Search Results

Search found 54446 results on 2178 pages for 'struct vs class'.

Page 786/2178 | < Previous Page | 782 783 784 785 786 787 788 789 790 791 792 793  | Next Page >

  • Why should most logic be in the monitor objects and not in the thread objects when writing concurrent software in Java?

    - by refuser
    When I took the Realtime and Concurrent programming course our lecturer told us that when writing concurrent programs in Java and using monitors, most of the logic should be in the monitor and as little as possible in the threads that access it. I never really understood why and I really would like to. Let me clarify. In this particular case we had several classes. Lift extends Thread Person extends Thread LiftView Monitor, all methods synchronized. This is nothing we came up with, our task was to implement a lift simulation with persons waiting on different floors, and theses were the class skeletons that were given. Then our lecturer said to implement most of the logic in the monitor (he was talking about class Monitor as THE monitor) and as little as possible in the threads. Why would he make a statement like that?

    Read the article

  • Android Touch Event Collision Detection

    - by chrissb
    I'm relatively new to both Java and Android, so hopefully the problem I'm having is stemming from something pretty minor that I've overlooked. I've got a (very early stage) game that I've started working on, for Android using Java. At this stage, when the user touches the screen, if they touched a point at which there is an enemy, the enemies health is decreased and they become immobile (for the current implementation at least). The issue that I'm having is that the touch detection doesn't always seem to work. I've got a testing sprite set up that goes to the eventX and eventY coordinates of the touch down event, and it always seems to collide with the enemy object. Yet, the enemy doesn't always register as being hit, and sometimes a hit is registered when the sprite indicates the touch coordinates were outside of the enemies bounding box. I realise that this probably doesn't mean much without any code, so here's what I've got so far. Be gentle, as this is literally my first attempt at something more than basic movement etc. First off, the MainGamePanel class registers the touch event, and informs the levelmanager class (which is what I set up to monitor/handle enemies) public boolean onTouchEvent(MotionEvent event) { if (event.getAction() == MotionEvent.ACTION_DOWN){ levelManager.handleActionDown((int)event.getX(), (int)event.getY()); targetX=event.getX(); targetY=event.getY(); } if (event.getAction() == MotionEvent.ACTION_MOVE) { //the gestures } if (event.getAction() == MotionEvent.ACTION_UP) { //touch was released } return true; } From there, in the levelmanager class the touch event is passed on to all of the enemies within a list array: public static void handleActionDown(int eventX,int eventY){ hit=false; for (enemy1 en : enemy1array){ en.handleActionDown(eventX, eventY); } } The rest of the collision code is handled within the enemies handleActionDown function: public void handleActionDown(int eventX, int eventY) { if(eventX>this.x-enemy1bitmap.getWidth() && eventX<this.x+enemy1bitmap.getWidth() && eventY>this.y-enemy1bitmap.getHeight() && eventY<this.x+enemy1bitmap.getHeight()){ takeDamage(1); levelmanager.setHit(); } } I should probably be using getWidth()/2 and getHeight()/2 for it to be more accurate, but I expanded the area to test this - although I've noticed no improvement. At this stage, the games detection over whether or not the enemy is hit is spotty at best. Generally it takes two or three attempts before a collision is successfully registered, even though the sprite that is being used for testing and set to the eventX and eventY coordinates always indicates that the collision should have worked. Hopefully someone can steer me in the right direction here, and if more information is needed, ask away! Cheers, -Chris

    Read the article

  • Support for non-english characters?

    - by TomJ
    Is support for non-english characters common in programming languages? I mean, technically, I would think it is feasable, but I don't have any experience in anything other than english, so I don't know how common it is. I know that there are non-english based programming languages, but can something like C#, C++, C, Java, or Python support non-english classes/methods/variables? Example in go (url, http://play.golang.org/p/wRYCNVdbjC) package main import "fmt" type ?? struct { ?? string } func main() { fmt.Println("Hello, ??") ?? := new(??) ??.?? = "hello world" fmt.Println(??.??) }

    Read the article

  • Trying to detect collision between two polygons using Separating Axis Theorem

    - by Holly
    The only collision experience i've had was with simple rectangles, i wanted to find something that would allow me to define polygonal areas for collision and have been trying to make sense of SAT using these two links Though i'm a bit iffy with the math for the most part i feel like i understand the theory! Except my implementation somewhere down the line must be off as: (excuse the hideous font) As mentioned above i have defined a CollisionPolygon class where most of my theory is implemented and then have a helper class called Vect which was meant to be for Vectors but has also been used to contain a vertex given that both just have two float values. I've tried stepping through the function and inspecting the values to solve things but given so many axes and vectors and new math to work out as i go i'm struggling to find the erroneous calculation(s) and would really appreciate any help. Apologies if this is not suitable as a question! CollisionPolygon.java: package biz.hireholly.gameplay; import android.graphics.Canvas; import android.graphics.Color; import android.graphics.Paint; import biz.hireholly.gameplay.Types.Vect; public class CollisionPolygon { Paint paint; private Vect[] vertices; private Vect[] separationAxes; CollisionPolygon(Vect[] vertices){ this.vertices = vertices; //compute edges and separations axes separationAxes = new Vect[vertices.length]; for (int i = 0; i < vertices.length; i++) { // get the current vertex Vect p1 = vertices[i]; // get the next vertex Vect p2 = vertices[i + 1 == vertices.length ? 0 : i + 1]; // subtract the two to get the edge vector Vect edge = p1.subtract(p2); // get either perpendicular vector Vect normal = edge.perp(); // the perp method is just (x, y) => (-y, x) or (y, -x) separationAxes[i] = normal; } paint = new Paint(); paint.setColor(Color.RED); } public void draw(Canvas c, int xPos, int yPos){ for (int i = 0; i < vertices.length; i++) { Vect v1 = vertices[i]; Vect v2 = vertices[i + 1 == vertices.length ? 0 : i + 1]; c.drawLine( xPos + v1.x, yPos + v1.y, xPos + v2.x, yPos + v2.y, paint); } } /* consider changing to a static function */ public boolean intersects(CollisionPolygon p){ // loop over this polygons separation exes for (Vect axis : separationAxes) { // project both shapes onto the axis Vect p1 = this.minMaxProjection(axis); Vect p2 = p.minMaxProjection(axis); // do the projections overlap? if (!p1.overlap(p2)) { // then we can guarantee that the shapes do not overlap return false; } } // loop over the other polygons separation axes Vect[] sepAxesOther = p.getSeparationAxes(); for (Vect axis : sepAxesOther) { // project both shapes onto the axis Vect p1 = this.minMaxProjection(axis); Vect p2 = p.minMaxProjection(axis); // do the projections overlap? if (!p1.overlap(p2)) { // then we can guarantee that the shapes do not overlap return false; } } // if we get here then we know that every axis had overlap on it // so we can guarantee an intersection return true; } /* Note projections wont actually be acurate if the axes aren't normalised * but that's not necessary since we just need a boolean return from our * intersects not a Minimum Translation Vector. */ private Vect minMaxProjection(Vect axis) { float min = axis.dot(vertices[0]); float max = min; for (int i = 1; i < vertices.length; i++) { float p = axis.dot(vertices[i]); if (p < min) { min = p; } else if (p > max) { max = p; } } Vect minMaxProj = new Vect(min, max); return minMaxProj; } public Vect[] getSeparationAxes() { return separationAxes; } public Vect[] getVertices() { return vertices; } } Vect.java: package biz.hireholly.gameplay.Types; /* NOTE: Can also be used to hold vertices! Projections, coordinates ect */ public class Vect{ public float x; public float y; public Vect(float x, float y){ this.x = x; this.y = y; } public Vect perp() { return new Vect(-y, x); } public Vect subtract(Vect other) { return new Vect(x - other.x, y - other.y); } public boolean overlap(Vect other) { if( other.x <= y || other.y >= x){ return true; } return false; } /* used specifically for my SAT implementation which i'm figuring out as i go, * references for later.. * http://www.gamedev.net/page/resources/_/technical/game-programming/2d-rotated-rectangle-collision-r2604 * http://www.codezealot.org/archives/55 */ public float scalarDotProjection(Vect other) { //multiplier = dot product / length^2 float multiplier = dot(other) / (x*x + y*y); //to get the x/y of the projection vector multiply by x/y of axis float projX = multiplier * x; float projY = multiplier * y; //we want to return the dot product of the projection, it's meaningless but useful in our SAT case return dot(new Vect(projX,projY)); } public float dot(Vect other){ return (other.x*x + other.y*y); } }

    Read the article

  • Java 2D Rectangle Collision? [on hold]

    - by Andreas Elia
    I am just wanting to know of another (longer OR shorter) way of getting 100% effective collisions on a 2D plat-former. The current collision system that is in place works from coords on the level and does not always work reliably. Thank you in advance for any help/support. The current system draws a rectangle and is checking to see if any two points collide. From testing, the system can sometimes "glitch" and allow the player to collide into walls etc. Player Class http://pastebin.com/2zE8vz8R Main Class http://pastebin.com/A6Utb3ti

    Read the article

  • Music Notation Editor - Refactoring view creation logic elseware

    - by Cyril Silverman
    Let me preface by saying that knowing some elementary music theory and music notation may be helpful in grasping the problem at hand. I'm currently building a Music Notation and Tablature Editor (in Javascript). But I've come to a point where the core parts of the program are more or less there. All functionality I plan to add at this point will really build off the foundation that I've created. As a result, I want to refactor to really solidify my code. I'm using an API called VexFlow to render notation. Basically I pass the parts of the editor's state to VexFlow to build the graphical representation of the score. Here is a rough and stripped down UML diagram showing you the outline of my program: In essence, a Part has many Measures which has many Notes which has many NoteItems (yes, this is semantically weird, as a chord is represented as a Note with multiple NoteItems, individual pitches or fret positions). All of the relationships are bi-directional. There are a few problems with my design because my Measure class contains the majority of the entire application view logic. The class holds the data about all VexFlow objects (the graphical representation of the score). It contains the graphical Staff object and the graphical notes. (Shouldn't these be placed somewhere else in the program?) While VexFlowFactory deals with actual creation (and some processing) of most of the VexFlow objects, Measure still "directs" the creation of all the objects and what order they are supposed to be created in for both the VexFlowStaff and VexFlowNotes. I'm not looking for a specific answer as you'd need a much deeper understanding of my code. Just a general direction to go in. Here's a thought I had, create an MeasureView/NoteView/PartView classes that contains the basic VexFlow objects for each class in addition to any extraneous logic for it's creation? but where would these views be contained? Do I create a ScoreView that is a parallel graphical representation of everything? So that ScoreView.render() would cascade down PartView and call render for each PartView and casade down into each MeasureView, etc. Again, I just have no idea what direction to go in. The more I think about it, the more ways to go seem to pop into my head. I tried to be as concise and simplistic as possible while still getting my problem across. Please feel free to ask me any questions if anything is unclear. It's quite a struggle trying to dumb down a complicated problem to its core parts.

    Read the article

  • Unit Testing with NUnit and Moles Redux

    - by João Angelo
    Almost two years ago, when Moles was still being packaged alongside Pex, I wrote a post on how to run NUnit tests supporting moled types. A lot has changed since then and Moles is now being distributed independently of Pex, but maintaining support for integration with NUnit and other testing frameworks. For NUnit the support is provided by an addin class library (Microsoft.Moles.NUnit.dll) that you need to reference in your test project so that you can decorate yours tests with the MoledAttribute. The addin DLL must also be placed in the addins folder inside the NUnit installation directory. There is however a downside, since Moles and NUnit follow a different release cycle and the addin DLL must be built against a specific NUnit version, you may find that the release included with the latest version of Moles does not work with your version of NUnit. Fortunately the code for building the NUnit addin is supplied in the archive (moles.samples.zip) that you can found in the Documentation folder inside the Moles installation directory. By rebuilding the addin against your specific version of NUnit you are able to support any version. Also to note that in Moles 0.94.51023.0 the addin code did not support the use of TestCaseAttribute in your moled tests. However, if you need this support, you need to make just a couple of changes. Change the ITestDecorator.Decorate method in the MolesAddin class: Test ITestDecorator.Decorate(Test test, MemberInfo member) { SafeDebug.AssumeNotNull(test, "test"); SafeDebug.AssumeNotNull(member, "member"); bool isTestFixture = true; isTestFixture &= test.IsSuite; isTestFixture &= test.FixtureType != null; bool hasMoledAttribute = true; hasMoledAttribute &= !SafeArray.IsNullOrEmpty( member.GetCustomAttributes(typeof(MoledAttribute), false)); if (!isTestFixture && hasMoledAttribute) { return new MoledTest(test); } return test; } Change the Tests property in the MoledTest class: public override System.Collections.IList Tests { get { if (this.test.Tests == null) { return null; } var moled = new List<Test>(this.test.Tests.Count); foreach (var test in this.test.Tests) { moled.Add(new MoledTest((Test)test)); } return moled; } } Disclaimer: I only tested this implementation against NUnit 2.5.10.11092 version. Finally you just need to run the NUnit console runner through the Moles runner. A quick example follows: moles.runner.exe [Tests.dll] /r:nunit-console.exe /x86 /args:[NUnitArgument1] /args:[NUnitArgument2]

    Read the article

  • Less than 50 Lines of Code to Create a Java Palette in NetBeans

    - by Geertjan
    Want to drag and drop Java code snippets into the palette, in the same way as can be done for HTML files? If so, create a new module and add a class with the content below and you're done. You'll be able to select a piece of Java code, drag it into the palette (Ctrl-Shift-8 to open it), where you'll be able to set a name, tooltip, and icons for the snippet, and then you'll be able to drag it out of the palette into any Java files you like. The palette content is persisted across restarts of the IDE. package org.netbeans.modules.javasourcefilepalette; import java.io.IOException; import javax.swing.Action; import org.netbeans.api.editor.mimelookup.MimeRegistration; import org.netbeans.spi.palette.DragAndDropHandler; import org.netbeans.spi.palette.PaletteActions; import org.netbeans.spi.palette.PaletteController; import org.netbeans.spi.palette.PaletteFactory; import org.openide.util.Exceptions; import org.openide.util.Lookup; import org.openide.util.datatransfer.ExTransferable; public class JavaSourceFileLayerPaletteFactory { private static PaletteController palette = null; @MimeRegistration(mimeType = "text/x-java", service = PaletteController.class) public static PaletteController createPalette() { try { if (null == palette) { return PaletteFactory.createPalette( //Folder: "JavaPalette", //Palette Actions: new PaletteActions() { @Override public Action[] getImportActions() {return null;} @Override public Action[] getCustomPaletteActions() {return null;} @Override public Action[] getCustomCategoryActions(Lookup lkp) {return null;} @Override public Action[] getCustomItemActions(Lookup lkp) {return null;} @Override public Action getPreferredAction(Lookup lkp) {return null;} }, //Palette Filter: null, //Drag and Drop Handler: new DragAndDropHandler(true) { @Override public void customize(ExTransferable et, Lookup lkp) {} }); } } catch (IOException ex) { Exceptions.printStackTrace(ex); } return null; } } In my layer file, I have this content: <folder name="JavaPalette"> <folder name="Snippets"/> </folder> That's all. Run the module. Open a Java source file and the palette will automatically open. Drag some code into the palette and a dialog will pop up asking for some details like display name and icons. Then the snippet will be in the palette and you'll be able to drag and drop it anywhere you like. Use the Palette Manager, which is automatically integrated, to add new categories and show/hide palette items. Related blog entry, for which the above is a big simplification: Drag/Drop Snippets into Palette .

    Read the article

  • Breakout clone, how to handle/design for collision detection/physics between objects?

    - by Zolomon
    I'm working on a breakout clone, and I wish to create some realistic physics effects for collision - angles on the paddle should allow the ball to bounce, as well as doing curve balls etc. I could use per-pixel based collision detection, but then I thought it might be easier with line/circle intersection testing. So, then I naturally consider making a polygon class for the line-based objects and use the built-in circle class for the circular objects. That sounds like an OK approach, right? And then just check for collision using the specified algorithm based on the objects that might be within each other's range?

    Read the article

  • How do I communicate with an IronPython component in a C#/XNA game?

    - by Jonathan Hobbs
    My XNA game is component-oriented, and has various components for position, physics representation, rendering, etc, all of which extend a base Component class. The player and enemies also have controllers which are currently defined in C#. I'd like to turn them into Python scripts, but I'm not sure how to interact with those scripts. The examples in Embedding IronPython in a C# Application suggest I'd have to create a wrapper class (e.g. a Script component) which compiles a Python script, and call the Update methods of the component in the script Is this the most effective way of working with a Python object? I feel that I'm missing something in my research - there must be a way to load up a script, instantiate a Python object and then work directly with it from within C#. Or is the wrapper required?

    Read the article

  • What is bootstrap listener in the context of Spring framework?

    - by jillionbug2fix
    I am studying Spring framework, in web.xml I added following which is a bootstrap listener. Can anyone give me a proper idea of what is a bootstrap listener? <listener> <listener-class>org.springframework.web.context.ContextLoaderListener</listener-class> </listener> You can see the doc here: ContextLoadListener Bootstrap listener to start up and shut down Spring's root WebApplicationContext. Simply delegates to ContextLoader as well as to ContextCleanupListener. This listener should be registered after Log4jConfigListener in web.xml, if the latter is used. As of Spring 3.1, ContextLoaderListener supports injecting the root web application context via the ContextLoaderListener(WebApplicationContext) constructor, allowing for programmatic configuration in Servlet 3.0+ environments. See WebApplicationInitializer for usage examples...

    Read the article

  • .NET Security Part 4

    - by Simon Cooper
    Finally, in this series, I am going to cover some of the security issues that can trip you up when using sandboxed appdomains. DISCLAIMER: I am not a security expert, and this is by no means an exhaustive list. If you actually are writing security-critical code, then get a proper security audit of your code by a professional. The examples below are just illustrations of the sort of things that can go wrong. 1. AppDomainSetup.ApplicationBase The most obvious one is the issue covered in the MSDN documentation on creating a sandbox, in step 3 – the sandboxed appdomain has the same ApplicationBase as the controlling appdomain. So let’s explore what happens when they are the same, and an exception is thrown. In the sandboxed assembly, Sandboxed.dll (IPlugin is an interface in a partially-trusted assembly, with a single MethodToDoThings on it): public class UntrustedPlugin : MarshalByRefObject, IPlugin { // implements IPlugin.MethodToDoThings() public void MethodToDoThings() { throw new EvilException(); } } [Serializable] internal class EvilException : Exception { public override string ToString() { // show we have read access to C:\Windows // read the first 5 directories Console.WriteLine("Pwned! Mwuahahah!"); foreach (var d in Directory.EnumerateDirectories(@"C:\Windows").Take(5)) { Console.WriteLine(d.FullName); } return base.ToString(); } } And in the controlling assembly: // what can possibly go wrong? AppDomainSetup appDomainSetup = new AppDomainSetup { ApplicationBase = AppDomain.CurrentDomain.SetupInformation.ApplicationBase } // only grant permissions to execute // and to read the application base, nothing else PermissionSet restrictedPerms = new PermissionSet(PermissionState.None); restrictedPerms.AddPermission( new SecurityPermission(SecurityPermissionFlag.Execution)); restrictedPerms.AddPermission( new FileIOPermission(FileIOPermissionAccess.Read, appDomainSetup.ApplicationBase); restrictedPerms.AddPermission( new FileIOPermission(FileIOPermissionAccess.pathDiscovery, appDomainSetup.ApplicationBase); // create the sandbox AppDomain sandbox = AppDomain.CreateDomain("Sandbox", null, appDomainSetup, restrictedPerms); // execute UntrustedPlugin in the sandbox // don't crash the application if the sandbox throws an exception IPlugin o = (IPlugin)sandbox.CreateInstanceFromAndUnwrap("Sandboxed.dll", "UntrustedPlugin"); try { o.MethodToDoThings() } catch (Exception e) { Console.WriteLine(e.ToString()); } And the result? Oops. We’ve allowed a class that should be sandboxed to execute code with fully-trusted permissions! How did this happen? Well, the key is the exact meaning of the ApplicationBase property: The application base directory is where the assembly manager begins probing for assemblies. When EvilException is thrown, it propagates from the sandboxed appdomain into the controlling assembly’s appdomain (as it’s marked as Serializable). When the exception is deserialized, the CLR finds and loads the sandboxed dll into the fully-trusted appdomain. Since the controlling appdomain’s ApplicationBase directory contains the sandboxed assembly, the CLR finds and loads the assembly into a full-trust appdomain, and the evil code is executed. So the problem isn’t exactly that the sandboxed appdomain’s ApplicationBase is the same as the controlling appdomain’s, it’s that the sandboxed dll was in such a place that the controlling appdomain could find it as part of the standard assembly resolution mechanism. The sandbox then forced the assembly to load in the controlling appdomain by throwing a serializable exception that propagated outside the sandbox. The easiest fix for this is to keep the sandbox ApplicationBase well away from the ApplicationBase of the controlling appdomain, and don’t allow the sandbox permissions to access the controlling appdomain’s ApplicationBase directory. If you do this, then the sandboxed assembly can’t be accidentally loaded into the fully-trusted appdomain, and the code can’t be executed. If the plugin does try to induce the controlling appdomain to load an assembly it shouldn’t, a SerializationException will be thrown when it tries to load the assembly to deserialize the exception, and no damage will be done. 2. Loading the sandboxed dll into the application appdomain As an extension of the previous point, you shouldn’t directly reference types or methods in the sandboxed dll from your application code. That loads the assembly into the fully-trusted appdomain, and from there code in the assembly could be executed. Instead, pull out methods you want the sandboxed dll to have into an interface or class in a partially-trusted assembly you control, and execute methods via that instead (similar to the example above with the IPlugin interface). If you need to have a look at the assembly before executing it in the sandbox, either examine the assembly using reflection from within the sandbox, or load the assembly into the Reflection-only context in the application’s appdomain. The code in assemblies in the reflection-only context can’t be executed, it can only be reflected upon, thus protecting your appdomain from malicious code. 3. Incorrectly asserting permissions You should only assert permissions when you are absolutely sure they’re safe. For example, this method allows a caller read-access to any file they call this method with, including your documents, any network shares, the C:\Windows directory, etc: [SecuritySafeCritical] public static string GetFileText(string filePath) { new FileIOPermission(FileIOPermissionAccess.Read, filePath).Assert(); return File.ReadAllText(filePath); } Be careful when asserting permissions, and ensure you’re not providing a loophole sandboxed dlls can use to gain access to things they shouldn’t be able to. Conclusion Hopefully, that’s given you an idea of some of the ways it’s possible to get past the .NET security system. As I said before, this post is not exhaustive, and you certainly shouldn’t base any security-critical applications on the contents of this blog post. What this series should help with is understanding the possibilities of the security system, and what all the security attributes and classes mean and what they are used for, if you were to use the security system in the future.

    Read the article

  • Using Delegates in C# (Part 1)

    - by rajbk
    This post provides a very basic introduction of delegates in C#. Part 2 of this post can be read here. A delegate is a class that is derived from System.Delegate.  It contains a list of one or more methods called an invocation list. When a delegate instance is “invoked” with the arguments as defined in the signature of the delegate, each of the methods in the invocation list gets invoked with the arguments. The code below shows example with static and instance methods respectively: Static Methods 1: using System; 2: using System.Linq; 3: using System.Collections.Generic; 4: 5: public delegate void SayName(string name); 6: 7: public class Program 8: { 9: [STAThread] 10: static void Main(string[] args) 11: { 12: SayName englishDelegate = new SayName(SayNameInEnglish); 13: SayName frenchDelegate = new SayName(SayNameInFrench); 14: SayName combinedDelegate =(SayName)Delegate.Combine(englishDelegate, frenchDelegate); 15: 16: combinedDelegate.Invoke("Tom"); 17: Console.ReadLine(); 18: } 19: 20: static void SayNameInFrench(string name) { 21: Console.WriteLine("J'ai m'appelle " + name); 22: } 23: 24: static void SayNameInEnglish(string name) { 25: Console.WriteLine("My name is " + name); 26: } 27: } We have declared a delegate of type SayName with return type of void and taking an input parameter of name of type string. On line 12, we create a new instance of this delegate which refers to a static method - SayNameInEnglish.  SayNameInEnglish has the same return type and parameter list as the delegate declaration.  Once a delegate is instantiated, the instance will always refer to the same target. Delegates are immutable. On line 13, we create a new instance of the delegate but point to a different static method. As you may recall, a delegate instance encapsulates an invocation list. You create an invocation list by combining delegates using the Delegate.Combine method (there is an easier syntax as you will see later). When two non null delegate instances are combined, their invocation lists get combined to form a new invocation list. This is done in line 14.  On line 16, we invoke the delegate with the Invoke method and pass in the required string parameter. Since the delegate has an invocation list with two entries, each of the method in the invocation list is invoked. If an unhandled exception occurs during the invocation of one of these methods, the exception gets bubbled up to the line where the invocation was made (line 16). If a delegate is null and you try to invoke it, you will get a System.NullReferenceException. We see the following output when the method is run: My name is TomJ'ai m'apelle Tom Instance Methods The code below outputs the same results as before. The only difference here is we are creating delegates that point to a target object (an instance of Translator) and instance methods which have the same signature as the delegate type. The target object can never be null. We also use the short cut syntax += to combine the delegates instead of Delegate.Combine. 1: public delegate void SayName(string name); 2: 3: public class Program 4: { 5: [STAThread] 6: static void Main(string[] args) 7: { 8: Translator translator = new Translator(); 9: SayName combinedDelegate = new SayName(translator.SayNameInEnglish); 10: combinedDelegate += new SayName(translator.SayNameInFrench); 11:  12: combinedDelegate.Invoke("Tom"); 13: Console.ReadLine(); 14: } 15: } 16: 17: public class Translator { 18: public void SayNameInFrench(string name) { 19: Console.WriteLine("J'ai m'appelle " + name); 20: } 21: 22: public void SayNameInEnglish(string name) { 23: Console.WriteLine("My name is " + name); 24: } 25: } A delegate can be removed from a combination of delegates by using the –= operator. Removing a delegate from an empty list or removing a delegate that does not exist in a non empty list will not result in an exception. Delegates are invoked synchronously using the Invoke method. We can also invoke them asynchronously using the BeginInvoke and EndInvoke methods which are compiler generated.

    Read the article

  • What is required for a scope in an injection framework?

    - by johncarl
    Working with libraries like Seam, Guice and Spring I have become accustomed to dealing with variables within a scope. These libraries give you a handful of scopes and allow you to define your own. This is a very handy pattern for dealing with variable lifecycles and dependency injection. I have been trying to identify where scoping is the proper solution, or where another solution is more appropriate (context variable, singleton, etc). I have found that if the scope lifecycle is not well defined it is very difficult and often failure prone to manage injections in this way. I have searched on this topic but have found little discussion on the pattern. Is there some good articles discussing where to use scoping and what are required/suggested prerequisites for scoping? I interested in both reference discussion or your view on what is required or suggested for a proper scope implementation. Keep in mind that I am referring to scoping as a general idea, this includes things like globally scoped singletons, request or session scoped web variable, conversation scopes, and others. Edit: Some simple background on custom scopes: Google Guice custom scope Some definitions relevant to above: “scoping” - A set of requirements that define what objects get injected at what time. A simple example of this is Thread scope, based on a ThreadLocal. This scope would inject a variable based on what thread instantiated the class. Here's an example of this: “context variable” - A repository passed from one object to another holding relevant variables. Much like scoping this is a more brute force way of accessing variables based on the calling code. Example: methodOne(Context context){ methodTwo(context); } methodTwo(Context context){ ... //same context as method one, if called from method one } “globally scoped singleton” - Following the singleton pattern, there is one object per application instance. This applies to scopes because there is a basic lifecycle to this object: there is only one of these objects instantiated. Here's an example of a JSR330 Singleton scoped object: @Singleton public void SingletonExample{ ... } usage: public class One { @Inject SingeltonExample example1; } public class Two { @Inject SingeltonExample example2; } After instantiation: one.example1 == two.example2 //true;

    Read the article

  • Filtering List Data with a jQuery-searchFilter Plugin

    - by Rick Strahl
    When dealing with list based data on HTML forms, filtering that data down based on a search text expression is an extremely useful feature. We’re used to search boxes on just about anything these days and HTML forms should be no different. In this post I’ll describe how you can easily filter a list down to just the elements that match text typed into a search box. It’s a pretty simple task and it’s super easy to do, but I get a surprising number of comments from developers I work with who are surprised how easy it is to hook up this sort of behavior, that I thought it’s worth a blog post. But Angular does that out of the Box, right? These days it seems everybody is raving about Angular and the rich SPA features it provides. One of the cool features of Angular is the ability to do drop dead simple filters where you can specify a filter expression as part of a looping construct and automatically have that filter applied so that only items that match the filter show. I think Angular has single handedly elevated search filters to first rate, front-row status because it’s so easy. I love using Angular myself, but Angular is not a generic solution to problems like this. For one thing, using Angular requires you to render the list data with Angular – if you have data that is server rendered or static, then Angular doesn’t work. Not all applications are client side rendered SPAs – not by a long shot, and nor do all applications need to become SPAs. Long story short, it’s pretty easy to achieve text filtering effects using jQuery (or plain JavaScript for that matter) with just a little bit of work. Let’s take a look at an example. Why Filter? Client side filtering is a very useful tool that can make it drastically easier to sift through data displayed in client side lists. In my applications I like to display scrollable lists that contain a reasonably large amount of data, rather than the classic paging style displays which tend to be painful to use. So I often display 50 or so items per ‘page’ and it’s extremely useful to be able to filter this list down. Here’s an example in my Time Trakker application where I can quickly glance at various common views of my time entries. I can see Recent Entries, Unbilled Entries, Open Entries etc and filter those down by individual customers and so forth. Each of these lists results tends to be a few pages worth of scrollable content. The following screen shot shows a filtered view of Recent Entries that match the search keyword of CellPage: As you can see in this animated GIF, the filter is applied as you type, displaying only entries that match the text anywhere inside of the text of each of the list items. This is an immediately useful feature for just about any list display and adds significant value. A few lines of jQuery The good news is that this is trivially simple using jQuery. To get an idea what this looks like, here’s the relevant page layout showing only the search box and the list layout:<div id="divItemWrapper"> <div class="time-entry"> <div class="time-entry-right"> May 11, 2014 - 7:20pm<br /> <span style='color:steelblue'>0h:40min</span><br /> <a id="btnDeleteButton" href="#" class="hoverbutton" data-id="16825"> <img src="images/remove.gif" /> </a> </div> <div class="punchedoutimg"></div> <b><a href='/TimeTrakkerWeb/punchout/16825'>Project Housekeeping</a></b><br /> <small><i>Sawgrass</i></small> </div> ... more items here </div> So we have a searchbox txtSearchPage and a bunch of DIV elements with a .time-entry CSS class attached that makes up the list of items displayed. To hook up the search filter with jQuery is merely a matter of a few lines of jQuery code hooked to the .keyup() event handler: <script type="text/javascript"> $("#txtSearchPage").keyup(function() { var search = $(this).val(); $(".time-entry").show(); if (search) $(".time-entry").not(":contains(" + search + ")").hide(); }); </script> The idea here is pretty simple: You capture the keystroke in the search box and capture the search text. Using that search text you first make all items visible and then hide all the items that don’t match. Since DOM changes are applied after a method finishes execution in JavaScript, the show and hide operations are effectively batched up and so the view changes only to the final list rather than flashing the whole list and then removing items on a slow machine. You get the desired effect of the list showing the items in question. Case Insensitive Filtering But there is one problem with the solution above: The jQuery :contains filter is case sensitive, so your search text has to match expressions explicitly which is a bit cumbersome when typing. In the screen capture above I actually cheated – I used a custom filter that provides case insensitive contains behavior. jQuery makes it really easy to create custom query filters, and so I created one called containsNoCase. Here’s the implementation of this custom filter:$.expr[":"].containsNoCase = function(el, i, m) { var search = m[3]; if (!search) return false; return new RegExp(search, "i").test($(el).text()); }; This filter can be added anywhere where page level JavaScript runs – in page script or a seperately loaded .js file.  The filter basically extends jQuery with a : expression. Filters get passed a tokenized array that contains the expression. In this case the m[3] contains the search text from inside of the brackets. A filter basically looks at the active element that is passed in and then can return true or false to determine whether the item should be matched. Here I check a regular expression that looks for the search text in the element’s text. So the code for the filter now changes to:$(".time-entry").not(":containsNoCase(" + search + ")").hide(); And voila – you now have a case insensitive search.You can play around with another simpler example using this Plunkr:http://plnkr.co/edit/hDprZ3IlC6uzwFJtgHJh?p=preview Wrapping it up in a jQuery Plug-in To make this even easier to use and so that you can more easily remember how to use this search type filter, we can wrap this logic into a small jQuery plug-in:(function($, undefined) { $.expr[":"].containsNoCase = function(el, i, m) { var search = m[3]; if (!search) return false; return new RegExp(search, "i").test($(el).text()); }; $.fn.searchFilter = function(options) { var opt = $.extend({ // target selector targetSelector: "", // number of characters before search is applied charCount: 1 }, options); return this.each(function() { var $el = $(this); $el.keyup(function() { var search = $(this).val(); var $target = $(opt.targetSelector); $target.show(); if (search && search.length >= opt.charCount) $target.not(":containsNoCase(" + search + ")").hide(); }); }); }; })(jQuery); To use this plug-in now becomes a one liner:$("#txtSearchPagePlugin").searchFilter({ targetSelector: ".time-entry", charCount: 2}) You attach the .searchFilter() plug-in to the text box you are searching and specify a targetSelector that is to be filtered. Optionally you can specify a character count at which the filter kicks in since it’s kind of useless to filter at a single character typically. Summary This is s a very easy solution to a cool user interface feature your users will thank you for. Search filtering is a simple but highly effective user interface feature, and as you’ve seen in this post it’s very simple to create this behavior with just a few lines of jQuery code. While all the cool kids are doing Angular these days, jQuery is still useful in many applications that don’t embrace the ‘everything generated in JavaScript’ paradigm. I hope this jQuery plug-in or just the raw jQuery will be useful to some of you… Resources Example on Plunker© Rick Strahl, West Wind Technologies, 2005-2014Posted in jQuery  HTML5  JavaScript   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Unity Frustum Culling Issue

    - by N0xus
    I'm creating a game that utilizes off center projection. I've got my game set up in a CAVE being rendered in a cluster, over 8 PC's with 4 of these PC's being used for each eye (this creates a stereoscopic effect). To help with alignment in the CAVE I've implemented an off center projection class. This class simply tells the camera what its top left, bottom left & bottom right corners are. From here, it creates a new projection matrix showing the the player the left and right of their world. However, inside Unity's editor, the camera is still facing forwards and, as a result the culling inside Unity isn't rendering half of the image that appears on the left and right screens. Does anyone know of a way to to either turn off the culling in Unity, or find a way to fix the projection matrix issue?

    Read the article

  • Error in my Separating Axis Theorem collision code

    - by Holly
    The only collision experience i've had was with simple rectangles, i wanted to find something that would allow me to define polygonal areas for collision and have been trying to make sense of SAT using these two links Though i'm a bit iffy with the math for the most part i feel like i understand the theory! Except my implementation somewhere down the line must be off as: (excuse the hideous font) As mentioned above i have defined a CollisionPolygon class where most of my theory is implemented and then have a helper class called Vect which was meant to be for Vectors but has also been used to contain a vertex given that both just have two float values. I've tried stepping through the function and inspecting the values to solve things but given so many axes and vectors and new math to work out as i go i'm struggling to find the erroneous calculation(s) and would really appreciate any help. Apologies if this is not suitable as a question! CollisionPolygon.java: package biz.hireholly.gameplay; import android.graphics.Canvas; import android.graphics.Color; import android.graphics.Paint; import biz.hireholly.gameplay.Types.Vect; public class CollisionPolygon { Paint paint; private Vect[] vertices; private Vect[] separationAxes; int x; int y; CollisionPolygon(Vect[] vertices){ this.vertices = vertices; //compute edges and separations axes separationAxes = new Vect[vertices.length]; for (int i = 0; i < vertices.length; i++) { // get the current vertex Vect p1 = vertices[i]; // get the next vertex Vect p2 = vertices[i + 1 == vertices.length ? 0 : i + 1]; // subtract the two to get the edge vector Vect edge = p1.subtract(p2); // get either perpendicular vector Vect normal = edge.perp(); // the perp method is just (x, y) => (-y, x) or (y, -x) separationAxes[i] = normal; } paint = new Paint(); paint.setColor(Color.RED); } public void draw(Canvas c, int xPos, int yPos){ for (int i = 0; i < vertices.length; i++) { Vect v1 = vertices[i]; Vect v2 = vertices[i + 1 == vertices.length ? 0 : i + 1]; c.drawLine( xPos + v1.x, yPos + v1.y, xPos + v2.x, yPos + v2.y, paint); } } public void update(int xPos, int yPos){ x = xPos; y = yPos; } /* consider changing to a static function */ public boolean intersects(CollisionPolygon p){ // loop over this polygons separation exes for (Vect axis : separationAxes) { // project both shapes onto the axis Vect p1 = this.minMaxProjection(axis); Vect p2 = p.minMaxProjection(axis); // do the projections overlap? if (!p1.overlap(p2)) { // then we can guarantee that the shapes do not overlap return false; } } // loop over the other polygons separation axes Vect[] sepAxesOther = p.getSeparationAxes(); for (Vect axis : sepAxesOther) { // project both shapes onto the axis Vect p1 = this.minMaxProjection(axis); Vect p2 = p.minMaxProjection(axis); // do the projections overlap? if (!p1.overlap(p2)) { // then we can guarantee that the shapes do not overlap return false; } } // if we get here then we know that every axis had overlap on it // so we can guarantee an intersection return true; } /* Note projections wont actually be acurate if the axes aren't normalised * but that's not necessary since we just need a boolean return from our * intersects not a Minimum Translation Vector. */ private Vect minMaxProjection(Vect axis) { float min = axis.dot(new Vect(vertices[0].x+x, vertices[0].y+y)); float max = min; for (int i = 1; i < vertices.length; i++) { float p = axis.dot(new Vect(vertices[i].x+x, vertices[i].y+y)); if (p < min) { min = p; } else if (p > max) { max = p; } } Vect minMaxProj = new Vect(min, max); return minMaxProj; } public Vect[] getSeparationAxes() { return separationAxes; } public Vect[] getVertices() { return vertices; } } Vect.java: package biz.hireholly.gameplay.Types; /* NOTE: Can also be used to hold vertices! Projections, coordinates ect */ public class Vect{ public float x; public float y; public Vect(float x, float y){ this.x = x; this.y = y; } public Vect perp() { return new Vect(-y, x); } public Vect subtract(Vect other) { return new Vect(x - other.x, y - other.y); } public boolean overlap(Vect other) { if(y > other.x && other.y > x){ return true; } return false; } /* used specifically for my SAT implementation which i'm figuring out as i go, * references for later.. * http://www.gamedev.net/page/resources/_/technical/game-programming/2d-rotated-rectangle-collision-r2604 * http://www.codezealot.org/archives/55 */ public float scalarDotProjection(Vect other) { //multiplier = dot product / length^2 float multiplier = dot(other) / (x*x + y*y); //to get the x/y of the projection vector multiply by x/y of axis float projX = multiplier * x; float projY = multiplier * y; //we want to return the dot product of the projection, it's meaningless but useful in our SAT case return dot(new Vect(projX,projY)); } public float dot(Vect other){ return (other.x*x + other.y*y); } }

    Read the article

  • Difference between spring setter and interface injection?

    - by Satish Pandey
    I know how constructor and setter injection works in spring. Normally I use interfaces instead of classes to inject beans using setter and I consider it as interface injection, but in case of constructor we also use interfaces (I am confused). In following example I use JobProcessor interface instead of JobProcessorImpl class. public class JobScheduler { // JobProcessor interface private JobProcessor jobProcessor; // Dependecy injection public void setJobProcessor(JobProcessor jobProcessor){ this.jobProcessor = jobProcessor; } } I tried to find a solution by googling but there are different opinions by writers. Even some people says that spring doesn't support interface injection in their blogs/statements. Can someone help me by example?

    Read the article

  • Simple OpenGL program major slow down at high resolution

    - by Grieverheart
    I have created a small OpenGL 3.3 (Core) program using freeglut. The whole geometry is two boxes and one plane with some textures. I can move around like in an FPS and that's it. The problem is I face a big slow down of fps when I make my window large (i.e. above 1920x1080). I have monitors GPU usage when in full-screen and it shows GPU load of nearly 100% and Memory Controller load of ~85%. When at 600x600, these numbers are at about 45%, my CPU is also at full load. I use deferred rendering at the moment but even when forward rendering, the slow down was nearly as severe. I can't imagine my GPU is not powerful enough for something this simple when I play many games at 1080p (I have a GeForce GT 120M btw). Below are my shaders, First Pass #VS #version 330 core uniform mat4 ModelViewMatrix; uniform mat3 NormalMatrix; uniform mat4 MVPMatrix; uniform float scale; layout(location = 0) in vec3 in_Position; layout(location = 1) in vec3 in_Normal; layout(location = 2) in vec2 in_TexCoord; smooth out vec3 pass_Normal; smooth out vec3 pass_Position; smooth out vec2 TexCoord; void main(void){ pass_Position = (ModelViewMatrix * vec4(scale * in_Position, 1.0)).xyz; pass_Normal = NormalMatrix * in_Normal; TexCoord = in_TexCoord; gl_Position = MVPMatrix * vec4(scale * in_Position, 1.0); } #FS #version 330 core uniform sampler2D inSampler; smooth in vec3 pass_Normal; smooth in vec3 pass_Position; smooth in vec2 TexCoord; layout(location = 0) out vec3 outPosition; layout(location = 1) out vec3 outDiffuse; layout(location = 2) out vec3 outNormal; void main(void){ outPosition = pass_Position; outDiffuse = texture(inSampler, TexCoord).xyz; outNormal = pass_Normal; } Second Pass #VS #version 330 core uniform float scale; layout(location = 0) in vec3 in_Position; void main(void){ gl_Position = mat4(1.0) * vec4(scale * in_Position, 1.0); } #FS #version 330 core struct Light{ vec3 direction; }; uniform ivec2 ScreenSize; uniform Light light; uniform sampler2D PositionMap; uniform sampler2D ColorMap; uniform sampler2D NormalMap; out vec4 out_Color; vec2 CalcTexCoord(void){ return gl_FragCoord.xy / ScreenSize; } vec4 CalcLight(vec3 position, vec3 normal){ vec4 DiffuseColor = vec4(0.0); vec4 SpecularColor = vec4(0.0); vec3 light_Direction = -normalize(light.direction); float diffuse = max(0.0, dot(normal, light_Direction)); if(diffuse 0.0){ DiffuseColor = diffuse * vec4(1.0); vec3 camera_Direction = normalize(-position); vec3 half_vector = normalize(camera_Direction + light_Direction); float specular = max(0.0, dot(normal, half_vector)); float fspecular = pow(specular, 128.0); SpecularColor = fspecular * vec4(1.0); } return DiffuseColor + SpecularColor + vec4(0.1); } void main(void){ vec2 TexCoord = CalcTexCoord(); vec3 Position = texture(PositionMap, TexCoord).xyz; vec3 Color = texture(ColorMap, TexCoord).xyz; vec3 Normal = normalize(texture(NormalMap, TexCoord).xyz); out_Color = vec4(Color, 1.0) * CalcLight(Position, Normal); } Is it normal for the GPU to be used that much under the described circumstances? Is it due to poor performance of freeglut? I understand that the problem could be specific to my code, but I can't paste the whole code here, if you need more info, please tell me.

    Read the article

  • Level and Player objects - which should contain which?

    - by Thane Brimhall
    I've been working on a several simple games, and I've always come to a decision point where I have to choose whether to have the Level object as an attribute of the Player class or the Player as an attribute of the Level class. I can see arguments for both: The Level should contain the player because it also contains every other entity. In fact it just makes sense this way: "John is in the room." It makes it a bit more difficult to move the player to a new level, however, because then each level has to pass its player object to an upcoming level. On the other hand, it makes programming sense to me to leave the player as the top-level object that is persistent between levels, and the environment changes because the player decides to change his level and location. It becomes very easy to change levels, because all I have to do is replace the level variable on the player. What's the most common practice here? Or better yet, is there a "right" way to architecture this relationship?

    Read the article

  • 10.10 - Error compiling kernel in iw_ndis.c

    - by chris
    I just wanted to compile a kernel (as described here), but I got this error: ubuntu/ndiswrapper/iw_ndis.c:1966: error: unknown field ‘num_private’ specified in initializer ubuntu/ndiswrapper/iw_ndis.c:1966: warning: initialization makes pointer from integer without a cast ubuntu/ndiswrapper/iw_ndis.c:1967: error: unknown field ‘num_private_args’ specified in initializer ubuntu/ndiswrapper/iw_ndis.c:1967: warning: excess elements in struct initializer ubuntu/ndiswrapper/iw_ndis.c:1967: warning: (near initialization for ‘ndis_handler_def’) ubuntu/ndiswrapper/iw_ndis.c:1970: error: unknown field ‘private’ specified in initializer ubuntu/ndiswrapper/iw_ndis.c:1970: warning: initialization makes integer from pointer without a cast ubuntu/ndiswrapper/iw_ndis.c:1970: error: initializer element is not computable at load time ubuntu/ndiswrapper/iw_ndis.c:1970: error: (near initialization for ‘ndis_handler_def.num_standard’) ubuntu/ndiswrapper/iw_ndis.c:1971: error: unknown field ‘private_args’ specified in initializer ubuntu/ndiswrapper/iw_ndis.c:1971: warning: initialization from incompatible pointer type Can anyone tell me what it means? Googling just came up with a result here on this site, where there was no answer, so maybe now someone knows.

    Read the article

  • Basic AI FSM - Handling state transition

    - by Galvanize
    I'm starting to study on how to implement game AI, and it seems to me that a very simple FSM for my Pong demo would be a nice way to start. My vision on implementing this would be to have a basic state interface and a class for each state, then the NPC would have an instance of the current state. The class should have an update method and directions on wich state to go next, depending on the event received. The question is: How do I handle this event? Should I have a regular addEventListener and a costum event system? Or should I check on update for the things that could change the current state? I'm feeling a bit lost, I feel I have a good grasp on the FSM concept but a good implementation seems tricky, thanks in advance.

    Read the article

  • Black Screen: How to set Projection/View Matrix

    - by Lisa
    I have a Windows Phone 8 C#/XAML with DirectX component project. I'm rendering some particles, but each particle is a rectangle versus a square (as I've set the vertices to be positions equally offset from each other). I used an Identity matrix in the view and projection matrix. I decided to add the windows aspect ratio to prevent the rectangles. But now I get a black screen. None of the particles are rendered now. I don't know what's wrong with my matrices. Can anyone see the problem? These are the default matrices in Microsoft's project example. View Matrix: XMVECTOR eye = XMVectorSet(0.0f, 0.7f, 1.5f, 0.0f); XMVECTOR at = XMVectorSet(0.0f, -0.1f, 0.0f, 0.0f); XMVECTOR up = XMVectorSet(0.0f, 1.0f, 0.0f, 0.0f); XMStoreFloat4x4(&m_constantBufferData.view, XMMatrixTranspose(XMMatrixLookAtRH(eye, at, up))); Projection Matrix: void CubeRenderer::CreateWindowSizeDependentResources() { Direct3DBase::CreateWindowSizeDependentResources(); float aspectRatio = m_windowBounds.Width / m_windowBounds.Height; float fovAngleY = 70.0f * XM_PI / 180.0f; if (aspectRatio < 1.0f) { fovAngleY /= aspectRatio; } XMStoreFloat4x4(&m_constantBufferData.projection, XMMatrixTranspose(XMMatrixPerspectiveFovRH(fovAngleY, aspectRatio, 0.01f, 100.0f))); } I've tried modifying them to use cocos2dx's WP8 example. XMMATRIX identityMatrix = XMMatrixIdentity(); float fovy = 60.0f; float aspect = m_windowBounds.Width / m_windowBounds.Height; float zNear = 0.1f; float zFar = 100.0f; float xmin, xmax, ymin, ymax; ymax = zNear * tanf(fovy * XM_PI / 360); ymin = -ymax; xmin = ymin * aspect; xmax = ymax * aspect; XMMATRIX tmpMatrix = XMMatrixPerspectiveOffCenterRH(xmin, xmax, ymin, ymax, zNear, zFar); XMMATRIX projectionMatrix = XMMatrixMultiply(tmpMatrix, identityMatrix); // View Matrix float fEyeX = m_windowBounds.Width * 0.5f; float fEyeY = m_windowBounds.Height * 0.5f; float fEyeZ = m_windowBounds.Height / 1.1566f; float fLookAtX = m_windowBounds.Width * 0.5f; float fLookAtY = m_windowBounds.Height * 0.5f; float fLookAtZ = 0.0f; float fUpX = 0.0f; float fUpY = 1.0f; float fUpZ = 0.0f; XMMATRIX tmpMatrix2 = XMMatrixLookAtRH(XMVectorSet(fEyeX,fEyeY,fEyeZ,0.f), XMVectorSet(fLookAtX,fLookAtY,fLookAtZ,0.f), XMVectorSet(fUpX,fUpY,fUpZ,0.f)); XMMATRIX viewMatrix = XMMatrixMultiply(tmpMatrix2, identityMatrix); XMStoreFloat4x4(&m_constantBufferData.view, viewMatrix); Vertex Shader cbuffer ModelViewProjectionConstantBuffer : register(b0) { //matrix model; matrix view; matrix projection; }; struct VertexInputType { float4 position : POSITION; float2 tex : TEXCOORD0; float4 color : COLOR; }; struct PixelInputType { float4 position : SV_POSITION; float2 tex : TEXCOORD0; float4 color : COLOR; }; PixelInputType main(VertexInputType input) { PixelInputType output; // Change the position vector to be 4 units for proper matrix calculations. input.position.w = 1.0f; //===================================== // TODO: ADDED for testing input.position.z = 0.0f; //===================================== // Calculate the position of the vertex against the world, view, and projection matrices. //output.position = mul(input.position, model); output.position = mul(input.position, view); output.position = mul(output.position, projection); // Store the texture coordinates for the pixel shader. output.tex = input.tex; // Store the particle color for the pixel shader. output.color = input.color; return output; } Before I render the shader, I set the view/projection matrices into the constant buffer void ParticleRenderer::SetShaderParameters() { ViewProjectionConstantBuffer* dataPtr; D3D11_MAPPED_SUBRESOURCE mappedResource; DX::ThrowIfFailed(m_d3dContext->Map(m_constantBuffer.Get(), 0, D3D11_MAP_WRITE_DISCARD, 0, &mappedResource)); dataPtr = (ViewProjectionConstantBuffer*)mappedResource.pData; dataPtr->view = m_constantBufferData.view; dataPtr->projection = m_constantBufferData.projection; m_d3dContext->Unmap(m_constantBuffer.Get(), 0); // Now set the constant buffer in the vertex shader with the updated values. m_d3dContext->VSSetConstantBuffers(0, 1, m_constantBuffer.GetAddressOf() ); // Set shader texture resource in the pixel shader. m_d3dContext->PSSetShaderResources(0, 1, &m_textureView); } Nothing, black screen... I tried so many different look at, eye, and up vectors. I tried transposing the matrices. I've set the particle center position to always be (0, 0, 0), I tried different positions too, just to make sure they're not being rendered offscreen.

    Read the article

  • MIT and copyright

    - by Petah
    I am contributing to a library that is licensed under the MIT license. In the license and in each class file it has a comment at the top saying: Copyright (c) 2011 Joe Bloggs <[email protected]> I assume that he owns the copyright to the file, and can change the license of that file as he sees fit. If I contribute to the library with a new class entirely write by me, can I claim copyright of that file. And put: Copyright (c) 2011 Petah Piper <[email protected]> at the top?

    Read the article

< Previous Page | 782 783 784 785 786 787 788 789 790 791 792 793  | Next Page >