Search Results

Search found 40159 results on 1607 pages for 'multiple users'.

Page 919/1607 | < Previous Page | 915 916 917 918 919 920 921 922 923 924 925 926  | Next Page >

  • Connecting Id field with name field

    - by sts
    Hi, Am having a table with quetion_id , nominees and vote_count. In which the values for question_id and nominees are prepopulated from other tables with vote_count as zero. If the users select some nominees the vote count should be incresed by one. The problem is How to connect the question_id and nominees like for this question_id this nominee is selected . can some one give example for this situation..

    Read the article

  • DocumentCompleted event when the page is fully loaded in WebBrowser form (Windows Forms C#)

    - by Tolga E
    I use the DocumentCompleted but this gets fired multiple times. Now I've seen this example if (e.Url.AbsolutePath != this.webBrowser.Url.AbsolutePath) which is used to confirm that the requested file is completed loading but this gets fired before anything else (like images) on the page is loaded. Thus I'm still not able to tell when a webpage is fully loaded. Is there a way to ensure that the webpage has fully loaded and there's nothing being loaded?

    Read the article

  • Will AJAX cause my site to have a high bounce % and hurt my search ratings?

    - by Cryo
    I'm building an art gallery website that updates its images via AJAX, for those who have javascript enabled, rather than request multiple page loads. I assume this will appear as though my site has a high bounce percentage. I understand that search engines will not be able to index dynamic content, but will such a misinterpreted bounce rate hurt my search engine ratings, even if I have many return visitors?

    Read the article

  • How to create many div's with 100% height?

    - by ChrisBenyamin
    I need a html document, that contains multiple div's with 100% height (screen filling) one below the other. I have tried to apply every element a height of 100%, but that won't work seamless nor clean. Maybe there is a option with JavaScript? I don't have an idea. Please suggest me your solutions. chris

    Read the article

  • How to rewrite a URL with %23 in it?

    - by Jan P.
    I have a (wordpress) blog where after commenting the users are redirected back to the page with an anchor to their comment. Should look like this: http://example.org/foo-bar/#comment-570630 But somehow I get a lot of 404 ins my logfiles for such URLs: http://example.org/foo-bar/%23comment-570630 Is there a way to write a .htaccess rewrite rule to fix this? Bonus question: Any idea why this happens and what I can do about it?

    Read the article

  • Capturing and Transforming ASP.NET Output with Response.Filter

    - by Rick Strahl
    During one of my Handlers and Modules session at DevConnections this week one of the attendees asked a question that I didn’t have an immediate answer for. Basically he wanted to capture response output completely and then apply some filtering to the output – effectively injecting some additional content into the page AFTER the page had completely rendered. Specifically the output should be captured from anywhere – not just a page and have this code injected into the page. Some time ago I posted some code that allows you to capture ASP.NET Page output by overriding the Render() method, capturing the HtmlTextWriter() and reading its content, modifying the rendered data as text then writing it back out. I’ve actually used this approach on a few occasions and it works fine for ASP.NET pages. But this obviously won’t work outside of the Page class environment and it’s not really generic – you have to create a custom page class in order to handle the output capture. [updated 11/16/2009 – updated ResponseFilterStream implementation and a few additional notes based on comments] Enter Response.Filter However, ASP.NET includes a Response.Filter which can be used – well to filter output. Basically Response.Filter is a stream through which the OutputStream is piped back to the Web Server (indirectly). As content is written into the Response object, the filter stream receives the appropriate Stream commands like Write, Flush and Close as well as read operations although for a Response.Filter that’s uncommon to be hit. The Response.Filter can be programmatically replaced at runtime which allows you to effectively intercept all output generation that runs through ASP.NET. A common Example: Dynamic GZip Encoding A rather common use of Response.Filter hooking up code based, dynamic  GZip compression for requests which is dead simple by applying a GZipStream (or DeflateStream) to Response.Filter. The following generic routines can be used very easily to detect GZip capability of the client and compress response output with a single line of code and a couple of library helper routines: WebUtils.GZipEncodePage(); which is handled with a few lines of reusable code and a couple of static helper methods: /// <summary> ///Sets up the current page or handler to use GZip through a Response.Filter ///IMPORTANT:  ///You have to call this method before any output is generated! /// </summary> public static void GZipEncodePage() {     HttpResponse Response = HttpContext.Current.Response;     if(IsGZipSupported())     {         stringAcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"];         if(AcceptEncoding.Contains("deflate"))         {             Response.Filter = newSystem.IO.Compression.DeflateStream(Response.Filter,                                        System.IO.Compression.CompressionMode.Compress);             Response.AppendHeader("Content-Encoding", "deflate");         }         else        {             Response.Filter = newSystem.IO.Compression.GZipStream(Response.Filter,                                       System.IO.Compression.CompressionMode.Compress);             Response.AppendHeader("Content-Encoding", "gzip");                            }     }     // Allow proxy servers to cache encoded and unencoded versions separately    Response.AppendHeader("Vary", "Content-Encoding"); } /// <summary> /// Determines if GZip is supported /// </summary> /// <returns></returns> public static bool IsGZipSupported() { string AcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"]; if (!string.IsNullOrEmpty(AcceptEncoding) && (AcceptEncoding.Contains("gzip") || AcceptEncoding.Contains("deflate"))) return true; return false; } GZipStream and DeflateStream are streams that are assigned to Response.Filter and by doing so apply the appropriate compression on the active Response. Response.Filter content is chunked So to implement a Response.Filter effectively requires only that you implement a custom stream and handle the Write() method to capture Response output as it’s written. At first blush this seems very simple – you capture the output in Write, transform it and write out the transformed content in one pass. And that indeed works for small amounts of content. But you see, the problem is that output is written in small buffer chunks (a little less than 16k it appears) rather than just a single Write() statement into the stream, which makes perfect sense for ASP.NET to stream data back to IIS in smaller chunks to minimize memory usage en route. Unfortunately this also makes it a more difficult to implement any filtering routines since you don’t directly get access to all of the response content which is problematic especially if those filtering routines require you to look at the ENTIRE response in order to transform or capture the output as is needed for the solution the gentleman in my session asked for. So in order to address this a slightly different approach is required that basically captures all the Write() buffers passed into a cached stream and then making the stream available only when it’s complete and ready to be flushed. As I was thinking about the implementation I also started thinking about the few instances when I’ve used Response.Filter implementations. Each time I had to create a new Stream subclass and create my custom functionality but in the end each implementation did the same thing – capturing output and transforming it. I thought there should be an easier way to do this by creating a re-usable Stream class that can handle stream transformations that are common to Response.Filter implementations. Creating a semi-generic Response Filter Stream Class What I ended up with is a ResponseFilterStream class that provides a handful of Events that allow you to capture and/or transform Response content. The class implements a subclass of Stream and then overrides Write() and Flush() to handle capturing and transformation operations. By exposing events it’s easy to hook up capture or transformation operations via single focused methods. ResponseFilterStream exposes the following events: CaptureStream, CaptureString Captures the output only and provides either a MemoryStream or String with the final page output. Capture is hooked to the Flush() operation of the stream. TransformStream, TransformString Allows you to transform the complete response output with events that receive a MemoryStream or String respectively and can you modify the output then return it back as a return value. The transformed output is then written back out in a single chunk to the response output stream. These events capture all output internally first then write the entire buffer into the response. TransformWrite, TransformWriteString Allows you to transform the Response data as it is written in its original chunk size in the Stream’s Write() method. Unlike TransformStream/TransformString which operate on the complete output, these events only see the current chunk of data written. This is more efficient as there’s no caching involved, but can cause problems due to searched content splitting over multiple chunks. Using this implementation, creating a custom Response.Filter transformation becomes as simple as the following code. To hook up the Response.Filter using the MemoryStream version event: ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformStream += filter_TransformStream; Response.Filter = filter; and the event handler to do the transformation: MemoryStream filter_TransformStream(MemoryStream ms) { Encoding encoding = HttpContext.Current.Response.ContentEncoding; string output = encoding.GetString(ms.ToArray()); output = FixPaths(output); ms = new MemoryStream(output.Length); byte[] buffer = encoding.GetBytes(output); ms.Write(buffer,0,buffer.Length); return ms; } private string FixPaths(string output) { string path = HttpContext.Current.Request.ApplicationPath; // override root path wonkiness if (path == "/") path = ""; output = output.Replace("\"~/", "\"" + path + "/").Replace("'~/", "'" + path + "/"); return output; } The idea of the event handler is that you can do whatever you want to the stream and return back a stream – either the same one that’s been modified or a brand new one – which is then sent back to as the final response. The above code can be simplified even more by using the string version events which handle the stream to string conversions for you: ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformString += filter_TransformString; Response.Filter = filter; and the event handler to do the transformation calling the same FixPaths method shown above: string filter_TransformString(string output) { return FixPaths(output); } The events for capturing output and capturing and transforming chunks work in a very similar way. By using events to handle the transformations ResponseFilterStream becomes a reusable component and we don’t have to create a new stream class or subclass an existing Stream based classed. By the way, the example used here is kind of a cool trick which transforms “~/” expressions inside of the final generated HTML output – even in plain HTML controls not HTML controls – and transforms them into the appropriate application relative path in the same way that ResolveUrl would do. So you can write plain old HTML like this: <a href=”~/default.aspx”>Home</a>  and have it turned into: <a href=”/myVirtual/default.aspx”>Home</a>  without having to use an ASP.NET control like Hyperlink or Image or having to constantly use: <img src=”<%= ResolveUrl(“~/images/home.gif”) %>” /> in MVC applications (which frankly is one of the most annoying things about MVC especially given the path hell that extension-less and endpoint-less URLs impose). I can’t take credit for this idea. While discussing the Response.Filter issues on Twitter a hint from Dylan Beattie who pointed me at one of his examples which does something similar. I thought the idea was cool enough to use an example for future demos of Response.Filter functionality in ASP.NET next I time I do the Modules and Handlers talk (which was great fun BTW). How practical this is is debatable however since there’s definitely some overhead to using a Response.Filter in general and especially on one that caches the output and the re-writes it later. Make sure to test for performance anytime you use Response.Filter hookup and make sure it' doesn’t end up killing perf on you. You’ve been warned :-}. How does ResponseFilterStream work? The big win of this implementation IMHO is that it’s a reusable  component – so for implementation there’s no new class, no subclassing – you simply attach to an event to implement an event handler method with a straight forward signature to retrieve the stream or string you’re interested in. The implementation is based on a subclass of Stream as is required in order to handle the Response.Filter requirements. What’s different than other implementations I’ve seen in various places is that it supports capturing output as a whole to allow retrieving the full response output for capture or modification. The exception are the TransformWrite and TransformWrite events which operate only active chunk of data written by the Response. For captured output, the Write() method captures output into an internal MemoryStream that is cached until writing is complete. So Write() is called when ASP.NET writes to the Response stream, but the filter doesn’t pass on the Write immediately to the filter’s internal stream. The data is cached and only when the Flush() method is called to finalize the Stream’s output do we actually send the cached stream off for transformation (if the events are hooked up) and THEN finally write out the returned content in one big chunk. Here’s the implementation of ResponseFilterStream: /// <summary> /// A semi-generic Stream implementation for Response.Filter with /// an event interface for handling Content transformations via /// Stream or String. /// <remarks> /// Use with care for large output as this implementation copies /// the output into a memory stream and so increases memory usage. /// </remarks> /// </summary> public class ResponseFilterStream : Stream { /// <summary> /// The original stream /// </summary> Stream _stream; /// <summary> /// Current position in the original stream /// </summary> long _position; /// <summary> /// Stream that original content is read into /// and then passed to TransformStream function /// </summary> MemoryStream _cacheStream = new MemoryStream(5000); /// <summary> /// Internal pointer that that keeps track of the size /// of the cacheStream /// </summary> int _cachePointer = 0; /// <summary> /// /// </summary> /// <param name="responseStream"></param> public ResponseFilterStream(Stream responseStream) { _stream = responseStream; } /// <summary> /// Determines whether the stream is captured /// </summary> private bool IsCaptured { get { if (CaptureStream != null || CaptureString != null || TransformStream != null || TransformString != null) return true; return false; } } /// <summary> /// Determines whether the Write method is outputting data immediately /// or delaying output until Flush() is fired. /// </summary> private bool IsOutputDelayed { get { if (TransformStream != null || TransformString != null) return true; return false; } } /// <summary> /// Event that captures Response output and makes it available /// as a MemoryStream instance. Output is captured but won't /// affect Response output. /// </summary> public event Action<MemoryStream> CaptureStream; /// <summary> /// Event that captures Response output and makes it available /// as a string. Output is captured but won't affect Response output. /// </summary> public event Action<string> CaptureString; /// <summary> /// Event that allows you transform the stream as each chunk of /// the output is written in the Write() operation of the stream. /// This means that that it's possible/likely that the input /// buffer will not contain the full response output but only /// one of potentially many chunks. /// /// This event is called as part of the filter stream's Write() /// operation. /// </summary> public event Func<byte[], byte[]> TransformWrite; /// <summary> /// Event that allows you to transform the response stream as /// each chunk of bytep[] output is written during the stream's write /// operation. This means it's possibly/likely that the string /// passed to the handler only contains a portion of the full /// output. Typical buffer chunks are around 16k a piece. /// /// This event is called as part of the stream's Write operation. /// </summary> public event Func<string, string> TransformWriteString; /// <summary> /// This event allows capturing and transformation of the entire /// output stream by caching all write operations and delaying final /// response output until Flush() is called on the stream. /// </summary> public event Func<MemoryStream, MemoryStream> TransformStream; /// <summary> /// Event that can be hooked up to handle Response.Filter /// Transformation. Passed a string that you can modify and /// return back as a return value. The modified content /// will become the final output. /// </summary> public event Func<string, string> TransformString; protected virtual void OnCaptureStream(MemoryStream ms) { if (CaptureStream != null) CaptureStream(ms); } private void OnCaptureStringInternal(MemoryStream ms) { if (CaptureString != null) { string content = HttpContext.Current.Response.ContentEncoding.GetString(ms.ToArray()); OnCaptureString(content); } } protected virtual void OnCaptureString(string output) { if (CaptureString != null) CaptureString(output); } protected virtual byte[] OnTransformWrite(byte[] buffer) { if (TransformWrite != null) return TransformWrite(buffer); return buffer; } private byte[] OnTransformWriteStringInternal(byte[] buffer) { Encoding encoding = HttpContext.Current.Response.ContentEncoding; string output = OnTransformWriteString(encoding.GetString(buffer)); return encoding.GetBytes(output); } private string OnTransformWriteString(string value) { if (TransformWriteString != null) return TransformWriteString(value); return value; } protected virtual MemoryStream OnTransformCompleteStream(MemoryStream ms) { if (TransformStream != null) return TransformStream(ms); return ms; } /// <summary> /// Allows transforming of strings /// /// Note this handler is internal and not meant to be overridden /// as the TransformString Event has to be hooked up in order /// for this handler to even fire to avoid the overhead of string /// conversion on every pass through. /// </summary> /// <param name="responseText"></param> /// <returns></returns> private string OnTransformCompleteString(string responseText) { if (TransformString != null) TransformString(responseText); return responseText; } /// <summary> /// Wrapper method form OnTransformString that handles /// stream to string and vice versa conversions /// </summary> /// <param name="ms"></param> /// <returns></returns> internal MemoryStream OnTransformCompleteStringInternal(MemoryStream ms) { if (TransformString == null) return ms; //string content = ms.GetAsString(); string content = HttpContext.Current.Response.ContentEncoding.GetString(ms.ToArray()); content = TransformString(content); byte[] buffer = HttpContext.Current.Response.ContentEncoding.GetBytes(content); ms = new MemoryStream(); ms.Write(buffer, 0, buffer.Length); //ms.WriteString(content); return ms; } /// <summary> /// /// </summary> public override bool CanRead { get { return true; } } public override bool CanSeek { get { return true; } } /// <summary> /// /// </summary> public override bool CanWrite { get { return true; } } /// <summary> /// /// </summary> public override long Length { get { return 0; } } /// <summary> /// /// </summary> public override long Position { get { return _position; } set { _position = value; } } /// <summary> /// /// </summary> /// <param name="offset"></param> /// <param name="direction"></param> /// <returns></returns> public override long Seek(long offset, System.IO.SeekOrigin direction) { return _stream.Seek(offset, direction); } /// <summary> /// /// </summary> /// <param name="length"></param> public override void SetLength(long length) { _stream.SetLength(length); } /// <summary> /// /// </summary> public override void Close() { _stream.Close(); } /// <summary> /// Override flush by writing out the cached stream data /// </summary> public override void Flush() { if (IsCaptured && _cacheStream.Length > 0) { // Check for transform implementations _cacheStream = OnTransformCompleteStream(_cacheStream); _cacheStream = OnTransformCompleteStringInternal(_cacheStream); OnCaptureStream(_cacheStream); OnCaptureStringInternal(_cacheStream); // write the stream back out if output was delayed if (IsOutputDelayed) _stream.Write(_cacheStream.ToArray(), 0, (int)_cacheStream.Length); // Clear the cache once we've written it out _cacheStream.SetLength(0); } // default flush behavior _stream.Flush(); } /// <summary> /// /// </summary> /// <param name="buffer"></param> /// <param name="offset"></param> /// <param name="count"></param> /// <returns></returns> public override int Read(byte[] buffer, int offset, int count) { return _stream.Read(buffer, offset, count); } /// <summary> /// Overriden to capture output written by ASP.NET and captured /// into a cached stream that is written out later when Flush() /// is called. /// </summary> /// <param name="buffer"></param> /// <param name="offset"></param> /// <param name="count"></param> public override void Write(byte[] buffer, int offset, int count) { if ( IsCaptured ) { // copy to holding buffer only - we'll write out later _cacheStream.Write(buffer, 0, count); _cachePointer += count; } // just transform this buffer if (TransformWrite != null) buffer = OnTransformWrite(buffer); if (TransformWriteString != null) buffer = OnTransformWriteStringInternal(buffer); if (!IsOutputDelayed) _stream.Write(buffer, offset, buffer.Length); } } The key features are the events and corresponding OnXXX methods that handle the event hookups, and the Write() and Flush() methods of the stream implementation. All the rest of the members tend to be plain jane passthrough stream implementation code without much consequence. I do love the way Action<t> and Func<T> make it so easy to create the event signatures for the various events – sweet. A few Things to consider Performance Response.Filter is not great for performance in general as it adds another layer of indirection to the ASP.NET output pipeline, and this implementation in particular adds a memory hit as it basically duplicates the response output into the cached memory stream which is necessary since you may have to look at the entire response. If you have large pages in particular this can cause potentially serious memory pressure in your server application. So be careful of wholesale adoption of this (or other) Response.Filters. Make sure to do some performance testing to ensure it’s not killing your app’s performance. Response.Filter works everywhere A few questions came up in comments and discussion as to capturing ALL output hitting the site and – yes you can definitely do that by assigning a Response.Filter inside of a module. If you do this however you’ll want to be very careful and decide which content you actually want to capture especially in IIS 7 which passes ALL content – including static images/CSS etc. through the ASP.NET pipeline. So it is important to filter only on what you’re looking for – like the page extension or maybe more effectively the Response.ContentType. Response.Filter Chaining Originally I thought that filter chaining doesn’t work at all due to a bug in the stream implementation code. But it’s quite possible to assign multiple filters to the Response.Filter property. So the following actually works to both compress the output and apply the transformed content: WebUtils.GZipEncodePage(); ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformString += filter_TransformString; Response.Filter = filter; However the following does not work resulting in invalid content encoding errors: ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformString += filter_TransformString; Response.Filter = filter; WebUtils.GZipEncodePage(); In other words multiple Response filters can work together but it depends entirely on the implementation whether they can be chained or in which order they can be chained. In this case running the GZip/Deflate stream filters apparently relies on the original content length of the output and chokes when the content is modified. But if attaching the compression first it works fine as unintuitive as that may seem. Resources Download example code Capture Output from ASP.NET Pages © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  

    Read the article

  • Service Discovery in WCF 4.0 &ndash; Part 1

    - by Shaun
    When designing a service oriented architecture (SOA) system, there will be a lot of services with many service contracts, endpoints and behaviors. Besides the client calling the service, in a large distributed system a service may invoke other services. In this case, one service might need to know the endpoints it invokes. This might not be a problem in a small system. But when you have more than 10 services this might be a problem. For example in my current product, there are around 10 services, such as the user authentication service, UI integration service, location service, license service, device monitor service, event monitor service, schedule job service, accounting service, player management service, etc..   Benefit of Discovery Service Since almost all my services need to invoke at least one other service. This would be a difficult task to make sure all services endpoints are configured correctly in every service. And furthermore, it would be a nightmare when a service changed its endpoint at runtime. Hence, we need a discovery service to remove the dependency (configuration dependency). A discovery service plays as a service dictionary which stores the relationship between the contracts and the endpoints for every service. By using the discovery service, when service X wants to invoke service Y, it just need to ask the discovery service where is service Y, then the discovery service will return all proper endpoints of service Y, then service X can use the endpoint to send the request to service Y. And when some services changed their endpoint address, all need to do is to update its records in the discovery service then all others will know its new endpoint. In WCF 4.0 Discovery it supports both managed proxy discovery mode and ad-hoc discovery mode. In ad-hoc mode there is no standalone discovery service. When a client wanted to invoke a service, it will broadcast an message (normally in UDP protocol) to the entire network with the service match criteria. All services which enabled the discovery behavior will receive this message and only those matched services will send their endpoint back to the client. The managed proxy discovery service works as I described above. In this post I will only cover the managed proxy mode, where there’s a discovery service. For more information about the ad-hoc mode please refer to the MSDN.   Service Announcement and Probe The main functionality of discovery service should be return the proper endpoint addresses back to the service who is looking for. In most cases the consume service (as a client) will send the contract which it wanted to request to the discovery service. And then the discovery service will find the endpoint and respond. Sometimes the contract and endpoint are not enough. It also contains versioning, extensions attributes. This post I will only cover the case includes contract and endpoint. When a client (or sometimes a service who need to invoke another service) need to connect to a target service, it will firstly request the discovery service through the “Probe” method with the criteria. Basically the criteria contains the contract type name of the target service. Then the discovery service will search its endpoint repository by the criteria. The repository might be a database, a distributed cache or a flat XML file. If it matches, the discovery service will grab the endpoint information (it’s called discovery endpoint metadata in WCF) and send back. And this is called “Probe”. Finally the client received the discovery endpoint metadata and will use the endpoint to connect to the target service. Besides the probe, discovery service should take the responsible to know there is a new service available when it goes online, as well as stopped when it goes offline. This feature is named “Announcement”. When a service started and stopped, it will announce to the discovery service. So the basic functionality of a discovery service should includes: 1, An endpoint which receive the service online message, and add the service endpoint information in the discovery repository. 2, An endpoint which receive the service offline message, and remove the service endpoint information from the discovery repository. 3, An endpoint which receive the client probe message, and return the matches service endpoints, and return the discovery endpoint metadata. WCF 4.0 discovery service just covers all these features in it's infrastructure classes.   Discovery Service in WCF 4.0 WCF 4.0 introduced a new assembly named System.ServiceModel.Discovery which has all necessary classes and interfaces to build a WS-Discovery compliant discovery service. It supports ad-hoc and managed proxy modes. For the case mentioned in this post, what we need to build is a standalone discovery service, which is the managed proxy discovery service mode. To build a managed discovery service in WCF 4.0 just create a new class inherits from the abstract class System.ServiceModel.Discovery.DiscoveryProxy. This class implemented and abstracted the procedures of service announcement and probe. And it exposes 8 abstract methods where we can implement our own endpoint register, unregister and find logic. These 8 methods are asynchronized, which means all invokes to the discovery service are asynchronously, for better service capability and performance. 1, OnBeginOnlineAnnouncement, OnEndOnlineAnnouncement: Invoked when a service sent the online announcement message. We need to add the endpoint information to the repository in this method. 2, OnBeginOfflineAnnouncement, OnEndOfflineAnnouncement: Invoked when a service sent the offline announcement message. We need to remove the endpoint information from the repository in this method. 3, OnBeginFind, OnEndFind: Invoked when a client sent the probe message that want to find the service endpoint information. We need to look for the proper endpoints by matching the client’s criteria through the repository in this method. 4, OnBeginResolve, OnEndResolve: Invoked then a client sent the resolve message. Different from the find method, when using resolve method the discovery service will return the exactly one service endpoint metadata to the client. In our example we will NOT implement this method.   Let’s create our own discovery service, inherit the base System.ServiceModel.Discovery.DiscoveryProxy. We also need to specify the service behavior in this class. Since the build-in discovery service host class only support the singleton mode, we must set its instance context mode to single. 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.ServiceModel.Discovery; 6: using System.ServiceModel; 7:  8: namespace Phare.Service 9: { 10: [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single, ConcurrencyMode = ConcurrencyMode.Multiple)] 11: public class ManagedProxyDiscoveryService : DiscoveryProxy 12: { 13: protected override IAsyncResult OnBeginFind(FindRequestContext findRequestContext, AsyncCallback callback, object state) 14: { 15: throw new NotImplementedException(); 16: } 17:  18: protected override IAsyncResult OnBeginOfflineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 19: { 20: throw new NotImplementedException(); 21: } 22:  23: protected override IAsyncResult OnBeginOnlineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 24: { 25: throw new NotImplementedException(); 26: } 27:  28: protected override IAsyncResult OnBeginResolve(ResolveCriteria resolveCriteria, AsyncCallback callback, object state) 29: { 30: throw new NotImplementedException(); 31: } 32:  33: protected override void OnEndFind(IAsyncResult result) 34: { 35: throw new NotImplementedException(); 36: } 37:  38: protected override void OnEndOfflineAnnouncement(IAsyncResult result) 39: { 40: throw new NotImplementedException(); 41: } 42:  43: protected override void OnEndOnlineAnnouncement(IAsyncResult result) 44: { 45: throw new NotImplementedException(); 46: } 47:  48: protected override EndpointDiscoveryMetadata OnEndResolve(IAsyncResult result) 49: { 50: throw new NotImplementedException(); 51: } 52: } 53: } Then let’s implement the online, offline and find methods one by one. WCF discovery service gives us full flexibility to implement the endpoint add, remove and find logic. For the demo purpose we will use an internal dictionary to store the services’ endpoint metadata. In the next post we will see how to serialize and store these information in database. Define a concurrent dictionary inside the service class since our it will be used in the multiple threads scenario. 1: [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single, ConcurrencyMode = ConcurrencyMode.Multiple)] 2: public class ManagedProxyDiscoveryService : DiscoveryProxy 3: { 4: private ConcurrentDictionary<EndpointAddress, EndpointDiscoveryMetadata> _services; 5:  6: public ManagedProxyDiscoveryService() 7: { 8: _services = new ConcurrentDictionary<EndpointAddress, EndpointDiscoveryMetadata>(); 9: } 10: } Then we can simply implement the logic of service online and offline. 1: protected override IAsyncResult OnBeginOnlineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 2: { 3: _services.AddOrUpdate(endpointDiscoveryMetadata.Address, endpointDiscoveryMetadata, (key, value) => endpointDiscoveryMetadata); 4: return new OnOnlineAnnouncementAsyncResult(callback, state); 5: } 6:  7: protected override void OnEndOnlineAnnouncement(IAsyncResult result) 8: { 9: OnOnlineAnnouncementAsyncResult.End(result); 10: } 11:  12: protected override IAsyncResult OnBeginOfflineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 13: { 14: EndpointDiscoveryMetadata endpoint = null; 15: _services.TryRemove(endpointDiscoveryMetadata.Address, out endpoint); 16: return new OnOfflineAnnouncementAsyncResult(callback, state); 17: } 18:  19: protected override void OnEndOfflineAnnouncement(IAsyncResult result) 20: { 21: OnOfflineAnnouncementAsyncResult.End(result); 22: } Regards the find method, the parameter FindRequestContext.Criteria has a method named IsMatch, which can be use for us to evaluate which service metadata is satisfied with the criteria. So the implementation of find method would be like this. 1: protected override IAsyncResult OnBeginFind(FindRequestContext findRequestContext, AsyncCallback callback, object state) 2: { 3: _services.Where(s => findRequestContext.Criteria.IsMatch(s.Value)) 4: .Select(s => s.Value) 5: .All(meta => 6: { 7: findRequestContext.AddMatchingEndpoint(meta); 8: return true; 9: }); 10: return new OnFindAsyncResult(callback, state); 11: } 12:  13: protected override void OnEndFind(IAsyncResult result) 14: { 15: OnFindAsyncResult.End(result); 16: } As you can see, we checked all endpoints metadata in repository by invoking the IsMatch method. Then add all proper endpoints metadata into the parameter. Finally since all these methods are asynchronized we need some AsyncResult classes as well. Below are the base class and the inherited classes used in previous methods. 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.Threading; 6:  7: namespace Phare.Service 8: { 9: abstract internal class AsyncResult : IAsyncResult 10: { 11: AsyncCallback callback; 12: bool completedSynchronously; 13: bool endCalled; 14: Exception exception; 15: bool isCompleted; 16: ManualResetEvent manualResetEvent; 17: object state; 18: object thisLock; 19:  20: protected AsyncResult(AsyncCallback callback, object state) 21: { 22: this.callback = callback; 23: this.state = state; 24: this.thisLock = new object(); 25: } 26:  27: public object AsyncState 28: { 29: get 30: { 31: return state; 32: } 33: } 34:  35: public WaitHandle AsyncWaitHandle 36: { 37: get 38: { 39: if (manualResetEvent != null) 40: { 41: return manualResetEvent; 42: } 43: lock (ThisLock) 44: { 45: if (manualResetEvent == null) 46: { 47: manualResetEvent = new ManualResetEvent(isCompleted); 48: } 49: } 50: return manualResetEvent; 51: } 52: } 53:  54: public bool CompletedSynchronously 55: { 56: get 57: { 58: return completedSynchronously; 59: } 60: } 61:  62: public bool IsCompleted 63: { 64: get 65: { 66: return isCompleted; 67: } 68: } 69:  70: object ThisLock 71: { 72: get 73: { 74: return this.thisLock; 75: } 76: } 77:  78: protected static TAsyncResult End<TAsyncResult>(IAsyncResult result) 79: where TAsyncResult : AsyncResult 80: { 81: if (result == null) 82: { 83: throw new ArgumentNullException("result"); 84: } 85:  86: TAsyncResult asyncResult = result as TAsyncResult; 87:  88: if (asyncResult == null) 89: { 90: throw new ArgumentException("Invalid async result.", "result"); 91: } 92:  93: if (asyncResult.endCalled) 94: { 95: throw new InvalidOperationException("Async object already ended."); 96: } 97:  98: asyncResult.endCalled = true; 99:  100: if (!asyncResult.isCompleted) 101: { 102: asyncResult.AsyncWaitHandle.WaitOne(); 103: } 104:  105: if (asyncResult.manualResetEvent != null) 106: { 107: asyncResult.manualResetEvent.Close(); 108: } 109:  110: if (asyncResult.exception != null) 111: { 112: throw asyncResult.exception; 113: } 114:  115: return asyncResult; 116: } 117:  118: protected void Complete(bool completedSynchronously) 119: { 120: if (isCompleted) 121: { 122: throw new InvalidOperationException("This async result is already completed."); 123: } 124:  125: this.completedSynchronously = completedSynchronously; 126:  127: if (completedSynchronously) 128: { 129: this.isCompleted = true; 130: } 131: else 132: { 133: lock (ThisLock) 134: { 135: this.isCompleted = true; 136: if (this.manualResetEvent != null) 137: { 138: this.manualResetEvent.Set(); 139: } 140: } 141: } 142:  143: if (callback != null) 144: { 145: callback(this); 146: } 147: } 148:  149: protected void Complete(bool completedSynchronously, Exception exception) 150: { 151: this.exception = exception; 152: Complete(completedSynchronously); 153: } 154: } 155: } 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.ServiceModel.Discovery; 6: using Phare.Service; 7:  8: namespace Phare.Service 9: { 10: internal sealed class OnOnlineAnnouncementAsyncResult : AsyncResult 11: { 12: public OnOnlineAnnouncementAsyncResult(AsyncCallback callback, object state) 13: : base(callback, state) 14: { 15: this.Complete(true); 16: } 17:  18: public static void End(IAsyncResult result) 19: { 20: AsyncResult.End<OnOnlineAnnouncementAsyncResult>(result); 21: } 22:  23: } 24:  25: sealed class OnOfflineAnnouncementAsyncResult : AsyncResult 26: { 27: public OnOfflineAnnouncementAsyncResult(AsyncCallback callback, object state) 28: : base(callback, state) 29: { 30: this.Complete(true); 31: } 32:  33: public static void End(IAsyncResult result) 34: { 35: AsyncResult.End<OnOfflineAnnouncementAsyncResult>(result); 36: } 37: } 38:  39: sealed class OnFindAsyncResult : AsyncResult 40: { 41: public OnFindAsyncResult(AsyncCallback callback, object state) 42: : base(callback, state) 43: { 44: this.Complete(true); 45: } 46:  47: public static void End(IAsyncResult result) 48: { 49: AsyncResult.End<OnFindAsyncResult>(result); 50: } 51: } 52:  53: sealed class OnResolveAsyncResult : AsyncResult 54: { 55: EndpointDiscoveryMetadata matchingEndpoint; 56:  57: public OnResolveAsyncResult(EndpointDiscoveryMetadata matchingEndpoint, AsyncCallback callback, object state) 58: : base(callback, state) 59: { 60: this.matchingEndpoint = matchingEndpoint; 61: this.Complete(true); 62: } 63:  64: public static EndpointDiscoveryMetadata End(IAsyncResult result) 65: { 66: OnResolveAsyncResult thisPtr = AsyncResult.End<OnResolveAsyncResult>(result); 67: return thisPtr.matchingEndpoint; 68: } 69: } 70: } Now we have finished the discovery service. The next step is to host it. The discovery service is a standard WCF service. So we can use ServiceHost on a console application, windows service, or in IIS as usual. The following code is how to host the discovery service we had just created in a console application. 1: static void Main(string[] args) 2: { 3: using (var host = new ServiceHost(new ManagedProxyDiscoveryService())) 4: { 5: host.Opened += (sender, e) => 6: { 7: host.Description.Endpoints.All((ep) => 8: { 9: Console.WriteLine(ep.ListenUri); 10: return true; 11: }); 12: }; 13:  14: try 15: { 16: // retrieve the announcement, probe endpoint and binding from configuration 17: var announcementEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["announcementEndpointAddress"]); 18: var probeEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["probeEndpointAddress"]); 19: var binding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 20: var announcementEndpoint = new AnnouncementEndpoint(binding, announcementEndpointAddress); 21: var probeEndpoint = new DiscoveryEndpoint(binding, probeEndpointAddress); 22: probeEndpoint.IsSystemEndpoint = false; 23: // append the service endpoint for announcement and probe 24: host.AddServiceEndpoint(announcementEndpoint); 25: host.AddServiceEndpoint(probeEndpoint); 26:  27: host.Open(); 28:  29: Console.WriteLine("Press any key to exit."); 30: Console.ReadKey(); 31: } 32: catch (Exception ex) 33: { 34: Console.WriteLine(ex.ToString()); 35: } 36: } 37:  38: Console.WriteLine("Done."); 39: Console.ReadKey(); 40: } What we need to notice is that, the discovery service needs two endpoints for announcement and probe. In this example I just retrieve them from the configuration file. I also specified the binding of these two endpoints in configuration file as well. 1: <?xml version="1.0"?> 2: <configuration> 3: <startup> 4: <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/> 5: </startup> 6: <appSettings> 7: <add key="announcementEndpointAddress" value="net.tcp://localhost:10010/announcement"/> 8: <add key="probeEndpointAddress" value="net.tcp://localhost:10011/probe"/> 9: <add key="bindingType" value="System.ServiceModel.NetTcpBinding, System.ServiceModel, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> 10: </appSettings> 11: </configuration> And this is the console screen when I ran my discovery service. As you can see there are two endpoints listening for announcement message and probe message.   Discoverable Service and Client Next, let’s create a WCF service that is discoverable, which means it can be found by the discovery service. To do so, we need to let the service send the online announcement message to the discovery service, as well as offline message before it shutdown. Just create a simple service which can make the incoming string to upper. The service contract and implementation would be like this. 1: [ServiceContract] 2: public interface IStringService 3: { 4: [OperationContract] 5: string ToUpper(string content); 6: } 1: public class StringService : IStringService 2: { 3: public string ToUpper(string content) 4: { 5: return content.ToUpper(); 6: } 7: } Then host this service in the console application. In order to make the discovery service easy to be tested the service address will be changed each time it’s started. 1: static void Main(string[] args) 2: { 3: var baseAddress = new Uri(string.Format("net.tcp://localhost:11001/stringservice/{0}/", Guid.NewGuid().ToString())); 4:  5: using (var host = new ServiceHost(typeof(StringService), baseAddress)) 6: { 7: host.Opened += (sender, e) => 8: { 9: Console.WriteLine("Service opened at {0}", host.Description.Endpoints.First().ListenUri); 10: }; 11:  12: host.AddServiceEndpoint(typeof(IStringService), new NetTcpBinding(), string.Empty); 13:  14: host.Open(); 15:  16: Console.WriteLine("Press any key to exit."); 17: Console.ReadKey(); 18: } 19: } Currently this service is NOT discoverable. We need to add a special service behavior so that it could send the online and offline message to the discovery service announcement endpoint when the host is opened and closed. WCF 4.0 introduced a service behavior named ServiceDiscoveryBehavior. When we specified the announcement endpoint address and appended it to the service behaviors this service will be discoverable. 1: var announcementAddress = new EndpointAddress(ConfigurationManager.AppSettings["announcementEndpointAddress"]); 2: var announcementBinding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 3: var announcementEndpoint = new AnnouncementEndpoint(announcementBinding, announcementAddress); 4: var discoveryBehavior = new ServiceDiscoveryBehavior(); 5: discoveryBehavior.AnnouncementEndpoints.Add(announcementEndpoint); 6: host.Description.Behaviors.Add(discoveryBehavior); The ServiceDiscoveryBehavior utilizes the service extension and channel dispatcher to implement the online and offline announcement logic. In short, it injected the channel open and close procedure and send the online and offline message to the announcement endpoint.   On client side, when we have the discovery service, a client can invoke a service without knowing its endpoint. WCF discovery assembly provides a class named DiscoveryClient, which can be used to find the proper service endpoint by passing the criteria. In the code below I initialized the DiscoveryClient, specified the discovery service probe endpoint address. Then I created the find criteria by specifying the service contract I wanted to use and invoke the Find method. This will send the probe message to the discovery service and it will find the endpoints back to me. The discovery service will return all endpoints that matches the find criteria, which means in the result of the find method there might be more than one endpoints. In this example I just returned the first matched one back. In the next post I will show how to extend our discovery service to make it work like a service load balancer. 1: static EndpointAddress FindServiceEndpoint() 2: { 3: var probeEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["probeEndpointAddress"]); 4: var probeBinding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 5: var discoveryEndpoint = new DiscoveryEndpoint(probeBinding, probeEndpointAddress); 6:  7: EndpointAddress address = null; 8: FindResponse result = null; 9: using (var discoveryClient = new DiscoveryClient(discoveryEndpoint)) 10: { 11: result = discoveryClient.Find(new FindCriteria(typeof(IStringService))); 12: } 13:  14: if (result != null && result.Endpoints.Any()) 15: { 16: var endpointMetadata = result.Endpoints.First(); 17: address = endpointMetadata.Address; 18: } 19: return address; 20: } Once we probed the discovery service we will receive the endpoint. So in the client code we can created the channel factory from the endpoint and binding, and invoke to the service. When creating the client side channel factory we need to make sure that the client side binding should be the same as the service side. WCF discovery service can be used to find the endpoint for a service contract, but the binding is NOT included. This is because the binding was not in the WS-Discovery specification. In the next post I will demonstrate how to add the binding information into the discovery service. At that moment the client don’t need to create the binding by itself. Instead it will use the binding received from the discovery service. 1: static void Main(string[] args) 2: { 3: Console.WriteLine("Say something..."); 4: var content = Console.ReadLine(); 5: while (!string.IsNullOrWhiteSpace(content)) 6: { 7: Console.WriteLine("Finding the service endpoint..."); 8: var address = FindServiceEndpoint(); 9: if (address == null) 10: { 11: Console.WriteLine("There is no endpoint matches the criteria."); 12: } 13: else 14: { 15: Console.WriteLine("Found the endpoint {0}", address.Uri); 16:  17: var factory = new ChannelFactory<IStringService>(new NetTcpBinding(), address); 18: factory.Opened += (sender, e) => 19: { 20: Console.WriteLine("Connecting to {0}.", factory.Endpoint.ListenUri); 21: }; 22: var proxy = factory.CreateChannel(); 23: using (proxy as IDisposable) 24: { 25: Console.WriteLine("ToUpper: {0} => {1}", content, proxy.ToUpper(content)); 26: } 27: } 28:  29: Console.WriteLine("Say something..."); 30: content = Console.ReadLine(); 31: } 32: } Similarly, the discovery service probe endpoint and binding were defined in the configuration file. 1: <?xml version="1.0"?> 2: <configuration> 3: <startup> 4: <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/> 5: </startup> 6: <appSettings> 7: <add key="announcementEndpointAddress" value="net.tcp://localhost:10010/announcement"/> 8: <add key="probeEndpointAddress" value="net.tcp://localhost:10011/probe"/> 9: <add key="bindingType" value="System.ServiceModel.NetTcpBinding, System.ServiceModel, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> 10: </appSettings> 11: </configuration> OK, now let’s have a test. Firstly start the discovery service, and then start our discoverable service. When it started it will announced to the discovery service and registered its endpoint into the repository, which is the local dictionary. And then start the client and type something. As you can see the client asked the discovery service for the endpoint and then establish the connection to the discoverable service. And more interesting, do NOT close the client console but terminate the discoverable service but press the enter key. This will make the service send the offline message to the discovery service. Then start the discoverable service again. Since we made it use a different address each time it started, currently it should be hosted on another address. If we enter something in the client we could see that it asked the discovery service and retrieve the new endpoint, and connect the the service.   Summary In this post I discussed the benefit of using the discovery service and the procedures of service announcement and probe. I also demonstrated how to leverage the WCF Discovery feature in WCF 4.0 to build a simple managed discovery service. For test purpose, in this example I used the in memory dictionary as the discovery endpoint metadata repository. And when finding I also just return the first matched endpoint back. I also hard coded the bindings between the discoverable service and the client. In next post I will show you how to solve the problem mentioned above, as well as some additional feature for production usage. You can download the code here.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Custom ASP.NET Routing to an HttpHandler

    - by Rick Strahl
    As of version 4.0 ASP.NET natively supports routing via the now built-in System.Web.Routing namespace. Routing features are automatically integrated into the HtttpRuntime via a few custom interfaces. New Web Forms Routing Support In ASP.NET 4.0 there are a host of improvements including routing support baked into Web Forms via a RouteData property available on the Page class and RouteCollection.MapPageRoute() route handler that makes it easy to route to Web forms. To map ASP.NET Page routes is as simple as setting up the routes with MapPageRoute:protected void Application_Start(object sender, EventArgs e) { RegisterRoutes(RouteTable.Routes); } void RegisterRoutes(RouteCollection routes) { routes.MapPageRoute("StockQuote", "StockQuote/{symbol}", "StockQuote.aspx"); routes.MapPageRoute("StockQuotes", "StockQuotes/{symbolList}", "StockQuotes.aspx"); } and then accessing the route data in the page you can then use the new Page class RouteData property to retrieve the dynamic route data information:public partial class StockQuote1 : System.Web.UI.Page { protected StockQuote Quote = null; protected void Page_Load(object sender, EventArgs e) { string symbol = RouteData.Values["symbol"] as string; StockServer server = new StockServer(); Quote = server.GetStockQuote(symbol); // display stock data in Page View } } Simple, quick and doesn’t require much explanation. If you’re using WebForms most of your routing needs should be served just fine by this simple mechanism. Kudos to the ASP.NET team for putting this in the box and making it easy! How Routing Works To handle Routing in ASP.NET involves these steps: Registering Routes Creating a custom RouteHandler to retrieve an HttpHandler Attaching RouteData to your HttpHandler Picking up Route Information in your Request code Registering routes makes ASP.NET aware of the Routes you want to handle via the static RouteTable.Routes collection. You basically add routes to this collection to let ASP.NET know which URL patterns it should watch for. You typically hook up routes off a RegisterRoutes method that fires in Application_Start as I did in the example above to ensure routes are added only once when the application first starts up. When you create a route, you pass in a RouteHandler instance which ASP.NET caches and reuses as routes are matched. Once registered ASP.NET monitors the routes and if a match is found just prior to the HttpHandler instantiation, ASP.NET uses the RouteHandler registered for the route and calls GetHandler() on it to retrieve an HttpHandler instance. The RouteHandler.GetHandler() method is responsible for creating an instance of an HttpHandler that is to handle the request and – if necessary – to assign any additional custom data to the handler. At minimum you probably want to pass the RouteData to the handler so the handler can identify the request based on the route data available. To do this you typically add  a RouteData property to your handler and then assign the property from the RouteHandlers request context. This is essentially how Page.RouteData comes into being and this approach should work well for any custom handler implementation that requires RouteData. It’s a shame that ASP.NET doesn’t have a top level intrinsic object that’s accessible off the HttpContext object to provide route data more generically, but since RouteData is directly tied to HttpHandlers and not all handlers support it it might cause some confusion of when it’s actually available. Bottom line is that if you want to hold on to RouteData you have to assign it to a custom property of the handler or else pass it to the handler via Context.Items[] object that can be retrieved on an as needed basis. It’s important to understand that routing is hooked up via RouteHandlers that are responsible for loading HttpHandler instances. RouteHandlers are invoked for every request that matches a route and through this RouteHandler instance the Handler gains access to the current RouteData. Because of this logic it’s important to understand that Routing is really tied to HttpHandlers and not available prior to handler instantiation, which is pretty late in the HttpRuntime’s request pipeline. IOW, Routing works with Handlers but not with earlier in the pipeline within Modules. Specifically ASP.NET calls RouteHandler.GetHandler() from the PostResolveRequestCache HttpRuntime pipeline event. Here’s the call stack at the beginning of the GetHandler() call: which fires just before handler resolution. Non-Page Routing – You need to build custom RouteHandlers If you need to route to a custom Http Handler or other non-Page (and non-MVC) endpoint in the HttpRuntime, there is no generic mapping support available. You need to create a custom RouteHandler that can manage creating an instance of an HttpHandler that is fired in response to a routed request. Depending on what you are doing this process can be simple or fairly involved as your code is responsible based on the route data provided which handler to instantiate, and more importantly how to pass the route data on to the Handler. Luckily creating a RouteHandler is easy by implementing the IRouteHandler interface which has only a single GetHttpHandler(RequestContext context) method. In this method you can pick up the requestContext.RouteData, instantiate the HttpHandler of choice, and assign the RouteData to it. Then pass back the handler and you’re done.Here’s a simple example of GetHttpHandler() method that dynamically creates a handler based on a passed in Handler type./// <summary> /// Retrieves an Http Handler based on the type specified in the constructor /// </summary> /// <param name="requestContext"></param> /// <returns></returns> IHttpHandler IRouteHandler.GetHttpHandler(RequestContext requestContext) { IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; // If we're dealing with a Callback Handler // pass the RouteData for this route to the Handler if (handler is CallbackHandler) ((CallbackHandler)handler).RouteData = requestContext.RouteData; return handler; } Note that this code checks for a specific type of handler and if it matches assigns the RouteData to this handler. This is optional but quite a common scenario if you want to work with RouteData. If the handler you need to instantiate isn’t under your control but you still need to pass RouteData to Handler code, an alternative is to pass the RouteData via the HttpContext.Items collection:IHttpHandler IRouteHandler.GetHttpHandler(RequestContext requestContext) { IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; requestContext.HttpContext.Items["RouteData"] = requestContext.RouteData; return handler; } The code in the handler implementation can then pick up the RouteData from the context collection as needed:RouteData routeData = HttpContext.Current.Items["RouteData"] as RouteData This isn’t as clean as having an explicit RouteData property, but it does have the advantage that the route data is visible anywhere in the Handler’s code chain. It’s definitely preferable to create a custom property on your handler, but the Context work-around works in a pinch when you don’t’ own the handler code and have dynamic code executing as part of the handler execution. An Example of a Custom RouteHandler: Attribute Based Route Implementation In this post I’m going to discuss a custom routine implementation I built for my CallbackHandler class in the West Wind Web & Ajax Toolkit. CallbackHandler can be very easily used for creating AJAX, REST and POX requests following RPC style method mapping. You can pass parameters via URL query string, POST data or raw data structures, and you can retrieve results as JSON, XML or raw string/binary data. It’s a quick and easy way to build service interfaces with no fuss. As a quick review here’s how CallbackHandler works: You create an Http Handler that derives from CallbackHandler You implement methods that have a [CallbackMethod] Attribute and that’s it. Here’s an example of an CallbackHandler implementation in an ashx.cs based handler:// RestService.ashx.cs public class RestService : CallbackHandler { [CallbackMethod] public StockQuote GetStockQuote(string symbol) { StockServer server = new StockServer(); return server.GetStockQuote(symbol); } [CallbackMethod] public StockQuote[] GetStockQuotes(string symbolList) { StockServer server = new StockServer(); string[] symbols = symbolList.Split(new char[2] { ',',';' },StringSplitOptions.RemoveEmptyEntries); return server.GetStockQuotes(symbols); } } CallbackHandler makes it super easy to create a method on the server, pass data to it via POST, QueryString or raw JSON/XML data, and then retrieve the results easily back in various formats. This works wonderful and I’ve used these tools in many projects for myself and with clients. But one thing missing has been the ability to create clean URLs. Typical URLs looked like this: http://www.west-wind.com/WestwindWebToolkit/samples/Rest/StockService.ashx?Method=GetStockQuote&symbol=msfthttp://www.west-wind.com/WestwindWebToolkit/samples/Rest/StockService.ashx?Method=GetStockQuotes&symbolList=msft,intc,gld,slw,mwe&format=xml which works and is clear enough, but also clearly very ugly. It would be much nicer if URLs could look like this: http://www.west-wind.com//WestwindWebtoolkit/Samples/StockQuote/msfthttp://www.west-wind.com/WestwindWebtoolkit/Samples/StockQuotes/msft,intc,gld,slw?format=xml (the Virtual Root in this sample is WestWindWebToolkit/Samples and StockQuote/{symbol} is the route)(If you use FireFox try using the JSONView plug-in make it easier to view JSON content) So, taking a clue from the WCF REST tools that use RouteUrls I set out to create a way to specify RouteUrls for each of the endpoints. The change made basically allows changing the above to: [CallbackMethod(RouteUrl="RestService/StockQuote/{symbol}")] public StockQuote GetStockQuote(string symbol) { StockServer server = new StockServer(); return server.GetStockQuote(symbol); } [CallbackMethod(RouteUrl = "RestService/StockQuotes/{symbolList}")] public StockQuote[] GetStockQuotes(string symbolList) { StockServer server = new StockServer(); string[] symbols = symbolList.Split(new char[2] { ',',';' },StringSplitOptions.RemoveEmptyEntries); return server.GetStockQuotes(symbols); } where a RouteUrl is specified as part of the Callback attribute. And with the changes made with RouteUrls I can now get URLs like the second set shown earlier. So how does that work? Let’s find out… How to Create Custom Routes As mentioned earlier Routing is made up of several steps: Creating a custom RouteHandler to create HttpHandler instances Mapping the actual Routes to the RouteHandler Retrieving the RouteData and actually doing something useful with it in the HttpHandler In the CallbackHandler routing example above this works out to something like this: Create a custom RouteHandler that includes a property to track the method to call Set up the routes using Reflection against the class Looking for any RouteUrls in the CallbackMethod attribute Add a RouteData property to the CallbackHandler so we can access the RouteData in the code of the handler Creating a Custom Route Handler To make the above work I created a custom RouteHandler class that includes the actual IRouteHandler implementation as well as a generic and static method to automatically register all routes marked with the [CallbackMethod(RouteUrl="…")] attribute. Here’s the code:/// <summary> /// Route handler that can create instances of CallbackHandler derived /// callback classes. The route handler tracks the method name and /// creates an instance of the service in a predictable manner /// </summary> /// <typeparam name="TCallbackHandler">CallbackHandler type</typeparam> public class CallbackHandlerRouteHandler : IRouteHandler { /// <summary> /// Method name that is to be called on this route. /// Set by the automatically generated RegisterRoutes /// invokation. /// </summary> public string MethodName { get; set; } /// <summary> /// The type of the handler we're going to instantiate. /// Needed so we can semi-generically instantiate the /// handler and call the method on it. /// </summary> public Type CallbackHandlerType { get; set; } /// <summary> /// Constructor to pass in the two required components we /// need to create an instance of our handler. /// </summary> /// <param name="methodName"></param> /// <param name="callbackHandlerType"></param> public CallbackHandlerRouteHandler(string methodName, Type callbackHandlerType) { MethodName = methodName; CallbackHandlerType = callbackHandlerType; } /// <summary> /// Retrieves an Http Handler based on the type specified in the constructor /// </summary> /// <param name="requestContext"></param> /// <returns></returns> IHttpHandler IRouteHandler.GetHttpHandler(RequestContext requestContext) { IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; // If we're dealing with a Callback Handler // pass the RouteData for this route to the Handler if (handler is CallbackHandler) ((CallbackHandler)handler).RouteData = requestContext.RouteData; return handler; } /// <summary> /// Generic method to register all routes from a CallbackHandler /// that have RouteUrls defined on the [CallbackMethod] attribute /// </summary> /// <typeparam name="TCallbackHandler">CallbackHandler Type</typeparam> /// <param name="routes"></param> public static void RegisterRoutes<TCallbackHandler>(RouteCollection routes) { // find all methods var methods = typeof(TCallbackHandler).GetMethods(BindingFlags.Instance | BindingFlags.Public); foreach (var method in methods) { var attrs = method.GetCustomAttributes(typeof(CallbackMethodAttribute), false); if (attrs.Length < 1) continue; CallbackMethodAttribute attr = attrs[0] as CallbackMethodAttribute; if (string.IsNullOrEmpty(attr.RouteUrl)) continue; // Add the route routes.Add(method.Name, new Route(attr.RouteUrl, new CallbackHandlerRouteHandler(method.Name, typeof(TCallbackHandler)))); } } } The RouteHandler implements IRouteHandler, and its responsibility via the GetHandler method is to create an HttpHandler based on the route data. When ASP.NET calls GetHandler it passes a requestContext parameter which includes a requestContext.RouteData property. This parameter holds the current request’s route data as well as an instance of the current RouteHandler. If you look at GetHttpHandler() you can see that the code creates an instance of the handler we are interested in and then sets the RouteData property on the handler. This is how you can pass the current request’s RouteData to the handler. The RouteData object also has a  RouteData.RouteHandler property that is also available to the Handler later, which is useful in order to get additional information about the current route. In our case here the RouteHandler includes a MethodName property that identifies the method to execute in the handler since that value no longer comes from the URL so we need to figure out the method name some other way. The method name is mapped explicitly when the RouteHandler is created and here the static method that auto-registers all CallbackMethods with RouteUrls sets the method name when it creates the routes while reflecting over the methods (more on this in a minute). The important point here is that you can attach additional properties to the RouteHandler and you can then later access the RouteHandler and its properties later in the Handler to pick up these custom values. This is a crucial feature in that the RouteHandler serves in passing additional context to the handler so it knows what actions to perform. The automatic route registration is handled by the static RegisterRoutes<TCallbackHandler> method. This method is generic and totally reusable for any CallbackHandler type handler. To register a CallbackHandler and any RouteUrls it has defined you simple use code like this in Application_Start (or other application startup code):protected void Application_Start(object sender, EventArgs e) { // Register Routes for RestService CallbackHandlerRouteHandler.RegisterRoutes<RestService>(RouteTable.Routes); } If you have multiple CallbackHandler style services you can make multiple calls to RegisterRoutes for each of the service types. RegisterRoutes internally uses reflection to run through all the methods of the Handler, looking for CallbackMethod attributes and whether a RouteUrl is specified. If it is a new instance of a CallbackHandlerRouteHandler is created and the name of the method and the type are set. routes.Add(method.Name,           new Route(attr.RouteUrl, new CallbackHandlerRouteHandler(method.Name, typeof(TCallbackHandler) )) ); While the routing with CallbackHandlerRouteHandler is set up automatically for all methods that use the RouteUrl attribute, you can also use code to hook up those routes manually and skip using the attribute. The code for this is straightforward and just requires that you manually map each individual route to each method you want a routed: protected void Application_Start(objectsender, EventArgs e){    RegisterRoutes(RouteTable.Routes);}void RegisterRoutes(RouteCollection routes) { routes.Add("StockQuote Route",new Route("StockQuote/{symbol}",                     new CallbackHandlerRouteHandler("GetStockQuote",typeof(RestService) ) ) );     routes.Add("StockQuotes Route",new Route("StockQuotes/{symbolList}",                     new CallbackHandlerRouteHandler("GetStockQuotes",typeof(RestService) ) ) );}I think it’s clearly easier to have CallbackHandlerRouteHandler.RegisterRoutes() do this automatically for you based on RouteUrl attributes, but some people have a real aversion to attaching logic via attributes. Just realize that the option to manually create your routes is available as well. Using the RouteData in the Handler A RouteHandler’s responsibility is to create an HttpHandler and as mentioned earlier, natively IHttpHandler doesn’t have any support for RouteData. In order to utilize RouteData in your handler code you have to pass the RouteData to the handler. In my CallbackHandlerRouteHandler when it creates the HttpHandler instance it creates the instance and then assigns the custom RouteData property on the handler:IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; if (handler is CallbackHandler) ((CallbackHandler)handler).RouteData = requestContext.RouteData; return handler; Again this only works if you actually add a RouteData property to your handler explicitly as I did in my CallbackHandler implementation:/// <summary> /// Optionally store RouteData on this handler /// so we can access it internally /// </summary> public RouteData RouteData {get; set; } and the RouteHandler needs to set it when it creates the handler instance. Once you have the route data in your handler you can access Route Keys and Values and also the RouteHandler. Since my RouteHandler has a custom property for the MethodName to retrieve it from within the handler I can do something like this now to retrieve the MethodName (this example is actually not in the handler but target is an instance pass to the processor): // check for Route Data method name if (target is CallbackHandler) { var routeData = ((CallbackHandler)target).RouteData; if (routeData != null) methodToCall = ((CallbackHandlerRouteHandler)routeData.RouteHandler).MethodName; } When I need to access the dynamic values in the route ( symbol in StockQuote/{symbol}) I can retrieve it easily with the Values collection (RouteData.Values["symbol"]). In my CallbackHandler processing logic I’m basically looking for matching parameter names to Route parameters: // look for parameters in the routeif(routeData != null){    string parmString = routeData.Values[parameter.Name] as string;    adjustedParms[parmCounter] = ReflectionUtils.StringToTypedValue(parmString, parameter.ParameterType);} And with that we’ve come full circle. We’ve created a custom RouteHandler() that passes the RouteData to the handler it creates. We’ve registered our routes to use the RouteHandler, and we’ve utilized the route data in our handler. For completeness sake here’s the routine that executes a method call based on the parameters passed in and one of the options is to retrieve the inbound parameters off RouteData (as well as from POST data or QueryString parameters):internal object ExecuteMethod(string method, object target, string[] parameters, CallbackMethodParameterType paramType, ref CallbackMethodAttribute callbackMethodAttribute) { HttpRequest Request = HttpContext.Current.Request; object Result = null; // Stores parsed parameters (from string JSON or QUeryString Values) object[] adjustedParms = null; Type PageType = target.GetType(); MethodInfo MI = PageType.GetMethod(method, BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic); if (MI == null) throw new InvalidOperationException("Invalid Server Method."); object[] methods = MI.GetCustomAttributes(typeof(CallbackMethodAttribute), false); if (methods.Length < 1) throw new InvalidOperationException("Server method is not accessible due to missing CallbackMethod attribute"); if (callbackMethodAttribute != null) callbackMethodAttribute = methods[0] as CallbackMethodAttribute; ParameterInfo[] parms = MI.GetParameters(); JSONSerializer serializer = new JSONSerializer(); RouteData routeData = null; if (target is CallbackHandler) routeData = ((CallbackHandler)target).RouteData; int parmCounter = 0; adjustedParms = new object[parms.Length]; foreach (ParameterInfo parameter in parms) { // Retrieve parameters out of QueryString or POST buffer if (parameters == null) { // look for parameters in the route if (routeData != null) { string parmString = routeData.Values[parameter.Name] as string; adjustedParms[parmCounter] = ReflectionUtils.StringToTypedValue(parmString, parameter.ParameterType); } // GET parameter are parsed as plain string values - no JSON encoding else if (HttpContext.Current.Request.HttpMethod == "GET") { // Look up the parameter by name string parmString = Request.QueryString[parameter.Name]; adjustedParms[parmCounter] = ReflectionUtils.StringToTypedValue(parmString, parameter.ParameterType); } // POST parameters are treated as methodParameters that are JSON encoded else if (paramType == CallbackMethodParameterType.Json) //string newVariable = methodParameters.GetValue(parmCounter) as string; adjustedParms[parmCounter] = serializer.Deserialize(Request.Params["parm" + (parmCounter + 1).ToString()], parameter.ParameterType); else adjustedParms[parmCounter] = SerializationUtils.DeSerializeObject( Request.Params["parm" + (parmCounter + 1).ToString()], parameter.ParameterType); } else if (paramType == CallbackMethodParameterType.Json) adjustedParms[parmCounter] = serializer.Deserialize(parameters[parmCounter], parameter.ParameterType); else adjustedParms[parmCounter] = SerializationUtils.DeSerializeObject(parameters[parmCounter], parameter.ParameterType); parmCounter++; } Result = MI.Invoke(target, adjustedParms); return Result; } The code basically uses Reflection to loop through all the parameters available on the method and tries to assign the parameters from RouteData, QueryString or POST variables. The parameters are converted into their appropriate types and then used to eventually make a Reflection based method call. What’s sweet is that the RouteData retrieval is just another option for dealing with the inbound data in this scenario and it adds exactly two lines of code plus the code to retrieve the MethodName I showed previously – a seriously low impact addition that adds a lot of extra value to this endpoint callback processing implementation. Debugging your Routes If you create a lot of routes it’s easy to run into Route conflicts where multiple routes have the same path and overlap with each other. This can be difficult to debug especially if you are using automatically generated routes like the routes created by CallbackHandlerRouteHandler.RegisterRoutes. Luckily there’s a tool that can help you out with this nicely. Phill Haack created a RouteDebugging tool you can download and add to your project. The easiest way to do this is to grab and add this to your project is to use NuGet (Add Library Package from your Project’s Reference Nodes):   which adds a RouteDebug assembly to your project. Once installed you can easily debug your routes with this simple line of code which needs to be installed at application startup:protected void Application_Start(object sender, EventArgs e) { CallbackHandlerRouteHandler.RegisterRoutes<StockService>(RouteTable.Routes); // Debug your routes RouteDebug.RouteDebugger.RewriteRoutesForTesting(RouteTable.Routes); } Any routed URL then displays something like this: The screen shows you your current route data and all the routes that are mapped along with a flag that displays which route was actually matched. This is useful – if you have any overlap of routes you will be able to see which routes are triggered – the first one in the sequence wins. This tool has saved my ass on a few occasions – and with NuGet now it’s easy to add it to your project in a few seconds and then remove it when you’re done. Routing Around Custom routing seems slightly complicated on first blush due to its disconnected components of RouteHandler, route registration and mapping of custom handlers. But once you understand the relationship between a RouteHandler, the RouteData and how to pass it to a handler, utilizing of Routing becomes a lot easier as you can easily pass context from the registration to the RouteHandler and through to the HttpHandler. The most important thing to understand when building custom routing solutions is to figure out how to map URLs in such a way that the handler can figure out all the pieces it needs to process the request. This can be via URL routing parameters and as I did in my example by passing additional context information as part of the RouteHandler instance that provides the proper execution context. In my case this ‘context’ was the method name, but it could be an actual static value like an enum identifying an operation or category in an application. Basically user supplied data comes in through the url and static application internal data can be passed via RouteHandler property values. Routing can make your application URLs easier to read by non-techie types regardless of whether you’re building Service type or REST applications, or full on Web interfaces. Routing in ASP.NET 4.0 makes it possible to create just about any extensionless URLs you can dream up and custom RouteHanmdler References Sample ProjectIncludes the sample CallbackHandler service discussed here along with compiled versionsof the Westwind.Web and Westwind.Utilities assemblies.  (requires .NET 4.0/VS 2010) West Wind Web Toolkit includes full implementation of CallbackHandler and the Routing Handler West Wind Web Toolkit Source CodeContains the full source code to the Westwind.Web and Westwind.Utilities assemblies usedin these samples. Includes the source described in the post.(Latest build in the Subversion Repository) CallbackHandler Source(Relevant code to this article tree in Westwind.Web assembly) JSONView FireFoxPluginA simple FireFox Plugin to easily view JSON data natively in FireFox.For IE you can use a registry hack to display JSON as raw text.© Rick Strahl, West Wind Technologies, 2005-2011Posted in ASP.NET  AJAX  HTTP  

    Read the article

  • Red Gate Coder interviews: Alex Davies

    - by Michael Williamson
    Alex Davies has been a software engineer at Red Gate since graduating from university, and is currently busy working on .NET Demon. We talked about tackling parallel programming with his actors framework, a scientific approach to debugging, and how JavaScript is going to affect the programming languages we use in years to come. So, if we start at the start, how did you get started in programming? When I was seven or eight, I was given a BBC Micro for Christmas. I had asked for a Game Boy, but my dad thought it would be better to give me a proper computer. For a year or so, I only played games on it, but then I found the user guide for writing programs in it. I gradually started doing more stuff on it and found it fun. I liked creating. As I went into senior school I continued to write stuff on there, trying to write games that weren’t very good. I got a real computer when I was fourteen and found ways to write BASIC on it. Visual Basic to start with, and then something more interesting than that. How did you learn to program? Was there someone helping you out? Absolutely not! I learnt out of a book, or by experimenting. I remember the first time I found a loop, I was like “Oh my God! I don’t have to write out the same line over and over and over again any more. It’s amazing!” When did you think this might be something that you actually wanted to do as a career? For a long time, I thought it wasn’t something that you would do as a career, because it was too much fun to be a career. I thought I’d do chemistry at university and some kind of career based on chemical engineering. And then I went to a careers fair at school when I was seventeen or eighteen, and it just didn’t interest me whatsoever. I thought “I could be a programmer, and there’s loads of money there, and I’m good at it, and it’s fun”, but also that I shouldn’t spoil my hobby. Now I don’t really program in my spare time any more, which is a bit of a shame, but I program all the rest of the time, so I can live with it. Do you think you learnt much about programming at university? Yes, definitely! I went into university knowing how to make computers do anything I wanted them to do. However, I didn’t have the language to talk about algorithms, so the algorithms course in my first year was massively important. Learning other language paradigms like functional programming was really good for breadth of understanding. Functional programming influences normal programming through design rather than actually using it all the time. I draw inspiration from it to write imperative programs which I think is actually becoming really fashionable now, but I’ve been doing it for ages. I did it first! There were also some courses on really odd programming languages, a bit of Prolog, a little bit of C. Having a little bit of each of those is something that I would have never done on my own, so it was important. And then there are knowledge-based courses which are about not programming itself but things that have been programmed like TCP. Those are really important for examples for how to approach things. Did you do any internships while you were at university? Yeah, I spent both of my summers at the same company. I thought I could code well before I went there. Looking back at the crap that I produced, it was only surpassed in its crappiness by all of the other code already in that company. I’m so much better at writing nice code now than I used to be back then. Was there just not a culture of looking after your code? There was, they just didn’t hire people for their abilities in that area. They hired people for raw IQ. The first indicator of it going wrong was that they didn’t have any computer scientists, which is a bit odd in a programming company. But even beyond that they didn’t have people who learnt architecture from anyone else. Most of them had started straight out of university, so never really had experience or mentors to learn from. There wasn’t the experience to draw from to teach each other. In the second half of my second internship, I was being given tasks like looking at new technologies and teaching people stuff. Interns shouldn’t be teaching people how to do their jobs! All interns are going to have little nuggets of things that you don’t know about, but they shouldn’t consistently be the ones who know the most. It’s not a good environment to learn. I was going to ask how you found working with people who were more experienced than you… When I reached Red Gate, I found some people who were more experienced programmers than me, and that was difficult. I’ve been coding since I was tiny. At university there were people who were cleverer than me, but there weren’t very many who were more experienced programmers than me. During my internship, I didn’t find anyone who I classed as being a noticeably more experienced programmer than me. So, it was a shock to the system to have valid criticisms rather than just formatting criticisms. However, Red Gate’s not so big on the actual code review, at least it wasn’t when I started. We did an entire product release and then somebody looked over all of the UI of that product which I’d written and say what they didn’t like. By that point, it was way too late and I’d disagree with them. Do you think the lack of code reviews was a bad thing? I think if there’s going to be any oversight of new people, then it should be continuous rather than chunky. For me I don’t mind too much, I could go out and get oversight if I wanted it, and in those situations I felt comfortable without it. If I was managing the new person, then maybe I’d be keener on oversight and then the right way to do it is continuously and in very, very small chunks. Have you had any significant projects you’ve worked on outside of a job? When I was a teenager I wrote all sorts of stuff. I used to write games, I derived how to do isomorphic projections myself once. I didn’t know what the word was so I couldn’t Google for it, so I worked it out myself. It was horrifically complicated. But it sort of tailed off when I started at university, and is now basically zero. If I do side-projects now, they tend to be work-related side projects like my actors framework, NAct, which I started in a down tools week. Could you explain a little more about NAct? It is a little C# framework for writing parallel code more easily. Parallel programming is difficult when you need to write to shared data. Sometimes parallel programming is easy because you don’t need to write to shared data. When you do need to access shared data, you could just have your threads pile in and do their work, but then you would screw up the data because the threads would trample on each other’s toes. You could lock, but locks are really dangerous if you’re using more than one of them. You get interactions like deadlocks, and that’s just nasty. Actors instead allows you to say this piece of data belongs to this thread of execution, and nobody else can read it. If you want to read it, then ask that thread of execution for a piece of it by sending a message, and it will send the data back by a message. And that avoids deadlocks as long as you follow some obvious rules about not making your actors sit around waiting for other actors to do something. There are lots of ways to write actors, NAct allows you to do it as if it was method calls on other objects, which means you get all the strong type-safety that C# programmers like. Do you think that this is suitable for the majority of parallel programming, or do you think it’s only suitable for specific cases? It’s suitable for most difficult parallel programming. If you’ve just got a hundred web requests which are all independent of each other, then I wouldn’t bother because it’s easier to just spin them up in separate threads and they can proceed independently of each other. But where you’ve got difficult parallel programming, where you’ve got multiple threads accessing multiple bits of data in multiple ways at different times, then actors is at least as good as all other ways, and is, I reckon, easier to think about. When you’re using actors, you presumably still have to write your code in a different way from you would otherwise using single-threaded code. You can’t use actors with any methods that have return types, because you’re not allowed to call into another actor and wait for it. If you want to get a piece of data out of another actor, then you’ve got to use tasks so that you can use “async” and “await” to await asynchronously for it. But other than that, you can still stick things in classes so it’s not too different really. Rather than having thousands of objects with mutable state, you can use component-orientated design, where there are only a few mutable classes which each have a small number of instances. Then there can be thousands of immutable objects. If you tend to do that anyway, then actors isn’t much of a jump. If I’ve already built my system without any parallelism, how hard is it to add actors to exploit all eight cores on my desktop? Usually pretty easy. If you can identify even one boundary where things look like messages and you have components where some objects live on one side and these other objects live on the other side, then you can have a granddaddy object on one side be an actor and it will parallelise as it goes across that boundary. Not too difficult. If we do get 1000-core desktop PCs, do you think actors will scale up? It’s hard. There are always in the order of twenty to fifty actors in my whole program because I tend to write each component as actors, and I tend to have one instance of each component. So this won’t scale to a thousand cores. What you can do is write data structures out of actors. I use dictionaries all over the place, and if you need a dictionary that is going to be accessed concurrently, then you could build one of those out of actors in no time. You can use queuing to marshal requests between different slices of the dictionary which are living on different threads. So it’s like a distributed hash table but all of the chunks of it are on the same machine. That means that each of these thousand processors has cached one small piece of the dictionary. I reckon it wouldn’t be too big a leap to start doing proper parallelism. Do you think it helps if actors get baked into the language, similarly to Erlang? Erlang is excellent in that it has thread-local garbage collection. C# doesn’t, so there’s a limit to how well C# actors can possibly scale because there’s a single garbage collected heap shared between all of them. When you do a global garbage collection, you’ve got to stop all of the actors, which is seriously expensive, whereas in Erlang garbage collections happen per-actor, so they’re insanely cheap. However, Erlang deviated from all the sensible language design that people have used recently and has just come up with crazy stuff. You can definitely retrofit thread-local garbage collection to .NET, and then it’s quite well-suited to support actors, even if it’s not baked into the language. Speaking of language design, do you have a favourite programming language? I’ll choose a language which I’ve never written before. I like the idea of Scala. It sounds like C#, only with some of the niggles gone. I enjoy writing static types. It means you don’t have to writing tests so much. When you say it doesn’t have some of the niggles? C# doesn’t allow the use of a property as a method group. It doesn’t have Scala case classes, or sum types, where you can do a switch statement and the compiler checks that you’ve checked all the cases, which is really useful in functional-style programming. Pattern-matching, in other words. That’s actually the major niggle. C# is pretty good, and I’m quite happy with C#. And what about going even further with the type system to remove the need for tests to something like Haskell? Or is that a step too far? I’m quite a pragmatist, I don’t think I could deal with trying to write big systems in languages with too few other users, especially when learning how to structure things. I just don’t know anyone who can teach me, and the Internet won’t teach me. That’s the main reason I wouldn’t use it. If I turned up at a company that writes big systems in Haskell, I would have no objection to that, but I wouldn’t instigate it. What about things in C#? For instance, there’s contracts in C#, so you can try to statically verify a bit more about your code. Do you think that’s useful, or just not worthwhile? I’ve not really tried it. My hunch is that it needs to be built into the language and be quite mathematical for it to work in real life, and that doesn’t seem to have ended up true for C# contracts. I don’t think anyone who’s tried them thinks they’re any good. I might be wrong. On a slightly different note, how do you like to debug code? I think I’m quite an odd debugger. I use guesswork extremely rarely, especially if something seems quite difficult to debug. I’ve been bitten spending hours and hours on guesswork and not being scientific about debugging in the past, so now I’m scientific to a fault. What I want is to see the bug happening in the debugger, to step through the bug happening. To watch the program going from a valid state to an invalid state. When there’s a bug and I can’t work out why it’s happening, I try to find some piece of evidence which places the bug in one section of the code. From that experiment, I binary chop on the possible causes of the bug. I suppose that means binary chopping on places in the code, or binary chopping on a stage through a processing cycle. Basically, I’m very stupid about how I debug. I won’t make any guesses, I won’t use any intuition, I will only identify the experiment that’s going to binary chop most effectively and repeat rather than trying to guess anything. I suppose it’s quite top-down. Is most of the time then spent in the debugger? Absolutely, if at all possible I will never debug using print statements or logs. I don’t really hold much stock in outputting logs. If there’s any bug which can be reproduced locally, I’d rather do it in the debugger than outputting logs. And with SmartAssembly error reporting, there’s not a lot that can’t be either observed in an error report and just fixed, or reproduced locally. And in those other situations, maybe I’ll use logs. But I hate using logs. You stare at the log, trying to guess what’s going on, and that’s exactly what I don’t like doing. You have to just look at it and see does this look right or wrong. We’ve covered how you get to grip with bugs. How do you get to grips with an entire codebase? I watch it in the debugger. I find little bugs and then try to fix them, and mostly do it by watching them in the debugger and gradually getting an understanding of how the code works using my process of binary chopping. I have to do a lot of reading and watching code to choose where my slicing-in-half experiment is going to be. The last time I did it was SmartAssembly. The old code was a complete mess, but at least it did things top to bottom. There wasn’t too much of some of the big abstractions where flow of control goes all over the place, into a base class and back again. Code’s really hard to understand when that happens. So I like to choose a little bug and try to fix it, and choose a bigger bug and try to fix it. Definitely learn by doing. I want to always have an aim so that I get a little achievement after every few hours of debugging. Once I’ve learnt the codebase I might be able to fix all the bugs in an hour, but I’d rather be using them as an aim while I’m learning the codebase. If I was a maintainer of a codebase, what should I do to make it as easy as possible for you to understand? Keep distinct concepts in different places. And name your stuff so that it’s obvious which concepts live there. You shouldn’t have some variable that gets set miles up the top of somewhere, and then is read miles down to choose some later behaviour. I’m talking from a very much SmartAssembly point of view because the old SmartAssembly codebase had tons and tons of these things, where it would read some property of the code and then deal with it later. Just thousands of variables in scope. Loads of things to think about. If you can keep concepts separate, then it aids me in my process of fixing bugs one at a time, because each bug is going to more or less be understandable in the one place where it is. And what about tests? Do you think they help at all? I’ve never had the opportunity to learn a codebase which has had tests, I don’t know what it’s like! What about when you’re actually developing? How useful do you find tests in finding bugs or regressions? Finding regressions, absolutely. Running bits of code that would be quite hard to run otherwise, definitely. It doesn’t happen very often that a test finds a bug in the first place. I don’t really buy nebulous promises like tests being a good way to think about the spec of the code. My thinking goes something like “This code works at the moment, great, ship it! Ah, there’s a way that this code doesn’t work. Okay, write a test, demonstrate that it doesn’t work, fix it, use the test to demonstrate that it’s now fixed, and keep the test for future regressions.” The most valuable tests are for bugs that have actually happened at some point, because bugs that have actually happened at some point, despite the fact that you think you’ve fixed them, are way more likely to appear again than new bugs are. Does that mean that when you write your code the first time, there are no tests? Often. The chance of there being a bug in a new feature is relatively unaffected by whether I’ve written a test for that new feature because I’m not good enough at writing tests to think of bugs that I would have written into the code. So not writing regression tests for all of your code hasn’t affected you too badly? There are different kinds of features. Some of them just always work, and are just not flaky, they just continue working whatever you throw at them. Maybe because the type-checker is particularly effective around them. Writing tests for those features which just tend to always work is a waste of time. And because it’s a waste of time I’ll tend to wait until a feature has demonstrated its flakiness by having bugs in it before I start trying to test it. You can get a feel for whether it’s going to be flaky code as you’re writing it. I try to write it to make it not flaky, but there are some things that are just inherently flaky. And very occasionally, I’ll think “this is going to be flaky” as I’m writing, and then maybe do a test, but not most of the time. How do you think your programming style has changed over time? I’ve got clearer about what the right way of doing things is. I used to flip-flop a lot between different ideas. Five years ago I came up with some really good ideas and some really terrible ideas. All of them seemed great when I thought of them, but they were quite diverse ideas, whereas now I have a smaller set of reliable ideas that are actually good for structuring code. So my code is probably more similar to itself than it used to be back in the day, when I was trying stuff out. I’ve got more disciplined about encapsulation, I think. There are operational things like I use actors more now than I used to, and that forces me to use immutability more than I used to. The first code that I wrote in Red Gate was the memory profiler UI, and that was an actor, I just didn’t know the name of it at the time. I don’t really use object-orientation. By object-orientation, I mean having n objects of the same type which are mutable. I want a constant number of objects that are mutable, and they should be different types. I stick stuff in dictionaries and then have one thing that owns the dictionary and puts stuff in and out of it. That’s definitely a pattern that I’ve seen recently. I think maybe I’m doing functional programming. Possibly. It’s plausible. If you had to summarise the essence of programming in a pithy sentence, how would you do it? Programming is the form of art that, without losing any of the beauty of architecture or fine art, allows you to produce things that people love and you make money from. So you think it’s an art rather than a science? It’s a little bit of engineering, a smidgeon of maths, but it’s not science. Like architecture, programming is on that boundary between art and engineering. If you want to do it really nicely, it’s mostly art. You can get away with doing architecture and programming entirely by having a good engineering mind, but you’re not going to produce anything nice. You’re not going to have joy doing it if you’re an engineering mind. Architects who are just engineering minds are not going to enjoy their job. I suppose engineering is the foundation on which you build the art. Exactly. How do you think programming is going to change over the next ten years? There will be an unfortunate shift towards dynamically-typed languages, because of JavaScript. JavaScript has an unfair advantage. JavaScript’s unfair advantage will cause more people to be exposed to dynamically-typed languages, which means other dynamically-typed languages crop up and the best features go into dynamically-typed languages. Then people conflate the good features with the fact that it’s dynamically-typed, and more investment goes into dynamically-typed languages. They end up better, so people use them. What about the idea of compiling other languages, possibly statically-typed, to JavaScript? It’s a reasonable idea. I would like to do it, but I don’t think enough people in the world are going to do it to make it pick up. The hordes of beginners are the lifeblood of a language community. They are what makes there be good tools and what makes there be vibrant community websites. And any particular thing which is the same as JavaScript only with extra stuff added to it, although it might be technically great, is not going to have the hordes of beginners. JavaScript is always to be quickest and easiest way for a beginner to start programming in the browser. And dynamically-typed languages are great for beginners. Compilers are pretty scary and beginners don’t write big code. And having your errors come up in the same place, whether they’re statically checkable errors or not, is quite nice for a beginner. If someone asked me to teach them some programming, I’d teach them JavaScript. If dynamically-typed languages are great for beginners, when do you think the benefits of static typing start to kick in? The value of having a statically typed program is in the tools that rely on the static types to produce a smooth IDE experience rather than actually telling me my compile errors. And only once you’re experienced enough a programmer that having a really smooth IDE experience makes a blind bit of difference, does static typing make a blind bit of difference. So it’s not really about size of codebase. If I go and write up a tiny program, I’m still going to get value out of writing it in C# using ReSharper because I’m experienced with C# and ReSharper enough to be able to write code five times faster if I have that help. Any other visions of the future? Nobody’s going to use actors. Because everyone’s going to be running on single-core VMs connected over network-ready protocols like JSON over HTTP. So, parallelism within one operating system is going to die. But until then, you should use actors. More Red Gater Coder interviews

    Read the article

  • What&rsquo;s New in ASP.NET 4.0 Part Two: WebForms and Visual Studio Enhancements

    - by Rick Strahl
    In the last installment I talked about the core changes in the ASP.NET runtime that I’ve been taking advantage of. In this column, I’ll cover the changes to the Web Forms engine and some of the cool improvements in Visual Studio that make Web and general development easier. WebForms The WebForms engine is the area that has received most significant changes in ASP.NET 4.0. Probably the most widely anticipated features are related to managing page client ids and of ViewState on WebForm pages. Take Control of Your ClientIDs Unique ClientID generation in ASP.NET has been one of the most complained about “features” in ASP.NET. Although there’s a very good technical reason for these unique generated ids - they guarantee unique ids for each and every server control on a page - these unique and generated ids often get in the way of client-side JavaScript development and CSS styling as it’s often inconvenient and fragile to work with the long, generated ClientIDs. In ASP.NET 4.0 you can now specify an explicit client id mode on each control or each naming container parent control to control how client ids are generated. By default, ASP.NET generates mangled client ids for any control contained in a naming container (like a Master Page, or a User Control for example). The key to ClientID management in ASP.NET 4.0 are the new ClientIDMode and ClientIDRowSuffix properties. ClientIDMode supports four different ClientID generation settings shown below. For the following examples, imagine that you have a Textbox control named txtName inside of a master page control container on a WebForms page. <%@Page Language="C#"      MasterPageFile="~/Site.Master"     CodeBehind="WebForm2.aspx.cs"     Inherits="WebApplication1.WebForm2"  %> <asp:Content ID="content"  ContentPlaceHolderID="content"               runat="server"               ClientIDMode="Static" >       <asp:TextBox runat="server" ID="txtName" /> </asp:Content> The four available ClientIDMode values are: AutoID This is the existing behavior in ASP.NET 1.x-3.x where full naming container munging takes place. <input name="ctl00$content$txtName" type="text"        id="ctl00_content_txtName" /> This should be familiar to any ASP.NET developer and results in fairly unpredictable client ids that can easily change if the containership hierarchy changes. For example, removing the master page changes the name in this case, so if you were to move a block of script code that works against the control to a non-Master page, the script code immediately breaks. Static This option is the most deterministic setting that forces the control’s ClientID to use its ID value directly. No naming container naming at all is applied and you end up with clean client ids: <input name="ctl00$content$txtName"         type="text" id="txtName" /> Note that the name property which is used for postback variables to the server still is munged, but the ClientID property is displayed simply as the ID value that you have assigned to the control. This option is what most of us want to use, but you have to be clear on that because it can potentially cause conflicts with other controls on the page. If there are several instances of the same naming container (several instances of the same user control for example) there can easily be a client id naming conflict. Note that if you assign Static to a data-bound control, like a list child control in templates, you do not get unique ids either, so for list controls where you rely on unique id for child controls, you’ll probably want to use Predictable rather than Static. I’ll write more on this a little later when I discuss ClientIDRowSuffix. Predictable The previous two values are pretty self-explanatory. Predictable however, requires some explanation. To me at least it’s not in the least bit predictable. MSDN defines this value as follows: This algorithm is used for controls that are in data-bound controls. The ClientID value is generated by concatenating the ClientID value of the parent naming container with the ID value of the control. If the control is a data-bound control that generates multiple rows, the value of the data field specified in the ClientIDRowSuffix property is added at the end. For the GridView control, multiple data fields can be specified. If the ClientIDRowSuffix property is blank, a sequential number is added at the end instead of a data-field value. Each segment is separated by an underscore character (_). The key that makes this value a bit confusing is that it relies on the parent NamingContainer’s ClientID to build its own ClientID value. This effectively means that the value is not predictable at all but rather very tightly coupled to the parent naming container’s ClientIDMode setting. For my simple textbox example, if the ClientIDMode property of the parent naming container (Page in this case) is set to “Predictable” you’ll get this: <input name="ctl00$content$txtName" type="text"         id="content_txtName" /> which gives an id that based on walking up to the currently active naming container (the MasterPage content container) and starting the id formatting from there downward. Think of this as a semi unique name that’s guaranteed unique only for the naming container. If, on the other hand, the Page is set to “AutoID” you get the following with Predictable on txtName: <input name="ctl00$content$txtName" type="text"         id="ctl00_content_txtName" /> The latter is effectively the same as if you specified AutoID because it inherits the AutoID naming from the Page and Content Master Page control of the page. But again - predictable behavior always depends on the parent naming container and how it generates its id, so the id may not always be exactly the same as the AutoID generated value because somewhere in the NamingContainer chain the ClientIDMode setting may be set to a different value. For example, if you had another naming container in the middle that was set to Static you’d end up effectively with an id that starts with the NamingContainers id rather than the whole ctl000_content munging. The most common use for Predictable is likely to be for data-bound controls, which results in each data bound item getting a unique ClientID. Unfortunately, even here the behavior can be very unpredictable depending on which data-bound control you use - I found significant differences in how template controls in a GridView behave from those that are used in a ListView control. For example, GridView creates clean child ClientIDs, while ListView still has a naming container in the ClientID, presumably because of the template container on which you can’t set ClientIDMode. Predictable is useful, but only if all naming containers down the chain use this setting. Otherwise you’re right back to the munged ids that are pretty unpredictable. Another property, ClientIDRowSuffix, can be used in combination with ClientIDMode of Predictable to force a suffix onto list client controls. For example: <asp:GridView runat="server" ID="gvItems"              AutoGenerateColumns="false"             ClientIDMode="Static"              ClientIDRowSuffix="Id">     <Columns>     <asp:TemplateField>         <ItemTemplate>             <asp:Label runat="server" id="txtName"                        Text='<%# Eval("Name") %>'                   ClientIDMode="Predictable"/>         </ItemTemplate>     </asp:TemplateField>     <asp:TemplateField>         <ItemTemplate>         <asp:Label runat="server" id="txtId"                     Text='<%# Eval("Id") %>'                     ClientIDMode="Predictable" />         </ItemTemplate>     </asp:TemplateField>     </Columns>  </asp:GridView> generates client Ids inside of a column in the master page described earlier: <td>     <span id="txtName_0">Rick</span> </td> where the value after the underscore is the ClientIDRowSuffix field - in this case “Id” of the item data bound to the control. Note that all of the child controls require ClientIDMode=”Predictable” in order for the ClientIDRowSuffix to be applied, and the parent GridView controls need to be set to Static either explicitly or via Naming Container inheritance to give these simple names. It’s a bummer that ClientIDRowSuffix doesn’t work with Static to produce this automatically. Another real problem is that other controls process the ClientIDMode differently. For example, a ListView control processes the Predictable ClientIDMode differently and produces the following with the Static ListView and Predictable child controls: <span id="ctrl0_txtName_0">Rick</span> I couldn’t even figure out a way using ClientIDMode to get a simple ID that also uses a suffix short of falling back to manually generated ids using <%= %> expressions instead. Given the inconsistencies inside of list controls using <%= %>, ids for the ListView might not be a bad idea anyway. Inherit The final setting is Inherit, which is the default for all controls except Page. This means that controls by default inherit the parent naming container’s ClientIDMode setting. For more detailed information on ClientID behavior and different scenarios you can check out a blog post of mine on this subject: http://www.west-wind.com/weblog/posts/54760.aspx. ClientID Enhancements Summary The ClientIDMode property is a welcome addition to ASP.NET 4.0. To me this is probably the most useful WebForms feature as it allows me to generate clean IDs simply by setting ClientIDMode="Static" on either the page or inside of Web.config (in the Pages section) which applies the setting down to the entire page which is my 95% scenario. For the few cases when it matters - for list controls and inside of multi-use user controls or custom server controls) - I can use Predictable or even AutoID to force controls to unique names. For application-level page development, this is easy to accomplish and provides maximum usability for working with client script code against page controls. ViewStateMode Another area of large criticism for WebForms is ViewState. ViewState is used internally by ASP.NET to persist page-level changes to non-postback properties on controls as pages post back to the server. It’s a useful mechanism that works great for the overall mechanics of WebForms, but it can also cause all sorts of overhead for page operation as ViewState can very quickly get out of control and consume huge amounts of bandwidth in your page content. ViewState can also wreak havoc with client-side scripting applications that modify control properties that are tracked by ViewState, which can produce very unpredictable results on a Postback after client-side updates. Over the years in my own development, I’ve often turned off ViewState on pages to reduce overhead. Yes, you lose some functionality, but you can easily implement most of the common functionality in non-ViewState workarounds. Relying less on heavy ViewState controls and sticking with simpler controls or raw HTML constructs avoids getting around ViewState problems. In ASP.NET 3.x and prior, it wasn’t easy to control ViewState - you could turn it on or off and if you turned it off at the page or web.config level, you couldn’t turn it back on for specific controls. In short, it was an all or nothing approach. With ASP.NET 4.0, the new ViewStateMode property gives you more control. It allows you to disable ViewState globally either on the page or web.config level and then turn it back on for specific controls that might need it. ViewStateMode only works when EnableViewState="true" on the page or web.config level (which is the default). You can then use ViewStateMode of Disabled, Enabled or Inherit to control the ViewState settings on the page. If you’re shooting for minimal ViewState usage, the ideal situation is to set ViewStateMode to disabled on the Page or web.config level and only turn it back on particular controls: <%@Page Language="C#"      CodeBehind="WebForm2.aspx.cs"     Inherits="Westwind.WebStore.WebForm2"        ClientIDMode="Static"                ViewStateMode="Disabled"     EnableViewState="true"  %> <!-- this control has viewstate  --> <asp:TextBox runat="server" ID="txtName"  ViewStateMode="Enabled" />       <!-- this control has no viewstate - it inherits  from parent container --> <asp:TextBox runat="server" ID="txtAddress" /> Note that the EnableViewState="true" at the Page level isn’t required since it’s the default, but it’s important that the value is true. ViewStateMode has no effect if EnableViewState="false" at the page level. The main benefit of ViewStateMode is that it allows you to more easily turn off ViewState for most of the page and enable only a few key controls that might need it. For me personally, this is a perfect combination as most of my WebForm apps can get away without any ViewState at all. But some controls - especially third party controls - often don’t work well without ViewState enabled, and now it’s much easier to selectively enable controls rather than the old way, which required you to pretty much turn off ViewState for all controls that you didn’t want ViewState on. Inline HTML Encoding HTML encoding is an important feature to prevent cross-site scripting attacks in data entered by users on your site. In order to make it easier to create HTML encoded content, ASP.NET 4.0 introduces a new Expression syntax using <%: %> to encode string values. The encoding expression syntax looks like this: <%: "<script type='text/javascript'>" +     "alert('Really?');</script>" %> which produces properly encoded HTML: &lt;script type=&#39;text/javascript&#39; &gt;alert(&#39;Really?&#39;);&lt;/script&gt; Effectively this is a shortcut to: <%= HttpUtility.HtmlEncode( "<script type='text/javascript'>" + "alert('Really?');</script>") %> Of course the <%: %> syntax can also evaluate expressions just like <%= %> so the more common scenario applies this expression syntax against data your application is displaying. Here’s an example displaying some data model values: <%: Model.Address.Street %> This snippet shows displaying data from your application’s data store or more importantly, from data entered by users. Anything that makes it easier and less verbose to HtmlEncode text is a welcome addition to avoid potential cross-site scripting attacks. Although I listed Inline HTML Encoding here under WebForms, anything that uses the WebForms rendering engine including ASP.NET MVC, benefits from this feature. ScriptManager Enhancements The ASP.NET ScriptManager control in the past has introduced some nice ways to take programmatic and markup control over script loading, but there were a number of shortcomings in this control. The ASP.NET 4.0 ScriptManager has a number of improvements that make it easier to control script loading and addresses a few of the shortcomings that have often kept me from using the control in favor of manual script loading. The first is the AjaxFrameworkMode property which finally lets you suppress loading the ASP.NET AJAX runtime. Disabled doesn’t load any ASP.NET AJAX libraries, but there’s also an Explicit mode that lets you pick and choose the library pieces individually and reduce the footprint of ASP.NET AJAX script included if you are using the library. There’s also a new EnableCdn property that forces any script that has a new WebResource attribute CdnPath property set to a CDN supplied URL. If the script has this Attribute property set to a non-null/empty value and EnableCdn is enabled on the ScriptManager, that script will be served from the specified CdnPath. [assembly: WebResource(    "Westwind.Web.Resources.ww.jquery.js",    "application/x-javascript",    CdnPath =  "http://mysite.com/scripts/ww.jquery.min.js")] Cool, but a little too static for my taste since this value can’t be changed at runtime to point at a debug script as needed, for example. Assembly names for loading scripts from resources can now be simple names rather than fully qualified assembly names, which make it less verbose to reference scripts from assemblies loaded from your bin folder or the assembly reference area in web.config: <asp:ScriptManager runat="server" id="Id"          EnableCdn="true"         AjaxFrameworkMode="disabled">     <Scripts>         <asp:ScriptReference          Name="Westwind.Web.Resources.ww.jquery.js"         Assembly="Westwind.Web" />     </Scripts>        </asp:ScriptManager> The ScriptManager in 4.0 also supports script combining via the CompositeScript tag, which allows you to very easily combine scripts into a single script resource served via ASP.NET. Even nicer: You can specify the URL that the combined script is served with. Check out the following script manager markup that combines several static file scripts and a script resource into a single ASP.NET served resource from a static URL (allscripts.js): <asp:ScriptManager runat="server" id="Id"          EnableCdn="true"         AjaxFrameworkMode="disabled">     <CompositeScript          Path="~/scripts/allscripts.js">         <Scripts>             <asp:ScriptReference                    Path="~/scripts/jquery.js" />             <asp:ScriptReference                    Path="~/scripts/ww.jquery.js" />             <asp:ScriptReference            Name="Westwind.Web.Resources.editors.js"                 Assembly="Westwind.Web" />         </Scripts>     </CompositeScript> </asp:ScriptManager> When you render this into HTML, you’ll see a single script reference in the page: <script src="scripts/allscripts.debug.js"          type="text/javascript"></script> All you need to do to make this work is ensure that allscripts.js and allscripts.debug.js exist in the scripts folder of your application - they can be empty but the file has to be there. This is pretty cool, but you want to be real careful that you use unique URLs for each combination of scripts you combine or else browser and server caching will easily screw you up royally. The script manager also allows you to override native ASP.NET AJAX scripts now as any script references defined in the Scripts section of the ScriptManager trump internal references. So if you want custom behavior or you want to fix a possible bug in the core libraries that normally are loaded from resources, you can now do this simply by referencing the script resource name in the Name property and pointing at System.Web for the assembly. Not a common scenario, but when you need it, it can come in real handy. Still, there are a number of shortcomings in this control. For one, the ScriptManager and ClientScript APIs still have no common entry point so control developers are still faced with having to check and support both APIs to load scripts so that controls can work on pages that do or don’t have a ScriptManager on the page. The CdnUrl is static and compiled in, which is very restrictive. And finally, there’s still no control over where scripts get loaded on the page - ScriptManager still injects scripts into the middle of the HTML markup rather than in the header or optionally the footer. This, in turn, means there is little control over script loading order, which can be problematic for control developers. MetaDescription, MetaKeywords Page Properties There are also a number of additional Page properties that correspond to some of the other features discussed in this column: ClientIDMode, ClientTarget and ViewStateMode. Another minor but useful feature is that you can now directly access the MetaDescription and MetaKeywords properties on the Page object to set the corresponding meta tags programmatically. Updating these values programmatically previously required either <%= %> expressions in the page markup or dynamic insertion of literal controls into the page. You can now just set these properties programmatically on the Page object in any Control derived class on the page or the Page itself: Page.MetaKeywords = "ASP.NET,4.0,New Features"; Page.MetaDescription = "This article discusses the new features in ASP.NET 4.0"; Note, that there’s no corresponding ASP.NET tag for the HTML Meta element, so the only way to specify these values in markup and access them is via the @Page tag: <%@Page Language="C#"      CodeBehind="WebForm2.aspx.cs"     Inherits="Westwind.WebStore.WebForm2"      ClientIDMode="Static"                MetaDescription="Article that discusses what's                      new in ASP.NET 4.0"     MetaKeywords="ASP.NET,4.0,New Features" %> Nothing earth shattering but quite convenient. Visual Studio 2010 Enhancements for Web Development For Web development there are also a host of editor enhancements in Visual Studio 2010. Some of these are not Web specific but they are useful for Web developers in general. Text Editors Throughout Visual Studio 2010, the text editors have all been updated to a new core engine based on WPF which provides some interesting new features for various code editors including the nice ability to zoom in and out with Ctrl-MouseWheel to quickly change the size of text. There are many more API options to control the editor and although Visual Studio 2010 doesn’t yet use many of these features, we can look forward to enhancements in add-ins and future editor updates from the various language teams that take advantage of the visual richness that WPF provides to editing. On the negative side, I’ve noticed that occasionally the code editor and especially the HTML and JavaScript editors will lose the ability to use various navigation keys like arrows, back and delete keys, which requires closing and reopening the documents at times. This issue seems to be well documented so I suspect this will be addressed soon with a hotfix or within the first service pack. Overall though, the code editors work very well, especially given that they were re-written completely using WPF, which was one of my big worries when I first heard about the complete redesign of the editors. Multi-Targeting Visual Studio now targets all versions of the .NET framework from 2.0 forward. You can use Visual Studio 2010 to work on your ASP.NET 2, 3.0 and 3.5 applications which is a nice way to get your feet wet with the new development environment without having to make changes to existing applications. It’s nice to have one tool to work in for all the different versions. Multi-Monitor Support One cool feature of Visual Studio 2010 is the ability to drag windows out of the Visual Studio environment and out onto the desktop including onto another monitor easily. Since Web development often involves working with a host of designers at the same time - visual designer, HTML markup window, code behind and JavaScript editor - it’s really nice to be able to have a little more screen real estate to work on each of these editors. Microsoft made a welcome change in the environment. IntelliSense Snippets for HTML and JavaScript Editors The HTML and JavaScript editors now finally support IntelliSense scripts to create macro-based template expansions that have been in the core C# and Visual Basic code editors since Visual Studio 2005. Snippets allow you to create short XML-based template definitions that can act as static macros or real templates that can have replaceable values that can be embedded into the expanded text. The XML syntax for these snippets is straight forward and it’s pretty easy to create custom snippets manually. You can easily create snippets using XML and store them in your custom snippets folder (C:\Users\rstrahl\Documents\Visual Studio 2010\Code Snippets\Visual Web Developer\My HTML Snippets and My JScript Snippets), but it helps to use one of the third-party tools that exist to simplify the process for you. I use SnippetEditor, by Bill McCarthy, which makes short work of creating snippets interactively (http://snippeteditor.codeplex.com/). Note: You may have to manually add the Visual Studio 2010 User specific Snippet folders to this tool to see existing ones you’ve created. Code snippets are some of the biggest time savers and HTML editing more than anything deals with lots of repetitive tasks that lend themselves to text expansion. Visual Studio 2010 includes a slew of built-in snippets (that you can also customize!) and you can create your own very easily. If you haven’t done so already, I encourage you to spend a little time examining your coding patterns and find the repetitive code that you write and convert it into snippets. I’ve been using CodeRush for this for years, but now you can do much of the basic expansion natively for HTML and JavaScript snippets. jQuery Integration Is Now Native jQuery is a popular JavaScript library and recently Microsoft has recently stated that it will become the primary client-side scripting technology to drive higher level script functionality in various ASP.NET Web projects that Microsoft provides. In Visual Studio 2010, the default full project template includes jQuery as part of a new project including the support files that provide IntelliSense (-vsdoc files). IntelliSense support for jQuery is now also baked into Visual Studio 2010, so unlike Visual Studio 2008 which required a separate download, no further installs are required for a rich IntelliSense experience with jQuery. Summary ASP.NET 4.0 brings many useful improvements to the platform, but thankfully most of the changes are incremental changes that don’t compromise backwards compatibility and they allow developers to ease into the new features one feature at a time. None of the changes in ASP.NET 4.0 or Visual Studio 2010 are monumental or game changers. The bigger features are language and .NET Framework changes that are also optional. This ASP.NET and tools release feels more like fine tuning and getting some long-standing kinks worked out of the platform. It shows that the ASP.NET team is dedicated to paying attention to community feedback and responding with changes to the platform and development environment based on this feedback. If you haven’t gotten your feet wet with ASP.NET 4.0 and Visual Studio 2010, there’s no reason not to give it a shot now - the ASP.NET 4.0 platform is solid and Visual Studio 2010 works very well for a brand new release. Check it out. © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  

    Read the article

  • A first look at ConfORM - Part 1

    - by thangchung
    All source codes for this post can be found at here.Have you ever heard of ConfORM is not? I have read it three months ago when I wrote an post about NHibernate and Autofac. At that time, this project really has just started and still in beta version, so I still do not really care much. But recently when reading a book by Jason Dentler NHibernate 3.0 Cookbook, I started to pay attention to it. Author have mentioned quite a lot of OSS in his book. And now again I have reviewed ConfORM once again. I have been involved in ConfORM development group on google and read some articles about it. Fabio Maulo spent a lot of work for the OSS, and I hope it will adapt a great way for NHibernate (because he contributed to NHibernate that). So what is ConfORM? It is stand for Configuration ORM, and it was trying to use a lot of heuristic model for identifying entities from C# code. Today, it's mostly Model First Driven development, so the first thing is to build the entity model. This is really important and we can see it is the heart of business software. Then we have to tell DB about the entity of this model. We often will use Inversion Engineering here, Database Schema is will create based on recently Entity Model. From now we will absolutely not interested in the DB again, only focus on the Entity Model.Fluent NHibenate really good, I liked this OSS. Sharp Architecture and has done so well in Fluent NHibernate integration with applications. A Multiple Database technical in Sharp Architecture is truly awesome. It can receive configuration, a connection string and a dll containing entity model, which would then create a SessionFactory, finally caching inside the computer memory. As the number of SessionFactory can be very large and will full of the memory, it has also devised a way of caching SessionFactory in the file. This post I hope this will not completely explain about and building a model of multiple databases. I just tried to mount a number of posts from the community and apply some of my knowledge to build a management model Session for ConfORM.As well as Fluent NHibernate, ConfORM also supported on the interface mapping, see this to understand it. So the first thing we will build the Entity Model for it, and here is what I will use the model for this article. A simple model for managing news and polls, it will be too easy for a number of people, but I hope not to bring complexity to this post.I will then have some code to build super type for the Entity Model. public interface IEntity<TId>    {        TId Id { get; set; }    } public abstract class EntityBase<TId> : IEntity<TId>    {        public virtual TId Id { get; set; }         public override bool Equals(object obj)        {            return Equals(obj as EntityBase<TId>);        }         private static bool IsTransient(EntityBase<TId> obj)        {            return obj != null &&            Equals(obj.Id, default(TId));        }         private Type GetUnproxiedType()        {            return GetType();        }         public virtual bool Equals(EntityBase<TId> other)        {            if (other == null)                return false;            if (ReferenceEquals(this, other))                return true;            if (!IsTransient(this) &&            !IsTransient(other) &&            Equals(Id, other.Id))            {                var otherType = other.GetUnproxiedType();                var thisType = GetUnproxiedType();                return thisType.IsAssignableFrom(otherType) ||                otherType.IsAssignableFrom(thisType);            }            return false;        }         public override int GetHashCode()        {            if (Equals(Id, default(TId)))                return base.GetHashCode();            return Id.GetHashCode();        }    } Database schema will be created as:The next step is to build the ConORM builder to create a NHibernate Configuration. Patrick have a excellent article about it at here. Contract of it below: public interface IConfigBuilder    {        Configuration BuildConfiguration(string connectionString, string sessionFactoryName);    } The idea here is that I will pass in a connection string and a set of the DLL containing the Entity Model and it makes me a NHibernate Configuration (shame that I stole this ideas of Sharp Architecture). And here is its code: public abstract class ConfORMConfigBuilder : RootObject, IConfigBuilder    {        private static IConfigurator _configurator;         protected IEnumerable<Type> DomainTypes;         private readonly IEnumerable<string> _assemblies;         protected ConfORMConfigBuilder(IEnumerable<string> assemblies)            : this(new Configurator(), assemblies)        {            _assemblies = assemblies;        }         protected ConfORMConfigBuilder(IConfigurator configurator, IEnumerable<string> assemblies)        {            _configurator = configurator;            _assemblies = assemblies;        }         public abstract void GetDatabaseIntegration(IDbIntegrationConfigurationProperties dBIntegration, string connectionString);         protected abstract HbmMapping GetMapping();         public Configuration BuildConfiguration(string connectionString, string sessionFactoryName)        {            Contract.Requires(!string.IsNullOrEmpty(connectionString), "ConnectionString is null or empty");            Contract.Requires(!string.IsNullOrEmpty(sessionFactoryName), "SessionFactory name is null or empty");            Contract.Requires(_configurator != null, "Configurator is null");             return CatchExceptionHelper.TryCatchFunction(                () =>                {                    DomainTypes = GetTypeOfEntities(_assemblies);                     if (DomainTypes == null)                        throw new Exception("Type of domains is null");                     var configure = new Configuration();                    configure.SessionFactoryName(sessionFactoryName);                     configure.Proxy(p => p.ProxyFactoryFactory<ProxyFactoryFactory>());                    configure.DataBaseIntegration(db => GetDatabaseIntegration(db, connectionString));                     if (_configurator.GetAppSettingString("IsCreateNewDatabase").ConvertToBoolean())                    {                        configure.SetProperty("hbm2ddl.auto", "create-drop");                    }                     configure.Properties.Add("default_schema", _configurator.GetAppSettingString("DefaultSchema"));                    configure.AddDeserializedMapping(GetMapping(),                                                     _configurator.GetAppSettingString("DocumentFileName"));                     SchemaMetadataUpdater.QuoteTableAndColumns(configure);                     return configure;                }, Logger);        }         protected IEnumerable<Type> GetTypeOfEntities(IEnumerable<string> assemblies)        {            var type = typeof(EntityBase<Guid>);            var domainTypes = new List<Type>();             foreach (var assembly in assemblies)            {                var realAssembly = Assembly.LoadFrom(assembly);                 if (realAssembly == null)                    throw new NullReferenceException();                 domainTypes.AddRange(realAssembly.GetTypes().Where(                    t =>                    {                        if (t.BaseType != null)                            return string.Compare(t.BaseType.FullName,                                          type.FullName) == 0;                        return false;                    }));            }             return domainTypes;        }    } I do not want to dependency on any RDBMS, so I made a builder as an abstract class, and so I will create a concrete instance for SQL Server 2008 as follows: public class SqlServerConfORMConfigBuilder : ConfORMConfigBuilder    {        public SqlServerConfORMConfigBuilder(IEnumerable<string> assemblies)            : base(assemblies)        {        }         public override void GetDatabaseIntegration(IDbIntegrationConfigurationProperties dBIntegration, string connectionString)        {            dBIntegration.Dialect<MsSql2008Dialect>();            dBIntegration.Driver<SqlClientDriver>();            dBIntegration.KeywordsAutoImport = Hbm2DDLKeyWords.AutoQuote;            dBIntegration.IsolationLevel = IsolationLevel.ReadCommitted;            dBIntegration.ConnectionString = connectionString;            dBIntegration.LogSqlInConsole = true;            dBIntegration.Timeout = 10;            dBIntegration.LogFormatedSql = true;            dBIntegration.HqlToSqlSubstitutions = "true 1, false 0, yes 'Y', no 'N'";        }         protected override HbmMapping GetMapping()        {            var orm = new ObjectRelationalMapper();             orm.Patterns.PoidStrategies.Add(new GuidPoidPattern());             var patternsAppliers = new CoolPatternsAppliersHolder(orm);            //patternsAppliers.Merge(new DatePropertyByNameApplier()).Merge(new MsSQL2008DateTimeApplier());            patternsAppliers.Merge(new ManyToOneColumnNamingApplier());            patternsAppliers.Merge(new OneToManyKeyColumnNamingApplier(orm));             var mapper = new Mapper(orm, patternsAppliers);             var entities = new List<Type>();             DomainDefinition(orm);            Customize(mapper);             entities.AddRange(DomainTypes);             return mapper.CompileMappingFor(entities);        }         private void DomainDefinition(IObjectRelationalMapper orm)        {            orm.TablePerClassHierarchy(new[] { typeof(EntityBase<Guid>) });            orm.TablePerClass(DomainTypes);             orm.OneToOne<News, Poll>();            orm.ManyToOne<Category, News>();             orm.Cascade<Category, News>(Cascade.All);            orm.Cascade<News, Poll>(Cascade.All);            orm.Cascade<User, Poll>(Cascade.All);        }         private static void Customize(Mapper mapper)        {            CustomizeRelations(mapper);            CustomizeTables(mapper);            CustomizeColumns(mapper);        }         private static void CustomizeRelations(Mapper mapper)        {        }         private static void CustomizeTables(Mapper mapper)        {        }         private static void CustomizeColumns(Mapper mapper)        {            mapper.Class<Category>(                cm =>                {                    cm.Property(x => x.Name, m => m.NotNullable(true));                    cm.Property(x => x.CreatedDate, m => m.NotNullable(true));                });             mapper.Class<News>(                cm =>                {                    cm.Property(x => x.Title, m => m.NotNullable(true));                    cm.Property(x => x.ShortDescription, m => m.NotNullable(true));                    cm.Property(x => x.Content, m => m.NotNullable(true));                });             mapper.Class<Poll>(                cm =>                {                    cm.Property(x => x.Value, m => m.NotNullable(true));                    cm.Property(x => x.VoteDate, m => m.NotNullable(true));                    cm.Property(x => x.WhoVote, m => m.NotNullable(true));                });             mapper.Class<User>(                cm =>                {                    cm.Property(x => x.UserName, m => m.NotNullable(true));                    cm.Property(x => x.Password, m => m.NotNullable(true));                });        }    } As you can see that we can do so many things in this class, such as custom entity relationships, custom binding on the columns, custom table name, ... Here I only made two so-Appliers for OneToMany and ManyToOne relationships, you can refer to it here public class ManyToOneColumnNamingApplier : IPatternApplier<PropertyPath, IManyToOneMapper>    {        #region IPatternApplier<PropertyPath,IManyToOneMapper> Members         public void Apply(PropertyPath subject, IManyToOneMapper applyTo)        {            applyTo.Column(subject.ToColumnName() + "Id");        }         #endregion         #region IPattern<PropertyPath> Members         public bool Match(PropertyPath subject)        {            return subject != null;        }         #endregion    } public class OneToManyKeyColumnNamingApplier : OneToManyPattern, IPatternApplier<PropertyPath, ICollectionPropertiesMapper>    {        public OneToManyKeyColumnNamingApplier(IDomainInspector domainInspector) : base(domainInspector) { }         #region Implementation of IPattern<PropertyPath>         public bool Match(PropertyPath subject)        {            return Match(subject.LocalMember);        }         #endregion Implementation of IPattern<PropertyPath>         #region Implementation of IPatternApplier<PropertyPath,ICollectionPropertiesMapper>         public void Apply(PropertyPath subject, ICollectionPropertiesMapper applyTo)        {            applyTo.Key(km => km.Column(GetKeyColumnName(subject)));        }         #endregion Implementation of IPatternApplier<PropertyPath,ICollectionPropertiesMapper>         protected virtual string GetKeyColumnName(PropertyPath subject)        {            Type propertyType = subject.LocalMember.GetPropertyOrFieldType();            Type childType = propertyType.DetermineCollectionElementType();            var entity = subject.GetContainerEntity(DomainInspector);            var parentPropertyInChild = childType.GetFirstPropertyOfType(entity);            var baseName = parentPropertyInChild == null ? subject.PreviousPath == null ? entity.Name : entity.Name + subject.PreviousPath : parentPropertyInChild.Name;            return GetKeyColumnName(baseName);        }         protected virtual string GetKeyColumnName(string baseName)        {            return string.Format("{0}Id", baseName);        }    } Everyone also can download the ConfORM source at google code and see example inside it. Next part I will write about multiple database factory. Hope you enjoy about it. happy coding and see you next part.

    Read the article

  • Apache SSO through Kerberos using Machine Account

    - by watkipet
    I'm attempting to get Apache on Ubuntu 12.04 to authenticate users via Kerberos SSO to a Windows 2008 Active Directory server. Here are a few things that make my situation different: I don't have administrative access to the Windows Server (nor will I ever have access). I also cannot have any changes to the server made on my behalf. I've joined Ubuntu server to the Active Directory using PBIS open. Users can log into the Ubuntu server using their AD credentials. kinit also works fine for each user. Since I can't change AD (except for adding new machines and SPNs), I cannot add a service account for Apache on Ubuntu. Since I can't add I service account, I have to use the machine keytab (/etc/krb5.keytab), or at least use the machine password in another keytab. Right now I'm using the machine keytab and giving Apache readonly access (bad idea, I know). I've already added the SPN using net ads keytab add HTTP -U Since I'm using Ubuntu 12.04, the only encoding types that get added during "net ads keytab add" are arcfour-hmac, des-cbc-crc, and des-cbc-md5. PBIS adds the AES encoding types to the host and cifs principals when it joins the domain, but I have yet to get "net ads keytab add" to do this. ktpass and setspn are out of the question because of #1 above. I've configured (for Kerberos SSO) and tested both IE 8 Firefox. I'm using the following configuration in my Apache site config: <Location /secured> AuthType Kerberos AuthName "Kerberos Login" KrbMethodNegotiate On KrbMethodK5Passwd On KrbAuthRealms DOMAIN.COM Krb5KeyTab /etc/krb5.keytab KrbLocalUserMapping On require valid-user </Location> When Firefox tries to connect get the following in Apache's error.log (LogLevel debug): [Wed Oct 23 13:48:31 2013] [debug] src/mod_auth_kerb.c(1628): [client 192.168.0.2] kerb_authenticate_user entered with user (NULL) and auth_type Kerberos [Wed Oct 23 13:48:31 2013] [debug] mod_deflate.c(615): [client 192.168.0.2] Zlib: Compressed 477 to 322 : URL /secured [Wed Oct 23 13:48:37 2013] [debug] src/mod_auth_kerb.c(1628): [client 192.168.0.2] kerb_authenticate_user entered with user (NULL) and auth_type Kerberos [Wed Oct 23 13:48:37 2013] [debug] src/mod_auth_kerb.c(994): [client 192.168.0.2] Using HTTP/[email protected] as server principal for password verification [Wed Oct 23 13:48:37 2013] [debug] src/mod_auth_kerb.c(698): [client 192.168.0.2] Trying to get TGT for user [email protected] [Wed Oct 23 13:48:37 2013] [debug] src/mod_auth_kerb.c(609): [client 192.168.0.2] Trying to verify authenticity of KDC using principal HTTP/[email protected] [Wed Oct 23 13:48:37 2013] [debug] src/mod_auth_kerb.c(652): [client 192.168.0.2] krb5_rd_req() failed when verifying KDC [Wed Oct 23 13:48:37 2013] [error] [client 192.168.0.2] failed to verify krb5 credentials: Decrypt integrity check failed [Wed Oct 23 13:48:37 2013] [debug] src/mod_auth_kerb.c(1073): [client 192.168.0.2] kerb_authenticate_user_krb5pwd ret=401 user=(NULL) authtype=(NULL) [Wed Oct 23 13:48:37 2013] [debug] mod_deflate.c(615): [client 192.168.0.2] Zlib: Compressed 477 to 322 : URL /secured When IE 8 tries to connect I get: [Wed Oct 23 14:03:30 2013] [debug] src/mod_auth_kerb.c(1628): [client 192.168.0.2] kerb_authenticate_user entered with user (NULL) and auth_type Kerberos [Wed Oct 23 14:03:30 2013] [debug] mod_deflate.c(615): [client 192.168.0.2] Zlib: Compressed 477 to 322 : URL /secured [Wed Oct 23 14:03:30 2013] [debug] src/mod_auth_kerb.c(1628): [client 192.168.0.2] kerb_authenticate_user entered with user (NULL) and auth_type Kerberos [Wed Oct 23 14:03:30 2013] [debug] src/mod_auth_kerb.c(1240): [client 192.168.0.2] Acquiring creds for HTTP@apache_server [Wed Oct 23 14:03:30 2013] [debug] src/mod_auth_kerb.c(1385): [client 192.168.0.2] Verifying client data using KRB5 GSS-API [Wed Oct 23 14:03:30 2013] [debug] src/mod_auth_kerb.c(1401): [client 192.168.0.2] Client didn't delegate us their credential [Wed Oct 23 14:03:30 2013] [debug] src/mod_auth_kerb.c(1420): [client 192.168.0.2] GSS-API token of length 9 bytes will be sent back [Wed Oct 23 14:03:30 2013] [debug] src/mod_auth_kerb.c(1101): [client 192.168.0.2] GSS-API major_status:000d0000, minor_status:000186a5 [Wed Oct 23 14:03:30 2013] [error] [client 192.168.0.2] gss_accept_sec_context() failed: Unspecified GSS failure. Minor code may provide more information (, ) [Wed Oct 23 14:03:30 2013] [debug] mod_deflate.c(615): [client 192.168.0.2] Zlib: Compressed 477 to 322 : URL /secured Let me know if you'd like additional log and config files--the initial question is getting long enough.

    Read the article

  • Apache 2.2 and FastCGI stops responding, warnings, crashes

    - by Brett
    I've seen this question posted a few times using a Google search, with no real answers. I have a multi-threaded FastCGI application running with Apache 2.2 on FreeBSD 7.2. There are a few issues with it, and I am unable to really figure out the source of the problem even after poking through a bunch of the mod_fastcgi source code. My FastCGI application gets anywhere from 2 to 15 or so hits per second, and mostly services a back-end API (the majority of web server usage is for this, and not actually serving content). Everything seems to work ok under normal conditions, but recently this problem has been becoming worse. It starts out with the FastCGI process manager apparently trying to close unneeded processes, sending them a SIGTERM signal. I catch the signal, clean up some stuff, and exit (by calling exit()) with status code 0. This process seems to result in three log messages in my httpd error log: [Tue Jun 01 14:03:31 2010] [warn] FastCGI: (dynamic) server "/home/program/wwwroot/domains/www.mydomain.com/cgi-bin/program.cgi" (pid 98182) termination signaled [Tue Jun 01 14:03:31 2010] [warn] FastCGI: (dynamic) server "/home/program/wwwroot/domains/www.mydomain.com/cgi-bin/program.cgi" (pid 98182) terminated by calling exit with status '0' [Tue Jun 01 14:03:31 2010] [warn] FastCGI: (dynamic) server "/home/program/wwwroot/domains/www.mydomain.com/cgi-bin/program.cgi" restarted (pid 98294) I am not sure why it says it is restarting the process, but in any case no core dump is ever generated so I do believe it is the FastCGI process manager doing it's thing. This makes sense because it begins to happen after the initial load increase from restarting Apache. Since it's down for a few seconds, it gets hit with a couple of hundred requests over the first few seconds it's running again (sometimes even hitting the upper limit of MAXCLIENTS in Apache), and this seems to be the process manager doing the work of spawning more processes to handle the increased load. So this all seems fine, but here is where things get weird. There are really two problems that I see. First, my multithreaded FastCGI process spawns 25 worker threads, and all seem to be used according to my internal log files (multiple processes are clearly using multiple threads to do work). However it seems that 3 or 4 FastCGI processes is not enough to handle the 5 to 15 hit per second load, even though the requests take about .02s or so to process internally. In order to be at all responsive, it seems I need 50 or more FastCGI processes, leading me to believe that FastCGI does not realize that my program is multithreaded. I've read the documentation at http://www.fastcgi.com/mod_fastcgi/docs/mod_fastcgi.html and do not see any option pertaining to multithreaded-ness, and my internal code is more or less set up just like the examples provided by the FastCGI library. The second problem I am having is that once process termination has happened a bunch of times as above (and seemingly at random), I begin getting a lot of these messages in my error log: [Tue Jun 01 14:06:22 2010] [warn] (32)Broken pipe: FastCGI: write() to PM failed (ignore if a restart or shutdown is pending) The messages occur for about half the hits I get to the server, and it completely kills the responsiveness of my application - it seems FastCGI will look for a working "pipe" until it finds one, and fail to realize that whatever application it is trying to contact is dead. It does still work though, it's just incredibly unresponsive - sometimes taking up to 40 or so seconds to process a request. I recompiled mod_fastcgi with some extra debugging around the point of the error message, and it appears that the error happens when it tries to write() to the application. The call to write() fails with a -1 return code, and sets errno to EPIPE. I am noticing that the issue happens mostly when either a crash occurs in one of the FastCGI processes, or a bunch of them are seemingly terminated by the process manager. I haven't had any core dumps though, except for one, where the backtrace outputted by gdb is just a single call to free() at address 0x0000000000000000 with nothing else in the stack trace, so I don't really know what to make of that. I'm thinking it happens sometime after the SIGTERM signal is caught, maybe some global variable not being cleaned up properly or something.

    Read the article

  • ImgBurn fails to burn data CD-R disk due to "Layouts do not match" error

    - by 0xAether
    I have a reoccurring problem with the program ImgBurn. Whenever I try and burn anything to a CD-R using ImgBurn it burns just fine, except for when I go and verify the disk. It tells me that the "Layouts do not match". Windows 7 shows the disk as completely blank. Although, I see on the bottom of the disk it has been written to. I can burn ISO files to DVD-R's just fine. This only seems to happen with CD-R's. The CD-R's I'm using are Memorex Cool Colors 52x CD-R's. I have looked on Google, and it seems like I'm not the only one this happens to. Unfortunately, no one is able to provide an explanation. I have included the log file from the last CD I just burnt. If you need anything else to better diagnose this problem, I will gladly provide it. ; //****************************************\\ ; ImgBurn Version 2.5.7.0 - Log ; Monday, 19 November 2012, 16:11:57 ; \\****************************************// ; ; I 16:04:55 ImgBurn Version 2.5.7.0 started! I 16:04:55 Microsoft Windows 7 Ultimate x64 Edition (6.1, Build 7601 : Service Pack 1) I 16:04:55 Total Physical Memory: 4,156,380 KB - Available: 3,317,144 KB I 16:04:55 Initialising SPTI... I 16:04:55 Searching for SCSI / ATAPI devices... I 16:04:56 -> Drive 1 - Info: Optiarc DVD RW AD-7560S SH03 (D:) (SATA) I 16:04:56 Found 1 DVD±RW/RAM! I 16:05:37 Operation Started! I 16:05:37 Source File: C:\Users\Aaron\Desktop\VMware Workstation 9.iso I 16:05:37 Source File Sectors: 223,057 (MODE1/2048) I 16:05:37 Source File Size: 456,820,736 bytes I 16:05:37 Source File Volume Identifier: VMwareWorksta9 I 16:05:37 Source File Volume Set Identifier: 20121119_2102 I 16:05:37 Source File File System(s): ISO9660, Joliet I 16:05:37 Destination Device: [1:0:0] Optiarc DVD RW AD-7560S SH03 (D:) (SATA) I 16:05:37 Destination Media Type: CD-R (Disc ID: 97m17s06f, Moser Baer India) I 16:05:37 Destination Media Supported Write Speeds: 10x, 16x, 20x, 24x I 16:05:37 Destination Media Sectors: 359,847 I 16:05:37 Write Mode: CD I 16:05:37 Write Type: SAO I 16:05:37 Write Speed: 6x I 16:05:37 Lock Volume: Yes I 16:05:37 Test Mode: No I 16:05:37 OPC: No I 16:05:37 BURN-Proof: Enabled W 16:05:37 Write Speed Miscompare! - MODE SENSE: 1,764 KB/s (10x), GET PERFORMANCE: 11,080 KB/s (63x) W 16:05:37 Write Speed Miscompare! - MODE SENSE: 1,764 KB/s (10x), GET PERFORMANCE: 11,080 KB/s (63x) W 16:05:37 Write Speed Miscompare! - MODE SENSE: 1,764 KB/s (10x), GET PERFORMANCE: 11,080 KB/s (63x) W 16:05:37 Write Speed Miscompare! - MODE SENSE: 1,764 KB/s (10x), GET PERFORMANCE: 11,080 KB/s (63x) W 16:05:37 Write Speed Miscompare! - MODE SENSE: 1,764 KB/s (10x), GET PERFORMANCE: 11,080 KB/s (63x) W 16:05:37 Write Speed Miscompare! - Wanted: 1,058 KB/s (6x), Got: 1,764 KB/s (10x) / 11,080 KB/s (63x) W 16:05:37 The drive only supports writing these discs at 10x, 16x, 20x, 24x. I 16:05:38 Filling Buffer... (80 MB) I 16:05:40 Writing LeadIn... I 16:06:07 Writing Session 1 of 1... (1 Track, LBA: 0 - 223056) I 16:06:07 Writing Track 1 of 1... (MODE1/2048, LBA: 0 - 223056) I 16:11:00 Synchronising Cache... I 16:11:18 Exporting Graph Data... I 16:11:18 Graph Data File: C:\Users\Aaron\AppData\Roaming\ImgBurn\Graph Data Files\Optiarc_DVD_RW_AD-7560S_SH03_MONDAY-NOVEMBER-19-2012_4-05_PM_97m17s06f_6x.ibg I 16:11:18 Export Successfully Completed! I 16:11:18 Operation Successfully Completed! - Duration: 00:05:41 I 16:11:18 Average Write Rate: 1,522 KB/s (10.1x) - Maximum Write Rate: 1,544 KB/s (10.3x) I 16:11:18 Cycling Tray before Verify... W 16:11:23 Waiting for device to become ready... I 16:11:47 Device Ready! E 16:11:47 CompareImageFileLayouts Failed! - Session Count Not Equal (1/0) E 16:11:47 Verify Failed! - Reason: Layouts do not match. I 16:11:57 Close Request Acknowledged I 16:11:57 Closing Down... I 16:11:57 Shutting down SPTI... I 16:11:57 ImgBurn closed!

    Read the article

  • Apache-Mina FTPServer Issue — unable to login into apache ftp server while using database user manager

    - by piyush
    I am unable to login into apache ftp server while using database user manager: while entering username and password,I am getting following error in log file: [ INFO] 2013-02-07 20:51:07,779 [] [0:0:0:0:0:0:0:1] RECEIVED: USER piyush [ INFO] 2013-02-07 20:51:07,781 [piyush] [0:0:0:0:0:0:0:1] SENT: 331 User name okay, need password for piyush. [ INFO] 2013-02-07 20:51:07,784 [piyush] [0:0:0:0:0:0:0:1] RECEIVED: PASS ***** [ WARN] 2013-02-07 20:51:07,785 [piyush] [0:0:0:0:0:0:0:1] User failed to log in [ WARN] 2013-02-07 20:51:08,285 [piyush] [0:0:0:0:0:0:0:1] Login failure - piyush [ INFO] 2013-02-07 20:51:08,286 [piyush] [0:0:0:0:0:0:0:1] SENT: 530 Authentication failed. [ INFO] 2013-02-07 20:51:08,286 [piyush] [0:0:0:0:0:0:0:1] RECEIVED: QUIT [ INFO] 2013-02-07 20:51:08,290 [piyush] [0:0:0:0:0:0:0:1] SENT: 221 Goodbye. [ INFO] 2013-02-07 20:51:08,291 [piyush] [0:0:0:0:0:0:0:1] CLOSED here is my xml file ftpd-typical.xml: <?xml version="1.0" encoding="UTF-8"?> <!-- Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> <server xmlns="http://mina.apache.org/ftpserver/spring/v1" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:beans="http://www.springframework.org/schema/beans" xsi:schemaLocation=" http://mina.apache.org/ftpserver/spring/v1 http://mina.apache.org/ftpserver/ftpserver-1.0.xsd " id="Prometheus"> <listeners> <nio-listener name="default" port="2121" /> </listeners> <db-user-manager encrypt-passwords="salted"> <data-source> <beans:bean class="org.apache.commons.dbcp.BasicDataSource" > <beans:property name="driverClassName" value="com.mysql.jdbc.Driver" /> <beans:property name="url" value="jdbc:mysql://localhost/apache_test" /> <beans:property name="username" value="amy" /> <beans:property name="password" value="piyush" /> </beans:bean> </data-source> <insert-user>INSERT INTO FTP_USER (userid, userpassword, homedirectory, enableflag, writepermission, idletime, uploadrate, downloadrate) VALUES ('{userid}', '{userpassword}', '{homedirectory}', {enableflag}, {writepermission}, {idletime}, {uploadrate}, {downloadrate}) </insert-user> <update-user>UPDATE FTP_USER SET userpassword='{userpassword}',homedirectory='{homedirectory}',enableflag={enableflag},writepermission={writepermission},idletime={idletime},uploadrate={uploadrate},downloadrate={downloadrate} WHERE userid='{userid}' </update-user> <delete-user>DELETE FROM FTP_USER WHERE userid = '{userid}' </delete-user> <select-user>SELECT userid, userpassword, homedirectory, enableflag, writepermission, idletime, uploadrate, downloadrate, maxloginnumber, maxloginperip FROM FTP_USER WHERE userid = '{userid}' </select-user> <select-all-users>SELECT userid FROM FTP_USER ORDER BY userid </select-all-users> <is-admin>SELECT userid FROM FTP_USER WHERE userid='{userid}' AND userid='admin' </is-admin> <authenticate>SELECT userpassword from FTP_USER WHERE userid='{userid}'</authenticate> </db-user-manager> </server>

    Read the article

  • Error when installing Lync Server, "Installing OcsCore.msi(Feature_LocalMgmtStore)...failure code 1603"

    - by Trikks
    Im battling to install Lync Server in a test environment and are at the "Install Local Configuration Store" step. The prerequisites seems alright but bombs when installing the OcsCore.msi ... Checking prerequisite SqlNativeClient...prerequisite satisfied. Checking prerequisite SqlBackcompat...prerequisite satisfied. Checking prerequisite UcmaRedist...prerequisite satisfied. Installing OcsCore.msi(Feature_LocalMgmtStore)...failure code 1603 Error returned while installing OcsCore.msi(Feature_LocalMgmtStore), code 1603. Please consult log at C:\Users\Administrator.HAWC\AppData\Local\Temp\1\Add-OcsCore.msi-Feature_LocalMgmtStore-[2012_07_08][12_00_27].log The logfile doesn't really help me either, this is the end of it Property(S): Privileged = 1 Property(S): USERNAME = Windows User Property(S): DATABASE = C:\Windows\Installer\9525f.msi Property(S): OriginalDatabase = C:\ProgramData\Microsoft\Lync Server\Deployment\cache\4.0.7577.0\setup\OcsCore.msi Property(S): UILevel = 2 Property(S): Preselected = 1 Property(S): ACTION = INSTALL Property(S): WIX_ACCOUNT_LOCALSYSTEM = NT AUTHORITY\SYSTEM Property(S): WIX_ACCOUNT_LOCALSERVICE = NT AUTHORITY\LOCAL SERVICE Property(S): WIX_ACCOUNT_NETWORKSERVICE = NT AUTHORITY\NETWORK SERVICE Property(S): WIX_ACCOUNT_ADMINISTRATORS = BUILTIN\Administrators Property(S): WIX_ACCOUNT_USERS = BUILTIN\Users Property(S): WIX_ACCOUNT_GUESTS = BUILTIN\Guests Property(S): ROOTDRIVE = C:\ Property(S): CostingComplete = 1 Property(S): OutOfDiskSpace = 0 Property(S): OutOfNoRbDiskSpace = 0 Property(S): PrimaryVolumeSpaceAvailable = 0 Property(S): PrimaryVolumeSpaceRequired = 0 Property(S): PrimaryVolumeSpaceRemaining = 0 Property(S): INSTALLLEVEL = 1 Property(S): SOURCEDIR = C:\ProgramData\Microsoft\Lync Server\Deployment\cache\4.0.7577.0\setup\ Property(S): SourcedirProduct = {9521B708-9D80-46A3-9E58-A74ACF4E343E} === Logging stopped: 2012-07-08 12:01:46 === MSI (s) (98:F8) [12:01:46:354]: Note: 1: 1729 MSI (s) (98:F8) [12:01:46:354]: Product: Microsoft Lync Server 2010, Core Components -- Configuration failed. MSI (s) (98:F8) [12:01:46:354]: Windows Installer reconfigured the product. Product Name: Microsoft Lync Server 2010, Core Components. Product Version: 4.0.7577.0. Product Language: 1033. Manufacturer: Microsoft Corporation. Reconfiguration success or error status: 1603. MSI (s) (98:F8) [12:01:46:356]: Deferring clean up of packages/files, if any exist MSI (s) (98:F8) [12:01:46:356]: MainEngineThread is returning 1603 MSI (s) (98:84) [12:01:46:362]: RESTART MANAGER: Session closed. MSI (s) (98:84) [12:01:46:362]: No System Restore sequence number for this installation. MSI (s) (98:84) [12:01:46:363]: User policy value 'DisableRollback' is 0 MSI (s) (98:84) [12:01:46:363]: Machine policy value 'DisableRollback' is 0 MSI (s) (98:84) [12:01:46:363]: Incrementing counter to disable shutdown. Counter after increment: 0 MSI (s) (98:84) [12:01:46:364]: Note: 1: 1402 2: HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Installer\Rollback\Scripts 3: 2 MSI (s) (98:84) [12:01:46:364]: Note: 1: 1402 2: HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Installer\Rollback\Scripts 3: 2 MSI (s) (98:84) [12:01:46:364]: Decrementing counter to disable shutdown. If counter >= 0, shutdown will be denied. Counter after decrement: -1 MSI (s) (98:84) [12:01:46:364]: Restoring environment variables MSI (s) (98:84) [12:01:46:373]: Destroying RemoteAPI object. MSI (s) (98:D4) [12:01:46:373]: Custom Action Manager thread ending. MSI (c) (20:64) [12:01:46:379]: Decrementing counter to disable shutdown. If counter >= 0, shutdown will be denied. Counter after decrement: -1 MSI (c) (20:64) [12:01:46:380]: MainEngineThread is returning 1603 === Verbose logging stopped: 2012-07-08 12:01:46 === Any advice where to start in this? Thanks

    Read the article

  • Does likewise-open > version 5.4 contain CIFS support?

    - by Ben Andken
    I'm trying to get the CIFS server working in likewise-open. I've found this set of instructions and everything seems to work until I try to connect ([url]http://www.likewise.com/resources/documentation_library/manuals/cifs/likewise-cifs-smb-file-server-guide.html#id2765992):[/url] 1.6. Build and Configure a Standalone Likewise-CIFS Server This section demonstrates how to build and configure a standalone instance of Likewise-CIFS from the command line. The following procedure assumes that you want to set up Likewise-CIFS on a Linux server to share files with Windows computers in a network without Active Directory. This procedure also assumes you know how to build Linux applications from their source code and then install them. Download Likewise-CIFS from its open source git location: $ git clone git://git.likewiseopen.org/ Download, build, and install the following tools. The tools listed are known to work, but earlier or later versions might work as well. Also, instead of downloading the tools, you might be able to install them on your platform with apt-get or some other means. http://ftp.gnu.org/gnu/autoconf/autoconf-2.65.tar.gz http://ftp.gnu.org/gnu/automake/automake-1.9.6.tar.gz http://ftp.gnu.org/gnu/libtool/libtool-2.2.6a.tar.gz http://pkgconfig.freedesktop.org/releases/pkg-config-0.23.tar.gz gcc --version 3.x or greater Build Likewise-CIFS: $ cd likewise-open $ build/mkcomp --debug all Install Likewise-CIFS: $ sudo su $ cd staging/install-root $ tar cf - . | (cd / && tar xvf -) Make sure Samba is not running: $ /etc/init.d/smb stop Make sure SELinux is either disabled or set to permissive. Make sure the ports required by Likewise are open. For a list of ports that Likewise uses, see the Likewise Open Installation and Administration Guide. Configure Likewise Open: $ /etc/init.d/lwsmd start $ for i in /etc/likewise/*.reg; do /opt/likewise/bin/lwregshell upgrade $i; done $ /etc/init.d/lwsmd stop $ /etc/init.d/lwsmd start $ /opt/likewise/bin/lwsm start srvsvc $ /opt/likewise/bin/domainjoin-cli configure --enable nsswitch Add a user account to the local Likewise provider database. In the following example, substitute the account name that you want for newuser. $ /opt/likewise/bin/lw-add-user --home /home/newuser --shell /bin/bash newuser Successfully added user newuser Enable the user and set the password: $ /opt/likewise/bin/lw-mod-user --enable-user --set-password newuser New Password: ********** Successfully modified user newuser Look up new user's identity as follows. Substitute the value from the command hostname -s for the hostname. Keep in mind that Likewise truncates a hostname longer than 15 characters to the first 15 characters of the string. % id hostname\\newuser uid=2000(HOSTNAME\newuser) gid=1800(HOSTNAME\Likewise Users) groups=1800(HOSTNAME\Likewise Users) context=system_u:system_r:unconfined_t:s0 Make a CIFS directory for the user: mkdir /lwcifs/newuser chown 2000:1800 /lwcifs/newuser From a Windows computer, map the Likewise-CIFS drive share: Computer->Map Network Drive... Folder: \\IP_hostname\c$ Click "Finish" Username: hostname\newuser Password: user_password The last step fails when I try to connect. I've tried with Windows XP Pro and Windows 7 Pro. The rest of the directions only appear to work for version 5.4 (the one that shipped with 10.04). For 12.04, version 6.1 is the only one available and it doesn't appear to have the srvsvc module mentioned in these instructions. Is CIFS support dropped in the 6.1 version of likewise-open?

    Read the article

  • Cisco ASA (Client VPN) to LAN - through second VPN to second LAN

    - by user50855
    We have 2 site that is linked by an IPSEC VPN to remote Cisco ASAs: Site 1 1.5Mb T1 Connection Cisco(1) 2841 Site 2 1.5Mb T1 Connection Cisco 2841 In addition: Site 1 has a 2nd WAN 3Mb bonded T1 Connection Cisco 5510 that connects to same LAN as Cisco(1) 2841. Basically, Remote Access (VPN) users connecting through Cisco ASA 5510 needs access to a service at the end of Site 2. This is due to the way the service is sold - Cisco 2841 routers are not under our management and it is setup to allow connection from local LAN VLAN 1 IP address 10.20.0.0/24. My idea is to have all traffic from Remote Users through Cisco ASA destined for Site 2 to go via the VPN between Site 1 and Site 2. The end result being all traffic that hits Site 2 has come via Site 1. I'm struggling to find a great deal of information on how this is setup. So, firstly, can anyone confirm that what I'm trying to achieve is possible? Secondly, can anyone help me to correct the configuration bellow or point me in the direction of an example of such a configuration? Many Thanks. interface Ethernet0/0 nameif outside security-level 0 ip address 7.7.7.19 255.255.255.240 interface Ethernet0/1 nameif inside security-level 100 ip address 10.20.0.249 255.255.255.0 object-group network group-inside-vpnclient description All inside networks accessible to vpn clients network-object 10.20.0.0 255.255.255.0 network-object 10.20.1.0 255.255.255.0 object-group network group-adp-network description ADP IP Address or network accessible to vpn clients network-object 207.207.207.173 255.255.255.255 access-list outside_access_in extended permit icmp any any echo-reply access-list outside_access_in extended permit icmp any any source-quench access-list outside_access_in extended permit icmp any any unreachable access-list outside_access_in extended permit icmp any any time-exceeded access-list outside_access_in extended permit tcp any host 7.7.7.20 eq smtp access-list outside_access_in extended permit tcp any host 7.7.7.20 eq https access-list outside_access_in extended permit tcp any host 7.7.7.20 eq pop3 access-list outside_access_in extended permit tcp any host 7.7.7.20 eq www access-list outside_access_in extended permit tcp any host 7.7.7.21 eq www access-list outside_access_in extended permit tcp any host 7.7.7.21 eq https access-list outside_access_in extended permit tcp any host 7.7.7.21 eq 5721 access-list acl-vpnclient extended permit ip object-group group-inside-vpnclient any access-list acl-vpnclient extended permit ip object-group group-inside-vpnclient object-group group-adp-network access-list acl-vpnclient extended permit ip object-group group-adp-network object-group group-inside-vpnclient access-list PinesFLVPNTunnel_splitTunnelAcl standard permit 10.20.0.0 255.255.255.0 access-list inside_nat0_outbound_1 extended permit ip 10.20.0.0 255.255.255.0 10.20.1.0 255.255.255.0 access-list inside_nat0_outbound_1 extended permit ip 10.20.0.0 255.255.255.0 host 207.207.207.173 access-list inside_nat0_outbound_1 extended permit ip 10.20.1.0 255.255.255.0 host 207.207.207.173 ip local pool VPNPool 10.20.1.100-10.20.1.200 mask 255.255.255.0 route outside 0.0.0.0 0.0.0.0 7.7.7.17 1 route inside 207.207.207.173 255.255.255.255 10.20.0.3 1 crypto ipsec transform-set ESP-3DES-SHA esp-3des esp-sha-hmac crypto ipsec security-association lifetime seconds 28800 crypto ipsec security-association lifetime kilobytes 4608000 crypto dynamic-map outside_dyn_map 20 set transform-set ESP-3DES-SHA crypto dynamic-map outside_dyn_map 20 set security-association lifetime seconds 288000 crypto dynamic-map outside_dyn_map 20 set security-association lifetime kilobytes 4608000 crypto dynamic-map outside_dyn_map 20 set reverse-route crypto map outside_map 20 ipsec-isakmp dynamic outside_dyn_map crypto map outside_map interface outside crypto map outside_dyn_map 20 match address acl-vpnclient crypto map outside_dyn_map 20 set security-association lifetime seconds 28800 crypto map outside_dyn_map 20 set security-association lifetime kilobytes 4608000 crypto isakmp identity address crypto isakmp enable outside crypto isakmp policy 20 authentication pre-share encryption 3des hash sha group 2 lifetime 86400 group-policy YeahRightflVPNTunnel internal group-policy YeahRightflVPNTunnel attributes wins-server value 10.20.0.9 dns-server value 10.20.0.9 vpn-tunnel-protocol IPSec password-storage disable pfs disable split-tunnel-policy tunnelspecified split-tunnel-network-list value acl-vpnclient default-domain value YeahRight.com group-policy YeahRightFLVPNTunnel internal group-policy YeahRightFLVPNTunnel attributes wins-server value 10.20.0.9 dns-server value 10.20.0.9 10.20.0.7 vpn-tunnel-protocol IPSec split-tunnel-policy tunnelspecified split-tunnel-network-list value YeahRightFLVPNTunnel_splitTunnelAcl default-domain value yeahright.com tunnel-group YeahRightFLVPN type remote-access tunnel-group YeahRightFLVPN general-attributes address-pool VPNPool tunnel-group YeahRightFLVPNTunnel type remote-access tunnel-group YeahRightFLVPNTunnel general-attributes address-pool VPNPool authentication-server-group WinRadius default-group-policy YeahRightFLVPNTunnel tunnel-group YeahRightFLVPNTunnel ipsec-attributes pre-shared-key *

    Read the article

  • Permissions restoring from Time Machine - Finder copy vs "cp" copy

    - by Ben Challenor
    Note: this question was starting to sprawl so I rewrote it. I have a folder that I'm trying to restore from a Time Machine backup. Using cp -R works fine, but certain folders cannot be restored with either the Time Machine UI or Finder. Other users have reported similar errors and the cp -R workaround was suggested (e.g. Restoring from Time Machine - Permissions Error). But I wanted to understand: Why cp -R works when the Finder and the Time Machine UI do not. Whether I could prevent the errors by changing file permissions before the backup. There do indeed seem to be some permissions that Finder works with and some that it does not. I've narrowed the errors down to folders with the user ben (that's me) and the group wheel. Here's a simplified reproduction. I have four folders with the owner/group combinations I've seen so far: ben ~/Desktop/test $ ls -lea total 16 drwxr-xr-x 7 ben staff 238 27 Nov 14:31 . drwx------+ 17 ben staff 578 27 Nov 14:29 .. 0: group:everyone deny delete -rw-r--r--@ 1 ben staff 6148 27 Nov 14:31 .DS_Store drwxr-xr-x 3 ben staff 102 27 Nov 14:30 ben-staff drwxr-xr-x 3 ben wheel 102 27 Nov 14:30 ben-wheel drwxr-xr-x 3 root admin 102 27 Nov 14:31 root-admin drwxr-xr-x 3 root wheel 102 27 Nov 14:31 root-wheel Each contains a single file called file with the same owner/group: ben ~/Desktop/test $ cd ben-staff ben ~/Desktop/test/ben-staff $ ls -lea total 0 drwxr-xr-x 3 ben staff 102 27 Nov 14:30 . drwxr-xr-x 7 ben staff 238 27 Nov 14:31 .. -rw-r--r-- 1 ben staff 0 27 Nov 14:30 file In the backup, they look like this: ben /Volumes/Deimos/Backups.backupdb/Ben’s MacBook Air/Latest/Macintosh HD/Users/ben/Desktop/test $ ls -leA total 16 -rw-r--r--@ 1 ben staff 6148 27 Nov 14:34 .DS_Store 0: group:everyone deny write,delete,append,writeattr,writeextattr,chown drwxr-xr-x@ 3 ben staff 102 27 Nov 14:51 ben-staff 0: group:everyone deny add_file,delete,add_subdirectory,delete_child,writeattr,writeextattr,chown drwxr-xr-x@ 3 ben wheel 102 27 Nov 14:51 ben-wheel 0: group:everyone deny add_file,delete,add_subdirectory,delete_child,writeattr,writeextattr,chown drwxr-xr-x@ 3 root admin 102 27 Nov 14:52 root-admin 0: group:everyone deny add_file,delete,add_subdirectory,delete_child,writeattr,writeextattr,chown drwxr-xr-x@ 3 root wheel 102 27 Nov 14:52 root-wheel 0: group:everyone deny add_file,delete,add_subdirectory,delete_child,writeattr,writeextattr,chown Of these, ben-staff can be restored with Finder without errors. root-wheel and root-admin ask for my password and then restore without errors. But ben-wheel does not prompt for my password and gives the error: The operation can’t be completed because you don’t have permission to access “file”. Interestingly, I can restore the file from this folder by dragging it directly to my local drive (instead of dragging its parent folder), but when I do so its permissions are changed to ben/staff. Here are the permissions after the restore for the three folders that worked correctly, and the file from ben-wheel that was changed to ben/staff. ben ~/Desktop/test-restore $ ls -leA total 16 -rw-r--r--@ 1 ben staff 6148 27 Nov 14:46 .DS_Store drwxr-xr-x 3 ben staff 102 27 Nov 14:30 ben-staff -rw-r--r-- 1 ben staff 0 27 Nov 14:30 file drwxr-xr-x 3 root admin 102 27 Nov 14:31 root-admin drwxr-xr-x 3 root wheel 102 27 Nov 14:31 root-wheel Can anyone explain this behaviour? Why do Finder and the Time Machine UI break with the ben / wheel permissions? And why does cp -R work (even without sudo)?

    Read the article

  • How can I switch an existing set of Subversion repositories to use ActiveDirectory?

    - by jpierson
    I have a set of private Subversion repositories on a Windows Server 2003 box which developers access via SVNServe over the svn:// protocol. Currently we have been using the authz and passwd files for each repository to control access however with the growing number of repositories and developers I'm considering switching to using their credentials from ActiveDirectory. We run in an all Microsoft shop and use IIS instead of Apache on all of our web servers so I would prefer to continue to use SVNServe if possible. Besides it being possible, I'm also concerned about how to migrate our repositories so that the history for the existing users map to the correct ActiveDirectory accounts. Keep in mind also that I'm not the network administrator and I'm not terrible familiar with ActiveDirectory so I'll probably have to go through some other people to get the changes made in ActiveDirectory if necessary. What are my options? UPDATE 1: It appears from the SVN documentation that by using SASL I should be able to get SVNServe to authenticate using ActiveDirectory. To clarify, the answer that I'm looking for is how to go about configuring SVNServe (if possible) to use ActiveDirectory for authentication and then how to modify an existing repository to remap existing svn users to their ActiveDirectory domain login accounts. UPDATE 2: It appears that the SASL support in SVNServe works off of a plugin model and the documentation only shows as an example. Looking at the Cyrus SASL Library it looks like a number of authentication "mechanisms" are supported but I'm not sure which one is to be used for ActiveDirectory support nor can I find any documentation about such matters. UPDATE 3: Ok, well it looks like in order to communication with ActiveDirectory I'm looking to use saslauthd instead of sasldb for the *auxprop_plugin* property. Unfortunately it appears that according to some posts (possibly outdated and inaccurate) saslauthd does not build on Windows and such endeavors are considered a work in progress. UPDATE 4: The lastest post I've found on this topic makes it sound as though the proper binaries () are available through the MIT Kerberos Library but it sounds like the author of this post on Nabble.com is still having issues getting things working. UPDATE 5: It looks like from the TortoiseSVN discussions and also this post on svn.haxx.se that even if saslgssapi.dll or whatever necessary binaries are available and configured on the Windows server that the clients will also need the same customization in order to work with these repositories. If this is true, we will only be able to get ActiveDirectory support from a windows client only if changes are made in these clients such as TortoiseSVN and CollabNet build of the client binaries to support such authentication schemes. Although thats what these posts suggest, this is contradictory from what I originally assumed from other reading in that being SASL compatible should require no changes on the client but instead only that the server be setup to handle the authentication mechanism. After reading a bit more carefully in the document about Cyrus SASL in Subversion section 5 states "1.5+ clients with Cyrus SASL support will be able to authenticate against 1.5+ servers with SASL enabled, provided at least one of the mechanisms supported by the server is also supported by the client." So clearly GSSAPI support (which I understand is required for Active Directory) must be available within the client and the server. I have to say, I'm learning way too much about the internals of how Subversion handles authentication than I ever wanted to and I juts simply want to get an answer about whether I can have Active Directory authentication support when using SVNServe on a Windows server and accessing this from Windows clients. According to the official documentation it seems that this is possible however you can see that the configuration is not trivial if even possible at all.

    Read the article

  • httpd.conf configuration - for internal/external access

    - by tom smith
    hey. after a lot of trail/error/research, i've decided to post here in the hopes that i can get clarification on what i've screwed up... i've got a situation where i have multiple servers behind a router/firewall. i want to be able to access the sites i have from an internal and external url/address, and get the same site. i have to use portforwarding on the router, so i need to be able to use proxyreverse to redirect the user to the approriate server, running the apache/web app... my setup the external urls joomla.gotdns.com forge.gotdns.com both of these point to my router's external ip address (67.168.2.2) (not really) the router forwards port 80 to my server lserver6 192.168.1.56 lserver6 - 192.168.1.56 lserver9 - 192.168.1.59 lserver6 - joomla app lserver9 - forge app i want to be able to have the httpd process (httpd.conf) configured on lserver6 to be able to allow external users accessing the system (foo.gotdns.com) be able to access the joomla app on lserver6 and the same for the forge app running on lserver9 at the same time, i would also like to be able to access the apps from the internal servers, so i'd need to be able to somehow configure the vhost setup/proxyreverse setup to handle the internal access... i've tried setting up multiple vhosts with no luck.. i've looked at the different examples online.. so there must be something subtle that i'm missing... the section of my httpd.conf file that deals with the vhost is below... if there's something else that's needed, let me know and i can post it as well.. thanks -tom ##joomla - file /etc/httpd/conf.d/joomla.conf Alias /joomla /var/www/html/joomla <Directory /var/www/html/joomla> </Directory> # Use name-based virtual hosting. #NameVirtualHost *:80 # NOTE: NameVirtualHost cannot be used without a port specifier # (e.g. :80) if mod_ssl is being used, due to the nature of the # SSL protocol. # VirtualHost example: # Almost any Apache directive may go into a VirtualHost container. # The first VirtualHost section is used for requests without a known # server name. #<VirtualHost *:80> # ServerAdmin [email protected] # DocumentRoot /www/docs/dummy-host.example.com # ServerName dummy-host.example.com # ErrorLog logs/dummy-host.example.com-error_log # CustomLog logs/dummy-host.example.com-access_log common #</VirtualHost> NameVirtualHost 192.168.1.56:80 <VirtualHost 192.168.1.56:80> #ServerAdmin [email protected] #DocumentRoot /var/www/html #ServerName lserver6.tmesa.com #ServerName fforge.tmesa.com ServerName fforge.gotdns.com:80 #ErrorLog logs/dummy-host.example.com-error_log #CustomLog logs/dummy-host.example.com-access_log common #ProxyRequests Off ProxyPass / http://192.168.1.81:80/ ProxyPassReverse / http://192.168.1.81:80/ </VirtualHost> <VirtualHost 192.168.1.56:80> #ServerAdmin [email protected] DocumentRoot /var/www/html/joomla #ServerName lserver6.tmesa.com #ServerName fforge.tmesa.com ServerName 192.168.1.56:80 #ErrorLog logs/dummy-host.example.com-error_log #CustomLog logs/dummy-host.example.com-access_log common #ProxyRequests Off </VirtualHost>

    Read the article

  • disk-to-disk backup without costly backup redundancy?

    - by AaronLS
    A good backup strategy involves a combination of 1) disconnected backups/snapshots that will not be affected by bugs, viruses, and/or security breaches 2) geographically distributed backups to protect against local disasters 3) testing backups to ensure that they can be restored as needed Generally I take an onsite backup daily, and an offsite backup weekly, and do test restores periodically. In the rare circumstance that I need to restore files, I do some from the local backup. Should a catastrophic event destroy the servers and local backups, then the offsite weekly tape backup would be used to restore the files. I don't need multiple offsite backups with redundancy. I ALREADY HAVE REDUNDANCY THROUGH THE USE OF BOTH LOCAL AND REMOTE BACKUPS. I have recovery blocks and par files with the backups, so I already have protection against a small percentage of corrupt bits. I perform test restores to ensure the backups function properly. Should the remote backups experience a dataloss, I can replace them with one of the local backups. There are historical offsite backups as well, so if a dataloss was not noticed for a few weeks(such as a bug/security breach/virus), the data could be restored from an older backup. By doing this, the only scenario that poses a risk to complete data loss would be one where both the local, remote, and servers all experienced a data loss in the same time period. I'm willing to risk that happening since the odds of that trifecta negligibly small, and the data isn't THAT valuable to me. So I hope I have emphasized that I don't need redundancy in my offsite backups because I have covered all the bases. I know this exact technique is employed by numerous businesses. Of course there are some that take multiple offsite backups, because the data is so incredibly valuable that they don't even want to risk that trifecta disaster, but in the majority of cases the trifecta disaster is an accepted risk. I HAD TO COVER ALL THIS BECAUSE SOME PEOPLE DON'T READ!!! I think I have justified my backup strategy and the majority of businesses who use offsite tape backups do not have any additional redundancy beyond what is mentioned above(recovery blocks, par files, historical snapshots). Now I would like to eliminate the use of tapes for offsite backups, and instead use a backup service. Most however are extremely costly for $/gb/month storage. I don't mind paying for transfer bandwidth, but the cost of storage is way to high. All of them advertise that they maintain backups of the data, and I imagine they use RAID as well. Obviously if you were using them to host servers this would all be necessary, but for my scenario, I am simply replacing my offsite backups with such a service. So there is no need for RAID, and absolutely no value in another layer of backups of backups. My one and only question: "Are there online data-storage/backup services that do not use redundancy or offer backups(backups of my backups) as part of their packages, and thus are more reasonably priced?" NOT my question: "Is this a flawed strategy?" I don't care if you think this is a good strategy or not. I know it pretty standard. Very few people make an extra copy of their offsite backups. They already have local backups that they can use to replace the remote backups if something catastrophic happens at the remote site. Please limit your responses to the question posed. Sorry if I seem a little abrasive, but I had some trolls in my last post who didn't read my requirements nor my question, and were trying to go off answering a totally different question. I made it pretty clear, but didn't try to justify my strategy, because I didn't ask about whether my strategy was justifyable. So I apologize if this was lengthy, as it really didn't need to be, but since there are so many trolls here who try to sidetrack questions by responding without addressing the question at hand.

    Read the article

< Previous Page | 915 916 917 918 919 920 921 922 923 924 925 926  | Next Page >