Search Results

Search found 22308 results on 893 pages for 'floating point'.

Page 773/893 | < Previous Page | 769 770 771 772 773 774 775 776 777 778 779 780  | Next Page >

  • Create Custom Windows Key Keyboard Shortcuts in Windows

    - by Asian Angel
    Nearly everyone uses keyboard shortcuts of some sort on their Windows system but what if you could create new ones for your favorite apps or folders? You might just be amazed at how simple it can be with just a few clicks and no programming using WinKey. WinKey in Action During the installation process you will see this window that gives you a good basic idea of just what can be accomplished with this wonderful little app. As soon as the installation process has finished you will see the “Main App Window”. It provides a simple straightforward listing of all the keyboard shortcuts that it is currently managing. Note: WinKey will automatically add an entry to the “Startup Listing” in your “Start Menu” during installation. To see the regular built-in Windows keyboard shortcuts that it is managing click “Standard Shortcuts” to select it and then click on “Properties”. For those who are curious WinKey does have a “System Tray Icon” that can be disabled if desired. Now onto creating those new keyboard shortcuts… For our example we decided to create a keyboard shortcut for an app rather than a folder. To create a shortcut for an app click on the small “Paper Icon” as shown here. Once you have done that browse to the appropriate folder and select the exe file. The second step will be choosing which keyboard shortcut you would like to associate with that particular app. You can use the drop-down list to choose from a listing of available keyboard combinations. For our example we chose “Windows Key + A”. The final step is choosing the “Run Mode”. There are three options available in the drop-down list…choose the one that best suits your needs. Here is what our example looked like once finished. All that is left to do at this point is click “OK” to finish the process. And just like that your new keyboard shortcut is now listed in the “Main App Window”. Time to try out your new keyboard shortcut! One quick use of our new keyboard shortcut and Iron Browser opened right up. WinKey really does make creating new keyboard shortcuts as simple as possible. Conclusion If you have been wanting to create new keyboard shortcuts for your favorite apps and folders then it really does not get any simpler than with WinKey. This is definitely a recommended app for anyone who loves “get it done” software. Links Download WinKey at Softpedia Similar Articles Productive Geek Tips Show Keyboard Shortcut Access Keys in Windows VistaCreate a Keyboard Shortcut to Access Hidden Desktop Icons and FilesKeyboard Ninja: 21 Keyboard Shortcut ArticlesAnother Desktop Cube for Windows XP/VistaHow-To Geek on Lifehacker: Control Your Computer with Shortcuts & Speed Up Vista Setup TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips DVDFab 6 Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 Recycle ! Find That Elusive Icon with FindIcons Looking for Good Windows Media Player 12 Plug-ins? Find Out the Celebrity You Resemble With FaceDouble Whoa ! Use Printflush to Solve Printing Problems

    Read the article

  • Lazy Evaluation &ndash; Why being lazy in F# blows my mind!

    - by MarkPearl
    First of all – shout out to Peter Adams – from the feedback I have gotten from him on the last few posts of F# that I have done – my mind has just been expanded. I did a blog post a few days ago about infinite sequences – I didn’t really understand what was going on with it, and I still don’t really get it – but I am getting closer. In Peter’s last comment he made mention of Lazy Evaluation. I am ashamed to say that up till then I had never heard about lazy evaluation – how can evaluation be lazy? I mean, I know about lazy loading and that makes sense… but surely something is either evaluated or not! Well… a bit of reading today and I have been enlightened to a point – if you do know of any good articles explaining lazy evaluation please send them to me. So what is lazy evaluation and why is it useful? Lazy evaluation is a process whereby the system only computes the values needed and “ignores” the computations not needed. I’m going out on a limb here, but with this explanation in hand, imagine the following C# code… public int CalculatedVal() { int Val1 = 0; int Val2 = 0; for (int Count = 0; Count < 1000000; Count++) { Val1++; } return Val2; }   Normally, even though Val1 is never needed, the system would loop 1000000 times and add 1 to the current value of Val1. Imagine if the system realized this and so just skipped this segment of code and instead did the following…. public int CalculatedVal() { int Val1 = 0; return Val2; }   A massive saving in computation and wasted effort. Now I am pretty sure it isn’t as simple as this but I think this is the basic idea. For a more detailed explanation of lazy evaluation in c#, Pedram Rezei has a wonderful post on lazy evaluation and makes some C# comparisons. I am not going to take any thunder from him by repeating everything he said since I think he did such a good job of explaining it himself. What I am interested in though is how in F# do you tell something to have lazy evalution, and how do you know if something will be eager or lazy by looking at it. I found this post was useful. From reading around F# by default uses eager evaluation unless explicitly told to use lazy evaluation. One exception to this is sequences, which are lazy by default. Now reading about lazy evaluation has helped me understand more about F# coding… From my understanding of F# because of its declarative nature, most of the actual code you are declaring properties and rules – very little code is actually saying do this right now - but when it comes to a “do this” code section, it then evaluates and optimizes code and applies the rules. So props to lazy evaluation and its optimizations…

    Read the article

  • Welcome to the Oracle EMEA Partner Community for Exadata!

    - by javier.puerta(at)oracle.com
      The EMEA Partner Community for Exadata is the place where partners in Europe, Middle East and Africa can share experiences and best practices about selling and implementing Exadata projects. You will also receive first-hand information from Oracle on products, training and tools that can help you better market, sell and implement your Exadata-based projects and services    Who should join the Community? Community membership is for individuals. If you are working for a company that is an Oracle partner and your job is selling, implementing or supporting Exadata projects in EMEA then this community is for you.    How is this different from the Oracle Exadata Knowledge Zone? The Oracle Exadata Knowledge Zone is the fundamental source of information from Oracle for partners interested in specializing on Exadata. It is higly recommended that you get access to the Knowledge Zones related to the product areas of your interest. To get access to any of the Knowledge Zones an application must be completed by the Partner Program Administrator for your company. The Exadata Partner Community complements the Knowledge Zone by providing partners with information which is specific for the EMEA market (market, references, training, events,..) and it is also a mechanism to share experiences and best practices among partners in marketing, selling, implementing and supporting Exadata projects.   How to join?  For you to be able to register as an individual, your company must be member of the Oracle PartnerNetwork (OPN) and should be working towards becoming OPN Specialized in Exadata. If this is the case then Join the EMEA Exadata Partner Community Now! If your company is not an OPN member yet, then Join Oracle PartnerNetwork first.   How do you get access to the information for the community members? We use two mechanisms to provide and share information: The EMEA Exadata Partner Community blog. This is a public blog and we use it to provide  quick and easy communication to the community members. For detailed or restricted material we will point you to a restricted area. The EMEA Exadata Partner Community Collaborative Workspace. This is an area with restricted access that only community members can access. It contains materials from community events, sales kits, implementation experiences,... reserved to community members. It also allows for partners to share content and collaborate with other community members. You will get access to this restricted area when you register as a member of the EMEA Exadata Partner Community     Need help? I hope that you will find useful the resources and the experience exchange provided by the community. If you need help or any further clarification, don't hesitate to contact me!  Javier Puerta ([email protected])Director Core Technology Partner ProgramsAlliances & Channels EMEAPhone: +34916312141 Mobile: +34609062373   

    Read the article

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

  • SQL 2005 Transaction Rollback Hung–unresolved deadlock

    - by steveh99999
    Encountered an interesting issue recently with a SQL 2005 sp3 Enterprise Edition system. Every weekend, a full database reindex was being run on this system – normally this took around one and a half hours. Then, one weekend, the job ran for over 17 hours  - and had yet to complete... At this point, DBA cancelled the job. Job status is now cancelled – issue over…   However, cancelling the job had not killed the reindex transaction – DBCC OPENTRAN was still showing the transaction being open. The oldest open transaction in the database was now over 17 hours old.  Consequently, transaction log % used growing dramatically and locks still being held in the database... Further attempts to kill the transaction did nothing. ie we had a transaction which could not be killed. In sysprocesses, it was apparent the SPID was in rollback status, but the spid was not accumulating CPU or IO. Was the SPID stuck ? On examination of the SQL errorlog – shortly after the reindex had started, a whole bunch of deadlock output had been produced by trace flag 1222. Then this :- spid5s      ***Stack Dump being sent to   xxxxxxx\SQLDump0042.txt spid5s      * ******************************************************************************* spid5s      * spid5s      * BEGIN STACK DUMP: spid5s      *   12/05/10 01:04:47 spid 5 spid5s      * spid5s      * Unresolved deadlock spid5s      * spid5s      *   spid5s      * ******************************************************************************* spid5s      * ------------------------------------------------------------------------------- spid5s      * Short Stack Dump spid5s      Stack Signature for the dump is 0x000001D7 spid5s      External dump process return code 0x20000001. Unresolved deadlock – don’t think I’ve ever seen one of these before…. A quick call to Microsoft support confirmed the following bug had been hit :- http://support.microsoft.com/kb/961479 So, only option to get rid of the hung spid – to restart SQL Server… Fortunately SQL Server restarted without any issues. I was pleasantly surprised to see that recovery on this particular database was fast. However, restarting SQL Server to fix an issue is not something I would normally rush to do... Short term fix – the reindex was changed to use MAXDOP of 1. Longer term fix will be to apply the correct CU, or wait for SQL 2005 sp 4 ?? This should be released any day soon I hope..

    Read the article

  • SQLAuthority News – Ahmedabad Tech Ed On Road June 11, 2011 – An Event to Remember – A Grand Success of Community Tech Days

    - by pinaldave
    I am very excited to announce the huge success of the Microsoft Community TechDays at Ahmedabad, on 11 June 2011.  The turn-out for this seminar was huge, and there was a great response from the audience.  In fact, the AMA where the conference was held can seat 275 people – but there were over 50 people standing, the event coordinators had to find 150 more chairs, and we even had to turn away 30 people at the door because there was just no more room.  This means that there were over 500 attendees! The event started right on time, at 10 am, with my introduction and welcome to the audience.  My presentation on my favorite subject of “SQL Server Performance Troubleshooting Using Waits and Queues.”  Because of the number of speakers, I had to cut my presentation short by 10 minutes, so I only had 50 minutes to explain how to use swaits and queues to fine tune performance.  There was a good response to my talk from audience. I feel the best presentation, though, was “HTML5 – Future of the Web” by Harish Vaidyanathan.  He explained how HTML5 is going to change the internet, and taught everyone a lot about how to best use Internet Explorer 9, and discussed CSS3, SVG and DOM specifications.  Many people in the audience came specifically for this session – many had to take a half day leave off work just to travel there. At this point we all took a break for lunch, but there was no one taking a nap with a full stomach because we had a presentation of the new Windows Mango phone from Dhananjay Kumar.  New technology like this always wakes everyone up! After this came “TSQL Worst Practices” by Jacob Sebastian.  He too had to cut his talk short by 10 minutes in order to accommodate everyone, but his discussion of what SQL queries to avoid was still excellent. He is magnificent presenter and Ahmedabad loves him. The final presentation was “ASP.NET Tips and Tricks” by Tejas Shah.  This was a good overview of asp.net fundamentals, and how to use them to improve application performance.  However, the day was not over here!  We kept the audience entertained with prizes and give-aways.  Names were drawn for prizes and there was a quiz session with great gifts for the winners. Overall, the day was a huge success.  There was a good mix of SQL and non-SQL subjects, and many audiences members commented on how much they learned.  We had a much bigger turn-out than expected – all the chairs were filled 45 minutes before we even started!  For our next conference we need to find a space that will hold everyone, especially since we are hoping to have 600-800 people attending.  We definitely feel we can reach this goal.  We are already looking forward to the next Ahmedabad Microsoft Community TechDays. Download presentations: HTML5 Beauty of Web -By Harish Vaidyanathan TSQL Worst Practices- By Jacob Sebastian SQL SERVER Performance troubleshooting using Waits and Queues -By Pinal Dave ASP.NET Tips and Tracks -By Tejas Shah Other reports: Tech-Ed on Road 2011- Ahmedabad–A great event- By Jalpesh Tech-Ed 2011 on the Road in Ahmedabad – by Ritesh Shah Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: About Me, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, SQLAuthority Author Visit, SQLAuthority News, T SQL, Technology

    Read the article

  • Use Any Folder For Your Ubuntu Desktop (Even a Dropbox Folder)

    - by Trevor Bekolay
    By default, Ubuntu creates a folder called Desktop in your home directory that gets displayed on your desktop. What if you want to use something else, like your Dropbox folder? Here we look at how to use any folder for your desktop. Not only can you change your desktop folder, you can change the location of any other folder Ubuntu creates for you in your home folder, like Documents or Music – and this works in any Linux distribution using the Gnome desktop manager. In this example, we’re going to change desktop to show our Dropbox folder. Open your home folder in a File Browser by clicking on Places > Home Folder. In the Home Folder, open the .config folder. By default, .config is hidden, so you may have to show hidden folders (temporarily) by clicking on View > Show Hidden Files. Then open the .config folder by double-clicking on it. Now open the user-dirs.dirs file… If double-clicking on it does not open it in a text editor, right-click on it and choose Open with Other Application… and find a text editor like Gedit. Change the entry associated with XDG_DESKTOP_DIR to the folder you want to be shown as your desktop. In our case, this is $HOME/Dropbox. Note: The “~” shortcut for the home directory won’t work in this file (use $HOME for that), but an absolute path (i.e. a path starting with “/”) will work. Feel free to change the locations of the other folders as well. Save and close user-dirs.dirs. At this point you can either log off and then log back on to get your desktop back, or open a terminal window Applications > Accessories > Terminal and enter: killall nautilus Nautilus (the file manager in Gnome) will restart itself and display your newly chosen folder as the desktop! This is a cool trick to use any folder for your Ubuntu desktop. What did you use as your desktop folder? Let us know in the comments! Similar Articles Productive Geek Tips Sync Your Pidgin Profile Across Multiple PCs with DropboxAdd "My Dropbox" to Your Windows 7 Start MenuCreate a Keyboard Shortcut to Access Hidden Desktop Icons and FilesAdd "My Computer" to Your Windows 7 / Vista TaskbarCheck your Disk Usage on Ubuntu with Disk Usage Analyzer TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips VMware Workstation 7 Acronis Online Backup DVDFab 6 Revo Uninstaller Pro Use Flixtime To Create Video Slideshows Creating a Password Reset Disk in Windows Bypass Waiting Time On Customer Service Calls With Lucyphone MELTUP – "The Beginning Of US Currency Crisis And Hyperinflation" Enable or Disable the Task Manager Using TaskMgrED Explorer++ is a Worthy Windows Explorer Alternative

    Read the article

  • Does my use of the strategy pattern violate the fundamental MVC pattern in iOS?

    - by Goodsquirrel
    I'm about to use the 'strategy' pattern in my iOS app, but feel like my approach violates the somehow fundamental MVC pattern. My app is displaying visual "stories", and a Story consists (i.e. has @properties) of one Photo and one or more VisualEvent objects to represent e.g. animated circles or moving arrows on the photo. Each VisualEvent object therefore has a eventType @property, that might be e.g. kEventTypeCircle or kEventTypeArrow. All events have things in common, like a startTime @property, but differ in the way they are being drawn on the StoryPlayerView. Currently I'm trying to follow the MVC pattern and have a StoryPlayer object (my controller) that knows about both the model objects (like Story and all kinds of visual events) and the view object StoryPlayerView. To chose the right drawing code for each of the different visual event types, my StoryPlayer is using a switch statement. @implementation StoryPlayer // (...) - (void)showVisualEvent:(VisualEvent *)event onStoryPlayerView:storyPlayerView { switch (event.eventType) { case kEventTypeCircle: [self showCircleEvent:event onStoryPlayerView:storyPlayerView]; break; case kEventTypeArrow: [self showArrowDrawingEvent:event onStoryPlayerView:storyPlayerView]; break; // (...) } But switch statements for type checking are bad design, aren't they? According to Uncle Bob they lead to tight coupling and can and should almost always be replaced by polymorphism. Having read about the "Strategy"-Pattern in Head First Design Patterns, I felt this was a great way to get rid of my switch statement. So I changed the design like this: All specialized visual event types are now subclasses of an abstract VisualEvent class that has a showOnStoryPlayerView: method. @interface VisualEvent : NSObject - (void)showOnStoryPlayerView:(StoryPlayerView *)storyPlayerView; // abstract Each and every concrete subclass implements a concrete specialized version of this drawing behavior method. @implementation CircleVisualEvent - (void)showOnStoryPlayerView:(StoryPlayerView *)storyPlayerView { [storyPlayerView drawCircleAtPoint:self.position color:self.color lineWidth:self.lineWidth radius:self.radius]; } The StoryPlayer now simply calls the same method on all types of events. @implementation StoryPlayer - (void)showVisualEvent:(VisualEvent *)event onStoryPlayerView:storyPlayerView { [event showOnStoryPlayerView:storyPlayerView]; } The result seems to be great: I got rid of the switch statement, and if I ever have to add new types of VisualEvents in the future, I simply create new subclasses of VisualEvent. And I won't have to change anything in StoryPlayer. But of cause this approach violates the MVC pattern since now my model has to know about and depend on my view! Now my controller talks to my model and my model talks to the view calling methods on StoryPlayerView like drawCircleAtPoint:color:lineWidth:radius:. But this kind of calls should be controller code not model code, right?? Seems to me like I made things worse. I'm confused! Am I completely missing the point of the strategy pattern? Is there a better way to get rid of the switch statement without breaking model-view separation?

    Read the article

  • How do I fix a corrupted harddrive after failed upgrade?

    - by Nil
    The problem originated when I was trying to fix this problem. Things went horribly, horribly wrong and I ended up with a new problem altogether. The last thing I did was run sudo apt-get install and that caused my system to freeze. I restarted my computer and it would not boot from the harddrive. I ran a copy of Ubuntu 12.10 from a flashdrive that I had and ran gparted to see if my partitions were all there. It returned this message: Invalid partition table on /dev/sda -- wrong signature 5208. The drive appeared as a 2TiB unallocated drive with an error. The drive had 4 partitions before (plus random unallocated space). There was a fat32 partition, an ext4 partition which contained ubuntu 13.04/13.10 (I don't even know which one at this point), an extended partition which contained a swap partition for my ubuntu partition (I was meaning to move that ubuntu partition into the extended partition, never got around to it), and another partition (I don't remember how I formatted it). I should also mention this is a 1TB harddrive. So in short, I have a corrupted partition table on my primary harddrive from which I boot from, how can I fix this? I tried mounting the drive with sudo mount /dev/sda1 /media/ubuntu then I changed my directory to said folder and tried to list files and this monstrosity happened: $ ls ls: cannot access ??w?j^?.: Input/output error ls: cannot access ??(? ?x?.|: Input/output error ls: cannot access 6W_@?)?._??: Input/output error ls: cannot access HB0v???.A}?: Input/output error ls: cannot access ???.?X: Input/output error ls: cannot access t)?.+?l: Input/output error ls: cannot access ?h@ ?.@ : Input/output error ls: cannot access >? @??.???: Input/output error ls: cannot access m???.??: Input/output error ls: cannot access @ if??a?: Input/output error ls: cannot access ?M!vN$?.??n: Input/output error ls: cannot access ?o? ??.Bm`: Input/output error ls: cannot access ?:I??? M. : Input/output error ls: cannot access W??.??: Input/output error ls: cannot access ?: Input/output error ls: cannot access ?W?s??: Input/output error ls: cannot access ?v?k?.???: Input/output error ls: cannot access 5?$<N??: Input/output error .x????.??i: Input/output error ls: cannot access je????.j?1: Input/output error XjD?.???: Input/output error ls: cannot access W??n???.?: Input/output error ls: cannot access ?^x.$"?: Input/output error ls: cannot access !??*!??j.??: Input/output error ls: cannot access '-??k?^?.???: Input/output error ls: cannot access b?w?w?b.\??: Input/output error ls: cannot access o????"z.??B: Input/output error ls: cannot access ??b?h.?3-: Input/output error ls: cannot access ??.$7: Input/output error ls: cannot access )??K.bk: Input/output error ls: cannot access s??z?.?(?: Input/output error ls: cannot access ?F@?0?.@?: Input/output error .?D: Input/output error .??: Input/output error ls: cannot access?????. @: Input/output error ls: cannot access ?/?? ?.??: No such file or directory ls: cannot access rk?p4q(?.?k: Input/output error This looks promising. This is the output of fdisk -l $ sudo fdisk -l /dev/sda Warning: ignoring extra data in partition table 5 Warning: ignoring extra data in partition table 5 Warning: ignoring extra data in partition table 5 Warning: invalid flag 0x5208 of partition table 5 will be corrected by w(rite) Disk /dev/sda: 2199.0 GB, 2199023132672 bytes 255 heads, 63 sectors/track, 267349 cylinders, total 4294967056 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x44fdfe06 Device Boot Start End Blocks Id System /dev/sda1 113305600 894715903 390705152 c W95 FAT32 (LBA) /dev/sda2 894715904 1489307647 297295872 83 Linux /dev/sda3 1489309694 1497307135 3998721 5 Extended /dev/sda4 1497309184 1953523711 228107264 7 HPFS/NTFS/exFAT /dev/sda5 ? 3013257822 3688738171 337740175 aa Unknown

    Read the article

  • Unreal Tournament 3 vs UDK: What Should I Choose?

    - by Matt Christian
    Many people in the mod community were very excited to see the release of the Unreal Developer Kit (UDK) a few months ago.  Along with generating excitement into a very dedicated community, it also introduced many new modders into a flourishing area of indie-development.  However, since UDK is free, most beginners jump right into UDK, which is OK though you might just benefit more from purchasing a shelf-copy of Unreal Tournament 3. UDK UDK is a free full version of UnrealEd (the editor environment used to create games like Gears of War 1/2, Bioshock 1/2, and of course Unreal Tournament 3).  The editor gives you all the features of the editor from the shelf-copy of the game plus some refinements in many of the tools.  (One of the first things you'll find about UnrealEd is that it's a collection of tools grouped into the same editor so it really isn't a single 'tool') Interestingly enough, Epic is allowing you to sell any game made in UDK with a few catches.  First off, you must purchase a liscense for your game (which, I THINK is aproximately $99 starting).  Secondly, you must pay 25% of all profits for the first $5,000 of your game revenue to them (about $1250).  Finally, you cannot use any of the 'media' provided in UDK for your game.  UDK provides sample meshes, textures, materials, sounds, and other sample pieces of media pulled (mostly) from Unreal Tournament 3. The final point here will really determine whether you should use UDK.  There is a very small amount of media provided in UDK for someone to go in and begin creating levels without first developing your own meshes, textures, and other media.  Sure, you can slap together a few unique levels, though you will end up finding yourself restriced to the same items over and over and over.  This is absolutely how professional game development is; you are 'given' (typically liscensed or built in-house) an engine/editor and you begin creating all the content for the game and placing it.  UDK is aimed toward those who really want to build their game content from scratch with a currently existing engine.  It is not suited for someone who would like to simply build levels and quick mods without learning external 3D programs and image editing software. Unreal Tournament 3 Unless you have a serious grudge against FPS's, Epic, or your computer sucks, there really is no reason not to own this game for PC.  You can pick it up on Steam or Amazon for around $20 brand new.  Not only are you provided with a full single-player and multiplayer game, but you are given the entire UnrealEd 3.0 including all of the content used to build UT3.  If you want to start building levels and mods quickly for UT3, you should absolutely pick up a shelf-copy. However, as off-the-shelf UT3 is a few years old now, the tools have not been updated for quite a while.  Compared to UDK, the menus are more difficult to navigate through and take more time getting used to.  Since UDK is updated almost every month, there are new inclusions to the editor that may not be in UT3 (including the future addition of 3D!).  I haven't worked enough with shelf UT3 to see if there are more features in UDK or if they both feature the same stuff in different forms, however you should remember that the Unreal Engine 3.0 has undergone numerous upgrades between it's launch and Gears of War 2 (in fact, Epic had a conference to show off what changed just between the Gears of Wars games). Since UT3 has much more core content, someone who wants to focus on level editing or modding the core UT3 game may find their needs better suited with an off-the-shelf copy of UT3.  If that level designer has a team that is generating custom assets, they may be better off with UDK. The choice is now yours...

    Read the article

  • concurrency::accelerator_view

    - by Daniel Moth
    Overview We saw previously that accelerator represents a target for our C++ AMP computation or memory allocation and that there is a notion of a default accelerator. We ended that post by introducing how one can obtain accelerator_view objects from an accelerator object through the accelerator class's default_view property and the create_view method. The accelerator_view objects can be thought of as handles to an accelerator. You can also construct an accelerator_view given another accelerator_view (through the copy constructor or the assignment operator overload). Speaking of operator overloading, you can also compare (for equality and inequality) two accelerator_view objects between them to determine if they refer to the same underlying accelerator. We'll see later that when we use concurrency::array objects, the allocation of data takes place on an accelerator at array construction time, so there is a constructor overload that accepts an accelerator_view object. We'll also see later that a new concurrency::parallel_for_each function overload can take an accelerator_view object, so it knows on what target to execute the computation (represented by a lambda that the parallel_for_each also accepts). Beyond normal usage, accelerator_view is a quality of service concept that offers isolation to multiple "consumers" of an accelerator. If in your code you are accessing the accelerator from multiple threads (or, in general, from different parts of your app), then you'll want to create separate accelerator_view objects for each thread. flush, wait, and queuing_mode When you create an accelerator_view via the create_view method of the accelerator, you pass in an option of immediate or deferred, which are the two members of the queuing_mode enum. At any point you can access this value from the queuing_mode property of the accelerator_view. When the queuing_mode value is immediate (which is the default), any commands sent to the device such as kernel invocations and data transfers (e.g. parallel_for_each and copy, as we'll see in future posts), will get submitted as soon as the runtime sees fit (that is the definition of immediate). When the value of queuing_mode is deferred, the commands will be batched up. To send all buffered commands to the device for execution, there is a non-blocking flush method that you can call. If you wish to block until all the commands have been sent, there is a wait method you can call. Deferring is a more advanced scenario aimed at performance gains when you are submitting many device commands and you want to avoid the tiny overhead of flushing/submitting each command separately. Querying information Just like accelerator, accelerator_view exposes the is_debug and version properties. In fact, you can always access the accelerator object from the accelerator property on the accelerator_view class to access the accelerator interface we looked at previously. Interop with D3D (aka DX) In a later post I'll show an example of an app that uses C++ AMP to compute data that is used in pixel shaders. In those scenarios, you can benefit by integrating C++ AMP into your graphics pipeline and one of the building blocks for that is being able to use the same device context from both the compute kernel and the other shaders. You can do that by going from accelerator_view to device context (and vice versa), through part of our interop API in amp.h: *get_device, create_accelerator_view. More on those in a later post. Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • Migrating SQL Server Compact Edition (SQL CE) database to SQL Server using Web Matrix

    - by Harish Ranganathan
    One of the things that is keeping us busy is the Web Camps we are delivering across 5 cities.  If you are a reader of this blog, and also attended one of these web camps, there is a good chance that you have seen me since I was there in all the places, so far.  The topics that we cover include Visual Studio 2010 SP1, SQL CE, ASP.NET MVC & HTML5.  Whenever I talk about SQL CE, the immediate response is that, people are wow that Microsoft has shipped a FREE compact edition database, which is an embedded database that can be x-copy deployed.  If you think, well didn’t Microsoft ship SQL Express which is FREE?  The difference is that, SQL Express runs as a service in the machine (if you open SQL Configuration Manager, you can notice that SQL Express is running as a service along with your SQL Server Engine (if you have installed ).  This makes it that, even if you are willing to use SQL Express when you deploy your application, it needs to be installed on the production machine (hosting provider) and it needs to run as a service.  Many hosters don’t allow such services to run on their space. SQL CE comes as a x-Copy deploy-able database with just a few DLLs required to run it on the machine and they don’t even need to be installed in GAC on the production machine.  In fact, if you have Visual Studio 2010 SP1 installed, you can use the “Add Deployable Dependencies” option in Project-Properties and it would detect that SQL CE is something you would probably want to add as a deploy-able dependency for your project.  With that, it bundles the required DLLs as a part of the “_bin_deployableAssemblies” folder.  So your project can be x-Copy deployed and just works fine. However, SQL CE has the limit of 4GB storage space.  Real world applications often require more than just 4GB of data storage and it often turns out that people would like to use SQL CE for development/ramp up stages but would like to migrate to full fledged SQL Server after a while.  So, its only natural that the question arises “How do I move my SQL CE database to SQL Server”  And honestly, it doesn’t come across as a straight forward support.  I was talking to Ambrish Mishra (PM in SQL CE Team, Hyderabad) since I got this question in almost all the places where we talked about SQL CE.   He was kind enough to demonstrate how this can be accomplished using Web Matrix.  Open Web Matrix (Web Matrix can be installed for free from www.microsoft.com/web) and click on “Site from Template” Click on the “Bakery” template (since by default it uses a SQL CE database and has all the required sample data) and click “Ok”. In the project, you can navigate to the Database tab and will be able to find that the Bakery site uses a SQL CE database “bakery.sdf” Select the “bakery.sdf” and you will be able to see the “Migrate” button on the top right Once you click on the “Migrate” button, you will notice that the popup wizard opens up and by default is configured for SQL Express.  You can edit the same to point to your local SQL Server instance, or a remote server. Upon filling in the Server Name, Username and Password, when you click “Ok”, couple of things happen.  1. The database is migrated to SQL Server (local or remote – subject to permissions on remote server).   You can open up SQL Server Management Studio and connect to the server to verify that the “bakery” database exists under “Databases” node. 2. You can also notice that in Web Matrix, when you navigate to the “Files” tab and open up the web.config file, connection string now points to the SQL Server instance (yes, the Migrate button was smart enough to make this change too ) And there it is, your SQL Server Compact Edition database, now migrated to SQL Server!! In a future post, I would explain the steps involved when using Visual Studio. Cheers !!!

    Read the article

  • Reflections on Life

    - by MOSSLover
    I haven’t written a blog post in a while.  I understand there is blog neglect going on, but there is a lot going on in my life.  I am trying really hard to embrace the change and roll with everything thrown my way.  I had a really hard year it was not my best and it was not my worst.  I cannot say it was entirely hard, because January 1st I received the MVP Award.  If you know me you know the three things that happened starting in August, but if you really know me it was miserable for a substantial period of time prior to August.  There was some personal life issues I neglected to deal with that came into a headway.  Anyway I’d like to think that as of today I am doing much better.  I finally went to Paris and London.  I found out I love Paris and Nottingham.  I think that London is something I need to visit a few more times.  I would love to go back to the UK and France.  I think I’d love to live overseas someday, but not anytime soon. The past few weeks were like a whirlwind experience.  I felt like I had been sitting around for months just waiting for this trip and the big move.  Maybe it was something I was waiting to do for several years.  I needed a big change.  I needed to get unstuck.  I feel like August, however horrible it was, helped me get to the point where I am somewhere happy.  For at least two years I have been miserable outside of my work (community and otherwise).  I was just downright unhappy.  One of my coworkers said that my tweets were just horrible this past year.  Depressing might I add.  I agree they were incredibly depressing for the past several years.  But things are on an upturn.  I decided a month or so ago that I was going to do all the things I have wanted to do without looking back.  So I dove into this trip and into this move to NYC head first.  I was scared for a bit and I didn’t think it would come through.  Everyone friend-wise and coworker-wise has helped me accomplish this great feat.  I am now a New Yorker and as of January 1st 100% living in the city. Thank you for those who have checked up on me.  Thank you for those who listened to all my problems and continue to do so.  Thank you to everyone who has helped me through this really terrible time.  You guys mean the world to me.  You are my friends.  Some of you I have not met and some of you I barely know.  I have been to a lot of events where people just walked up to me and asked me if I was doing ok.  I will continue to keep moving forward one foot in front of the other.  If I ever get so down again please remind me about this year.  I hope to see you all in the upcoming year as I attend more events.  Have a good night or a good morning or a good afternoon.  I will catch you all later. Technorati Tags: Life,2011,Disaster Year,Happinness

    Read the article

  • Oracle Text query parser

    - by Roger Ford
    Oracle Text provides a rich query syntax which enables powerful text searches.However, this syntax isn't intended for use by inexperienced end-users.  If you provide a simple search box in your application, you probably want users to be able to type "Google-like" searches into the box, and have your application convert that into something that Oracle Text understands.For example if your user types "windows nt networking" then you probably want to convert this into something like"windows ACCUM nt ACCUM networking".  But beware - "NT" is a reserved word, and needs to be escaped.  So let's escape all words:"{windows} ACCUM {nt} ACCUM {networking}".  That's fine - until you start introducing wild cards. Then you must escape only non-wildcarded searches:"win% ACCUM {nt} ACCUM {networking}".  There are quite a few other "gotchas" that you might encounter along the way.Then there's the issue of scoring.  Given a query for "oracle text query syntax", it would be nice if we could score a full phrase match higher than a hit where all four words are present but not in a phrase.  And then perhaps lower than that would be a document where three of the four terms are present.  Progressive relaxation helps you with this, but you need to code the "progression" yourself in most cases.To help with this, I've developed a query parser which will take queries in Google-like syntax, and convert them into Oracle Text queries. It's designed to be as flexible as possible, and will generate either simple queries or progressive relaxation queries. The input string will typically just be a string of words, such as "oracle text query syntax" but the grammar does allow for more complex expressions:  word : score will be improved if word exists  +word : word must exist  -word : word CANNOT exist  "phrase words" : words treated as phrase (may be preceded by + or -)  field:(expression) : find expression (which allows +,- and phrase as above) within "field". So for example if I searched for   +"oracle text" query +syntax -ctxcatThen the results would have to contain the phrase "oracle text" and the word syntax. Any documents mentioning ctxcat would be excluded from the results. All the instructions are in the top of the file (see "Downloads" at the bottom of this blog entry).  Please download the file, read the instructions, then try it out by running "parser.pls" in either SQL*Plus or SQL Developer.I am also uploading a test file "test.sql". You can run this and/or modify it to run your own tests or run against your own text index. test.sql is designed to be run from SQL*Plus and may not produce useful output in SQL Developer (or it may, I haven't tried it).I'm putting the code up here for testing and comments. I don't consider it "production ready" at this point, but would welcome feedback.  I'm particularly interested in comments such as "The instructions are unclear - I couldn't figure out how to do XXX" "It didn't work in my environment" (please provide as many details as possible) "We can't use it in our application" (why not?) "It needs to support XXX feature" "It produced an invalid query output when I fed in XXXX" Downloads: parser.pls test.sql

    Read the article

  • Algorithm to Find the Aggregate Mass of "Granola Bar"-Like Structures?

    - by Stuart Robbins
    I'm a planetary science researcher and one project I'm working on is N-body simulations of Saturn's rings. The goal of this particular study is to watch as particles clump together under their own self-gravity and measure the aggregate mass of the clumps versus the mean velocity of all particles in the cell. We're trying to figure out if this can explain some observations made by the Cassini spacecraft during the Saturnian summer solstice when large structures were seen casting shadows on the nearly edge-on rings. Below is a screenshot of what any given timestep looks like. (Each particle is 2 m in diameter and the simulation cell itself is around 700 m across.) The code I'm using already spits out the mean velocity at every timestep. What I need to do is figure out a way to determine the mass of particles in the clumps and NOT the stray particles between them. I know every particle's position, mass, size, etc., but I don't know easily that, say, particles 30,000-40,000 along with 102,000-105,000 make up one strand that to the human eye is obvious. So, the algorithm I need to write would need to be a code with as few user-entered parameters as possible (for replicability and objectivity) that would go through all the particle positions, figure out what particles belong to clumps, and then calculate the mass. It would be great if it could do it for "each" clump/strand as opposed to everything over the cell, but I don't think I actually need it to separate them out. The only thing I was thinking of was doing some sort of N2 distance calculation where I'd calculate the distance between every particle and if, say, the closest 100 particles were within a certain distance, then that particle would be considered part of a cluster. But that seems pretty sloppy and I was hoping that you CS folks and programmers might know of a more elegant solution? Edited with My Solution: What I did was to take a sort of nearest-neighbor / cluster approach and do the quick-n-dirty N2 implementation first. So, take every particle, calculate distance to all other particles, and the threshold for in a cluster or not was whether there were N particles within d distance (two parameters that have to be set a priori, unfortunately, but as was said by some responses/comments, I wasn't going to get away with not having some of those). I then sped it up by not sorting distances but simply doing an order N search and increment a counter for the particles within d, and that sped stuff up by a factor of 6. Then I added a "stupid programmer's tree" (because I know next to nothing about tree codes). I divide up the simulation cell into a set number of grids (best results when grid size ˜7 d) where the main grid lines up with the cell, one grid is offset by half in x and y, and the other two are offset by 1/4 in ±x and ±y. The code then divides particles into the grids, then each particle N only has to have distances calculated to the other particles in that cell. Theoretically, if this were a real tree, I should get order N*log(N) as opposed to N2 speeds. I got somewhere between the two, where for a 50,000-particle sub-set I got a 17x increase in speed, and for a 150,000-particle cell, I got a 38x increase in speed. 12 seconds for the first, 53 seconds for the second, 460 seconds for a 500,000-particle cell. Those are comparable speeds to how long the code takes to run the simulation 1 timestep forward, so that's reasonable at this point. Oh -- and it's fully threaded, so it'll take as many processors as I can throw at it.

    Read the article

  • Write TSQL, win a Kindle.

    - by Fatherjack
    So recently Red Gate launched sqlmonitormetrics.red-gate.com and showed the world how to embed your own scripts harmoniously in a third party tool to get the details that you want about your SQL Server performance. The site has a way to submit your own metrics and take a copy of the ones that other people have submitted to build a library of code to keep track of key metrics of your servers performance. There have been several submissions already but they have now launched a competition to provide an incentive for you to get creative and show us what you can do with a bit of TSQL and the SQL Monitor framework*. What’s it worth? Well, if you are one of the 3 winners then you get to choose either a Kindle Fire or $199. How do you win? Simply write the T-SQL for a SQL Monitor custom metric and the relevant description and introduction for it and submit it via  sqlmonitormetrics.red-gate.com before 14th Sept 2012 and then sit back and wait while the judges review your code and your aims in writing the metric. Who are the judges and how will they judge the metrics? There are two judges for this competition, Steve Jones (Microsoft SQL Server MVP, co-founder of SQLServerCentral.com, author, blogger etc) and Jonathan Allen (um, yeah, Steve has done all the good stuff, I’m here by good fortune). We will be looking to rate the metrics on each of 3 criteria: how the metric can help with performance tuning SQL Server. how having the metric running enables DBA’s to meet best practice. how interesting /original the idea for the metric is. Our combined decision will be final etc etc **  What happens to my metric? Any metrics submitted to the competition will be automatically entered into the site library and become available for sharing once the competition is over. You’ll get full credit for metrics you submit regardless of the competition results. You can enter as many metrics as you like. How long does it take? Honestly? Once you have the T-SQL sorted then so long as you can type your name and your email address you are done : http://sqlmonitormetrics.red-gate.com/share-a-metric/ What can I monitor? If you really really want a Kindle or $199 (and let’s face it, who doesn’t? ) and are momentarily stuck for inspiration, take a look at these example custom metrics that have been written by Stuart Ainsworth, Fabiano Amorim, TJay Belt, Louis Davidson, Grant Fritchey, Brad McGehee and me  to start the library off. There are some great pieces of TSQL in those metrics gathering important stats about how SQL Server is performing.   * – framework may not be the best word here but I was under pressure and couldnt think of a better one. If you prefer try ‘engine’, or ‘application’? I don’t know, pick something that makes sense to you. ** – for the full (legal) version of the rules check the details on sqlmonitormetrics.red-gate.com or send us an email if you want any point clarified. Disclaimer – Jonathan is a Friend of Red Gate and as such, whenever they are discussed, will have a generally positive disposition towards Red Gate tools. Other tools are often available and you should always try others before you come back and buy the Red Gate ones. All code in this blog is provided “as is” and no guarantee, warranty or accuracy is applicable or inferred, run the code on a test server and be sure to understand it before you run it on a server that means a lot to you or your manager.

    Read the article

  • Exploring packages in code

    In my previous post Searching for tasks with code you can see how to explore the control flow side of packages, drilling down through containers, task, and event handlers, but it didn’t cover the data flow. I recently saw a post on the MSDN forum asking how to edit an existing package programmatically, and the sticking point was how to find the the data flow and the components inside. This post builds on some of the previous code and shows how you can explore all objects inside a package. I took the sample Task Search application I’d written previously, and came up with a totally pointless little console application that just walks through the package and writes out the basic type and name of every object it finds, starting with the package itself e.g. Package – MyPackage . The sample package we used last time showed nested objects as well an event handler; a OnPreExecute event tucked away on the task SQL In FEL. The output of this sample tool would look like this: PackageObjects v1.0.0.0 (1.0.0.26627) Copyright (C) 2009 Konesans Ltd Processing File - Z:\Users\Darren Green\Documents\Visual Studio 2005\Projects\SSISTestProject\EventsAndContainersWithExe cSQLForSearch.dtsx Package - EventsAndContainersWithExecSQLForSearch For Loop - FOR Counter Loop Task - SQL In Counter Loop Sequence Container - SEQ For Each Loop Wrapper For Each Loop - FEL Simple Loop Task - SQL In FEL Task - SQL On Pre Execute for FEL SQL Task Sequence Container - SEQ Top Level Sequence Container - SEQ Nested Lvl 1 Sequence Container - SEQ Nested Lvl 2 Task - SQL In Nested Lvl 2 Task - SQL In Nested Lvl 1 #1 Task - SQL In Nested Lvl 1 #2 Connection Manager – LocalHost The code is very similar to what we had previously, but there are a couple of extra bits to deal with connections and to look more closely at a task and see if it is a Data Flow task. For connections your just examine the package's Connections collection as shown in the abridged snippets below. First you can see the call to the ProcessConnections method, followed by the method itself. // Load the package file Application application = new Application(); using (Package package = application.LoadPackage(filename, null)) { // Write out the package name Console.WriteLine("Package - {0}", package.Name); ... More ... // Look and the connections ProcessConnections(package.Connections); } private static void ProcessConnections(Connections connections) { foreach (ConnectionManager connectionManager in connections) { Console.WriteLine("Connection Manager - {0}", connectionManager.Name); } } What we didn’t see in the sample output above was anything to do with the Data Flow, but rest assured the code now handles it too. The following snippet shows how each task is examined to see if it is a Data Flow task, and if so we can then loop through all of the components inside the data flow. private static void ProcessTaskHost(TaskHost taskHost) { if (taskHost == null) { return; } Console.WriteLine("Task - {0}", taskHost.Name); // Check if the task is a Data Flow task MainPipe pipeline = taskHost.InnerObject as MainPipe; if (pipeline != null) { ProcessPipeline(pipeline); } } private static void ProcessPipeline(MainPipe pipeline) { foreach (IDTSComponentMetaData90 componentMetadata in pipeline.ComponentMetaDataCollection) { Console.WriteLine("Pipeline Component - {0}", componentMetadata.Name); // If you wish to make changes to the component then you should really use the managed wrapper. // CManagedComponentWrapper wrapper = componentMetadata.Instantiate(); // wrapper.SetComponentProperty("PropertyName", "Value"); } } Hopefully you can see how we get a reference to the Data Flow task, and then use the ComponentMetaDataCollection to find out what components we have inside the pipeline. If you wanted to know more about the component you could look at the ObjectType or ComponentClassID properties. After that it gets a bit harder and you should get a reference to the wrapper object as the comment suggest and start using the properties, just like you would in the create packages samples, see our Code Development category for some for these examples. Download Sample code project PackageObjects.zip (5KB)

    Read the article

  • Useful SVN and Git commands – Cheatsheet

    - by Madhan ayyasamy
    The following snippets will helpful one who user version control systems like Git and SVN.svn checkout/co checkout-url – used to pull an SVN tree from the server.svn update/up – Used to update the local copy with the changes made in the repository.svn commit/ci – m “message” filename – Used to commit the changes in a file to repository with a message.svn diff filename – shows up the differences between your current file and what’s there now in the repository.svn revert filename – To overwrite local file with the one in the repository.svn add filename – For adding a file into repository, you should commit your changes then only it will reflect in repository.svn delete filename – For deleting a file from repository, you should commit your changes then only it will reflect in repository.svn move source destination – moves a file from one directory to another or renames a file. It will effect your local copy immediately as well as on the repository after committing.git config – Sets configuration values for your user name, email, file formats and more.git init – Initializes a git repository – creates the initial ‘.git’ directory in a new or in an existing project.git clone – Makes a Git repository copy from a remote source. Also adds the original location as a remote so you can fetch from it again and push to it if you have permissions.git add – Adds files changes in your working directory to your index.git rm – Removes files from your index and your working directory so they will not be tracked.git commit – Takes all of the changes written in the index, creates a new commit object pointing to it and sets the branch to point to that new commit.git status – Shows you the status of files in the index versus the working directory.git branch – Lists existing branches, including remote branches if ‘-a’ is provided. Creates a new branch if a branch name is provided.git checkout – Checks out a different branch – switches branches by updating the index, working tree, and HEAD to reflect the chosen branch.git merge – Merges one or more branches into your current branch and automatically creates a new commit if there are no conflicts.git reset – Resets your index and working directory to the state of your last commit.git tag – Tags a specific commit with a simple, human readable handle that never moves.git pull – Fetches the files from the remote repository and merges it with your local one.git push – Pushes all the modified local objects to the remote repository and advances its branches.git remote – Shows all the remote versions of your repository.git log – Shows a listing of commits on a branch including the corresponding details.git show – Shows information about a git object.git diff – Generates patch files or statistics of differences between paths or files in your git repository, or your index or your working directory.gitk – Graphical Tcl/Tk based interface to a local Git repository.

    Read the article

  • Archiving SQLHelp tweets

    - by jamiet
    #SQLHelp is a Twitter hashtag that can be used by any Twitter user to get help from the SQL Server community. I think its fair to say that in its first year of being it has proved to be a very useful resource however Kendra Little (@kendra_little) made a very salient point yesterday when she tweeted: Is there a way to search the archives of #sqlhelp Trying to remember answer to a question I know I saw a couple months ago http://twitter.com/#!/Kendra_Little/status/15538234184441856 This highlights an inherent problem with Twitter’s search capability – it simply does not reach far enough back in time. I have made steps to remedy that situation by putting into place two initiatives to archive Tweets that contain the #sqlhelp hashtag. The Archivist http://archivist.visitmix.com/ is a free service that, quite simply, archives a history of tweets that contain a given search term by periodically polling Twitter’s search service with that search term and subsequently displaying a dashboard providing an aggregate view of those tweets for things like tweet volume over time, top users and top words (Archivist FAQ). I have set up an archive on The Archivist for “sqlhelp” which you can view at http://archivist.visitmix.com/jamiet/7. Here is a screenshot of the SQLHelp dashboard 36 minutes after I set it up: There is lots of good information in there, including the fact that Jonathan Kehayias (@SQLSarg) is the most active SQLHelp tweeter (I suspect as an answerer rather than a questioner ) and that SSIS has proven to be a rather (ahem) popular subject!! Datasift The Archivist has its uses though for our purposes it has a couple of downsides. For starters you cannot search through an archive (which is what Kendra was after) and nor can you export the contents of the archive for offline analysis. For those functions we need something a bit more heavyweight and for that I present to you Datasift. Datasift is a tool (currently an alpha release) that allows you to search for tweets and provide them through an object called a Datasift stream. That sounds very similar to normal Twitter search though it has one distinct advantage that other Twitter search tools do not – Datasift has access to Twitter’s Streaming API (aka the Twitter Firehose). In addition it has access to a lot of other rather nice features: It provides the Datasift API that allows you to consume the output of a Datasift stream in your tool of choice (bring on my favourite ultimate mashup tool J ) It has a query language (called Filtered Stream Definition Language – FSDL for short) A Datasift stream can consume (and filter) other Datasift streams Datasift can (and does) consume services other than Twitter If I refer to Datasift as “ETL for tweets” then you may get some sort of idea what it is all about. Just as I did with The Archivist I have set up a publicly available Datasift stream for “sqlhelp” at http://datasift.net/stream/1581/sqlhelp. Here is the FSDL query that provides the data: twitter.text contains "sqlhelp" Pretty simple eh? At the current time it provides little more than a rudimentary dashboard but as Datasift is currently an alpha release I think this may be worth keeping an eye on. The real value though is the ability to consume the output of a stream via Datasift’s RESTful API, observe: http://api.datasift.net/stream.xml?stream_identifier=c7015255f07e982afdeebdf1ae6e3c0d&username=jamiet&api_key=XXXXXXX (Note that an api_key is required during the alpha period so, given that I’m not supplying my api_key, this URI will not work for you) Just to prove that a Datasift stream can indeed consume data from another stream I have set up a second stream that further filters the first one for tweets containing “SSIS”. That one is at http://datasift.net/stream/1586/ssis-sqlhelp and here is the FSDL query: rule "414c9845685ff8d2548999cf3162e897" and (interaction.content contains "ssis") When Datasift moves beyond alpha I’ll re-assess how useful this is going to be and post a follow-up blog. @Jamiet

    Read the article

  • Autoscaling in a modern world&hellip;. Part 4

    - by Steve Loethen
    Now that I have the rules and services XML files in the cloud, it is time to sever the bounds of earth and live totally in the cloud.  I have to host the Autoscaling object in Azure as well, point it to the rules, tell it the management certs and get out of the way. A couple of questions.  Where to host?  The most obvious place to me was a worker role.  A simple, single purpose worker role, doing nothing but watching my app.  Here are the steps I used. 1) Created a project.  Separate project from my web site.  I wanted to be able to run the web in the cloud and the autoscaler local for debugging purposes.  Seemed like the easiest way.  2) Add the Wasabi block to the project. 3) Configure the settings.  I used the same settings used for the console app.  It points to the same web role, uses the same rules file.  4) Make sure the certification needed to manage the role is added to the cert store in the sky (“LocalMachine” and “My” are default locations). I ran the worker role in the local fabric.  It worked.  I then published to the cloud, and verified it worked again.  Here is what my code looked like. public override bool OnStart() { Trace.WriteLine("Set Default Connection Limit", "Information"); // Set the maximum number of concurrent connections ServicePointManager.DefaultConnectionLimit = 12; Trace.WriteLine("Set up configuration change code", "Information"); // set up config CloudStorageAccount.SetConfigurationSettingPublisher((configName, configSetter) => configSetter(RoleEnvironment.GetConfigurationSettingValue(configName))); Trace.WriteLine("Get current diagnostic configuration", "Information"); // Get current diagnostic configuration DiagnosticMonitorConfiguration dmc = DiagnosticMonitor.GetDefaultInitialConfiguration(); Trace.WriteLine("Set Diagnostic Buffer Size", "Information"); // Set Diagnostic Buffer size dmc.Logs.BufferQuotaInMB = 4; Trace.WriteLine("Set log transfer period", "Information"); // Set log transfer period dmc.Logs.ScheduledTransferPeriod = TimeSpan.FromMinutes(1); Trace.WriteLine("Set log verbosity", "Information"); // Set log filter to verbose dmc.Logs.ScheduledTransferLogLevelFilter = LogLevel.Verbose; Trace.WriteLine("Start the diagnostic monitor", "Information"); // Start the diagnostic monitor DiagnosticMonitor.Start("Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString", dmc); Trace.WriteLine("Get the current Autoscaler from the EntLib Container", "Information"); // Get the current Autoscaler from the EntLib Container scaler = EnterpriseLibraryContainer.Current.GetInstance<Autoscaler>(); Trace.WriteLine("Start the autoscaler", "Information"); // Start the autoscaler scaler.Start(); Trace.WriteLine("call the base class OnStart", "Information"); // call the base class OnStart return base.OnStart(); } public override void OnStop() { Trace.WriteLine("Stop the Autoscaler", "Information"); // Stop the Autoscaler scaler.Stop(); } I did have to turn on some basic logging for wasabi, which will cover in the next post.  This let me figure out that I hadn’t done the certificate step.

    Read the article

  • Bind a Wijmo Grid to Salesforce.com Through the Salesforce OData Connector

    - by dataintegration
    This article will explain how to connect to any RSSBus OData Connector with Wijmo's data grid using JSONP. While the example will use the Salesforce Connector, the same process can be followed for any of the RSSBus OData Connectors. Step 1: Download and install both the Salesforce Connector from RSSBus and the Wijmo javascript library. Step 2: Next you will want to configure the Salesforce Connector to connect with your Salesforce account. If you browse to the Help tab in the Salesforce Connector application, there is a link to the Getting Started Guide which will walk you through setting up the Salesforce Connector. Step 3: Once you have successfully configured the Salesforce Connector application, you will want to open a Wijmo sample grid file to edit. This example will use the overview.html grid found in the Samples folder. Step 4: First, we will wrap the jQuery document ready function in a callback function for the JSONP service. In this example, we will wrap this in function called fnCallback which will take a single object args. <script id="scriptInit" type="text/javascript"> function fnCallback(args) { $(document).ready(function () { $("#demo").wijgrid({ ... }); }); }; </script> Step 5: Next, we need to format the columns object in a format that Wijmo's data grid expects. This is done by adding the headerText: element for each column. <script id="scriptInit" type="text/javascript"> function fnCallback(args) { var columns = []; for (var i = 0; i < args.columnnames.length; i++){ var col = { headerText: args.columnnames[i]}; columns.push(col); } $(document).ready(function () { $("#demo").wijgrid({ ... }); }); }; </script> Step 6: Now the wijgrid parameters are ready to be set. In this example, we will set the data input parameter to the args.data object and the columns input parameter to our newly created columns object. The resulting javascript function should look like this: <script id="scriptInit" type="text/javascript"> function fnCallback(args) { var columns = []; for (var i = 0; i < args.columnnames.length; i++){ var col = { headerText: args.columnnames[i]}; columns.push(col); } $(document).ready(function () { $("#demo").wijgrid({ allowSorting: true, allowPaging: true, pageSize: 10, data: args.data, columns: columns }); }); }; </script> Step 7: Finally, we need to add the JSONP reference to our Salesforce Connector's data table. You can find this by clicking on the Settings tab of the Salesforce Connector. Once you have found the JSONP URL, you will need to supply a valid table name that you want to connect with Wijmo. In this example, we will connect to the Lead table. You will also need to add authentication options in this step. In the example we will append the authtoken of the user who has access to the Salesforce Connector using the @authtoken query string parameter. IMPORTANT: This is not secure and will expose the authtoken of the user whose authtoken you supply in this step. There are other ways to secure the user's authtoken, but this example uses a query string parameter for simplicity. <script src="http://localhost:8181/sfconnector/data/conn/Lead.rsd?@jsonp=fnCallback&sql:query=SELECT%20*%20FROM%20Lead&@authtoken=<myAuthToken>" type="text/javascript"></script> Step 8: Now, we are done. If you point your browser to the URL of the sample, you should see your Salesforce.com leads in a Wijmo data grid.

    Read the article

  • Extend Your Applications Your Way: Oracle OpenWorld Live Poll Results

    - by Applications User Experience
    Lydia Naylor, Oracle Applications User Experience Manager At OpenWorld 2012, I attended one of our team’s very exciting sessions: “Extend Your Applications, Your Way”. It was clear that customers were engaged by the topics presented. Not only did we see many heads enthusiastically nodding in agreement during the presentation, and witness a large crowd surround our speakers Killian Evers, Kristin Desmond and Greg Nerpouni afterwards, but we can prove it…with data! Figure 1. Killian Evers, Kristin Desmond, and Greg Nerpouni of Oracle at the OOW 2012 session. At the beginning of our OOW 2012 journey, Greg Nerpouni, Fusion HCM Principal Product Manager, told me he really wanted to get feedback from the audience on our extensibility direction. Initially, we were thinking of doing a group activity at the OOW UX labs events that we hold every year, but Greg was adamant- he wanted “real-time” feedback. So, after a little tinkering, we came up with a way to use an online survey tool, a simple QR code (Quick Response code: a matrix barcode that can include information like URLs and can be read by mobile device cameras), and the audience’s mobile devices to do just that. Figure 2. Actual QR Code for survey Prior to the session, we developed a short survey in Vovici (an online survey tool), with questions to gather feedback on certain points in the presentation, as well as demographic data from our participants. We used Vovici’s feature to generate a mobile HTML version of the survey. At the session, attendees accessed the survey by simply scanning a QR code or typing in a TinyURL (a shorthand web address that is easily accessible through mobile devices). Killian, Kristin and Greg paused at certain points during the session and asked participants to answer a few survey questions about what they just presented. Figure 3. Session survey deployed on a mobile phone The nice thing about Vovici’s survey tool is that you can see the data real-time as participants are responding to questions - so we knew during the session that not only was our direction on track but we were hitting the mark and fulfilling Greg’s request. We planned on showing the live polling results to the audience at the end of the presentation but it ran just a little over time, and we were gently nudged out of the room by the session attendants. We’ve included a quick summary below and this link to the full results for your enjoyment. Figure 4. Most important extensions to Fusion Applications So what did participants think of our direction for extensibility? A total of 94% agreed that it was an improvement upon their current process. The vast majority, 80%, concurred that the extensibility model accounts for the major roles involved: end user, business systems analyst and programmer. Attendees suggested a few supporting roles such as systems administrator, data architect and integrator. Customers and partners in the audience verified that Oracle‘s Fusion Composers allow them to make changes in the most common areas they need to: user interface, business processes, reporting and analytics. Integrations were also suggested. All top 10 things customers can do on a page rated highly in importance, with all but two getting an average rating above 4.4 on a 5 point scale. The kinds of layout changes our composers allow customers to make align well with customers’ needs. The most common were adding columns to a table (94%) and resizing regions and drag and drop content (both selected by 88% of participants). We want to thank the attendees of the session for allowing us another great opportunity to gather valuable feedback from our customers! If you didn’t have a chance to attend the session, we will provide a link to the OOW presentation when it becomes available.

    Read the article

  • Failure Sucks, But Does It Have To?

    - by steve.diamond
    Hey Folks--It's "elephant in the room" time. Imagine a representative from a CRM VENDOR discussing CRM FAILURES. Well. I recently saw this blog post from Michael Krigsman on "six ways CRM projects go wrong." Now, I know this may come off defensive, but my comments apply to ALL CRM vendors, not just Oracle. As I perused the list, I couldn't find any failures related to technology. They all seemed related to people or process. Now, this isn't about finger pointing, or impugning customers. I love customers! And when they fail, WE fail. Although I sit in the cheap seats, i.e., I haven't funded any multi-million dollar CRM initiatives lately, I kept wondering how to convert the perception of failure as something that ends and is never to be mentioned again (see Michael's reason #4), to something that one learns from and builds upon. So to continue my tradition of speaking in platitudes, let me propose the following three tenets: 1) Try and get ahead of your failures while they're very very small. 2) Immediately assess what you can learn from those failures. 3) With more than 15 years of CRM deployments, seek out those vendors that have a track record both in learning from "misses" and in supporting MANY THOUSANDS of CRM successes at companies of all types and sizes. Now let me digress briefly with an unpleasant (for me, anyway) analogy. I really don't like flying. Call it 'fear of dying' or 'fear of no control.' Whatever! I've spoken with quite a few commercial pilots over the years, and they reassure me that there are multiple failures on most every flight. We as passengers just don't know about them. Most of them are too miniscule to make a difference, and most of them are "caught" before they become LARGER failures. It's typically the mid-sized to colossal failures we hear about, and a significant percentage of those are due to human error. What's the point? I'd propose that organizations consider the topic of FAILURE in five grades. On one end, FAILURE Grade 1 is a minor/miniscule failure. On the other end, FAILURE Grade 5 is a colossal failure A Grade 1 CRM FAILURE could be that a particular interim milestone was missed. Why? What can we learn from that? How can we prevent that from happening as we proceed through the project? Individual organizations will need to define their own Grade 2 and Grade 3 failures. The opportunity is to keep those Grade 3 failures from escalating any further. Because honestly, a GRADE 5 failure may not be recoverable. It could result in a project being pulled, countless amounts of hours and dollars lost, and jobs lost. We don't want to go there. In closing, I want to thank Michael for opening my eyes up to the world of "color," versus thinking of failure as both "black and white" and a dead end road that organizations can't learn from and avoid discussing like the plague.

    Read the article

  • Prepping the Raspberry Pi for Java Excellence (part 1)

    - by HecklerMark
    I've only recently been able to begin working seriously with my first Raspberry Pi, received months ago but hastily shelved in preparation for JavaOne. The Raspberry Pi and other diminutive computing platforms offer a glimpse of the potential of what is often referred to as the embedded space, the "Internet of Things" (IoT), or Machine to Machine (M2M) computing. I have a few different configurations I want to use for multiple Raspberry Pis, but for each of them, I'll need to perform the following common steps to prepare them for their various tasks: Load an OS onto an SD card Get the Pi connected to the network Load a JDK I've been very happy to see good friend and JFXtras teammate Gerrit Grunwald document how to do these things on his blog (link to article here - check it out!), but I ran into some issues configuring wi-fi that caused me some needless grief. Not knowing if any of the pitfalls were caused by my slightly-older version of the Pi and not being able to find anything specific online to help me get past it, I kept chipping away at it until I broke through. The purpose of this post is to (hopefully) help someone else recognize the same issues if/when they encounter them and work past them quickly. There is a great resource page here that covers several ways to get the OS on an SD card, but here is what I did (on a Mac): Plug SD card into reader on/in Mac Format it (FAT32) Unmount it (diskutil unmountDisk diskn, where n is the disk number representing the SD card) Transfer the disk image for Debian to the SD card (dd if=2012-08-08-wheezy-armel.img of=/dev/diskn bs=1m) Eject the card from the Mac (diskutil eject diskn) There are other ways, but this is fairly quick and painless, especially after you do it several times. Yes, I had to do that dance repeatedly (minus formatting) due to the wi-fi issues, as it kept killing the ability of the Pi to boot. You should be able to dramatically reduce the number of OS loads you do, though, if you do a few things with regard to your wi-fi. Firstly, I strongly recommend you purchase the Edimax EW-7811Un wi-fi adapter. This adapter/chipset has been proven with the Raspberry Pi, it's tiny, and it's cheap. Avoid unnecessary aggravation and buy this one! Secondly, visit this page for a script and instructions regarding how to configure your new wi-fi adapter with your Pi. Here is the rub, though: there is a missing step. At least for my combination of Pi version, OS version, and uncanny gift of timing and luck there was. :-) Here is the sequence of steps I used to make the magic happen: Plug your newly-minted SD card (with OS) into your Pi and connect a network cable (for internet connectivity) Boot your Pi. On the first boot, do the following things: Opt to have it use all space on the SD card (will require a reboot eventually) Disable overscan Set your timezone Enable the ssh server Update raspi-config Reboot your Pi. This will reconfigure the SD to use all space (see above). After you log in (UID: pi, password: raspberry), upgrade your OS. This was the missing step for me that put a merciful end to the repeated SD card re-imaging and made the wi-fi configuration trivial. To do so, just type sudo apt-get upgrade and give it several minutes to complete. Pour yourself a cup of coffee and congratulate yourself on the time you've just saved.  ;-) With the OS upgrade finished, now you can follow Mr. Engman's directions (to the letter, please see link above), download his script, and let it work its magic. One aside: I plugged the little power-sipping Edimax directly into the Pi and it worked perfectly. No powered hub needed, at least in my configuration. To recap, that OS upgrade (at least at this point, with this combination of OS/drivers/Pi version) is absolutely essential for a smooth experience. Miss that step, and you're in for hours of "fun". Save yourself! I'll pick up next time with more of the Java side of the RasPi configuration, but as they say, you have to cross the moat to get into the castle. Hopefully, this will help you do just that. Until next time! All the best, Mark 

    Read the article

  • Review: A Quick Look at Reflector

    - by James Michael Hare
    I, like many, was disappointed when I heard that Reflector 7 was not free, and perhaps that’s why I waited so long to try it and just kept using my version 6 (which continues to be free).  But though I resisted for so long, I longed for the better features that were being developed, and began to wonder if I should upgrade.  Thus, I began to look into the features being offered in Reflector 7.5 to see what was new. Multiple Editions Reflector 7.5 comes in three flavors, each building on the features of the previous version: Standard – Contains just the Standalone application ($70) VS – Same as Standard but adds Reflector Object Browser for Visual Studio ($130) VSPro – Same as VS but adds ability to set breakpoints and step into decompiled code ($190) So let’s examine each of these features. The Standalone Application (Standard, VS, VSPro editions) Popping open Reflector 7.5 and looking at the GUI, we see much of the same familiar features, with a few new ones as well: Most notably, the disassembler window now has a tabbed window with navigation buttons.  This makes it much easier to back out of a deep-dive into many layers of decompiled code back to a previous point. Also, there is now an analyzer which can be used to determine dependencies for a given method, property, type, etc. For example, if we select System.Net.Sockets.TcpClient and hit the Analyze button, we’d see a window with the following nodes we could expand: This gives us the ability to see what a given type uses, what uses it, who exposes it, and who instantiates it. Now obviously, for low-level types (like DateTime) this list would be enormous, but this can give a lot of information on how a given type is connected to the larger code ecosystem. One of the other things I like about using Reflector 7.5 is that it does a much better job of displaying iterator blocks than Reflector 6 did. For example, if you were to take a look at the Enumerable.Cast() extension method in System.Linq, and dive into the CastIterator in Reflector 6, you’d see this: But now, in Reflector 7.5, we see the iterator logic much more clearly: This is a big improvement in the quality of their code disassembler and for me was one of the main reasons I decided to take the plunge and get version 7.5. The Reflector Object Browser (VS, VSPro editions) If you have the .NET Reflector VS or VSPro editions, you’ll find you have in Visual Studio a Reflector Object Browser window available where you can select and decompile any assembly right in Visual Studio. For example, if you want to take a peek at how System.Collections.Generic.List<T> works, you can either select List<T> in the Reflector Object Browser, or even simpler just select a usage of it in your code and CTRL + Click to dive in. – And it takes you right to a source window with the decompiled source: Setting Breakpoints and Stepping Into Decompiled Code (VSPro) If you have the VSPro edition, in addition to all the things said above, you also get the additional ability to set breakpoints in this decompiled code and step through it as if it were your own code: This can be a handy feature when you need to see why your code’s use of a BCL or other third-party library isn’t working as you expect. Summary Yes, Reflector is no longer free, and yes, that’s a bit of a bummer. But it always was and still is a very fine tool. If you still have Reflector 6, you aren’t forced to upgrade any longer, but getting the nicer disassembler (especially for iterator blocks) and the handy VS integration is worth at least considering upgrading for.  So I leave it up to you, these are some of the features of Reflector 7.5, what’s your thoughts? Technorati Tags: .NET,Reflector

    Read the article

< Previous Page | 769 770 771 772 773 774 775 776 777 778 779 780  | Next Page >