged to the machine root. If you go into the IIS Manager, go to the machine root the tree and then click on certificates and you then get various certificate options: Both of these options create a new Certificate request (CSR), which is just a text file. But if you’re silly enough like me to click on the Renew button on your old certificate, you’ll find that you end up generating a very long Certificate Request that looks nothing like the original certificate request and the format that’s used for this is not accepted by most certificate authorities. While I’m not sure exactly what the problem is, it simply looks like IIS is respecting none of your original certificate bit size choices and is generating a huge certificate request that is 3 times the size of a ‘normal’ certificate request. The end result is (and I’ve done this at least twice now) is that the certificate processor is likely to fail processing those renewals. Always create a new Certificate While it’s a little more work and you have to remember how to fill out the certificate request properly, this is the safe way to make sure your certificate generates properly. First comes the Distinguished Name Properties dialog: Ah yes you have to love the nomenclature of this stuff. Distinguished name, Common name – WTF is a common name? It doesn’t look common to me! Make sure this form gets filled out correctly. Common NameThis is the domain name of the Web site. In my case I’m creating a wildcard certificate so I’m using the * prefix. If you’re purchasing a certificate for a specific domain use www.west-wind.com or store.west-wind.com for example. Make sure this matches the EXACT domain you’re trying to use secure access on because that’s all the certificate is going to work on unless you get a wildcard certificate. Organization Is the name of your company or organization. Depending on the kind of certificate you purchase this name will show up on your certificate. Most low end SSL certificates (ie. those that cost under $100 for single domains) don’t list the organization, the higher signature certificates that also require extensive validation by the cert authority do. Regardless you should make sure this matches the right company/organization. Organizational Unit This can be anything. Not really sure what this is for, but traditionally I’ve always set this to Web because – well this is a Web thing after all right? I’ve never seen this used anywhere that I can tell other than to internally reference the cert. State and CountryPretty obvious. Should reflect the location of the business/organization/person or site.   Next you have to configure the bit size used for the certificate: The default on this dialog is 1024, but I’ve found that most providers these days request a minimum bit length of 2048, as did my DNSimple provider. Again check with the provider when you submit to make sure. Bit length mismatches can cause problems if you use a size that isn’t supported by the provider. I had that happen last year when I submitted my CSR and it got rejected quite a bit later, when the certs usually are issued within an hour or less. When you’re done here, the certificate is saved to disk as a .txt file and it should look something like this (this is a 2048 bit length CSR):-----BEGIN NEW CERTIFICATE REQUEST----- MIIEVGCCAz0CAQAwdjELMAkGA1UEBhMCVVMxDzANBgNVBAgMBkhhd2FpaTENMAsG A1UEBwwEUGFpYTEfMB0GA1UECgwWV2VzdCBXaW5kIFRlY2hub2xvZ2llczEMMAoG B1UECwwDV2ViMRgwFgYDVQQDDA8qLndlc3Qtd2luZC5jb20wggEiMA0GCSqGSIb3 DQEBAQUAA4IBDwAwggEKAoIBAQDIPWOFMkMVRp2Ftj9w/cCVV4OYYhoZYtl+8lTk oqDwKca0xWHLgioX/9v0rZLS6a82MHqKEBxVXu+cuCmSE4AQtB/1YH9lS4tpc/be OZDvnTotP6l4MCEzzAfROcw4CiIg6X0RMSnl8IATAvv2V5LQM9TDdt9oDdMpX2IY +vVC9RZ7PMHBmR9kwI2i/lrKitzhQKaHgpmKcRlM6iqpALUiX28w5HJaDKK1MDHN 607tyFJLHijuJKx7PdTqZYf50KkC3NupfZ2avVycf18Q13jHWj59tvwEOczoVzRL l4LQivAqbhyiqMpWnrZunIOUZta5aGm+jo7O1knGWJjxuraTAgMBAAGgggGYMBoG CisGAQQBgjcNAgMxDBYKNi4yLjkyMDAuMjA0BgkrBgEEAYI3FRQxJzAlAgEFDAZS QVNYUFMMC1JBU1hQU1xSaWNrDAtJbmV0TWdyLmV4ZTByBgorBgEEAYI3DQICMWQw YgIBAR5aAE0AaQBjAHIAbwBzAG8AZgB0ACAAUgBTAEEAIABTAEMAaABhAG4AbgBl AGwAIABDAHIAeQBwAHQAbwBnAHIAYQBwAGgAaQBjACAAUAByAG8AdgBpAGQAZQBy AwEAMIHPBgkqhkiG9w0BCQ4xgcEwgb4wDgYDVR0PAQH/BAQDAgTwMBMGA1UdJQQM MAoGCCsGAQUFBwMBMHgGCSqGSIb3DQEJDwRrMGkwDgYIKoZIhvcNAwICAgCAMA4G CCqGSIb3DQMEAgIAgDALBglghkgBZQMEASowCwYJYIZIAWUDBAEtMAsGCWCGSAFl AwQBAjALBglghkgBZQMEAQUwBwYFKw4DAgcwCgYIKoZIhvcNAwcwHQYDVR0OBBYE FD/yOsTbXE+GVFCFMmldzQvyloz9MA0GCSqGSIb3DQEBBQUAA4IBAQCK6LlsCuIM 1AU0niB6QZ9v0FTsGFxP1dYvVUnJyY6VEKNiGFiQjZac7UCs0p58yScdXWEFOE8V OsjAYD3xYNc05+ckyD67UHRGEUAVB9RBvbKW23KeR/8kBmEzc8PemD52YOgExxAJ 57xWmAwEHAvbgYzQvhO8AOzH3TGvvHbg5UKM1pYgNmuwZq5DkL/IDoeIJwfk/wrI wghNTuxxIFgbH4YrgLgv4PRvrS/LaTCRBdboaCgzATMczaOb1nd/DVNR+3fCtMhM W0psTAjzRbmXF3nJyAQa7jF/52gkY0RfFX2lG5tJnG+XDsVNvKNvh9Qa5Tlmkm06 ILKCm9ciWCKk -----END NEW CERTIFICATE REQUEST----- You can take that certificate request and submit that to your certificate provider. Since this is base64 encoded you can typically just paste it into a text box on the submission page, or some providers will ask you to upload the CSR as a file. What does a Renewal look like? Note the length of the CSR will vary somewhat with key strength, but compare this to a renewal request that IIS generated from my existing site:-----BEGIN NEW CERTIFICATE REQUEST----- MIIPpwYFKoZIhvcNAQcCoIIPmDCCD5QCAQExCzAJBgUrDgMCGgUAMIIIqAYJKoZI hvcNAQcBoIIImQSCCJUwggiRMIIH+gIBADBdMSEwHwYDVQQLDBhEb21haW4gQ29u dHJvbCBWYWxpFGF0ZWQxHjAcBgNVBAsMFUVzc2VudGlhbFNTTCBXaWxkY2FyZDEY MBYGA1UEAwwPKi53ZXN0LXdpbmQuY29tMIGfMA0GCSqGSIb3DQEBAQUAA4GNADCB iQKBgQCK4OuIOR18Wb8tNMGRZiD1c9X57b332Lj7DhbckFqLs0ys8kVDHrTXSj+T Ye9nmAvfPpZmBtE5p9qRNN79rUYugAdl+qEtE4IJe1bRfxXzcKa1SXa8+TEs3zQa zYSmcR2dDuC8om1eAdeCtt0NnkvANgm1VLwGOor/UHMASaEhCQIDAQABoIIG8jAa BgorBgEEAYI3DQIDMQwWCjYuMi45MjAwLjIwNAYJKwYBBAGCNxUUMScwJQIBBQwG UkFTWFBTDAtSQVNYUFNcUmljawwLSW5ldE1nci5leGUwZgYKKwYBBAGCNw0CAjFY MFYCAQIeTgBNAGkAYwByAG8AcwBvAGYAdAAgAFMAdAByAG8AbgBnACAAQwByAHkA cAB0AG8AZwByAGEAcABoAGkAYwAgAFAAcgBvAHYAaQBkAGUAcgMBADCCAQAGCSqG SIb3DQEJDjGB8jCB7zAOBgNVHQ8BAf8EBAMCBaAwDAYDVR0TAQH/BAIwADA0BgNV HSUELTArBggrBgEFBQcDAQYIKwYBBQUHAwIGCisGAQQBgjcKAwMGCWCGSAGG+EIE ATBPBgNVHSAESDBGMDoGCysGAQQBsjEBAgIHMCswKQYIKwYBBQUHAgEWHWh0dHBz Oi8vc2VjdXJlLmNvbW9kby5jb20vQ1BTMAgGBmeBDAECATApBgNVHREEIjAggg8q Lndlc3Qtd2luZC5jb22CDXdlc3Qtd2luZC5jb20wHQYDVR0OBBYEFEVLAyO8gDiv lsfovKrx9mHPyrsiMIIFMAYJKwYBBAGCNw0BMYIFITCCBR0wggQFoAMCAQICEQDu 1E1T5Jvtkm5LOfSHabWlMA0GCSqGSIb3DQEBBQUAMHIxCzAJBgNVBAYTAkdCMRsw GQYDVQQIExJHcmVhdGVyIE1hbmNoZXN0ZXIxEDAOBgNVBAcTB1NhbGZvcmQxGjAY BgNVBAoTEUNPTU9ETyBDQSBMaW1pdGVkMRgwFgYDVQQDEw9Fc3NlbnRpYWxTU0wg Q0EwHhcNMTQwNTA3MDAwMDAwWhcNMTUwNjA2MjM1OTU5WjBdMSEwHwYDVQQLExhE b21haW4gQ29udHJvbCBWYWxpZGF0ZWQxHjAcBgNVBAsTFUVzc2VudGlhbFNTTCBX aWxkY2FyZDEYMBYGA1UEAxQPKi53ZXN0LXdpbmQuY29tMIIBIjANBgkqhkiG9w0B AQEFAAOCAQ8AMIIBCgKCAQEAiyKfL66XB51DlUfm6xXqJBcvMU2qorRHxC+WjEpB amvg8XoqNfCKzDAvLMbY4BLhbYCTagqtslnP3Gj4AKhXqRKU0n6iSbmS1gcWzCJM CHufZ5RDtuTuxhTdJxzP9YqZUfKV5abWQp/TK6V1ryaBJvdqM73q4tRjrQODtkiR PfZjxpybnBHFJS8jYAf8jcOjSDZcgN1d9Evc5MrEJCp/90cAkozyF/NMcFtD6Yj8 UM97z3MzDT2JPDoH3kAr3cCgpUNyQ2+wDNCnL9eWYFkOQi8FZMsZol7KlZ5NgNfO a7iZMVGbqDg6rkS//2uGe6tSQJTTs+mAZB+na+M8XT2UqwIDAQABo4IBwTCCAb0w HwYDVR0jBBgwFoAU2svqrVsIXcz//CZUzknlVcY49PgwHQYDVR0OBBYEFH0AmLiL RSEL9+sQD/n5O4N7/nnqMA4GA1UdDwEB/wQEAwIFoDAMBgNVHRMBAf8EAjAAMDQG A1UdJQQtMCsGCCsGAQUFBwMBBggrBgEFBQcDAgYKKwYBBAGCNwoDAwYJYIZIAYb4 QgQBME8GA1UdIARIMEYwOgYLKwYBBAGyMQECAgcwKzApBggrBgEFBQcCARYdaHR0 cHM6Ly9zZWN1cmUuY29tb2RvLmNvbS9DUFMwCAYGZ4EMAQIBMDsGA1UdHwQ0MDIw MKAuoCyGKmh0dHA6Ly9jcmwuY29tb2RvY2EuY29tL0Vzc2VudGlhbFNTTENBLmNy bDBuBggrBgEFBQcBAQRiMGAwOAYIKwYBBQUHMAKGLGh0dHA6Ly9jcnQuY29tb2Rv Y2EuY29tL0Vzc2VudGlhbFNTTENBXzIuY3J0MCQGCCsGAQUFBzABhhhodHRwOi8v b2NzcC5jb21vZG9jYS5jb20wKQYDVR0RBCIwIIIPKi53ZXN0LXdpbmQuY29tgg13 ZXN0LXdpbmQuY29tMA0GCSqGSIb3DQEBBQUAA4IBAQBqBfd6QHrxXsfgfKARG6np 8yszIPhHGPPmaE7xq7RpcZjY9H+8l6fe4jQbGFjbA5uHBklYI4m2snhPaW2p8iF8 YOkm2V2hEsSTnkf5/flw9mZtlCFEDFXSsBxBdNz8RYTthPMu1h09C0XuDB30sztg nR692FrxJN5/bXsk+MC9nEweTFW/t2HW+XZ8bhM7vsAS+pZionR4MyuQ0mYIt/lD csZVZ91KxTsIm8rNMkkYGFoSIXjQ0+0tCbxMF0i2qnpmNRpA6PU8l7lxxvPkplsk 9KB8QIPFrR5p/i/SUAd9vECWh5+/ktlcrfFP2PK7XcEwWizsvMrNqLyvQVNXSUPT MA0GCSqGSIb3DQEBBQUAA4GBABt/NitwMzc5t22p5+zy4HXbVYzLEjesLH8/v0ot uLQ3kkG8tIWNh5RplxIxtilXt09H4Oxpo3fKUN0yw+E6WsBfg0sAF8pHNBdOJi48 azrQbt4HvKktQkGpgYFjLsormjF44SRtToLHlYycDHBNvjaBClUwMCq8HnwY6vDq xikRoIIFITCCBR0wggQFoAMCAQICEQDu1E1T5Jvtkm5LOfSHabWlMA0GCSqGSIb3 DQEBBQUAMHIxCzAJBgNVBAYTAkdCMRswGQYDVQQIExJHcmVhdGVyIE1hbmNoZXN0 ZXIxEDAOBgNVBAcTB1NhbGZvcmQxGjAYBgNVBAoTEUNPTU9ETyBDQSBMaW1pdGVk MRgwFgYDVQQDEw9Fc3NlbnRpYWxTU0wgQ0EwHhcNMTQwNTA3MDAwMDAwWhcNMTUw NjA2MjM1OTU5WjBdMSEwHwYDVQQLExhEb21haW4gQ29udHJvbCBWYWxpZGF0ZWQx HjAcBgNVBAsTFUVzc2VudGlhbFNTTCBXaWxkY2FyZDEYMBYGA1UEAxQPKi53ZXN0 LXdpbmQuY29tMIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAiyKfL66X B51DlUfm6xXqJBcvMU2qorRHxC+WjEpBamvg8XoqNfCKzDAvLMbY4BLhbYCTagqt slnP3Gj4AKhXqRKU0n6iSbmS1gcWzCJMCHufZ5RDtuTuxhTdJxzP9YqZUfKV5abW Qp/TK6V1ryaBJvdqM73q4tRjrQODtkiRPfZjxpybnBHFJS8jYAf8jcOjSDZcgN1d 9Evc5MrEJCp/90cAkozyF/NMcFtD6Yj8UM97z3MzDT2JPDoH3kAr3cCgpUNyQ2+w DNCnL9eWYFkOQi8FZMsZol7KlZ5NgNfOa7iZMVGbqDg6rkS//2uGe6tSQJTTs+mA ZB+na+M8XT2UqwIDAQABo4IBwTCCAb0wHwYDVR0jBBgwFoAU2svqrVsIXcz//CZU zknlVcY49PgwHQYDVR0OBBYEFH0AmLiLRSEL9+sQD/n5O4N7/nnqMA4GA1UdDwEB /wQEAwIFoDAMBgNVHRMBAf8EAjAAMDQGA1UdJQQtMCsGCCsGAQUFBwMBBggrBgEF BQcDAgYKKwYBBAGCNwoDAwYJYIZIAYb4QgQBME8GA1UdIARIMEYwOgYLKwYBBAGy MQECAgcwKzApBggrBgEFBQcCARYdaHR0cHM6Ly9zZWN1cmUuY29tb2RvLmNvbS9D UFMwCAYGZ4EMAQIBMDsGA1UdHwQ0MDIwMKAuoCyGKmh0dHA6Ly9jcmwuY29tb2Rv Y2EuY29tL0Vzc2VudGlhbFNTTENBLmNybDBuBggrBgEFBQcBAQRiMGAwOAYIKwYB BQUHMAKGLGh0dHA6Ly9jcnQuY29tb2RvY2EuY29tL0Vzc2VudGlhbFNTTENBXzIu Y3J0MCQGCCsGAQUFBzABhhhodHRwOi8vb2NzcC5jb21vZG9jYS5jb20wKQYDVR0R BCIwIIIPKi53ZXN0LXdpbmQuY29tgg13ZXN0LXdpbmQuY29tMA0GCSqGSIb3DQEB BQUAA4IBAQBqBfd6QHrxXsfgfKARG6np8yszIPhHGPPmaE7xq7RpcZjY9H+8l6fe 4jQbGFjbA5uHBklYI4m2snhPaW2p8iF8YOkm2V2hEsSTnkf5/flw9mZtlCFEDFXS sBxBdNz8RYTthPMu1h09C0XuDB30sztgnR692FrxJN5/bXsk+MC9nEweTFW/t2HW +XZ8bhM7vsAS+pZionR4MyuQ0mYIt/lDcsZVZ91KxTsIm8rNMkkYGFoSIXjQ0+0t CbxMF0i2qnpmNRpA6PU8l7lxxvPkplsk9KB8QIPFrR5p/i/SUAd9vECWh5+/ktlc rfFP2PK7XcEwWizsvMrNqLyvQVNXSUPTMYIBrzCCAasCAQEwgYcwcjELMAkGA1UE BhMCR0IxGzAZBgNVBAgTEkdyZWF0ZXIgTWFuY2hlc3RlcjEQMA4GA1UEBxMHU2Fs Zm9yZDEaMBgGA1UEChMRQ09NT0RPIENBIExpbWl0ZWQxGDAWBgNVBAMTD0Vzc2Vu dGlhbFNTTCBDQQIRAO7UTVPkm+2Sbks59IdptaUwCQYFKw4DAhoFADANBgkqhkiG 9w0BAQEFAASCAQB8PNQ6bYnQpWfkHyxnDuvNKw3wrqF2p7JMZm+SuN2qp3R2LpCR mW2LrGtQIm9Iob/QOYH+8houYNVdvsATGPXX2T8gzn+anof4tOG0vCTK1Bp9bwf9 MkRP+1c8RW/vkYmUW4X5/C+y3CZpMH5dDTaXBIpXFzjX/fxNpH/rvLzGiaYYL3Cn OLO+aOADr9qq5yoqwpiYCSfYNNYKTUNNGfYIidQwYtbHXEYhSukB2oR89xD2sZZ4 bOqFjUPgTa5SsERLDDeg3omMKiIXVYGxlqBEq51Kge6IQt4qQV9P9VgInW7cWmKe dTqNHI9ri3ttewdEnT++TKGKKfTjX9SR8Waj -----END NEW CERTIFICATE REQUEST----- Clearly there’s something very different between this an my original request! And it didn’t work. IIS creates a custom CSR that is encoded in a format that no certificate authority I’ve ever used uses. If you want the gory details of what’s in there look at this ServerFault question (thanks to Mika in the comments). In the end it doesn’t matter  though – no certificate authority knows what to do with this CSR. So create a new CSR and skip the renewal. Always! Use the same Server Keep in mind that on IIS at least you should always create your certificate on a single server and then when you receive the final certificate from your provider import it on that server. IIS tracks the CSR it created and requires it in order to import the final certificate properly. So if for some reason you try to install the certificate on another server, it won’t work. I’ve also run into trouble trying to install the same certificate twice – this time around I didn’t give my certificate the proper friendly name and IIS failed to allow me to assign the certificate to any of my Web sites. So I removed the certificate and tried to import again, only to find it failed the second time around. There are other ways to fix this, but in my case I had to have the certificate re-issued to work – not what you want to do. Regardless of what you do though, when you import make sure you do it right the first time by crossing all your t’s and dotting your i's– it’ll save you a lot of grief! You don’t actually have to use the server that the certificate gets installed on to generate the CSR and first install it, but it is generally a good idea to do so just so you can get the certificate installed into the right place right away. If you have access to the server where you need to install the certificate you might as well use it. But you can use another machine to generated the and install the certificate, then export the certificate and move it to another machine as needed. So you can use your Dev machine to create a certificate then export it and install it on a live server. More on installation and back up/export later. Installing the Certificate Once you’ve submitted a CSR request your provider will process the request and eventually issue you a new final certificate that contains another text file with the final key to import into your certificate store. IIS does this by combining the content in your certificate request with the original CSR. If all goes well your new certificate shows up in the certificate list and you’re ready to assign the certificate to your sites. Make sure you use a friendly name that matches domain name of your site. So use *.mysite.com or www.mysite.com or store.mysite.com to ensure IIS recognizes the certificate. I made the mistake of not naming my friendly name this way and found that IIS was unable to link my sites to my wildcard certificate. It needed to have the *. as part of the certificate otherwise the Hostname input field was blanked out. Changing the Friendly Name If you by accidentally used an invalid friendly name you can change it later in the Windows certificate store. Bring up a Run Box Type MMC File | Add/Remove Snap In Add Certificates | Computer Account | Local Computer Drill into Certificates | Personal | Certificates Find your Certificate | Right Click | Properties Edit the Friendly Name | Click OK Backing up your Certificate The first thing you should do once your certificate is successfully installed is to back it up! In case your server crashes or you otherwise lose your configuration this will ensure you have an easy way to recover and reinstall your certificate either on the same server or a different one. If you’re running a server farm or using a wildcard certificate you also need to get the certificate onto other machines and a PFX file import is the easiest way to do this. To back up your certificate select your certificate and choose Export from the context or sidebar menu: The Export Certificate option allows you to export a password protected binary file that you can import in a single step. You can copy the resulting binary PFX file to back up or copy to other machines to install on. Importing the certificate on another machine is as easy as pointing at the PFX file and specifying the password. IIS handles the rest. Assigning a new certificate to your Site Once you have the new certificate installed, all that’s left to do is assign it to your site. In IIS select your Web site and bring up the Site Bindings from the right sidebar. Add a new binding for https, bind it to port 443, specify your hostname and pick the certificate from the pick list. If you’re using a root site make sure to set up your certificate for www.yoursite.com and also for yoursite.com so that both work properly with SSL. Note that you need to explicitly configure each hostname for a certificate if you plan to use SSL. Luckily if you update your SSL certificate in the following year, IIS prompts you and asks whether you like to update all other sites that are using the existing cert to the newer cert. And you’re done. So what’s the Pain? So, all of this is old hat and it doesn’t look all that bad right? So what’s the pain here? Well if you follow the instructions and do everything right, then the process is about as straight forward as you would expect it to be. You create a cert request, you import it and assign it to your sites. That’s the basic steps and to be perfectly fair it works well – if nothing goes wrong. However, renewing tends to be the problem. The first unintuitive issue is that you simply shouldn’t renew but create a new CSR and generate your new certificate from that. Over the years I’ve fallen prey to the belief that Microsoft eventually will fix this so that the renewal creates the same type of CSR as the old cert, but apparently that will just never happen. Booo! The other problem I ran into is that I accidentally misnamed my imported certificate which in turn set off a chain of events that caused my originally issued certificate to become uninstallable. When I received my completed certificate I installed it and it installed just fine, but the friendly name was wrong. As a result IIS refused to assign the certificate to any of my host headered sites. That’s strike number one. Why the heck should the friendly name have any effect on the ability to attach the certificate??? Next I uninstalled the certificate because I figured that would be the easiest way to make sure I get it right. But I found that I could not reinstall my certificate. I kept getting these stop errors: "ASN1 bad tag value met" that would prevent the installation from completion. After searching around for this error and reading countless long messages on forums, I found that this error supposedly does not actually mean the install failed, but the list wouldn’t refresh. Commodo has this to say: Note: There is a known issue in IIS 7 giving the following error: "Cannot find the certificate request associated with this certificate file. A certificate request must be completed on the computer where it was created." You may also receive a message stating "ASN1 bad tag value met". If this is the same server that you generated the CSR on then, in most cases, the certificate is actually installed. Simply cancel the dialog and press "F5" to refresh the list of server certificates. If the new certificate is now in the list, you can continue with the next step. If it is not in the list, you will need to reissue your certificate using a new CSR (see our CSR creation instructions for IIS 7). After creating a new CSR, login to your Comodo account and click the 'replace' button for your certificate. Not sure if this issue is fixed in IIS 8 but that’s an insane bug to have crop up. As it turns out, in my case the refresh didn’t work and the certificate didn’t show up in the IIS list after the reinstall. In fact when looking at the certificate store I could see my certificate was installed in the right place, but the private key is missing which is most likely why IIS is not picking it up. It looks like IIS could not match the final cert to the original CSR generated. But again some sort of message to that affect might be helpful instead of ASN1 bad tag value met. Recovering the Private Key So it turns out my original problem was that I received the published key, but when I imported the private key was missing. There’s a relatively easy way to recover from this. If your certificate doesn’t show up in IIS check in the certificate store for the local machine (see steps above on how to bring this up). If you look at the certificate in Certificates/Personal/Certificates make sure you see the key as shown in the image below: if the key is missing it means that the certificate is missing the private key most likely. To fix a certificate you can do the following: Double click the certificate Go to the Details Tab Copy down the Serial number You can copy the serial number from the area blurred out above. The serial number will be in a format like ?00 a7 9b a1 a4 9d 91 63 57 d6 9f 26 b8 ee 79 b5 cb and you’ll need to strip out the spaces in order to use it in the next step. Next open up an Administrative command prompt and issue the following command: certutil -repairstore my 00a79ba1a49d916357d69f26b8ee79b5cb You should get a confirmation message that the repair worked. If you now go back to the certificate store you should now see the key icon show up on the certificate. Your certificate is fixed. Now go back into IIS Manager and refresh the list of certificates and if all goes well you should see all the certificates that showed in the cert store now: Remember – back up the key first then map to your site… Summary I deal with a lot of customers who run their own IIS servers, and I can’t tell you how often I hear about botched SSL installations. When I posted some of my issues on Twitter yesterday I got a hell storm of “me too” responses. I’m clearly not the only one, who’s run into this especially with renewals. I feel pretty comfortable with IIS configuration and I do a lot of it for support purposes, but the SSL configuration is one that never seems to go seamlessly. This blog post is meant as reminder to myself to read next time I do a renewal. So I can dot my i's and dash my t’s before I get caught in the mess I’m dealing with today. Hopefully some of you find this useful as well.© Rick Strahl, West Wind Technologies, 2005-2014Posted in IIS7  Security   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Using jQuery to POST Form Data to an ASP.NET ASMX AJAX Web Service

    - by Rick Strahl
    The other day I got a question about how to call an ASP.NET ASMX Web Service or PageMethods with the POST data from a Web Form (or any HTML form for that matter). The idea is that you should be able to call an endpoint URL, send it regular urlencoded POST data and then use Request.Form[] to retrieve the posted data as needed. My first reaction was that you can’t do it, because ASP.NET ASMX AJAX services (as well as Page Methods and WCF REST AJAX Services) require that the content POSTed to the server is posted as JSON and sent with an application/json or application/x-javascript content type. IOW, you can’t directly call an ASP.NET AJAX service with regular urlencoded data. Note that there are other ways to accomplish this. You can use ASP.NET MVC and a custom route, an HTTP Handler or separate ASPX page, or even a WCF REST service that’s configured to use non-JSON inputs. However if you want to use an ASP.NET AJAX service (or Page Methods) with a little bit of setup work it’s actually quite easy to capture all the form variables on the client and ship them up to the server. The basic steps needed to make this happen are: Capture form variables into an array on the client with jQuery’s .serializeArray() function Use $.ajax() or my ServiceProxy class to make an AJAX call to the server to send this array On the server create a custom type that matches the .serializeArray() name/value structure Create extension methods on NameValue[] to easily extract form variables Create a [WebMethod] that accepts this name/value type as an array (NameValue[]) This seems like a lot of work but realize that steps 3 and 4 are a one time setup step that can be reused in your entire site or multiple applications. Let’s look at a short example that looks like this as a base form of fields to ship to the server: The HTML for this form looks something like this: <div id="divMessage" class="errordisplay" style="display: none"> </div> <div> <div class="label">Name:</div> <div><asp:TextBox runat="server" ID="txtName" /></div> </div> <div> <div class="label">Company:</div> <div><asp:TextBox runat="server" ID="txtCompany"/></div> </div> <div> <div class="label" ></div> <div> <asp:DropDownList runat="server" ID="lstAttending"> <asp:ListItem Text="Attending" Value="Attending"/> <asp:ListItem Text="Not Attending" Value="NotAttending" /> <asp:ListItem Text="Maybe Attending" Value="MaybeAttending" /> <asp:ListItem Text="Not Sure Yet" Value="NotSureYet" /> </asp:DropDownList> </div> </div> <div> <div class="label">Special Needs:<br /> <small>(check all that apply)</small></div> <div> <asp:ListBox runat="server" ID="lstSpecialNeeds" SelectionMode="Multiple"> <asp:ListItem Text="Vegitarian" Value="Vegitarian" /> <asp:ListItem Text="Vegan" Value="Vegan" /> <asp:ListItem Text="Kosher" Value="Kosher" /> <asp:ListItem Text="Special Access" Value="SpecialAccess" /> <asp:ListItem Text="No Binder" Value="NoBinder" /> </asp:ListBox> </div> </div> <div> <div class="label"></div> <div> <asp:CheckBox ID="chkAdditionalGuests" Text="Additional Guests" runat="server" /> </div> </div> <hr /> <input type="button" id="btnSubmit" value="Send Registration" /> The form includes a few different kinds of form fields including a multi-selection listbox to demonstrate retrieving multiple values. Setting up the Server Side [WebMethod] The [WebMethod] on the server we’re going to call is going to be very simple and just capture the content of these values and echo then back as a formatted HTML string. Obviously this is overly simplistic but it serves to demonstrate the simple point of capturing the POST data on the server in an AJAX callback. public class PageMethodsService : System.Web.Services.WebService { [WebMethod] public string SendRegistration(NameValue[] formVars) { StringBuilder sb = new StringBuilder(); sb.AppendFormat("Thank you {0}, <br/><br/>", HttpUtility.HtmlEncode(formVars.Form("txtName"))); sb.AppendLine("You've entered the following: <hr/>"); foreach (NameValue nv in formVars) { // strip out ASP.NET form vars like _ViewState/_EventValidation if (!nv.name.StartsWith("__")) { if (nv.name.StartsWith("txt") || nv.name.StartsWith("lst") || nv.name.StartsWith("chk")) sb.Append(nv.name.Substring(3)); else sb.Append(nv.name); sb.AppendLine(": " + HttpUtility.HtmlEncode(nv.value) + "<br/>"); } } sb.AppendLine("<hr/>"); string[] needs = formVars.FormMultiple("lstSpecialNeeds"); if (needs == null) sb.AppendLine("No Special Needs"); else { sb.AppendLine("Special Needs: <br/>"); foreach (string need in needs) { sb.AppendLine("&nbsp;&nbsp;" + need + "<br/>"); } } return sb.ToString(); } } The key feature of this method is that it receives a custom type called NameValue[] which is an array of NameValue objects that map the structure that the jQuery .serializeArray() function generates. There are two custom types involved in this: The actual NameValue type and a NameValueExtensions class that defines a couple of extension methods for the NameValue[] array type to allow for single (.Form()) and multiple (.FormMultiple()) value retrieval by name. The NameValue class is as simple as this and simply maps the structure of the array elements of .serializeArray(): public class NameValue { public string name { get; set; } public string value { get; set; } } The extension method class defines the .Form() and .FormMultiple() methods to allow easy retrieval of form variables from the returned array: /// <summary> /// Simple NameValue class that maps name and value /// properties that can be used with jQuery's /// $.serializeArray() function and JSON requests /// </summary> public static class NameValueExtensionMethods { /// <summary> /// Retrieves a single form variable from the list of /// form variables stored /// </summary> /// <param name="formVars"></param> /// <param name="name">formvar to retrieve</param> /// <returns>value or string.Empty if not found</returns> public static string Form(this NameValue[] formVars, string name) { var matches = formVars.Where(nv => nv.name.ToLower() == name.ToLower()).FirstOrDefault(); if (matches != null) return matches.value; return string.Empty; } /// <summary> /// Retrieves multiple selection form variables from the list of /// form variables stored. /// </summary> /// <param name="formVars"></param> /// <param name="name">The name of the form var to retrieve</param> /// <returns>values as string[] or null if no match is found</returns> public static string[] FormMultiple(this NameValue[] formVars, string name) { var matches = formVars.Where(nv => nv.name.ToLower() == name.ToLower()).Select(nv => nv.value).ToArray(); if (matches.Length == 0) return null; return matches; } } Using these extension methods it’s easy to retrieve individual values from the array: string name = formVars.Form("txtName"); or multiple values: string[] needs = formVars.FormMultiple("lstSpecialNeeds"); if (needs != null) { // do something with matches } Using these functions in the SendRegistration method it’s easy to retrieve a few form variables directly (txtName and the multiple selections of lstSpecialNeeds) or to iterate over the whole list of values. Of course this is an overly simple example – in typical app you’d probably want to validate the input data and save it to the database and then return some sort of confirmation or possibly an updated data list back to the client. Since this is a full AJAX service callback realize that you don’t have to return simple string values – you can return any of the supported result types (which are most serializable types) including complex hierarchical objects and arrays that make sense to your client code. POSTing Form Variables from the Client to the AJAX Service To call the AJAX service method on the client is straight forward and requires only use of little native jQuery plus JSON serialization functionality. To start add jQuery and the json2.js library to your page: <script src="Scripts/jquery.min.js" type="text/javascript"></script> <script src="Scripts/json2.js" type="text/javascript"></script> json2.js can be found here (be sure to remove the first line from the file): http://www.json.org/json2.js It’s required to handle JSON serialization for those browsers that don’t support it natively. With those script references in the document let’s hookup the button click handler and call the service: $(document).ready(function () { $("#btnSubmit").click(sendRegistration); }); function sendRegistration() { var arForm = $("#form1").serializeArray(); $.ajax({ url: "PageMethodsService.asmx/SendRegistration", type: "POST", contentType: "application/json", data: JSON.stringify({ formVars: arForm }), dataType: "json", success: function (result) { var jEl = $("#divMessage"); jEl.html(result.d).fadeIn(1000); setTimeout(function () { jEl.fadeOut(1000) }, 5000); }, error: function (xhr, status) { alert("An error occurred: " + status); } }); } The key feature in this code is the $("#form1").serializeArray();  call which serializes all the form fields of form1 into an array. Each form var is represented as an object with a name/value property. This array is then serialized into JSON with: JSON.stringify({ formVars: arForm }) The format for the parameter list in AJAX service calls is an object with one property for each parameter of the method. In this case its a single parameter called formVars and we’re assigning the array of form variables to it. The URL to call on the server is the name of the Service (or ASPX Page for Page Methods) plus the name of the method to call. On return the success callback receives the result from the AJAX callback which in this case is the formatted string which is simply assigned to an element in the form and displayed. Remember the result type is whatever the method returns – it doesn’t have to be a string. Note that ASP.NET AJAX and WCF REST return JSON data as a wrapped object so the result has a ‘d’ property that holds the actual response: jEl.html(result.d).fadeIn(1000); Slightly simpler: Using ServiceProxy.js If you want things slightly cleaner you can use the ServiceProxy.js class I’ve mentioned here before. The ServiceProxy class handles a few things for calling ASP.NET and WCF services more cleanly: Automatic JSON encoding Automatic fix up of ‘d’ wrapper property Automatic Date conversion on the client Simplified error handling Reusable and abstracted To add the service proxy add: <script src="Scripts/ServiceProxy.js" type="text/javascript"></script> and then change the code to this slightly simpler version: <script type="text/javascript"> proxy = new ServiceProxy("PageMethodsService.asmx/"); $(document).ready(function () { $("#btnSubmit").click(sendRegistration); }); function sendRegistration() { var arForm = $("#form1").serializeArray(); proxy.invoke("SendRegistration", { formVars: arForm }, function (result) { var jEl = $("#divMessage"); jEl.html(result).fadeIn(1000); setTimeout(function () { jEl.fadeOut(1000) }, 5000); }, function (error) { alert(error.message); } ); } The code is not very different but it makes the call as simple as specifying the method to call, the parameters to pass and the actions to take on success and error. No more remembering which content type and data types to use and manually serializing to JSON. This code also removes the “d” property processing in the response and provides more consistent error handling in that the call always returns an error object regardless of a server error or a communication error unlike the native $.ajax() call. Either approach works and both are pretty easy. The ServiceProxy really pays off if you use lots of service calls and especially if you need to deal with date values returned from the server  on the client. Summary Making Web Service calls and getting POST data to the server is not always the best option – ASP.NET and WCF AJAX services are meant to work with data in objects. However, in some situations it’s simply easier to POST all the captured form data to the server instead of mapping all properties from the input fields to some sort of message object first. For this approach the above POST mechanism is useful as it puts the parsing of the data on the server and leaves the client code lean and mean. It’s even easy to build a custom model binder on the server that can map the array values to properties on an object generically with some relatively simple Reflection code and without having to manually map form vars to properties and do string conversions. Keep in mind though that other approaches also abound. ASP.NET MVC makes it pretty easy to create custom routes to data and the built in model binder makes it very easy to deal with inbound form POST data in its original urlencoded format. The West Wind West Wind Web Toolkit also includes functionality for AJAX callbacks using plain POST values. All that’s needed is a Method parameter to query/form value to specify the method to be called on the server. After that the content type is completely optional and up to the consumer. It’d be nice if the ASP.NET AJAX Service and WCF AJAX Services weren’t so tightly bound to the content type so that you could more easily create open access service endpoints that can take advantage of urlencoded data that is everywhere in existing pages. It would make it much easier to create basic REST endpoints without complicated service configuration. Ah one can dream! In the meantime I hope this article has given you some ideas on how you can transfer POST data from the client to the server using JSON – it might be useful in other scenarios beyond ASP.NET AJAX services as well. Additional Resources ServiceProxy.js A small JavaScript library that wraps $.ajax() to call ASP.NET AJAX and WCF AJAX Services. Includes date parsing extensions to the JSON object, a global dataFilter for processing dates on all jQuery JSON requests, provides cleanup for the .NET wrapped message format and handles errors in a consistent fashion. Making jQuery Calls to WCF/ASMX with a ServiceProxy Client More information on calling ASMX and WCF AJAX services with jQuery and some more background on ServiceProxy.js. Note the implementation has slightly changed since the article was written. ww.jquery.js The West Wind West Wind Web Toolkit also includes ServiceProxy.js in the West Wind jQuery extension library. This version is slightly different and includes embedded json encoding/decoding based on json2.js.© Rick Strahl, West Wind Technologies, 2005-2010Posted in jQuery  ASP.NET  AJAX  

    Read the article

  • JMS Step 4 - How to Create an 11g BPEL Process Which Writes a Message Based on an XML Schema to a JMS Queue

    - by John-Brown.Evans
    JMS Step 4 - How to Create an 11g BPEL Process Which Writes a Message Based on an XML Schema to a JMS Queue ol{margin:0;padding:0} .c11_4{vertical-align:top;width:129.8pt;border-style:solid;background-color:#f3f3f3;border-color:#000000;border-width:1pt;padding:5pt 5pt 5pt 5pt} .c9_4{vertical-align:top;width:207pt;border-style:solid;background-color:#f3f3f3;border-color:#000000;border-width:1pt;padding:5pt 5pt 5pt 5pt}.c14{vertical-align:top;width:207pt;border-style:solid;border-color:#000000;border-width:1pt;padding:5pt 5pt 5pt 5pt} .c17_4{vertical-align:top;width:129.8pt;border-style:solid;border-color:#000000;border-width:1pt;padding:5pt 5pt 5pt 5pt} .c7_4{vertical-align:top;width:130pt;border-style:solid;border-color:#000000;border-width:1pt;padding:0pt 5pt 0pt 5pt} .c19_4{vertical-align:top;width:468pt;border-style:solid;border-color:#000000;border-width:1pt;padding:5pt 5pt 5pt 5pt} .c22_4{background-color:#ffffff} .c20_4{list-style-type:disc;margin:0;padding:0} .c6_4{font-size:8pt;font-family:"Courier New"} .c24_4{color:inherit;text-decoration:inherit} .c23_4{color:#1155cc;text-decoration:underline} .c0_4{height:11pt;direction:ltr} .c10_4{font-size:10pt;font-family:"Courier New"} .c3_4{padding-left:0pt;margin-left:36pt} .c18_4{font-size:8pt} .c8_4{text-align:center} .c12_4{background-color:#ffff00} .c2_4{font-weight:bold} .c21_4{background-color:#00ff00} .c4_4{line-height:1.0} .c1_4{direction:ltr} .c15_4{background-color:#f3f3f3} .c13_4{font-family:"Courier New"} .c5_4{font-style:italic} .c16_4{border-collapse:collapse} .title{padding-top:24pt;line-height:1.15;text-align:left;color:#000000;font-size:36pt;font-family:"Arial";font-weight:bold;padding-bottom:6pt} .subtitle{padding-top:18pt;line-height:1.15;text-align:left;color:#666666;font-style:italic;font-size:24pt;font-family:"Georgia";padding-bottom:4pt} li{color:#000000;font-size:10pt;font-family:"Arial"} p{color:#000000;font-size:10pt;margin:0;font-family:"Arial"} h1{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:18pt;font-family:"Arial";font-weight:normal;padding-bottom:0pt} h2{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:18pt;font-family:"Arial";font-weight:bold;padding-bottom:0pt} h3{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:14pt;font-family:"Arial";font-weight:normal;padding-bottom:0pt} h4{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-style:italic;font-size:11pt;font-family:"Arial";padding-bottom:0pt} h5{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:10pt;font-family:"Arial";font-weight:normal;padding-bottom:0pt} h6{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-style:italic;font-size:10pt;font-family:"Arial";padding-bottom:0pt} This post continues the series of JMS articles which demonstrate how to use JMS queues in a SOA context. The previous posts were: JMS Step 1 - How to Create a Simple JMS Queue in Weblogic Server 11g JMS Step 2 - Using the QueueSend.java Sample Program to Send a Message to a JMS Queue JMS Step 3 - Using the QueueReceive.java Sample Program to Read a Message from a JMS Queue In this example we will create a BPEL process which will write (enqueue) a message to a JMS queue using a JMS adapter. The JMS adapter will enqueue the full XML payload to the queue. This sample will use the following WebLogic Server objects. The first two, the Connection Factory and JMS Queue, were created as part of the first blog post in this series, JMS Step 1 - How to Create a Simple JMS Queue in Weblogic Server 11g. If you haven't created those objects yet, please see that post for details on how to do so. The Connection Pool will be created as part of this example. Object Name Type JNDI Name TestConnectionFactory Connection Factory jms/TestConnectionFactory TestJMSQueue JMS Queue jms/TestJMSQueue eis/wls/TestQueue Connection Pool eis/wls/TestQueue 1. Verify Connection Factory and JMS Queue As mentioned above, this example uses a WLS Connection Factory called TestConnectionFactory and a JMS queue TestJMSQueue. As these are prerequisites for this example, let us verify they exist. Log in to the WebLogic Server Administration Console. Select Services > JMS Modules > TestJMSModule You should see the following objects: If not, or if the TestJMSModule is missing, please see the abovementioned article and create these objects before continuing. 2. Create a JMS Adapter Connection Pool in WebLogic Server The BPEL process we are about to create uses a JMS adapter to write to the JMS queue. The JMS adapter is deployed to the WebLogic server and needs to be configured to include a connection pool which references the connection factory associated with the JMS queue. In the WebLogic Server Console Go to Deployments > Next and select (click on) the JmsAdapter Select Configuration > Outbound Connection Pools and expand oracle.tip.adapter.jms.IJmsConnectionFactory. This will display the list of connections configured for this adapter. For example, eis/aqjms/Queue, eis/aqjms/Topic etc. These JNDI names are actually quite confusing. We are expecting to configure a connection pool here, but the names refer to queues and topics. One would expect these to be called *ConnectionPool or *_CF or similar, but to conform to this nomenclature, we will call our entry eis/wls/TestQueue . This JNDI name is also the name we will use later, when creating a BPEL process to access this JMS queue! Select New, check the oracle.tip.adapter.jms.IJmsConnectionFactory check box and Next. Enter JNDI Name: eis/wls/TestQueue for the connection instance, then press Finish. Expand oracle.tip.adapter.jms.IJmsConnectionFactory again and select (click on) eis/wls/TestQueue The ConnectionFactoryLocation must point to the JNDI name of the connection factory associated with the JMS queue you will be writing to. In our example, this is the connection factory called TestConnectionFactory, with the JNDI name jms/TestConnectionFactory.( As a reminder, this connection factory is contained in the JMS Module called TestJMSModule, under Services > Messaging > JMS Modules > TestJMSModule which we verified at the beginning of this document. )Enter jms/TestConnectionFactory  into the Property Value field for Connection Factory Location. After entering it, you must press Return/Enter then Save for the value to be accepted. If your WebLogic server is running in Development mode, you should see the message that the changes have been activated and the deployment plan successfully updated. If not, then you will manually need to activate the changes in the WebLogic server console. Although the changes have been activated, the JmsAdapter needs to be redeployed in order for the changes to become effective. This should be confirmed by the message Remember to update your deployment to reflect the new plan when you are finished with your changes as can be seen in the following screen shot: The next step is to redeploy the JmsAdapter.Navigate back to the Deployments screen, either by selecting it in the left-hand navigation tree or by selecting the “Summary of Deployments” link in the breadcrumbs list at the top of the screen. Then select the checkbox next to JmsAdapter and press the Update button On the Update Application Assistant page, select “Redeploy this application using the following deployment files” and press Finish. After a few seconds you should get the message that the selected deployments were updated. The JMS adapter configuration is complete and it can now be used to access the JMS queue. To summarize: we have created a JMS adapter connection pool connector with the JNDI name jms/TestConnectionFactory. This is the JNDI name to be accessed by a process such as a BPEL process, when using the JMS adapter to access the previously created JMS queue with the JNDI name jms/TestJMSQueue. In the following step, we will set up a BPEL process to use this JMS adapter to write to the JMS queue. 3. Create a BPEL Composite with a JMS Adapter Partner Link This step requires that you have a valid Application Server Connection defined in JDeveloper, pointing to the application server on which you created the JMS Queue and Connection Factory. You can create this connection in JDeveloper under the Application Server Navigator. Give it any name and be sure to test the connection before completing it. This sample will use the connection name jbevans-lx-PS5, as that is the name of the connection pointing to my SOA PS5 installation. When using a JMS adapter from within a BPEL process, there are various configuration options, such as the operation type (consume message, produce message etc.), delivery mode and message type. One of these options is the choice of the format of the JMS message payload. This can be structured around an existing XSD, in which case the full XML element and tags are passed, or it can be opaque, meaning that the payload is sent as-is to the JMS adapter. In the case of an XSD-based message, the payload can simply be copied to the input variable of the JMS adapter. In the case of an opaque message, the JMS adapter’s input variable is of type base64binary. So the payload needs to be converted to base64 binary first. I will go into this in more detail in a later blog entry. This sample will pass a simple message to the adapter, based on the following simple XSD file, which consists of a single string element: stringPayload.xsd <?xml version="1.0" encoding="windows-1252" ?> <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns="http://www.example.org" targetNamespace="http://www.example.org" elementFormDefault="qualified" <xsd:element name="exampleElement" type="xsd:string"> </xsd:element> </xsd:schema> The following steps are all executed in JDeveloper. The SOA project will be created inside a JDeveloper Application. If you do not already have an application to contain the project, you can create a new one via File > New > General > Generic Application. Give the application any name, for example JMSTests and, when prompted for a project name and type, call the project JmsAdapterWriteWithXsd and select SOA as the project technology type. If you already have an application, continue below. Create a SOA Project Create a new project and choose SOA Tier > SOA Project as its type. Name it JmsAdapterWriteSchema. When prompted for the composite type, choose Composite With BPEL Process. When prompted for the BPEL Process, name it JmsAdapterWriteSchema too and choose Synchronous BPEL Process as the template. This will create a composite with a BPEL process and an exposed SOAP service. Double-click the BPEL process to open and begin editing it. You should see a simple BPEL process with a Receive and Reply activity. As we created a default process without an XML schema, the input and output variables are simple strings. Create an XSD File An XSD file is required later to define the message format to be passed to the JMS adapter. In this step, we create a simple XSD file, containing a string variable and add it to the project. First select the xsd item in the left-hand navigation tree to ensure that the XSD file is created under that item. Select File > New > General > XML and choose XML Schema. Call it stringPayload.xsd and when the editor opens, select the Source view. then replace the contents with the contents of the stringPayload.xsd example above and save the file. You should see it under the xsd item in the navigation tree. Create a JMS Adapter Partner Link We will create the JMS adapter as a service at the composite level. If it is not already open, double-click the composite.xml file in the navigator to open it. From the Component Palette, drag a JMS adapter over onto the right-hand swim lane, under External References. This will start the JMS Adapter Configuration Wizard. Use the following entries: Service Name: JmsAdapterWrite Oracle Enterprise Messaging Service (OEMS): Oracle Weblogic JMS AppServer Connection: Use an existing application server connection pointing to the WebLogic server on which the above JMS queue and connection factory were created. You can use the “+” button to create a connection directly from the wizard, if you do not already have one. This example uses a connection called jbevans-lx-PS5. Adapter Interface > Interface: Define from operation and schema (specified later) Operation Type: Produce Message Operation Name: Produce_message Destination Name: Press the Browse button, select Destination Type: Queues, then press Search. Wait for the list to populate, then select the entry for TestJMSQueue , which is the queue created earlier. JNDI Name: The JNDI name to use for the JMS connection. This is probably the most important step in this exercise and the most common source of error. This is the JNDI name of the JMS adapter’s connection pool created in the WebLogic Server and which points to the connection factory. JDeveloper does not verify the value entered here. If you enter a wrong value, the JMS adapter won’t find the queue and you will get an error message at runtime, which is very difficult to trace. In our example, this is the value eis/wls/TestQueue . (See the earlier step on how to create a JMS Adapter Connection Pool in WebLogic Server for details.) MessagesURL: We will use the XSD file we created earlier, stringPayload.xsd to define the message format for the JMS adapter. Press the magnifying glass icon to search for schema files. Expand Project Schema Files > stringPayload.xsd and select exampleElement: string. Press Next and Finish, which will complete the JMS Adapter configuration. Wire the BPEL Component to the JMS Adapter In this step, we link the BPEL process/component to the JMS adapter. From the composite.xml editor, drag the right-arrow icon from the BPEL process to the JMS adapter’s in-arrow. This completes the steps at the composite level. 4. Complete the BPEL Process Design Invoke the JMS Adapter Open the BPEL component by double-clicking it in the design view of the composite.xml, or open it from the project navigator by selecting the JmsAdapterWriteSchema.bpel file. This will display the BPEL process in the design view. You should see the JmsAdapterWrite partner link under one of the two swim lanes. We want it in the right-hand swim lane. If JDeveloper displays it in the left-hand lane, right-click it and choose Display > Move To Opposite Swim Lane. An Invoke activity is required in order to invoke the JMS adapter. Drag an Invoke activity between the Receive and Reply activities. Drag the right-hand arrow from the Invoke activity to the JMS adapter partner link. This will open the Invoke editor. The correct default values are entered automatically and are fine for our purposes. We only need to define the input variable to use for the JMS adapter. By pressing the green “+” symbol, a variable of the correct type can be auto-generated, for example with the name Invoke1_Produce_Message_InputVariable. Press OK after creating the variable. ( For some reason, while I was testing this, the JMS Adapter moved back to the left-hand swim lane again after this step. There is no harm in leaving it there, but I find it easier to follow if it is in the right-hand lane, because I kind-of think of the message coming in on the left and being routed through the right. But you can follow your personal preference here.) Assign Variables Drag an Assign activity between the Receive and Invoke activities. We will simply copy the input variable to the JMS adapter and, for completion, so the process has an output to print, again to the process’s output variable. Double-click the Assign activity and create two Copy rules: for the first, drag Variables > inputVariable > payload > client:process > client:input_string to Invoke1_Produce_Message_InputVariable > body > ns2:exampleElement for the second, drag the same input variable to outputVariable > payload > client:processResponse > client:result This will create two copy rules, similar to the following: Press OK. This completes the BPEL and Composite design. 5. Compile and Deploy the Composite We won’t go into too much detail on how to compile and deploy. In JDeveloper, compile the process by pressing the Make or Rebuild icons or by right-clicking the project name in the navigator and selecting Make... or Rebuild... If the compilation is successful, deploy it to the SOA server connection defined earlier. (Right-click the project name in the navigator, select Deploy to Application Server, choose the application server connection, choose the partition on the server (usually default) and press Finish. You should see the message ---- Deployment finished. ---- in the Deployment frame, if the deployment was successful. 6. Test the Composite This is the exciting part. Open two tabs in your browser and log in to the WebLogic Administration Console in one tab and the Enterprise Manager 11g Fusion Middleware Control (EM) for your SOA installation in the other. We will use the Console to monitor the messages being written to the queue and the EM to execute the composite. In the Console, go to Services > Messaging > JMS Modules > TestJMSModule > TestJMSQueue > Monitoring. Note the number of messages under Messages Current. In the EM, go to SOA > soa-infra (soa_server1) > default (or wherever you deployed your composite to) and click on JmsAdapterWriteSchema [1.0], then press the Test button. Under Input Arguments, enter any string into the text input field for the payload, for example Test Message then press Test Web Service. If the instance is successful you should see the same text in the Response message, “Test Message”. In the Console, refresh the Monitoring screen to confirm a new message has been written to the queue. Check the checkbox and press Show Messages. Click on the newest message and view its contents. They should include the full XML of the entered payload. 7. Troubleshooting If you get an exception similar to the following at runtime ... BINDING.JCA-12510 JCA Resource Adapter location error. Unable to locate the JCA Resource Adapter via .jca binding file element The JCA Binding Component is unable to startup the Resource Adapter specified in the element: location='eis/wls/QueueTest'. The reason for this is most likely that either 1) the Resource Adapters RAR file has not been deployed successfully to the WebLogic Application server or 2) the '' element in weblogic-ra.xml has not been set to eis/wls/QueueTest. In the last case you will have to add a new WebLogic JCA connection factory (deploy a RAR). Please correct this and then restart the Application Server at oracle.integration.platform.blocks.adapter.fw.AdapterBindingException. createJndiLookupException(AdapterBindingException.java:130) at oracle.integration.platform.blocks.adapter.fw.jca.cci. JCAConnectionManager$JCAConnectionPool.createJCAConnectionFactory (JCAConnectionManager.java:1387) at oracle.integration.platform.blocks.adapter.fw.jca.cci. JCAConnectionManager$JCAConnectionPool.newPoolObject (JCAConnectionManager.java:1285) ... then this is very likely due to an incorrect JNDI name entered for the JMS Connection in the JMS Adapter Wizard. Recheck those steps. The error message prints the name of the JNDI name used. In this example, it was incorrectly entered as eis/wls/QueueTest instead of eis/wls/TestQueue. This concludes this example. Best regards John-Brown Evans Oracle Technology Proactive Support Delivery

    Read the article

  • Red Gate Coder interviews: Alex Davies

    - by Michael Williamson
    Alex Davies has been a software engineer at Red Gate since graduating from university, and is currently busy working on .NET Demon. We talked about tackling parallel programming with his actors framework, a scientific approach to debugging, and how JavaScript is going to affect the programming languages we use in years to come. So, if we start at the start, how did you get started in programming? When I was seven or eight, I was given a BBC Micro for Christmas. I had asked for a Game Boy, but my dad thought it would be better to give me a proper computer. For a year or so, I only played games on it, but then I found the user guide for writing programs in it. I gradually started doing more stuff on it and found it fun. I liked creating. As I went into senior school I continued to write stuff on there, trying to write games that weren’t very good. I got a real computer when I was fourteen and found ways to write BASIC on it. Visual Basic to start with, and then something more interesting than that. How did you learn to program? Was there someone helping you out? Absolutely not! I learnt out of a book, or by experimenting. I remember the first time I found a loop, I was like “Oh my God! I don’t have to write out the same line over and over and over again any more. It’s amazing!” When did you think this might be something that you actually wanted to do as a career? For a long time, I thought it wasn’t something that you would do as a career, because it was too much fun to be a career. I thought I’d do chemistry at university and some kind of career based on chemical engineering. And then I went to a careers fair at school when I was seventeen or eighteen, and it just didn’t interest me whatsoever. I thought “I could be a programmer, and there’s loads of money there, and I’m good at it, and it’s fun”, but also that I shouldn’t spoil my hobby. Now I don’t really program in my spare time any more, which is a bit of a shame, but I program all the rest of the time, so I can live with it. Do you think you learnt much about programming at university? Yes, definitely! I went into university knowing how to make computers do anything I wanted them to do. However, I didn’t have the language to talk about algorithms, so the algorithms course in my first year was massively important. Learning other language paradigms like functional programming was really good for breadth of understanding. Functional programming influences normal programming through design rather than actually using it all the time. I draw inspiration from it to write imperative programs which I think is actually becoming really fashionable now, but I’ve been doing it for ages. I did it first! There were also some courses on really odd programming languages, a bit of Prolog, a little bit of C. Having a little bit of each of those is something that I would have never done on my own, so it was important. And then there are knowledge-based courses which are about not programming itself but things that have been programmed like TCP. Those are really important for examples for how to approach things. Did you do any internships while you were at university? Yeah, I spent both of my summers at the same company. I thought I could code well before I went there. Looking back at the crap that I produced, it was only surpassed in its crappiness by all of the other code already in that company. I’m so much better at writing nice code now than I used to be back then. Was there just not a culture of looking after your code? There was, they just didn’t hire people for their abilities in that area. They hired people for raw IQ. The first indicator of it going wrong was that they didn’t have any computer scientists, which is a bit odd in a programming company. But even beyond that they didn’t have people who learnt architecture from anyone else. Most of them had started straight out of university, so never really had experience or mentors to learn from. There wasn’t the experience to draw from to teach each other. In the second half of my second internship, I was being given tasks like looking at new technologies and teaching people stuff. Interns shouldn’t be teaching people how to do their jobs! All interns are going to have little nuggets of things that you don’t know about, but they shouldn’t consistently be the ones who know the most. It’s not a good environment to learn. I was going to ask how you found working with people who were more experienced than you… When I reached Red Gate, I found some people who were more experienced programmers than me, and that was difficult. I’ve been coding since I was tiny. At university there were people who were cleverer than me, but there weren’t very many who were more experienced programmers than me. During my internship, I didn’t find anyone who I classed as being a noticeably more experienced programmer than me. So, it was a shock to the system to have valid criticisms rather than just formatting criticisms. However, Red Gate’s not so big on the actual code review, at least it wasn’t when I started. We did an entire product release and then somebody looked over all of the UI of that product which I’d written and say what they didn’t like. By that point, it was way too late and I’d disagree with them. Do you think the lack of code reviews was a bad thing? I think if there’s going to be any oversight of new people, then it should be continuous rather than chunky. For me I don’t mind too much, I could go out and get oversight if I wanted it, and in those situations I felt comfortable without it. If I was managing the new person, then maybe I’d be keener on oversight and then the right way to do it is continuously and in very, very small chunks. Have you had any significant projects you’ve worked on outside of a job? When I was a teenager I wrote all sorts of stuff. I used to write games, I derived how to do isomorphic projections myself once. I didn’t know what the word was so I couldn’t Google for it, so I worked it out myself. It was horrifically complicated. But it sort of tailed off when I started at university, and is now basically zero. If I do side-projects now, they tend to be work-related side projects like my actors framework, NAct, which I started in a down tools week. Could you explain a little more about NAct? It is a little C# framework for writing parallel code more easily. Parallel programming is difficult when you need to write to shared data. Sometimes parallel programming is easy because you don’t need to write to shared data. When you do need to access shared data, you could just have your threads pile in and do their work, but then you would screw up the data because the threads would trample on each other’s toes. You could lock, but locks are really dangerous if you’re using more than one of them. You get interactions like deadlocks, and that’s just nasty. Actors instead allows you to say this piece of data belongs to this thread of execution, and nobody else can read it. If you want to read it, then ask that thread of execution for a piece of it by sending a message, and it will send the data back by a message. And that avoids deadlocks as long as you follow some obvious rules about not making your actors sit around waiting for other actors to do something. There are lots of ways to write actors, NAct allows you to do it as if it was method calls on other objects, which means you get all the strong type-safety that C# programmers like. Do you think that this is suitable for the majority of parallel programming, or do you think it’s only suitable for specific cases? It’s suitable for most difficult parallel programming. If you’ve just got a hundred web requests which are all independent of each other, then I wouldn’t bother because it’s easier to just spin them up in separate threads and they can proceed independently of each other. But where you’ve got difficult parallel programming, where you’ve got multiple threads accessing multiple bits of data in multiple ways at different times, then actors is at least as good as all other ways, and is, I reckon, easier to think about. When you’re using actors, you presumably still have to write your code in a different way from you would otherwise using single-threaded code. You can’t use actors with any methods that have return types, because you’re not allowed to call into another actor and wait for it. If you want to get a piece of data out of another actor, then you’ve got to use tasks so that you can use “async” and “await” to await asynchronously for it. But other than that, you can still stick things in classes so it’s not too different really. Rather than having thousands of objects with mutable state, you can use component-orientated design, where there are only a few mutable classes which each have a small number of instances. Then there can be thousands of immutable objects. If you tend to do that anyway, then actors isn’t much of a jump. If I’ve already built my system without any parallelism, how hard is it to add actors to exploit all eight cores on my desktop? Usually pretty easy. If you can identify even one boundary where things look like messages and you have components where some objects live on one side and these other objects live on the other side, then you can have a granddaddy object on one side be an actor and it will parallelise as it goes across that boundary. Not too difficult. If we do get 1000-core desktop PCs, do you think actors will scale up? It’s hard. There are always in the order of twenty to fifty actors in my whole program because I tend to write each component as actors, and I tend to have one instance of each component. So this won’t scale to a thousand cores. What you can do is write data structures out of actors. I use dictionaries all over the place, and if you need a dictionary that is going to be accessed concurrently, then you could build one of those out of actors in no time. You can use queuing to marshal requests between different slices of the dictionary which are living on different threads. So it’s like a distributed hash table but all of the chunks of it are on the same machine. That means that each of these thousand processors has cached one small piece of the dictionary. I reckon it wouldn’t be too big a leap to start doing proper parallelism. Do you think it helps if actors get baked into the language, similarly to Erlang? Erlang is excellent in that it has thread-local garbage collection. C# doesn’t, so there’s a limit to how well C# actors can possibly scale because there’s a single garbage collected heap shared between all of them. When you do a global garbage collection, you’ve got to stop all of the actors, which is seriously expensive, whereas in Erlang garbage collections happen per-actor, so they’re insanely cheap. However, Erlang deviated from all the sensible language design that people have used recently and has just come up with crazy stuff. You can definitely retrofit thread-local garbage collection to .NET, and then it’s quite well-suited to support actors, even if it’s not baked into the language. Speaking of language design, do you have a favourite programming language? I’ll choose a language which I’ve never written before. I like the idea of Scala. It sounds like C#, only with some of the niggles gone. I enjoy writing static types. It means you don’t have to writing tests so much. When you say it doesn’t have some of the niggles? C# doesn’t allow the use of a property as a method group. It doesn’t have Scala case classes, or sum types, where you can do a switch statement and the compiler checks that you’ve checked all the cases, which is really useful in functional-style programming. Pattern-matching, in other words. That’s actually the major niggle. C# is pretty good, and I’m quite happy with C#. And what about going even further with the type system to remove the need for tests to something like Haskell? Or is that a step too far? I’m quite a pragmatist, I don’t think I could deal with trying to write big systems in languages with too few other users, especially when learning how to structure things. I just don’t know anyone who can teach me, and the Internet won’t teach me. That’s the main reason I wouldn’t use it. If I turned up at a company that writes big systems in Haskell, I would have no objection to that, but I wouldn’t instigate it. What about things in C#? For instance, there’s contracts in C#, so you can try to statically verify a bit more about your code. Do you think that’s useful, or just not worthwhile? I’ve not really tried it. My hunch is that it needs to be built into the language and be quite mathematical for it to work in real life, and that doesn’t seem to have ended up true for C# contracts. I don’t think anyone who’s tried them thinks they’re any good. I might be wrong. On a slightly different note, how do you like to debug code? I think I’m quite an odd debugger. I use guesswork extremely rarely, especially if something seems quite difficult to debug. I’ve been bitten spending hours and hours on guesswork and not being scientific about debugging in the past, so now I’m scientific to a fault. What I want is to see the bug happening in the debugger, to step through the bug happening. To watch the program going from a valid state to an invalid state. When there’s a bug and I can’t work out why it’s happening, I try to find some piece of evidence which places the bug in one section of the code. From that experiment, I binary chop on the possible causes of the bug. I suppose that means binary chopping on places in the code, or binary chopping on a stage through a processing cycle. Basically, I’m very stupid about how I debug. I won’t make any guesses, I won’t use any intuition, I will only identify the experiment that’s going to binary chop most effectively and repeat rather than trying to guess anything. I suppose it’s quite top-down. Is most of the time then spent in the debugger? Absolutely, if at all possible I will never debug using print statements or logs. I don’t really hold much stock in outputting logs. If there’s any bug which can be reproduced locally, I’d rather do it in the debugger than outputting logs. And with SmartAssembly error reporting, there’s not a lot that can’t be either observed in an error report and just fixed, or reproduced locally. And in those other situations, maybe I’ll use logs. But I hate using logs. You stare at the log, trying to guess what’s going on, and that’s exactly what I don’t like doing. You have to just look at it and see does this look right or wrong. We’ve covered how you get to grip with bugs. How do you get to grips with an entire codebase? I watch it in the debugger. I find little bugs and then try to fix them, and mostly do it by watching them in the debugger and gradually getting an understanding of how the code works using my process of binary chopping. I have to do a lot of reading and watching code to choose where my slicing-in-half experiment is going to be. The last time I did it was SmartAssembly. The old code was a complete mess, but at least it did things top to bottom. There wasn’t too much of some of the big abstractions where flow of control goes all over the place, into a base class and back again. Code’s really hard to understand when that happens. So I like to choose a little bug and try to fix it, and choose a bigger bug and try to fix it. Definitely learn by doing. I want to always have an aim so that I get a little achievement after every few hours of debugging. Once I’ve learnt the codebase I might be able to fix all the bugs in an hour, but I’d rather be using them as an aim while I’m learning the codebase. If I was a maintainer of a codebase, what should I do to make it as easy as possible for you to understand? Keep distinct concepts in different places. And name your stuff so that it’s obvious which concepts live there. You shouldn’t have some variable that gets set miles up the top of somewhere, and then is read miles down to choose some later behaviour. I’m talking from a very much SmartAssembly point of view because the old SmartAssembly codebase had tons and tons of these things, where it would read some property of the code and then deal with it later. Just thousands of variables in scope. Loads of things to think about. If you can keep concepts separate, then it aids me in my process of fixing bugs one at a time, because each bug is going to more or less be understandable in the one place where it is. And what about tests? Do you think they help at all? I’ve never had the opportunity to learn a codebase which has had tests, I don’t know what it’s like! What about when you’re actually developing? How useful do you find tests in finding bugs or regressions? Finding regressions, absolutely. Running bits of code that would be quite hard to run otherwise, definitely. It doesn’t happen very often that a test finds a bug in the first place. I don’t really buy nebulous promises like tests being a good way to think about the spec of the code. My thinking goes something like “This code works at the moment, great, ship it! Ah, there’s a way that this code doesn’t work. Okay, write a test, demonstrate that it doesn’t work, fix it, use the test to demonstrate that it’s now fixed, and keep the test for future regressions.” The most valuable tests are for bugs that have actually happened at some point, because bugs that have actually happened at some point, despite the fact that you think you’ve fixed them, are way more likely to appear again than new bugs are. Does that mean that when you write your code the first time, there are no tests? Often. The chance of there being a bug in a new feature is relatively unaffected by whether I’ve written a test for that new feature because I’m not good enough at writing tests to think of bugs that I would have written into the code. So not writing regression tests for all of your code hasn’t affected you too badly? There are different kinds of features. Some of them just always work, and are just not flaky, they just continue working whatever you throw at them. Maybe because the type-checker is particularly effective around them. Writing tests for those features which just tend to always work is a waste of time. And because it’s a waste of time I’ll tend to wait until a feature has demonstrated its flakiness by having bugs in it before I start trying to test it. You can get a feel for whether it’s going to be flaky code as you’re writing it. I try to write it to make it not flaky, but there are some things that are just inherently flaky. And very occasionally, I’ll think “this is going to be flaky” as I’m writing, and then maybe do a test, but not most of the time. How do you think your programming style has changed over time? I’ve got clearer about what the right way of doing things is. I used to flip-flop a lot between different ideas. Five years ago I came up with some really good ideas and some really terrible ideas. All of them seemed great when I thought of them, but they were quite diverse ideas, whereas now I have a smaller set of reliable ideas that are actually good for structuring code. So my code is probably more similar to itself than it used to be back in the day, when I was trying stuff out. I’ve got more disciplined about encapsulation, I think. There are operational things like I use actors more now than I used to, and that forces me to use immutability more than I used to. The first code that I wrote in Red Gate was the memory profiler UI, and that was an actor, I just didn’t know the name of it at the time. I don’t really use object-orientation. By object-orientation, I mean having n objects of the same type which are mutable. I want a constant number of objects that are mutable, and they should be different types. I stick stuff in dictionaries and then have one thing that owns the dictionary and puts stuff in and out of it. That’s definitely a pattern that I’ve seen recently. I think maybe I’m doing functional programming. Possibly. It’s plausible. If you had to summarise the essence of programming in a pithy sentence, how would you do it? Programming is the form of art that, without losing any of the beauty of architecture or fine art, allows you to produce things that people love and you make money from. So you think it’s an art rather than a science? It’s a little bit of engineering, a smidgeon of maths, but it’s not science. Like architecture, programming is on that boundary between art and engineering. If you want to do it really nicely, it’s mostly art. You can get away with doing architecture and programming entirely by having a good engineering mind, but you’re not going to produce anything nice. You’re not going to have joy doing it if you’re an engineering mind. Architects who are just engineering minds are not going to enjoy their job. I suppose engineering is the foundation on which you build the art. Exactly. How do you think programming is going to change over the next ten years? There will be an unfortunate shift towards dynamically-typed languages, because of JavaScript. JavaScript has an unfair advantage. JavaScript’s unfair advantage will cause more people to be exposed to dynamically-typed languages, which means other dynamically-typed languages crop up and the best features go into dynamically-typed languages. Then people conflate the good features with the fact that it’s dynamically-typed, and more investment goes into dynamically-typed languages. They end up better, so people use them. What about the idea of compiling other languages, possibly statically-typed, to JavaScript? It’s a reasonable idea. I would like to do it, but I don’t think enough people in the world are going to do it to make it pick up. The hordes of beginners are the lifeblood of a language community. They are what makes there be good tools and what makes there be vibrant community websites. And any particular thing which is the same as JavaScript only with extra stuff added to it, although it might be technically great, is not going to have the hordes of beginners. JavaScript is always to be quickest and easiest way for a beginner to start programming in the browser. And dynamically-typed languages are great for beginners. Compilers are pretty scary and beginners don’t write big code. And having your errors come up in the same place, whether they’re statically checkable errors or not, is quite nice for a beginner. If someone asked me to teach them some programming, I’d teach them JavaScript. If dynamically-typed languages are great for beginners, when do you think the benefits of static typing start to kick in? The value of having a statically typed program is in the tools that rely on the static types to produce a smooth IDE experience rather than actually telling me my compile errors. And only once you’re experienced enough a programmer that having a really smooth IDE experience makes a blind bit of difference, does static typing make a blind bit of difference. So it’s not really about size of codebase. If I go and write up a tiny program, I’m still going to get value out of writing it in C# using ReSharper because I’m experienced with C# and ReSharper enough to be able to write code five times faster if I have that help. Any other visions of the future? Nobody’s going to use actors. Because everyone’s going to be running on single-core VMs connected over network-ready protocols like JSON over HTTP. So, parallelism within one operating system is going to die. But until then, you should use actors. More Red Gater Coder interviews

    Read the article

  • A way of doing real-world test-driven development (and some thoughts about it)

    - by Thomas Weller
    Lately, I exchanged some arguments with Derick Bailey about some details of the red-green-refactor cycle of the Test-driven development process. In short, the issue revolved around the fact that it’s not enough to have a test red or green, but it’s also important to have it red or green for the right reasons. While for me, it’s sufficient to initially have a NotImplementedException in place, Derick argues that this is not totally correct (see these two posts: Red/Green/Refactor, For The Right Reasons and Red For The Right Reason: Fail By Assertion, Not By Anything Else). And he’s right. But on the other hand, I had no idea how his insights could have any practical consequence for my own individual interpretation of the red-green-refactor cycle (which is not really red-green-refactor, at least not in its pure sense, see the rest of this article). This made me think deeply for some days now. In the end I found out that the ‘right reason’ changes in my understanding depending on what development phase I’m in. To make this clear (at least I hope it becomes clear…) I started to describe my way of working in some detail, and then something strange happened: The scope of the article slightly shifted from focusing ‘only’ on the ‘right reason’ issue to something more general, which you might describe as something like  'Doing real-world TDD in .NET , with massive use of third-party add-ins’. This is because I feel that there is a more general statement about Test-driven development to make:  It’s high time to speak about the ‘How’ of TDD, not always only the ‘Why’. Much has been said about this, and me myself also contributed to that (see here: TDD is not about testing, it's about how we develop software). But always justifying what you do is very unsatisfying in the long run, it is inherently defensive, and it costs time and effort that could be used for better and more important things. And frankly: I’m somewhat sick and tired of repeating time and again that the test-driven way of software development is highly preferable for many reasons - I don’t want to spent my time exclusively on stating the obvious… So, again, let’s say it clearly: TDD is programming, and programming is TDD. Other ways of programming (code-first, sometimes called cowboy-coding) are exceptional and need justification. – I know that there are many people out there who will disagree with this radical statement, and I also know that it’s not a description of the real world but more of a mission statement or something. But nevertheless I’m absolutely sure that in some years this statement will be nothing but a platitude. Side note: Some parts of this post read as if I were paid by Jetbrains (the manufacturer of the ReSharper add-in – R#), but I swear I’m not. Rather I think that Visual Studio is just not production-complete without it, and I wouldn’t even consider to do professional work without having this add-in installed... The three parts of a software component Before I go into some details, I first should describe my understanding of what belongs to a software component (assembly, type, or method) during the production process (i.e. the coding phase). Roughly, I come up with the three parts shown below:   First, we need to have some initial sort of requirement. This can be a multi-page formal document, a vague idea in some programmer’s brain of what might be needed, or anything in between. In either way, there has to be some sort of requirement, be it explicit or not. – At the C# micro-level, the best way that I found to formulate that is to define interfaces for just about everything, even for internal classes, and to provide them with exhaustive xml comments. The next step then is to re-formulate these requirements in an executable form. This is specific to the respective programming language. - For C#/.NET, the Gallio framework (which includes MbUnit) in conjunction with the ReSharper add-in for Visual Studio is my toolset of choice. The third part then finally is the production code itself. It’s development is entirely driven by the requirements and their executable formulation. This is the delivery, the two other parts are ‘only’ there to make its production possible, to give it a decent quality and reliability, and to significantly reduce related costs down the maintenance timeline. So while the first two parts are not really relevant for the customer, they are very important for the developer. The customer (or in Scrum terms: the Product Owner) is not interested at all in how  the product is developed, he is only interested in the fact that it is developed as cost-effective as possible, and that it meets his functional and non-functional requirements. The rest is solely a matter of the developer’s craftsmanship, and this is what I want to talk about during the remainder of this article… An example To demonstrate my way of doing real-world TDD, I decided to show the development of a (very) simple Calculator component. The example is deliberately trivial and silly, as examples always are. I am totally aware of the fact that real life is never that simple, but I only want to show some development principles here… The requirement As already said above, I start with writing down some words on the initial requirement, and I normally use interfaces for that, even for internal classes - the typical question “intf or not” doesn’t even come to mind. I need them for my usual workflow and using them automatically produces high componentized and testable code anyway. To think about their usage in every single situation would slow down the production process unnecessarily. So this is what I begin with: namespace Calculator {     /// <summary>     /// Defines a very simple calculator component for demo purposes.     /// </summary>     public interface ICalculator     {         /// <summary>         /// Gets the result of the last successful operation.         /// </summary>         /// <value>The last result.</value>         /// <remarks>         /// Will be <see langword="null" /> before the first successful operation.         /// </remarks>         double? LastResult { get; }       } // interface ICalculator   } // namespace Calculator So, I’m not beginning with a test, but with a sort of code declaration - and still I insist on being 100% test-driven. There are three important things here: Starting this way gives me a method signature, which allows to use IntelliSense and AutoCompletion and thus eliminates the danger of typos - one of the most regular, annoying, time-consuming, and therefore expensive sources of error in the development process. In my understanding, the interface definition as a whole is more of a readable requirement document and technical documentation than anything else. So this is at least as much about documentation than about coding. The documentation must completely describe the behavior of the documented element. I normally use an IoC container or some sort of self-written provider-like model in my architecture. In either case, I need my components defined via service interfaces anyway. - I will use the LinFu IoC framework here, for no other reason as that is is very simple to use. The ‘Red’ (pt. 1)   First I create a folder for the project’s third-party libraries and put the LinFu.Core dll there. Then I set up a test project (via a Gallio project template), and add references to the Calculator project and the LinFu dll. Finally I’m ready to write the first test, which will look like the following: namespace Calculator.Test {     [TestFixture]     public class CalculatorTest     {         private readonly ServiceContainer container = new ServiceContainer();           [Test]         public void CalculatorLastResultIsInitiallyNull()         {             ICalculator calculator = container.GetService<ICalculator>();               Assert.IsNull(calculator.LastResult);         }       } // class CalculatorTest   } // namespace Calculator.Test       This is basically the executable formulation of what the interface definition states (part of). Side note: There’s one principle of TDD that is just plain wrong in my eyes: I’m talking about the Red is 'does not compile' thing. How could a compiler error ever be interpreted as a valid test outcome? I never understood that, it just makes no sense to me. (Or, in Derick’s terms: this reason is as wrong as a reason ever could be…) A compiler error tells me: Your code is incorrect, but nothing more.  Instead, the ‘Red’ part of the red-green-refactor cycle has a clearly defined meaning to me: It means that the test works as intended and fails only if its assumptions are not met for some reason. Back to our Calculator. When I execute the above test with R#, the Gallio plugin will give me this output: So this tells me that the test is red for the wrong reason: There’s no implementation that the IoC-container could load, of course. So let’s fix that. With R#, this is very easy: First, create an ICalculator - derived type:        Next, implement the interface members: And finally, move the new class to its own file: So far my ‘work’ was six mouse clicks long, the only thing that’s left to do manually here, is to add the Ioc-specific wiring-declaration and also to make the respective class non-public, which I regularly do to force my components to communicate exclusively via interfaces: This is what my Calculator class looks like as of now: using System; using LinFu.IoC.Configuration;   namespace Calculator {     [Implements(typeof(ICalculator))]     internal class Calculator : ICalculator     {         public double? LastResult         {             get             {                 throw new NotImplementedException();             }         }     } } Back to the test fixture, we have to put our IoC container to work: [TestFixture] public class CalculatorTest {     #region Fields       private readonly ServiceContainer container = new ServiceContainer();       #endregion // Fields       #region Setup/TearDown       [FixtureSetUp]     public void FixtureSetUp()     {        container.LoadFrom(AppDomain.CurrentDomain.BaseDirectory, "Calculator.dll");     }       ... Because I have a R# live template defined for the setup/teardown method skeleton as well, the only manual coding here again is the IoC-specific stuff: two lines, not more… The ‘Red’ (pt. 2) Now, the execution of the above test gives the following result: This time, the test outcome tells me that the method under test is called. And this is the point, where Derick and I seem to have somewhat different views on the subject: Of course, the test still is worthless regarding the red/green outcome (or: it’s still red for the wrong reasons, in that it gives a false negative). But as far as I am concerned, I’m not really interested in the test outcome at this point of the red-green-refactor cycle. Rather, I only want to assert that my test actually calls the right method. If that’s the case, I will happily go on to the ‘Green’ part… The ‘Green’ Making the test green is quite trivial. Just make LastResult an automatic property:     [Implements(typeof(ICalculator))]     internal class Calculator : ICalculator     {         public double? LastResult { get; private set; }     }         One more round… Now on to something slightly more demanding (cough…). Let’s state that our Calculator exposes an Add() method:         ...   /// <summary>         /// Adds the specified operands.         /// </summary>         /// <param name="operand1">The operand1.</param>         /// <param name="operand2">The operand2.</param>         /// <returns>The result of the additon.</returns>         /// <exception cref="ArgumentException">         /// Argument <paramref name="operand1"/> is &lt; 0.<br/>         /// -- or --<br/>         /// Argument <paramref name="operand2"/> is &lt; 0.         /// </exception>         double Add(double operand1, double operand2);       } // interface ICalculator A remark: I sometimes hear the complaint that xml comment stuff like the above is hard to read. That’s certainly true, but irrelevant to me, because I read xml code comments with the CR_Documentor tool window. And using that, it looks like this:   Apart from that, I’m heavily using xml code comments (see e.g. here for a detailed guide) because there is the possibility of automating help generation with nightly CI builds (using MS Sandcastle and the Sandcastle Help File Builder), and then publishing the results to some intranet location.  This way, a team always has first class, up-to-date technical documentation at hand about the current codebase. (And, also very important for speeding up things and avoiding typos: You have IntelliSense/AutoCompletion and R# support, and the comments are subject to compiler checking…).     Back to our Calculator again: Two more R# – clicks implement the Add() skeleton:         ...           public double Add(double operand1, double operand2)         {             throw new NotImplementedException();         }       } // class Calculator As we have stated in the interface definition (which actually serves as our requirement document!), the operands are not allowed to be negative. So let’s start implementing that. Here’s the test: [Test] [Row(-0.5, 2)] public void AddThrowsOnNegativeOperands(double operand1, double operand2) {     ICalculator calculator = container.GetService<ICalculator>();       Assert.Throws<ArgumentException>(() => calculator.Add(operand1, operand2)); } As you can see, I’m using a data-driven unit test method here, mainly for these two reasons: Because I know that I will have to do the same test for the second operand in a few seconds, I save myself from implementing another test method for this purpose. Rather, I only will have to add another Row attribute to the existing one. From the test report below, you can see that the argument values are explicitly printed out. This can be a valuable documentation feature even when everything is green: One can quickly review what values were tested exactly - the complete Gallio HTML-report (as it will be produced by the Continuous Integration runs) shows these values in a quite clear format (see below for an example). Back to our Calculator development again, this is what the test result tells us at the moment: So we’re red again, because there is not yet an implementation… Next we go on and implement the necessary parameter verification to become green again, and then we do the same thing for the second operand. To make a long story short, here’s the test and the method implementation at the end of the second cycle: // in CalculatorTest:   [Test] [Row(-0.5, 2)] [Row(295, -123)] public void AddThrowsOnNegativeOperands(double operand1, double operand2) {     ICalculator calculator = container.GetService<ICalculator>();       Assert.Throws<ArgumentException>(() => calculator.Add(operand1, operand2)); }   // in Calculator: public double Add(double operand1, double operand2) {     if (operand1 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand1");     }     if (operand2 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand2");     }     throw new NotImplementedException(); } So far, we have sheltered our method from unwanted input, and now we can safely operate on the parameters without further caring about their validity (this is my interpretation of the Fail Fast principle, which is regarded here in more detail). Now we can think about the method’s successful outcomes. First let’s write another test for that: [Test] [Row(1, 1, 2)] public void TestAdd(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       double result = calculator.Add(operand1, operand2);       Assert.AreEqual(expectedResult, result); } Again, I’m regularly using row based test methods for these kinds of unit tests. The above shown pattern proved to be extremely helpful for my development work, I call it the Defined-Input/Expected-Output test idiom: You define your input arguments together with the expected method result. There are two major benefits from that way of testing: In the course of refining a method, it’s very likely to come up with additional test cases. In our case, we might add tests for some edge cases like ‘one of the operands is zero’ or ‘the sum of the two operands causes an overflow’, or maybe there’s an external test protocol that has to be fulfilled (e.g. an ISO norm for medical software), and this results in the need of testing against additional values. In all these scenarios we only have to add another Row attribute to the test. Remember that the argument values are written to the test report, so as a side-effect this produces valuable documentation. (This can become especially important if the fulfillment of some sort of external requirements has to be proven). So your test method might look something like that in the end: [Test, Description("Arguments: operand1, operand2, expectedResult")] [Row(1, 1, 2)] [Row(0, 999999999, 999999999)] [Row(0, 0, 0)] [Row(0, double.MaxValue, double.MaxValue)] [Row(4, double.MaxValue - 2.5, double.MaxValue)] public void TestAdd(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       double result = calculator.Add(operand1, operand2);       Assert.AreEqual(expectedResult, result); } And this will produce the following HTML report (with Gallio):   Not bad for the amount of work we invested in it, huh? - There might be scenarios where reports like that can be useful for demonstration purposes during a Scrum sprint review… The last requirement to fulfill is that the LastResult property is expected to store the result of the last operation. I don’t show this here, it’s trivial enough and brings nothing new… And finally: Refactor (for the right reasons) To demonstrate my way of going through the refactoring portion of the red-green-refactor cycle, I added another method to our Calculator component, namely Subtract(). Here’s the code (tests and production): // CalculatorTest.cs:   [Test, Description("Arguments: operand1, operand2, expectedResult")] [Row(1, 1, 0)] [Row(0, 999999999, -999999999)] [Row(0, 0, 0)] [Row(0, double.MaxValue, -double.MaxValue)] [Row(4, double.MaxValue - 2.5, -double.MaxValue)] public void TestSubtract(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       double result = calculator.Subtract(operand1, operand2);       Assert.AreEqual(expectedResult, result); }   [Test, Description("Arguments: operand1, operand2, expectedResult")] [Row(1, 1, 0)] [Row(0, 999999999, -999999999)] [Row(0, 0, 0)] [Row(0, double.MaxValue, -double.MaxValue)] [Row(4, double.MaxValue - 2.5, -double.MaxValue)] public void TestSubtractGivesExpectedLastResult(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       calculator.Subtract(operand1, operand2);       Assert.AreEqual(expectedResult, calculator.LastResult); }   ...   // ICalculator.cs: /// <summary> /// Subtracts the specified operands. /// </summary> /// <param name="operand1">The operand1.</param> /// <param name="operand2">The operand2.</param> /// <returns>The result of the subtraction.</returns> /// <exception cref="ArgumentException"> /// Argument <paramref name="operand1"/> is &lt; 0.<br/> /// -- or --<br/> /// Argument <paramref name="operand2"/> is &lt; 0. /// </exception> double Subtract(double operand1, double operand2);   ...   // Calculator.cs:   public double Subtract(double operand1, double operand2) {     if (operand1 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand1");     }       if (operand2 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand2");     }       return (this.LastResult = operand1 - operand2).Value; }   Obviously, the argument validation stuff that was produced during the red-green part of our cycle duplicates the code from the previous Add() method. So, to avoid code duplication and minimize the number of code lines of the production code, we do an Extract Method refactoring. One more time, this is only a matter of a few mouse clicks (and giving the new method a name) with R#: Having done that, our production code finally looks like that: using System; using LinFu.IoC.Configuration;   namespace Calculator {     [Implements(typeof(ICalculator))]     internal class Calculator : ICalculator     {         #region ICalculator           public double? LastResult { get; private set; }           public double Add(double operand1, double operand2)         {             ThrowIfOneOperandIsInvalid(operand1, operand2);               return (this.LastResult = operand1 + operand2).Value;         }           public double Subtract(double operand1, double operand2)         {             ThrowIfOneOperandIsInvalid(operand1, operand2);               return (this.LastResult = operand1 - operand2).Value;         }           #endregion // ICalculator           #region Implementation (Helper)           private static void ThrowIfOneOperandIsInvalid(double operand1, double operand2)         {             if (operand1 < 0.0)             {                 throw new ArgumentException("Value must not be negative.", "operand1");             }               if (operand2 < 0.0)             {                 throw new ArgumentException("Value must not be negative.", "operand2");             }         }           #endregion // Implementation (Helper)       } // class Calculator   } // namespace Calculator But is the above worth the effort at all? It’s obviously trivial and not very impressive. All our tests were green (for the right reasons), and refactoring the code did not change anything. It’s not immediately clear how this refactoring work adds value to the project. Derick puts it like this: STOP! Hold on a second… before you go any further and before you even think about refactoring what you just wrote to make your test pass, you need to understand something: if your done with your requirements after making the test green, you are not required to refactor the code. I know… I’m speaking heresy, here. Toss me to the wolves, I’ve gone over to the dark side! Seriously, though… if your test is passing for the right reasons, and you do not need to write any test or any more code for you class at this point, what value does refactoring add? Derick immediately answers his own question: So why should you follow the refactor portion of red/green/refactor? When you have added code that makes the system less readable, less understandable, less expressive of the domain or concern’s intentions, less architecturally sound, less DRY, etc, then you should refactor it. I couldn’t state it more precise. From my personal perspective, I’d add the following: You have to keep in mind that real-world software systems are usually quite large and there are dozens or even hundreds of occasions where micro-refactorings like the above can be applied. It’s the sum of them all that counts. And to have a good overall quality of the system (e.g. in terms of the Code Duplication Percentage metric) you have to be pedantic on the individual, seemingly trivial cases. My job regularly requires the reading and understanding of ‘foreign’ code. So code quality/readability really makes a HUGE difference for me – sometimes it can be even the difference between project success and failure… Conclusions The above described development process emerged over the years, and there were mainly two things that guided its evolution (you might call it eternal principles, personal beliefs, or anything in between): Test-driven development is the normal, natural way of writing software, code-first is exceptional. So ‘doing TDD or not’ is not a question. And good, stable code can only reliably be produced by doing TDD (yes, I know: many will strongly disagree here again, but I’ve never seen high-quality code – and high-quality code is code that stood the test of time and causes low maintenance costs – that was produced code-first…) It’s the production code that pays our bills in the end. (Though I have seen customers these days who demand an acceptance test battery as part of the final delivery. Things seem to go into the right direction…). The test code serves ‘only’ to make the production code work. But it’s the number of delivered features which solely counts at the end of the day - no matter how much test code you wrote or how good it is. With these two things in mind, I tried to optimize my coding process for coding speed – or, in business terms: productivity - without sacrificing the principles of TDD (more than I’d do either way…).  As a result, I consider a ratio of about 3-5/1 for test code vs. production code as normal and desirable. In other words: roughly 60-80% of my code is test code (This might sound heavy, but that is mainly due to the fact that software development standards only begin to evolve. The entire software development profession is very young, historically seen; only at the very beginning, and there are no viable standards yet. If you think about software development as a kind of casting process, where the test code is the mold and the resulting production code is the final product, then the above ratio sounds no longer extraordinary…) Although the above might look like very much unnecessary work at first sight, it’s not. With the aid of the mentioned add-ins, doing all the above is a matter of minutes, sometimes seconds (while writing this post took hours and days…). The most important thing is to have the right tools at hand. Slow developer machines or the lack of a tool or something like that - for ‘saving’ a few 100 bucks -  is just not acceptable and a very bad decision in business terms (though I quite some times have seen and heard that…). Production of high-quality products needs the usage of high-quality tools. This is a platitude that every craftsman knows… The here described round-trip will take me about five to ten minutes in my real-world development practice. I guess it’s about 30% more time compared to developing the ‘traditional’ (code-first) way. But the so manufactured ‘product’ is of much higher quality and massively reduces maintenance costs, which is by far the single biggest cost factor, as I showed in this previous post: It's the maintenance, stupid! (or: Something is rotten in developerland.). In the end, this is a highly cost-effective way of software development… But on the other hand, there clearly is a trade-off here: coding speed vs. code quality/later maintenance costs. The here described development method might be a perfect fit for the overwhelming majority of software projects, but there certainly are some scenarios where it’s not - e.g. if time-to-market is crucial for a software project. So this is a business decision in the end. It’s just that you have to know what you’re doing and what consequences this might have… Some last words First, I’d like to thank Derick Bailey again. His two aforementioned posts (which I strongly recommend for reading) inspired me to think deeply about my own personal way of doing TDD and to clarify my thoughts about it. I wouldn’t have done that without this inspiration. I really enjoy that kind of discussions… I agree with him in all respects. But I don’t know (yet?) how to bring his insights into the described production process without slowing things down. The above described method proved to be very “good enough” in my practical experience. But of course, I’m open to suggestions here… My rationale for now is: If the test is initially red during the red-green-refactor cycle, the ‘right reason’ is: it actually calls the right method, but this method is not yet operational. Later on, when the cycle is finished and the tests become part of the regular, automated Continuous Integration process, ‘red’ certainly must occur for the ‘right reason’: in this phase, ‘red’ MUST mean nothing but an unfulfilled assertion - Fail By Assertion, Not By Anything Else!

    Read the article

  • Node.js Adventure - Host Node.js on Windows Azure Worker Role

    - by Shaun
    In my previous post I demonstrated about how to develop and deploy a Node.js application on Windows Azure Web Site (a.k.a. WAWS). WAWS is a new feature in Windows Azure platform. Since it’s low-cost, and it provides IIS and IISNode components so that we can host our Node.js application though Git, FTP and WebMatrix without any configuration and component installation. But sometimes we need to use the Windows Azure Cloud Service (a.k.a. WACS) and host our Node.js on worker role. Below are some benefits of using worker role. - WAWS leverages IIS and IISNode to host Node.js application, which runs in x86 WOW mode. It reduces the performance comparing with x64 in some cases. - WACS worker role does not need IIS, hence there’s no restriction of IIS, such as 8000 concurrent requests limitation. - WACS provides more flexibility and controls to the developers. For example, we can RDP to the virtual machines of our worker role instances. - WACS provides the service configuration features which can be changed when the role is running. - WACS provides more scaling capability than WAWS. In WAWS we can have at most 3 reserved instances per web site while in WACS we can have up to 20 instances in a subscription. - Since when using WACS worker role we starts the node by ourselves in a process, we can control the input, output and error stream. We can also control the version of Node.js.   Run Node.js in Worker Role Node.js can be started by just having its execution file. This means in Windows Azure, we can have a worker role with the “node.exe” and the Node.js source files, then start it in Run method of the worker role entry class. Let’s create a new windows azure project in Visual Studio and add a new worker role. Since we need our worker role execute the “node.exe” with our application code we need to add the “node.exe” into our project. Right click on the worker role project and add an existing item. By default the Node.js will be installed in the “Program Files\nodejs” folder so we can navigate there and add the “node.exe”. Then we need to create the entry code of Node.js. In WAWS the entry file must be named “server.js”, which is because it’s hosted by IIS and IISNode and IISNode only accept “server.js”. But here as we control everything we can choose any files as the entry code. For example, I created a new JavaScript file named “index.js” in project root. Since we created a C# Windows Azure project we cannot create a JavaScript file from the context menu “Add new item”. We have to create a text file, and then rename it to JavaScript extension. After we added these two files we should set their “Copy to Output Directory” property to “Copy Always”, or “Copy if Newer”. Otherwise they will not be involved in the package when deployed. Let’s paste a very simple Node.js code in the “index.js” as below. As you can see I created a web server listening at port 12345. 1: var http = require("http"); 2: var port = 12345; 3:  4: http.createServer(function (req, res) { 5: res.writeHead(200, { "Content-Type": "text/plain" }); 6: res.end("Hello World\n"); 7: }).listen(port); 8:  9: console.log("Server running at port %d", port); Then we need to start “node.exe” with this file when our worker role was started. This can be done in its Run method. I found the Node.js and entry JavaScript file name, and then create a new process to run it. Our worker role will wait for the process to be exited. If everything is OK once our web server was opened the process will be there listening for incoming requests, and should not be terminated. The code in worker role would be like this. 1: public override void Run() 2: { 3: // This is a sample worker implementation. Replace with your logic. 4: Trace.WriteLine("NodejsHost entry point called", "Information"); 5:  6: // retrieve the node.exe and entry node.js source code file name. 7: var node = Environment.ExpandEnvironmentVariables(@"%RoleRoot%\approot\node.exe"); 8: var js = "index.js"; 9:  10: // prepare the process starting of node.exe 11: var info = new ProcessStartInfo(node, js) 12: { 13: CreateNoWindow = false, 14: ErrorDialog = true, 15: WindowStyle = ProcessWindowStyle.Normal, 16: UseShellExecute = false, 17: WorkingDirectory = Environment.ExpandEnvironmentVariables(@"%RoleRoot%\approot") 18: }; 19: Trace.WriteLine(string.Format("{0} {1}", node, js), "Information"); 20:  21: // start the node.exe with entry code and wait for exit 22: var process = Process.Start(info); 23: process.WaitForExit(); 24: } Then we can run it locally. In the computer emulator UI the worker role started and it executed the Node.js, then Node.js windows appeared. Open the browser to verify the website hosted by our worker role. Next let’s deploy it to azure. But we need some additional steps. First, we need to create an input endpoint. By default there’s no endpoint defined in a worker role. So we will open the role property window in Visual Studio, create a new input TCP endpoint to the port we want our website to use. In this case I will use 80. Even though we created a web server we should add a TCP endpoint of the worker role, since Node.js always listen on TCP instead of HTTP. And then changed the “index.js”, let our web server listen on 80. 1: var http = require("http"); 2: var port = 80; 3:  4: http.createServer(function (req, res) { 5: res.writeHead(200, { "Content-Type": "text/plain" }); 6: res.end("Hello World\n"); 7: }).listen(port); 8:  9: console.log("Server running at port %d", port); Then publish it to Windows Azure. And then in browser we can see our Node.js website was running on WACS worker role. We may encounter an error if we tried to run our Node.js website on 80 port at local emulator. This is because the compute emulator registered 80 and map the 80 endpoint to 81. But our Node.js cannot detect this operation. So when it tried to listen on 80 it will failed since 80 have been used.   Use NPM Modules When we are using WAWS to host Node.js, we can simply install modules we need, and then just publish or upload all files to WAWS. But if we are using WACS worker role, we have to do some extra steps to make the modules work. Assuming that we plan to use “express” in our application. Firstly of all we should download and install this module through NPM command. But after the install finished, they are just in the disk but not included in the worker role project. If we deploy the worker role right now the module will not be packaged and uploaded to azure. Hence we need to add them to the project. On solution explorer window click the “Show all files” button, select the “node_modules” folder and in the context menu select “Include In Project”. But that not enough. We also need to make all files in this module to “Copy always” or “Copy if newer”, so that they can be uploaded to azure with the “node.exe” and “index.js”. This is painful step since there might be many files in a module. So I created a small tool which can update a C# project file, make its all items as “Copy always”. The code is very simple. 1: static void Main(string[] args) 2: { 3: if (args.Length < 1) 4: { 5: Console.WriteLine("Usage: copyallalways [project file]"); 6: return; 7: } 8:  9: var proj = args[0]; 10: File.Copy(proj, string.Format("{0}.bak", proj)); 11:  12: var xml = new XmlDocument(); 13: xml.Load(proj); 14: var nsManager = new XmlNamespaceManager(xml.NameTable); 15: nsManager.AddNamespace("pf", "http://schemas.microsoft.com/developer/msbuild/2003"); 16:  17: // add the output setting to copy always 18: var contentNodes = xml.SelectNodes("//pf:Project/pf:ItemGroup/pf:Content", nsManager); 19: UpdateNodes(contentNodes, xml, nsManager); 20: var noneNodes = xml.SelectNodes("//pf:Project/pf:ItemGroup/pf:None", nsManager); 21: UpdateNodes(noneNodes, xml, nsManager); 22: xml.Save(proj); 23:  24: // remove the namespace attributes 25: var content = xml.InnerXml.Replace("<CopyToOutputDirectory xmlns=\"\">", "<CopyToOutputDirectory>"); 26: xml.LoadXml(content); 27: xml.Save(proj); 28: } 29:  30: static void UpdateNodes(XmlNodeList nodes, XmlDocument xml, XmlNamespaceManager nsManager) 31: { 32: foreach (XmlNode node in nodes) 33: { 34: var copyToOutputDirectoryNode = node.SelectSingleNode("pf:CopyToOutputDirectory", nsManager); 35: if (copyToOutputDirectoryNode == null) 36: { 37: var n = xml.CreateNode(XmlNodeType.Element, "CopyToOutputDirectory", null); 38: n.InnerText = "Always"; 39: node.AppendChild(n); 40: } 41: else 42: { 43: if (string.Compare(copyToOutputDirectoryNode.InnerText, "Always", true) != 0) 44: { 45: copyToOutputDirectoryNode.InnerText = "Always"; 46: } 47: } 48: } 49: } Please be careful when use this tool. I created only for demo so do not use it directly in a production environment. Unload the worker role project, execute this tool with the worker role project file name as the command line argument, it will set all items as “Copy always”. Then reload this worker role project. Now let’s change the “index.js” to use express. 1: var express = require("express"); 2: var app = express(); 3:  4: var port = 80; 5:  6: app.configure(function () { 7: }); 8:  9: app.get("/", function (req, res) { 10: res.send("Hello Node.js!"); 11: }); 12:  13: app.get("/User/:id", function (req, res) { 14: var id = req.params.id; 15: res.json({ 16: "id": id, 17: "name": "user " + id, 18: "company": "IGT" 19: }); 20: }); 21:  22: app.listen(port); Finally let’s publish it and have a look in browser.   Use Windows Azure SQL Database We can use Windows Azure SQL Database (a.k.a. WACD) from Node.js as well on worker role hosting. Since we can control the version of Node.js, here we can use x64 version of “node-sqlserver” now. This is better than if we host Node.js on WAWS since it only support x86. Just install the “node-sqlserver” module from NPM, copy the “sqlserver.node” from “Build\Release” folder to “Lib” folder. Include them in worker role project and run my tool to make them to “Copy always”. Finally update the “index.js” to use WASD. 1: var express = require("express"); 2: var sql = require("node-sqlserver"); 3:  4: var connectionString = "Driver={SQL Server Native Client 10.0};Server=tcp:{SERVER NAME}.database.windows.net,1433;Database={DATABASE NAME};Uid={LOGIN}@{SERVER NAME};Pwd={PASSWORD};Encrypt=yes;Connection Timeout=30;"; 5: var port = 80; 6:  7: var app = express(); 8:  9: app.configure(function () { 10: app.use(express.bodyParser()); 11: }); 12:  13: app.get("/", function (req, res) { 14: sql.open(connectionString, function (err, conn) { 15: if (err) { 16: console.log(err); 17: res.send(500, "Cannot open connection."); 18: } 19: else { 20: conn.queryRaw("SELECT * FROM [Resource]", function (err, results) { 21: if (err) { 22: console.log(err); 23: res.send(500, "Cannot retrieve records."); 24: } 25: else { 26: res.json(results); 27: } 28: }); 29: } 30: }); 31: }); 32:  33: app.get("/text/:key/:culture", function (req, res) { 34: sql.open(connectionString, function (err, conn) { 35: if (err) { 36: console.log(err); 37: res.send(500, "Cannot open connection."); 38: } 39: else { 40: var key = req.params.key; 41: var culture = req.params.culture; 42: var command = "SELECT * FROM [Resource] WHERE [Key] = '" + key + "' AND [Culture] = '" + culture + "'"; 43: conn.queryRaw(command, function (err, results) { 44: if (err) { 45: console.log(err); 46: res.send(500, "Cannot retrieve records."); 47: } 48: else { 49: res.json(results); 50: } 51: }); 52: } 53: }); 54: }); 55:  56: app.get("/sproc/:key/:culture", function (req, res) { 57: sql.open(connectionString, function (err, conn) { 58: if (err) { 59: console.log(err); 60: res.send(500, "Cannot open connection."); 61: } 62: else { 63: var key = req.params.key; 64: var culture = req.params.culture; 65: var command = "EXEC GetItem '" + key + "', '" + culture + "'"; 66: conn.queryRaw(command, function (err, results) { 67: if (err) { 68: console.log(err); 69: res.send(500, "Cannot retrieve records."); 70: } 71: else { 72: res.json(results); 73: } 74: }); 75: } 76: }); 77: }); 78:  79: app.post("/new", function (req, res) { 80: var key = req.body.key; 81: var culture = req.body.culture; 82: var val = req.body.val; 83:  84: sql.open(connectionString, function (err, conn) { 85: if (err) { 86: console.log(err); 87: res.send(500, "Cannot open connection."); 88: } 89: else { 90: var command = "INSERT INTO [Resource] VALUES ('" + key + "', '" + culture + "', N'" + val + "')"; 91: conn.queryRaw(command, function (err, results) { 92: if (err) { 93: console.log(err); 94: res.send(500, "Cannot retrieve records."); 95: } 96: else { 97: res.send(200, "Inserted Successful"); 98: } 99: }); 100: } 101: }); 102: }); 103:  104: app.listen(port); Publish to azure and now we can see our Node.js is working with WASD through x64 version “node-sqlserver”.   Summary In this post I demonstrated how to host our Node.js in Windows Azure Cloud Service worker role. By using worker role we can control the version of Node.js, as well as the entry code. And it’s possible to do some pre jobs before the Node.js application started. It also removed the IIS and IISNode limitation. I personally recommended to use worker role as our Node.js hosting. But there are some problem if you use the approach I mentioned here. The first one is, we need to set all JavaScript files and module files as “Copy always” or “Copy if newer” manually. The second one is, in this way we cannot retrieve the cloud service configuration information. For example, we defined the endpoint in worker role property but we also specified the listening port in Node.js hardcoded. It should be changed that our Node.js can retrieve the endpoint. But I can tell you it won’t be working here. In the next post I will describe another way to execute the “node.exe” and Node.js application, so that we can get the cloud service configuration in Node.js. I will also demonstrate how to use Windows Azure Storage from Node.js by using the Windows Azure Node.js SDK.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Setting up a local AI server - easy with Solaris 11

    - by Stefan Hinker
    Many things are new in Solaris 11, Autoinstall is one of them.  If, like me, you've known Jumpstart for the last 2 centuries or so, you'll have to start from scratch.  Well, almost, as the concepts are similar, and it's not all that difficult.  Just new. I wanted to have an AI server that I could use for demo purposes, on the train if need be.  That answers the question of hardware requirements: portable.  But let's start at the beginning. First, you need an OS image, of course.  In the new world of Solaris 11, it is now called a repository.  The original can be downloaded from the Solaris 11 page at Oracle.   What you want is the "Oracle Solaris 11 11/11 Repository Image", which comes in two parts that can be combined using cat.  MD5 checksums for these (and all other downloads from that page) are available closer to the top of the page. With that, building the repository is quick and simple: # zfs create -o mountpoint=/export/repo rpool/ai/repo # zfs create rpool/ai/repo/s11 # mount -o ro -F hsfs /tmp/sol-11-1111-repo-full.iso /mnt # rsync -aP /mnt/repo /export/repo/s11 # umount /mnt # pkgrepo rebuild -s /export/repo/sol11/repo # zfs snapshot rpool/ai/repo/sol11@fcs # pkgrepo info -s /export/repo/sol11/repo PUBLISHER PACKAGES STATUS UPDATED solaris 4292 online 2012-03-12T20:47:15.378639Z That's all there's to it.  Let's make a snapshot, just to be on the safe side.  You never know when one will come in handy.  To use this repository, you could just add it as a file-based publisher: # pkg set-publisher -g file:///export/repo/sol11/repo solaris In case I'd want to access this repository through a (virtual) network, i'll now quickly activate the repository-service: # svccfg -s application/pkg/server \ setprop pkg/inst_root=/export/repo/sol11/repo # svccfg -s application/pkg/server setprop pkg/readonly=true # svcadm refresh application/pkg/server # svcadm enable application/pkg/server That's all you need - now point your browser to http://localhost/ to view your beautiful repository-server. Step 1 is done.  All of this, by the way, is nicely documented in the README file that's contained in the repository image. Of course, we already have updates to the original release.  You can find them in MOS in the Oracle Solaris 11 Support Repository Updates (SRU) Index.  You can simply add these to your existing repository or create separate repositories for each SRU.  The individual SRUs are self-sufficient and incremental - SRU4 includes all updates from SRU2 and SRU3.  With ZFS, you can also get both: A full repository with all updates and at the same time incremental ones up to each of the updates: # mount -o ro -F hsfs /tmp/sol-11-1111-sru4-05-incr-repo.iso /mnt # pkgrecv -s /mnt/repo -d /export/repo/sol11/repo '*' # umount /mnt # pkgrepo rebuild -s /export/repo/sol11/repo # zfs snapshot rpool/ai/repo/sol11@sru4 # zfs set snapdir=visible rpool/ai/repo/sol11 # svcadm restart svc:/application/pkg/server:default The normal repository is now updated to SRU4.  Thanks to the ZFS snapshots, there is also a valid repository of Solaris 11 11/11 without the update located at /export/repo/sol11/.zfs/snapshot/fcs . If you like, you can also create another repository service for each update, running on a separate port. But now lets continue with the AI server.  Just a little bit of reading in the dokumentation makes it clear that we will need to run a DHCP server for this.  Since I already have one active (for my SunRay installation) and since it's a good idea to have these kinds of services separate anyway, I decided to create this in a Zone.  So, let's create one first: # zfs create -o mountpoint=/export/install rpool/ai/install # zfs create -o mountpoint=/zones rpool/zones # zonecfg -z ai-server zonecfg:ai-server> create create: Using system default template 'SYSdefault' zonecfg:ai-server> set zonepath=/zones/ai-server zonecfg:ai-server> add dataset zonecfg:ai-server:dataset> set name=rpool/ai/install zonecfg:ai-server:dataset> set alias=install zonecfg:ai-server:dataset> end zonecfg:ai-server> commit zonecfg:ai-server> exit # zoneadm -z ai-server install # zoneadm -z ai-server boot ; zlogin -C ai-server Give it a hostname and IP address at first boot, and there's the Zone.  For a publisher for Solaris packages, it will be bound to the "System Publisher" from the Global Zone.  The /export/install filesystem, of course, is intended to be used by the AI server.  Let's configure it now: #zlogin ai-server root@ai-server:~# pkg install install/installadm root@ai-server:~# installadm create-service -n x86-fcs -a i386 \ -s pkg://solaris/install-image/[email protected],5.11-0.175.0.0.0.2.1482 \ -d /export/install/fcs -i 192.168.2.20 -c 3 With that, the core AI server is already done.  What happened here?  First, I installed the AI server software.  IPS makes that nice and easy.  If necessary, it'll also pull in the required DHCP-Server and anything else that might be missing.  Watch out for that DHCP server software.  In Solaris 11, there are two different versions.  There's the one you might know from Solaris 10 and earlier, and then there's a new one from ISC.  The latter is the one we need for AI.  The SMF service names of both are very similar.  The "old" one is "svc:/network/dhcp-server:default". The ISC-server comes with several SMF-services. We at least need "svc:/network/dhcp/server:ipv4".  The command "installadm create-service" creates the installation-service. It's called "x86-fcs", serves the "i386" architecture and gets its boot image from the repository of the system publisher, using version 5.11,5.11-0.175.0.0.0.2.1482, which is Solaris 11 11/11.  (The option "-a i386" in this example is optional, since the installserver itself runs on a x86 machine.) The boot-environment for clients is created in /export/install/fcs and the DHCP-server is configured for 3 IP-addresses starting at 192.168.2.20.  This configuration is stored in a very human readable form in /etc/inet/dhcpd4.conf.  An AI-service for SPARC systems could be created in the very same way, using "-a sparc" as the architecture option. Now we would be ready to register and install the first client.  It would be installed with the default "solaris-large-server" using the publisher "http://pkg.oracle.com/solaris/release" and would query it's configuration interactively at first boot.  This makes it very clear that an AI-server is really only a boot-server.  The true source of packets to install can be different.  Since I don't like these defaults for my demo setup, I did some extra config work for my clients. The configuration of a client is controlled by manifests and profiles.  The manifest controls which packets are installed and how the filesystems are layed out.  In that, it's very much like the old "rules.ok" file in Jumpstart.  Profiles contain additional configuration like root passwords, primary user account, IP addresses, keyboard layout etc.  Hence, profiles are very similar to the old sysid.cfg file. The easiest way to get your hands on a manifest is to ask the AI server we just created to give us it's default one.  Then modify that to our liking and give it back to the installserver to use: root@ai-server:~# mkdir -p /export/install/configs/manifests root@ai-server:~# cd /export/install/configs/manifests root@ai-server:~# installadm export -n x86-fcs -m orig_default \ -o orig_default.xml root@ai-server:~# cp orig_default.xml s11-fcs.small.local.xml root@ai-server:~# vi s11-fcs.small.local.xml root@ai-server:~# more s11-fcs.small.local.xml <!DOCTYPE auto_install SYSTEM "file:///usr/share/install/ai.dtd.1"> <auto_install> <ai_instance name="S11 Small fcs local"> <target> <logical> <zpool name="rpool" is_root="true"> <filesystem name="export" mountpoint="/export"/> <filesystem name="export/home"/> <be name="solaris"/> </zpool> </logical> </target> <software type="IPS"> <destination> <image> <!-- Specify locales to install --> <facet set="false">facet.locale.*</facet> <facet set="true">facet.locale.de</facet> <facet set="true">facet.locale.de_DE</facet> <facet set="true">facet.locale.en</facet> <facet set="true">facet.locale.en_US</facet> </image> </destination> <source> <publisher name="solaris"> <origin name="http://192.168.2.12/"/> </publisher> </source> <!-- By default the latest build available, in the specified IPS repository, is installed. If another build is required, the build number has to be appended to the 'entire' package in the following form: <name>pkg:/[email protected]#</name> --> <software_data action="install"> <name>pkg:/[email protected],5.11-0.175.0.0.0.2.0</name> <name>pkg:/group/system/solaris-small-server</name> </software_data> </software> </ai_instance> </auto_install> root@ai-server:~# installadm create-manifest -n x86-fcs -d \ -f ./s11-fcs.small.local.xml root@ai-server:~# installadm list -m -n x86-fcs Manifest Status Criteria -------- ------ -------- S11 Small fcs local Default None orig_default Inactive None The major points in this new manifest are: Install "solaris-small-server" Install a few locales less than the default.  I'm not that fluid in French or Japanese... Use my own package service as publisher, running on IP address 192.168.2.12 Install the initial release of Solaris 11:  pkg:/[email protected],5.11-0.175.0.0.0.2.0 Using a similar approach, I'll create a default profile interactively and use it as a template for a few customized building blocks, each defining a part of the overall system configuration.  The modular approach makes it easy to configure numerous clients later on: root@ai-server:~# mkdir -p /export/install/configs/profiles root@ai-server:~# cd /export/install/configs/profiles root@ai-server:~# sysconfig create-profile -o default.xml root@ai-server:~# cp default.xml general.xml; cp default.xml mars.xml root@ai-server:~# cp default.xml user.xml root@ai-server:~# vi general.xml mars.xml user.xml root@ai-server:~# more general.xml mars.xml user.xml :::::::::::::: general.xml :::::::::::::: <!DOCTYPE service_bundle SYSTEM "/usr/share/lib/xml/dtd/service_bundle.dtd.1"> <service_bundle type="profile" name="sysconfig"> <service version="1" type="service" name="system/timezone"> <instance enabled="true" name="default"> <property_group type="application" name="timezone"> <propval type="astring" name="localtime" value="Europe/Berlin"/> </property_group> </instance> </service> <service version="1" type="service" name="system/environment"> <instance enabled="true" name="init"> <property_group type="application" name="environment"> <propval type="astring" name="LANG" value="C"/> </property_group> </instance> </service> <service version="1" type="service" name="system/keymap"> <instance enabled="true" name="default"> <property_group type="system" name="keymap"> <propval type="astring" name="layout" value="US-English"/> </property_group> </instance> </service> <service version="1" type="service" name="system/console-login"> <instance enabled="true" name="default"> <property_group type="application" name="ttymon"> <propval type="astring" name="terminal_type" value="vt100"/> </property_group> </instance> </service> <service version="1" type="service" name="network/physical"> <instance enabled="true" name="default"> <property_group type="application" name="netcfg"> <propval type="astring" name="active_ncp" value="DefaultFixed"/> </property_group> </instance> </service> <service version="1" type="service" name="system/name-service/switch"> <property_group type="application" name="config"> <propval type="astring" name="default" value="files"/> <propval type="astring" name="host" value="files dns"/> <propval type="astring" name="printer" value="user files"/> </property_group> <instance enabled="true" name="default"/> </service> <service version="1" type="service" name="system/name-service/cache"> <instance enabled="true" name="default"/> </service> <service version="1" type="service" name="network/dns/client"> <property_group type="application" name="config"> <property type="net_address" name="nameserver"> <net_address_list> <value_node value="192.168.2.1"/> </net_address_list> </property> </property_group> <instance enabled="true" name="default"/> </service> </service_bundle> :::::::::::::: mars.xml :::::::::::::: <!DOCTYPE service_bundle SYSTEM "/usr/share/lib/xml/dtd/service_bundle.dtd.1"> <service_bundle type="profile" name="sysconfig"> <service version="1" type="service" name="network/install"> <instance enabled="true" name="default"> <property_group type="application" name="install_ipv4_interface"> <propval type="astring" name="address_type" value="static"/> <propval type="net_address_v4" name="static_address" value="192.168.2.100/24"/> <propval type="astring" name="name" value="net0/v4"/> <propval type="net_address_v4" name="default_route" value="192.168.2.1"/> </property_group> <property_group type="application" name="install_ipv6_interface"> <propval type="astring" name="stateful" value="yes"/> <propval type="astring" name="stateless" value="yes"/> <propval type="astring" name="address_type" value="addrconf"/> <propval type="astring" name="name" value="net0/v6"/> </property_group> </instance> </service> <service version="1" type="service" name="system/identity"> <instance enabled="true" name="node"> <property_group type="application" name="config"> <propval type="astring" name="nodename" value="mars"/> </property_group> </instance> </service> </service_bundle> :::::::::::::: user.xml :::::::::::::: <!DOCTYPE service_bundle SYSTEM "/usr/share/lib/xml/dtd/service_bundle.dtd.1"> <service_bundle type="profile" name="sysconfig"> <service version="1" type="service" name="system/config-user"> <instance enabled="true" name="default"> <property_group type="application" name="root_account"> <propval type="astring" name="login" value="root"/> <propval type="astring" name="password" value="noIWillNotTellYouMyPasswordNotEvenEncrypted"/> <propval type="astring" name="type" value="role"/> </property_group> <property_group type="application" name="user_account"> <propval type="astring" name="login" value="stefan"/> <propval type="astring" name="password" value="noIWillNotTellYouMyPasswordNotEvenEncrypted"/> <propval type="astring" name="type" value="normal"/> <propval type="astring" name="description" value="Stefan Hinker"/> <propval type="count" name="uid" value="12345"/> <propval type="count" name="gid" value="10"/> <propval type="astring" name="shell" value="/usr/bin/bash"/> <propval type="astring" name="roles" value="root"/> <propval type="astring" name="profiles" value="System Administrator"/> <propval type="astring" name="sudoers" value="ALL=(ALL) ALL"/> </property_group> </instance> </service> </service_bundle> root@ai-server:~# installadm create-profile -n x86-fcs -f general.xml root@ai-server:~# installadm create-profile -n x86-fcs -f user.xml root@ai-server:~# installadm create-profile -n x86-fcs -f mars.xml \ -c ipv4=192.168.2.100 root@ai-server:~# installadm list -p Service Name Profile ------------ ------- x86-fcs general.xml mars.xml user.xml root@ai-server:~# installadm list -n x86-fcs -p Profile Criteria ------- -------- general.xml None mars.xml ipv4 = 192.168.2.100 user.xml None Here's the idea behind these files: "general.xml" contains settings valid for all my clients.  Stuff like DNS servers, for example, which in my case will always be the same. "user.xml" only contains user definitions.  That is, a root password and a primary user.Both of these profiles will be valid for all clients (for now). "mars.xml" defines network settings for an individual client.  This profile is associated with an IP-Address.  For this to work, I'll have to tweak the DHCP-settings in the next step: root@ai-server:~# installadm create-client -e 08:00:27:AA:3D:B1 -n x86-fcs root@ai-server:~# vi /etc/inet/dhcpd4.conf root@ai-server:~# tail -5 /etc/inet/dhcpd4.conf host 080027AA3DB1 { hardware ethernet 08:00:27:AA:3D:B1; fixed-address 192.168.2.100; filename "01080027AA3DB1"; } This completes the client preparations.  I manually added the IP-Address for mars to /etc/inet/dhcpd4.conf.  This is needed for the "mars.xml" profile.  Disabling arbitrary DHCP-replies will shut up this DHCP server, making my life in a shared environment a lot more peaceful ;-)Now, I of course want this installation to be completely hands-off.  For this to work, I'll need to modify the grub boot menu for this client slightly.  You can find it in /etc/netboot.  "installadm create-client" will create a new boot menu for every client, identified by the client's MAC address.  The template for this can be found in a subdirectory with the name of the install service, /etc/netboot/x86-fcs in our case.  If you don't want to change this manually for every client, modify that template to your liking instead. root@ai-server:~# cd /etc/netboot root@ai-server:~# cp menu.lst.01080027AA3DB1 menu.lst.01080027AA3DB1.org root@ai-server:~# vi menu.lst.01080027AA3DB1 root@ai-server:~# diff menu.lst.01080027AA3DB1 menu.lst.01080027AA3DB1.org 1,2c1,2 < default=1 < timeout=10 --- > default=0 > timeout=30 root@ai-server:~# more menu.lst.01080027AA3DB1 default=1 timeout=10 min_mem64=0 title Oracle Solaris 11 11/11 Text Installer and command line kernel$ /x86-fcs/platform/i86pc/kernel/$ISADIR/unix -B install_media=htt p://$serverIP:5555//export/install/fcs,install_service=x86-fcs,install_svc_addre ss=$serverIP:5555 module$ /x86-fcs/platform/i86pc/$ISADIR/boot_archive title Oracle Solaris 11 11/11 Automated Install kernel$ /x86-fcs/platform/i86pc/kernel/$ISADIR/unix -B install=true,inst all_media=http://$serverIP:5555//export/install/fcs,install_service=x86-fcs,inst all_svc_address=$serverIP:5555,livemode=text module$ /x86-fcs/platform/i86pc/$ISADIR/boot_archive Now just boot the client off the network using PXE-boot.  For my demo purposes, that's a client from VirtualBox, of course.  That's all there's to it.  And despite the fact that this blog entry is a little longer - that wasn't that hard now, was it?

    Read the article

  • Diving into OpenStack Network Architecture - Part 1

    - by Ronen Kofman
    v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VML);} .shape {behavior:url(#default#VML);} rkofman Normal rkofman 83 3045 2014-05-23T21:11:00Z 2014-05-27T06:58:00Z 3 1883 10739 Oracle Corporation 89 25 12597 12.00 140 Clean Clean false false false false EN-US X-NONE HE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi; mso-bidi-language:AR-SA;} Before we begin OpenStack networking has very powerful capabilities but at the same time it is quite complicated. In this blog series we will review an existing OpenStack setup using the Oracle OpenStack Tech Preview and explain the different network components through use cases and examples. The goal is to show how the different pieces come together and provide a bigger picture view of the network architecture in OpenStack. This can be very helpful to users making their first steps in OpenStack or anyone wishes to understand how networking works in this environment.  We will go through the basics first and build the examples as we go. According to the recent Icehouse user survey and the one before it, Neutron with Open vSwitch plug-in is the most widely used network setup both in production and in POCs (in terms of number of customers) and so in this blog series we will analyze this specific OpenStack networking setup. As we know there are many options to setup OpenStack networking and while Neturon + Open vSwitch is the most popular setup there is no claim that it is either best or the most efficient option. Neutron + Open vSwitch is an example, one which provides a good starting point for anyone interested in understanding OpenStack networking. Even if you are using different kind of network setup such as different Neutron plug-in or even not using Neutron at all this will still be a good starting point to understand the network architecture in OpenStack. The setup we are using for the examples is the one used in the Oracle OpenStack Tech Preview. Installing it is simple and it would be helpful to have it as reference. In this setup we use eth2 on all servers for VM network, all VM traffic will be flowing through this interface.The Oracle OpenStack Tech Preview is using VLANs for L2 isolation to provide tenant and network isolation. The following diagram shows how we have configured our deployment: This first post is a bit long and will focus on some basic concepts in OpenStack networking. The components we will be discussing are Open vSwitch, network namespaces, Linux bridge and veth pairs. Note that this is not meant to be a comprehensive review of these components, it is meant to describe the component as much as needed to understand OpenStack network architecture. All the components described here can be further explored using other resources. Open vSwitch (OVS) In the Oracle OpenStack Tech Preview OVS is used to connect virtual machines to the physical port (in our case eth2) as shown in the deployment diagram. OVS contains bridges and ports, the OVS bridges are different from the Linux bridge (controlled by the brctl command) which are also used in this setup. To get started let’s view the OVS structure, use the following command: # ovs-vsctl show 7ec51567-ab42-49e8-906d-b854309c9edf     Bridge br-int         Port br-int             Interface br-int type: internal         Port "int-br-eth2"             Interface "int-br-eth2"     Bridge "br-eth2"         Port "br-eth2"             Interface "br-eth2" type: internal         Port "eth2"             Interface "eth2"         Port "phy-br-eth2"             Interface "phy-br-eth2" ovs_version: "1.11.0" We see a standard post deployment OVS on a compute node with two bridges and several ports hanging off of each of them. The example above is a compute node without any VMs, we can see that the physical port eth2 is connected to a bridge called “br-eth2”. We also see two ports "int-br-eth2" and "phy-br-eth2" which are actually a veth pair and form virtual wire between the two bridges, veth pairs are discussed later in this post. When a virtual machine is created a port is created on one the br-int bridge and this port is eventually connected to the virtual machine (we will discuss the exact connectivity later in the series). Here is how OVS looks after a VM was launched: # ovs-vsctl show efd98c87-dc62-422d-8f73-a68c2a14e73d     Bridge br-int         Port "int-br-eth2"             Interface "int-br-eth2"         Port br-int             Interface br-int type: internal         Port "qvocb64ea96-9f" tag: 1             Interface "qvocb64ea96-9f"     Bridge "br-eth2"         Port "phy-br-eth2"             Interface "phy-br-eth2"         Port "br-eth2"             Interface "br-eth2" type: internal         Port "eth2"             Interface "eth2" ovs_version: "1.11.0" Bridge "br-int" now has a new port "qvocb64ea96-9f" which connects to the VM and tagged with VLAN 1. Every VM which will be launched will add a port on the “br-int” bridge for every network interface the VM has. Another useful command on OVS is dump-flows for example: # ovs-ofctl dump-flows br-int NXST_FLOW reply (xid=0x4): cookie=0x0, duration=735.544s, table=0, n_packets=70, n_bytes=9976, idle_age=17, priority=3,in_port=1,dl_vlan=1000 actions=mod_vlan_vid:1,NORMAL cookie=0x0, duration=76679.786s, table=0, n_packets=0, n_bytes=0, idle_age=65534, hard_age=65534, priority=2,in_port=1 actions=drop cookie=0x0, duration=76681.36s, table=0, n_packets=68, n_bytes=7950, idle_age=17, hard_age=65534, priority=1 actions=NORMAL As we see the port which is connected to the VM has the VLAN tag 1. However the port on the VM network (eth2) will be using tag 1000. OVS is modifying the vlan as the packet flow from the VM to the physical interface. In OpenStack the Open vSwitch agent takes care of programming the flows in Open vSwitch so the users do not have to deal with this at all. If you wish to learn more about how to program the Open vSwitch you can read more about it at http://openvswitch.org looking at the documentation describing the ovs-ofctl command. Network Namespaces (netns) Network namespaces is a very cool Linux feature can be used for many purposes and is heavily used in OpenStack networking. Network namespaces are isolated containers which can hold a network configuration and is not seen from outside of the namespace. A network namespace can be used to encapsulate specific network functionality or provide a network service in isolation as well as simply help to organize a complicated network setup. Using the Oracle OpenStack Tech Preview we are using the latest Unbreakable Enterprise Kernel R3 (UEK3), this kernel provides a complete support for netns. Let's see how namespaces work through couple of examples to control network namespaces we use the ip netns command: Defining a new namespace: # ip netns add my-ns # ip netns list my-ns As mentioned the namespace is an isolated container, we can perform all the normal actions in the namespace context using the exec command for example running the ifconfig command: # ip netns exec my-ns ifconfig -a lo        Link encap:Local Loopback           LOOPBACK  MTU:16436 Metric:1           RX packets:0 errors:0 dropped:0 overruns:0 frame:0           TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0           RX bytes:0 (0.0 b)  TX bytes:0 (0.0 b) We can run every command in the namespace context, this is especially useful for debug using tcpdump command, we can ping or ssh or define iptables all within the namespace. Connecting the namespace to the outside world: There are various ways to connect into a namespaces and between namespaces we will focus on how this is done in OpenStack. OpenStack uses a combination of Open vSwitch and network namespaces. OVS defines the interfaces and then we can add those interfaces to namespace. So first let's add a bridge to OVS: # ovs-vsctl add-br my-bridge Now let's add a port on the OVS and make it internal: # ovs-vsctl add-port my-bridge my-port # ovs-vsctl set Interface my-port type=internal And let's connect it into the namespace: # ip link set my-port netns my-ns Looking inside the namespace: # ip netns exec my-ns ifconfig -a lo        Link encap:Local Loopback           LOOPBACK  MTU:65536 Metric:1           RX packets:0 errors:0 dropped:0 overruns:0 frame:0           TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0           RX bytes:0 (0.0 b)  TX bytes:0 (0.0 b) my-port   Link encap:Ethernet HWaddr 22:04:45:E2:85:21           BROADCAST  MTU:1500 Metric:1           RX packets:0 errors:0 dropped:0 overruns:0 frame:0           TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0           RX bytes:0 (0.0 b)  TX bytes:0 (0.0 b) Now we can add more ports to the OVS bridge and connect it to other namespaces or other device like physical interfaces. Neutron is using network namespaces to implement network services such as DCHP, routing, gateway, firewall, load balance and more. In the next post we will go into this in further details. Linux Bridge and veth pairs Linux bridge is used to connect the port from OVS to the VM. Every port goes from the OVS bridge to a Linux bridge and from there to the VM. The reason for using regular Linux bridges is for security groups’ enforcement. Security groups are implemented using iptables and iptables can only be applied to Linux bridges and not to OVS bridges. Veth pairs are used extensively throughout the network setup in OpenStack and are also a good tool to debug a network problem. Veth pairs are simply a virtual wire and so veths always come in pairs. Typically one side of the veth pair will connect to a bridge and the other side to another bridge or simply left as a usable interface. In this example we will create some veth pairs, connect them to bridges and test connectivity. This example is using regular Linux server and not an OpenStack node: Creating a veth pair, note that we define names for both ends: # ip link add veth0 type veth peer name veth1 # ifconfig -a . . veth0     Link encap:Ethernet HWaddr 5E:2C:E6:03:D0:17           BROADCAST MULTICAST  MTU:1500 Metric:1           RX packets:0 errors:0 dropped:0 overruns:0 frame:0           TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000           RX bytes:0 (0.0 b)  TX bytes:0 (0.0 b) veth1     Link encap:Ethernet HWaddr E6:B6:E2:6D:42:B8           BROADCAST MULTICAST  MTU:1500 Metric:1           RX packets:0 errors:0 dropped:0 overruns:0 frame:0           TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000           RX bytes:0 (0.0 b)  TX bytes:0 (0.0 b) . . To make the example more meaningful this we will create the following setup: veth0 => veth1 => br-eth3 => eth3 ======> eth2 on another Linux server br-eth3 – a regular Linux bridge which will be connected to veth1 and eth3 eth3 – a physical interface with no IP on it, connected to a private network eth2 – a physical interface on the remote Linux box connected to the private network and configured with the IP of 50.50.50.1 Once we create the setup we will ping 50.50.50.1 (the remote IP) through veth0 to test that the connection is up: # brctl addbr br-eth3 # brctl addif br-eth3 eth3 # brctl addif br-eth3 veth1 # brctl show bridge name     bridge id               STP enabled     interfaces br-eth3         8000.00505682e7f6       no              eth3                                                         veth1 # ifconfig veth0 50.50.50.50 # ping -I veth0 50.50.50.51 PING 50.50.50.51 (50.50.50.51) from 50.50.50.50 veth0: 56(84) bytes of data. 64 bytes from 50.50.50.51: icmp_seq=1 ttl=64 time=0.454 ms 64 bytes from 50.50.50.51: icmp_seq=2 ttl=64 time=0.298 ms When the naming is not as obvious as the previous example and we don't know who are the paired veth interfaces we can use the ethtool command to figure this out. The ethtool command returns an index we can look up using ip link command, for example: # ethtool -S veth1 NIC statistics: peer_ifindex: 12 # ip link . . 12: veth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000 Summary That’s all for now, we quickly reviewed OVS, network namespaces, Linux bridges and veth pairs. These components are heavily used in the OpenStack network architecture we are exploring and understanding them well will be very useful when reviewing the different use cases. In the next post we will look at how the OpenStack network is laid out connecting the virtual machines to each other and to the external world. @RonenKofman

    Read the article

  • Fed Authentication Methods in OIF / IdP

    - by Damien Carru
    This article is a continuation of my previous entry where I explained how OIF/IdP leverages OAM to authenticate users at runtime: OIF/IdP internally forwards the user to OAM and indicates which Authentication Scheme should be used to challenge the user if needed OAM determine if the user should be challenged (user already authenticated, session timed out or not, session authentication level equal or higher than the level of the authentication scheme specified by OIF/IdP…) After identifying the user, OAM internally forwards the user back to OIF/IdP OIF/IdP can resume its operation In this article, I will discuss how OIF/IdP can be configured to map Federation Authentication Methods to OAM Authentication Schemes: When processing an Authn Request, where the SP requests a specific Federation Authentication Method with which the user should be challenged When sending an Assertion, where OIF/IdP sets the Federation Authentication Method in the Assertion Enjoy the reading! Overview The various Federation protocols support mechanisms allowing the partners to exchange information on: How the user should be challenged, when the SP/RP makes a request How the user was challenged, when the IdP/OP issues an SSO response When a remote SP partner redirects the user to OIF/IdP for Federation SSO, the message might contain data requesting how the user should be challenged by the IdP: this is treated as the Requested Federation Authentication Method. OIF/IdP will need to map that Requested Federation Authentication Method to a local Authentication Scheme, and then invoke OAM for user authentication/challenge with the mapped Authentication Scheme. OAM would authenticate the user if necessary with the scheme specified by OIF/IdP. Similarly, when an IdP issues an SSO response, most of the time it will need to include an identifier representing how the user was challenged: this is treated as the Federation Authentication Method. When OIF/IdP issues an Assertion, it will evaluate the Authentication Scheme with which OAM identified the user: If the Authentication Scheme can be mapped to a Federation Authentication Method, then OIF/IdP will use the result of that mapping in the outgoing SSO response: AuthenticationStatement in the SAML Assertion OpenID Response, if PAPE is enabled If the Authentication Scheme cannot be mapped, then OIF/IdP will set the Federation Authentication Method as the Authentication Scheme name in the outgoing SSO response: AuthenticationStatement in the SAML Assertion OpenID Response, if PAPE is enabled Mappings In OIF/IdP, the mapping between Federation Authentication Methods and Authentication Schemes has the following rules: One Federation Authentication Method can be mapped to several Authentication Schemes In a Federation Authentication Method <-> Authentication Schemes mapping, a single Authentication Scheme is marked as the default scheme that will be used to authenticate a user, if the SP/RP partner requests the user to be authenticated via a specific Federation Authentication Method An Authentication Scheme can be mapped to a single Federation Authentication Method Let’s examine the following example and the various use cases, based on the SAML 2.0 protocol: Mappings defined as: urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport mapped to LDAPScheme, marked as the default scheme used for authentication BasicScheme urn:oasis:names:tc:SAML:2.0:ac:classes:X509 mapped to X509Scheme, marked as the default scheme used for authentication Use cases: SP sends an AuthnRequest specifying urn:oasis:names:tc:SAML:2.0:ac:classes:X509 as the RequestedAuthnContext: OIF/IdP will authenticate the use with X509Scheme since it is the default scheme mapped for that method. SP sends an AuthnRequest specifying urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport as the RequestedAuthnContext: OIF/IdP will authenticate the use with LDAPScheme since it is the default scheme mapped for that method, not the BasicScheme SP did not request any specific methods, and user was authenticated with BasisScheme: OIF/IdP will issue an Assertion with urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport as the FederationAuthenticationMethod SP did not request any specific methods, and user was authenticated with LDAPScheme: OIF/IdP will issue an Assertion with urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport as the FederationAuthenticationMethod SP did not request any specific methods, and user was authenticated with BasisSessionlessScheme: OIF/IdP will issue an Assertion with BasisSessionlessScheme as the FederationAuthenticationMethod, since that scheme could not be mapped to any Federation Authentication Method (in this case, the administrator would need to correct that and create a mapping) Configuration Mapping Federation Authentication Methods to OAM Authentication Schemes is protocol dependent, since the methods are defined in the various protocols (SAML 2.0, SAML 1.1, OpenID 2.0). As such, the WLST commands to set those mappings will involve: Either the SP Partner Profile and affect all Partners referencing that profile, which do not override the Federation Authentication Method to OAM Authentication Scheme mappings Or the SP Partner entry, which will only affect the SP Partner It is important to note that if an SP Partner is configured to define one or more Federation Authentication Method to OAM Authentication Scheme mappings, then all the mappings defined in the SP Partner Profile will be ignored. Authentication Schemes As discussed in the previous article, during Federation SSO, OIF/IdP will internally forward the user to OAM for authentication/verification and specify which Authentication Scheme to use. OAM will determine if a user needs to be challenged: If the user is not authenticated yet If the user is authenticated but the session timed out If the user is authenticated, but the authentication scheme level of the original authentication is lower than the level of the authentication scheme requested by OIF/IdP So even though an SP requests a specific Federation Authentication Method to be used to challenge the user, if that method is mapped to an Authentication Scheme and that at runtime OAM deems that the user does not need to be challenged with that scheme (because the user is already authenticated, session did not time out, and the session authn level is equal or higher than the one for the specified Authentication Scheme), the flow won’t result in a challenge operation. Protocols SAML 2.0 The SAML 2.0 specifications define the following Federation Authentication Methods for SAML 2.0 flows: urn:oasis:names:tc:SAML:2.0:ac:classes:unspecified urn:oasis:names:tc:SAML:2.0:ac:classes:InternetProtocol urn:oasis:names:tc:SAML:2.0:ac:classes:Telephony urn:oasis:names:tc:SAML:2.0:ac:classes:MobileOneFactorUnregistered urn:oasis:names:tc:SAML:2.0:ac:classes:PersonalTelephony urn:oasis:names:tc:SAML:2.0:ac:classes:PreviousSession urn:oasis:names:tc:SAML:2.0:ac:classes:MobileOneFactorContract urn:oasis:names:tc:SAML:2.0:ac:classes:Smartcard urn:oasis:names:tc:SAML:2.0:ac:classes:Password urn:oasis:names:tc:SAML:2.0:ac:classes:InternetProtocolPassword urn:oasis:names:tc:SAML:2.0:ac:classes:X509 urn:oasis:names:tc:SAML:2.0:ac:classes:TLSClient urn:oasis:names:tc:SAML:2.0:ac:classes:PGP urn:oasis:names:tc:SAML:2.0:ac:classes:SPKI urn:oasis:names:tc:SAML:2.0:ac:classes:XMLDSig urn:oasis:names:tc:SAML:2.0:ac:classes:SoftwarePKI urn:oasis:names:tc:SAML:2.0:ac:classes:Kerberos urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport urn:oasis:names:tc:SAML:2.0:ac:classes:SecureRemotePassword urn:oasis:names:tc:SAML:2.0:ac:classes:NomadTelephony urn:oasis:names:tc:SAML:2.0:ac:classes:AuthenticatedTelephony urn:oasis:names:tc:SAML:2.0:ac:classes:MobileTwoFactorUnregistered urn:oasis:names:tc:SAML:2.0:ac:classes:MobileTwoFactorContract urn:oasis:names:tc:SAML:2.0:ac:classes:SmartcardPKI urn:oasis:names:tc:SAML:2.0:ac:classes:TimeSyncToken Out of the box, OIF/IdP has the following mappings for the SAML 2.0 protocol: Only urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport is defined This Federation Authentication Method is mapped to: LDAPScheme, marked as the default scheme used for authentication FAAuthScheme BasicScheme BasicFAScheme This mapping is defined in the saml20-sp-partner-profile SP Partner Profile which is the default OOTB SP Partner Profile for SAML 2.0 An example of an AuthnRequest message sent by an SP to an IdP with the SP requesting a specific Federation Authentication Method to be used to challenge the user would be: <samlp:AuthnRequest xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol" Destination="https://idp.com/oamfed/idp/samlv20" ID="id-8bWn-A9o4aoMl3Nhx1DuPOOjawc-" IssueInstant="2014-03-21T20:51:11Z" Version="2.0">  <saml:Issuer ...>https://acme.com/sp</saml:Issuer>  <samlp:NameIDPolicy AllowCreate="false" Format="urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified"/>  <samlp:RequestedAuthnContext Comparison="minimum">    <saml:AuthnContextClassRef xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion">      urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport </saml:AuthnContextClassRef>  </samlp:RequestedAuthnContext></samlp:AuthnRequest> An example of an Assertion issued by an IdP would be: <samlp:Response ...>    <saml:Issuer ...>https://idp.com/oam/fed</saml:Issuer>    <samlp:Status>        <samlp:StatusCode Value="urn:oasis:names:tc:SAML:2.0:status:Success"/>    </samlp:Status>    <saml:Assertion ...>        <saml:Issuer ...>https://idp.com/oam/fed</saml:Issuer>        <dsig:Signature>            ...        </dsig:Signature>        <saml:Subject>            <saml:NameID ...>[email protected]</saml:NameID>            <saml:SubjectConfirmation Method="urn:oasis:names:tc:SAML:2.0:cm:bearer">                <saml:SubjectConfirmationData .../>            </saml:SubjectConfirmation>        </saml:Subject>        <saml:Conditions ...>            <saml:AudienceRestriction>                <saml:Audience>https://acme.com/sp</saml:Audience>            </saml:AudienceRestriction>        </saml:Conditions>        <saml:AuthnStatement AuthnInstant="2014-03-21T20:53:55Z" SessionIndex="id-6i-Dm0yB-HekG6cejktwcKIFMzYE8Yrmqwfd0azz" SessionNotOnOrAfter="2014-03-21T21:53:55Z">            <saml:AuthnContext>                <saml:AuthnContextClassRef>                    urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport                </saml:AuthnContextClassRef>            </saml:AuthnContext>        </saml:AuthnStatement>    </saml:Assertion></samlp:Response> An administrator would be able to specify a mapping between a SAML 2.0 Federation Authentication Method and one or more OAM Authentication Schemes SAML 1.1 The SAML 1.1 specifications define the following Federation Authentication Methods for SAML 1.1 flows: urn:oasis:names:tc:SAML:1.0:am:unspecified urn:oasis:names:tc:SAML:1.0:am:HardwareToken urn:oasis:names:tc:SAML:1.0:am:password urn:oasis:names:tc:SAML:1.0:am:X509-PKI urn:ietf:rfc:2246 urn:oasis:names:tc:SAML:1.0:am:PGP urn:oasis:names:tc:SAML:1.0:am:SPKI urn:ietf:rfc:3075 urn:oasis:names:tc:SAML:1.0:am:XKMS urn:ietf:rfc:1510 urn:ietf:rfc:2945 Out of the box, OIF/IdP has the following mappings for the SAML 1.1 protocol: Only urn:oasis:names:tc:SAML:1.0:am:password is defined This Federation Authentication Method is mapped to: LDAPScheme, marked as the default scheme used for authentication FAAuthScheme BasicScheme BasicFAScheme This mapping is defined in the saml11-sp-partner-profile SP Partner Profile which is the default OOTB SP Partner Profile for SAML 1.1 An example of an Assertion issued by an IdP would be: <samlp:Response ...>    <samlp:Status>        <samlp:StatusCode Value="samlp:Success"/>    </samlp:Status>    <saml:Assertion Issuer="https://idp.com/oam/fed" ...>        <saml:Conditions ...>            <saml:AudienceRestriction>                <saml:Audience>https://acme.com/sp/ssov11</saml:Audience>            </saml:AudienceRestriction>        </saml:Conditions>        <saml:AuthnStatement AuthenticationInstant="2014-03-21T20:53:55Z" AuthenticationMethod="urn:oasis:names:tc:SAML:1.0:am:password">            <saml:Subject>                <saml:NameID ...>[email protected]</saml:NameID>                <saml:SubjectConfirmation>                   <saml:ConfirmationMethod>                       urn:oasis:names:tc:SAML:1.0:cm:bearer                   </saml:ConfirmationMethod>                </saml:SubjectConfirmation>            </saml:Subject>        </saml:AuthnStatement>        <dsig:Signature>            ...        </dsig:Signature>    </saml:Assertion></samlp:Response> Note: SAML 1.1 does not define an AuthnRequest message. An administrator would be able to specify a mapping between a SAML 1.1 Federation Authentication Method and one or more OAM Authentication Schemes OpenID 2.0 The OpenID 2.0 PAPE specifications define the following Federation Authentication Methods for OpenID 2.0 flows: http://schemas.openid.net/pape/policies/2007/06/phishing-resistant http://schemas.openid.net/pape/policies/2007/06/multi-factor http://schemas.openid.net/pape/policies/2007/06/multi-factor-physical Out of the box, OIF/IdP does not define any mappings for the OpenID 2.0 Federation Authentication Methods. For OpenID 2.0, the configuration will involve mapping a list of OpenID 2.0 policies to a list of Authentication Schemes. An example of an OpenID 2.0 Request message sent by an SP/RP to an IdP/OP would be: https://idp.com/openid?openid.ns=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0&openid.mode=checkid_setup&openid.claimed_id=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0%2Fidentifier_select&openid.identity=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0%2Fidentifier_select&openid.assoc_handle=id-6a5S6zhAKaRwQNUnjTKROREdAGSjWodG1el4xyz3&openid.return_to=https%3A%2F%2Facme.com%2Fopenid%3Frefid%3Did-9PKVXZmRxAeDYcgLqPm36ClzOMA-&openid.realm=https%3A%2F%2Facme.com%2Fopenid&openid.ns.ax=http%3A%2F%2Fopenid.net%2Fsrv%2Fax%2F1.0&openid.ax.mode=fetch_request&openid.ax.type.attr0=http%3A%2F%2Faxschema.org%2Fcontact%2Femail&openid.ax.if_available=attr0&openid.ns.pape=http%3A%2F%2Fspecs.openid.net%2Fextensions%2Fpape%2F1.0&openid.pape.max_auth_age=0 An example of an Open ID 2.0 SSO Response issued by an IdP/OP would be: https://acme.com/openid?refid=id-9PKVXZmRxAeDYcgLqPm36ClzOMA-&openid.ns=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0&openid.mode=id_res&openid.op_endpoint=https%3A%2F%2Fidp.com%2Fopenid&openid.claimed_id=https%3A%2F%2Fidp.com%2Fopenid%3Fid%3Did-38iCmmlAVEXPsFjnFVKArfn5RIiF75D5doorhEgqqPM%3D&openid.identity=https%3A%2F%2Fidp.com%2Fopenid%3Fid%3Did-38iCmmlAVEXPsFjnFVKArfn5RIiF75D5doorhEgqqPM%3D&openid.return_to=https%3A%2F%2Facme.com%2Fopenid%3Frefid%3Did-9PKVXZmRxAeDYcgLqPm36ClzOMA-&openid.response_nonce=2014-03-24T19%3A20%3A06Zid-YPa2kTNNFftZkgBb460jxJGblk2g--iNwPpDI7M1&openid.assoc_handle=id-6a5S6zhAKaRwQNUnjTKROREdAGSjWodG1el4xyz3&openid.ns.ax=http%3A%2F%2Fopenid.net%2Fsrv%2Fax%2F1.0&openid.ax.mode=fetch_response&openid.ax.type.attr0=http%3A%2F%2Fsession%2Fcount&openid.ax.value.attr0=1&openid.ax.type.attr1=http%3A%2F%2Fopenid.net%2Fschema%2FnamePerson%2Ffriendly&openid.ax.value.attr1=My+name+is+Bobby+Smith&openid.ax.type.attr2=http%3A%2F%2Fschemas.openid.net%2Fax%2Fapi%2Fuser_id&openid.ax.value.attr2=bob&openid.ax.type.attr3=http%3A%2F%2Faxschema.org%2Fcontact%2Femail&openid.ax.value.attr3=bob%40oracle.com&openid.ax.type.attr4=http%3A%2F%2Fsession%2Fipaddress&openid.ax.value.attr4=10.145.120.253&openid.ns.pape=http%3A%2F%2Fspecs.openid.net%2Fextensions%2Fpape%2F1.0&openid.pape.auth_time=2014-03-24T19%3A20%3A05Z&openid.pape.auth_policies=http%3A%2F%2Fschemas.openid.net%2Fpape%2Fpolicies%2F2007%2F06%2Fphishing-resistant&openid.signed=op_endpoint%2Cclaimed_id%2Cidentity%2Creturn_to%2Cresponse_nonce%2Cassoc_handle%2Cns.ax%2Cax.mode%2Cax.type.attr0%2Cax.value.attr0%2Cax.type.attr1%2Cax.value.attr1%2Cax.type.attr2%2Cax.value.attr2%2Cax.type.attr3%2Cax.value.attr3%2Cax.type.attr4%2Cax.value.attr4%2Cns.pape%2Cpape.auth_time%2Cpape.auth_policies&openid.sig=mYMgbGYSs22l8e%2FDom9NRPw15u8%3D In the next article, I will provide examples on how to configure OIF/IdP for the various protocols, to map OAM Authentication Schemes to Federation Authentication Methods.Cheers,Damien Carru

    Read the article

  • Grandparent – Parent – Child Reports in SQL Developer

    - by thatjeffsmith
    You’ll never see one of these family stickers on my car, but I promise not to judge…much. Parent – Child reports are pretty straightforward in Oracle SQL Developer. You have a ‘parent’ report, and then one or more ‘child’ reports which are based off of a value in a selected row or value from the parent. If you need a quick tutorial to get up to speed on the subject, go ahead and take 5 minutes Shortly before I left for vacation 2 weeks agao, I got an interesting question from one of my Twitter Followers: @thatjeffsmith any luck with the #Oracle awr reports in #SQLDeveloper?This is easy with multi generation parent>child Done in #dbvisualizer — Ronald Rood (@Ik_zelf) August 26, 2012 Now that I’m back from vacation, I can tell Ronald and everyone else that the answer is ‘Yes!’ And here’s how Time to Get Out Your XML Editor Don’t have one? That’s OK, SQL Developer can edit XML files. While the Reporting interface doesn’t surface the ability to create multi-generational reports, the underlying code definitely supports it. We just need to hack away at the XML that powers a report. For this example I’m going to start simple. A query that brings back DEPARTMENTs, then EMPLOYEES, then JOBs. We can build the first two parts of the report using the report editor. A Parent-Child report in Oracle SQL Developer (Departments – Employees) Save the Report to XML Once you’ve generated the XML file, open it with your favorite XML editor. For this example I’ll be using the build-it XML editor in SQL Developer. SQL Developer Reports in their raw XML glory! Right after the PDF element in the XML document, we can start a new ‘child’ report by inserting a DISPLAY element. I just copied and pasted the existing ‘display’ down so I wouldn’t have to worry about screwing anything up. Note I also needed to change the ‘master’ name so it wouldn’t confuse SQL Developer when I try to import/open a report that has the same name. Also I needed to update the binds tags to reflect the names from the child versus the original parent report. This is pretty easy to figure out on your own actually – I mean I’m no real developer and I got it pretty quick. <?xml version="1.0" encoding="UTF-8" ?> <displays> <display id="92857fce-0139-1000-8006-7f0000015340" type="" style="Table" enable="true"> <name><![CDATA[Grandparent]]></name> <description><![CDATA[]]></description> <tooltip><![CDATA[]]></tooltip> <drillclass><![CDATA[null]]></drillclass> <CustomValues> <TYPE>horizontal</TYPE> </CustomValues> <query> <sql><![CDATA[select * from hr.departments]]></sql> </query> <pdf version="VERSION_1_7" compression="CONTENT"> <docproperty title="" author="" subject="" keywords="" /> <cell toppadding="2" bottompadding="2" leftpadding="2" rightpadding="2" horizontalalign="LEFT" verticalalign="TOP" wrap="true" /> <column> <heading font="Courier" size="10" style="NORMAL" color="-16777216" rowshading="-1" labeling="FIRST_PAGE" /> <footing font="Courier" size="10" style="NORMAL" color="-16777216" rowshading="-1" labeling="NONE" /> <blob blob="NONE" zip="false" /> </column> <table font="Courier" size="10" style="NORMAL" color="-16777216" userowshading="false" oddrowshading="-1" evenrowshading="-1" showborders="true" spacingbefore="12" spacingafter="12" horizontalalign="LEFT" /> <header enable="false" generatedate="false"> <data> null </data> </header> <footer enable="false" generatedate="false"> <data value="null" /> </footer> <security enable="false" useopenpassword="false" openpassword="" encryption="EXCLUDE_METADATA"> <permission enable="false" permissionpassword="" allowcopying="true" allowprinting="true" allowupdating="false" allowaccessdevices="true" /> </security> <pagesetup papersize="LETTER" orientation="1" measurement="in" margintop="1.0" marginbottom="1.0" marginleft="1.0" marginright="1.0" /> </pdf> <display id="null" type="" style="Table" enable="true"> <name><![CDATA[Parent]]></name> <description><![CDATA[]]></description> <tooltip><![CDATA[]]></tooltip> <drillclass><![CDATA[null]]></drillclass> <CustomValues> <TYPE>horizontal</TYPE> </CustomValues> <query> <sql><![CDATA[select * from hr.employees where department_id = EPARTMENT_ID]]></sql> <binds> <bind id="DEPARTMENT_ID"> <prompt><![CDATA[DEPARTMENT_ID]]></prompt> <tooltip><![CDATA[DEPARTMENT_ID]]></tooltip> <value><![CDATA[NULL_VALUE]]></value> </bind> </binds> </query> <pdf version="VERSION_1_7" compression="CONTENT"> <docproperty title="" author="" subject="" keywords="" /> <cell toppadding="2" bottompadding="2" leftpadding="2" rightpadding="2" horizontalalign="LEFT" verticalalign="TOP" wrap="true" /> <column> <heading font="Courier" size="10" style="NORMAL" color="-16777216" rowshading="-1" labeling="FIRST_PAGE" /> <footing font="Courier" size="10" style="NORMAL" color="-16777216" rowshading="-1" labeling="NONE" /> <blob blob="NONE" zip="false" /> </column> <table font="Courier" size="10" style="NORMAL" color="-16777216" userowshading="false" oddrowshading="-1" evenrowshading="-1" showborders="true" spacingbefore="12" spacingafter="12" horizontalalign="LEFT" /> <header enable="false" generatedate="false"> <data> null </data> </header> <footer enable="false" generatedate="false"> <data value="null" /> </footer> <security enable="false" useopenpassword="false" openpassword="" encryption="EXCLUDE_METADATA"> <permission enable="false" permissionpassword="" allowcopying="true" allowprinting="true" allowupdating="false" allowaccessdevices="true" /> </security> <pagesetup papersize="LETTER" orientation="1" measurement="in" margintop="1.0" marginbottom="1.0" marginleft="1.0" marginright="1.0" /> </pdf> <display id="null" type="" style="Table" enable="true"> <name><![CDATA[Child]]></name> <description><![CDATA[]]></description> <tooltip><![CDATA[]]></tooltip> <drillclass><![CDATA[null]]></drillclass> <CustomValues> <TYPE>horizontal</TYPE> </CustomValues> <query> <sql><![CDATA[select * from hr.jobs where job_id = :JOB_ID]]></sql> <binds> <bind id="JOB_ID"> <prompt><![CDATA[JOB_ID]]></prompt> <tooltip><![CDATA[JOB_ID]]></tooltip> <value><![CDATA[NULL_VALUE]]></value> </bind> </binds> </query> <pdf version="VERSION_1_7" compression="CONTENT"> <docproperty title="" author="" subject="" keywords="" /> <cell toppadding="2" bottompadding="2" leftpadding="2" rightpadding="2" horizontalalign="LEFT" verticalalign="TOP" wrap="true" /> <column> <heading font="Courier" size="10" style="NORMAL" color="-16777216" rowshading="-1" labeling="FIRST_PAGE" /> <footing font="Courier" size="10" style="NORMAL" color="-16777216" rowshading="-1" labeling="NONE" /> <blob blob="NONE" zip="false" /> </column> <table font="Courier" size="10" style="NORMAL" color="-16777216" userowshading="false" oddrowshading="-1" evenrowshading="-1" showborders="true" spacingbefore="12" spacingafter="12" horizontalalign="LEFT" /> <header enable="false" generatedate="false"> <data> null </data> </header> <footer enable="false" generatedate="false"> <data value="null" /> </footer> <security enable="false" useopenpassword="false" openpassword="" encryption="EXCLUDE_METADATA"> <permission enable="false" permissionpassword="" allowcopying="true" allowprinting="true" allowupdating="false" allowaccessdevices="true" /> </security> <pagesetup papersize="LETTER" orientation="1" measurement="in" margintop="1.0" marginbottom="1.0" marginleft="1.0" marginright="1.0" /> </pdf> </display> </display> </display> </displays> Save the file and ‘Open Report…’ You’ll see your new report name in the tree. You just need to double-click it to open it. Here’s what it looks like running A 3 generation family Now Let’s Build an AWR Text Report Ronald wanted to have the ability to query AWR snapshots and generate the AWR reports. That requires a few inputs, including a START and STOP snapshot ID. That basically tells AWR what time period to use for generating the report. And here’s where it gets tricky. We’ll need to use aliases for the SNAP_ID column. Since we’re using the same column name from 2 different queries, we need to use different bind variables. Fortunately for us, SQL Developer’s clever enough to use the column alias as the BIND. Here’s what I mean: Grandparent Query SELECT snap_id start1, begin_interval_time, end_interval_time FROM dba_hist_snapshot ORDER BY 1 asc Parent Query SELECT snap_id stop1, begin_interval_time, end_interval_time, :START1 carry FROM dba_hist_snapshot WHERE snap_id > :START1 ORDER BY 1 asc And here’s where it gets even trickier – you can’t reference a bind from outside the parent query. My grandchild report can’t reference a value from the grandparent report. So I just carry the selected value down to the parent. In my parent query SELECT you see the ‘:START1′ at the end? That’s making that value available to me when I use it in my grandchild query. To complicate things a bit further, I can’t have a column name with a ‘:’ in it, or SQL Developer will get confused when I try to reference the value of the variable with the ‘:’ – and ‘::Name’ doesn’t work. But that’s OK, just alias it. Grandchild Query Select Output From Table(Dbms_Workload_Repository.Awr_Report_Text(1298953802, 1,:CARRY, :STOP1)); Ok, and the last trick – I hard-coded my report to use my database’s DB_ID and INST_ID into the AWR package call. Now a smart person could figure out a way to make that work on any database, but I got lazy and and ran out of time. But this should be far enough for you to take it from here. Here’s what my report looks like now: Caution: don’t run this if you haven’t licensed Enterprise Edition with Diagnostic Pack. The Raw XML for this AWR Report <?xml version="1.0" encoding="UTF-8" ?> <displays> <display id="927ba96c-0139-1000-8001-7f0000015340" type="" style="Table" enable="true"> <name><![CDATA[AWR Start Stop Report Final]]></name> <description><![CDATA[]]></description> <tooltip><![CDATA[]]></tooltip> <drillclass><![CDATA[null]]></drillclass> <CustomValues> <TYPE>horizontal</TYPE> </CustomValues> <query> <sql><![CDATA[SELECT snap_id start1, begin_interval_time, end_interval_time FROM dba_hist_snapshot ORDER BY 1 asc]]></sql> </query> <display id="null" type="" style="Table" enable="true"> <name><![CDATA[Stop SNAP_ID]]></name> <description><![CDATA[]]></description> <tooltip><![CDATA[]]></tooltip> <drillclass><![CDATA[null]]></drillclass> <CustomValues> <TYPE>horizontal</TYPE> </CustomValues> <query> <sql><![CDATA[SELECT snap_id stop1, begin_interval_time, end_interval_time, :START1 carry FROM dba_hist_snapshot WHERE snap_id > :START1 ORDER BY 1 asc]]></sql> </query> <display id="null" type="" style="Table" enable="true"> <name><![CDATA[AWR Report]]></name> <description><![CDATA[]]></description> <tooltip><![CDATA[]]></tooltip> <drillclass><![CDATA[null]]></drillclass> <CustomValues> <TYPE>horizontal</TYPE> </CustomValues> <query> <sql><![CDATA[Select Output From Table(Dbms_Workload_Repository.Awr_Report_Text(1298953802, 1,:CARRY, :STOP1 ))]]></sql> </query> </display> </display> </display> </displays> Should We Build Support for Multiple Levels of Reports into the User Interface? Let us know! A comment here or a suggestion on our SQL Developer Exchange might help your case!

    Read the article

  • Frequent Disconnects ubuntu desktop 12.10 x64 intel 82579V e1000e

    - by user112055
    I'm having frequent disconnects with my new install of Ubuntu 12.10. I tried updating the kernel driver to the latest intel release to no avail. My expertise is spent. It happens anywhere between 1 min and 10 min. Any ideas? syslog: Dec 1 13:51:39 andromeda kernel: [ 972.188809] audit_printk_skb: 6 callbacks suppressed Dec 1 13:51:39 andromeda kernel: [ 972.188813] type=1701 audit(1354398699.418:199): auid=4294967295 uid=1000 gid=1000 ses=4294967295 pid=6039 comm="chrome" reason="seccomp" sig=0 syscall=4 compat=0 ip=0x7f26777d9205 code=0x50000 Dec 1 13:51:39 andromeda kernel: [ 972.188817] type=1701 audit(1354398699.418:200): auid=4294967295 uid=1000 gid=1000 ses=4294967295 pid=6039 comm="chrome" reason="seccomp" sig=0 syscall=4 compat=0 ip=0x7f26777d9205 code=0x50000 Dec 1 13:51:39 andromeda kernel: [ 972.188820] type=1701 audit(1354398699.418:201): auid=4294967295 uid=1000 gid=1000 ses=4294967295 pid=6039 comm="chrome" reason="seccomp" sig=0 syscall=4 compat=0 ip=0x7f26777d9205 code=0x50000 Dec 1 13:51:39 andromeda kernel: [ 972.188823] type=1701 audit(1354398699.418:202): auid=4294967295 uid=1000 gid=1000 ses=4294967295 pid=6039 comm="chrome" reason="seccomp" sig=0 syscall=4 compat=0 ip=0x7f26777d9205 code=0x50000 Dec 1 13:51:39 andromeda kernel: [ 972.188825] type=1701 audit(1354398699.418:203): auid=4294967295 uid=1000 gid=1000 ses=4294967295 pid=6039 comm="chrome" reason="seccomp" sig=0 syscall=4 compat=0 ip=0x7f26777d9205 code=0x50000 Dec 1 13:51:39 andromeda kernel: [ 972.331419] type=1701 audit(1354398699.558:204): auid=4294967295 uid=1000 gid=1000 ses=4294967295 pid=6039 comm="chrome" reason="seccomp" sig=0 syscall=2 compat=0 ip=0x7f26777d96b0 code=0x50000 Dec 1 13:53:12 andromeda NetworkManager[1115]: <info> (eth0): carrier now OFF (device state 100, deferring action for 4 seconds) Dec 1 13:53:12 andromeda kernel: [ 1064.894387] e1000e: e1000e: eth0 NIC Link is Down Dec 1 13:53:16 andromeda NetworkManager[1115]: <info> (eth0): device state change: activated -> unavailable (reason 'carrier-changed') [100 20 40] Dec 1 13:53:16 andromeda NetworkManager[1115]: <info> (eth0): deactivating device (reason 'carrier-changed') [40] Dec 1 13:53:16 andromeda NetworkManager[1115]: <info> (eth0): canceled DHCP transaction, DHCP client pid 5946 Dec 1 13:53:16 andromeda avahi-daemon[890]: Withdrawing address record for fe80::ea40:f2ff:fee2:4d86 on eth0. Dec 1 13:53:16 andromeda avahi-daemon[890]: Leaving mDNS multicast group on interface eth0.IPv6 with address fe80::ea40:f2ff:fee2:4d86. Dec 1 13:53:16 andromeda avahi-daemon[890]: Interface eth0.IPv6 no longer relevant for mDNS. Dec 1 13:53:16 andromeda kernel: [ 1069.025288] IPv6: ADDRCONF(NETDEV_UP): eth0: link is not ready Dec 1 13:53:16 andromeda avahi-daemon[890]: Withdrawing address record for 192.168.11.17 on eth0. Dec 1 13:53:16 andromeda avahi-daemon[890]: Leaving mDNS multicast group on interface eth0.IPv4 with address 192.168.11.17. Dec 1 13:53:16 andromeda avahi-daemon[890]: Interface eth0.IPv4 no longer relevant for mDNS. Dec 1 13:53:16 andromeda NetworkManager[1115]: <warn> DNS: plugin dnsmasq update failed Dec 1 13:53:16 andromeda NetworkManager[1115]: <info> ((null)): removing resolv.conf from /sbin/resolvconf Dec 1 13:53:16 andromeda dnsmasq[1907]: setting upstream servers from DBus Dec 1 13:53:16 andromeda dbus[800]: [system] Activating service name='org.freedesktop.nm_dispatcher' (using servicehelper) Dec 1 13:53:16 andromeda dbus[800]: [system] Successfully activated service 'org.freedesktop.nm_dispatcher' Dec 1 13:53:32 andromeda NetworkManager[1115]: <info> (eth0): carrier now ON (device state 20) Dec 1 13:53:32 andromeda NetworkManager[1115]: <info> (eth0): device state change: unavailable -> disconnected (reason 'carrier-changed') [20 30 40] Dec 1 13:53:32 andromeda NetworkManager[1115]: <info> Auto-activating connection '82579V'. Dec 1 13:53:32 andromeda NetworkManager[1115]: <info> Activation (eth0) starting connection '82579V' Dec 1 13:53:32 andromeda NetworkManager[1115]: <info> (eth0): device state change: disconnected -> prepare (reason 'none') [30 40 0] Dec 1 13:53:32 andromeda NetworkManager[1115]: <info> Activation (eth0) Stage 1 of 5 (Device Prepare) scheduled... Dec 1 13:53:32 andromeda NetworkManager[1115]: <info> Activation (eth0) Stage 1 of 5 (Device Prepare) started... Dec 1 13:53:32 andromeda NetworkManager[1115]: <info> Activation (eth0) Stage 2 of 5 (Device Configure) scheduled... Dec 1 13:53:32 andromeda NetworkManager[1115]: <info> Activation (eth0) Stage 1 of 5 (Device Prepare) complete. Dec 1 13:53:32 andromeda NetworkManager[1115]: <info> Activation (eth0) Stage 2 of 5 (Device Configure) starting... Dec 1 13:53:32 andromeda NetworkManager[1115]: <info> (eth0): device state change: prepare -> config (reason 'none') [40 50 0] Dec 1 13:53:32 andromeda NetworkManager[1115]: <info> Activation (eth0) Stage 2 of 5 (Device Configure) successful. Dec 1 13:53:32 andromeda NetworkManager[1115]: <info> Activation (eth0) Stage 3 of 5 (IP Configure Start) scheduled. Dec 1 13:53:32 andromeda NetworkManager[1115]: <info> Activation (eth0) Stage 2 of 5 (Device Configure) complete. Dec 1 13:53:32 andromeda NetworkManager[1115]: <info> Activation (eth0) Stage 3 of 5 (IP Configure Start) started... Dec 1 13:53:32 andromeda NetworkManager[1115]: <info> (eth0): device state change: config -> ip-config (reason 'none') [50 70 0] Dec 1 13:53:32 andromeda NetworkManager[1115]: <info> Activation (eth0) Beginning DHCPv4 transaction (timeout in 45 seconds) Dec 1 13:53:32 andromeda kernel: [ 1084.938042] e1000e: e1000e: eth0 NIC Link is Up 100 Mbps Full Duplex, Flow Control: Rx/Tx Dec 1 13:53:32 andromeda kernel: [ 1084.938049] e1000e 0000:00:19.0: eth0: 10/100 speed: disabling TSO Dec 1 13:53:32 andromeda kernel: [ 1084.938815] IPv6: ADDRCONF(NETDEV_CHANGE): eth0: link becomes ready Dec 1 13:53:32 andromeda NetworkManager[1115]: <info> dhclient started with pid 6080 Dec 1 13:53:32 andromeda NetworkManager[1115]: <info> Activation (eth0) Stage 3 of 5 (IP Configure Start) complete. Dec 1 13:53:32 andromeda dhclient: Internet Systems Consortium DHCP Client 4.2.4 Dec 1 13:53:32 andromeda dhclient: Copyright 2004-2012 Internet Systems Consortium. Dec 1 13:53:32 andromeda dhclient: All rights reserved. Dec 1 13:53:32 andromeda dhclient: For info, please visit https://www.isc.org/software/dhcp/ Dec 1 13:53:32 andromeda dhclient: Dec 1 13:53:32 andromeda NetworkManager[1115]: <info> (eth0): DHCPv4 state changed nbi -> preinit Dec 1 13:53:32 andromeda dhclient: Listening on LPF/eth0/e8:40:f2:e2:4d:86 Dec 1 13:53:32 andromeda dhclient: Sending on LPF/eth0/e8:40:f2:e2:4d:86 Dec 1 13:53:32 andromeda dhclient: Sending on Socket/fallback Dec 1 13:53:32 andromeda dhclient: DHCPREQUEST of 192.168.11.17 on eth0 to 255.255.255.255 port 67 Dec 1 13:53:32 andromeda dhclient: DHCPACK of 192.168.11.17 from 192.168.11.1 Dec 1 13:53:32 andromeda dhclient: bound to 192.168.11.17 -- renewal in 33576 seconds. Dec 1 13:53:32 andromeda NetworkManager[1115]: <info> (eth0): DHCPv4 state changed preinit -> reboot Dec 1 13:53:32 andromeda NetworkManager[1115]: <info> address 192.168.11.17 Dec 1 13:53:32 andromeda NetworkManager[1115]: <info> prefix 24 (255.255.255.0) Dec 1 13:53:32 andromeda NetworkManager[1115]: <info> gateway 192.168.11.1 Dec 1 13:53:32 andromeda NetworkManager[1115]: <info> hostname 'andromeda' Dec 1 13:53:32 andromeda NetworkManager[1115]: <info> nameserver '192.168.11.1' Dec 1 13:53:32 andromeda NetworkManager[1115]: <info> domain name 'hsd1.ca.comcast.net' Dec 1 13:53:32 andromeda NetworkManager[1115]: <info> Activation (eth0) Stage 5 of 5 (IPv4 Configure Commit) scheduled... Dec 1 13:53:32 andromeda NetworkManager[1115]: <info> Activation (eth0) Stage 5 of 5 (IPv4 Commit) started... Dec 1 13:53:32 andromeda avahi-daemon[890]: Joining mDNS multicast group on interface eth0.IPv4 with address 192.168.11.17. Dec 1 13:53:32 andromeda avahi-daemon[890]: New relevant interface eth0.IPv4 for mDNS. Dec 1 13:53:32 andromeda avahi-daemon[890]: Registering new address record for 192.168.11.17 on eth0.IPv4. Dec 1 13:53:33 andromeda NetworkManager[1115]: <info> (eth0): device state change: ip-config -> activated (reason 'none') [70 100 0] Dec 1 13:53:33 andromeda NetworkManager[1115]: <info> ((null)): writing resolv.conf to /sbin/resolvconf Dec 1 13:53:33 andromeda dnsmasq[1907]: setting upstream servers from DBus Dec 1 13:53:33 andromeda dnsmasq[1907]: using nameserver 192.168.11.1#53 Dec 1 13:53:33 andromeda NetworkManager[1115]: <info> Policy set '82579V' (eth0) as default for IPv4 routing and DNS. Dec 1 13:53:33 andromeda NetworkManager[1115]: <info> Activation (eth0) successful, device activated. Dec 1 13:53:33 andromeda NetworkManager[1115]: <info> Activation (eth0) Stage 5 of 5 (IPv4 Commit) complete. Dec 1 13:53:33 andromeda dbus[800]: [system] Activating service name='org.freedesktop.nm_dispatcher' (using servicehelper) Dec 1 13:53:33 andromeda dbus[800]: [system] Successfully activated service 'org.freedesktop.nm_dispatcher' Dec 1 13:53:33 andromeda avahi-daemon[890]: Joining mDNS multicast group on interface eth0.IPv6 with address fe80::ea40:f2ff:fee2:4d86. Dec 1 13:53:33 andromeda avahi-daemon[890]: New relevant interface eth0.IPv6 for mDNS. Dec 1 13:53:33 andromeda avahi-daemon[890]: Registering new address record for fe80::ea40:f2ff:fee2:4d86 on eth0.*. Dec 1 13:53:41 andromeda ntpdate[6154]: adjust time server 91.189.94.4 offset 0.000928 sec Dec 1 13:53:50 andromeda NetworkManager[1115]: <info> (eth0): carrier now OFF (device state 100, deferring action for 4 seconds) Dec 1 13:53:50 andromeda kernel: [ 1102.980003] e1000e: e1000e: eth0 NIC Link is Down Dec 1 13:53:54 andromeda NetworkManager[1115]: <info> (eth0): device state change: activated -> unavailable (reason 'carrier-changed') [100 20 40] Dec 1 13:53:54 andromeda NetworkManager[1115]: <info> (eth0): deactivating device (reason 'carrier-changed') [40] Dec 1 13:53:54 andromeda NetworkManager[1115]: <info> (eth0): canceled DHCP transaction, DHCP client pid 6080 Dec 1 13:53:54 andromeda avahi-daemon[890]: Withdrawing address record for fe80::ea40:f2ff:fee2:4d86 on eth0. Dec 1 13:53:54 andromeda avahi-daemon[890]: Leaving mDNS multicast group on interface eth0.IPv6 with address fe80::ea40:f2ff:fee2:4d86. Dec 1 13:53:54 andromeda avahi-daemon[890]: Interface eth0.IPv6 no longer relevant for mDNS. Dec 1 13:53:54 andromeda avahi-daemon[890]: Withdrawing address record for 192.168.11.17 on eth0. Dec 1 13:53:54 andromeda avahi-daemon[890]: Leaving mDNS multicast group on interface eth0.IPv4 with address 192.168.11.17. Dec 1 13:53:54 andromeda kernel: [ 1107.025959] IPv6: ADDRCONF(NETDEV_UP): eth0: link is not ready Dec 1 13:53:54 andromeda NetworkManager[1115]: <warn> DNS: plugin dnsmasq update failed Dec 1 13:53:54 andromeda NetworkManager[1115]: <info> ((null)): removing resolv.conf from /sbin/resolvconf Dec 1 13:53:54 andromeda avahi-daemon[890]: Interface eth0.IPv4 no longer relevant for mDNS. Dec 1 13:53:54 andromeda dnsmasq[1907]: setting upstream servers from DBus Dec 1 13:53:54 andromeda dbus[800]: [system] Activating service name='org.freedesktop.nm_dispatcher' (using servicehelper) Dec 1 13:53:54 andromeda dbus[800]: [system] Successfully activated service 'org.freedesktop.nm_dispatcher' Dec 1 13:54:10 andromeda NetworkManager[1115]: <info> (eth0): carrier now ON (device state 20) Dec 1 13:54:10 andromeda NetworkManager[1115]: <info> (eth0): device state change: unavailable -> disconnected (reason 'carrier-changed') [20 30 40] Dec 1 13:54:10 andromeda NetworkManager[1115]: <info> Auto-activating connection '82579V'. Dec 1 13:54:10 andromeda NetworkManager[1115]: <info> Activation (eth0) starting connection '82579V' Dec 1 13:54:10 andromeda NetworkManager[1115]: <info> (eth0): device state change: disconnected -> prepare (reason 'none') [30 40 0] Dec 1 13:54:10 andromeda NetworkManager[1115]: <info> Activation (eth0) Stage 1 of 5 (Device Prepare) scheduled... Dec 1 13:54:10 andromeda NetworkManager[1115]: <info> Activation (eth0) Stage 1 of 5 (Device Prepare) started... Dec 1 13:54:10 andromeda NetworkManager[1115]: <info> Activation (eth0) Stage 2 of 5 (Device Configure) scheduled... Dec 1 13:54:10 andromeda NetworkManager[1115]: <info> Activation (eth0) Stage 1 of 5 (Device Prepare) complete. Dec 1 13:54:10 andromeda NetworkManager[1115]: <info> Activation (eth0) Stage 2 of 5 (Device Configure) starting... Dec 1 13:54:10 andromeda NetworkManager[1115]: <info> (eth0): device state change: prepare -> config (reason 'none') [40 50 0] Dec 1 13:54:10 andromeda NetworkManager[1115]: <info> Activation (eth0) Stage 2 of 5 (Device Configure) successful. Dec 1 13:54:10 andromeda kernel: [ 1123.167668] e1000e: e1000e: eth0 NIC Link is Up 100 Mbps Full Duplex, Flow Control: Rx/Tx Dec 1 13:54:10 andromeda kernel: [ 1123.167675] e1000e 0000:00:19.0: eth0: 10/100 speed: disabling TSO Dec 1 13:54:10 andromeda kernel: [ 1123.168430] IPv6: ADDRCONF(NETDEV_CHANGE): eth0: link becomes ready Dec 1 13:54:10 andromeda NetworkManager[1115]: <info> Activation (eth0) Stage 3 of 5 (IP Configure Start) scheduled. Dec 1 13:54:10 andromeda NetworkManager[1115]: <info> Activation (eth0) Stage 2 of 5 (Device Configure) complete. Dec 1 13:54:10 andromeda NetworkManager[1115]: <info> Activation (eth0) Stage 3 of 5 (IP Configure Start) started... Dec 1 13:54:10 andromeda NetworkManager[1115]: <info> (eth0): device state change: config -> ip-config (reason 'none') [50 70 0] Dec 1 13:54:10 andromeda NetworkManager[1115]: <info> Activation (eth0) Beginning DHCPv4 transaction (timeout in 45 seconds) Dec 1 13:54:10 andromeda NetworkManager[1115]: <info> dhclient started with pid 6212 Dec 1 13:54:10 andromeda NetworkManager[1115]: <info> Activation (eth0) Stage 3 of 5 (IP Configure Start) complete. Dec 1 13:54:10 andromeda dhclient: Internet Systems Consortium DHCP Client 4.2.4 Dec 1 13:54:10 andromeda dhclient: Copyright 2004-2012 Internet Systems Consortium. Dec 1 13:54:10 andromeda dhclient: All rights reserved. Dec 1 13:54:10 andromeda dhclient: For info, please visit https://www.isc.org/software/dhcp/ Dec 1 13:54:10 andromeda dhclient: Dec 1 13:54:10 andromeda NetworkManager[1115]: <info> (eth0): DHCPv4 state changed nbi -> preinit Dec 1 13:54:10 andromeda dhclient: Listening on LPF/eth0/e8:40:f2:e2:4d:86 Dec 1 13:54:10 andromeda dhclient: Sending on LPF/eth0/e8:40:f2:e2:4d:86 Dec 1 13:54:10 andromeda dhclient: Sending on Socket/fallback Dec 1 13:54:10 andromeda dhclient: DHCPREQUEST of 192.168.11.17 on eth0 to 255.255.255.255 port 67 Dec 1 13:54:10 andromeda dhclient: DHCPACK of 192.168.11.17 from 192.168.11.1 Dec 1 13:54:10 andromeda NetworkManager[1115]: <info> (eth0): DHCPv4 state changed preinit -> reboot Dec 1 13:54:10 andromeda NetworkManager[1115]: <info> address 192.168.11.17 Dec 1 13:54:10 andromeda NetworkManager[1115]: <info> prefix 24 (255.255.255.0) Dec 1 13:54:10 andromeda NetworkManager[1115]: <info> gateway 192.168.11.1 Dec 1 13:54:10 andromeda NetworkManager[1115]: <info> hostname 'andromeda' Dec 1 13:54:10 andromeda NetworkManager[1115]: <info> nameserver '192.168.11.1' Dec 1 13:54:10 andromeda NetworkManager[1115]: <info> domain name 'hsd1.ca.comcast.net' Dec 1 13:54:10 andromeda NetworkManager[1115]: <info> Activation (eth0) Stage 5 of 5 (IPv4 Configure Commit) scheduled... Dec 1 13:54:10 andromeda NetworkManager[1115]: <info> Activation (eth0) Stage 5 of 5 (IPv4 Commit) started... Dec 1 13:54:10 andromeda avahi-daemon[890]: Joining mDNS multicast group on interface eth0.IPv4 with address 192.168.11.17. Dec 1 13:54:10 andromeda dhclient: bound to 192.168.11.17 -- renewal in 35416 seconds. Dec 1 13:54:10 andromeda avahi-daemon[890]: New relevant interface eth0.IPv4 for mDNS. Dec 1 13:54:10 andromeda avahi-daemon[890]: Registering new address record for 192.168.11.17 on eth0.IPv4. Dec 1 13:54:11 andromeda NetworkManager[1115]: <info> (eth0): device state change: ip-config -> activated (reason 'none') [70 100 0] Dec 1 13:54:11 andromeda NetworkManager[1115]: <info> ((null)): writing resolv.conf to /sbin/resolvconf Dec 1 13:54:11 andromeda dnsmasq[1907]: setting upstream servers from DBus Dec 1 13:54:11 andromeda dnsmasq[1907]: using nameserver 192.168.11.1#53 Dec 1 13:54:11 andromeda NetworkManager[1115]: <info> Policy set '82579V' (eth0) as default for IPv4 routing and DNS. Dec 1 13:54:11 andromeda NetworkManager[1115]: <info> Activation (eth0) successful, device activated. Dec 1 13:54:11 andromeda NetworkManager[1115]: <info> Activation (eth0) Stage 5 of 5 (IPv4 Commit) complete. Dec 1 13:54:11 andromeda dbus[800]: [system] Activating service name='org.freedesktop.nm_dispatcher' (using servicehelper) Dec 1 13:54:11 andromeda dbus[800]: [system] Successfully activated service 'org.freedesktop.nm_dispatcher' Dec 1 13:54:12 andromeda avahi-daemon[890]: Joining mDNS multicast group on interface eth0.IPv6 with address fe80::ea40:f2ff:fee2:4d86. Dec 1 13:54:12 andromeda avahi-daemon[890]: New relevant interface eth0.IPv6 for mDNS. Dec 1 13:54:12 andromeda avahi-daemon[890]: Registering new address record for fe80::ea40:f2ff:fee2:4d86 on eth0.*. Dec 1 13:54:19 andromeda ntpdate[6286]: adjust time server 91.189.94.4 offset 0.001142 sec $ lspci -v 00:19.0 Ethernet controller: Intel Corporation 82579V Gigabit Network Connection (rev 04) Subsystem: Intel Corporation Device 2031 Flags: bus master, fast devsel, latency 0, IRQ 45 Memory at f7f00000 (32-bit, non-prefetchable) [size=128K] Memory at f7f39000 (32-bit, non-prefetchable) [size=4K] I/O ports at f040 [size=32] Capabilities: [c8] Power Management version 2 Capabilities: [d0] MSI: Enable+ Count=1/1 Maskable- 64bit+ Capabilities: [e0] PCI Advanced Features Kernel driver in use: e1000e Kernel modules: e1000e $ modinfo e1000e filename: /lib/modules/3.5.0-19-generic/kernel/drivers/net/e1000e/e1000e.ko version: 2.1.4-NAPI license: GPL description: Intel(R) PRO/1000 Network Driver author: Intel Corporation, <[email protected]> srcversion: 0809529BE0BBC44883956AF alias: pci:v00008086d0000153Bsv*sd*bc*sc*i* alias: pci:v00008086d0000153Asv*sd*bc*sc*i* alias: pci:v00008086d00001503sv*sd*bc*sc*i* alias: pci:v00008086d00001502sv*sd*bc*sc*i* alias: pci:v00008086d000010F0sv*sd*bc*sc*i* alias: pci:v00008086d000010EFsv*sd*bc*sc*i* alias: pci:v00008086d000010EBsv*sd*bc*sc*i* alias: pci:v00008086d000010EAsv*sd*bc*sc*i* alias: pci:v00008086d00001525sv*sd*bc*sc*i* alias: pci:v00008086d000010DFsv*sd*bc*sc*i* alias: pci:v00008086d000010DEsv*sd*bc*sc*i* alias: pci:v00008086d000010CEsv*sd*bc*sc*i* alias: pci:v00008086d000010CDsv*sd*bc*sc*i* alias: pci:v00008086d000010CCsv*sd*bc*sc*i* alias: pci:v00008086d000010CBsv*sd*bc*sc*i* alias: pci:v00008086d000010F5sv*sd*bc*sc*i* alias: pci:v00008086d000010BFsv*sd*bc*sc*i* alias: pci:v00008086d000010E5sv*sd*bc*sc*i* alias: pci:v00008086d0000294Csv*sd*bc*sc*i* alias: pci:v00008086d000010BDsv*sd*bc*sc*i* alias: pci:v00008086d000010C3sv*sd*bc*sc*i* alias: pci:v00008086d000010C2sv*sd*bc*sc*i* alias: pci:v00008086d000010C0sv*sd*bc*sc*i* alias: pci:v00008086d00001501sv*sd*bc*sc*i* alias: pci:v00008086d00001049sv*sd*bc*sc*i* alias: pci:v00008086d0000104Dsv*sd*bc*sc*i* alias: pci:v00008086d0000104Bsv*sd*bc*sc*i* alias: pci:v00008086d0000104Asv*sd*bc*sc*i* alias: pci:v00008086d000010C4sv*sd*bc*sc*i* alias: pci:v00008086d000010C5sv*sd*bc*sc*i* alias: pci:v00008086d0000104Csv*sd*bc*sc*i* alias: pci:v00008086d000010BBsv*sd*bc*sc*i* alias: pci:v00008086d00001098sv*sd*bc*sc*i* alias: pci:v00008086d000010BAsv*sd*bc*sc*i* alias: pci:v00008086d00001096sv*sd*bc*sc*i* alias: pci:v00008086d0000150Csv*sd*bc*sc*i* alias: pci:v00008086d000010F6sv*sd*bc*sc*i* alias: pci:v00008086d000010D3sv*sd*bc*sc*i* alias: pci:v00008086d0000109Asv*sd*bc*sc*i* alias: pci:v00008086d0000108Csv*sd*bc*sc*i* alias: pci:v00008086d0000108Bsv*sd*bc*sc*i* alias: pci:v00008086d0000107Fsv*sd*bc*sc*i* alias: pci:v00008086d0000107Esv*sd*bc*sc*i* alias: pci:v00008086d0000107Dsv*sd*bc*sc*i* alias: pci:v00008086d000010B9sv*sd*bc*sc*i* alias: pci:v00008086d000010D5sv*sd*bc*sc*i* alias: pci:v00008086d000010DAsv*sd*bc*sc*i* alias: pci:v00008086d000010D9sv*sd*bc*sc*i* alias: pci:v00008086d00001060sv*sd*bc*sc*i* alias: pci:v00008086d000010A5sv*sd*bc*sc*i* alias: pci:v00008086d000010BCsv*sd*bc*sc*i* alias: pci:v00008086d000010A4sv*sd*bc*sc*i* alias: pci:v00008086d0000105Fsv*sd*bc*sc*i* alias: pci:v00008086d0000105Esv*sd*bc*sc*i* depends: vermagic: 3.5.0-19-generic SMP mod_unload modversions parm: copybreak:Maximum size of packet that is copied to a new buffer on receive (uint) parm: TxIntDelay:Transmit Interrupt Delay (array of int) parm: TxAbsIntDelay:Transmit Absolute Interrupt Delay (array of int) parm: RxIntDelay:Receive Interrupt Delay (array of int) parm: RxAbsIntDelay:Receive Absolute Interrupt Delay (array of int) parm: InterruptThrottleRate:Interrupt Throttling Rate (array of int) parm: IntMode:Interrupt Mode (array of int) parm: SmartPowerDownEnable:Enable PHY smart power down (array of int) parm: KumeranLockLoss:Enable Kumeran lock loss workaround (array of int) parm: CrcStripping:Enable CRC Stripping, disable if your BMC needs the CRC (array of int) parm: EEE:Enable/disable on parts that support the feature (array of int) parm: Node:[ROUTING] Node to allocate memory on, default -1 (array of int) parm: debug:Debug level (0=none,...,16=all) (int)

    Read the article

  • Internet doesn't work by default

    - by Adam Martinez
    After upgrading to Precise, I am required to run 'sudo dhclient eth0' in a terminal in order to get the internet to work. Everything worked perfectly fine on Oneiric, so It's really puzzling me. I'm thinking it could possibly be something with the kernel, but who knows. Output of dmesg: [ 0.247891] system 00:01: [io 0x0290-0x030f] has been reserved [ 0.247896] system 00:01: [io 0x0290-0x0297] has been reserved [ 0.247901] system 00:01: [io 0x0880-0x088f] has been reserved [ 0.247908] system 00:01: Plug and Play ACPI device, IDs PNP0c02 (active) [ 0.247931] pnp 00:02: [dma 4] [ 0.247935] pnp 00:02: [io 0x0000-0x000f] [ 0.247939] pnp 00:02: [io 0x0080-0x0090] [ 0.247943] pnp 00:02: [io 0x0094-0x009f] [ 0.247947] pnp 00:02: [io 0x00c0-0x00df] [ 0.248033] pnp 00:02: Plug and Play ACPI device, IDs PNP0200 (active) [ 0.248125] pnp 00:03: [io 0x0070-0x0073] [ 0.248187] pnp 00:03: Plug and Play ACPI device, IDs PNP0b00 (active) [ 0.248205] pnp 00:04: [io 0x0061] [ 0.248260] pnp 00:04: Plug and Play ACPI device, IDs PNP0800 (active) [ 0.248277] pnp 00:05: [io 0x00f0-0x00ff] [ 0.248292] pnp 00:05: [irq 13] [ 0.248348] pnp 00:05: Plug and Play ACPI device, IDs PNP0c04 (active) [ 0.248583] pnp 00:06: [io 0x03f0-0x03f5] [ 0.248588] pnp 00:06: [io 0x03f7] [ 0.248597] pnp 00:06: [irq 6] [ 0.248601] pnp 00:06: [dma 2] [ 0.248690] pnp 00:06: Plug and Play ACPI device, IDs PNP0700 (active) [ 0.248998] pnp 00:07: [io 0x03f8-0x03ff] [ 0.249008] pnp 00:07: [irq 4] [ 0.249122] pnp 00:07: Plug and Play ACPI device, IDs PNP0501 (active) [ 0.249479] pnp 00:08: [io 0x0400-0x04bf] [ 0.249584] system 00:08: [io 0x0400-0x04bf] has been reserved [ 0.249591] system 00:08: Plug and Play ACPI device, IDs PNP0c02 (active) [ 0.249628] pnp 00:09: [mem 0xffb80000-0xffbfffff] [ 0.249690] pnp 00:09: Plug and Play ACPI device, IDs INT0800 (active) [ 0.250049] pnp 00:0a: [mem 0xe0000000-0xefffffff] [ 0.250167] system 00:0a: [mem 0xe0000000-0xefffffff] has been reserved [ 0.250173] system 00:0a: Plug and Play ACPI device, IDs PNP0c02 (active) [ 0.250302] pnp 00:0b: [mem 0x000f0000-0x000fffff] [ 0.250307] pnp 00:0b: [mem 0x7ff00000-0x7fffffff] [ 0.250311] pnp 00:0b: [mem 0xfed00000-0xfed000ff] [ 0.250316] pnp 00:0b: [mem 0x0000046e-0x0000056d] [ 0.250320] pnp 00:0b: [mem 0x7fee0000-0x7fefffff] [ 0.250324] pnp 00:0b: [mem 0x00000000-0x0009ffff] [ 0.250328] pnp 00:0b: [mem 0x00100000-0x7fedffff] [ 0.250332] pnp 00:0b: [mem 0xfec00000-0xfec00fff] [ 0.250336] pnp 00:0b: [mem 0xfed14000-0xfed1dfff] [ 0.250341] pnp 00:0b: [mem 0xfed20000-0xfed9ffff] [ 0.250345] pnp 00:0b: [mem 0xfee00000-0xfee00fff] [ 0.250349] pnp 00:0b: [mem 0xffb00000-0xffb7ffff] [ 0.250353] pnp 00:0b: [mem 0xfff00000-0xffffffff] [ 0.250357] pnp 00:0b: [mem 0x000e0000-0x000effff] [ 0.250409] pnp 00:0b: disabling [mem 0x0000046e-0x0000056d] because it overlaps 0000:01:00.0 BAR 6 [mem 0x00000000-0x0007ffff pref] [ 0.250419] pnp 00:0b: disabling [mem 0x0000046e-0x0000056d disabled] because it overlaps 0000:03:00.0 BAR 6 [mem 0x00000000-0x0000ffff pref] [ 0.250430] pnp 00:0b: disabling [mem 0x0000046e-0x0000056d disabled] because it overlaps 0000:04:00.0 BAR 6 [mem 0x00000000-0x0001ffff pref] [ 0.250524] system 00:0b: [mem 0x000f0000-0x000fffff] could not be reserved [ 0.250530] system 00:0b: [mem 0x7ff00000-0x7fffffff] has been reserved [ 0.250536] system 00:0b: [mem 0xfed00000-0xfed000ff] has been reserved [ 0.250541] system 00:0b: [mem 0x7fee0000-0x7fefffff] could not be reserved [ 0.250547] system 00:0b: [mem 0x00000000-0x0009ffff] could not be reserved [ 0.250552] system 00:0b: [mem 0x00100000-0x7fedffff] could not be reserved [ 0.250558] system 00:0b: [mem 0xfec00000-0xfec00fff] could not be reserved [ 0.250563] system 00:0b: [mem 0xfed14000-0xfed1dfff] has been reserved [ 0.250568] system 00:0b: [mem 0xfed20000-0xfed9ffff] has been reserved [ 0.250574] system 00:0b: [mem 0xfee00000-0xfee00fff] has been reserved [ 0.250579] system 00:0b: [mem 0xffb00000-0xffb7ffff] has been reserved [ 0.250585] system 00:0b: [mem 0xfff00000-0xffffffff] has been reserved [ 0.250590] system 00:0b: [mem 0x000e0000-0x000effff] has been reserved [ 0.250596] system 00:0b: Plug and Play ACPI device, IDs PNP0c01 (active) [ 0.250614] pnp: PnP ACPI: found 12 devices [ 0.250617] ACPI: ACPI bus type pnp unregistered [ 0.250624] PnPBIOS: Disabled by ACPI PNP [ 0.288725] PCI: max bus depth: 1 pci_try_num: 2 [ 0.288786] pci 0000:01:00.0: BAR 6: assigned [mem 0xfb000000-0xfb07ffff pref] [ 0.288792] pci 0000:00:01.0: PCI bridge to [bus 01-01] [ 0.288797] pci 0000:00:01.0: bridge window [io 0xa000-0xafff] [ 0.288804] pci 0000:00:01.0: bridge window [mem 0xf8000000-0xfbffffff] [ 0.288811] pci 0000:00:01.0: bridge window [mem 0xd0000000-0xdfffffff 64bit pref] [ 0.288820] pci 0000:00:1c.0: PCI bridge to [bus 02-02] [ 0.288825] pci 0000:00:1c.0: bridge window [io 0x9000-0x9fff] [ 0.288833] pci 0000:00:1c.0: bridge window [mem 0xfdb00000-0xfdbfffff] [ 0.288840] pci 0000:00:1c.0: bridge window [mem 0xfd800000-0xfd8fffff 64bit pref] [ 0.288851] pci 0000:03:00.0: BAR 6: assigned [mem 0xfde00000-0xfde0ffff pref] [ 0.288856] pci 0000:00:1c.4: PCI bridge to [bus 03-03] [ 0.288861] pci 0000:00:1c.4: bridge window [io 0xd000-0xdfff] [ 0.288869] pci 0000:00:1c.4: bridge window [mem 0xfd700000-0xfd7fffff] [ 0.288876] pci 0000:00:1c.4: bridge window [mem 0xfde00000-0xfdefffff 64bit pref] [ 0.288887] pci 0000:04:00.0: BAR 6: assigned [mem 0xfdc00000-0xfdc1ffff pref] [ 0.288891] pci 0000:00:1c.5: PCI bridge to [bus 04-04] [ 0.288897] pci 0000:00:1c.5: bridge window [io 0xb000-0xbfff] [ 0.288904] pci 0000:00:1c.5: bridge window [mem 0xfdd00000-0xfddfffff] [ 0.288911] pci 0000:00:1c.5: bridge window [mem 0xfdc00000-0xfdcfffff 64bit pref] [ 0.288920] pci 0000:00:1e.0: PCI bridge to [bus 05-05] [ 0.288926] pci 0000:00:1e.0: bridge window [io 0xc000-0xcfff] [ 0.288933] pci 0000:00:1e.0: bridge window [mem 0xfda00000-0xfdafffff] [ 0.288940] pci 0000:00:1e.0: bridge window [mem 0xfd900000-0xfd9fffff 64bit pref] [ 0.288971] pci 0000:00:01.0: PCI INT A -> GSI 16 (level, low) -> IRQ 16 [ 0.288979] pci 0000:00:01.0: setting latency timer to 64 [ 0.288991] pci 0000:00:1c.0: PCI INT A -> GSI 16 (level, low) -> IRQ 16 [ 0.288998] pci 0000:00:1c.0: setting latency timer to 64 [ 0.289008] pci 0000:00:1c.4: PCI INT A -> GSI 16 (level, low) -> IRQ 16 [ 0.289014] pci 0000:00:1c.4: setting latency timer to 64 [ 0.289030] pci 0000:00:1c.5: PCI INT B -> GSI 17 (level, low) -> IRQ 17 [ 0.289037] pci 0000:00:1c.5: setting latency timer to 64 [ 0.289047] pci 0000:00:1e.0: setting latency timer to 64 [ 0.289054] pci_bus 0000:00: resource 4 [io 0x0000-0x0cf7] [ 0.289058] pci_bus 0000:00: resource 5 [io 0x0d00-0xffff] [ 0.289063] pci_bus 0000:00: resource 6 [mem 0x000a0000-0x000bffff] [ 0.289067] pci_bus 0000:00: resource 7 [mem 0x000c0000-0x000dffff] [ 0.289072] pci_bus 0000:00: resource 8 [mem 0x7ff00000-0xfebfffff] [ 0.289077] pci_bus 0000:01: resource 0 [io 0xa000-0xafff] [ 0.289081] pci_bus 0000:01: resource 1 [mem 0xf8000000-0xfbffffff] [ 0.289086] pci_bus 0000:01: resource 2 [mem 0xd0000000-0xdfffffff 64bit pref] [ 0.289092] pci_bus 0000:02: resource 0 [io 0x9000-0x9fff] [ 0.289096] pci_bus 0000:02: resource 1 [mem 0xfdb00000-0xfdbfffff] [ 0.289101] pci_bus 0000:02: resource 2 [mem 0xfd800000-0xfd8fffff 64bit pref] [ 0.289106] pci_bus 0000:03: resource 0 [io 0xd000-0xdfff] [ 0.289110] pci_bus 0000:03: resource 1 [mem 0xfd700000-0xfd7fffff] [ 0.289115] pci_bus 0000:03: resource 2 [mem 0xfde00000-0xfdefffff 64bit pref] [ 0.289120] pci_bus 0000:04: resource 0 [io 0xb000-0xbfff] [ 0.289124] pci_bus 0000:04: resource 1 [mem 0xfdd00000-0xfddfffff] [ 0.289129] pci_bus 0000:04: resource 2 [mem 0xfdc00000-0xfdcfffff 64bit pref] [ 0.289134] pci_bus 0000:05: resource 0 [io 0xc000-0xcfff] [ 0.289138] pci_bus 0000:05: resource 1 [mem 0xfda00000-0xfdafffff] [ 0.289143] pci_bus 0000:05: resource 2 [mem 0xfd900000-0xfd9fffff 64bit pref] [ 0.289148] pci_bus 0000:05: resource 4 [io 0x0000-0x0cf7] [ 0.289152] pci_bus 0000:05: resource 5 [io 0x0d00-0xffff] [ 0.289157] pci_bus 0000:05: resource 6 [mem 0x000a0000-0x000bffff] [ 0.289161] pci_bus 0000:05: resource 7 [mem 0x000c0000-0x000dffff] [ 0.289166] pci_bus 0000:05: resource 8 [mem 0x7ff00000-0xfebfffff] [ 0.289233] NET: Registered protocol family 2 [ 0.289360] IP route cache hash table entries: 32768 (order: 5, 131072 bytes) [ 0.289754] TCP established hash table entries: 131072 (order: 8, 1048576 bytes) [ 0.290351] TCP bind hash table entries: 65536 (order: 7, 524288 bytes) [ 0.290670] TCP: Hash tables configured (established 131072 bind 65536) [ 0.290674] TCP reno registered [ 0.290680] UDP hash table entries: 512 (order: 2, 16384 bytes) [ 0.290703] UDP-Lite hash table entries: 512 (order: 2, 16384 bytes) [ 0.290868] NET: Registered protocol family 1 [ 0.290911] pci 0000:00:1a.0: PCI INT A -> GSI 16 (level, low) -> IRQ 16 [ 0.290932] pci 0000:00:1a.0: PCI INT A disabled [ 0.290956] pci 0000:00:1a.1: PCI INT B -> GSI 21 (level, low) -> IRQ 21 [ 0.290975] pci 0000:00:1a.1: PCI INT B disabled [ 0.290992] pci 0000:00:1a.2: PCI INT D -> GSI 19 (level, low) -> IRQ 19 [ 0.291012] pci 0000:00:1a.2: PCI INT D disabled [ 0.291031] pci 0000:00:1a.7: PCI INT C -> GSI 18 (level, low) -> IRQ 18 [ 0.291068] pci 0000:00:1a.7: PCI INT C disabled [ 0.291104] pci 0000:00:1d.0: PCI INT A -> GSI 23 (level, low) -> IRQ 23 [ 0.291123] pci 0000:00:1d.0: PCI INT A disabled [ 0.291135] pci 0000:00:1d.1: PCI INT B -> GSI 19 (level, low) -> IRQ 19 [ 0.291155] pci 0000:00:1d.1: PCI INT B disabled [ 0.291166] pci 0000:00:1d.2: PCI INT C -> GSI 18 (level, low) -> IRQ 18 [ 0.291185] pci 0000:00:1d.2: PCI INT C disabled [ 0.291198] pci 0000:00:1d.7: PCI INT A -> GSI 23 (level, low) -> IRQ 23 [ 0.291219] pci 0000:00:1d.7: PCI INT A disabled [ 0.291258] pci 0000:01:00.0: Boot video device [ 0.291273] PCI: CLS 4 bytes, default 64 [ 0.291857] audit: initializing netlink socket (disabled) [ 0.291876] type=2000 audit(1336753420.284:1): initialized [ 0.337724] highmem bounce pool size: 64 pages [ 0.337734] HugeTLB registered 2 MB page size, pre-allocated 0 pages [ 0.349241] VFS: Disk quotas dquot_6.5.2 [ 0.349365] Dquot-cache hash table entries: 1024 (order 0, 4096 bytes) [ 0.350418] fuse init (API version 7.17) [ 0.350611] msgmni has been set to 1685 [ 0.351179] Block layer SCSI generic (bsg) driver version 0.4 loaded (major 253) [ 0.351229] io scheduler noop registered [ 0.351233] io scheduler deadline registered [ 0.351247] io scheduler cfq registered (default) [ 0.351450] pcieport 0000:00:01.0: setting latency timer to 64 [ 0.351502] pcieport 0000:00:01.0: irq 40 for MSI/MSI-X [ 0.351585] pcieport 0000:00:1c.0: setting latency timer to 64 [ 0.351639] pcieport 0000:00:1c.0: irq 41 for MSI/MSI-X [ 0.351728] pcieport 0000:00:1c.4: setting latency timer to 64 [ 0.351779] pcieport 0000:00:1c.4: irq 42 for MSI/MSI-X [ 0.351875] pcieport 0000:00:1c.5: setting latency timer to 64 [ 0.351927] pcieport 0000:00:1c.5: irq 43 for MSI/MSI-X [ 0.352094] pci_hotplug: PCI Hot Plug PCI Core version: 0.5 [ 0.352143] pciehp: PCI Express Hot Plug Controller Driver version: 0.4 [ 0.352311] intel_idle: MWAIT substates: 0x22220 [ 0.352315] intel_idle: does not run on family 6 model 23 [ 0.352446] input: Power Button as /devices/LNXSYSTM:00/device:00/PNP0C0C:00/input/input0 [ 0.352455] ACPI: Power Button [PWRB] [ 0.352556] input: Power Button as /devices/LNXSYSTM:00/LNXPWRBN:00/input/input1 [ 0.352562] ACPI: Power Button [PWRF] [ 0.352650] ACPI: Fan [FAN] (on) [ 0.355667] thermal LNXTHERM:00: registered as thermal_zone0 [ 0.355673] ACPI: Thermal Zone [THRM] (26 C) [ 0.355750] ERST: Table is not found! [ 0.355753] GHES: HEST is not enabled! [ 0.355898] Serial: 8250/16550 driver, 32 ports, IRQ sharing enabled [ 0.376332] serial8250: ttyS0 at I/O 0x3f8 (irq = 4) is a 16550A [ 0.376582] isapnp: Scanning for PnP cards... [ 0.709133] Freeing initrd memory: 13792k freed [ 0.729743] isapnp: No Plug & Play device found [ 0.816786] 00:07: ttyS0 at I/O 0x3f8 (irq = 4) is a 16550A [ 0.832385] Linux agpgart interface v0.103 [ 0.835605] brd: module loaded [ 0.837138] loop: module loaded [ 0.837452] ata_piix 0000:00:1f.2: version 2.13 [ 0.837473] ata_piix 0000:00:1f.2: PCI INT A -> GSI 19 (level, low) -> IRQ 19 [ 0.837480] ata_piix 0000:00:1f.2: MAP [ P0 P2 P1 P3 ] [ 0.837546] ata_piix 0000:00:1f.2: setting latency timer to 64 [ 0.838099] scsi0 : ata_piix [ 0.838253] scsi1 : ata_piix [ 0.839183] ata1: SATA max UDMA/133 cmd 0xf900 ctl 0xf800 bmdma 0xf500 irq 19 [ 0.839192] ata2: SATA max UDMA/133 cmd 0xf700 ctl 0xf600 bmdma 0xf508 irq 19 [ 0.839239] ata_piix 0000:00:1f.5: PCI INT A -> GSI 19 (level, low) -> IRQ 19 [ 0.839246] ata_piix 0000:00:1f.5: MAP [ P0 -- P1 -- ] [ 0.839300] ata_piix 0000:00:1f.5: setting latency timer to 64 [ 0.839708] scsi2 : ata_piix [ 0.839841] scsi3 : ata_piix [ 0.840301] ata3: SATA max UDMA/133 cmd 0xf200 ctl 0xf100 bmdma 0xee00 irq 19 [ 0.840308] ata4: SATA max UDMA/133 cmd 0xf000 ctl 0xef00 bmdma 0xee08 irq 19 [ 0.840429] pata_acpi 0000:03:00.0: PCI INT A -> GSI 16 (level, low) -> IRQ 16 [ 0.840467] pata_acpi 0000:03:00.0: setting latency timer to 64 [ 0.840488] pata_acpi 0000:03:00.0: PCI INT A disabled [ 0.841159] Fixed MDIO Bus: probed [ 0.841205] tun: Universal TUN/TAP device driver, 1.6 [ 0.841210] tun: (C) 1999-2004 Max Krasnyansky <[email protected]> [ 0.841322] PPP generic driver version 2.4.2 [ 0.841515] ehci_hcd: USB 2.0 'Enhanced' Host Controller (EHCI) Driver [ 0.841542] ehci_hcd 0000:00:1a.7: PCI INT C -> GSI 18 (level, low) -> IRQ 18 [ 0.841567] ehci_hcd 0000:00:1a.7: setting latency timer to 64 [ 0.841573] ehci_hcd 0000:00:1a.7: EHCI Host Controller [ 0.841658] ehci_hcd 0000:00:1a.7: new USB bus registered, assigned bus number 1 [ 0.845582] ehci_hcd 0000:00:1a.7: cache line size of 4 is not supported [ 0.845610] ehci_hcd 0000:00:1a.7: irq 18, io mem 0xfdfff000 [ 0.860022] ehci_hcd 0000:00:1a.7: USB 2.0 started, EHCI 1.00 [ 0.860264] hub 1-0:1.0: USB hub found [ 0.860272] hub 1-0:1.0: 6 ports detected [ 0.860404] ehci_hcd 0000:00:1d.7: PCI INT A -> GSI 23 (level, low) -> IRQ 23 [ 0.860424] ehci_hcd 0000:00:1d.7: setting latency timer to 64 [ 0.860430] ehci_hcd 0000:00:1d.7: EHCI Host Controller [ 0.860512] ehci_hcd 0000:00:1d.7: new USB bus registered, assigned bus number 2 [ 0.864413] ehci_hcd 0000:00:1d.7: cache line size of 4 is not supported [ 0.864438] ehci_hcd 0000:00:1d.7: irq 23, io mem 0xfdffe000 [ 0.880021] ehci_hcd 0000:00:1d.7: USB 2.0 started, EHCI 1.00 [ 0.880227] hub 2-0:1.0: USB hub found [ 0.880234] hub 2-0:1.0: 6 ports detected [ 0.880369] ohci_hcd: USB 1.1 'Open' Host Controller (OHCI) Driver [ 0.880396] uhci_hcd: USB Universal Host Controller Interface driver [ 0.880431] uhci_hcd 0000:00:1a.0: PCI INT A -> GSI 16 (level, low) -> IRQ 16 [ 0.880443] uhci_hcd 0000:00:1a.0: setting latency timer to 64 [ 0.880449] uhci_hcd 0000:00:1a.0: UHCI Host Controller [ 0.880529] uhci_hcd 0000:00:1a.0: new USB bus registered, assigned bus number 3 [ 0.880574] uhci_hcd 0000:00:1a.0: irq 16, io base 0x0000ff00 [ 0.880803] hub 3-0:1.0: USB hub found [ 0.880811] hub 3-0:1.0: 2 ports detected [ 0.880929] uhci_hcd 0000:00:1a.1: PCI INT B -> GSI 21 (level, low) -> IRQ 21 [ 0.880940] uhci_hcd 0000:00:1a.1: setting latency timer to 64 [ 0.880946] uhci_hcd 0000:00:1a.1: UHCI Host Controller [ 0.881039] uhci_hcd 0000:00:1a.1: new USB bus registered, assigned bus number 4 [ 0.881081] uhci_hcd 0000:00:1a.1: irq 21, io base 0x0000fe00 [ 0.881302] hub 4-0:1.0: USB hub found [ 0.881310] hub 4-0:1.0: 2 ports detected [ 0.881427] uhci_hcd 0000:00:1a.2: PCI INT D -> GSI 19 (level, low) -> IRQ 19 [ 0.881438] uhci_hcd 0000:00:1a.2: setting latency timer to 64 [ 0.881443] uhci_hcd 0000:00:1a.2: UHCI Host Controller [ 0.881523] uhci_hcd 0000:00:1a.2: new USB bus registered, assigned bus number 5 [ 0.881551] uhci_hcd 0000:00:1a.2: irq 19, io base 0x0000fd00 [ 0.881774] hub 5-0:1.0: USB hub found [ 0.881781] hub 5-0:1.0: 2 ports detected [ 0.881899] uhci_hcd 0000:00:1d.0: PCI INT A -> GSI 23 (level, low) -> IRQ 23 [ 0.881910] uhci_hcd 0000:00:1d.0: setting latency timer to 64 [ 0.881915] uhci_hcd 0000:00:1d.0: UHCI Host Controller [ 0.881993] uhci_hcd 0000:00:1d.0: new USB bus registered, assigned bus number 6 [ 0.882021] uhci_hcd 0000:00:1d.0: irq 23, io base 0x0000fc00 [ 0.882244] hub 6-0:1.0: USB hub found [ 0.882252] hub 6-0:1.0: 2 ports detected [ 0.882370] uhci_hcd 0000:00:1d.1: PCI INT B -> GSI 19 (level, low) -> IRQ 19 [ 0.882381] uhci_hcd 0000:00:1d.1: setting latency timer to 64 [ 0.882386] uhci_hcd 0000:00:1d.1: UHCI Host Controller [ 0.882467] uhci_hcd 0000:00:1d.1: new USB bus registered, assigned bus number 7 [ 0.882495] uhci_hcd 0000:00:1d.1: irq 19, io base 0x0000fb00 [ 0.882735] hub 7-0:1.0: USB hub found [ 0.882742] hub 7-0:1.0: 2 ports detected [ 0.882858] uhci_hcd 0000:00:1d.2: PCI INT C -> GSI 18 (level, low) -> IRQ 18 [ 0.882869] uhci_hcd 0000:00:1d.2: setting latency timer to 64 [ 0.882875] uhci_hcd 0000:00:1d.2: UHCI Host Controller [ 0.882954] uhci_hcd 0000:00:1d.2: new USB bus registered, assigned bus number 8 [ 0.882982] uhci_hcd 0000:00:1d.2: irq 18, io base 0x0000fa00 [ 0.883205] hub 8-0:1.0: USB hub found [ 0.883213] hub 8-0:1.0: 2 ports detected [ 0.883435] usbcore: registered new interface driver libusual [ 0.883535] i8042: PNP: No PS/2 controller found. Probing ports directly. [ 0.883926] serio: i8042 KBD port at 0x60,0x64 irq 1 [ 0.883936] serio: i8042 AUX port at 0x60,0x64 irq 12 [ 0.884187] mousedev: PS/2 mouse device common for all mice [ 0.884433] rtc_cmos 00:03: RTC can wake from S4 [ 0.884582] rtc_cmos 00:03: rtc core: registered rtc_cmos as rtc0 [ 0.884612] rtc0: alarms up to one month, 242 bytes nvram, hpet irqs [ 0.884719] device-mapper: uevent: version 1.0.3 [ 0.884854] device-mapper: ioctl: 4.22.0-ioctl (2011-10-19) initialised: [email protected] [ 0.884917] EISA: Probing bus 0 at eisa.0 [ 0.884921] EISA: Cannot allocate resource for mainboard [ 0.884925] Cannot allocate resource for EISA slot 1 [ 0.884929] Cannot allocate resource for EISA slot 2 [ 0.884932] Cannot allocate resource for EISA slot 3 [ 0.884936] Cannot allocate resource for EISA slot 4 [ 0.884940] Cannot allocate resource for EISA slot 5 [ 0.884943] Cannot allocate resource for EISA slot 6 [ 0.884947] Cannot allocate resource for EISA slot 7 [ 0.884950] Cannot allocate resource for EISA slot 8 [ 0.884954] EISA: Detected 0 cards. [ 0.884969] cpufreq-nforce2: No nForce2 chipset. [ 0.884973] cpuidle: using governor ladder [ 0.884976] cpuidle: using governor menu [ 0.884980] EFI Variables Facility v0.08 2004-May-17 [ 0.885476] TCP cubic registered [ 0.885708] NET: Registered protocol family 10 [ 0.886771] NET: Registered protocol family 17 [ 0.886799] Registering the dns_resolver key type [ 0.886837] Using IPI No-Shortcut mode [ 0.887028] PM: Hibernation image not present or could not be loaded. [ 0.887047] registered taskstats version 1 [ 0.902579] Magic number: 12:339:388 [ 0.902592] usb usb6: hash matches [ 0.902687] rtc_cmos 00:03: setting system clock to 2012-05-11 16:23:41 UTC (1336753421) [ 0.903185] BIOS EDD facility v0.16 2004-Jun-25, 0 devices found [ 0.903189] EDD information not available. [ 1.170710] ata3: SATA link down (SStatus 0 SControl 300) [ 1.181439] ata4: SATA link down (SStatus 0 SControl 300) [ 1.288020] Refined TSC clocksource calibration: 2499.999 MHz. [ 1.288028] Switching to clocksource tsc [ 1.292016] usb 1-5: new high-speed USB device number 3 using ehci_hcd [ 1.486745] ata2.00: SATA link down (SStatus 0 SControl 300) [ 1.486762] ata2.01: SATA link down (SStatus 0 SControl 300) [ 1.640115] ata1.00: SATA link up 1.5 Gbps (SStatus 113 SControl 300) [ 1.640130] ata1.01: SATA link down (SStatus 0 SControl 300) [ 1.648342] ata1.00: ATA-7: Maxtor 7Y250M0, YAR511W0, max UDMA/133 [ 1.648348] ata1.00: 490234752 sectors, multi 0: LBA48 [ 1.664325] ata1.00: configured for UDMA/133 [ 1.664531] scsi 0:0:0:0: Direct-Access ATA Maxtor 7Y250M0 YAR5 PQ: 0 ANSI: 5 [ 1.664745] sd 0:0:0:0: [sda] 490234752 512-byte logical blocks: (251 GB/233 GiB) [ 1.664809] sd 0:0:0:0: Attached scsi generic sg0 type 0 [ 1.664838] sd 0:0:0:0: [sda] Write Protect is off [ 1.664843] sd 0:0:0:0: [sda] Mode Sense: 00 3a 00 00 [ 1.664884] sd 0:0:0:0: [sda] Write cache: enabled, read cache: enabled, doesn't support DPO or FUA [ 1.691699] sda: sda1 sda2 sda3 sda4 [ 1.692348] sd 0:0:0:0: [sda] Attached SCSI disk [ 1.692461] Freeing unused kernel memory: 740k freed [ 1.692820] Write protecting the kernel text: 5828k [ 1.692851] Write protecting the kernel read-only data: 2376k [ 1.692854] NX-protecting the kernel data: 4412k [ 1.723980] udevd[92]: starting version 175 [ 1.865339] Floppy drive(s): fd0 is 1.44M [ 1.865429] pata_jmicron 0000:03:00.0: PCI INT A -> GSI 16 (level, low) -> IRQ 16 [ 1.865478] pata_jmicron 0000:03:00.0: setting latency timer to 64 [ 1.867875] sky2: driver version 1.30 [ 1.867926] sky2 0000:04:00.0: PCI INT A -> GSI 17 (level, low) -> IRQ 17 [ 1.867942] sky2 0000:04:00.0: setting latency timer to 64 [ 1.867979] sky2 0000:04:00.0: Yukon-2 EC chip revision 2 [ 1.868111] sky2 0000:04:00.0: irq 44 for MSI/MSI-X [ 1.868174] scsi4 : pata_jmicron [ 1.869802] sky2 0000:04:00.0: eth0: addr 00:01:29:a4:16:0a [ 1.869828] scsi5 : pata_jmicron [ 1.869943] ata5: PATA max UDMA/100 cmd 0xdf00 ctl 0xde00 bmdma 0xdb00 irq 16 [ 1.869949] ata6: PATA max UDMA/100 cmd 0xdd00 ctl 0xdc00 bmdma 0xdb08 irq 16 [ 1.880053] usb 4-1: new full-speed USB device number 2 using uhci_hcd [ 1.884052] FDC 0 is a post-1991 82077 [ 2.032611] ata5.00: ATAPI: _NEC DVD+/-RW ND-3450A, 103C, max UDMA/33 [ 2.048585] ata5.00: configured for UDMA/33 [ 2.049777] scsi 4:0:0:0: CD-ROM _NEC DVD+-RW ND-3450A 103C PQ: 0 ANSI: 5 [ 2.051048] sr0: scsi3-mmc drive: 48x/48x writer cd/rw xa/form2 cdda tray [ 2.051054] cdrom: Uniform CD-ROM driver Revision: 3.20 [ 2.051283] sr 4:0:0:0: Attached scsi CD-ROM sr0 [ 2.051483] sr 4:0:0:0: Attached scsi generic sg1 type 5 [ 2.079838] usbcore: registered new interface driver usbhid [ 2.079844] usbhid: USB HID core driver [ 2.236660] EXT4-fs (sda1): mounted filesystem with ordered data mode. Opts: (null) [ 12.150230] ADDRCONF(NETDEV_UP): eth0: link is not ready [ 12.177342] udevd[333]: starting version 175 [ 12.195524] Adding 417684k swap on /dev/sda2. Priority:-1 extents:1 across:417684k [ 12.278032] lp: driver loaded but no devices found [ 12.516456] logitech-djreceiver 0003:046D:C52B.0003: hiddev0,hidraw0: USB HID v1.11 Device [Logitech USB Receiver] on usb-0000:00:1a.1-1/input2 [ 12.520297] input: Logitech Unifying Device. Wireless PID:1024 as /devices/pci0000:00/0000:00:1a.1/usb4/4-1/4-1:1.2/0003:046D:C52B.0003/input/input2 [ 12.520753] logitech-djdevice 0003:046D:C52B.0004: input,hidraw1: USB HID v1.11 Mouse [Logitech Unifying Device. Wireless PID:1024] on usb-0000:00:1a.1-1:1 [ 12.523286] input: Logitech Unifying Device. Wireless PID:2011 as /devices/pci0000:00/0000:00:1a.1/usb4/4-1/4-1:1.2/0003:046D:C52B.0003/input/input3 [ 12.524439] logitech-djdevice 0003:046D:C52B.0005: input,hidraw2: USB HID v1.11 Keyboard [Logitech Unifying Device. Wireless PID:2011] on usb-0000:00:1a.1-1:2 [ 12.545746] type=1400 audit(1336771433.137:2): apparmor="STATUS" operation="profile_load" name="/sbin/dhclient" pid=502 comm="apparmor_parser" [ 12.546574] type=1400 audit(1336771433.137:3): apparmor="STATUS" operation="profile_load" name="/usr/lib/NetworkManager/nm-dhcp-client.action" pid=502 comm="apparmor_parser" [ 12.547034] type=1400 audit(1336771433.137:4): apparmor="STATUS" operation="profile_load" name="/usr/lib/connman/scripts/dhclient-script" pid=502 comm="apparmor_parser" [ 12.626869] Linux video capture interface: v2.00 [ 12.649104] uvcvideo: Found UVC 1.00 device <unnamed> (046d:081a) [ 12.668665] input: UVC Camera (046d:081a) as /devices/pci0000:00/0000:00:1a.7/usb1/1-5/1-5:1.0/input/input4 [ 12.668909] usbcore: registered new interface driver uvcvideo [ 12.668914] USB Video Class driver (1.1.1) [ 12.697645] snd_hda_intel 0000:00:1b.0: PCI INT A -> GSI 22 (level, low) -> IRQ 22 [ 12.697721] snd_hda_intel 0000:00:1b.0: irq 45 for MSI/MSI-X [ 12.697760] snd_hda_intel 0000:00:1b.0: setting latency timer to 64 [ 12.706772] nvidia: module license 'NVIDIA' taints kernel. [ 12.706778] Disabling lock debugging due to kernel taint [ 12.735428] EXT4-fs (sda1): re-mounted. Opts: errors=remount-ro [ 13.350252] nvidia 0000:01:00.0: PCI INT A -> GSI 16 (level, low) -> IRQ 16 [ 13.350267] nvidia 0000:01:00.0: setting latency timer to 64 [ 13.350275] vgaarb: device changed decodes: PCI:0000:01:00.0,olddecodes=io+mem,decodes=none:owns=io+mem [ 13.351464] NVRM: loading NVIDIA UNIX x86 Kernel Module 295.40 Thu Apr 5 21:28:09 PDT 2012 [ 13.356785] hda_codec: ALC889A: BIOS auto-probing. [ 13.357267] init: failsafe main process (658) killed by TERM signal [ 13.372756] input: HDA Intel Line as /devices/pci0000:00/0000:00:1b.0/sound/card0/input5 [ 13.373173] input: HDA Intel Front Mic as /devices/pci0000:00/0000:00:1b.0/sound/card0/input6 [ 13.373568] input: HDA Intel Rear Mic as /devices/pci0000:00/0000:00:1b.0/sound/card0/input7 [ 13.373954] input: HDA Intel Front Headphone as /devices/pci0000:00/0000:00:1b.0/sound/card0/input8 [ 13.374339] input: HDA Intel Line-Out Side as /devices/pci0000:00/0000:00:1b.0/sound/card0/input9 [ 13.374715] input: HDA Intel Line-Out CLFE as /devices/pci0000:00/0000:00:1b.0/sound/card0/input10 [ 13.375109] input: HDA Intel Line-Out Surround as /devices/pci0000:00/0000:00:1b.0/sound/card0/input11 [ 13.375724] input: HDA Intel Line-Out Front as /devices/pci0000:00/0000:00:1b.0/sound/card0/input12 [ 13.475252] type=1400 audit(1336771434.065:5): apparmor="STATUS" operation="profile_replace" name="/sbin/dhclient" pid=735 comm="apparmor_parser" [ 13.477026] type=1400 audit(1336771434.069:6): apparmor="STATUS" operation="profile_replace" name="/usr/lib/NetworkManager/nm-dhcp-client.action" pid=735 comm="apparmor_parser" [ 13.477695] type=1400 audit(1336771434.069:7): apparmor="STATUS" operation="profile_replace" name="/usr/lib/connman/scripts/dhclient-script" pid=735 comm="apparmor_parser" [ 13.479048] type=1400 audit(1336771434.069:8): apparmor="STATUS" operation="profile_load" name="/usr/lib/lightdm/lightdm/lightdm-guest-session-wrapper" pid=734 comm="apparmor_parser" [ 13.488994] type=1400 audit(1336771434.081:9): apparmor="STATUS" operation="profile_load" name="/usr/lib/telepathy/mission-control-5" pid=738 comm="apparmor_parser" [ 13.489972] type=1400 audit(1336771434.081:10): apparmor="STATUS" operation="profile_load" name="/usr/lib/telepathy/telepathy-*" pid=738 comm="apparmor_parser" [ 13.

    Read the article

  • Security Issues with Single Page Apps

    - by Stephen.Walther
    Last week, I was asked to do a code review of a Single Page App built using the ASP.NET Web API, Durandal, and Knockout (good stuff!). In particular, I was asked to investigate whether there any special security issues associated with building a Single Page App which are not present in the case of a traditional server-side ASP.NET application. In this blog entry, I discuss two areas in which you need to exercise extra caution when building a Single Page App. I discuss how Single Page Apps are extra vulnerable to both Cross-Site Scripting (XSS) attacks and Cross-Site Request Forgery (CSRF) attacks. This goal of this blog post is NOT to persuade you to avoid writing Single Page Apps. I’m a big fan of Single Page Apps. Instead, the goal is to ensure that you are fully aware of some of the security issues related to Single Page Apps and ensure that you know how to guard against them. Cross-Site Scripting (XSS) Attacks According to WhiteHat Security, over 65% of public websites are open to XSS attacks. That’s bad. By taking advantage of XSS holes in a website, a hacker can steal your credit cards, passwords, or bank account information. Any website that redisplays untrusted information is open to XSS attacks. Let me give you a simple example. Imagine that you want to display the name of the current user on a page. To do this, you create the following server-side ASP.NET page located at http://MajorBank.com/SomePage.aspx: <%@Page Language="C#" %> <html> <head> <title>Some Page</title> </head> <body> Welcome <%= Request["username"] %> </body> </html> Nothing fancy here. Notice that the page displays the current username by using Request[“username”]. Using Request[“username”] displays the username regardless of whether the username is present in a cookie, a form field, or a query string variable. Unfortunately, by using Request[“username”] to redisplay untrusted information, you have now opened your website to XSS attacks. Here’s how. Imagine that an evil hacker creates the following link on another website (hackers.com): <a href="/SomePage.aspx?username=<script src=Evil.js></script>">Visit MajorBank</a> Notice that the link includes a query string variable named username and the value of the username variable is an HTML <SCRIPT> tag which points to a JavaScript file named Evil.js. When anyone clicks on the link, the <SCRIPT> tag will be injected into SomePage.aspx and the Evil.js script will be loaded and executed. What can a hacker do in the Evil.js script? Anything the hacker wants. For example, the hacker could display a popup dialog on the MajorBank.com site which asks the user to enter their password. The script could then post the password back to hackers.com and now the evil hacker has your secret password. ASP.NET Web Forms and ASP.NET MVC have two automatic safeguards against this type of attack: Request Validation and Automatic HTML Encoding. Protecting Coming In (Request Validation) In a server-side ASP.NET app, you are protected against the XSS attack described above by a feature named Request Validation. If you attempt to submit “potentially dangerous” content — such as a JavaScript <SCRIPT> tag — in a form field or query string variable then you get an exception. Unfortunately, Request Validation only applies to server-side apps. Request Validation does not help in the case of a Single Page App. In particular, the ASP.NET Web API does not pay attention to Request Validation. You can post any content you want – including <SCRIPT> tags – to an ASP.NET Web API action. For example, the following HTML page contains a form. When you submit the form, the form data is submitted to an ASP.NET Web API controller on the server using an Ajax request: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title></title> </head> <body> <form data-bind="submit:submit"> <div> <label> User Name: <input data-bind="value:user.userName" /> </label> </div> <div> <label> Email: <input data-bind="value:user.email" /> </label> </div> <div> <input type="submit" value="Submit" /> </div> </form> <script src="Scripts/jquery-1.7.1.js"></script> <script src="Scripts/knockout-2.1.0.js"></script> <script> var viewModel = { user: { userName: ko.observable(), email: ko.observable() }, submit: function () { $.post("/api/users", ko.toJS(this.user)); } }; ko.applyBindings(viewModel); </script> </body> </html> The form above is using Knockout to bind the form fields to a view model. When you submit the form, the view model is submitted to an ASP.NET Web API action on the server. Here’s the server-side ASP.NET Web API controller and model class: public class UsersController : ApiController { public HttpResponseMessage Post(UserViewModel user) { var userName = user.UserName; return Request.CreateResponse(HttpStatusCode.OK); } } public class UserViewModel { public string UserName { get; set; } public string Email { get; set; } } If you submit the HTML form, you don’t get an error. The “potentially dangerous” content is passed to the server without any exception being thrown. In the screenshot below, you can see that I was able to post a username form field with the value “<script>alert(‘boo’)</script”. So what this means is that you do not get automatic Request Validation in the case of a Single Page App. You need to be extra careful in a Single Page App about ensuring that you do not display untrusted content because you don’t have the Request Validation safety net which you have in a traditional server-side ASP.NET app. Protecting Going Out (Automatic HTML Encoding) Server-side ASP.NET also protects you from XSS attacks when you render content. By default, all content rendered by the razor view engine is HTML encoded. For example, the following razor view displays the text “<b>Hello!</b>” instead of the text “Hello!” in bold: @{ var message = "<b>Hello!</b>"; } @message   If you don’t want to render content as HTML encoded in razor then you need to take the extra step of using the @Html.Raw() helper. In a Web Form page, if you use <%: %> instead of <%= %> then you get automatic HTML Encoding: <%@ Page Language="C#" %> <% var message = "<b>Hello!</b>"; %> <%: message %> This automatic HTML Encoding will prevent many types of XSS attacks. It prevents <script> tags from being rendered and only allows &lt;script&gt; tags to be rendered which are useless for executing JavaScript. (This automatic HTML encoding does not protect you from all forms of XSS attacks. For example, you can assign the value “javascript:alert(‘evil’)” to the Hyperlink control’s NavigateUrl property and execute the JavaScript). The situation with Knockout is more complicated. If you use the Knockout TEXT binding then you get HTML encoded content. On the other hand, if you use the HTML binding then you do not: <!-- This JavaScript DOES NOT execute --> <div data-bind="text:someProp"></div> <!-- This Javacript DOES execute --> <div data-bind="html:someProp"></div> <script src="Scripts/jquery-1.7.1.js"></script> <script src="Scripts/knockout-2.1.0.js"></script> <script> var viewModel = { someProp : "<script>alert('Evil!')<" + "/script>" }; ko.applyBindings(viewModel); </script>   So, in the page above, the DIV element which uses the TEXT binding is safe from XSS attacks. According to the Knockout documentation: “Since this binding sets your text value using a text node, it’s safe to set any string value without risking HTML or script injection.” Just like server-side HTML encoding, Knockout does not protect you from all types of XSS attacks. For example, there is nothing in Knockout which prevents you from binding JavaScript to a hyperlink like this: <a data-bind="attr:{href:homePageUrl}">Go</a> <script src="Scripts/jquery-1.7.1.min.js"></script> <script src="Scripts/knockout-2.1.0.js"></script> <script> var viewModel = { homePageUrl: "javascript:alert('evil!')" }; ko.applyBindings(viewModel); </script> In the page above, the value “javascript:alert(‘evil’)” is bound to the HREF attribute using Knockout. When you click the link, the JavaScript executes. Cross-Site Request Forgery (CSRF) Attacks Cross-Site Request Forgery (CSRF) attacks rely on the fact that a session cookie does not expire until you close your browser. In particular, if you visit and login to MajorBank.com and then you navigate to Hackers.com then you will still be authenticated against MajorBank.com even after you navigate to Hackers.com. Because MajorBank.com cannot tell whether a request is coming from MajorBank.com or Hackers.com, Hackers.com can submit requests to MajorBank.com pretending to be you. For example, Hackers.com can post an HTML form from Hackers.com to MajorBank.com and change your email address at MajorBank.com. Hackers.com can post a form to MajorBank.com using your authentication cookie. After your email address has been changed, by using a password reset page at MajorBank.com, a hacker can access your bank account. To prevent CSRF attacks, you need some mechanism for detecting whether a request is coming from a page loaded from your website or whether the request is coming from some other website. The recommended way of preventing Cross-Site Request Forgery attacks is to use the “Synchronizer Token Pattern” as described here: https://www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%29_Prevention_Cheat_Sheet When using the Synchronizer Token Pattern, you include a hidden input field which contains a random token whenever you display an HTML form. When the user opens the form, you add a cookie to the user’s browser with the same random token. When the user posts the form, you verify that the hidden form token and the cookie token match. Preventing Cross-Site Request Forgery Attacks with ASP.NET MVC ASP.NET gives you a helper and an action filter which you can use to thwart Cross-Site Request Forgery attacks. For example, the following razor form for creating a product shows how you use the @Html.AntiForgeryToken() helper: @model MvcApplication2.Models.Product <h2>Create Product</h2> @using (Html.BeginForm()) { @Html.AntiForgeryToken(); <div> @Html.LabelFor( p => p.Name, "Product Name:") @Html.TextBoxFor( p => p.Name) </div> <div> @Html.LabelFor( p => p.Price, "Product Price:") @Html.TextBoxFor( p => p.Price) </div> <input type="submit" /> } The @Html.AntiForgeryToken() helper generates a random token and assigns a serialized version of the same random token to both a cookie and a hidden form field. (Actually, if you dive into the source code, the AntiForgeryToken() does something a little more complex because it takes advantage of a user’s identity when generating the token). Here’s what the hidden form field looks like: <input name=”__RequestVerificationToken” type=”hidden” value=”NqqZGAmlDHh6fPTNR_mti3nYGUDgpIkCiJHnEEL59S7FNToyyeSo7v4AfzF2i67Cv0qTB1TgmZcqiVtgdkW2NnXgEcBc-iBts0x6WAIShtM1″ /> And here’s what the cookie looks like using the Google Chrome developer toolbar: You use the [ValidateAntiForgeryToken] action filter on the controller action which is the recipient of the form post to validate that the token in the hidden form field matches the token in the cookie. If the tokens don’t match then validation fails and you can’t post the form: public ActionResult Create() { return View(); } [ValidateAntiForgeryToken] [HttpPost] public ActionResult Create(Product productToCreate) { if (ModelState.IsValid) { // save product to db return RedirectToAction("Index"); } return View(); } How does this all work? Let’s imagine that a hacker has copied the Create Product page from MajorBank.com to Hackers.com – the hacker grabs the HTML source and places it at Hackers.com. Now, imagine that the hacker trick you into submitting the Create Product form from Hackers.com to MajorBank.com. You’ll get the following exception: The Cross-Site Request Forgery attack is blocked because the anti-forgery token included in the Create Product form at Hackers.com won’t match the anti-forgery token stored in the cookie in your browser. The tokens were generated at different times for different users so the attack fails. Preventing Cross-Site Request Forgery Attacks with a Single Page App In a Single Page App, you can’t prevent Cross-Site Request Forgery attacks using the same method as a server-side ASP.NET MVC app. In a Single Page App, HTML forms are not generated on the server. Instead, in a Single Page App, forms are loaded dynamically in the browser. Phil Haack has a blog post on this topic where he discusses passing the anti-forgery token in an Ajax header instead of a hidden form field. He also describes how you can create a custom anti-forgery token attribute to compare the token in the Ajax header and the token in the cookie. See: http://haacked.com/archive/2011/10/10/preventing-csrf-with-ajax.aspx Also, take a look at Johan’s update to Phil Haack’s original post: http://johan.driessen.se/posts/Updated-Anti-XSRF-Validation-for-ASP.NET-MVC-4-RC (Other server frameworks such as Rails and Django do something similar. For example, Rails uses an X-CSRF-Token to prevent CSRF attacks which you generate on the server – see http://excid3.com/blog/rails-tip-2-include-csrf-token-with-every-ajax-request/#.UTFtgDDkvL8 ). For example, if you are creating a Durandal app, then you can use the following razor view for your one and only server-side page: @{ Layout = null; } <!DOCTYPE html> <html> <head> <title>Index</title> </head> <body> @Html.AntiForgeryToken() <div id="applicationHost"> Loading app.... </div> @Scripts.Render("~/scripts/vendor") <script type="text/javascript" src="~/App/durandal/amd/require.js" data-main="/App/main"></script> </body> </html> Notice that this page includes a call to @Html.AntiForgeryToken() to generate the anti-forgery token. Then, whenever you make an Ajax request in the Durandal app, you can retrieve the anti-forgery token from the razor view and pass the token as a header: var csrfToken = $("input[name='__RequestVerificationToken']").val(); $.ajax({ headers: { __RequestVerificationToken: csrfToken }, type: "POST", dataType: "json", contentType: 'application/json; charset=utf-8', url: "/api/products", data: JSON.stringify({ name: "Milk", price: 2.33 }), statusCode: { 200: function () { alert("Success!"); } } }); Use the following code to create an action filter which you can use to match the header and cookie tokens: using System.Linq; using System.Net.Http; using System.Web.Helpers; using System.Web.Http.Controllers; namespace MvcApplication2.Infrastructure { public class ValidateAjaxAntiForgeryToken : System.Web.Http.AuthorizeAttribute { protected override bool IsAuthorized(HttpActionContext actionContext) { var headerToken = actionContext .Request .Headers .GetValues("__RequestVerificationToken") .FirstOrDefault(); ; var cookieToken = actionContext .Request .Headers .GetCookies() .Select(c => c[AntiForgeryConfig.CookieName]) .FirstOrDefault(); // check for missing cookie or header if (cookieToken == null || headerToken == null) { return false; } // ensure that the cookie matches the header try { AntiForgery.Validate(cookieToken.Value, headerToken); } catch { return false; } return base.IsAuthorized(actionContext); } } } Notice that the action filter derives from the base AuthorizeAttribute. The ValidateAjaxAntiForgeryToken only works when the user is authenticated and it will not work for anonymous requests. Add the action filter to your ASP.NET Web API controller actions like this: [ValidateAjaxAntiForgeryToken] public HttpResponseMessage PostProduct(Product productToCreate) { // add product to db return Request.CreateResponse(HttpStatusCode.OK); } After you complete these steps, it won’t be possible for a hacker to pretend to be you at Hackers.com and submit a form to MajorBank.com. The header token used in the Ajax request won’t travel to Hackers.com. This approach works, but I am not entirely happy with it. The one thing that I don’t like about this approach is that it creates a hard dependency on using razor. Your single page in your Single Page App must be generated from a server-side razor view. A better solution would be to generate the anti-forgery token in JavaScript. Unfortunately, until all browsers support a way to generate cryptographically strong random numbers – for example, by supporting the window.crypto.getRandomValues() method — there is no good way to generate anti-forgery tokens in JavaScript. So, at least right now, the best solution for generating the tokens is the server-side solution with the (regrettable) dependency on razor. Conclusion The goal of this blog entry was to explore some ways in which you need to handle security differently in the case of a Single Page App than in the case of a traditional server app. In particular, I focused on how to prevent Cross-Site Scripting and Cross-Site Request Forgery attacks in the case of a Single Page App. I want to emphasize that I am not suggesting that Single Page Apps are inherently less secure than server-side apps. Whatever type of web application you build – regardless of whether it is a Single Page App, an ASP.NET MVC app, an ASP.NET Web Forms app, or a Rails app – you must constantly guard against security vulnerabilities.

    Read the article

  • 256 Windows Azure Worker Roles, Windows Kinect and a 90's Text-Based Ray-Tracer

    - by Alan Smith
    For a couple of years I have been demoing a simple render farm hosted in Windows Azure using worker roles and the Azure Storage service. At the start of the presentation I deploy an Azure application that uses 16 worker roles to render a 1,500 frame 3D ray-traced animation. At the end of the presentation, when the animation was complete, I would play the animation delete the Azure deployment. The standing joke with the audience was that it was that it was a “$2 demo”, as the compute charges for running the 16 instances for an hour was $1.92, factor in the bandwidth charges and it’s a couple of dollars. The point of the demo is that it highlights one of the great benefits of cloud computing, you pay for what you use, and if you need massive compute power for a short period of time using Windows Azure can work out very cost effective. The “$2 demo” was great for presenting at user groups and conferences in that it could be deployed to Azure, used to render an animation, and then removed in a one hour session. I have always had the idea of doing something a bit more impressive with the demo, and scaling it from a “$2 demo” to a “$30 demo”. The challenge was to create a visually appealing animation in high definition format and keep the demo time down to one hour.  This article will take a run through how I achieved this. Ray Tracing Ray tracing, a technique for generating high quality photorealistic images, gained popularity in the 90’s with companies like Pixar creating feature length computer animations, and also the emergence of shareware text-based ray tracers that could run on a home PC. In order to render a ray traced image, the ray of light that would pass from the view point must be tracked until it intersects with an object. At the intersection, the color, reflectiveness, transparency, and refractive index of the object are used to calculate if the ray will be reflected or refracted. Each pixel may require thousands of calculations to determine what color it will be in the rendered image. Pin-Board Toys Having very little artistic talent and a basic understanding of maths I decided to focus on an animation that could be modeled fairly easily and would look visually impressive. I’ve always liked the pin-board desktop toys that become popular in the 80’s and when I was working as a 3D animator back in the 90’s I always had the idea of creating a 3D ray-traced animation of a pin-board, but never found the energy to do it. Even if I had a go at it, the render time to produce an animation that would look respectable on a 486 would have been measured in months. PolyRay Back in 1995 I landed my first real job, after spending three years being a beach-ski-climbing-paragliding-bum, and was employed to create 3D ray-traced animations for a CD-ROM that school kids would use to learn physics. I had got into the strange and wonderful world of text-based ray tracing, and was using a shareware ray-tracer called PolyRay. PolyRay takes a text file describing a scene as input and, after a few hours processing on a 486, produced a high quality ray-traced image. The following is an example of a basic PolyRay scene file. background Midnight_Blue   static define matte surface { ambient 0.1 diffuse 0.7 } define matte_white texture { matte { color white } } define matte_black texture { matte { color dark_slate_gray } } define position_cylindrical 3 define lookup_sawtooth 1 define light_wood <0.6, 0.24, 0.1> define median_wood <0.3, 0.12, 0.03> define dark_wood <0.05, 0.01, 0.005>     define wooden texture { noise surface { ambient 0.2  diffuse 0.7  specular white, 0.5 microfacet Reitz 10 position_fn position_cylindrical position_scale 1  lookup_fn lookup_sawtooth octaves 1 turbulence 1 color_map( [0.0, 0.2, light_wood, light_wood] [0.2, 0.3, light_wood, median_wood] [0.3, 0.4, median_wood, light_wood] [0.4, 0.7, light_wood, light_wood] [0.7, 0.8, light_wood, median_wood] [0.8, 0.9, median_wood, light_wood] [0.9, 1.0, light_wood, dark_wood]) } } define glass texture { surface { ambient 0 diffuse 0 specular 0.2 reflection white, 0.1 transmission white, 1, 1.5 }} define shiny surface { ambient 0.1 diffuse 0.6 specular white, 0.6 microfacet Phong 7  } define steely_blue texture { shiny { color black } } define chrome texture { surface { color white ambient 0.0 diffuse 0.2 specular 0.4 microfacet Phong 10 reflection 0.8 } }   viewpoint {     from <4.000, -1.000, 1.000> at <0.000, 0.000, 0.000> up <0, 1, 0> angle 60     resolution 640, 480 aspect 1.6 image_format 0 }       light <-10, 30, 20> light <-10, 30, -20>   object { disc <0, -2, 0>, <0, 1, 0>, 30 wooden }   object { sphere <0.000, 0.000, 0.000>, 1.00 chrome } object { cylinder <0.000, 0.000, 0.000>, <0.000, 0.000, -4.000>, 0.50 chrome }   After setting up the background and defining colors and textures, the viewpoint is specified. The “camera” is located at a point in 3D space, and it looks towards another point. The angle, image resolution, and aspect ratio are specified. Two lights are present in the image at defined coordinates. The three objects in the image are a wooden disc to represent a table top, and a sphere and cylinder that intersect to form a pin that will be used for the pin board toy in the final animation. When the image is rendered, the following image is produced. The pins are modeled with a chrome surface, so they reflect the environment around them. Note that the scale of the pin shaft is not correct, this will be fixed later. Modeling the Pin Board The frame of the pin-board is made up of three boxes, and six cylinders, the front box is modeled using a clear, slightly reflective solid, with the same refractive index of glass. The other shapes are modeled as metal. object { box <-5.5, -1.5, 1>, <5.5, 5.5, 1.2> glass } object { box <-5.5, -1.5, -0.04>, <5.5, 5.5, -0.09> steely_blue } object { box <-5.5, -1.5, -0.52>, <5.5, 5.5, -0.59> steely_blue } object { cylinder <-5.2, -1.2, 1.4>, <-5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, -1.2, 1.4>, <5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <-5.2, 5.2, 1.4>, <-5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, 5.2, 1.4>, <5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <0, -1.2, 1.4>, <0, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <0, 5.2, 1.4>, <0, 5.2, -0.74>, 0.2 steely_blue }   In order to create the matrix of pins that make up the pin board I used a basic console application with a few nested loops to create two intersecting matrixes of pins, which models the layout used in the pin boards. The resulting image is shown below. The pin board contains 11,481 pins, with the scene file containing 23,709 lines of code. For the complete animation 2,000 scene files will be created, which is over 47 million lines of code. Each pin in the pin-board will slide out a specific distance when an object is pressed into the back of the board. This is easily modeled by setting the Z coordinate of the pin to a specific value. In order to set all of the pins in the pin-board to the correct position, a bitmap image can be used. The position of the pin can be set based on the color of the pixel at the appropriate position in the image. When the Windows Azure logo is used to set the Z coordinate of the pins, the following image is generated. The challenge now was to make a cool animation. The Azure Logo is fine, but it is static. Using a normal video to animate the pins would not work; the colors in the video would not be the same as the depth of the objects from the camera. In order to simulate the pin board accurately a series of frames from a depth camera could be used. Windows Kinect The Kenect controllers for the X-Box 360 and Windows feature a depth camera. The Kinect SDK for Windows provides a programming interface for Kenect, providing easy access for .NET developers to the Kinect sensors. The Kinect Explorer provided with the Kinect SDK is a great starting point for exploring Kinect from a developers perspective. Both the X-Box 360 Kinect and the Windows Kinect will work with the Kinect SDK, the Windows Kinect is required for commercial applications, but the X-Box Kinect can be used for hobby projects. The Windows Kinect has the advantage of providing a mode to allow depth capture with objects closer to the camera, which makes for a more accurate depth image for setting the pin positions. Creating a Depth Field Animation The depth field animation used to set the positions of the pin in the pin board was created using a modified version of the Kinect Explorer sample application. In order to simulate the pin board accurately, a small section of the depth range from the depth sensor will be used. Any part of the object in front of the depth range will result in a white pixel; anything behind the depth range will be black. Within the depth range the pixels in the image will be set to RGB values from 0,0,0 to 255,255,255. A screen shot of the modified Kinect Explorer application is shown below. The Kinect Explorer sample application was modified to include slider controls that are used to set the depth range that forms the image from the depth stream. This allows the fine tuning of the depth image that is required for simulating the position of the pins in the pin board. The Kinect Explorer was also modified to record a series of images from the depth camera and save them as a sequence JPEG files that will be used to animate the pins in the animation the Start and Stop buttons are used to start and stop the image recording. En example of one of the depth images is shown below. Once a series of 2,000 depth images has been captured, the task of creating the animation can begin. Rendering a Test Frame In order to test the creation of frames and get an approximation of the time required to render each frame a test frame was rendered on-premise using PolyRay. The output of the rendering process is shown below. The test frame contained 23,629 primitive shapes, most of which are the spheres and cylinders that are used for the 11,800 or so pins in the pin board. The 1280x720 image contains 921,600 pixels, but as anti-aliasing was used the number of rays that were calculated was 4,235,777, with 3,478,754,073 object boundaries checked. The test frame of the pin board with the depth field image applied is shown below. The tracing time for the test frame was 4 minutes 27 seconds, which means rendering the2,000 frames in the animation would take over 148 hours, or a little over 6 days. Although this is much faster that an old 486, waiting almost a week to see the results of an animation would make it challenging for animators to create, view, and refine their animations. It would be much better if the animation could be rendered in less than one hour. Windows Azure Worker Roles The cost of creating an on-premise render farm to render animations increases in proportion to the number of servers. The table below shows the cost of servers for creating a render farm, assuming a cost of $500 per server. Number of Servers Cost 1 $500 16 $8,000 256 $128,000   As well as the cost of the servers, there would be additional costs for networking, racks etc. Hosting an environment of 256 servers on-premise would require a server room with cooling, and some pretty hefty power cabling. The Windows Azure compute services provide worker roles, which are ideal for performing processor intensive compute tasks. With the scalability available in Windows Azure a job that takes 256 hours to complete could be perfumed using different numbers of worker roles. The time and cost of using 1, 16 or 256 worker roles is shown below. Number of Worker Roles Render Time Cost 1 256 hours $30.72 16 16 hours $30.72 256 1 hour $30.72   Using worker roles in Windows Azure provides the same cost for the 256 hour job, irrespective of the number of worker roles used. Provided the compute task can be broken down into many small units, and the worker role compute power can be used effectively, it makes sense to scale the application so that the task is completed quickly, making the results available in a timely fashion. The task of rendering 2,000 frames in an animation is one that can easily be broken down into 2,000 individual pieces, which can be performed by a number of worker roles. Creating a Render Farm in Windows Azure The architecture of the render farm is shown in the following diagram. The render farm is a hybrid application with the following components: ·         On-Premise o   Windows Kinect – Used combined with the Kinect Explorer to create a stream of depth images. o   Animation Creator – This application uses the depth images from the Kinect sensor to create scene description files for PolyRay. These files are then uploaded to the jobs blob container, and job messages added to the jobs queue. o   Process Monitor – This application queries the role instance lifecycle table and displays statistics about the render farm environment and render process. o   Image Downloader – This application polls the image queue and downloads the rendered animation files once they are complete. ·         Windows Azure o   Azure Storage – Queues and blobs are used for the scene description files and completed frames. A table is used to store the statistics about the rendering environment.   The architecture of each worker role is shown below.   The worker role is configured to use local storage, which provides file storage on the worker role instance that can be use by the applications to render the image and transform the format of the image. The service definition for the worker role with the local storage configuration highlighted is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="CloudRay" >   <WorkerRole name="CloudRayWorkerRole" vmsize="Small">     <Imports>     </Imports>     <ConfigurationSettings>       <Setting name="DataConnectionString" />     </ConfigurationSettings>     <LocalResources>       <LocalStorage name="RayFolder" cleanOnRoleRecycle="true" />     </LocalResources>   </WorkerRole> </ServiceDefinition>     The two executable programs, PolyRay.exe and DTA.exe are included in the Azure project, with Copy Always set as the property. PolyRay will take the scene description file and render it to a Truevision TGA file. As the TGA format has not seen much use since the mid 90’s it is converted to a JPG image using Dave's Targa Animator, another shareware application from the 90’s. Each worker roll will use the following process to render the animation frames. 1.       The worker process polls the job queue, if a job is available the scene description file is downloaded from blob storage to local storage. 2.       PolyRay.exe is started in a process with the appropriate command line arguments to render the image as a TGA file. 3.       DTA.exe is started in a process with the appropriate command line arguments convert the TGA file to a JPG file. 4.       The JPG file is uploaded from local storage to the images blob container. 5.       A message is placed on the images queue to indicate a new image is available for download. 6.       The job message is deleted from the job queue. 7.       The role instance lifecycle table is updated with statistics on the number of frames rendered by the worker role instance, and the CPU time used. The code for this is shown below. public override void Run() {     // Set environment variables     string polyRayPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), PolyRayLocation);     string dtaPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), DTALocation);       LocalResource rayStorage = RoleEnvironment.GetLocalResource("RayFolder");     string localStorageRootPath = rayStorage.RootPath;       JobQueue jobQueue = new JobQueue("renderjobs");     JobQueue downloadQueue = new JobQueue("renderimagedownloadjobs");     CloudRayBlob sceneBlob = new CloudRayBlob("scenes");     CloudRayBlob imageBlob = new CloudRayBlob("images");     RoleLifecycleDataSource roleLifecycleDataSource = new RoleLifecycleDataSource();       Frames = 0;       while (true)     {         // Get the render job from the queue         CloudQueueMessage jobMsg = jobQueue.Get();           if (jobMsg != null)         {             // Get the file details             string sceneFile = jobMsg.AsString;             string tgaFile = sceneFile.Replace(".pi", ".tga");             string jpgFile = sceneFile.Replace(".pi", ".jpg");               string sceneFilePath = Path.Combine(localStorageRootPath, sceneFile);             string tgaFilePath = Path.Combine(localStorageRootPath, tgaFile);             string jpgFilePath = Path.Combine(localStorageRootPath, jpgFile);               // Copy the scene file to local storage             sceneBlob.DownloadFile(sceneFilePath);               // Run the ray tracer.             string polyrayArguments =                 string.Format("\"{0}\" -o \"{1}\" -a 2", sceneFilePath, tgaFilePath);             Process polyRayProcess = new Process();             polyRayProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), polyRayPath);             polyRayProcess.StartInfo.Arguments = polyrayArguments;             polyRayProcess.Start();             polyRayProcess.WaitForExit();               // Convert the image             string dtaArguments =                 string.Format(" {0} /FJ /P{1}", tgaFilePath, Path.GetDirectoryName (jpgFilePath));             Process dtaProcess = new Process();             dtaProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), dtaPath);             dtaProcess.StartInfo.Arguments = dtaArguments;             dtaProcess.Start();             dtaProcess.WaitForExit();               // Upload the image to blob storage             imageBlob.UploadFile(jpgFilePath);               // Add a download job.             downloadQueue.Add(jpgFile);               // Delete the render job message             jobQueue.Delete(jobMsg);               Frames++;         }         else         {             Thread.Sleep(1000);         }           // Log the worker role activity.         roleLifecycleDataSource.Alive             ("CloudRayWorker", RoleLifecycleDataSource.RoleLifecycleId, Frames);     } }     Monitoring Worker Role Instance Lifecycle In order to get more accurate statistics about the lifecycle of the worker role instances used to render the animation data was tracked in an Azure storage table. The following class was used to track the worker role lifecycles in Azure storage.   public class RoleLifecycle : TableServiceEntity {     public string ServerName { get; set; }     public string Status { get; set; }     public DateTime StartTime { get; set; }     public DateTime EndTime { get; set; }     public long SecondsRunning { get; set; }     public DateTime LastActiveTime { get; set; }     public int Frames { get; set; }     public string Comment { get; set; }       public RoleLifecycle()     {     }       public RoleLifecycle(string roleName)     {         PartitionKey = roleName;         RowKey = Utils.GetAscendingRowKey();         Status = "Started";         StartTime = DateTime.UtcNow;         LastActiveTime = StartTime;         EndTime = StartTime;         SecondsRunning = 0;         Frames = 0;     } }     A new instance of this class is created and added to the storage table when the role starts. It is then updated each time the worker renders a frame to record the total number of frames rendered and the total processing time. These statistics are used be the monitoring application to determine the effectiveness of use of resources in the render farm. Rendering the Animation The Azure solution was deployed to Windows Azure with the service configuration set to 16 worker role instances. This allows for the application to be tested in the cloud environment, and the performance of the application determined. When I demo the application at conferences and user groups I often start with 16 instances, and then scale up the application to the full 256 instances. The configuration to run 16 instances is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="16" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     About six minutes after deploying the application the first worker roles become active and start to render the first frames of the animation. The CloudRay Monitor application displays an icon for each worker role instance, with a number indicating the number of frames that the worker role has rendered. The statistics on the left show the number of active worker roles and statistics about the render process. The render time is the time since the first worker role became active; the CPU time is the total amount of processing time used by all worker role instances to render the frames.   Five minutes after the first worker role became active the last of the 16 worker roles activated. By this time the first seven worker roles had each rendered one frame of the animation.   With 16 worker roles u and running it can be seen that one hour and 45 minutes CPU time has been used to render 32 frames with a render time of just under 10 minutes.     At this rate it would take over 10 hours to render the 2,000 frames of the full animation. In order to complete the animation in under an hour more processing power will be required. Scaling the render farm from 16 instances to 256 instances is easy using the new management portal. The slider is set to 256 instances, and the configuration saved. We do not need to re-deploy the application, and the 16 instances that are up and running will not be affected. Alternatively, the configuration file for the Azure service could be modified to specify 256 instances.   <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="256" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     Six minutes after the new configuration has been applied 75 new worker roles have activated and are processing their first frames.   Five minutes later the full configuration of 256 worker roles is up and running. We can see that the average rate of frame rendering has increased from 3 to 12 frames per minute, and that over 17 hours of CPU time has been utilized in 23 minutes. In this test the time to provision 140 worker roles was about 11 minutes, which works out at about one every five seconds.   We are now half way through the rendering, with 1,000 frames complete. This has utilized just under three days of CPU time in a little over 35 minutes.   The animation is now complete, with 2,000 frames rendered in a little over 52 minutes. The CPU time used by the 256 worker roles is 6 days, 7 hours and 22 minutes with an average frame rate of 38 frames per minute. The rendering of the last 1,000 frames took 16 minutes 27 seconds, which works out at a rendering rate of 60 frames per minute. The frame counts in the server instances indicate that the use of a queue to distribute the workload has been very effective in distributing the load across the 256 worker role instances. The first 16 instances that were deployed first have rendered between 11 and 13 frames each, whilst the 240 instances that were added when the application was scaled have rendered between 6 and 9 frames each.   Completed Animation I’ve uploaded the completed animation to YouTube, a low resolution preview is shown below. Pin Board Animation Created using Windows Kinect and 256 Windows Azure Worker Roles   The animation can be viewed in 1280x720 resolution at the following link: http://www.youtube.com/watch?v=n5jy6bvSxWc Effective Use of Resources According to the CloudRay monitor statistics the animation took 6 days, 7 hours and 22 minutes CPU to render, this works out at 152 hours of compute time, rounded up to the nearest hour. As the usage for the worker role instances are billed for the full hour, it may have been possible to render the animation using fewer than 256 worker roles. When deciding the optimal usage of resources, the time required to provision and start the worker roles must also be considered. In the demo I started with 16 worker roles, and then scaled the application to 256 worker roles. It would have been more optimal to start the application with maybe 200 worker roles, and utilized the full hour that I was being billed for. This would, however, have prevented showing the ease of scalability of the application. The new management portal displays the CPU usage across the worker roles in the deployment. The average CPU usage across all instances is 93.27%, with over 99% used when all the instances are up and running. This shows that the worker role resources are being used very effectively. Grid Computing Scenarios Although I am using this scenario for a hobby project, there are many scenarios where a large amount of compute power is required for a short period of time. Windows Azure provides a great platform for developing these types of grid computing applications, and can work out very cost effective. ·         Windows Azure can provide massive compute power, on demand, in a matter of minutes. ·         The use of queues to manage the load balancing of jobs between role instances is a simple and effective solution. ·         Using a cloud-computing platform like Windows Azure allows proof-of-concept scenarios to be tested and evaluated on a very low budget. ·         No charges for inbound data transfer makes the uploading of large data sets to Windows Azure Storage services cost effective. (Transaction charges still apply.) Tips for using Windows Azure for Grid Computing Scenarios I found the implementation of a render farm using Windows Azure a fairly simple scenario to implement. I was impressed by ease of scalability that Azure provides, and by the short time that the application took to scale from 16 to 256 worker role instances. In this case it was around 13 minutes, in other tests it took between 10 and 20 minutes. The following tips may be useful when implementing a grid computing project in Windows Azure. ·         Using an Azure Storage queue to load-balance the units of work across multiple worker roles is simple and very effective. The design I have used in this scenario could easily scale to many thousands of worker role instances. ·         Windows Azure accounts are typically limited to 20 cores. If you need to use more than this, a call to support and a credit card check will be required. ·         Be aware of how the billing model works. You will be charged for worker role instances for the full clock our in which the instance is deployed. Schedule the workload to start just after the clock hour has started. ·         Monitor the utilization of the resources you are provisioning, ensure that you are not paying for worker roles that are idle. ·         If you are deploying third party applications to worker roles, you may well run into licensing issues. Purchasing software licenses on a per-processor basis when using hundreds of processors for a short time period would not be cost effective. ·         Third party software may also require installation onto the worker roles, which can be accomplished using start-up tasks. Bear in mind that adding a startup task and possible re-boot will add to the time required for the worker role instance to start and activate. An alternative may be to use a prepared VM and use VM roles. ·         Consider using the Windows Azure Autoscaling Application Block (WASABi) to autoscale the worker roles in your application. When using a large number of worker roles, the utilization must be carefully monitored, if the scaling algorithms are not optimal it could get very expensive!

    Read the article

  • JMS Step 5 - How to Create an 11g BPEL Process Which Reads a Message Based on an XML Schema from a JMS Queue

    - by John-Brown.Evans
    JMS Step 5 - How to Create an 11g BPEL Process Which Reads a Message Based on an XML Schema from a JMS Queue .jblist{list-style-type:disc;margin:0;padding:0;padding-left:0pt;margin-left:36pt} ol{margin:0;padding:0} .c12_5{vertical-align:top;width:468pt;border-style:solid;background-color:#f3f3f3;border-color:#000000;border-width:1pt;padding:5pt 5pt 5pt 5pt} .c8_5{vertical-align:top;border-style:solid;border-color:#000000;border-width:1pt;padding:5pt 5pt 0pt 5pt} .c10_5{vertical-align:top;width:207pt;border-style:solid;border-color:#000000;border-width:1pt;padding:5pt 5pt 5pt 5pt} .c14_5{vertical-align:top;border-style:solid;border-color:#000000;border-width:1pt;padding:0pt 5pt 0pt 5pt} .c21_5{background-color:#ffffff} .c18_5{color:#1155cc;text-decoration:underline} .c16_5{color:#666666;font-size:12pt} .c5_5{background-color:#f3f3f3;font-weight:bold} .c19_5{color:inherit;text-decoration:inherit} .c3_5{height:11pt;text-align:center} .c11_5{font-weight:bold} .c20_5{background-color:#00ff00} .c6_5{font-style:italic} .c4_5{height:11pt} .c17_5{background-color:#ffff00} .c0_5{direction:ltr} .c7_5{font-family:"Courier New"} .c2_5{border-collapse:collapse} .c1_5{line-height:1.0} .c13_5{background-color:#f3f3f3} .c15_5{height:0pt} .c9_5{text-align:center} .title{padding-top:24pt;line-height:1.15;text-align:left;color:#000000;font-size:36pt;font-family:"Arial";font-weight:bold;padding-bottom:6pt} .subtitle{padding-top:18pt;line-height:1.15;text-align:left;color:#666666;font-style:italic;font-size:24pt;font-family:"Georgia";padding-bottom:4pt} li{color:#000000;font-size:10pt;font-family:"Arial"} p{color:#000000;font-size:10pt;margin:0;font-family:"Arial"} h1{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:24pt;font-family:"Arial";font-weight:normal} h2{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:18pt;font-family:"Arial";font-weight:normal} h3{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:14pt;font-family:"Arial";font-weight:normal} h4{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:12pt;font-family:"Arial";font-weight:normal} h5{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:11pt;font-family:"Arial";font-weight:normal} h6{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:10pt;font-family:"Arial";font-weight:normal} Welcome to another post in the series of blogs which demonstrates how to use JMS queues in a SOA context. The previous posts were: JMS Step 1 - How to Create a Simple JMS Queue in Weblogic Server 11g JMS Step 2 - Using the QueueSend.java Sample Program to Send a Message to a JMS Queue JMS Step 3 - Using the QueueReceive.java Sample Program to Read a Message from a JMS Queue JMS Step 4 - How to Create an 11g BPEL Process Which Writes a Message Based on an XML Schema to a JMS Queue Today we will create a BPEL process which will read (dequeue) the message from the JMS queue, which we enqueued in the last example. The JMS adapter will dequeue the full XML payload from the queue. 1. Recap and Prerequisites In the previous examples, we created a JMS Queue, a Connection Factory and a Connection Pool in the WebLogic Server Console. Then we designed and deployed a BPEL composite, which took a simple XML payload and enqueued it to the JMS queue. In this example, we will read that same message from the queue, using a JMS adapter and a BPEL process. As many of the configuration steps required to read from that queue were done in the previous samples, this one will concentrate on the new steps. A summary of the required objects is listed below. To find out how to create them please see the previous samples. They also include instructions on how to verify the objects are set up correctly. WebLogic Server Objects Object Name Type JNDI Name TestConnectionFactory Connection Factory jms/TestConnectionFactory TestJMSQueue JMS Queue jms/TestJMSQueue eis/wls/TestQueue Connection Pool eis/wls/TestQueue Schema XSD File The following XSD file is used for the message format. It was created in the previous example and will be copied to the new process. stringPayload.xsd <?xml version="1.0" encoding="windows-1252" ?> <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"                 xmlns="http://www.example.org"                 targetNamespace="http://www.example.org"                 elementFormDefault="qualified">   <xsd:element name="exampleElement" type="xsd:string">   </xsd:element> </xsd:schema> JMS Message After executing the previous samples, the following XML message should be in the JMS queue located at jms/TestJMSQueue: <?xml version="1.0" encoding="UTF-8" ?><exampleElement xmlns="http://www.example.org">Test Message</exampleElement> JDeveloper Connection You will need a valid Application Server Connection in JDeveloper pointing to the SOA server which the process will be deployed to. 2. Create a BPEL Composite with a JMS Adapter Partner Link In the previous example, we created a composite in JDeveloper called JmsAdapterWriteSchema. In this one, we will create a new composite called JmsAdapterReadSchema. There are probably many ways of incorporating a JMS adapter into a SOA composite for incoming messages. One way is design the process in such a way that the adapter polls for new messages and when it dequeues one, initiates a SOA or BPEL instance. This is possibly the most common use case. Other use cases include mid-flow adapters, which are activated from within the BPEL process. In this example we will use a polling adapter, because it is the most simple to set up and demonstrate. But it has one disadvantage as a demonstrative model. When a polling adapter is active, it will dequeue all messages as soon as they reach the queue. This makes it difficult to monitor messages we are writing to the queue, because they will disappear from the queue as soon as they have been enqueued. To work around this, we will shut down the composite after deploying it and restart it as required. (Another solution for this would be to pause the consumption for the queue and resume consumption again if needed. This can be done in the WLS console JMS-Modules -> queue -> Control -> Consumption -> Pause/Resume.) We will model the composite as a one-way incoming process. Usually, a BPEL process will do something useful with the message after receiving it, such as passing it to a database or file adapter, a human workflow or external web service. But we only want to demonstrate how to dequeue a JMS message using BPEL and a JMS adapter, so we won’t complicate the design with further activities. However, we do want to be able to verify that we have read the message correctly, so the BPEL process will include a small piece of embedded java code, which will print the message to standard output, so we can view it in the SOA server’s log file. Alternatively, you can view the instance in the Enterprise Manager and verify the message. The following steps are all executed in JDeveloper. Create the project in the same JDeveloper application used for the previous examples or create a new one. Create a SOA Project Create a new project and choose SOA Tier > SOA Project as its type. Name it JmsAdapterReadSchema. When prompted for the composite type, choose Empty Composite. Create a JMS Adapter Partner Link In the composite editor, drag a JMS adapter over from the Component Palette to the left-hand swim lane, under Exposed Services. This will start the JMS Adapter Configuration Wizard. Use the following entries: Service Name: JmsAdapterRead Oracle Enterprise Messaging Service (OEMS): Oracle WebLogic JMS AppServer Connection: Use an application server connection pointing to the WebLogic server on which the JMS queue and connection factory mentioned under Prerequisites above are located. Adapter Interface > Interface: Define from operation and schema (specified later) Operation Type: Consume Message Operation Name: Consume_message Consume Operation Parameters Destination Name: Press the Browse button, select Destination Type: Queues, then press Search. Wait for the list to populate, then select the entry for TestJMSQueue , which is the queue created in a previous example. JNDI Name: The JNDI name to use for the JMS connection. As in the previous example, this is probably the most common source of error. This is the JNDI name of the JMS adapter’s connection pool created in the WebLogic Server and which points to the connection factory. JDeveloper does not verify the value entered here. If you enter a wrong value, the JMS adapter won’t find the queue and you will get an error message at runtime, which is very difficult to trace. In our example, this is the value eis/wls/TestQueue . (See the earlier step on how to create a JMS Adapter Connection Pool in WebLogic Server for details.) Messages/Message SchemaURL: We will use the XSD file created during the previous example, in the JmsAdapterWriteSchema project to define the format for the incoming message payload and, at the same time, demonstrate how to import an existing XSD file into a JDeveloper project. Press the magnifying glass icon to search for schema files. In the Type Chooser, press the Import Schema File button. Select the magnifying glass next to URL to search for schema files. Navigate to the location of the JmsAdapterWriteSchema project > xsd and select the stringPayload.xsd file. Check the “Copy to Project” checkbox, press OK and confirm the following Localize Files popup. Now that the XSD file has been copied to the local project, it can be selected from the project’s schema files. Expand Project Schema Files > stringPayload.xsd and select exampleElement: string . Press Next and Finish, which will complete the JMS Adapter configuration.Save the project. Create a BPEL Component Drag a BPEL Process from the Component Palette (Service Components) to the Components section of the composite designer. Name it JmsAdapterReadSchema and select Template: Define Service Later and press OK. Wire the JMS Adapter to the BPEL Component Now wire the JMS adapter to the BPEL process, by dragging the arrow from the adapter to the BPEL process. A Transaction Properties popup will be displayed. Set the delivery mode to async.persist. This completes the steps at the composite level. 3 . Complete the BPEL Process Design Invoke the BPEL Flow via the JMS Adapter Open the BPEL component by double-clicking it in the design view of the composite.xml, or open it from the project navigator by selecting the JmsAdapterReadSchema.bpel file. This will display the BPEL process in the design view. You should see the JmsAdapterRead partner link in the left-hand swim lane. Drag a Receive activity onto the BPEL flow diagram, then drag a wire (left-hand yellow arrow) from it to the JMS adapter. This will open the Receive activity editor. Auto-generate the variable by pressing the green “+” button and check the “Create Instance” checkbox. This will result in a BPEL instance being created when a new JMS message is received. At this point it would actually be OK to compile and deploy the composite and it would pick up any messages from the JMS queue. In fact, you can do that to test it, if you like. But it is very rudimentary and would not be doing anything useful with the message. Also, you could only verify the actual message payload by looking at the instance’s flow in the Enterprise Manager. There are various other possibilities; we could pass the message to another web service, write it to a file using a file adapter or to a database via a database adapter etc. But these will all introduce unnecessary complications to our sample. So, to keep it simple, we will add a small piece of Java code to the BPEL process which will write the payload to standard output. This will be written to the server’s log file, which will be easy to monitor. Add a Java Embedding Activity First get the full name of the process’s input variable, as this will be needed for the Java code. Go to the Structure pane and expand Variables > Process > Variables. Then expand the input variable, for example, "Receive1_Consume_Message_InputVariable > body > ns2:exampleElement”, and note variable’s name and path, if they are different from this one. Drag a Java Embedding activity from the Component Palette (Oracle Extensions) to the BPEL flow, after the Receive activity, then open it to edit. Delete the example code and replace it with the following, replacing the variable parts with those in your sample, if necessary.: System.out.println("JmsAdapterReadSchema process picked up a message"); oracle.xml.parser.v2.XMLElement inputPayload =    (oracle.xml.parser.v2.XMLElement)getVariableData(                           "Receive1_Consume_Message_InputVariable",                           "body",                           "/ns2:exampleElement");   String inputString = inputPayload.getFirstChild().getNodeValue(); System.out.println("Input String is " + inputPayload.getFirstChild().getNodeValue()); Tip. If you are not sure of the exact syntax of the input variable, create an Assign activity in the BPEL process and copy the variable to another, temporary one. Then check the syntax created by the BPEL designer. This completes the BPEL process design in JDeveloper. Save, compile and deploy the process to the SOA server. 3. Test the Composite Shut Down the JmsAdapterReadSchema Composite After deploying the JmsAdapterReadSchema composite to the SOA server it is automatically activated. If there are already any messages in the queue, the adapter will begin polling them. To ease the testing process, we will deactivate the process first Log in to the Enterprise Manager (Fusion Middleware Control) and navigate to SOA > soa-infra (soa_server1) > default (or wherever you deployed your composite to) and click on JmsAdapterReadSchema [1.0] . Press the Shut Down button to disable the composite and confirm the following popup. Monitor Messages in the JMS Queue In a separate browser window, log in to the WebLogic Server Console and navigate to Services > Messaging > JMS Modules > TestJMSModule > TestJMSQueue > Monitoring. This is the location of the JMS queue we created in an earlier sample (see the prerequisites section of this sample). Check whether there are any messages already in the queue. If so, you can dequeue them using the QueueReceive Java program created in an earlier sample. This will ensure that the queue is empty and doesn’t contain any messages in the wrong format, which would cause the JmsAdapterReadSchema to fail. Send a Test Message In the Enterprise Manager, navigate to the JmsAdapterWriteSchema created earlier, press Test and send a test message, for example “Message from JmsAdapterWriteSchema”. Confirm that the message was written correctly to the queue by verifying it via the queue monitor in the WLS Console. Monitor the SOA Server’s Output A program deployed on the SOA server will write its standard output to the terminal window in which the server was started, unless this has been redirected to somewhere else, for example to a file. If it has not been redirected, go to the terminal session in which the server was started, otherwise open and monitor the file to which it was redirected. Re-Enable the JmsAdapterReadSchema Composite In the Enterprise Manager, navigate to the JmsAdapterReadSchema composite again and press Start Up to re-enable it. This should cause the JMS adapter to dequeue the test message and the following output should be written to the server’s standard output: JmsAdapterReadSchema process picked up a message. Input String is Message from JmsAdapterWriteSchema Note that you can also monitor the payload received by the process, by navigating to the the JmsAdapterReadSchema’s Instances tab in the Enterprise Manager. Then select the latest instance and view the flow of the BPEL component. The Receive activity will contain and display the dequeued message too. 4 . Troubleshooting This sample demonstrates how to dequeue an XML JMS message using a BPEL process and no additional functionality. For example, it doesn’t contain any error handling. Therefore, any errors in the payload will result in exceptions being written to the log file or standard output. If you get any errors related to the payload, such as Message handle error ... ORABPEL-09500 ... XPath expression failed to execute. An error occurs while processing the XPath expression; the expression is /ns2:exampleElement. ... etc. check that the variable used in the Java embedding part of the process was entered correctly. Possibly follow the tip mentioned in previous section. If this doesn’t help, you can delete the Java embedding part and simply verify the message via the flow diagram in the Enterprise Manager. Or use a different method, such as writing it to a file via a file adapter. This concludes this example. In the next post, we will begin with an AQ JMS example, which uses JMS to write to an Advanced Queue stored in the database. Best regards John-Brown Evans Oracle Technology Proactive Support Delivery

    Read the article

  • ANTS Memory Profiler 7.0 Review

    - by Michael B. McLaughlin
    (This is my first review as a part of the GeeksWithBlogs.net Influencers program. It’s a program in which I (and the others who have been selected for it) get the opportunity to check out new products and services and write reviews about them. We don’t get paid for this, but we do generally get to keep a copy of the software or retain an account for some period of time on the service that we review. In this case I received a copy of Red Gate Software’s ANTS Memory Profiler 7.0, which was released in January. I don’t have any upgrade rights nor is my review guided, restrained, influenced, or otherwise controlled by Red Gate or anyone else. But I do get to keep the software license. I will always be clear about what I received whenever I do a review – I leave it up to you to decide whether you believe I can be objective. I believe I can be. If I used something and really didn’t like it, keeping a copy of it wouldn’t be worth anything to me. In that case though, I would simply uninstall/deactivate/whatever the software or service and tell the company what I didn’t like about it so they could (hopefully) make it better in the future. I don’t think it’d be polite to write up a terrible review, nor do I think it would be a particularly good use of my time. There are people who get paid for a living to review things, so I leave it to them to tell you what they think is bad and why. I’ll only spend my time telling you about things I think are good.) Overview of Common .NET Memory Problems When coming to land of managed memory from the wilds of unmanaged code, it’s easy to say to one’s self, “Wow! Now I never have to worry about memory problems again!” But this simply isn’t true. Managed code environments, such as .NET, make many, many things easier. You will never have to worry about memory corruption due to a bad pointer, for example (unless you’re working with unsafe code, of course). But managed code has its own set of memory concerns. For example, failing to unsubscribe from events when you are done with them leaves the publisher of an event with a reference to the subscriber. If you eliminate all your own references to the subscriber, then that memory is effectively lost since the GC won’t delete it because of the publishing object’s reference. When the publishing object itself becomes subject to garbage collection then you’ll get that memory back finally, but that could take a very long time depending of the life of the publisher. Another common source of resource leaks is failing to properly release unmanaged resources. When writing a class that contains members that hold unmanaged resources (e.g. any of the Stream-derived classes, IsolatedStorageFile, most classes ending in “Reader” or “Writer”), you should always implement IDisposable, making sure to use a properly written Dispose method. And when you are using an instance of a class that implements IDisposable, you should always make sure to use a 'using' statement in order to ensure that the object’s unmanaged resources are disposed of properly. (A ‘using’ statement is a nicer, cleaner looking, and easier to use version of a try-finally block. The compiler actually translates it as though it were a try-finally block. Note that Code Analysis warning 2202 (CA2202) will often be triggered by nested using blocks. A properly written dispose method ensures that it only runs once such that calling dispose multiple times should not be a problem. Nonetheless, CA2202 exists and if you want to avoid triggering it then you should write your code such that only the innermost IDisposable object uses a ‘using’ statement, with any outer code making use of appropriate try-finally blocks instead). Then, of course, there are situations where you are operating in a memory-constrained environment or else you want to limit or even eliminate allocations within a certain part of your program (e.g. within the main game loop of an XNA game) in order to avoid having the GC run. On the Xbox 360 and Windows Phone 7, for example, for every 1 MB of heap allocations you make, the GC runs; the added time of a GC collection can cause a game to drop frames or run slowly thereby making it look bad. Eliminating allocations (or else minimizing them and calling an explicit Collect at an appropriate time) is a common way of avoiding this (the other way is to simplify your heap so that the GC’s latency is low enough not to cause performance issues). ANTS Memory Profiler 7.0 When the opportunity to review Red Gate’s recently released ANTS Memory Profiler 7.0 arose, I jumped at it. In order to review it, I was given a free copy (which does not include upgrade rights for future versions) which I am allowed to keep. For those of you who are familiar with ANTS Memory Profiler, you can find a list of new features and enhancements here. If you are an experienced .NET developer who is familiar with .NET memory management issues, ANTS Memory Profiler is great. More importantly still, if you are new to .NET development or you have no experience or limited experience with memory profiling, ANTS Memory Profiler is awesome. From the very beginning, it guides you through the process of memory profiling. If you’re experienced and just want dive in however, it doesn’t get in your way. The help items GAHSFLASHDAJLDJA are well designed and located right next to the UI controls so that they are easy to find without being intrusive. When you first launch it, it presents you with a “Getting Started” screen that contains links to “Memory profiling video tutorials”, “Strategies for memory profiling”, and the “ANTS Memory Profiler forum”. I’m normally the kind of person who looks at a screen like that only to find the “Don’t show this again” checkbox. Since I was doing a review, though, I decided I should examine them. I was pleasantly surprised. The overview video clocks in at three minutes and fifty seconds. It begins by showing you how to get started profiling an application. It explains that profiling is done by taking memory snapshots periodically while your program is running and then comparing them. ANTS Memory Profiler (I’m just going to call it “ANTS MP” from here) analyzes these snapshots in the background while your application is running. It briefly mentions a new feature in Version 7, a new API that give you the ability to trigger snapshots from within your application’s source code (more about this below). You can also, and this is the more common way you would do it, take a memory snapshot at any time from within the ANTS MP window by clicking the “Take Memory Snapshot” button in the upper right corner. The overview video goes on to demonstrate a basic profiling session on an application that pulls information from a database and displays it. It shows how to switch which snapshots you are comparing, explains the different sections of the Summary view and what they are showing, and proceeds to show you how to investigate memory problems using the “Instance Categorizer” to track the path from an object (or set of objects) to the GC’s root in order to find what things along the path are holding a reference to it/them. For a set of objects, you can then click on it and get the “Instance List” view. This displays all of the individual objects (including their individual sizes, values, etc.) of that type which share the same path to the GC root. You can then click on one of the objects to generate an “Instance Retention Graph” view. This lets you track directly up to see the reference chain for that individual object. In the overview video, it turned out that there was an event handler which was holding on to a reference, thereby keeping a large number of strings that should have been freed in memory. Lastly the video shows the “Class List” view, which lets you dig in deeply to find problems that might not have been clear when following the previous workflow. Once you have at least one memory snapshot you can begin analyzing. The main interface is in the “Analysis” tab. You can also switch to the “Session Overview” tab, which gives you several bar charts highlighting basic memory data about the snapshots you’ve taken. If you hover over the individual bars (and the individual colors in bars that have more than one), you will see a detailed text description of what the bar is representing visually. The Session Overview is good for a quick summary of memory usage and information about the different heaps. You are going to spend most of your time in the Analysis tab, but it’s good to remember that the Session Overview is there to give you some quick feedback on basic memory usage stats. As described above in the summary of the overview video, there is a certain natural workflow to the Analysis tab. You’ll spin up your application and take some snapshots at various times such as before and after clicking a button to open a window or before and after closing a window. Taking these snapshots lets you examine what is happening with memory. You would normally expect that a lot of memory would be freed up when closing a window or exiting a document. By taking snapshots before and after performing an action like that you can see whether or not the memory is really being freed. If you already know an area that’s giving you trouble, you can run your application just like normal until just before getting to that part and then you can take a few strategic snapshots that should help you pin down the problem. Something the overview didn’t go into is how to use the “Filters” section at the bottom of ANTS MP together with the Class List view in order to narrow things down. The video tutorials page has a nice 3 minute intro video called “How to use the filters”. It’s a nice introduction and covers some of the basics. I’m going to cover a bit more because I think they’re a really neat, really helpful feature. Large programs can bring up thousands of classes. Even simple programs can instantiate far more classes than you might realize. In a basic .NET 4 WPF application for example (and when I say basic, I mean just MainWindow.xaml with a button added to it), the unfiltered Class List view will have in excess of 1000 classes (my simple test app had anywhere from 1066 to 1148 classes depending on which snapshot I was using as the “Current” snapshot). This is amazing in some ways as it shows you how in stark detail just how immensely powerful the WPF framework is. But hunting through 1100 classes isn’t productive, no matter how cool it is that there are that many classes instantiated and doing all sorts of awesome things. Let’s say you wanted to examine just the classes your application contains source code for (in my simple example, that would be the MainWindow and App). Under “Basic Filters”, click on “Classes with source” under “Show only…”. Voilà. Down from 1070 classes in the snapshot I was using as “Current” to 2 classes. If you then click on a class’s name, it will show you (to the right of the class name) two little icon buttons. Hover over them and you will see that you can click one to view the Instance Categorizer for the class and another to view the Instance List for the class. You can also show classes based on which heap they live on. If you chose both a Baseline snapshot and a Current snapshot then you can use the “Comparing snapshots” filters to show only: “New objects”; “Surviving objects”; “Survivors in growing classes”; or “Zombie objects” (if you aren’t sure what one of these means, you can click the helpful “?” in a green circle icon to bring up a popup that explains them and provides context). Remember that your selection(s) under the “Show only…” heading will still apply, so you should update those selections to make sure you are seeing the view you want. There are also links under the “What is my memory problem?” heading that can help you diagnose the problems you are seeing including one for “I don’t know which kind I have” for situations where you know generally that your application has some problems but aren’t sure what the behavior you have been seeing (OutOfMemoryExceptions, continually growing memory usage, larger memory use than expected at certain points in the program). The Basic Filters are not the only filters there are. “Filter by Object Type” gives you the ability to filter by: “Objects that are disposable”; “Objects that are/are not disposed”; “Objects that are/are not GC roots” (GC roots are things like static variables); and “Objects that implement _______”. “Objects that implement” is particularly neat. Once you check the box, you can then add one or more classes and interfaces that an object must implement in order to survive the filtering. Lastly there is “Filter by Reference”, which gives you the option to pare down the list based on whether an object is “Kept in memory exclusively by” a particular item, a class/interface, or a namespace; whether an object is “Referenced by” one or more of those choices; and whether an object is “Never referenced by” one or more of those choices. Remember that filtering is cumulative, so anything you had set in one of the filter sections still remains in effect unless and until you go back and change it. There’s quite a bit more to ANTS MP – it’s a very full featured product – but I think I touched on all of the most significant pieces. You can use it to debug: a .NET executable; an ASP.NET web application (running on IIS); an ASP.NET web application (running on Visual Studio’s built-in web development server); a Silverlight 4 browser application; a Windows service; a COM+ server; and even something called an XBAP (local XAML browser application). You can also attach to a .NET 4 process to profile an application that’s already running. The startup screen also has a large number of “Charting Options” that let you adjust which statistics ANTS MP should collect. The default selection is a good, minimal set. It’s worth your time to browse through the charting options to examine other statistics that may also help you diagnose a particular problem. The more statistics ANTS MP collects, the longer it will take to collect statistics. So just turning everything on is probably a bad idea. But the option to selectively add in additional performance counters from the extensive list could be a very helpful thing for your memory profiling as it lets you see additional data that might provide clues about a particular problem that has been bothering you. ANTS MP integrates very nicely with all versions of Visual Studio that support plugins (i.e. all of the non-Express versions). Just note that if you choose “Profile Memory” from the “ANTS” menu that it will launch profiling for whichever project you have set as the Startup project. One quick tip from my experience so far using ANTS MP: if you want to properly understand your memory usage in an application you’ve written, first create an “empty” version of the type of project you are going to profile (a WPF application, an XNA game, etc.) and do a quick profiling session on that so that you know the baseline memory usage of the framework itself. By “empty” I mean just create a new project of that type in Visual Studio then compile it and run it with profiling – don’t do anything special or add in anything (except perhaps for any external libraries you’re planning to use). The first thing I tried ANTS MP out on was a demo XNA project of an editor that I’ve been working on for quite some time that involves a custom extension to XNA’s content pipeline. The first time I ran it and saw the unmanaged memory usage I was convinced I had some horrible bug that was creating extra copies of texture data (the demo project didn’t have a lot of texture data so when I saw a lot of unmanaged memory I instantly figured I was doing something wrong). Then I thought to run an empty project through and when I saw that the amount of unmanaged memory was virtually identical, it dawned on me that the CLR itself sits in unmanaged memory and that (thankfully) there was nothing wrong with my code! Quite a relief. Earlier, when discussing the overview video, I mentioned the API that lets you take snapshots from within your application. I gave it a quick trial and it’s very easy to integrate and make use of and is a really nice addition (especially for projects where you want to know what, if any, allocations there are in a specific, complicated section of code). The only concern I had was that if I hadn’t watched the overview video I might never have known it existed. Even then it took me five minutes of hunting around Red Gate’s website before I found the “Taking snapshots from your code" article that explains what DLL you need to add as a reference and what method of what class you should call in order to take an automatic snapshot (including the helpful warning to wrap it in a try-catch block since, under certain circumstances, it can raise an exception, such as trying to call it more than 5 times in 30 seconds. The difficulty in discovering and then finding information about the automatic snapshots API was one thing I thought could use improvement. Another thing I think would make it even better would be local copies of the webpages it links to. Although I’m generally always connected to the internet, I imagine there are more than a few developers who aren’t or who are behind very restrictive firewalls. For them (and for me, too, if my internet connection happens to be down), it would be nice to have those documents installed locally or to have the option to download an additional “documentation” package that would add local copies. Another thing that I wish could be easier to manage is the Filters area. Finding and setting individual filters is very easy as is understanding what those filter do. And breaking it up into three sections (basic, by object, and by reference) makes sense. But I could easily see myself running a long profiling session and forgetting that I had set some filter a long while earlier in a different filter section and then spending quite a bit of time trying to figure out why some problem that was clearly visible in the data wasn’t showing up in, e.g. the instance list before remembering to check all the filters for that one setting that was only culling a few things from view. Some sort of indicator icon next to the filter section names that appears you have at least one filter set in that area would be a nice visual clue to remind me that “oh yeah, I told it to only show objects on the Gen 2 heap! That’s why I’m not seeing those instances of the SuperMagic class!” Something that would be nice (but that Red Gate cannot really do anything about) would be if this could be used in Windows Phone 7 development. If Microsoft and Red Gate could work together to make this happen (even if just on the WP7 emulator), that would be amazing. Especially given the memory constraints that apps and games running on mobile devices need to work within, a good memory profiler would be a phenomenally helpful tool. If anyone at Microsoft reads this, it’d be really great if you could make something like that happen. Perhaps even a (subsidized) custom version just for WP7 development. (For XNA games, of course, you can create a Windows version of the game and use ANTS MP on the Windows version in order to get a better picture of your memory situation. For Silverlight on WP7, though, there’s quite a bit of educated guess work and WeakReference creation followed by forced collections in order to find the source of a memory problem.) The only other thing I found myself wanting was a “Back” button. Between my Windows Phone 7, Zune, and other things, I’ve grown very used to having a “back stack” that lets me just navigate back to where I came from. The ANTS MP interface is surprisingly easy to use given how much it lets you do, and once you start using it for any amount of time, you learn all of the different areas such that you know where to go. And it does remember the state of the areas you were previously in, of course. So if you go to, e.g., the Instance Retention Graph from the Class List and then return back to the Class List, it will remember which class you had selected and all that other state information. Still, a “Back” button would be a welcome addition to a future release. Bottom Line ANTS Memory Profiler is not an inexpensive tool. But my time is valuable. I can easily see ANTS MP saving me enough time tracking down memory problems to justify it on a cost basis. More importantly to me, knowing what is happening memory-wise in my programs and having the confidence that my code doesn’t have any hidden time bombs in it that will cause it to OOM if I leave it running for longer than I do when I spin it up real quickly for debugging or just to see how a new feature looks and feels is a good feeling. It’s a feeling that I like having and want to continue to have. I got the current version for free in order to review it. Having done so, I’ve now added it to my must-have tools and will gladly lay out the money for the next version when it comes out. It has a 14 day free trial, so if you aren’t sure if it’s right for you or if you think it seems interesting but aren’t really sure if it’s worth shelling out the money for it, give it a try.

    Read the article

  • Towards Database Continuous Delivery – What Next after Continuous Integration? A Checklist

    - by Ben Rees
    .dbd-banner p{ font-size:0.75em; padding:0 0 10px; margin:0 } .dbd-banner p span{ color:#675C6D; } .dbd-banner p:last-child{ padding:0; } @media ALL and (max-width:640px){ .dbd-banner{ background:#f0f0f0; padding:5px; color:#333; margin-top: 5px; } } -- Database delivery patterns & practices STAGE 4 AUTOMATED DEPLOYMENT If you’ve been fortunate enough to get to the stage where you’ve implemented some sort of continuous integration process for your database updates, then hopefully you’re seeing the benefits of that investment – constant feedback on changes your devs are making, advanced warning of data loss (prior to the production release on Saturday night!), a nice suite of automated tests to check business logic, so you know it’s going to work when it goes live, and so on. But what next? What can you do to improve your delivery process further, moving towards a full continuous delivery process for your database? In this article I describe some of the issues you might need to tackle on the next stage of this journey, and how to plan to overcome those obstacles before they appear. Our Database Delivery Learning Program consists of four stages, really three – source controlling a database, running continuous integration processes, then how to set up automated deployment (the middle stage is split in two – basic and advanced continuous integration, making four stages in total). If you’ve managed to work through the first three of these stages – source control, basic, then advanced CI, then you should have a solid change management process set up where, every time one of your team checks in a change to your database (whether schema or static reference data), this change gets fully tested automatically by your CI server. But this is only part of the story. Great, we know that our updates work, that the upgrade process works, that the upgrade isn’t going to wipe our 4Tb of production data with a single DROP TABLE. But – how do you get this (fully tested) release live? Continuous delivery means being always ready to release your software at any point in time. There’s a significant gap between your latest version being tested, and it being easily releasable. Just a quick note on terminology – there’s a nice piece here from Atlassian on the difference between continuous integration, continuous delivery and continuous deployment. This piece also gives a nice description of the benefits of continuous delivery. These benefits have been summed up by Jez Humble at Thoughtworks as: “Continuous delivery is a set of principles and practices to reduce the cost, time, and risk of delivering incremental changes to users” There’s another really useful piece here on Simple-Talk about the need for continuous delivery and how it applies to the database written by Phil Factor – specifically the extra needs and complexities of implementing a full CD solution for the database (compared to just implementing CD for, say, a web app). So, hopefully you’re convinced of moving on the the next stage! The next step after CI is to get some sort of automated deployment (or “release management”) process set up. But what should I do next? What do I need to plan and think about for getting my automated database deployment process set up? Can’t I just install one of the many release management tools available and hey presto, I’m ready! If only it were that simple. Below I list some of the areas that it’s worth spending a little time on, where a little planning and prep could go a long way. It’s also worth pointing out, that this should really be an evolving process. Depending on your starting point of course, it can be a long journey from your current setup to a full continuous delivery pipeline. If you’ve got a CI mechanism in place, you’re certainly a long way down that path. Nevertheless, we’d recommend evolving your process incrementally. Pages 157 and 129-141 of the book on Continuous Delivery (by Jez Humble and Dave Farley) have some great guidance on building up a pipeline incrementally: http://www.amazon.com/Continuous-Delivery-Deployment-Automation-Addison-Wesley/dp/0321601912 For now, in this post, we’ll look at the following areas for your checklist: You and Your Team Environments The Deployment Process Rollback and Recovery Development Practices You and Your Team It’s a cliché in the DevOps community that “It’s not all about processes and tools, really it’s all about a culture”. As stated in this DevOps report from Puppet Labs: “DevOps processes and tooling contribute to high performance, but these practices alone aren’t enough to achieve organizational success. The most common barriers to DevOps adoption are cultural: lack of manager or team buy-in, or the value of DevOps isn’t understood outside of a specific group”. Like most clichés, there’s truth in there – if you want to set up a database continuous delivery process, you need to get your boss, your department, your company (if relevant) onside. Why? Because it’s an investment with the benefits coming way down the line. But the benefits are huge – for HP, in the book A Practical Approach to Large-Scale Agile Development: How HP Transformed LaserJet FutureSmart Firmware, these are summarized as: -2008 to present: overall development costs reduced by 40% -Number of programs under development increased by 140% -Development costs per program down 78% -Firmware resources now driving innovation increased by a factor of 8 (from 5% working on new features to 40% But what does this mean? It means that, when moving to the next stage, to make that extra investment in automating your deployment process, it helps a lot if everyone is convinced that this is a good thing. That they understand the benefits of automated deployment and are willing to make the effort to transform to a new way of working. Incidentally, if you’re ever struggling to convince someone of the value I’d strongly recommend just buying them a copy of this book – a great read, and a very practical guide to how it can really work at a large org. I’ve spoken to many customers who have implemented database CI who describe their deployment process as “The point where automation breaks down. Up to that point, the CI process runs, untouched by human hand, but as soon as that’s finished we revert to manual.” This deployment process can involve, for example, a DBA manually comparing an environment (say, QA) to production, creating the upgrade scripts, reading through them, checking them against an Excel document emailed to him/her the night before, turning to page 29 in his/her notebook to double-check how replication is switched off and on for deployments, and so on and so on. Painful, error-prone and lengthy. But the point is, if this is something like your deployment process, telling your DBA “We’re changing everything you do and your toolset next week, to automate most of your role – that’s okay isn’t it?” isn’t likely to go down well. There’s some work here to bring him/her onside – to explain what you’re doing, why there will still be control of the deployment process and so on. Or of course, if you’re the DBA looking after this process, you have to do a similar job in reverse. You may have researched and worked out how you’d like to change your methodology to start automating your painful release process, but do the dev team know this? What if they have to start producing different artifacts for you? Will they be happy with this? Worth talking to them, to find out. As well as talking to your DBA/dev team, the other group to get involved before implementation is your manager. And possibly your manager’s manager too. As mentioned, unless there’s buy-in “from the top”, you’re going to hit problems when the implementation starts to get rocky (and what tool/process implementations don’t get rocky?!). You need to have support from someone senior in your organisation – someone you can turn to when you need help with a delayed implementation, lack of resources or lack of progress. Actions: Get your DBA involved (or whoever looks after live deployments) and discuss what you’re planning to do or, if you’re the DBA yourself, get the dev team up-to-speed with your plans, Get your boss involved too and make sure he/she is bought in to the investment. Environments Where are you going to deploy to? And really this question is – what environments do you want set up for your deployment pipeline? Assume everyone has “Production”, but do you have a QA environment? Dedicated development environments for each dev? Proper pre-production? I’ve seen every setup under the sun, and there is often a big difference between “What we want, to do continuous delivery properly” and “What we’re currently stuck with”. Some of these differences are: What we want What we’ve got Each developer with their own dedicated database environment A single shared “development” environment, used by everyone at once An Integration box used to test the integration of all check-ins via the CI process, along with a full suite of unit-tests running on that machine In fact if you have a CI process running, you’re likely to have some sort of integration server running (even if you don’t call it that!). Whether you have a full suite of unit tests running is a different question… Separate QA environment used explicitly for manual testing prior to release “We just test on the dev environments, or maybe pre-production” A proper pre-production (or “staging”) box that matches production as closely as possible Hopefully a pre-production box of some sort. But does it match production closely!? A production environment reproducible from source control A production box which has drifted significantly from anything in source control The big question is – how much time and effort are you going to invest in fixing these issues? In reality this just involves figuring out which new databases you’re going to create and where they’ll be hosted – VMs? Cloud-based? What about size/data issues – what data are you going to include on dev environments? Does it need to be masked to protect access to production data? And often the amount of work here really depends on whether you’re working on a new, greenfield project, or trying to update an existing, brownfield application. There’s a world if difference between starting from scratch with 4 or 5 clean environments (reproducible from source control of course!), and trying to re-purpose and tweak a set of existing databases, with all of their surrounding processes and quirks. But for a proper release management process, ideally you have: Dedicated development databases, An Integration server used for testing continuous integration and running unit tests. [NB: This is the point at which deployments are automatic, without human intervention. Each deployment after this point is a one-click (but human) action], QA – QA engineers use a one-click deployment process to automatically* deploy chosen releases to QA for testing, Pre-production. The environment you use to test the production release process, Production. * A note on the use of the word “automatic” – when carrying out automated deployments this does not mean that the deployment is happening without human intervention (i.e. that something is just deploying over and over again). It means that the process of carrying out the deployment is automatic in that it’s not a person manually running through a checklist or set of actions. The deployment still requires a single-click from a user. Actions: Get your environments set up and ready, Set access permissions appropriately, Make sure everyone understands what the environments will be used for (it’s not a “free-for-all” with all environments to be accessed, played with and changed by development). The Deployment Process As described earlier, most existing database deployment processes are pretty manual. The following is a description of a process we hear very often when we ask customers “How do your database changes get live? How does your manual process work?” Check pre-production matches production (use a schema compare tool, like SQL Compare). Sometimes done by taking a backup from production and restoring in to pre-prod, Again, use a schema compare tool to find the differences between the latest version of the database ready to go live (i.e. what the team have been developing). This generates a script, User (generally, the DBA), reviews the script. This often involves manually checking updates against a spreadsheet or similar, Run the script on pre-production, and check there are no errors (i.e. it upgrades pre-production to what you hoped), If all working, run the script on production.* * this assumes there’s no problem with production drifting away from pre-production in the interim time period (i.e. someone has hacked something in to the production box without going through the proper change management process). This difference could undermine the validity of your pre-production deployment test. Red Gate is currently working on a free tool to detect this problem – sign up here at www.sqllighthouse.com, if you’re interested in testing early versions. There are several variations on this process – some better, some much worse! How do you automate this? In particular, step 3 – surely you can’t automate a DBA checking through a script, that everything is in order!? The key point here is to plan what you want in your new deployment process. There are so many options. At one extreme, pure continuous deployment – whenever a dev checks something in to source control, the CI process runs (including extensive and thorough testing!), before the deployment process keys in and automatically deploys that change to the live box. Not for the faint hearted – and really not something we recommend. At the other extreme, you might be more comfortable with a semi-automated process – the pre-production/production matching process is automated (with an error thrown if these environments don’t match), followed by a manual intervention, allowing for script approval by the DBA. One he/she clicks “Okay, I’m happy for that to go live”, the latter stages automatically take the script through to live. And anything in between of course – and other variations. But we’d strongly recommended sitting down with a whiteboard and your team, and spending a couple of hours mapping out “What do we do now?”, “What do we actually want?”, “What will satisfy our needs for continuous delivery, but still maintaining some sort of continuous control over the process?” NB: Most of what we’re discussing here is about production deployments. It’s important to note that you will also need to map out a deployment process for earlier environments (for example QA). However, these are likely to be less onerous, and many customers opt for a much more automated process for these boxes. Actions: Sit down with your team and a whiteboard, and draw out the answers to the questions above for your production deployments – “What do we do now?”, “What do we actually want?”, “What will satisfy our needs for continuous delivery, but still maintaining some sort of continuous control over the process?” Repeat for earlier environments (QA and so on). Rollback and Recovery If only every deployment went according to plan! Unfortunately they don’t – and when things go wrong, you need a rollback or recovery plan for what you’re going to do in that situation. Once you move in to a more automated database deployment process, you’re far more likely to be deploying more frequently than before. No longer once every 6 months, maybe now once per week, or even daily. Hence the need for a quick rollback or recovery process becomes paramount, and should be planned for. NB: These are mainly scenarios for handling rollbacks after the transaction has been committed. If a failure is detected during the transaction, the whole transaction can just be rolled back, no problem. There are various options, which we’ll explore in subsequent articles, things like: Immediately restore from backup, Have a pre-tested rollback script (remembering that really this is a “roll-forward” script – there’s not really such a thing as a rollback script for a database!) Have fallback environments – for example, using a blue-green deployment pattern. Different options have pros and cons – some are easier to set up, some require more investment in infrastructure; and of course some work better than others (the key issue with using backups, is loss of the interim transaction data that has been added between the failed deployment and the restore). The best mechanism will be primarily dependent on how your application works and how much you need a cast-iron failsafe mechanism. Actions: Work out an appropriate rollback strategy based on how your application and business works, your appetite for investment and requirements for a completely failsafe process. Development Practices This is perhaps the more difficult area for people to tackle. The process by which you can deploy database updates is actually intrinsically linked with the patterns and practices used to develop that database and linked application. So you need to decide whether you want to implement some changes to the way your developers actually develop the database (particularly schema changes) to make the deployment process easier. A good example is the pattern “Branch by abstraction”. Explained nicely here, by Martin Fowler, this is a process that can be used to make significant database changes (e.g. splitting a table) in a step-wise manner so that you can always roll back, without data loss – by making incremental updates to the database backward compatible. Slides 103-108 of the following slidedeck, from Niek Bartholomeus explain the process: https://speakerdeck.com/niekbartho/orchestration-in-meatspace As these slides show, by making a significant schema change in multiple steps – where each step can be rolled back without any loss of new data – this affords the release team the opportunity to have zero-downtime deployments with considerably less stress (because if an increment goes wrong, they can roll back easily). There are plenty more great patterns that can be implemented – the book Refactoring Databases, by Scott Ambler and Pramod Sadalage is a great read, if this is a direction you want to go in: http://www.amazon.com/Refactoring-Databases-Evolutionary-paperback-Addison-Wesley/dp/0321774515 But the question is – how much of this investment are you willing to make? How often are you making significant schema changes that would require these best practices? Again, there’s a difference here between migrating old projects and starting afresh – with the latter it’s much easier to instigate best practice from the start. Actions: For your business, work out how far down the path you want to go, amending your database development patterns to “best practice”. It’s a trade-off between implementing quality processes, and the necessity to do so (depending on how often you make complex changes). Socialise these changes with your development group. No-one likes having “best practice” changes imposed on them, so good to introduce these ideas and the rationale behind them early.   Summary The next stages of implementing a continuous delivery pipeline for your database changes (once you have CI up and running) require a little pre-planning, if you want to get the most out of the work, and for the implementation to go smoothly. We’ve covered some of the checklist of areas to consider – mainly in the areas of “Getting the team ready for the changes that are coming” and “Planning our your pipeline, environments, patterns and practices for development”, though there will be more detail, depending on where you’re coming from – and where you want to get to. This article is part of our database delivery patterns & practices series on Simple Talk. Find more articles for version control, automated testing, continuous integration & deployment.

    Read the article

< Previous Page | 758 759 760 761 762 763 764 765 766  | Next Page >