Search Results

Search found 5298 results on 212 pages for 'marching cubes algorithm'.

Page 92/212 | < Previous Page | 88 89 90 91 92 93 94 95 96 97 98 99  | Next Page >

  • help implementing All Nearest Smaller Values algorithm

    - by davit-datuashvili
    http://en.wikipedia.org/wiki/All_nearest_smaller_values this is site of the problem and here is my code but i have some trouble to implement it import java.util.*; public class stack{ public static void main(String[]args){ int x[]=new int[]{ 0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15 }; Stack<Integer> st=new Stack<Integer>(); for (int a:x){ while (!st.empty() && st.pop()>=a){ System.out.println( st.pop()); if (st.empty()){ break; } else{ st.push(a); } } } } } and here is pseudo code from site S = new empty stack data structure for x in the input sequence: while S is nonempty and the top element of S is greater than or equal to x: pop S if S is empty: x has no preceding smaller value else: the nearest smaller value to x is the top element of S push x onto S

    Read the article

  • maximum of given function

    - by davit-datuashvili
    first of all i am doing programs in java language this code is merely taken from web site i have not question about divide and conqurer but about function and it's argument here is code of ternary search def ternarySearch(f, left, right, absolutePrecision): #left and right are the current bounds; the maximum is between them if (right - left) < absolutePrecision: return (left + right)/2 leftThird = (2*left + right)/3 rightThird = (left + 2*right)/3 if f(leftThird) < f(rightThird): return ternarySearch(f, leftThird, right, absolutePrecision) return ternarySearch(f, left, rightThird, absolutePrecision) i am not asking once again how implement it in java i am asking for example how define function?for example let y=x^+3 yes we can determine it as public static int y(int x){ return x*x+3; } but here return ternarySearch(f, leftThird, right, absolutePrecision) function f does not have argument and how do such?please help me

    Read the article

  • Formula for popularity? (based on "like it", "comments", "views")

    - by paullb
    I have some pages on a website and I have to create an ordering based on "popularity"/"activity" The parameters that I have to use are: views to the page comments made on the page (there is a form at the bottom where uses can make comments) clicks made to the "like it" icon Are there any standards for what a formula for popularity would be? (if not opinions are good too) (initially I thought of views + 10*comments + 10*likeit)

    Read the article

  • Number distribution

    - by Carra
    Problem: We have x checkboxes and we want to check y of them evenly. Example 1: select 50 checkboxes of 100 total. [-] [x] [-] [x] ... Example 2: select 33 checkboxes of 100 total. [-] [-] [x] [-] [-] [x] ... Example 3: select 66 checkboxes of 100 total: [-] [x] [x] [-] [x] [x] ... But we're having trouble to come up with a formula to check them in code, especially once you go 11/111 or something similar. Anyone has an idea?

    Read the article

  • Finding the longest road in a Settlers of Catan game algorithmically

    - by Jay
    I'm writing a Settlers of Catan clone for a class. One of the extra credit features is automatically determining which player has the longest road. I've thought about it, and it seems like some slight variation on depth-first search could work, but I'm having trouble figuring out what to do with cycle detection, how to handle the joining of a player's two initial road networks, and a few other minutiae. How could I do this algorithmically? For those unfamiliar with the game, I'll try to describe the problem concisely and abstractly: I need to find the longest possible path in an undirected cyclic graph.

    Read the article

  • How to perform a Depth First Search iteratively using async/parallel processing?

    - by Prabhu
    Here is a method that does a DFS search and returns a list of all items given a top level item id. How could I modify this to take advantage of parallel processing? Currently, the call to get the sub items is made one by one for each item in the stack. It would be nice if I could get the sub items for multiple items in the stack at the same time, and populate my return list faster. How could I do this (either using async/await or TPL, or anything else) in a thread safe manner? private async Task<IList<Item>> GetItemsAsync(string topItemId) { var items = new List<Item>(); var topItem = await GetItemAsync(topItemId); Stack<Item> stack = new Stack<Item>(); stack.Push(topItem); while (stack.Count > 0) { var item = stack.Pop(); items.Add(item); var subItems = await GetSubItemsAsync(item.SubId); foreach (var subItem in subItems) { stack.Push(subItem); } } return items; } EDIT: I was thinking of something along these lines, but it's not coming together: var tasks = stack.Select(async item => { items.Add(item); var subItems = await GetSubItemsAsync(item.SubId); foreach (var subItem in subItems) { stack.Push(subItem); } }).ToList(); if (tasks.Any()) await Task.WhenAll(tasks); UPDATE: If I wanted to chunk the tasks, would something like this work? foreach (var batch in items.BatchesOf(100)) { var tasks = batch.Select(async item => { await DoSomething(item); }).ToList(); if (tasks.Any()) { await Task.WhenAll(tasks); } } The language I'm using is C#.

    Read the article

  • Counting bits set in a .Net BitArray Class

    - by Sam
    I am implementing a library where I am extensively using the .Net BitArray class and need an equivalent to the Java BitSet.Cardinality() method, i.e. a method which returns the number of bits set. I was thinking of implementing it as an extension method for the BitArray class. The trivial implementation is to iterate and count the bits set (like below), but I wanted a faster implementation as I would be performing thousands of set operations and counting the answer. Is there a faster way than the example below? count = 0; for (int i = 0; i < mybitarray.Length; i++) { if (mybitarray [i]) count++; }

    Read the article

  • Creating objects makes the VM faster?

    - by Sudhir Jonathan
    Look at this piece of code: MessageParser parser = new MessageParser(); for (int i = 0; i < 10000; i++) { parser.parse(plainMessage, user); } For some reason, it runs SLOWER (by about 100ms) than for (int i = 0; i < 10000; i++) { MessageParser parser = new MessageParser(); parser.parse(plainMessage, user); } Any ideas why? The tests were repeated a lot of times, so it wasn't just random. How could creating an object 10000 times be faster than creating it once?

    Read the article

  • Efficient mapping of game entity positions in Java

    - by byte
    In Java (Swing), say I've got a 2D game where I have various types of entities on the screen, such as a player, bad guys, powerups, etc. When the player moves across the screen, in order to do efficient checking of what is in the immediate vicinity of the player, I would think I'd want indexed access to the things that are near the character based on their position. For example, if player 'P' steps onto element 'E' in the following example... | | | | | | | | | |P| | | | |E| | | | | | | | | ... would be to do something like: if(player.getPosition().x == entity.getPosition().x && entity.getPosition.y == thing.getPosition().y) { //do something } And thats fine, but that implies that the entities hold their positions, and therefor if I had MANY entities on the screen I would have to loop through all possible entities available and check each ones position against the player position. This seems really inefficient especially if you start getting tons of entities. So, I would suspect I'd want some sort of map like Map<Point, Entity> map = new HashMap<Point, Entity>(); And store my point information there, so that I could access these entities in constant time. The only problem with that approach is that, if I want to move an entity to a different point on the screen, I'd have to search through the values of the HashMap for the entity I want to move (inefficient since I dont know its Point position ahead of time), and then once I've found it remove it from the HashMap, and re-insert it with the new position information. Any suggestions or advice on what sort of data structure / storage format I ought to be using here in order to have efficient access to Entities based on their position, as well as Position's based on the Entity?

    Read the article

  • Elegant Method of Inserting Code Between Loops

    - by DeathMagus
    In web development, I often find I need to format and print various arrays of data, and separate these blocks of data in some manner. In other words, I need to be able to insert code between each loop, without said code being inserted before the first entry or after the last one. The most elegant way I've found to accomplish this is as follows: function echoWithBreaks($array){ for($i=0; $i<count($array); $i++){ //Echo an item if($i<count($array)-1){ //Echo "between code" } } } Unfortunately, there's no way that I can see to implement this solution with foreach instead of for. Does anyone know of a more elegant solution that will work with foreach?

    Read the article

  • Adapting pseudocode to java implementation for finding the longest word in a trie

    - by user1766888
    Referring to this question I asked: How to find the longest word in a trie? I'm having trouble implementing the pseudocode given in the answer. findLongest(trie): //first do a BFS and find the "last node" queue <- [] queue.add(trie.root) last <- nil map <- empty map while (not queue.empty()): curr <- queue.pop() for each son of curr: queue.add(son) map.put(son,curr) //marking curr as the parent of son last <- curr //in here, last indicate the leaf of the longest word //Now, go up the trie and find the actual path/string curr <- last str = "" while (curr != nil): str = curr + str //we go from end to start curr = map.get(curr) return str This is what I have for my method public static String longestWord (DTN d) { Queue<DTN> holding = new ArrayQueue<DTN>(); holding.add(d); DTN last = null; Map<DTN,DTN> test = new ArrayMap<DTN,DTN>(); DTN curr; while (!holding.isEmpty()) { curr = holding.remove(); for (Map.Entry<String, DTN> e : curr.children.entries()) { holding.add(curr.children.get(e)); test.put(curr.children.get(e), curr); } last = curr; } curr = last; String str = ""; while (curr != null) { str = curr + str; curr = test.get(curr); } return str; } I'm getting a NullPointerException at: for (Map.Entry<String, DTN> e : curr.children.entries()) How can I find and fix the cause of the NullPointerException of the method so that it returns the longest word in a trie?

    Read the article

  • What are some practical uses of generating all permutations of a list, such as ['a', 'b', 'c'] ?

    - by Jian Lin
    I was asked by somebody in an interview for web front end job, to write a function that generates all permutation of a string, such as "abc" (or consider it ['a', 'b', 'c']). so the expected result from the function, when given ['a', 'b', 'c'], is abc acb bac bca cab cba Actually in my past 20 years of career, I have never needed to do something like that, especially when doing front end work for web programming. What are some practical use of this problem nowadays, in web programming, front end or back end, I wonder? As a side note, I kind of feel that expecting a result in 3 minutes might be "either he gets it or he doesn't", especially I was thinking of doing it by a procedural, non-recursive way at first. After the interview, I spent another 10 minutes and thought of how to do it using recursion, but expecting it to be solved within 3 minutes... may not be a good test of how qualified he is, especially for front end work.

    Read the article

  • Recursion - Ship Battle

    - by rgorrosini
    I'm trying to write a little ship battle game in java. It is 100% academic, I made it to practice recursion, so... I want to use it instead of iteration, even if it's simpler and more efficient in most some cases. Let's get down to business. These are the rules: Ships are 1, 2 or 3 cells wide and are placed horizontally only. Water is represented with 0, non-hit ship cells are 1, hit ship cells are 2 and sunken ships have all it's cells in 3. With those rules set, I'm using the following array for testing: int[][] board = new int[][] { {0, 1, 2, 0, 1, 0}, {0, 0, 1, 1, 1, 0}, {0, 3, 0, 0, 0, 0}, {0, 0, 2, 1, 2, 0}, {0, 0, 0, 1, 1, 1}, }; It works pretty good so far, and to make it more user-friendly I would like to add a couple of reports. these are the methods I need for them: Given the matrix, return the amount of ships in it. Same as a), but separating them by state (amount of non-hit ships, hit and sunken ones). I will need a hand with those reports, and I would like to get some ideas. Remember it must be done using recursion, I want to understand this, and the only way to go is practice! Thanks a lot for your time and patience :).

    Read the article

  • Recursive breadth-first travel function in Java or C++?

    - by joejax
    Here is a java code for breadth-first travel: void breadthFirstNonRecursive(){ Queue<Node> queue = new java.util.LinkedList<Node>(); queue.offer(root); while(!queue.isEmpty()){ Node node = queue.poll(); visit(node); if (node.left != null) queue.offer(node.left); if (node.right != null) queue.offer(node.right); } } Is it possible to write a recursive function to do the same? At first, I thought this would be easy, so I came out with this: void breadthFirstRecursive(){ Queue<Node> q = new LinkedList<Node>(); breadthFirst(root, q); } void breadthFirst(Node node, Queue<Node> q){ if (node == null) return; q.offer(node); Node n = q.poll(); visit(n); if (n.left != null) breadthFirst(n.left, q); if (n.right != null) breadthFirst(n.right, q); } Then I found it doesn't work. It is actually does the same thing as this: void preOrder(Node node) { if (node == null) return; visit(node); preOrder(node.left); preOrder(node.right); } Has any one thought about this before?

    Read the article

  • Finding if a string is an iterative substring?

    - by EsotericMe
    I have a string S. How can I find if the string follows S = nT. Examples: Function should return true if 1) S = "abab" 2) S = "abcdabcd" 3) S = "abcabcabc" 4) S = "zzxzzxzzx" But if S="abcb" returns false. I though maybe we can repeatedly call KMP on substrings of S and then decide. eg: for "abab": call on KMP on "a". it returns 2(two instances). now 2*len("a")!=len(s) call on KMP on "ab". it returns 2. now 2*len("ab")==len(s) so return true Can you suggest any better algorithms?

    Read the article

  • A data structure based on the R-Tree: creating new child nodes when a node is full, but what if I ha

    - by Tom
    I realize my title is not very clear, but I am having trouble thinking of a better one. If anyone wants to correct it, please do. I'm developing a data structure for my 2 dimensional game with an infinite universe. The data structure is based on a simple (!) node/leaf system, like the R-Tree. This is the basic concept: you set howmany childs you want a node (a container) to have maximum. If you want to add a leaf, but the node the leaf should be in is full, then it will create a new set of nodes within this node and move all current leafs to their new (more exact) node. This way, very populated areas will have a lot more subdivisions than a very big but rarely visited area. This works for normal objects. The only problem arises when I have more than maxChildsPerNode objects with the exact same X,Y location: because the node is full, it will create more exact subnodes, but the old leafs will all be put in the exact same node again because they have the exact same position -- resulting in an infinite loop of creating more nodes and more nodes. So, what should I do when I want to add more leafs than maxChildsPerNode with the exact same position to my tree? PS. if I failed to explain my problem, please tell me, so I can try to improve the explanation.

    Read the article

  • How can I represent a line of music notes in a way that allows fast insertion at any index?

    - by chairbender
    For "fun", and to learn functional programming, I'm developing a program in Clojure that does algorithmic composition using ideas from this theory of music called "Westergaardian Theory". It generates lines of music (where a line is just a single staff consisting of a sequence of notes, each with pitches and durations). It basically works like this: Start with a line consisting of three notes (the specifics of how these are chosen are not important). Randomly perform one of several "operations" on this line. The operation picks randomly from all pairs of adjacent notes that meet a certain criteria (for each pair, the criteria only depends on the pair and is independent of the other notes in the line). It inserts 1 or several notes (depending on the operation) between the chosen pair. Each operation has its own unique criteria. Continue randomly performing these operations on the line until the line is the desired length. The issue I've run into is that my implementation of this is quite slow, and I suspect it could be made faster. I'm new to Clojure and functional programming in general (though I'm experienced with OO), so I'm hoping someone with more experience can point out if I'm not thinking in a functional paradigm or missing out on some FP technique. My current implementation is that each line is a vector containing maps. Each map has a :note and a :dur. :note's value is a keyword representing a musical note like :A4 or :C#3. :dur's value is a fraction, representing the duration of the note (1 is a whole note, 1/4 is a quarter note, etc...). So, for example, a line representing the C major scale starting on C3 would look like this: [ {:note :C3 :dur 1} {:note :D3 :dur 1} {:note :E3 :dur 1} {:note :F3 :dur 1} {:note :G3 :dur 1} {:note :A4 :dur 1} {:note :B4 :dur 1} ] This is a problematic representation because there's not really a quick way to insert into an arbitrary index of a vector. But insertion is the most frequently performed operation on these lines. My current terrible function for inserting notes into a line basically splits the vector using subvec at the point of insertion, uses conj to join the first part + notes + last part, then uses flatten and vec to make them all be in a one-dimensional vector. For example if I want to insert C3 and D3 into the the C major scale at index 3 (where the F3 is), it would do this (I'll use the note name in place of the :note and :dur maps): (conj [C3 D3 E3] [C3 D3] [F3 G3 A4 B4]), which creates [C3 D3 E3 [C3 D3] [F3 G3 A4 B4]] (vec (flatten previous-vector)) which gives [C3 D3 E3 C3 D3 F3 G3 A4 B4] The run time of that is O(n), AFAIK. I'm looking for a way to make this insertion faster. I've searched for information on Clojure data structures that have fast insertion but haven't found anything that would work. I found "finger trees" but they only allow fast insertion at the start or end of the list. Edit: I split this into two questions. The other part is here.

    Read the article

< Previous Page | 88 89 90 91 92 93 94 95 96 97 98 99  | Next Page >