Search Results

Search found 28369 results on 1135 pages for 'include once'.

Page 86/1135 | < Previous Page | 82 83 84 85 86 87 88 89 90 91 92 93  | Next Page >

  • Maven 2 assembly with dependencies: jar under scope "system" not included.

    - by YuppieNetworking
    Hello, I am using maven-assembly plugin to create a jar of my application, including its dependencies as follows: <assembly> <id>macosx</id> <formats> <format>tar.gz</format> <format>dir</format> </formats> <dependencySets> <dependencySet> <includes> <include>*:jar</include> </includes> <outputDirectory>lib</outputDirectory> </dependencySet> </dependencySets> </assembly> (I omitted some other stuff that is not related to the question) So far this has worked fine because it creates a lib directory with all dependencies. However, I recently added a new dependency whose scope is system, and it does not copy it to the lib output directory. i must be missing something basic here, so I call for help. The dependency that I just added is: <dependency> <groupId>sourceforge.jchart2d</groupId> <artifactId>jchart2d</artifactId> <version>3.1.0</version> <scope>system</scope> <systemPath>${project.basedir}/external/jchart2d-3.1.0.jar</systemPath> </dependency> The only way I was able to include this dependency was by adding the following to the assembly element: <files> <file> <source>external/jchart2d-3.1.0.jar</source> <outputDirectory>lib</outputDirectory> </file> </files> However, this forces me to change the pom and the assembly file whenever this jar is renamed, if ever. Also, it seems just wrong. I have tried with <scope>runtime</scope> in the dependencySets and <include>sourceforge.jchart2d:jchart2d</include> with no luck. So how do you include a system scoped jar to your assembly file in maven 2? Thanks a lot

    Read the article

  • Load binary file using fstream

    - by Kirill V. Lyadvinsky
    I'm trying to load binary file using fstream in the following way: #include <iostream #include <fstream #include <iterator #include <vector using namespace std; int main() { basic_fstream<uint32_t file( "somefile.dat", ios::in|ios::binary ); vector<uint32_t buffer; buffer.assign( istream_iterator<uint32_t, uint32_t( file ), istream_iterator<uint32_t, uint32_t() ); cout << buffer.size() << endl; return 0; } But it doesn't work. In Ubuntu it crashed with std::bad_cast exception. In MSVC++ 2008 it just prints 0. I know that I could use file.read to load file, but I want to use iterator and operator>> to load parts of the file. Is that possible? Why the code above doesn't work?

    Read the article

  • Suggestions for duplicate file finder algorithm (using C)

    - by Andrei Ciobanu
    Hello, I wanted to write a program that test if two files are duplicates (have exactly the same content). First I test if the files have the same sizes, and if they have i start to compare their contents. My first idea, was to "split" the files into fixed size blocks, then start a thread for every block, fseek to startup character of every block and continue the comparisons in parallel. When a comparison from a thread fails, the other working threads are canceled, and the program exits out of the thread spawning loop. The code looks like this: dupf.h #ifndef __NM__DUPF__H__ #define __NM__DUPF__H__ #define NUM_THREADS 15 #define BLOCK_SIZE 8192 /* Thread argument structure */ struct thread_arg_s { const char *name_f1; /* First file name */ const char *name_f2; /* Second file name */ int cursor; /* Where to seek in the file */ }; typedef struct thread_arg_s thread_arg; /** * 'arg' is of type thread_arg. * Checks if the specified file blocks are * duplicates. */ void *check_block_dup(void *arg); /** * Checks if two files are duplicates */ int check_dup(const char *name_f1, const char *name_f2); /** * Returns a valid pointer to a file. * If the file (given by the path/name 'fname') cannot be opened * in 'mode', the program is interrupted an error message is shown. **/ FILE *safe_fopen(const char *name, const char *mode); #endif dupf.c #include <errno.h> #include <pthread.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/types.h> #include <sys/stat.h> #include <unistd.h> #include "dupf.h" FILE *safe_fopen(const char *fname, const char *mode) { FILE *f = NULL; f = fopen(fname, mode); if (f == NULL) { char emsg[255]; sprintf(emsg, "FOPEN() %s\t", fname); perror(emsg); exit(-1); } return (f); } void *check_block_dup(void *arg) { const char *name_f1 = NULL, *name_f2 = NULL; /* File names */ FILE *f1 = NULL, *f2 = NULL; /* Streams */ int cursor = 0; /* Reading cursor */ char buff_f1[BLOCK_SIZE], buff_f2[BLOCK_SIZE]; /* Character buffers */ int rchars_1, rchars_2; /* Readed characters */ /* Initializing variables from 'arg' */ name_f1 = ((thread_arg*)arg)->name_f1; name_f2 = ((thread_arg*)arg)->name_f2; cursor = ((thread_arg*)arg)->cursor; /* Opening files */ f1 = safe_fopen(name_f1, "r"); f2 = safe_fopen(name_f2, "r"); /* Setup cursor in files */ fseek(f1, cursor, SEEK_SET); fseek(f2, cursor, SEEK_SET); /* Initialize buffers */ rchars_1 = fread(buff_f1, 1, BLOCK_SIZE, f1); rchars_2 = fread(buff_f2, 1, BLOCK_SIZE, f2); if (rchars_1 != rchars_2) { /* fread failed to read the same portion. * program cannot continue */ perror("ERROR WHEN READING BLOCK"); exit(-1); } while (rchars_1-->0) { if (buff_f1[rchars_1] != buff_f2[rchars_1]) { /* Different characters */ fclose(f1); fclose(f2); pthread_exit("notdup"); } } /* Close streams */ fclose(f1); fclose(f2); pthread_exit("dup"); } int check_dup(const char *name_f1, const char *name_f2) { int num_blocks = 0; /* Number of 'blocks' to check */ int num_tsp = 0; /* Number of threads spawns */ int tsp_iter = 0; /* Iterator for threads spawns */ pthread_t *tsp_threads = NULL; thread_arg *tsp_threads_args = NULL; int tsp_threads_iter = 0; int thread_c_res = 0; /* Thread creation result */ int thread_j_res = 0; /* Thread join res */ int loop_res = 0; /* Function result */ int cursor; struct stat buf_f1; struct stat buf_f2; if (name_f1 == NULL || name_f2 == NULL) { /* Invalid input parameters */ perror("INVALID FNAMES\t"); return (-1); } if (stat(name_f1, &buf_f1) != 0 || stat(name_f2, &buf_f2) != 0) { /* Stat fails */ char emsg[255]; sprintf(emsg, "STAT() ERROR: %s %s\t", name_f1, name_f2); perror(emsg); return (-1); } if (buf_f1.st_size != buf_f2.st_size) { /* File have different sizes */ return (1); } /* Files have the same size, function exec. is continued */ num_blocks = (buf_f1.st_size / BLOCK_SIZE) + 1; num_tsp = (num_blocks / NUM_THREADS) + 1; cursor = 0; for (tsp_iter = 0; tsp_iter < num_tsp; tsp_iter++) { loop_res = 0; /* Create threads array for this spawn */ tsp_threads = malloc(NUM_THREADS * sizeof(*tsp_threads)); if (tsp_threads == NULL) { perror("TSP_THREADS ALLOC FAILURE\t"); return (-1); } /* Create arguments for every thread in the current spawn */ tsp_threads_args = malloc(NUM_THREADS * sizeof(*tsp_threads_args)); if (tsp_threads_args == NULL) { perror("TSP THREADS ARGS ALLOCA FAILURE\t"); return (-1); } /* Initialize arguments and create threads */ for (tsp_threads_iter = 0; tsp_threads_iter < NUM_THREADS; tsp_threads_iter++) { if (cursor >= buf_f1.st_size) { break; } tsp_threads_args[tsp_threads_iter].name_f1 = name_f1; tsp_threads_args[tsp_threads_iter].name_f2 = name_f2; tsp_threads_args[tsp_threads_iter].cursor = cursor; thread_c_res = pthread_create( &tsp_threads[tsp_threads_iter], NULL, check_block_dup, (void*)&tsp_threads_args[tsp_threads_iter]); if (thread_c_res != 0) { perror("THREAD CREATION FAILURE"); return (-1); } cursor+=BLOCK_SIZE; } /* Join last threads and get their status */ while (tsp_threads_iter-->0) { void *thread_res = NULL; thread_j_res = pthread_join(tsp_threads[tsp_threads_iter], &thread_res); if (thread_j_res != 0) { perror("THREAD JOIN FAILURE"); return (-1); } if (strcmp((char*)thread_res, "notdup")==0) { loop_res++; /* Closing other threads and exiting by condition * from loop. */ while (tsp_threads_iter-->0) { pthread_cancel(tsp_threads[tsp_threads_iter]); } } } free(tsp_threads); free(tsp_threads_args); if (loop_res > 0) { break; } } return (loop_res > 0) ? 1 : 0; } The function works fine (at least for what I've tested). Still, some guys from #C (freenode) suggested that the solution is overly complicated, and it may perform poorly because of parallel reading on hddisk. What I want to know: Is the threaded approach flawed by default ? Is fseek() so slow ? Is there a way to somehow map the files to memory and then compare them ?

    Read the article

  • Sening a file from memory (rather than disk) over HTTP using libcurl

    - by cinek1lol
    Hi! I would like to send pictures via a program written in C + +. - OK WinExec("C:\\curl\\curl.exe -H Expect: -F \"fileupload=@C:\\curl\\ok.jpg\" -F \"xml=yes\" -# \"http://www.imageshack.us/index.php\" -o data.txt -A \"Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.1) Gecko/20061204 Firefox/2.0.0.1\" -e \"http://www.imageshack.us\"", NULL); It works, but I would like to send the pictures from pre-loaded carrier to a variable char (you know what I mean? First off, I load the pictures into a variable and then send the variable), cause now I have to specify the path of the picture on a disk. I wanted to write this program in c++ by using the curl library, not through exe. extension. I have also found such a program (which has been modified by me a bit) #include <stdio.h> #include <string.h> #include <iostream> #include <curl/curl.h> #include <curl/types.h> #include <curl/easy.h> int main(int argc, char *argv[]) { CURL *curl; CURLcode res; struct curl_httppost *formpost=NULL; struct curl_httppost *lastptr=NULL; struct curl_slist *headerlist=NULL; static const char buf[] = "Expect:"; curl_global_init(CURL_GLOBAL_ALL); /* Fill in the file upload field */ curl_formadd(&formpost, &lastptr, CURLFORM_COPYNAME, "send", CURLFORM_FILE, "nowy.jpg", CURLFORM_END); curl_formadd(&formpost, &lastptr, CURLFORM_COPYNAME, "nowy.jpg", CURLFORM_COPYCONTENTS, "nowy.jpg", CURLFORM_END); curl_formadd(&formpost, &lastptr, CURLFORM_COPYNAME, "submit", CURLFORM_COPYCONTENTS, "send", CURLFORM_END); curl = curl_easy_init(); headerlist = curl_slist_append(headerlist, buf); if(curl) { curl_easy_setopt(curl, CURLOPT_URL, "http://www.imageshack.us/index.php"); if ( (argc == 2) && (!strcmp(argv[1], "xml=yes")) ) curl_easy_setopt(curl, CURLOPT_HTTPHEADER, headerlist); curl_easy_setopt(curl, CURLOPT_HTTPPOST, formpost); res = curl_easy_perform(curl); curl_easy_cleanup(curl); curl_formfree(formpost); curl_slist_free_all (headerlist); } system("pause"); return 0; }

    Read the article

  • Problem with glaux.h locating

    - by rodnower
    Hello, I try to compile code, that beggins with: #include<stdlib.h> #include<GL/gl.h> #include<glaux.h> with command: cc -o test test.c -I/usr/local/include -L/usr/local/lib -lMesaaux -lMesatk -lMesaGL -lXext -lX11 -lm But one of errors I got is: test.c:3:18: error: glaux.h: No such file or directory Then I try: yum provides glaux.h but yum find anything. Before all I installed Mesa with: yum install mesa* So, can anyone tell me from where I can get the header file? Thank you for ahead.

    Read the article

  • Useful Java Annotations

    - by Jon
    I'm interested in finding out exactly which Java annotations people think are most useful during development. This doesn't necessarily have to limited to the core Java API, you may include annotations you found in third party libraries or annotations you've developed yourself (make sure you include a link to the source). I'm really interested in common development tasks rather than knowing why the @ManyToOne(optional=false) in JPA is awesome... Include the annotation and a description of why it's useful for general development.

    Read the article

  • Repeated Squaring - Matrix Multiplication using NEWMAT

    - by Dinakar Kulkarni
    I'm trying to use the repeated squaring algorithm (using recursion) to perform matrix exponentiation. I've included header files from the NEWMAT library instead of using arrays. The original matrix has elements in the range (-5,5), all numbers being of type float. # include "C:\User\newmat10\newmat.h" # include "C:\User\newmat10\newmatio.h" # include "C:\User\newmat10\newmatap.h" # include <iostream> # include <time.h> # include <ctime> # include <cstdlib> # include <iomanip> using namespace std; Matrix repeated_squaring(Matrix A, int exponent, int n) //Recursive function { A(n,n); IdentityMatrix I(n); if (exponent == 0) //Matrix raised to zero returns an Identity Matrix return I; else { if ( exponent%2 == 1 ) // if exponent is odd return (A * repeated_squaring (A*A, (exponent-1)/2, n)); else //if exponent is even return (A * repeated_squaring( A*A, exponent/2, n)); } } Matrix direct_squaring(Matrix B, int k, int no) //Brute Force Multiplication { B(no,no); Matrix C = B; for (int i = 1; i <= k; i++) C = B*C; return C; } //----Creating a matrix with elements b/w (-5,5)---- float unifRandom() { int a = -5; int b = 5; float temp = (float)((b-a)*( rand()/RAND_MAX) + a); return temp; } Matrix initialize_mat(Matrix H, int ord) { H(ord,ord); for (int y = 1; y <= ord; y++) for(int z = 1; z<= ord; z++) H(y,z) = unifRandom(); return(H); } //--------------------------------------------------- void main() { int exponent, dimension; cout<<"Insert exponent:"<<endl; cin>>exponent; cout<< "Insert dimension:"<<endl; cin>>dimension; cout<<"The number of rows/columns in the square matrix is: "<<dimension<<endl; cout<<"The exponent is: "<<exponent<<endl; Matrix A(dimension,dimension),B(dimension,dimension); Matrix C(dimension,dimension),D(dimension,dimension); B= initialize_mat(A,dimension); cout<<"Initial Matrix: "<<endl; cout<<setw(5)<<setprecision(2)<<B<<endl; //----------------------------------------------------------------------------- cout<<"Repeated Squaring Result: "<<endl; clock_t time_before1 = clock(); C = repeated_squaring (B, exponent , dimension); cout<< setw(5) <<setprecision(2) <<C; clock_t time_after1 = clock(); float diff1 = ((float) time_after1 - (float) time_before1); cout << "It took " << diff1/CLOCKS_PER_SEC << " seconds to complete" << endl<<endl; //--------------------------------------------------------------------------------- cout<<"Direct Squaring Result:"<<endl; clock_t time_before2 = clock(); D = direct_squaring (B, exponent , dimension); cout<<setw(5)<<setprecision(2)<<D; clock_t time_after2 = clock(); float diff2 = ((float) time_after2 - (float) time_before2); cout << "It took " << diff2/CLOCKS_PER_SEC << " seconds to complete" << endl<<endl; } I face the following problems: The random number generator returns only "-5" as each element in the output. The Matrix multiplication yield different results with brute force multiplication and using the repeated squaring algorithm. I'm timing the execution time of my code to compare the times taken by brute force multiplication and by repeated squaring. Could someone please find out what's wrong with the recursion and with the matrix initialization? NOTE: While compiling this program, make sure you've imported the NEWMAT library. Thanks in advance!

    Read the article

  • PHP Loop Over ONLY Different Arrays

    - by Steven
    Hello, I have a single array with several of the same values. And I only want to loop over DIFFERENT values. How could I go about doing this? Example 166-01 001;09;UO; 166-01 001;09;UO; 166-01 001;09;UO; 166-01 001;09;UO; 166-01 001;09;UO; 166-01 001;09;UO; 166-01 001;09;UO;_86 166-01 001;09;UO;_86 166-01 001;09;UO;_86 166-01 001;09;UO;_86 166-01 001;09;UO;_86 166-01 001;09;UO;_86_97 166-01 001;09;UO;_86_97 166-01 001;09;UO;_86_97 166-01 001;09;UO;_86_97_108 166-01 001;09;UO;_86_97_108 166-01 001;09;UO;_86_97_108_119 166-01 001;09;UO;_86_97_108_119 I have that in a single array, but I only want to loop for the different ones. So it would loop once for nothing, then once for _86, then once for _86_97, then once for _86_97_108, and then once for _86-97_108_119. So only loop for different key values, or would there be a way to count the number of different keys?

    Read the article

  • seperating interface and implemention with normal functions

    - by ace
    this seems like it should be pretty simple, im probably leaving something simple out. this is the code im trying to run. it is 3 files, 2*cpp and 1*header. -------------lab6.h ifndef LAB6_H_INCLUDED define LAB6_H_INCLUDED int const arraySize = 10; int array1[arraySize]; int array2[arraySize]; void generateArray(int[], int ); void displayArray(int[], int[], int ); void reverseOrder(int [],int [], int); endif // LAB6_H_INCLUDED -----------------lab6.cpp include using std::cout; using std::endl; include using std::rand; using std::srand; include using std::time; include using std::setw; include "lab6.h" void generateArray(int array1[], int arraySize) { srand(time(0)); for (int i=0; i<10; i++) { array1[i]=(rand()%10); } } void displayArray(int array1[], int array2[], int arraySize) { cout<<endl<<"Array 1"<<endl; for (int i=0; i<arraySize; i++) { cout<<array1[i]<<", "; } cout<<endl<<"Array 2"<<endl; for (int i=0; i<arraySize; i++) { cout<<array2[i]<<", "; } } void reverseOrder(int array1[],int array2[], int arraySize) { for (int i=0, j=arraySize-1; i<arraySize;j--, i++) { array2[j] = array1[i]; } } ------------and finally main.cpp include "lab6.h" int main() { generateArray(array1, arraySize); reverseOrder(array1, array2, arraySize); displayArray(array1, array2, arraySize); return 0; }

    Read the article

  • Pointer initialization doubt

    - by Jestin Joy
    We could initialize a character pointer like this in C. char *c="test"; Where c points to the first character(t). But when I gave code like below. It gives segmentation fault. #include<stdio.h> #include<stdlib.h> main() { int *i=0; printf("%d",*i); } Also when I give #include<stdio.h> #include<stdlib.h> main() { int *i; i=(int *)malloc(2); printf("%d",*i); } It worked(gave output 0). When I gave malloc(0), it worked(gave output 0). Please tell what is happening

    Read the article

  • compiler warning at C++ template base class

    - by eike
    I get a compiler warning, that I don't understand in that context, when I compile the "Child.cpp" from the following code. (Don't wonder: I stripped off my class declarations to the bare minuum, so the content will not make much sense, but you will see the problem quicker). I get the warning with VS2003 and VS2008 on the highest warning level. The code AbstractClass.h : #include <iostream> template<typename T> class AbstractClass { public: virtual void Cancel(); // { std::cout << "Abstract Cancel" << std::endl; }; virtual void Process() = 0; }; //outside definition. if I comment out this and take the inline //definition like above (currently commented out), I don't get //a compiler warning template<typename T> void AbstractClass<T>::Cancel() { std::cout << "Abstract Cancel" << std::endl; } Child.h : #include "AbstractClass.h" class Child : public AbstractClass<int> { public: virtual void Process(); }; Child.cpp : #include "Child.h" #include <iostream> void Child::Process() { std::cout << "Process" << std::endl; } The warning The class "Child" is derived from "AbstractClass". In "AbstractClass" there's the public method "AbstractClass::Cancel()". If I define the method outside of the class body (like in the code you see), I get the compiler warning... AbstractClass.h(7) : warning C4505: 'AbstractClass::Cancel' : unreferenced local function has been removed with [T=int] ...when I compile "Child.cpp". I do not understand this, because this is a public function and the compiler can't know if I later reference this method or not. And, in the end, I reference this method, because I call it in main.cpp and despite this compiler warning, this method works if I compile and link all files and execute the program: //main.cpp #include <iostream> #include "Child.h" int main() { Child child; child.Cancel(); //works, despite the warning } If I do define the Cancel() function as inline (you see it as out commented code in AbstractClass.h), then I don't get the compiler warning. Of course my program works, but I want to understand this warning or is this just a compiler mistake? Furthermore, if do not implement AbsctractClass as a template class (just for a test purpose in this case) I also don't get the compiler warning...?

    Read the article

  • Undefined referencec to ...

    - by Patrick LaChance
    I keep getting this error message every time I try to compile, and I cannot find out what the problem is. any help would be greatly appreciated: C:\DOCUME~1\Patrick\LOCALS~1\Temp/ccL92mj9.o:main.cpp:(.txt+0x184): undefined reference to 'List::List()' C:\DOCUME~1\Patrick\LOCALS~1\Temp/ccL92mj9.o:main.cpp:(.txt+0x184): undefined reference to 'List::add(int)' collect2: ld returned 1 exit status code: //List.h ifndef LIST_H define LIST_H include //brief Definition of linked list class class List { public: /** \brief Exception for operating on empty list */ class Empty : public std::exception { public: virtual const char* what() const throw(); }; /** \brief Exception for invalid operations other than operating on an empty list */ class InvalidOperation : public std::exception { public: virtual const char* what() const throw(); }; /** \brief Node within List */ class Node { public: /** data element stored in this node */ int element; /** next node in list / Node next; /** previous node in list / Node previous; Node (int element); ~Node(); void print() const; void printDebug() const; }; List(); ~List(); void add(int element); void remove(int element); int first()const; int last()const; int removeFirst(); int removeLast(); bool isEmpty()const; int size()const; void printForward() const; void printReverse() const; void printDebug() const; /** enables extra output for debugging purposes */ static bool traceOn; private: /** head of list */ Node* head; /** tail of list */ Node* tail; /** count of number of nodes */ int count; }; endif //List.cpp I only included the parts of List.cpp that might be the issue include "List.h" include include using namespace std; List::List() { //List::size = NULL; head = NULL; tail = NULL; } List::~List() { Node* current; while(head != NULL) { current = head- next; delete current-previous; if (current-next!=NULL) { head = current; } else { delete current; } } } void List::add(int element) { Node* newNode; Node* current; newNode-element = element; if(newNode-element head-element) { current = head-next; } else { head-previous = newNode; newNode-next = head; newNode-previous = NULL; return; } while(newNode-element current-element) { current = current-next; } if(newNode-element <= current-element) { newNode-previous = current-previous; newNode-next = current; } } //main.cpp include "List.h" include include using namespace std; //void add(int element); int main (char** argv, int argc) { List* MyList = new List(); bool quit = false; string value; int element; while(quit==false) { cinvalue; if(value == "add") { cinelement; MyList-add(element); } if(value=="quit") { quit = true; } } return 0; } I'm doing everything I think I'm suppose to be doing. main.cpp isn't complete yet, just trying to get the add function to work first. Any help will be greatly appreciated.

    Read the article

  • Throwing a C++ exception from inside a Linux Signal handler

    - by SoapBox
    As a thought experiment more than anything I am trying to get a C++ exception thrown "from" a linux signal handler for SIGSEGV. (I'm aware this is not a solution to any real world SIGSEGV and should never actually be done, but I thought I would try it out after being asked about it, and now I can't get it out of my head until I figure out how to do it.) Below is the closest I have come, but instead of the signal being caught properly, terminate() is being called as if no try/catch block is available. Anyone know why? Or know a way I can actually get a C++ exception from a signal handler? The code (beware, the self modifying asm limits this to running on x86_64 if you're trying to test it): #include <iostream> #include <stdexcept> #include <signal.h> #include <stdint.h> #include <errno.h> #include <string.h> #include <sys/mman.h> using namespace std; uint64_t oldaddr = 0; void thrower() { cout << "Inside thrower" << endl; throw std::runtime_error("SIGSEGV"); } void segv_handler(int sig, siginfo_t *info, void *pctx) { ucontext_t *context = (ucontext_t *)pctx; cout << "Inside SIGSEGV handler" << endl; oldaddr = context->uc_mcontext.gregs[REG_RIP]; uint32_t pageSize = (uint32_t)sysconf(_SC_PAGESIZE); uint64_t bottomOfOldPage = (oldaddr/pageSize) * pageSize; mprotect((void*)bottomOfOldPage, pageSize*2, PROT_READ|PROT_WRITE|PROT_EXEC); // 48 B8 xx xx xx xx xx xx xx xx = mov rax, xxxx *((uint8_t*)(oldaddr+0)) = 0x48; *((uint8_t*)(oldaddr+1)) = 0xB8; *((int64_t*)(oldaddr+2)) = (int64_t)thrower; // FF E0 = jmp rax *((uint8_t*)(oldaddr+10)) = 0xFF; *((uint8_t*)(oldaddr+11)) = 0xE0; } void func() { try { *(uint32_t*)0x1234 = 123456789; } catch (...) { cout << "caught inside func" << endl; throw; } } int main() { cout << "Top of main" << endl; struct sigaction action, old_action; action.sa_sigaction = segv_handler; sigemptyset(&action.sa_mask); action.sa_flags = SA_SIGINFO | SA_RESTART | SA_NODEFER; if (sigaction(SIGSEGV, &action, &old_action)<0) cerr << "Error setting handler : " << strerror(errno) << endl; try { func(); } catch (std::exception &e) { cout << "Caught : " << e.what() << endl; } cout << "Bottom of main" << endl << endl; } The actual output: Top of main Inside SIGSEGV handler Inside thrower terminate called after throwing an instance of 'std::runtime_error' what(): SIGSEGV Aborted Expected output: Top of main Inside thrower caught inside func Caught : SIGSEGV Bottom of main

    Read the article

  • Help understanding some OpenGL stuff

    - by shinjuo
    I am working with some code to create a triangle that moves with arrow keys. I want to create a second object that moves independently. This is where I am having trouble, I have created the second actor, but cannot get it to move. There is too much code to post it all so I will just post a little and see if anyone can help at all. ogl_test.cpp #include "platform.h" #include "srt/scheduler.h" #include "model.h" #include "controller.h" #include "model_module.h" #include "graphics_module.h" class blob : public actor { public: blob(float x, float y) : actor(math::vector2f(x, y)) { } void render() { transform(); glBegin(GL_TRIANGLES); glVertex3f(0.25f, 0.0f, -5.0f); glVertex3f(-.5f, 0.25f, -5.0f); glVertex3f(-.5f, -0.25f, -5.0f); glEnd(); end_transform(); } void update(controller& c, float dt) { if (c.left_key) { rho += pi / 9.0f * dt; c.left_key = false; } if (c.right_key) { rho -= pi / 9.0f * dt; c.right_key = false; } if (c.up_key) { v += .1f * dt; c.up_key = false; } if (c.down_key) { v -= .1f * dt; if (v < 0.0) { v = 0.0; } c.down_key = false; } actor::update(c, dt); } }; class enemyOne : public actor { public: enemyOne(float x, float y) : actor(math::vector2f(x, y)) { } void render() { transform(); glBegin(GL_TRIANGLES); glVertex3f(0.25f, 0.0f, -5.0f); glVertex3f(-.5f, 0.25f, -5.0f); glVertex3f(-.5f, -0.25f, -5.0f); glEnd(); end_transform(); } void update(controller& c, float dt) { if (c.left_key) { rho += pi / 9.0f * dt; c.left_key = false; } if (c.right_key) { rho -= pi / 9.0f * dt; c.right_key = false; } if (c.up_key) { v += .1f * dt; c.up_key = false; } if (c.down_key) { v -= .1f * dt; if (v < 0.0) { v = 0.0; } c.down_key = false; } actor::update(c, dt); } }; int APIENTRY WinMain( HINSTANCE hInstance, HINSTANCE hPrevInstance, char* lpCmdLine, int nCmdShow ) { model m; controller control(m); srt::scheduler scheduler(33); srt::frame* model_frame = new srt::frame(scheduler.timer(), 0, 1, 2); srt::frame* render_frame = new srt::frame(scheduler.timer(), 1, 1, 2); model_frame->add(new model_module(m, control)); render_frame->add(new graphics_module(m)); scheduler.add(model_frame); scheduler.add(render_frame); blob* prime = new blob(0.0f, 0.0f); m.add(prime); m.set_prime(prime); enemyOne* primeTwo = new enemyOne(2.0f, 0.0f); m.add(primeTwo); m.set_prime(primeTwo); scheduler.start(); control.start(); return 0; } model.h #include <vector> #include "vec.h" const double pi = 3.14159265358979323; class controller; using math::vector2f; class actor { public: vector2f P; float theta; float v; float rho; actor(const vector2f& init_location) : P(init_location), rho(0.0), v(0.0), theta(0.0) { } virtual void render() = 0; virtual void update(controller&, float dt) { float v1 = v; float theta1 = theta + rho * dt; vector2f P1 = P + v1 * vector2f(cos(theta1), sin(theta1)); if (P1.x < -4.5f || P1.x > 4.5f) { P1.x = -P1.x; } if (P1.y < -4.5f || P1.y > 4.5f) { P1.y = -P1.y; } v = v1; theta = theta1; P = P1; } protected: void transform() { glPushMatrix(); glTranslatef(P.x, P.y, 0.0f); glRotatef(theta * 180.0f / pi, 0.0f, 0.0f, 1.0f); //Rotate about the z-axis } void end_transform() { glPopMatrix(); } }; class model { private: typedef std::vector<actor*> actor_vector; actor_vector actors; public: actor* _prime; model() { } void add(actor* a) { actors.push_back(a); } void set_prime(actor* a) { _prime = a; } void update(controller& control, float dt) { for (actor_vector::iterator i = actors.begin(); i != actors.end(); ++i) { (*i)->update(control, dt); } } void render() { for (actor_vector::iterator i = actors.begin(); i != actors.end(); ++i) { (*i)->render(); } } };

    Read the article

  • html includes in a JSP using IIS/WebLogic

    - by Striker
    I have my IIS 6 server setup to process server side includes, we're also using the WebLogic ISAPI plugin for IIS. I have a simple html file that I'm trying to include in the JSP using the following include: <!-- #include file="/pleaseWait/pleaseWait.html" --> When I use the above line in a JSP I get an error message saying: "pleaseWait is not defined". From an HTML file on the web server it works fine. The include works in the HTML whether I use file or virtual. I can't use the jsp @ include because that's resolved at build time and the HTML file does not exist in the Java project. It's static content so it's on the IIS server. In the past we've change the extension to .jsp and included the images and static content in the .war file....the problem with that is we now have 10 different versions of this code in our apps and not all of them look or function the same. This is an attempt to standardize and centralize the code for this feature across our apps. Any ideas or suggestions?

    Read the article

  • Mac OS X 10.9 with GCC 4.7.3, stdlib.h: no such file or directory

    - by Leon Kaihua Li
    I'm doing some development with C++ on Mac OS. The code worked fine on Mac OS 10.8.3/10.8.4, with GCC 4.7.3. However recently I upgraded my OS to Mavericks 10.9 and Xcode 5.0. I find that when I try to compile my code, both gcc/g++/clang responds with: *******.C:1:** stdlib.h:no such file or directory *******.C:2:** iostream.h:no such file or directory Since I'm not familiar with Mac OS(My working platform is openSUSE), what can I do for it? will it help if I install "Command Line Tools" from Xcode? Or is there anyway that I could re-build the include index? Include dir of GCC is /opt/local/include/gcc47 and it seems there is a stdlib.h in it. The path is /opt/local/include/gcc47/c++/tr1/ Please help me, and thank you very much.

    Read the article

  • aio_read from file error on OS X

    - by Pyetras
    The following code: #include <fcntl.h> #include <unistd.h> #include <stdio.h> #include <aio.h> #include <errno.h> int main (int argc, char const *argv[]) { char name[] = "abc"; int fdes; if ((fdes = open(name, O_RDWR | O_CREAT, 0600 )) < 0) printf("%d, create file", errno); int buffer[] = {0, 1, 2, 3, 4, 5}; if (write(fdes, &buffer, sizeof(buffer)) == 0){ printf("writerr\n"); } struct aiocb aio; int n = 2; while (n--){ aio.aio_reqprio = 0; aio.aio_fildes = fdes; aio.aio_offset = sizeof(int); aio.aio_sigevent.sigev_notify = SIGEV_NONE; int buffer2; aio.aio_buf = &buffer2; aio.aio_nbytes = sizeof(buffer2); if (aio_read(&aio) != 0){ printf("%d, readerr\n", errno); }else{ const struct aiocb *aio_l[] = {&aio}; if (aio_suspend(aio_l, 1, 0) != 0){ printf("%d, suspenderr\n", errno); }else{ printf("%d\n", *(int *)aio.aio_buf); } } } return 0; } Works fine on Linux (Ubuntu 9.10, compiled with -lrt), printing 1 1 But fails on OS X (10.6.6 and 10.6.5, I've tested it on two machines): 1 35, readerr Is this possible that this is due to some library error on OS X, or am I doing something wrong?

    Read the article

  • Singleton code linker errors in vc 9.0. Runs fine in linux compiled with gcc

    - by user306560
    I have a simple logger that is implemented as a singleton. It works like i want when I compile and run it with g++ in linux but when I compile in Visual Studio 9.0 with vc++ I get the following errors. Is there a way to fix this? I don't mind changing the logger class around, but I would like to avoid changing how it is called. 1>Linking... 1>loggerTest.obj : error LNK2005: "public: static class Logger * __cdecl Logger::getInstance(void)" (?getInstance@Logger@@SAPAV1@XZ) already defined in Logger.obj 1>loggerTest.obj : error LNK2005: "public: void __thiscall Logger::log(class std::basic_string<char,struct std::char_traits<char>,class std::allocator<char> > const &)" (?log@Logger@@QAEXABV?$basic_string@DU?$char_traits@D@std@@V?$allocator@D@2@@std@@@Z) already defined in Logger.obj 1>loggerTest.obj : error LNK2005: "public: void __thiscall Logger::closeLog(void)" (?closeLog@Logger@@QAEXXZ) already defined in Logger.obj 1>loggerTest.obj : error LNK2005: "private: static class Logger * Logger::_instance" (?_instance@Logger@@0PAV1@A) already defined in Logger.obj 1>Logger.obj : error LNK2001: unresolved external symbol "private: static class std::basic_string<char,struct std::char_traits<char>,class std::allocator<char> > Logger::_path" (?_path@Logger@@0V?$basic_string@DU?$char_traits@D@std@@V?$allocator@D@2@@std@@A) 1>loggerTest.obj : error LNK2001: unresolved external symbol "private: static class std::basic_string<char,struct std::char_traits<char>,class std::allocator<char> > Logger::_path" (?_path@Logger@@0V?$basic_string@DU?$char_traits@D@std@@V?$allocator@D@2@@std@@A) 1>Logger.obj : error LNK2001: unresolved external symbol "private: static class boost::mutex Logger::_mutex" (?_mutex@Logger@@0Vmutex@boost@@A) 1>loggerTest.obj : error LNK2001: unresolved external symbol "private: static class boost::mutex Logger::_mutex" (?_mutex@Logger@@0Vmutex@boost@@A) 1>Logger.obj : error LNK2001: unresolved external symbol "private: static class std::basic_ofstream<char,struct std::char_traits<char> > Logger::_log" (?_log@Logger@@0V?$basic_ofstream@DU?$char_traits@D@std@@@std@@A) 1>loggerTest.obj : error LNK2001: unresolved external symbol "private: static class std::basic_ofstream<char,struct std::char_traits<char> > Logger::_log" (?_log@Logger@@0V?$basic_ofstream@DU?$char_traits@D@std@@@std@@A) The code, three files Logger.h Logger.cpp test.cpp #ifndef __LOGGER_CPP__ #define __LOGGER_CPP__ #include "Logger.h" Logger* Logger::_instance = 0; //string Logger::_path = "log"; //ofstream Logger::_log; //boost::mutex Logger::_mutex; Logger* Logger::getInstance(){ { boost::mutex::scoped_lock lock(_mutex); if(_instance == 0) { _instance = new Logger; _path = "log"; } } //mutex return _instance; } void Logger::log(const std::string& msg){ { boost::mutex::scoped_lock lock(_mutex); if(!_log.is_open()){ _log.open(_path.c_str()); } if(_log.is_open()){ _log << msg.c_str() << std::endl; } } } void Logger::closeLog(){ Logger::_log.close(); } #endif ` ... #ifndef __LOGGER_H__ #define __LOGGER_H__ #include <iostream> #include <string> #include <fstream> #include <boost/thread/mutex.hpp> #include <boost/thread.hpp> using namespace std; class Logger { public: static Logger* getInstance(); void log(const std::string& msg); void closeLog(); protected: Logger(){} private: static Logger* _instance; static string _path; static bool _logOpen; static ofstream _log; static boost::mutex _mutex; //check mutable }; #endif test.cpp ` #include <iostream> #include "Logger.cpp" using namespace std; int main(int argc, char *argv[]) { Logger* log = Logger::getInstance(); log->log("hello world\n"); return 0; }

    Read the article

  • Developing Schema Compare for Oracle (Part 2): Dependencies

    - by Simon Cooper
    In developing Schema Compare for Oracle, one of the issues we came across was the size of the databases. As detailed in my last blog post, we had to allow schema pre-filtering due to the number of objects in a standard Oracle database. Unfortunately, this leads to some quite tricky situations regarding object dependencies. This post explains how we deal with these dependencies. 1. Cross-schema dependencies Say, in the following database, you're populating SchemaA, and synchronizing SchemaA.Table1: SOURCE   TARGET CREATE TABLE SchemaA.Table1 ( Col1 NUMBER REFERENCES SchemaB.Table1(Col1));   CREATE TABLE SchemaA.Table1 ( Col1 VARCHAR2(100) REFERENCES SchemaB.Table1(Col1)); CREATE TABLE SchemaB.Table1 ( Col1 NUMBER PRIMARY KEY);   CREATE TABLE SchemaB.Table1 ( Col1 VARCHAR2(100) PRIMARY KEY); We need to do a rebuild of SchemaA.Table1 to change Col1 from a VARCHAR2(100) to a NUMBER. This consists of: Creating a table with the new schema Inserting data from the old table to the new table, with appropriate conversion functions (in this case, TO_NUMBER) Dropping the old table Rename new table to same name as old table Unfortunately, in this situation, the rebuild will fail at step 1, as we're trying to create a NUMBER column with a foreign key reference to a VARCHAR2(100) column. As we're only populating SchemaA, the naive implementation of the object population prefiltering (sticking a WHERE owner = 'SCHEMAA' on all the data dictionary queries) will generate an incorrect sync script. What we actually have to do is: Drop foreign key constraint on SchemaA.Table1 Rebuild SchemaB.Table1 Rebuild SchemaA.Table1, adding the foreign key constraint to the new table This means that in order to generate a correct synchronization script for SchemaA.Table1 we have to know what SchemaB.Table1 is, and that it also needs to be rebuilt to successfully rebuild SchemaA.Table1. SchemaB isn't the schema that the user wants to synchronize, but we still have to load the table and column information for SchemaB.Table1 the same way as any table in SchemaA. Fortunately, Oracle provides (mostly) complete dependency information in the dictionary views. Before we actually read the information on all the tables and columns in the database, we can get dependency information on all the objects that are either pointed at by objects in the schemas we’re populating, or point to objects in the schemas we’re populating (think about what would happen if SchemaB was being explicitly populated instead), with a suitable query on all_constraints (for foreign key relationships) and all_dependencies (for most other types of dependencies eg a function using another function). The extra objects found can then be included in the actual object population, and the sync wizard then has enough information to figure out the right thing to do when we get to actually synchronize the objects. Unfortunately, this isn’t enough. 2. Dependency chains The solution above will only get the immediate dependencies of objects in populated schemas. What if there’s a chain of dependencies? A.tbl1 -> B.tbl1 -> C.tbl1 -> D.tbl1 If we’re only populating SchemaA, the implementation above will only include B.tbl1 in the dependent objects list, whereas we might need to know about C.tbl1 and D.tbl1 as well, in order to ensure a modification on A.tbl1 can succeed. What we actually need is a graph traversal on the dependency graph that all_dependencies represents. Fortunately, we don’t have to read all the database dependency information from the server and run the graph traversal on the client computer, as Oracle provides a method of doing this in SQL – CONNECT BY. So, we can put all the dependencies we want to include together in big bag with UNION ALL, then run a SELECT ... CONNECT BY on it, starting with objects in the schema we’re populating. We should end up with all the objects that might be affected by modifications in the initial schema we’re populating. Good solution? Well, no. For one thing, it’s sloooooow. all_dependencies, on my test databases, has got over 110,000 rows in it, and the entire query, for which Oracle was creating a temporary table to hold the big bag of graph edges, was often taking upwards of two minutes. This is too long, and would only get worse for large databases. But it had some more fundamental problems than just performance. 3. Comparison dependencies Consider the following schema: SOURCE   TARGET CREATE TABLE SchemaA.Table1 ( Col1 NUMBER REFERENCES SchemaB.Table1(col1));   CREATE TABLE SchemaA.Table1 ( Col1 VARCHAR2(100)); CREATE TABLE SchemaB.Table1 ( Col1 NUMBER PRIMARY KEY);   CREATE TABLE SchemaB.Table1 ( Col1 VARCHAR2(100)); What will happen if we used the dependency algorithm above on the source & target database? Well, SchemaA.Table1 has a foreign key reference to SchemaB.Table1, so that will be included in the source database population. On the target, SchemaA.Table1 has no such reference. Therefore SchemaB.Table1 will not be included in the target database population. In the resulting comparison of the two objects models, what you will end up with is: SOURCE  TARGET SchemaA.Table1 -> SchemaA.Table1 SchemaB.Table1 -> (no object exists) When this comparison is synchronized, we will see that SchemaB.Table1 does not exist, so we will try the following sequence of actions: Create SchemaB.Table1 Rebuild SchemaA.Table1, with foreign key to SchemaB.Table1 Oops. Because the dependencies are only followed within a single database, we’ve tried to create an object that already exists. To fix this we can include any objects found as dependencies in the source or target databases in the object population of both databases. SchemaB.Table1 will then be included in the target database population, and we won’t try and create objects that already exist. All good? Well, consider the following schema (again, only explicitly populating SchemaA, and synchronizing SchemaA.Table1): SOURCE   TARGET CREATE TABLE SchemaA.Table1 ( Col1 NUMBER REFERENCES SchemaB.Table1(col1));   CREATE TABLE SchemaA.Table1 ( Col1 VARCHAR2(100)); CREATE TABLE SchemaB.Table1 ( Col1 NUMBER PRIMARY KEY);   CREATE TABLE SchemaB.Table1 ( Col1 VARCHAR2(100) PRIMARY KEY); CREATE TABLE SchemaC.Table1 ( Col1 NUMBER);   CREATE TABLE SchemaC.Table1 ( Col1 VARCHAR2(100) REFERENCES SchemaB.Table1); Although we’re now including SchemaB.Table1 on both sides of the comparison, there’s a third table (SchemaC.Table1) that we don’t know about that will cause the rebuild of SchemaB.Table1 to fail if we try and synchronize SchemaA.Table1. That’s because we’re only running the dependency query on the schemas we’re explicitly populating; to solve this issue, we would have to run the dependency query again, but this time starting the graph traversal from the objects found in the other database. Furthermore, this dependency chain could be arbitrarily extended.This leads us to the following algorithm for finding all the dependencies of a comparison: Find initial dependencies of schemas the user has selected to compare on the source and target Include these objects in both the source and target object populations Run the dependency query on the source, starting with the objects found as dependents on the target, and vice versa Repeat 2 & 3 until no more objects are found For the schema above, this will result in the following sequence of actions: Find initial dependenciesSchemaA.Table1 -> SchemaB.Table1 found on sourceNo objects found on target Include objects in both source and targetSchemaB.Table1 included in source and target Run dependency query, starting with found objectsNo objects to start with on sourceSchemaB.Table1 -> SchemaC.Table1 found on target Include objects in both source and targetSchemaC.Table1 included in source and target Run dependency query on found objectsNo objects found in sourceNo objects to start with in target Stop This will ensure that we include all the necessary objects to make any synchronization work. However, there is still the issue of query performance; the CONNECT BY on the entire database dependency graph is still too slow. After much sitting down and drawing complicated diagrams, we decided to move the graph traversal algorithm from the server onto the client (which turned out to run much faster on the client than on the server); and to ensure we don’t read the entire dependency graph onto the client we also pull the graph across in bits – we start off with dependency edges involving schemas selected for explicit population, and whenever the graph traversal comes across a dependency reference to a schema we don’t yet know about a thunk is hit that pulls in the dependency information for that schema from the database. We continue passing more dependent objects back and forth between the source and target until no more dependency references are found. This gives us the list of all the extra objects to populate in the source and target, and object population can then proceed. 4. Object blacklists and fast dependencies When we tested this solution, we were puzzled in that in some of our databases most of the system schemas (WMSYS, ORDSYS, EXFSYS, XDB, etc) were being pulled in, and this was increasing the database registration and comparison time quite significantly. After debugging, we discovered that the culprits were database tables that used one of the Oracle PL/SQL types (eg the SDO_GEOMETRY spatial type). These were creating a dependency chain from the database tables we were populating to the system schemas, and hence pulling in most of the system objects in that schema. To solve this we introduced blacklists of objects we wouldn’t follow any dependency chain through. As well as the Oracle-supplied PL/SQL types (MDSYS.SDO_GEOMETRY, ORDSYS.SI_COLOR, among others) we also decided to blacklist the entire PUBLIC and SYS schemas, as any references to those would likely lead to a blow up in the dependency graph that would massively increase the database registration time, and could result in the client running out of memory. Even with these improvements, each dependency query was taking upwards of a minute. We discovered from Oracle execution plans that there were some columns, with dependency information we required, that were querying system tables with no indexes on them! To cut a long story short, running the following query: SELECT * FROM all_tab_cols WHERE data_type_owner = ‘XDB’; results in a full table scan of the SYS.COL$ system table! This single clause was responsible for over half the execution time of the dependency query. Hence, the ‘Ignore slow dependencies’ option was born – not querying this and a couple of similar clauses to drastically speed up the dependency query execution time, at the expense of producing incorrect sync scripts in rare edge cases. Needless to say, along with the sync script action ordering, the dependency code in the database registration is one of the most complicated and most rewritten parts of the Schema Compare for Oracle engine. The beta of Schema Compare for Oracle is out now; if you find a bug in it, please do tell us so we can get it fixed!

    Read the article

  • PHP Switch and Login

    - by Steve Rivera
    I'm fairly new with PHP and I am messing around with a login/registration system. I setup my sample website using a PHP-SWITCH script I found a while back: <?php switch($_GET['id']) { default: include('home.php'); /* LOGIN PAGES */ break; case "register_form": include ('includes/user_system/register_form.php'); } ? On the registration page the form links to my "register.php" which checks the validity of the form and to check for any blank fields and so on. "register.php" is supposed to refresh the page and add a reason to what the user did wrong when submitting the form. On my "register_form.php" page, which holds the actual form. This field is hidden until the user makes a mistake. <?php if (isset($reg_error)) { ?> , please try again. My "register.php" checks the form for all the errors. Here's the bit of code that will refresh the page with the reason for the error: // Check if any of the fields are missing if (empty($_POST['username']) || empty($_POST['password']) || empty($_POST['confirmpass'])) { // Reshow the form with an error $reg_error = 'One or more fields missing'; include 'register_form.php'; Now after I submit the form without any fields filled out I get the error code, but it refreshes to the actual "register_form.php". The problem with this is that because of my PHP-SWITCH script (helps me manage the site a lot easier) I don't have any formatting on that page. The actual URL to my "register_form.php" would be: "index.php?id=register_form.php". Now I have tried several different things such as changing it to: include 'index.php?id=register_form.php' And also changing it to: header(location:index.php?id=register_form.php') Unfortunately all this does is refresh the page without the reason for the error. I know this can be easily solved by just adding a Javascript Validator but I'd like to know if it is possible to refresh the page with the error using either "include" or "header()" while having a PHP-SWITCH script on the website.

    Read the article

  • About fork system call and global variables

    - by lurks
    I have this program in C++ that forks two new processes: #include <pthread.h> #include <iostream> #include <unistd.h> #include <sys/types.h> #include <sys/wait.h> #include <cstdlib> using namespace std; int shared; void func(){ extern int shared; for (int i=0; i<10;i++) shared++; cout<<"Process "<<getpid()<<", shared " <<shared<<", &shared " <<&shared<<endl; } int main(){ extern int shared; pid_t p1,p2; int status; shared=0; if ((p1=fork())==0) {func();exit(0);}; if ((p2=fork())==0) {func();exit(0);}; for(int i=0;i<10;i++) shared++; waitpid(p1,&status,0); waitpid(p2,&status,0);; cout<<"shared variable is: "<<shared<<endl; cout<<"Process "<<getpid()<<", shared " <<shared<<", &shared " <<&shared<<endl; } The two forked processes make an increment on the shared variables and the parent process does the same. As the variable belongs to the data segment of each process, the final value is 10 because the increment is independent. However, the memory address of the shared variables is the same, you can try compiling and watching the output of the program. How can that be explained ? I cannot understand that, I thought I knew how the fork() works, but this seems very odd.. I need an explanation on why the address is the same, although they are separate variables.

    Read the article

  • how to compile a program with gtkmozembed.h

    - by ganapati hegde
    Hi, i have written a program under ubuntu, in which i include gtkmozembed.h. I am facing a problem in compiling the program.Below is the simplest form of a program which uses gtkmozembed. #include <gtk/gtk.h> #include <stdio.h> #include <gtkmozembed.h> int main(){ GtkWidget *mozEmbed; mozEmbed = gtk_moz_embed_new(); return 0; } Eventhough, the above program is doing nothing, compiling that program is a lot for me... I am trying to comile the above program like below gcc `pkg-config --libs --cflags gtk+-2.0` test.c -o test and it is giving the following error... error: gtkmozembed.h: No such file or directory I can understand, something else has to be added to the above gcc line,so that the compiler can find the gtkmozembed.h, but not getting what is that, 'something'...Looking for someone's help..Thank you...

    Read the article

  • Reading a child process's /proc/pid/mem file from the parent

    - by Amittai Aviram
    In the program below, I am trying to cause the following to happen: Process A assigns a value to a stack variable a. Process A (parent) creates process B (child) with PID child_pid. Process B calls function func1, passing a pointer to a. Process B changes the value of variable a through the pointer. Process B opens its /proc/self/mem file, seeks to the page containing a, and prints the new value of a. Process A (at the same time) opens /proc/child_pid/mem, seeks to the right page, and prints the new value of a. The problem is that, in step 6, the parent only sees the old value of a in /proc/child_pid/mem, while the child can indeed see the new value in its /proc/self/mem. Why is this the case? Is there any way that I can get the parent to to see the child's changes to its address space through the /proc filesystem? #include <fcntl.h> #include <stdbool.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/types.h> #include <sys/stat.h> #include <sys/wait.h> #include <unistd.h> #define PAGE_SIZE 0x1000 #define LOG_PAGE_SIZE 0xc #define PAGE_ROUND_DOWN(v) ((v) & (~(PAGE_SIZE - 1))) #define PAGE_ROUND_UP(v) (((v) + PAGE_SIZE - 1) & (~(PAGE_SIZE - 1))) #define OFFSET_IN_PAGE(v) ((v) & (PAGE_SIZE - 1)) # if defined ARCH && ARCH == 32 #define BP "ebp" #define SP "esp" #else #define BP "rbp" #define SP "rsp" #endif typedef struct arg_t { int a; } arg_t; void func1(void * data) { arg_t * arg_ptr = (arg_t *)data; printf("func1: old value: %d\n", arg_ptr->a); arg_ptr->a = 53; printf("func1: address: %p\n", &arg_ptr->a); printf("func1: new value: %d\n", arg_ptr->a); } void expore_proc_mem(void (*fn)(void *), void * data) { off_t frame_pointer, stack_start; char buffer[PAGE_SIZE]; const char * path = "/proc/self/mem"; int child_pid, status; int parent_to_child[2]; int child_to_parent[2]; arg_t * arg_ptr; off_t child_offset; asm volatile ("mov %%"BP", %0" : "=m" (frame_pointer)); stack_start = PAGE_ROUND_DOWN(frame_pointer); printf("Stack_start: %lx\n", (unsigned long)stack_start); arg_ptr = (arg_t *)data; child_offset = OFFSET_IN_PAGE((off_t)&arg_ptr->a); printf("Address of arg_ptr->a: %p\n", &arg_ptr->a); pipe(parent_to_child); pipe(child_to_parent); bool msg; int child_mem_fd; char child_path[0x20]; child_pid = fork(); if (child_pid == -1) { perror("fork"); exit(EXIT_FAILURE); } if (!child_pid) { close(child_to_parent[0]); close(parent_to_child[1]); printf("CHILD (pid %d, parent pid %d).\n", getpid(), getppid()); fn(data); msg = true; write(child_to_parent[1], &msg, 1); child_mem_fd = open("/proc/self/mem", O_RDONLY); if (child_mem_fd == -1) { perror("open (child)"); exit(EXIT_FAILURE); } printf("CHILD: child_mem_fd: %d\n", child_mem_fd); if (lseek(child_mem_fd, stack_start, SEEK_SET) == (off_t)-1) { perror("lseek"); exit(EXIT_FAILURE); } if (read(child_mem_fd, buffer, sizeof(buffer)) != sizeof(buffer)) { perror("read"); exit(EXIT_FAILURE); } printf("CHILD: new value %d\n", *(int *)(buffer + child_offset)); read(parent_to_child[0], &msg, 1); exit(EXIT_SUCCESS); } else { printf("PARENT (pid %d, child pid %d)\n", getpid(), child_pid); printf("PARENT: child_offset: %lx\n", child_offset); read(child_to_parent[0], &msg, 1); printf("PARENT: message from child: %d\n", msg); snprintf(child_path, 0x20, "/proc/%d/mem", child_pid); printf("PARENT: child_path: %s\n", child_path); child_mem_fd = open(path, O_RDONLY); if (child_mem_fd == -1) { perror("open (child)"); exit(EXIT_FAILURE); } printf("PARENT: child_mem_fd: %d\n", child_mem_fd); if (lseek(child_mem_fd, stack_start, SEEK_SET) == (off_t)-1) { perror("lseek"); exit(EXIT_FAILURE); } if (read(child_mem_fd, buffer, sizeof(buffer)) != sizeof(buffer)) { perror("read"); exit(EXIT_FAILURE); } printf("PARENT: new value %d\n", *(int *)(buffer + child_offset)); close(child_mem_fd); printf("ENDING CHILD PROCESS.\n"); write(parent_to_child[1], &msg, 1); if (waitpid(child_pid, &status, 0) == -1) { perror("waitpid"); exit(EXIT_FAILURE); } } } int main(void) { arg_t arg; arg.a = 42; printf("In main: address of arg.a: %p\n", &arg.a); explore_proc_mem(&func1, &arg.a); return EXIT_SUCCESS; } This program produces the output below. Notice that the value of a (boldfaced) differs between parent's and child's reading of the /proc/child_pid/mem file. In main: address of arg.a: 0x7ffffe1964f0 Stack_start: 7ffffe196000 Address of arg_ptr-a: 0x7ffffe1964f0 PARENT (pid 20376, child pid 20377) PARENT: child_offset: 4f0 CHILD (pid 20377, parent pid 20376). func1: old value: 42 func1: address: 0x7ffffe1964f0 func1: new value: 53 PARENT: message from child: 1 CHILD: child_mem_fd: 4 PARENT: child_path: /proc/20377/mem CHILD: new value 53 PARENT: child_mem_fd: 7 PARENT: new value 42 ENDING CHILD PROCESS.

    Read the article

  • C++: compute a number's complement and its number of possible mismatches

    - by Eagle
    I got a bit stuck with my algorithm and I need some help to solve my problem. I think an example would explain better my problem. Assuming: d = 4 (maximum number of allowed bits in a number, 2^4-1=15). m_max = 1 (maximum number of allowed bits mismatches). kappa = (maximum number of elements to find for a given d and m, where m in m_max) The main idea is for a given number, x, to compute its complement number (in binary base) and all the possible combinations for up to m_max mismatches from x complement's number. Now the program start to scan from i = 0 till 15. for i = 0 and m = 0, kappa = \binom{d}{0} = 1 (this called a perfect match) possible combinations in bits, is only 1111 (for 0: 0000). for i = 0 and m = 1, kappa = \binom{d}{1} = 4 (one mismatch) possible combinations in bits are: 1000, 0100, 0010 and 0001 My problem was to generalize it to general d and m. I wrote the following code: #include <stdlib.h> #include <iomanip> #include <boost/math/special_functions/binomial.hpp> #include <iostream> #include <stdint.h> #include <vector> namespace vec { typedef std::vector<unsigned int> uint_1d_vec_t; } int main( int argc, char* argv[] ) { int counter, d, m; unsigned num_combination, bits_mask, bit_mask, max_num_mismatch; uint_1d_vec_t kappa; d = 4; m = 2; bits_mask = 2^num_bits - 1; for ( unsigned i = 0 ; i < num_elemets ; i++ ) { counter = 0; for ( unsigned m = 0 ; m < max_num_mismatch ; m++ ) { // maximum number of allowed combinations num_combination = boost::math::binomial_coefficient<double>( static_cast<unsigned>( d ), static_cast<unsigned>(m) ); kappa.push_back( num_combination ); for ( unsigned j = 0 ; j < kappa.at(m) ; j++ ) { if ( m == 0 ) v[i][counter++] = i^bits_mask; // M_0 else { bit_mask = 1 << ( num_bits - j ); v[i][counter++] = v[i][0] ^ bits_mask } } } } return 0; } I got stuck in the line v[i][counter++] = v[i][0] ^ bits_mask since I was unable to generalize my algorithm to m_max1, since I needed for m_max mismatches m_max loops and in my original problem, m is unknown until runtime.

    Read the article

< Previous Page | 82 83 84 85 86 87 88 89 90 91 92 93  | Next Page >