Search Results

Search found 88733 results on 3550 pages for 'algebraic data type'.

Page 95/3550 | < Previous Page | 91 92 93 94 95 96 97 98 99 100 101 102  | Next Page >

  • Extending Database-as-a-Service to Provision Databases with Application Data

    - by Nilesh A
    Oracle Enterprise Manager 12c Database as a Service (DBaaS) empowers Self Service/SSA Users to rapidly spawn databases on demand in cloud. The configuration and structure of provisioned databases depends on respective service template selected by Self Service user while requesting for database. In EM12c, the DBaaS Self Service/SSA Administrator has the option of hosting various service templates in service catalog and based on underlying DBCA templates.Many times provisioned databases require production scale data either for UAT, testing or development purpose and managing DBCA templates with data can be unwieldy. So, we need to populate the database using post deployment script option and without any additional work for the SSA Users. The SSA Administrator can automate this task in few easy steps. For details on how to setup DBaaS Self Service Portal refer to the DBaaS CookbookIn this article, I will list steps required to enable EM 12c DBaaS to provision databases with application data in two distinct ways using: 1) Data pump 2) Transportable tablespaces (TTS). The steps listed below are just examples of how to extend EM 12c DBaaS and you can even have your own method plugged in part of post deployment script option. Using Data Pump to populate databases These are the steps to be followed to implement extending DBaaS using Data Pump methodolgy: Production DBA should run data pump export on the production database and make the dump file available to all the servers participating in the database zone [sample shown in Fig.1] -- Full exportexpdp FULL=y DUMPFILE=data_pump_dir:dpfull1%U.dmp, data_pump_dir:dpfull2%U.dmp PARALLEL=4 LOGFILE=data_pump_dir:dpexpfull.log JOB_NAME=dpexpfull Figure-1:  Full export of database using data pump Create a post deployment SQL script [sample shown in Fig. 2] and this script can either be uploaded into the software library by SSA Administrator or made available on a shared location accessible from servers where databases are likely to be provisioned Normal 0 -- Full importdeclare    h1   NUMBER;begin-- Creating the directory object where source database dump is backed up.    execute immediate 'create directory DEST_LOC as''/scratch/nagrawal/OracleHomes/oradata/INITCHNG/datafile''';-- Running import    h1 := dbms_datapump.open (operation => 'IMPORT', job_mode => 'FULL', job_name => 'DB_IMPORT10');    dbms_datapump.set_parallel(handle => h1, degree => 1);    dbms_datapump.add_file(handle => h1, filename => 'IMP_GRIDDB_FULL.LOG', directory => 'DATA_PUMP_DIR', filetype => 3);    dbms_datapump.add_file(handle => h1, filename => 'EXP_GRIDDB_FULL_%U.DMP', directory => 'DEST_LOC', filetype => 1);    dbms_datapump.start_job(handle => h1);    dbms_datapump.detach(handle => h1);end;/ Figure-2: Importing using data pump pl/sql procedures Using DBCA, create a template for the production database – include all the init.ora parameters, tablespaces, datafiles & their sizes SSA Administrator should customize “Create Database Deployment Procedure” and provide DBCA template created in the previous step. In “Additional Configuration Options” step of Customize “Create Database Deployment Procedure” flow, provide the name of the SQL script in the Custom Script section and lock the input (shown in Fig. 3). Continue saving the deployment procedure. Figure-3: Using Custom script option for calling Import SQL Now, an SSA user can login to Self Service Portal and use the flow to provision a database that will also  populate the data using the post deployment step. Using Transportable tablespaces to populate databases Copy of all user/application tablespaces will enable this method of populating databases. These are the required steps to extend DBaaS using transportable tablespaces: Production DBA needs to create a backup of tablespaces. Datafiles may need conversion [such as from Big Endian to Little Endian or vice versa] based on the platform of production and destination where DBaaS created the test database. Here is sample backup script shows how to find out if any conversion is required, describes the steps required to convert datafiles and backup tablespace. SSA Administrator should copy the database (tablespaces) backup datafiles and export dumps to the backup location accessible from the hosts participating in the database zone(s). Create a post deployment SQL script and this script can either be uploaded into the software library by SSA Administrator or made available on a shared location accessible from servers where databases are likely to be provisioned. Here is sample post deployment SQL script using transportable tablespaces. Using DBCA, create a template for the production database – all the init.ora parameters should be included. NOTE: DO NOT choose to bring tablespace data into this template as they will be created SSA Administrator should customize “Create Database Deployment Procedure” and provide DBCA template created in the previous step. In the “Additional Configuration Options” step of the flow, provide the name of the SQL script in the Custom Script section and lock the input. Continue saving the deployment procedure. Now, an SSA user can login to Self Service Portal and use the flow to provision a database that will also populate the data using the post deployment step. More Information: Database-as-a-Service on Exadata Cloud Podcast on Database as a Service using Oracle Enterprise Manager 12c Oracle Enterprise Manager 12c Installation and Administration guide, Cloud Administration guide DBaaS Cookbook Screenwatch: Private Database Cloud: Set Up the Cloud Self-Service Portal Screenwatch: Private Database Cloud: Use the Cloud Self-Service Portal Stay Connected: Twitter |  Face book |  You Tube |  Linked in |  Newsletter

    Read the article

  • Microsoft launches two new Data Centres for Azure in US to meet growing demand

    - by Gopinath
    In order to meet the growing demand for Windows Azure in US, Microsoft has launched two new data centres in US – East US and West US. With the addition of these two data centres the number of Azure data centres across the globe has grown to 8 and 4 among them are located in US. The two new data centres are providing Computer and Storage resources and few enthusiastic customers already deployed their applications. The other services like SQL Azure and AppFabric will be offered by these data centres in the coming months. The addition of new data centres is a good sign to Microsoft as the customer demand for their Cloud offering is growing. Amazon Web Services is the pioneer in Cloud Computing and they offer wider range of Cloud Services compared to Microsoft. Source: Windows Azure Blog

    Read the article

  • Big Data Appliance

    - by David Dorf
    Today Oracle announced the next release of it's Big Data Appliance, an engineered system composed of hardware and software targeting the efficient processing of big data.  The solution leverages 288 Intel cores running Cloudera's distribution of Apache Hadoop in 1.1 TB of main memory.  This monster helps companies acquire, organize, and analyze large volumes of structured and un-structured data. Additionally a new versions of the Oracle Big Data Connectors and Oracle NoSQL Database were released. Why is this important to retailers?  As the infographic below conveys, mobile and social have added even more data to the already huge collections of POS transactions and e-commerce weblogs.  Retailers know that mining that data will help them make better decisions that lead to increased sales, better customer service, and ultimately a successful retail business. Monetate

    Read the article

  • Testing Reference Data Mappings

    - by Michael Stephenson
    Background Mapping reference data is one of the common scenarios in BizTalk development and its usually a bit of a pain when you need to manage a lot of reference data whether it be through the BizTalk Cross Referencing features or some kind of custom solution. I have seen many cases where only a couple of the mapping conditions are ever tested. Approach As usual I like to see these things tested in isolation before you start using them in your BizTalk maps so you know your mapping functions are working as expected. This approach can be used for almost all of your reference data type mapping functions where you can take advantage of MSTests data driven tests to test lots of conditions without having to write millions of tests. Walk Through Rather than go into the details of this here, I'm going to call out to one of my colleagues who wrote a nice little walk through about using data driven tests a while back. Check out Callum's blog: http://callumhibbert.blogspot.com/2009/07/data-driven-tests-with-mstest.html

    Read the article

  • Calling home, receiving calls and smartphone data from the US

    - by Rob Farley
    I got asked about calling home from the US, by someone going to the PASS Summit. I found myself thinking “there should be a blog post about this”... The easiest way to phone home is Skype - no question. Use WiFi, and if you’re calling someone who has Skype on their phone at the other end, it’s free. Even if they don’t, it’s still pretty good price-wise. The PASS Summit conference centre has good WiFI, as do the hotels, and plenty of other places (like Starbucks). But if you’re used to having data all the time, particularly when you’re walking from one place to another, then you’ll want a sim card. This also lets you receive calls more easily, not just solving your data problem. You’ll need to make sure your phone isn’t locked to your local network – get that sorted before you leave. It’s no trouble to drop by a T-mobile or AT&T store and getting a prepaid sim. You can’t get one from the airport, but if the PASS Summit is your first stop, there’s a T-mobile store on 6th in Seattle between Pine & Pike, so you can see it from the Sheraton hotel if that’s where you’re staying. AT&T isn’t far away either. But – there’s an extra step that you should be aware of. If you talk to one of these US telcos, you’ll probably (hopefully I’m wrong, but this is how it was for me recently) be told that their prepaid sims don’t work in smartphones. And they’re right – the APN gets detected and stops the data from working. But luckily, Apple (and others) have provided information about how to change the APN, which has been used by a company based in New Zealand to let you get your phone working. Basically, you send your phone browser to http://unlockit.co.nz and follow the prompts. But do this from a WiFi place somewhere, because you won’t have data access until after you’ve sorted this out... Oh, and if you get a prepaid sim with “unlimited data”, you will still need to get a Data Feature for it. And just for the record – this is WAY easier if you’re going to the UK. I dropped into a T-mobile shop there, and bought a prepaid sim card for five quid, which gave me 250MB data and some (but not much) call credit. In Australia it’s even easier, because you can buy data-enabled sim cards that work in smartphones from the airport when you arrive. I think having access to data really helps you feel at home in a different place. It means you can pull up maps, see what your friends are doing, and more. Hopefully this post helps, but feel free to post comments with extra information if you have it. @rob_farley

    Read the article

  • How is intermediate data organized in MapReduce?

    - by Pedro Cattori
    From what I understand, each mapper outputs an intermediate file. The intermediate data (data contained in each intermediate file) is then sorted by key. Then, a reducer is assigned a key by the master. The reducer reads from the intermediate file containing the key and then calls reduce using the data it has read. But in detail, how is the intermediate data organized? Can a data corresponding to a key be held in multiple intermediate files? What happens when there is too much data corresponding to one key to be held by a single file? In short, how do intermediate partitions differ from intermediate files and how are these differences dealt with in the implementation?

    Read the article

  • DataSets and XML - The Simplistic Approach

    One of the first ways I learned how to read xml data from external data sources was by using a DataSet’s ReadXML function. This function takes file path for an XML document and then converts it to a Dataset. This functionality is great when you need a simple way to process an XML document.  In addition the DataSet object also offers a simple way to save data in an xml format by using the WriteXML function. This function saves the current data in the DataSet to an XML file to be used later. DataSet ds  = New DataSet();String filePath = “http://www.yourdomain.com/someData.xml”;String fileSavePath = “C:\Temp\Test.xml”//Read file for this locationds.readxml(filePath);//Save file to this locationds.writexml(fileSavePath); I have used the ReadXML function before when consuming data from external Rss feeds to display on one of my sites.  It allows me to quickly pull in data from external sites with little to no processing. Example site: MyCreditTech.com

    Read the article

  • Advanced Analytics Oracle Data Mining - NEW 2-Day Training Course

    - by Mike.Hallett(at)Oracle-BI&EPM
    A NEW 2-Day Oracle University (OU) Instructor Led Course on Oracle Data Mining has been developed for partners and customers to learn more about data mining, predictive analytics and knowledge discovery inside the Oracle Database. Oracle Data Mining, provides data mining algorithms that run native for high performance in-database model building and model deployment. This OU course is a great way to learn the advantages and benefits of "big data analytics"; mining data, building and deploying "predictive analytics" all inside the Oracle Database and to work with OBI. To register for a class, click here, then click on View Schedule to see the latest scheduled classes and/or submit your information expressing interest in attending a class.

    Read the article

  • How to reduce tight coupling between two data sources

    - by fstuijt
    I'm having some trouble finding a proper solution to the following architecture problem. In our setting (sketched below) we have 2 data sources, where data source A is the primary source for items of type Foo. A secondary data source exists which can be used to retrieve additional information on a Foo; however this information does not always exist. Furthermore, data source A can be used to retrieve items of type Bar. However, each Bar refers to a Foo. The difficulty here is that each Bar should refer to a Foo which, if available, also contains the information as augmented by data source B. My question is: how to remove the tight coupling between data source A and B?

    Read the article

  • Oracle BPM and Open Data integration development

    - by drrwebber
    Rapidly developing Oracle BPM application solutions with data source integration previously required significant Java and JDeveloper skills. Now using open source tools for open data development significantly reduces the coding needed.  Key tasks can be performed with visual drag and drop designing combined with menu selections entry and automatic form generation directly from XSD schema definitions. The architecture used is extremely lightweight, portable, open platform and scalable allowing integration with a variety of Oracle and non-Oracle data sources and systems. Two videos available on YouTube walk through the process at both an introductory conceptual level and then a deep dive into the programming needed using JDeveloper, Oracle BPM composer and Oracle WLS (WebLogic Server) along with the CAM editor and Open-XDX open source tools. Also available are coding samples and resources from the GitHub project page, along with working online demonstration resources on the VerifyXML site. Combining Oracle BPM with these open source tools provides a comprehensive simple and elegant solution set. Development times are slashed and rapid prototyping is enabled. Also existing data sources can be integrated using open data formats with either XML or JSON along with CRUD accessing via the Open-XDX Java component. The Open-XDX tool is a code-free approach where data mapping is configured as templates using visual drag and drop in the CAM Editor open source tool.  XML or JSON is then automatically generated or processed (output or input) and appropriate SQL statements created to support the data accessing.   Also included is the ability to integrate with fillable PDF forms via the XML templates and the Java PDF form filling library.  Again minimal Java coding is needed to associate the XML source content with the PDF named fields.  The Oracle BPM forms can be automatically generated from XSD schema definitions that are built from the data mapping templates.  This dramatically simplifies development work as all the integration artifacts needed are created by the open source editor toolset. The developer level video is designed as a tutorial with segments, hands-on demonstrations and reviews.  This allows developers to learn the techniques and approaches used in incremental steps. The intended audience ranges from data analysts to developers and assumes only entry level Java skills and knowledge.  Most actions are menu driven while Java coding is limited to simply configuring values and parameters along with performing builds and deployments from JDeveloper and Oracle WLS.   Additional existing Oracle online training resources can be referenced on Oracle BPM and WLS that cover other normal delivery aspects such as user management and application deployment.

    Read the article

  • Powerful Lessons in Data from the Presidential Election

    - by Christina McKeon
    Now that we’ve had a few days to recover from the U.S. presidential election, it’s a good time to take a step back from politics and look for the customer experience lessons that we can take away. The most powerful lesson is that when you know more about your base, you will have an advantage over your competition. That advantage will translate into you winning and your competition losing. Michael Scherer of TIME was given access to Obama’s data analysts two days before the election. His account is documented in Inside the Secret World of the Data Crunchers Who Helped Obama Win. What we learned from Scherer’s inside view is how well Obama’s team did in getting the right data, analyzing it, and acting on it. This data team recognized how critical it was to break down data silos within the campaign. As Scherer noted, they created “a single system that merged information from pollsters, fundraisers, field workers, consumer databases, and social-media and mobile contacts with the main Democratic voter files in the swing states.” The Obama analysis was so meticulous that they knew which celebrity and which type of celebrity event would help them maximize campaign contributions. With a single system, their data models became more precise. They determined which messages were more successful with specific demographic groups and that who made the calls mattered. Data analysis also led to many other changes in Obama’s campaign including a new ad buying strategy, using social media and applications to tap into supporters’ friends, and using new social news sites. While we did not have that same inside view into Romney’s campaign, much of the post-mortem coverage indicates that Romney’s team did not have the right analysis. As Peter Hamby of CNN wrote in Analysis: Why Romney Lost, “Romney officials had modeled an electorate that looked something like a mix of 2004 and 2008….” That historical data did not account for the changing demographics in the U.S. Does your organization approach data like the Obama or Romney team? Do you really know your base? How well can you predict what is going to happen in your business? If you haven’t already put together a strategy and plan to know more, this week’s civics lesson is a powerful reason to do it sooner rather than later. Your competitors are probably thinking the same thing that you are!

    Read the article

  • Video: Analyzing Big Data using Oracle R Enterprise

    - by Sherry LaMonica
    Learn how Oracle R Enterprise is used to generate new insight and new value to business, answering not only what happened, but why it happened. View this YouTube Oracle Channel video overview describing how analyzing big data using Oracle R Enterprise is different from other analytics tools at Oracle. Oracle R Enterprise (ORE),  a component of the Oracle Advanced Analytics Option, couples the wealth of analytics packages in R with the performance, scalability, and security of Oracle Database. ORE executes base R functions transparently on database data without having to pull data from Oracle Database. As an embedded component of the database, Oracle R Enterprise can run your R script and open source packages via embedded R where the database manages the data served to the R engine and user-controlled data parallelism. The result is faster and more secure access to data. ORE also works with the full suite of in-database analytics, providing integrated results to the analyst.

    Read the article

  • Display large amount of data to client through pagination

    - by ebram tharwat
    I have a web application in which i need to show a big number of data or records for clients. Now i 'll use pagination but i was wondering should I: Load all the data once then pagination, sorting and sarching 'll be easy..But it 'll takes big time(using local DB it takes up to 9 sec.) Or each time i show new page(from the pagination) i make a new request to server and then new request to DB to get the next records..But then what if the client click on Prev button, i 'll make a new request to get data that I had previously..Should i cach data that are loaded before and how if that's good technique? So load all data once or make a new request every time i need data that maybe have been loaded before. I'm using ASP.NET MVC SPA with durandaljs and knockoutjs

    Read the article

  • 11g ???:Active Data Guard

    - by JaneZhang(???)
    ?Oracle 11g??,????(physical Standby)???redo???,???????,???mount??11g??,???redo???,????????read-only??,????Active Data Guard ???Active Data Guard,?????????????????,??????????????   Active Data Guard???????????,??,????????????,????????,????redo??,????????????,??????????? Oracle Active Data Guard ?Oracle Database Enterprise Edition?????,??????????????   ????Active Data Guard, ??????? read-only ????,???? ALTER DATABASE RECOVER MANAGED STANDBY DATABASE????????????:??????COMPATIBLE ????????11.0.0?  ???????Active Data Guard,???V$DATABASE????"READ ONLY WITH APPLY':      SQL> SELECT open_mode FROM V$DATABASE;      OPEN_MODE      --------------------      READ ONLY WITH APPLY   ????????????,???????real-time apply:   SQL>ALTER DATABASE RECOVER MANAGED STANDBY DATABASE USING CURRENT LOGFILE; ?????????read-only????????:    • Issue SELECT statements, including queries that require multiple sorts that leverage TEMP segments    • Use ALTER SESSION and ALTER SYSTEM statements    • Use SET ROLE    • Call stored procedures    • Use database links (dblinks) to write to remote databases    • Use stored procedures to call remote procedures via dblinks    • Use SET TRANSACTION READ ONLY for transaction level read consistency    • Issue complex queries (such as grouping SET queries and WITH CLAUSE queries) ??????????read-only????????:    • Any DMLs (excluding simple SELECT statements) or DDLs    • Query accessing local sequences    • DMLs to local temporary tables    ?????Active Data Guard ??: • ????????????????? • ???Oracle Real Application Clusters (Oracle RAC) ,?????? • RAC???RAC??    Oracle Data Guard ?????,,????????:    * ?????????????????:     http://docs.oracle.com/cd/B28359_01/server.111/b28294/create_ps.htm   * ???Oracle Real Application Clusters (Oracle RAC) ,??????:     http://www.oracle.com/technetwork/database/features/availability/maa-wp-10g-racprimarysingleinstance-131970.pdf   * RAC ???RAC ??:     http://www.oracle.com/technetwork/database/features/availability/maa-wp-10g-racprimaryracphysicalsta-131940.pdf  ??Active Data Guard???????,?????:    http://www.oracle.com/technetwork/database/features/availability/maa-wp-11gr1-activedataguard-1-128199.pdf     ??Oracle Maximum Availability Architecture Best Practices?????,???:   http://www.oracle.com/goto/maa

    Read the article

  • Polymorphism problem: How to check type of derived class?

    - by malymato
    Hi, this is my first question here :) I know that I should not check for object type but instead use dynamic_cast, but that would not solve my problem. I have class called Extension and interfaces called IExtendable and IInitializable, IUpdatable, ILoadable, IDrawable (the last four are basicly the same). If Extension implements IExtendable interface, it can extend itself with different Extension objects. The problem is that I want to allow the Extension which implements IExtendable to extend only with Extension that implements the same interfaces as the original Extension. You probably don't unerstand that mess so I try to explain it with code: class IExtendable { public: IExtendable(void); void AddExtension(Extension*); void RemoveExtensionByID(unsigned int); vector<Extension*>* GetExtensionPtr(){return &extensions;}; private: vector<Extension*> extensions; }; class IUpdatable { public: IUpdatable(void); ~IUpdatable(void); virtual void Update(); }; class Extension { public: Extension(void); virtual ~Extension(void); void Enable(){enabled=true;}; void Disable(){enabled=false;}; unsigned int GetIndex(){return ID;}; private: bool enabled; unsigned int ID; static unsigned int _indexID; }; Now imagine the case that I create Extension like this: class MyExtension : public Extension, public IExtendable, public IUpdatable, public IDrawable { public: MyExtension(void); virtual ~MyExtension(void); virtual void AddExtension(Extension*); virtual void Update(); virtual void Draw(); }; And I want to allow this class to extend itself only with Extensions that implements the same interfaces (or less). For example I want it to be able to take Extension which implements IUpdatable; or both IUpdatable and IDrawable; but e.g. not Extension which implements ILoadable. I want to do this because when e.g. Update() will be called on some Extension which implements IExtendable and IUpdateable, it will be also called on these Extensions which extends this Extension. So when I'm adding some Extension to Extension which implements IExtendable and some of the IUpdatable, ILoadable... I'm forced to check if Extension that is going to be add implements these interfaces too. So In the IExtendable::AddExtension(Extension*) I would need to do something like this: void IExtendable::AddExtension(Extension* pEx) { bool ok = true; // check wheather this extension can take pEx // do this with every interface if ((*pEx is IUpdatable) && (*this is_not IUpdatable)) ok = false; if (ok) this->extensions.push_back(pEx); } But how? Any ideas what would be the best solution? I don't want to use dynamic_cast and see if it returns null... thanks

    Read the article

  • ADO.NET Data Services Media type requires a ';' character before a parameter definition.

    - by idahosaedokpayi
    I am experimenting with ADO.NET and I am seeing this error on the second attempt to browse the service: <?xml version="1.0" encoding="utf-8" standalone="yes" ?> <error xmlns="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"> <code /> <message xml:lang="en-US">Media type requires a ';' character before a parameter definition.</message> </error> The first attempt is normal. I am working with an exactly identical service on an internal development network and it is fine. I am including my connection string: <add name="J4Entities" connectionString="metadata=res://*;provider=System.Data.SqlClient;provider connection string=&quot;Data Source=MNSTSQL01N;Initial Catalog=J4;Integrated Security=True;MultipleActiveResultSets=True&quot;" providerName="System.Data.EntityClient"/> and my Data service class: using System; using System.Data.Services; using System.Collections.Generic; using System.Linq; using System.ServiceModel.Web; public class Data : DataService< J4Model.J4Entities > { // This method is called only once to initialize service-wide policies. public static void InitializeService(IDataServiceConfiguration config) { // TODO: set rules to indicate which entity sets and service operations are visible, updatable, etc. // Examples: config.SetEntitySetAccessRule("*", EntitySetRights.AllRead); // config.SetServiceOperationAccessRule("MyServiceOperation", ServiceOperationRights.All); } } Is there something obvious I am not doing?

    Read the article

  • Anatomy of a .NET Assembly - Custom attribute encoding

    - by Simon Cooper
    In my previous post, I covered how field, method, and other types of signatures are encoded in a .NET assembly. Custom attribute signatures differ quite a bit from these, which consequently affects attribute specifications in C#. Custom attribute specifications In C#, you can apply a custom attribute to a type or type member, specifying a constructor as well as the values of fields or properties on the attribute type: public class ExampleAttribute : Attribute { public ExampleAttribute(int ctorArg1, string ctorArg2) { ... } public Type ExampleType { get; set; } } [Example(5, "6", ExampleType = typeof(string))] public class C { ... } How does this specification actually get encoded and stored in an assembly? Specification blob values Custom attribute specification signatures use the same building blocks as other types of signatures; the ELEMENT_TYPE structure. However, they significantly differ from other types of signatures, in that the actual parameter values need to be stored along with type information. There are two types of specification arguments in a signature blob; fixed args and named args. Fixed args are the arguments to the attribute type constructor, named arguments are specified after the constructor arguments to provide a value to a field or property on the constructed attribute type (PropertyName = propValue) Values in an attribute blob are limited to one of the basic types (one of the number types, character, or boolean), a reference to a type, an enum (which, in .NET, has to use one of the integer types as a base representation), or arrays of any of those. Enums and the basic types are easy to store in a blob - you simply store the binary representation. Strings are stored starting with a compressed integer indicating the length of the string, followed by the UTF8 characters. Array values start with an integer indicating the number of elements in the array, then the item values concatentated together. Rather than using a coded token, Type values are stored using a string representing the type name and fully qualified assembly name (for example, MyNs.MyType, MyAssembly, Version=1.0.0.0, Culture=neutral, PublicKeyToken=0123456789abcdef). If the type is in the current assembly or mscorlib then just the type name can be used. This is probably done to prevent direct references between assemblies solely because of attribute specification arguments; assemblies can be loaded in the reflection-only context and attribute arguments still processed, without loading the entire assembly. Fixed and named arguments Each entry in the CustomAttribute metadata table contains a reference to the object the attribute is applied to, the attribute constructor, and the specification blob. The number and type of arguments to the constructor (the fixed args) can be worked out by the method signature referenced by the attribute constructor, and so the fixed args can simply be concatenated together in the blob without any extra type information. Named args are different. These specify the value to assign to a field or property once the attribute type has been constructed. In the CLR, fields and properties can be overloaded just on their type; different fields and properties can have the same name. Therefore, to uniquely identify a field or property you need: Whether it's a field or property (indicated using byte values 0x53 and 0x54, respectively) The field or property type The field or property name After the fixed arg values is a 2-byte number specifying the number of named args in the blob. Each named argument has the above information concatenated together, mostly using the basic ELEMENT_TYPE values, in the same way as a method or field signature. A Type argument is represented using the byte 0x50, and an enum argument is represented using the byte 0x55 followed by a string specifying the name and assembly of the enum type. The named argument property information is followed by the argument value, using the same encoding as fixed args. Boxed objects This would be all very well, were it not for object and object[]. Arguments and properties of type object allow a value of any allowed argument type to be specified. As a result, more information needs to be specified in the blob to interpret the argument bytes as the correct type. So, the argument value is simple prepended with the type of the value by specifying the ELEMENT_TYPE or name of the enum the value represents. For named arguments, a field or property of type object is represented using the byte 0x51, with the actual type specified in the argument value. Some examples... All property signatures start with the 2-byte value 0x0001. Similar to my previous post in the series, names in capitals correspond to a particular byte value in the ELEMENT_TYPE structure. For strings, I'll simply give the string value, rather than the length and UTF8 encoding in the actual blob. I'll be using the following enum and attribute types to demonstrate specification encodings: class AttrAttribute : Attribute { public AttrAttribute() {} public AttrAttribute(Type[] tArray) {} public AttrAttribute(object o) {} public AttrAttribute(MyEnum e) {} public AttrAttribute(ushort x, int y) {} public AttrAttribute(string str, Type type1, Type type2) {} public int Prop1 { get; set; } public object Prop2 { get; set; } public object[] ObjectArray; } enum MyEnum : int { Val1 = 1, Val2 = 2 } Now, some examples: Here, the the specification binds to the (ushort, int) attribute constructor, with fixed args only. The specification blob starts off with a prolog, followed by the two constructor arguments, then the number of named arguments (zero): [Attr(42, 84)] 0x0001 0x002a 0x00000054 0x0000 An example of string and type encoding: [Attr("MyString", typeof(Array), typeof(System.Windows.Forms.Form))] 0x0001 "MyString" "System.Array" "System.Windows.Forms.Form, System.Windows.Forms, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" 0x0000 As you can see, the full assembly specification of a type is only needed if the type isn't in the current assembly or mscorlib. Note, however, that the C# compiler currently chooses to fully-qualify mscorlib types anyway. An object argument (this binds to the object attribute constructor), and two named arguments (a null string is represented by 0xff and the empty string by 0x00) [Attr((ushort)40, Prop1 = 12, Prop2 = "")] 0x0001 U2 0x0028 0x0002 0x54 I4 "Prop1" 0x0000000c 0x54 0x51 "Prop2" STRING 0x00 Right, more complicated now. A type array as a fixed argument: [Attr(new[] { typeof(string), typeof(object) })] 0x0001 0x00000002 // the number of elements "System.String" "System.Object" 0x0000 An enum value, which is simply represented using the underlying value. The CLR works out that it's an enum using information in the attribute constructor signature: [Attr(MyEnum.Val1)] 0x0001 0x00000001 0x0000 And finally, a null array, and an object array as a named argument: [Attr((Type[])null, ObjectArray = new object[] { (byte)2, typeof(decimal), null, MyEnum.Val2 })] 0x0001 0xffffffff 0x0001 0x53 SZARRAY 0x51 "ObjectArray" 0x00000004 U1 0x02 0x50 "System.Decimal" STRING 0xff 0x55 "MyEnum" 0x00000002 As you'll notice, a null object is encoded as a null string value, and a null array is represented using a length of -1 (0xffffffff). How does this affect C#? So, we can now explain why the limits on attribute arguments are so strict in C#. Attribute specification blobs are limited to basic numbers, enums, types, and arrays. As you can see, this is because the raw CLR encoding can only accommodate those types. Special byte patterns have to be used to indicate object, string, Type, or enum values in named arguments; you can't specify an arbitary object type, as there isn't a generalised way of encoding the resulting value in the specification blob. In particular, decimal values can't be encoded, as it isn't a 'built-in' CLR type that has a native representation (you'll notice that decimal constants in C# programs are compiled as several integer arguments to DecimalConstantAttribute). Jagged arrays also aren't natively supported, although you can get around it by using an array as a value to an object argument: [Attr(new object[] { new object[] { new Type[] { typeof(string) } }, 42 })] Finally... Phew! That was a bit longer than I thought it would be. Custom attribute encodings are complicated! Hopefully this series has been an informative look at what exactly goes on inside a .NET assembly. In the next blog posts, I'll be carrying on with the 'Inside Red Gate' series.

    Read the article

  • Is there a more easy way to create a WCF/OData Data Service Query Provider?

    - by routeNpingme
    I have a simple little data model resembling the following: InventoryContext { IEnumerable<Computer> GetComputers() IEnumerable<Printer> GetPrinters() } Computer { public string ComputerName { get; set; } public string Location { get; set; } } Printer { public string PrinterName { get; set; } public string Location { get; set; } } The results come from a non-SQL source, so this data does not come from Entity Framework connected up to a database. Now I want to expose the data through a WCF OData service. The only way I've found to do that thus far is creating my own Data Service Query Provider, per this blog tutorial: http://blogs.msdn.com/alexj/archive/2010/01/04/creating-a-data-service-provider-part-1-intro.aspx ... which is great, but seems like a pretty involved undertaking. The code for the provider would be 4 times longer than my whole data model to generate all of the resource sets and property definitions. Is there something like a generic provider in between Entity Framework and writing your own data source from zero? Maybe some way to build an object data source or something, so that the magical WCF unicorns can pick up my data and ride off into the sunset without having to explicitly code the provider?

    Read the article

  • Conceptual data modeling: Is RDF the right tool? Other solutions?

    - by paprika
    I'm planning a system that combines various data sources and lets users do simple queries on these. A part of the system needs to act as an abstraction layer that knows all connected data sources: the user shouldn't [need to] know about the underlying data "providers". A data provider could be anything: a relational DBMS, a bug tracking system, ..., a weather station. They are hooked up to the query system through a common API that defines how to "offer" data. The type of queries a certain data provider understands is given by its "offer" (e.g. I know these entities, I can give you aggregates of type X for relationship Y, ...). My concern right now is the unification of the data: the various data providers need to agree on a common vocabulary (e.g. the name of the entity "customer" could vary across different systems). Thus, defining a high level representation of the entities and their relationships is required. So far I have the following requirements: I need to be able to define objects and their properties/attributes. Further, arbitrary relations between these objects need to be represented: a verb that defines the nature of the relation (e.g. "knows"), the multiplicity (e.g. 1:n) and the direction/navigability of the relation. It occurs to me that RDF is a viable option, but is it "the right tool" for this job? What other solutions/frameworks do exist for semantic data modeling that have a machine readable representation and why are they better suited for this task? I'm grateful for every opinion and pointer to helpful resources.

    Read the article

  • javafx tableview get selected data from ObservableList

    - by user3717821
    i am working on a javafx project and i need your help . while i am trying to get selected data from table i can get selected data from normal cell but can't get data from ObservableList inside tableview. code for my database: -- phpMyAdmin SQL Dump -- version 4.0.4 -- http://www.phpmyadmin.net -- -- Host: localhost -- Generation Time: Jun 10, 2014 at 06:20 AM -- Server version: 5.1.33-community -- PHP Version: 5.4.12 SET SQL_MODE = "NO_AUTO_VALUE_ON_ZERO"; SET time_zone = "+00:00"; /*!40101 SET @OLD_CHARACTER_SET_CLIENT=@@CHARACTER_SET_CLIENT */; /*!40101 SET @OLD_CHARACTER_SET_RESULTS=@@CHARACTER_SET_RESULTS */; /*!40101 SET @OLD_COLLATION_CONNECTION=@@COLLATION_CONNECTION */; /*!40101 SET NAMES utf8 */; -- -- Database: `test` -- -- -------------------------------------------------------- -- -- Table structure for table `customer` -- CREATE TABLE IF NOT EXISTS `customer` ( `col0` int(11) NOT NULL, `col1` varchar(255) DEFAULT NULL, `col2` int(11) DEFAULT NULL, PRIMARY KEY (`col0`) ) ENGINE=InnoDB DEFAULT CHARSET=latin1; -- -- Dumping data for table `customer` -- INSERT INTO `customer` (`col0`, `col1`, `col2`) VALUES (12, 'adasdasd', 231), (22, 'adasdasd', 231), (212, 'adasdasd', 231); /*!40101 SET CHARACTER_SET_CLIENT=@OLD_CHARACTER_SET_CLIENT */; /*!40101 SET CHARACTER_SET_RESULTS=@OLD_CHARACTER_SET_RESULTS */; /*!40101 SET COLLATION_CONNECTION=@OLD_COLLATION_CONNECTION */; my javafx codes: import java.sql.Connection; import java.sql.DriverManager; import java.sql.ResultSet; import java.sql.SQLException; import java.util.Map; import javafx.application.Application; import javafx.beans.property.SimpleStringProperty; import javafx.beans.value.ChangeListener; import javafx.beans.value.ObservableValue; import javafx.collections.FXCollections; import javafx.collections.ObservableList; import javafx.event.ActionEvent; import javafx.event.EventHandler; import javafx.scene.Scene; import javafx.scene.control.Button; import javafx.scene.control.TableCell; import javafx.scene.control.TableColumn; import javafx.scene.control.TableColumn.CellDataFeatures; import javafx.scene.control.TablePosition; import javafx.scene.control.TableView; import javafx.scene.control.TableView.TableViewSelectionModel; import javafx.scene.control.cell.ChoiceBoxTableCell; import javafx.scene.control.cell.TextFieldTableCell; import javafx.scene.layout.BorderPane; import javafx.stage.Stage; import javafx.util.Callback; import javafx.util.StringConverter; class DBConnector { private static Connection conn; private static String url = "jdbc:mysql://localhost/test"; private static String user = "root"; private static String pass = "root"; public static Connection connect() throws SQLException{ try{ Class.forName("com.mysql.jdbc.Driver").newInstance(); }catch(ClassNotFoundException cnfe){ System.err.println("Error: "+cnfe.getMessage()); }catch(InstantiationException ie){ System.err.println("Error: "+ie.getMessage()); }catch(IllegalAccessException iae){ System.err.println("Error: "+iae.getMessage()); } conn = DriverManager.getConnection(url,user,pass); return conn; } public static Connection getConnection() throws SQLException, ClassNotFoundException{ if(conn !=null && !conn.isClosed()) return conn; connect(); return conn; } } public class DynamicTable extends Application{ Object newValue; //TABLE VIEW AND DATA private ObservableList<ObservableList> data; private TableView<ObservableList> tableview; //MAIN EXECUTOR public static void main(String[] args) { launch(args); } //CONNECTION DATABASE public void buildData(){ tableview.setEditable(true); Callback<TableColumn<Map, String>, TableCell<Map, String>> cellFactoryForMap = new Callback<TableColumn<Map, String>, TableCell<Map, String>>() { @Override public TableCell call(TableColumn p) { return new TextFieldTableCell(new StringConverter() { @Override public String toString(Object t) { return t.toString(); } @Override public Object fromString(String string) { return string; } }); } }; Connection c ; data = FXCollections.observableArrayList(); try{ c = DBConnector.connect(); //SQL FOR SELECTING ALL OF CUSTOMER String SQL = "SELECT * from CUSTOMer"; //ResultSet ResultSet rs = c.createStatement().executeQuery(SQL); /********************************** * TABLE COLUMN ADDED DYNAMICALLY * **********************************/ for(int i=0 ; i<rs.getMetaData().getColumnCount(); i++){ //We are using non property style for making dynamic table final int j = i; TableColumn col = new TableColumn(rs.getMetaData().getColumnName(i+1)); if(j==1){ final ObservableList<String> logLevelList = FXCollections.observableArrayList("FATAL", "ERROR", "WARN", "INFO", "INOUT", "DEBUG"); col.setCellFactory(ChoiceBoxTableCell.forTableColumn(logLevelList)); tableview.getColumns().addAll(col); } else{ col.setCellValueFactory(new Callback<CellDataFeatures<ObservableList,String>,ObservableValue<String>>(){ public ObservableValue<String> call(CellDataFeatures<ObservableList, String> param) { return new SimpleStringProperty(param.getValue().get(j).toString()); } }); tableview.getColumns().addAll(col); } if(j!=1) col.setCellFactory(cellFactoryForMap); System.out.println("Column ["+i+"] "); } /******************************** * Data added to ObservableList * ********************************/ while(rs.next()){ //Iterate Row ObservableList<String> row = FXCollections.observableArrayList(); for(int i=1 ; i<=rs.getMetaData().getColumnCount(); i++){ //Iterate Column row.add(rs.getString(i)); } System.out.println("Row [1] added "+row ); data.add(row); } //FINALLY ADDED TO TableView tableview.setItems(data); }catch(Exception e){ e.printStackTrace(); System.out.println("Error on Building Data"); } } @Override public void start(Stage stage) throws Exception { //TableView Button showDataButton = new Button("Add"); showDataButton.setOnAction(new EventHandler<ActionEvent>() { public void handle(ActionEvent event) { ObservableList<String> row = FXCollections.observableArrayList(); for(int i=1 ; i<=3; i++){ //Iterate Column row.add("asdasd"); } data.add(row); //FINALLY ADDED TO TableView tableview.setItems(data); } }); tableview = new TableView(); buildData(); //Main Scene BorderPane root = new BorderPane(); root.setCenter(tableview); root.setBottom(showDataButton); Scene scene = new Scene(root,500,500); stage.setScene(scene); stage.show(); tableview.getSelectionModel().selectedItemProperty().addListener(new ChangeListener() { @Override public void changed(ObservableValue observableValue, Object oldValue, Object newValue) { //Check whether item is selected and set value of selected item to Label if (tableview.getSelectionModel().getSelectedItem() != null) { TableViewSelectionModel selectionModel = tableview.getSelectionModel(); ObservableList selectedCells = selectionModel.getSelectedCells(); TablePosition tablePosition = (TablePosition) selectedCells.get(0); Object val = tablePosition.getTableColumn().getCellData(newValue); System.out.println("Selected Value " + val); System.out.println("Selected row " + newValue); } } }); } } please help me..

    Read the article

  • SQL Monitor’s data repository: Alerts

    - by Chris Lambrou
    In my previous post, I introduced the SQL Monitor data repository, and described how the monitored objects are stored in a hierarchy in the data schema, in a series of tables with a _Keys suffix. In this post I had planned to describe how the actual data for the monitored objects is stored in corresponding tables with _StableSamples and _UnstableSamples suffixes. However, I’m going to postpone that until my next post, as I’ve had a request from a SQL Monitor user to explain how alerts are stored. In the SQL Monitor data repository, alerts are stored in tables belonging to the alert schema, which contains the following five tables: alert.Alert alert.Alert_Cleared alert.Alert_Comment alert.Alert_Severity alert.Alert_Type In this post, I’m only going to cover the alert.Alert and alert.Alert_Type tables. I may cover the other three tables in a later post. The most important table in this schema is alert.Alert, as each row in this table corresponds to a single alert. So let’s have a look at it. SELECT TOP 100 AlertId, AlertType, TargetObject, [Read], SubType FROM alert.Alert ORDER BY AlertId DESC;  AlertIdAlertTypeTargetObjectReadSubType 165550397:Cluster,1,4:Name,s29:srp-mr03.testnet.red-gate.com,9:SqlServer,1,4:Name,s0:,10 265549387:Cluster,1,4:Name,s29:srp-mr03.testnet.red-gate.com,7:Machine,1,4:Name,s0:,10 365548187:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s15:FavouriteThings,00 465547157:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s15:FavouriteThings,00 565546147:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s15:FavouriteThings,00 665545187:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s14:SqlMonitorData,00 765544157:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s14:SqlMonitorData,00 865543147:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s14:SqlMonitorData,00 965542187:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s4:msdb,00 1065541147:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s4:msdb,00 11…     So what are we seeing here, then? Well, AlertId is an auto-incrementing identity column, so ORDER BY AlertId DESC ensures that we see the most recent alerts first. AlertType indicates the type of each alert, such as Job failed (6), Backup overdue (14) or Long-running query (12). The TargetObject column indicates which monitored object the alert is associated with. The Read column acts as a flag to indicate whether or not the alert has been read. And finally the SubType column is used in the case of a Custom metric (40) alert, to indicate which custom metric the alert pertains to. Okay, now lets look at some of those columns in more detail. The AlertType column is an easy one to start with, and it brings use nicely to the next table, data.Alert_Type. Let’s have a look at what’s in this table: SELECT AlertType, Event, Monitoring, Name, Description FROM alert.Alert_Type ORDER BY AlertType;  AlertTypeEventMonitoringNameDescription 1100Processor utilizationProcessor utilization (CPU) on a host machine stays above a threshold percentage for longer than a specified duration 2210SQL Server error log entryAn error is written to the SQL Server error log with a severity level above a specified value. 3310Cluster failoverThe active cluster node fails, causing the SQL Server instance to switch nodes. 4410DeadlockSQL deadlock occurs. 5500Processor under-utilizationProcessor utilization (CPU) on a host machine remains below a threshold percentage for longer than a specified duration 6610Job failedA job does not complete successfully (the job returns an error code). 7700Machine unreachableHost machine (Windows server) cannot be contacted on the network. 8800SQL Server instance unreachableThe SQL Server instance is not running or cannot be contacted on the network. 9900Disk spaceDisk space used on a logical disk drive is above a defined threshold for longer than a specified duration. 101000Physical memoryPhysical memory (RAM) used on the host machine stays above a threshold percentage for longer than a specified duration. 111100Blocked processSQL process is blocked for longer than a specified duration. 121200Long-running queryA SQL query runs for longer than a specified duration. 131400Backup overdueNo full backup exists, or the last full backup is older than a specified time. 141500Log backup overdueNo log backup exists, or the last log backup is older than a specified time. 151600Database unavailableDatabase changes from Online to any other state. 161700Page verificationTorn Page Detection or Page Checksum is not enabled for a database. 171800Integrity check overdueNo entry for an integrity check (DBCC DBINFO returns no date for dbi_dbccLastKnownGood field), or the last check is older than a specified time. 181900Fragmented indexesFragmentation level of one or more indexes is above a threshold percentage. 192400Job duration unusualThe duration of a SQL job duration deviates from its baseline duration by more than a threshold percentage. 202501Clock skewSystem clock time on the Base Monitor computer differs from the system clock time on a monitored SQL Server host machine by a specified number of seconds. 212700SQL Server Agent Service statusThe SQL Server Agent Service status matches the status specified. 222800SQL Server Reporting Service statusThe SQL Server Reporting Service status matches the status specified. 232900SQL Server Full Text Search Service statusThe SQL Server Full Text Search Service status matches the status specified. 243000SQL Server Analysis Service statusThe SQL Server Analysis Service status matches the status specified. 253100SQL Server Integration Service statusThe SQL Server Integration Service status matches the status specified. 263300SQL Server Browser Service statusThe SQL Server Browser Service status matches the status specified. 273400SQL Server VSS Writer Service statusThe SQL Server VSS Writer status matches the status specified. 283501Deadlock trace flag disabledThe monitored SQL Server’s trace flag cannot be enabled. 293600Monitoring stopped (host machine credentials)SQL Monitor cannot contact the host machine because authentication failed. 303700Monitoring stopped (SQL Server credentials)SQL Monitor cannot contact the SQL Server instance because authentication failed. 313800Monitoring error (host machine data collection)SQL Monitor cannot collect data from the host machine. 323900Monitoring error (SQL Server data collection)SQL Monitor cannot collect data from the SQL Server instance. 334000Custom metricThe custom metric value has passed an alert threshold. 344100Custom metric collection errorSQL Monitor cannot collect custom metric data from the target object. Basically, alert.Alert_Type is just a big reference table containing information about the 34 different alert types supported by SQL Monitor (note that the largest id is 41, not 34 – some alert types have been retired since SQL Monitor was first developed). The Name and Description columns are self evident, and I’m going to skip over the Event and Monitoring columns as they’re not very interesting. The AlertId column is the primary key, and is referenced by AlertId in the alert.Alert table. As such, we can rewrite our earlier query to join these two tables, in order to provide a more readable view of the alerts: SELECT TOP 100 AlertId, Name, TargetObject, [Read], SubType FROM alert.Alert a JOIN alert.Alert_Type at ON a.AlertType = at.AlertType ORDER BY AlertId DESC;  AlertIdNameTargetObjectReadSubType 165550Monitoring error (SQL Server data collection)7:Cluster,1,4:Name,s29:srp-mr03.testnet.red-gate.com,9:SqlServer,1,4:Name,s0:,00 265549Monitoring error (host machine data collection)7:Cluster,1,4:Name,s29:srp-mr03.testnet.red-gate.com,7:Machine,1,4:Name,s0:,00 365548Integrity check overdue7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s15:FavouriteThings,00 465547Log backup overdue7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s15:FavouriteThings,00 565546Backup overdue7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s15:FavouriteThings,00 665545Integrity check overdue7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s14:SqlMonitorData,00 765544Log backup overdue7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s14:SqlMonitorData,00 865543Backup overdue7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s14:SqlMonitorData,00 965542Integrity check overdue7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s4:msdb,00 1065541Backup overdue7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s4:msdb,00 Okay, the next column to discuss in the alert.Alert table is TargetObject. Oh boy, this one’s a bit tricky! The TargetObject of an alert is a serialized string representation of the position in the monitored object hierarchy of the object to which the alert pertains. The serialization format is somewhat convenient for parsing in the C# source code of SQL Monitor, and has some helpful characteristics, but it’s probably very awkward to manipulate in T-SQL. I could document the serialization format here, but it would be very dry reading, so perhaps it’s best to consider an example from the table above. Have a look at the alert with an AlertID of 65543. It’s a Backup overdue alert for the SqlMonitorData database running on the default instance of granger, my laptop. Each different alert type is associated with a specific type of monitored object in the object hierarchy (I described the hierarchy in my previous post). The Backup overdue alert is associated with databases, whose position in the object hierarchy is root → Cluster → SqlServer → Database. The TargetObject value identifies the target object by specifying the key properties at each level in the hierarchy, thus: Cluster: Name = "granger" SqlServer: Name = "" (an empty string, denoting the default instance) Database: Name = "SqlMonitorData" Well, look at the actual TargetObject value for this alert: "7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s14:SqlMonitorData,". It is indeed composed of three parts, one for each level in the hierarchy: Cluster: "7:Cluster,1,4:Name,s7:granger," SqlServer: "9:SqlServer,1,4:Name,s0:," Database: "8:Database,1,4:Name,s14:SqlMonitorData," Each part is handled in exactly the same way, so let’s concentrate on the first part, "7:Cluster,1,4:Name,s7:granger,". It comprises the following: "7:Cluster," – This identifies the level in the hierarchy. "1," – This indicates how many different key properties there are to uniquely identify a cluster (we saw in my last post that each cluster is identified by a single property, its Name). "4:Name,s14:SqlMonitorData," – This represents the Name property, and its corresponding value, SqlMonitorData. It’s split up like this: "4:Name," – Indicates the name of the key property. "s" – Indicates the type of the key property, in this case, it’s a string. "14:SqlMonitorData," – Indicates the value of the property. At this point, you might be wondering about the format of some of these strings. Why is the string "Cluster" stored as "7:Cluster,"? Well an encoding scheme is used, which consists of the following: "7" – This is the length of the string "Cluster" ":" – This is a delimiter between the length of the string and the actual string’s contents. "Cluster" – This is the string itself. 7 characters. "," – This is a final terminating character that indicates the end of the encoded string. You can see that "4:Name,", "8:Database," and "14:SqlMonitorData," also conform to the same encoding scheme. In the example above, the "s" character is used to indicate that the value of the Name property is a string. If you explore the TargetObject property of alerts in your own SQL Monitor data repository, you might find other characters used for other non-string key property values. The different value types you might possibly encounter are as follows: "I" – Denotes a bigint value. For example, "I65432,". "g" – Denotes a GUID value. For example, "g32116732-63ae-4ab5-bd34-7dfdfb084c18,". "d" – Denotes a datetime value. For example, "d634815384796832438,". The value is stored as a bigint, rather than a native SQL datetime value. I’ll describe how datetime values are handled in the SQL Monitor data repostory in a future post. I suggest you have a look at the alerts in your own SQL Monitor data repository for further examples, so you can see how the TargetObject values are composed for each of the different types of alert. Let me give one further example, though, that represents a Custom metric alert, as this will help in describing the final column of interest in the alert.Alert table, SubType. Let me show you the alert I’m interested in: SELECT AlertId, a.AlertType, Name, TargetObject, [Read], SubType FROM alert.Alert a JOIN alert.Alert_Type at ON a.AlertType = at.AlertType WHERE AlertId = 65769;  AlertIdAlertTypeNameTargetObjectReadSubType 16576940Custom metric7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s6:master,12:CustomMetric,1,8:MetricId,I2,02 An AlertType value of 40 corresponds to the Custom metric alert type. The Name taken from the alert.Alert_Type table is simply Custom metric, but this doesn’t tell us anything about the specific custom metric that this alert pertains to. That’s where the SubType value comes in. For custom metric alerts, this provides us with the Id of the specific custom alert definition that can be found in the settings.CustomAlertDefinitions table. I don’t really want to delve into custom alert definitions yet (maybe in a later post), but an extra join in the previous query shows us that this alert pertains to the CPU pressure (avg runnable task count) custom metric alert. SELECT AlertId, a.AlertType, at.Name, cad.Name AS CustomAlertName, TargetObject, [Read], SubType FROM alert.Alert a JOIN alert.Alert_Type at ON a.AlertType = at.AlertType JOIN settings.CustomAlertDefinitions cad ON a.SubType = cad.Id WHERE AlertId = 65769;  AlertIdAlertTypeNameCustomAlertNameTargetObjectReadSubType 16576940Custom metricCPU pressure (avg runnable task count)7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s6:master,12:CustomMetric,1,8:MetricId,I2,02 The TargetObject value in this case breaks down like this: "7:Cluster,1,4:Name,s7:granger," – Cluster named "granger". "9:SqlServer,1,4:Name,s0:," – SqlServer named "" (the default instance). "8:Database,1,4:Name,s6:master," – Database named "master". "12:CustomMetric,1,8:MetricId,I2," – Custom metric with an Id of 2. Note that the hierarchy for a custom metric is slightly different compared to the earlier Backup overdue alert. It’s root → Cluster → SqlServer → Database → CustomMetric. Also notice that, unlike Cluster, SqlServer and Database, the key property for CustomMetric is called MetricId (not Name), and the value is a bigint (not a string). Finally, delving into the custom metric tables is beyond the scope of this post, but for the sake of avoiding any future confusion, I’d like to point out that whilst the SubType references a custom alert definition, the MetricID value embedded in the TargetObject value references a custom metric definition. Although in this case both the custom metric definition and custom alert definition share the same Id value of 2, this is not generally the case. Okay, that’s enough for now, not least because as I’m typing this, it’s almost 2am, I have to go to work tomorrow, and my alarm is set for 6am – eek! In my next post, I’ll either cover the remaining three tables in the alert schema, or I’ll delve into the way SQL Monitor stores its monitoring data, as I’d originally planned to cover in this post.

    Read the article

  • How to identify doc, ppt, xls files

    - by Shelby. S
    So I was wondering how would you differentiate ppt, xls and doc files from each other in linux regardless of extensions. I tried 'file' but from the looks of it, all of MSOffice files are categorized under the same file type. Similarly I'm having trouble with docx, xlsx and pptx files, since they're essentially all zip files containing a bunch of xml. Thank you for your help! P.S. I also tried a python script importing the magic module, but no go.

    Read the article

  • Can't Drag & Drop text to unity launcher (e.g. url's, highlighted text)

    - by patsee
    I'm trying to create a unity launcher icon (.dekstop file) on which you can drop any (selected/highlighted) text from a web browser, google chrome in my case. I know you can use the "MimeType=" key in a .desktop file, but I can't find the right mime type for my scenario. I've tried several text MimeTypes and "text/*", but none of them would work. Does anyone know which MimeType I have to use in order for my launcher icon to accept text when hovering over it?

    Read the article

  • Why "Algorithms" and "Data Structures" are treated as separate disciplines?

    - by Pavel Shved
    This question was the last straw; and I've been wondering for a long time about it, Why do people think about "Algorithms" and "Data structures" as about something that can be separated from each other? I see a lot of evidence that they're separated in programmers' minds. they request "Data Structures & Algorithms" books they refer to "Data Structures" and "Algorithms" as separate university courses they "know Algorithms", but are "weak in Data Structures" (can't find the link, sorry). etc. In my opinion "Data Structures" are algorithms, since the concept of "Data Structure" is about Algorithms to operate data that go in and out of the structures. But the opinion seems not a mainstream. What do I miss?

    Read the article

  • What are the lesser known but cool data structures ?

    - by f3lix
    There a some data structures around that are really cool but are unknown to most programmers. Which are they? Everybody knows linked lists, binary trees, and hashes, but what about Skip lists, Bloom filters for example. I would like to know more data structures that are not so common, but are worth knowing because they rely on great ideas and enrich a programmer's tool box. PS: I am also interested on techniques like Dancing links which make interesting use of the properties of a common data structure. EDIT: Please try to include links to pages describing the data structures in more detail. Also, try to add a couple of words on why a data structures is cool (as Jonas Kölker already pointed out). Also, try to provide one data-structure per answer. This will allow the better data structures to float to the top based on their votes alone.

    Read the article

< Previous Page | 91 92 93 94 95 96 97 98 99 100 101 102  | Next Page >