Search Results

Search found 98173 results on 3927 pages for 'maintaining old code'.

Page 1023/3927 | < Previous Page | 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030  | Next Page >

  • Metro: Grouping Items in a ListView Control

    - by Stephen.Walther
    The purpose of this blog entry is to explain how you can group list items when displaying the items in a WinJS ListView control. In particular, you learn how to group a list of products by product category. Displaying a grouped list of items in a ListView control requires completing the following steps: Create a Grouped data source from a List data source Create a Grouped Header Template Declare the ListView control so it groups the list items Creating the Grouped Data Source Normally, you bind a ListView control to a WinJS.Binding.List object. If you want to render list items in groups, then you need to bind the ListView to a grouped data source instead. The following code – contained in a file named products.js — illustrates how you can create a standard WinJS.Binding.List object from a JavaScript array and then return a grouped data source from the WinJS.Binding.List object by calling its createGrouped() method: (function () { "use strict"; // Create List data source var products = new WinJS.Binding.List([ { name: "Milk", price: 2.44, category: "Beverages" }, { name: "Oranges", price: 1.99, category: "Fruit" }, { name: "Wine", price: 8.55, category: "Beverages" }, { name: "Apples", price: 2.44, category: "Fruit" }, { name: "Steak", price: 1.99, category: "Other" }, { name: "Eggs", price: 2.44, category: "Other" }, { name: "Mushrooms", price: 1.99, category: "Other" }, { name: "Yogurt", price: 2.44, category: "Other" }, { name: "Soup", price: 1.99, category: "Other" }, { name: "Cereal", price: 2.44, category: "Other" }, { name: "Pepsi", price: 1.99, category: "Beverages" } ]); // Create grouped data source var groupedProducts = products.createGrouped( function (dataItem) { return dataItem.category; }, function (dataItem) { return { title: dataItem.category }; }, function (group1, group2) { return group1.charCodeAt(0) - group2.charCodeAt(0); } ); // Expose the grouped data source WinJS.Namespace.define("ListViewDemos", { products: groupedProducts }); })(); Notice that the createGrouped() method requires three functions as arguments: groupKey – This function associates each list item with a group. The function accepts a data item and returns a key which represents a group. In the code above, we return the value of the category property for each product. groupData – This function returns the data item displayed by the group header template. For example, in the code above, the function returns a title for the group which is displayed in the group header template. groupSorter – This function determines the order in which the groups are displayed. The code above displays the groups in alphabetical order: Beverages, Fruit, Other. Creating the Group Header Template Whenever you create a ListView control, you need to create an item template which you use to control how each list item is rendered. When grouping items in a ListView control, you also need to create a group header template. The group header template is used to render the header for each group of list items. Here’s the markup for both the item template and the group header template: <div id="productTemplate" data-win-control="WinJS.Binding.Template"> <div class="product"> <span data-win-bind="innerText:name"></span> <span data-win-bind="innerText:price"></span> </div> </div> <div id="productGroupHeaderTemplate" data-win-control="WinJS.Binding.Template"> <div class="productGroupHeader"> <h1 data-win-bind="innerText: title"></h1> </div> </div> You should declare the two templates in the same file as you declare the ListView control – for example, the default.html file. Declaring the ListView Control The final step is to declare the ListView control. Here’s the required markup: <div data-win-control="WinJS.UI.ListView" data-win-options="{ itemDataSource:ListViewDemos.products.dataSource, itemTemplate:select('#productTemplate'), groupDataSource:ListViewDemos.products.groups.dataSource, groupHeaderTemplate:select('#productGroupHeaderTemplate'), layout: {type: WinJS.UI.GridLayout} }"> </div> In the markup above, six properties of the ListView control are set when the control is declared. First the itemDataSource and itemTemplate are specified. Nothing new here. Next, the group data source and group header template are specified. Notice that the group data source is represented by the ListViewDemos.products.groups.dataSource property of the grouped data source. Finally, notice that the layout of the ListView is changed to Grid Layout. You are required to use Grid Layout (instead of the default List Layout) when displaying grouped items in a ListView. Here’s the entire contents of the default.html page: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>ListViewDemos</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- ListViewDemos references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> <script src="/js/products.js" type="text/javascript"></script> <style type="text/css"> .product { width: 200px; height: 100px; border: white solid 1px; font-size: x-large; } </style> </head> <body> <div id="productTemplate" data-win-control="WinJS.Binding.Template"> <div class="product"> <span data-win-bind="innerText:name"></span> <span data-win-bind="innerText:price"></span> </div> </div> <div id="productGroupHeaderTemplate" data-win-control="WinJS.Binding.Template"> <div class="productGroupHeader"> <h1 data-win-bind="innerText: title"></h1> </div> </div> <div data-win-control="WinJS.UI.ListView" data-win-options="{ itemDataSource:ListViewDemos.products.dataSource, itemTemplate:select('#productTemplate'), groupDataSource:ListViewDemos.products.groups.dataSource, groupHeaderTemplate:select('#productGroupHeaderTemplate'), layout: {type: WinJS.UI.GridLayout} }"> </div> </body> </html> Notice that the default.html page includes a reference to the products.js file: <script src=”/js/products.js” type=”text/javascript”></script> The default.html page also contains the declarations of the item template, group header template, and ListView control. Summary The goal of this blog entry was to explain how you can group items in a ListView control. You learned how to create a grouped data source, a group header template, and declare a ListView so that it groups its list items.

    Read the article

  • ASP.NET MVC 2 throws exception for ‘favicon.ico’

    - by nmarun
    I must be on fire or something – third blog in 2 days… awesome! Before I begin, in case you’re wondering, favicon.ico is the small image that appears to the left of your web address, once the page loads. In order to learn more about MVC or any thing for that matter, it’s better to look at the source itself. Since MVC is open source (at least some part of it is), I started looking at the source code that’s available for download. While doing so, I hit Steve Sanderson’s blog site where he explains in great detail the way to debug your app using ASP.NET MVC source code. For those who are not aware, Steve Sanderson’s book - Pro ASP.NET MVC Framework, is one of the best books to learn about MVC. Alrighty, I followed the article and I hit F5 to debug the default / unchanged MVC project. I put a breakpoint in the DefaultControllerFactory.cs, CreateController() method. To know a little more about this class and the method, read this. Sure enough, the control stopped at the breakpoint and I hit F5 again and the page rendered just fine. But then what’s this? The breakpoint was hit again, as if something else was being requested. I now hovered my mouse over the ‘controllerName’ parameter and it says – favicon.ico. This by itself was more than enough for me to raise my eye-brows, but what happened next just took the ground below my feet. Oh, oh, I’m sorry I’m just typing, no code, no image, so here are a couple of screen captures. The first one shows the request for the Home controller; I get ‘Home’ when I hover over the parameter: And here’s the one that shows the same for call for ‘favicon.ico’. So, I step through the code and when the control reaches line 91 – GetControllerInstance() method, I step in. This is when I had the ‘ground-losing’ experience. Wow, an exception is being thrown for this file and that too in RTM. For some reason MVC thinks, this as a controller and tries to run it through the MvcHandler and it hits this snag. So it seems like this will happen for any MVC 2 site and this did not happen for me in the previous version of MVC. Before I get to how to resolve it, here’s another way of reproducing this exception. Revert back all your changes that you did as mentioned in Steve’s blog above. Now, add a class to your MVC project and call it say, MyControllerFactory and let this inherit from DefaultControllerFactory class. (Read this for details on the DefaultControllerFactory class is and how it is used in a different context). Add an override for the CreateController() method and for the sake of this blog, just copy the same content from the DefaultControllerFactory class. The last step is to tell your MVC app to use the MyControllerFactory class instead of the default one. To do this, go to your Global.asax.cs file and add line 6 of the snippet below: 1: protected void Application_Start() 2: { 3: AreaRegistration.RegisterAllAreas(); 4:   5: RegisterRoutes(RouteTable.Routes); 6: ControllerBuilder.Current.SetControllerFactory(new MyControllerFactory()); 7: } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Now, you’re ready to reproduce the issue. Just F5 the project and when you hit the overridden CreateController() method for the second time, this is what it looks like for me: And continuing further gives me the same exception. I believe this is something that MS should fix, as not having ‘favicon.ico’ file will be common for most of the applications. So I think the when you create an MVC project, line 6 should be added by default by Visual Studio itself: 1: public class MvcApplication : System.Web.HttpApplication 2: { 3: public static void RegisterRoutes(RouteCollection routes) 4: { 5: routes.IgnoreRoute("{resource}.axd/{*pathInfo}"); 6: routes.IgnoreRoute("favicon.ico"); 7:   8: routes.MapRoute( 9: "Default", // Route name 10: "{controller}/{action}/{id}", // URL with parameters 11: new { controller = "Home", action = "Index", id = UrlParameter.Optional } // Parameter defaults 12: ); 13: } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } There it is, that’s the solution to avoid the exception altogether. I tried this both IE8 and Firefox browsers and was able to successfully reproduce the error. Hope someone will look at this issue and find a fix. Just before I finish up, I found another ‘bug’, if you want to call it, with Visual Studio 2008. Remember how you could change what browser you want your application to run in by just right clicking on the .aspx file and choosing ‘Browse with…’? Seems like that’s missing when you’re working with an MVC project. In order to test the above bug in the other browser, I had to load a classic ASP.NET project, change the settings and then run my MVC project. Felt kinda ‘icky’, for lack of a better word.

    Read the article

  • Metro: Grouping Items in a ListView Control

    - by Stephen.Walther
    The purpose of this blog entry is to explain how you can group list items when displaying the items in a WinJS ListView control. In particular, you learn how to group a list of products by product category. Displaying a grouped list of items in a ListView control requires completing the following steps: Create a Grouped data source from a List data source Create a Grouped Header Template Declare the ListView control so it groups the list items Creating the Grouped Data Source Normally, you bind a ListView control to a WinJS.Binding.List object. If you want to render list items in groups, then you need to bind the ListView to a grouped data source instead. The following code – contained in a file named products.js — illustrates how you can create a standard WinJS.Binding.List object from a JavaScript array and then return a grouped data source from the WinJS.Binding.List object by calling its createGrouped() method: (function () { "use strict"; // Create List data source var products = new WinJS.Binding.List([ { name: "Milk", price: 2.44, category: "Beverages" }, { name: "Oranges", price: 1.99, category: "Fruit" }, { name: "Wine", price: 8.55, category: "Beverages" }, { name: "Apples", price: 2.44, category: "Fruit" }, { name: "Steak", price: 1.99, category: "Other" }, { name: "Eggs", price: 2.44, category: "Other" }, { name: "Mushrooms", price: 1.99, category: "Other" }, { name: "Yogurt", price: 2.44, category: "Other" }, { name: "Soup", price: 1.99, category: "Other" }, { name: "Cereal", price: 2.44, category: "Other" }, { name: "Pepsi", price: 1.99, category: "Beverages" } ]); // Create grouped data source var groupedProducts = products.createGrouped( function (dataItem) { return dataItem.category; }, function (dataItem) { return { title: dataItem.category }; }, function (group1, group2) { return group1.charCodeAt(0) - group2.charCodeAt(0); } ); // Expose the grouped data source WinJS.Namespace.define("ListViewDemos", { products: groupedProducts }); })(); Notice that the createGrouped() method requires three functions as arguments: groupKey – This function associates each list item with a group. The function accepts a data item and returns a key which represents a group. In the code above, we return the value of the category property for each product. groupData – This function returns the data item displayed by the group header template. For example, in the code above, the function returns a title for the group which is displayed in the group header template. groupSorter – This function determines the order in which the groups are displayed. The code above displays the groups in alphabetical order: Beverages, Fruit, Other. Creating the Group Header Template Whenever you create a ListView control, you need to create an item template which you use to control how each list item is rendered. When grouping items in a ListView control, you also need to create a group header template. The group header template is used to render the header for each group of list items. Here’s the markup for both the item template and the group header template: <div id="productTemplate" data-win-control="WinJS.Binding.Template"> <div class="product"> <span data-win-bind="innerText:name"></span> <span data-win-bind="innerText:price"></span> </div> </div> <div id="productGroupHeaderTemplate" data-win-control="WinJS.Binding.Template"> <div class="productGroupHeader"> <h1 data-win-bind="innerText: title"></h1> </div> </div> You should declare the two templates in the same file as you declare the ListView control – for example, the default.html file. Declaring the ListView Control The final step is to declare the ListView control. Here’s the required markup: <div data-win-control="WinJS.UI.ListView" data-win-options="{ itemDataSource:ListViewDemos.products.dataSource, itemTemplate:select('#productTemplate'), groupDataSource:ListViewDemos.products.groups.dataSource, groupHeaderTemplate:select('#productGroupHeaderTemplate'), layout: {type: WinJS.UI.GridLayout} }"> </div> In the markup above, six properties of the ListView control are set when the control is declared. First the itemDataSource and itemTemplate are specified. Nothing new here. Next, the group data source and group header template are specified. Notice that the group data source is represented by the ListViewDemos.products.groups.dataSource property of the grouped data source. Finally, notice that the layout of the ListView is changed to Grid Layout. You are required to use Grid Layout (instead of the default List Layout) when displaying grouped items in a ListView. Here’s the entire contents of the default.html page: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>ListViewDemos</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- ListViewDemos references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> <script src="/js/products.js" type="text/javascript"></script> <style type="text/css"> .product { width: 200px; height: 100px; border: white solid 1px; font-size: x-large; } </style> </head> <body> <div id="productTemplate" data-win-control="WinJS.Binding.Template"> <div class="product"> <span data-win-bind="innerText:name"></span> <span data-win-bind="innerText:price"></span> </div> </div> <div id="productGroupHeaderTemplate" data-win-control="WinJS.Binding.Template"> <div class="productGroupHeader"> <h1 data-win-bind="innerText: title"></h1> </div> </div> <div data-win-control="WinJS.UI.ListView" data-win-options="{ itemDataSource:ListViewDemos.products.dataSource, itemTemplate:select('#productTemplate'), groupDataSource:ListViewDemos.products.groups.dataSource, groupHeaderTemplate:select('#productGroupHeaderTemplate'), layout: {type: WinJS.UI.GridLayout} }"> </div> </body> </html> Notice that the default.html page includes a reference to the products.js file: <script src=”/js/products.js” type=”text/javascript”></script> The default.html page also contains the declarations of the item template, group header template, and ListView control. Summary The goal of this blog entry was to explain how you can group items in a ListView control. You learned how to create a grouped data source, a group header template, and declare a ListView so that it groups its list items.

    Read the article

  • Optimizing AES modes on Solaris for Intel Westmere

    - by danx
    Optimizing AES modes on Solaris for Intel Westmere Review AES is a strong method of symmetric (secret-key) encryption. It is a U.S. FIPS-approved cryptographic algorithm (FIPS 197) that operates on 16-byte blocks. AES has been available since 2001 and is widely used. However, AES by itself has a weakness. AES encryption isn't usually used by itself because identical blocks of plaintext are always encrypted into identical blocks of ciphertext. This encryption can be easily attacked with "dictionaries" of common blocks of text and allows one to more-easily discern the content of the unknown cryptotext. This mode of encryption is called "Electronic Code Book" (ECB), because one in theory can keep a "code book" of all known cryptotext and plaintext results to cipher and decipher AES. In practice, a complete "code book" is not practical, even in electronic form, but large dictionaries of common plaintext blocks is still possible. Here's a diagram of encrypting input data using AES ECB mode: Block 1 Block 2 PlainTextInput PlainTextInput | | | | \/ \/ AESKey-->(AES Encryption) AESKey-->(AES Encryption) | | | | \/ \/ CipherTextOutput CipherTextOutput Block 1 Block 2 What's the solution to the same cleartext input producing the same ciphertext output? The solution is to further process the encrypted or decrypted text in such a way that the same text produces different output. This usually involves an Initialization Vector (IV) and XORing the decrypted or encrypted text. As an example, I'll illustrate CBC mode encryption: Block 1 Block 2 PlainTextInput PlainTextInput | | | | \/ \/ IV >----->(XOR) +------------->(XOR) +---> . . . . | | | | | | | | \/ | \/ | AESKey-->(AES Encryption) | AESKey-->(AES Encryption) | | | | | | | | | \/ | \/ | CipherTextOutput ------+ CipherTextOutput -------+ Block 1 Block 2 The steps for CBC encryption are: Start with a 16-byte Initialization Vector (IV), choosen randomly. XOR the IV with the first block of input plaintext Encrypt the result with AES using a user-provided key. The result is the first 16-bytes of output cryptotext. Use the cryptotext (instead of the IV) of the previous block to XOR with the next input block of plaintext Another mode besides CBC is Counter Mode (CTR). As with CBC mode, it also starts with a 16-byte IV. However, for subsequent blocks, the IV is just incremented by one. Also, the IV ix XORed with the AES encryption result (not the plain text input). Here's an illustration: Block 1 Block 2 PlainTextInput PlainTextInput | | | | \/ \/ AESKey-->(AES Encryption) AESKey-->(AES Encryption) | | | | \/ \/ IV >----->(XOR) IV + 1 >---->(XOR) IV + 2 ---> . . . . | | | | \/ \/ CipherTextOutput CipherTextOutput Block 1 Block 2 Optimization Which of these modes can be parallelized? ECB encryption/decryption can be parallelized because it does more than plain AES encryption and decryption, as mentioned above. CBC encryption can't be parallelized because it depends on the output of the previous block. However, CBC decryption can be parallelized because all the encrypted blocks are known at the beginning. CTR encryption and decryption can be parallelized because the input to each block is known--it's just the IV incremented by one for each subsequent block. So, in summary, for ECB, CBC, and CTR modes, encryption and decryption can be parallelized with the exception of CBC encryption. How do we parallelize encryption? By interleaving. Usually when reading and writing data there are pipeline "stalls" (idle processor cycles) that result from waiting for memory to be loaded or stored to or from CPU registers. Since the software is written to encrypt/decrypt the next data block where pipeline stalls usually occurs, we can avoid stalls and crypt with fewer cycles. This software processes 4 blocks at a time, which ensures virtually no waiting ("stalling") for reading or writing data in memory. Other Optimizations Besides interleaving, other optimizations performed are Loading the entire key schedule into the 128-bit %xmm registers. This is done once for per 4-block of data (since 4 blocks of data is processed, when present). The following is loaded: the entire "key schedule" (user input key preprocessed for encryption and decryption). This takes 11, 13, or 15 registers, for AES-128, AES-192, and AES-256, respectively The input data is loaded into another %xmm register The same register contains the output result after encrypting/decrypting Using SSSE 4 instructions (AESNI). Besides the aesenc, aesenclast, aesdec, aesdeclast, aeskeygenassist, and aesimc AESNI instructions, Intel has several other instructions that operate on the 128-bit %xmm registers. Some common instructions for encryption are: pxor exclusive or (very useful), movdqu load/store a %xmm register from/to memory, pshufb shuffle bytes for byte swapping, pclmulqdq carry-less multiply for GCM mode Combining AES encryption/decryption with CBC or CTR modes processing. Instead of loading input data twice (once for AES encryption/decryption, and again for modes (CTR or CBC, for example) processing, the input data is loaded once as both AES and modes operations occur at in the same function Performance Everyone likes pretty color charts, so here they are. I ran these on Solaris 11 running on a Piketon Platform system with a 4-core Intel Clarkdale processor @3.20GHz. Clarkdale which is part of the Westmere processor architecture family. The "before" case is Solaris 11, unmodified. Keep in mind that the "before" case already has been optimized with hand-coded Intel AESNI assembly. The "after" case has combined AES-NI and mode instructions, interleaved 4 blocks at-a-time. « For the first table, lower is better (milliseconds). The first table shows the performance improvement using the Solaris encrypt(1) and decrypt(1) CLI commands. I encrypted and decrypted a 1/2 GByte file on /tmp (swap tmpfs). Encryption improved by about 40% and decryption improved by about 80%. AES-128 is slighty faster than AES-256, as expected. The second table shows more detail timings for CBC, CTR, and ECB modes for the 3 AES key sizes and different data lengths. » The results shown are the percentage improvement as shown by an internal PKCS#11 microbenchmark. And keep in mind the previous baseline code already had optimized AESNI assembly! The keysize (AES-128, 192, or 256) makes little difference in relative percentage improvement (although, of course, AES-128 is faster than AES-256). Larger data sizes show better improvement than 128-byte data. Availability This software is in Solaris 11 FCS. It is available in the 64-bit libcrypto library and the "aes" Solaris kernel module. You must be running hardware that supports AESNI (for example, Intel Westmere and Sandy Bridge, microprocessor architectures). The easiest way to determine if AES-NI is available is with the isainfo(1) command. For example, $ isainfo -v 64-bit amd64 applications pclmulqdq aes sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov amd_sysc cx8 tsc fpu 32-bit i386 applications pclmulqdq aes sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov sep cx8 tsc fpu No special configuration or setup is needed to take advantage of this software. Solaris libraries and kernel automatically determine if it's running on AESNI-capable machines and execute the correctly-tuned software for the current microprocessor. Summary Maximum throughput of AES cipher modes can be achieved by combining AES encryption with modes processing, interleaving encryption of 4 blocks at a time, and using Intel's wide 128-bit %xmm registers and instructions. References "Block cipher modes of operation", Wikipedia Good overview of AES modes (ECB, CBC, CTR, etc.) "Advanced Encryption Standard", Wikipedia "Current Modes" describes NIST-approved block cipher modes (ECB,CBC, CFB, OFB, CCM, GCM)

    Read the article

  • How to Achieve OC4J RMI Load Balancing

    - by fip
    This is an old, Oracle SOA and OC4J 10G topic. In fact this is not even a SOA topic per se. Questions of RMI load balancing arise when you developed custom web applications accessing human tasks running off a remote SOA 10G cluster. Having returned from a customer who faced challenges with OC4J RMI load balancing, I felt there is still some confusions in the field how OC4J RMI load balancing work. Hence I decide to dust off an old tech note that I wrote a few years back and share it with the general public. Here is the tech note: Overview A typical use case in Oracle SOA is that you are building web based, custom human tasks UI that will interact with the task services housed in a remote BPEL 10G cluster. Or, in a more generic way, you are just building a web based application in Java that needs to interact with the EJBs in a remote OC4J cluster. In either case, you are talking to an OC4J cluster as RMI client. Then immediately you must ask yourself the following questions: 1. How do I make sure that the web application, as an RMI client, even distribute its load against all the nodes in the remote OC4J cluster? 2. How do I make sure that the web application, as an RMI client, is resilient to the node failures in the remote OC4J cluster, so that in the unlikely case when one of the remote OC4J nodes fail, my web application will continue to function? That is the topic of how to achieve load balancing with OC4J RMI client. Solutions You need to configure and code RMI load balancing in two places: 1. Provider URL can be specified with a comma separated list of URLs, so that the initial lookup will land to one of the available URLs. 2. Choose a proper value for the oracle.j2ee.rmi.loadBalance property, which, along side with the PROVIDER_URL property, is one of the JNDI properties passed to the JNDI lookup.(http://docs.oracle.com/cd/B31017_01/web.1013/b28958/rmi.htm#BABDGFBI) More details below: About the PROVIDER_URL The JNDI property java.name.provider.url's job is, when the client looks up for a new context at the very first time in the client session, to provide a list of RMI context The value of the JNDI property java.name.provider.url goes by the format of a single URL, or a comma separate list of URLs. A single URL. For example: opmn:ormi://host1:6003:oc4j_instance1/appName1 A comma separated list of multiple URLs. For examples:  opmn:ormi://host1:6003:oc4j_instanc1/appName, opmn:ormi://host2:6003:oc4j_instance1/appName, opmn:ormi://host3:6003:oc4j_instance1/appName When the client looks up for a new Context the very first time in the client session, it sends a query against the OPMN referenced by the provider URL. The OPMN host and port specifies the destination of such query, and the OC4J instance name and appName are actually the “where clause” of the query. When the PROVIDER URL reference a single OPMN server Let's consider the case when the provider url only reference a single OPMN server of the destination cluster. In this case, that single OPMN server receives the query and returns a list of the qualified Contexts from all OC4Js within the cluster, even though there is a single OPMN server in the provider URL. A context represent a particular starting point at a particular server for subsequent object lookup. For example, if the URL is opmn:ormi://host1:6003:oc4j_instance1/appName, then, OPMN will return the following contexts: appName on oc4j_instance1 on host1 appName on oc4j_instance1 on host2, appName on oc4j_instance1 on host3,  (provided that host1, host2, host3 are all in the same cluster) Please note that One OPMN will be sufficient to find the list of all contexts from the entire cluster that satisfy the JNDI lookup query. You can do an experiment by shutting down appName on host1, and observe that OPMN on host1 will still be able to return you appname on host2 and appName on host3. When the PROVIDER URL reference a comma separated list of multiple OPMN servers When the JNDI propery java.naming.provider.url references a comma separated list of multiple URLs, the lookup will return the exact same things as with the single OPMN server: a list of qualified Contexts from the cluster. The purpose of having multiple OPMN servers is to provide high availability in the initial context creation, such that if OPMN at host1 is unavailable, client will try the lookup via OPMN on host2, and so on. After the initial lookup returns and cache a list of contexts, the JNDI URL(s) are no longer used in the same client session. That explains why removing the 3rd URL from the list of JNDI URLs will not stop the client from getting the EJB on the 3rd server. About the oracle.j2ee.rmi.loadBalance Property After the client acquires the list of contexts, it will cache it at the client side as “list of available RMI contexts”.  This list includes all the servers in the destination cluster. This list will stay in the cache until the client session (JVM) ends. The RMI load balancing against the destination cluster is happening at the client side, as the client is switching between the members of the list. Whether and how often the client will fresh the Context from the list of Context is based on the value of the  oracle.j2ee.rmi.loadBalance. The documentation at http://docs.oracle.com/cd/B31017_01/web.1013/b28958/rmi.htm#BABDGFBI list all the available values for the oracle.j2ee.rmi.loadBalance. Value Description client If specified, the client interacts with the OC4J process that was initially chosen at the first lookup for the entire conversation. context Used for a Web client (servlet or JSP) that will access EJBs in a clustered OC4J environment. If specified, a new Context object for a randomly-selected OC4J instance will be returned each time InitialContext() is invoked. lookup Used for a standalone client that will access EJBs in a clustered OC4J environment. If specified, a new Context object for a randomly-selected OC4J instance will be created each time the client calls Context.lookup(). Please note the regardless of the setting of oracle.j2ee.rmi.loadBalance property, the “refresh” only occurs at the client. The client can only choose from the "list of available context" that was returned and cached from the very first lookup. That is, the client will merely get a new Context object from the “list of available RMI contexts” from the cache at the client side. The client will NOT go to the OPMN server again to get the list. That also implies that if you are adding a node to the server cluster AFTER the client’s initial lookup, the client would not know it because neither the server nor the client will initiate a refresh of the “list of available servers” to reflect the new node. About High Availability (i.e. Resilience Against Node Failure of Remote OC4J Cluster) What we have discussed above is about load balancing. Let's also discuss high availability. This is how the High Availability works in RMI: when the client use the context but get an exception such as socket is closed, it knows that the server referenced by that Context is problematic and will try to get another unused Context from the “list of available contexts”. Again, this list is the list that was returned and cached at the very first lookup in the entire client session.

    Read the article

  • SQL SERVER – Thinking about Deprecated, Discontinued Features and Breaking Changes while Upgrading to SQL Server 2012 – Guest Post by Nakul Vachhrajani

    - by pinaldave
    Nakul Vachhrajani is a Technical Specialist and systems development professional with iGATE having a total IT experience of more than 7 years. Nakul is an active blogger with BeyondRelational.com (150+ blogs), and can also be found on forums at SQLServerCentral and BeyondRelational.com. Nakul has also been a guest columnist for SQLAuthority.com and SQLServerCentral.com. Nakul presented a webcast on the “Underappreciated Features of Microsoft SQL Server” at the Microsoft Virtual Tech Days Exclusive Webcast series (May 02-06, 2011) on May 06, 2011. He is also the author of a research paper on Database upgrade methodologies, which was published in a CSI journal, published nationwide. In addition to his passion about SQL Server, Nakul also contributes to the academia out of personal interest. He visits various colleges and universities as an external faculty to judge project activities being carried out by the students. Disclaimer: The opinions expressed herein are his own personal opinions and do not represent his employer’s view in anyway. Blog | LinkedIn | Twitter | Google+ Let us hear the thoughts of Nakul in first person - Those who have been following my blogs would be aware that I am recently running a series on the database engine features that have been deprecated in Microsoft SQL Server 2012. Based on the response that I have received, I was quite surprised to know that most of the audience found these to be breaking changes, when in fact, they were not! It was then that I decided to write a little piece on how to plan your database upgrade such that it works with the next version of Microsoft SQL Server. Please note that the recommendations made in this article are high-level markers and are intended to help you think over the specific steps that you would need to take to upgrade your database. Refer the documentation – Understand the terms Change is the only constant in this world. Therefore, whenever customer requirements, newer architectures and designs require software vendors to make a change to the keywords, functions, etc; they ensure that they provide their end users sufficient time to migrate over to the new standards before dropping off the old ones. Microsoft does that too with it’s Microsoft SQL Server product. Whenever a new SQL Server release is announced, it comes with a list of the following features: Breaking changes These are changes that would break your currently running applications, scripts or functionalities that are based on earlier version of Microsoft SQL Server These are mostly features whose behavior has been changed keeping in mind the newer architectures and designs Lesson: These are the changes that you need to be most worried about! Discontinued features These features are no longer available in the associated version of Microsoft SQL Server These features used to be “deprecated” in the prior release Lesson: Without these changes, your database would not be compliant/may not work with the version of Microsoft SQL Server under consideration Deprecated features These features are those that are still available in the current version of Microsoft SQL Server, but are scheduled for removal in a future version. These may be removed in either the next version or any other future version of Microsoft SQL Server The features listed for deprecation will compose the list of discontinued features in the next version of SQL Server Lesson: Plan to make necessary changes required to remove/replace usage of the deprecated features with the latest recommended replacements Once a feature appears on the list, it moves from bottom to the top, i.e. it is first marked as “Deprecated” and then “Discontinued”. We know of “Breaking change” comes later on in the product life cycle. What this means is that if you want to know what features would not work with SQL Server 2012 (and you are currently using SQL Server 2008 R2), you need to refer the list of breaking changes and discontinued features in SQL Server 2012. Use the tools! There are a lot of tools and technologies around us, but it is rarely that I find teams using these tools religiously and to the best of their potential. Below are the top two tools, from Microsoft, that I use every time I plan a database upgrade. The SQL Server Upgrade Advisor Ever since SQL Server 2005 was announced, Microsoft provides a small, very light-weight tool called the “SQL Server upgrade advisor”. The upgrade advisor analyzes installed components from earlier versions of SQL Server, and then generates a report that identifies issues to fix either before or after you upgrade. The analysis examines objects that can be accessed, such as scripts, stored procedures, triggers, and trace files. Upgrade Advisor cannot analyze desktop applications or encrypted stored procedures. Refer the links towards the end of the post to know how to get the Upgrade Advisor. The SQL Server Profiler Another great tool that you can use is the one most SQL Server developers & administrators use often – the SQL Server profiler. SQL Server Profiler provides functionality to monitor the “Deprecation” event, which contains: Deprecation announcement – equivalent to features to be deprecated in a future release of SQL Server Deprecation final support – equivalent to features to be deprecated in the next release of SQL Server You can learn more using the links towards the end of the post. A basic checklist There are a lot of finer points that need to be taken care of when upgrading your database. But, it would be worth-while to identify a few basic steps in order to make your database compliant with the next version of SQL Server: Monitor the current application workload (on a test bed) via the Profiler in order to identify usage of features marked as Deprecated If none appear, you are all set! (This almost never happens) Note down all the offending queries and feature usages Run analysis sessions using the SQL Server upgrade advisor on your database Based on the inputs from the analysis report and Profiler trace sessions, Incorporate solutions for the breaking changes first Next, incorporate solutions for the discontinued features Revisit and document the upgrade strategy for your deployment scenarios Revisit the fall-back, i.e. rollback strategies in case the upgrades fail Because some programming changes are dependent upon the SQL server version, this may need to be done in consultation with the development teams Before any other enhancements are incorporated by the development team, send out the database changes into QA QA strategy should involve a comparison between an environment running the old version of SQL Server against the new one Because minimal application changes have gone in (essential changes for SQL Server version compliance only), this would be possible As an ongoing activity, keep incorporating changes recommended as per the deprecated features list As a DBA, update your coding standards to ensure that the developers are using ANSI compliant code – this code will require a change only if the ANSI standard changes Remember this: Change management is a continuous process. Keep revisiting the product release notes and incorporate recommended changes to stay prepared for the next release of SQL Server. May the power of SQL Server be with you! Links Referenced in this post Breaking changes in SQL Server 2012: Link Discontinued features in SQL Server 2012: Link Get the upgrade advisor from the Microsoft Download Center at: Link Upgrade Advisor page on MSDN: Link Profiler: Review T-SQL code to identify objects no longer supported by Microsoft: Link Upgrading to SQL Server 2012 by Vinod Kumar: Link Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology Tagged: Upgrade

    Read the article

  • Emit Knowledge - social network for knowledge sharing

    - by hajan
    Emit Knowledge, as the words refer - it's a social network for emitting / sharing knowledge from users by users. Those who can benefit the most out of this network is perhaps all of YOU who have something to share with others and contribute to the knowledge world. I've been closely communicating with the core team of this very, very interesting, brand new social network (with specific purpose!) about the concept, idea and the vision they have for their product and I can say with a lot of confidence that this network has real potential to become something from which we will all benefit. I won't speak much about that and would prefer to give you link and try it yourself - http://www.emitknowledge.com Mainly, through the past few months I've been testing this network and it is getting improved all the time. The user experience is great, you can easily find out what you need and it follows some known patterns that are common for all social networks. They have some real good ideas and plans that are already under development for the next updates of their product. You can do micro blogging or you can do regular normal blogging… it’s up to you, and the way it works, it is seamless. Here is a short Question and Answers (QA) interview I made with the lead of the team, Marijan Nikolovski: 1. Can you please explain us briefly, what is Emit Knowledge? Emit Knowledge is a brand new knowledge based social network, delivering quality content from users to users. We believe that people’s knowledge, experience and professional thoughts compose quality content, worth sharing among millions around the world. Therefore, we created the platform that matches people’s need to share and gain knowledge in the most suitable and comfortable way. Easy to work with, Emit Knowledge lets you to smoothly craft and emit knowledge around the globe. 2. How 'old' is Emit Knowledge? In hamster’s years we are almost five years old start-up :). Just kidding. We’ve released our public beta about three months ago. Our official release date is 27 of June 2012. 3. How did you come up with this idea? Everything started from a simple idea to solve a complex problem. We’ve seen that the social web has become polluted with data and is on the right track to lose its base principles – socialization and common cause. That was our start point. We’ve gathered the team, drew some sketches and started to mind map the idea. After several idea refactoring’s Emit Knowledge was born. 4. Is there any competition out there in the market? Currently we don't have any competitors that share the same cause. What makes our platform different is the ideology that our product promotes and the functionalities that our platform offers for easy socialization based on interests and knowledge sharing. 5. What are the main technologies used to build Emit Knowledge? Emit Knowledge was built on a heterogeneous pallet of technologies. Currently, we have four of separation: UI – Built on ASP.NET MVC3 and Knockout.js; Messaging infrastructure – Build on top of RabbitMQ; Background services – Our in-house solution for job distribution, orchestration and processing; Data storage – Build on top of MongoDB; What are the main reasons you've chosen ASP.NET MVC? Since all of our team members are .NET engineers, the decision was very natural. ASP.NET MVC is the only Microsoft web stack that sticks to the HTTP behavioral standards. It is easy to work with, have a tiny learning curve and everyone who is familiar with the HTTP will understand its architecture and convention without any difficulties. 6. What are the main reasons for choosing ASP.NET MVC? Since all of our team members are .NET engineers, the decision was very natural. ASP.NET MVC is the only Microsoft web stack that sticks to the HTTP behavioral standards. It is easy to work with, have a tiny learning curve and everyone who is familiar with the HTTP will understand its architecture and convention without any difficulties. 7. Did you use some of the latest Microsoft technologies? If yes, which ones? Yes, we like to rock the cutting edge tech house. Currently we are using Microsoft’s latest technologies like ASP.NET MVC, Web API (work in progress) and the best for the last; we are utilizing Windows Azure IaaS to the bone. 8. Can you please tell us shortly, what would be the benefit of regular bloggers in other blogging platforms to join Emit Knowledge? Well, unless you are some of the smoking ace gurus whose blogs are followed by a large number of users, our platform offers knowledge based segregated community equipped with tools that will enable both current and future users to expand their relations and to self-promote in the community based on their activity and knowledge sharing. 10. I see you are working very intensively and there is already integration with some third-party services to make the process of sharing and emitting knowledge easier, which services did you integrate until now and what do you plan do to next? We have “reemit” functionality for internal sharing and we also support external services like: Twitter; LinkedIn; Facebook; For the regular bloggers we have an extra cream, Windows Live Writer support for easy blog posts emitting. 11. What should we expect next? Currently, we are working on a new fancy community feature. This means that we are going to support user groups to be formed. So for all existing communities and user groups out there, wait us a little bit, we are coming for rescue :). One of the top next features they are developing is the Community Feature. It means, if you have your own User Group, Community Group or any other Group on which you and your users are mostly blogging or sharing (emitting) knowledge in various ways, Emit Knowledge as a platform will help you have everything you need to promote your group, make new followers and host all the necessary stuff that you have had need of. I would invite you to try the network and start sharing knowledge in a way that will help you gather new followers and spread your knowledge faster, easier and in a more efficient way! Let’s Emit Knowledge!

    Read the article

  • Accessing SharePoint 2010 Data with REST/OData on Windows Phone 7

    - by Jan Tielens
    Consuming SharePoint 2010 data in Windows Phone 7 applications using the CTP version of the developer tools is quite a challenge. The issue is that the SharePoint 2010 data is not anonymously available; users need to authenticate to be able to access the data. When I first tried to access SharePoint 2010 data from my first Hello-World-type Windows Phone 7 application I thought “Hey, this should be easy!” because Windows Phone 7 development based on Silverlight and SharePoint 2010 has a Client Object Model for Silverlight. Unfortunately you can’t use the Client Object Model of SharePoint 2010 on the Windows Phone platform; there’s a reference to an assembly that’s not available (System.Windows.Browser). My second thought was “OK, no problem!” because SharePoint 2010 also exposes a REST/OData API to access SharePoint data. Using the REST API in SharePoint 2010 is as easy as making a web request for a URL (in which you specify the data you’d like to retrieve), e.g. http://yoursiteurl/_vti_bin/listdata.svc/Announcements. This is very easy to accomplish in a Silverlight application that’s running in the context of a page in a SharePoint site, because the credentials of the currently logged on user are automatically picked up and passed to the WCF service. But a Windows Phone application is of course running outside of the SharePoint site’s page, so the application should build credentials that have to be passed to SharePoint’s WCF service. This turns out to be a small challenge in Silverlight 3, the WebClient doesn’t support authentication; there is a Credentials property but when you set it and make the request you get a NotImplementedException exception. Probably this issued will be solved in the very near future, since Silverlight 4 does support authentication, and there’s already a WCF Data Services download that uses this new platform feature of Silverlight 4. So when Windows Phone platform switches to Silverlight 4, you can just use the WebClient to get the data. Even more, if the OData Client Library for Windows Phone 7 gets updated after that, things should get even easier! By the way: the things I’m writing in this paragraph are just assumptions that I make which make a lot of sense IMHO, I don’t have any info all of this will happen, but I really hope so. So are SharePoint developers out of the Windows Phone development game until they get this fixed? Well luckily not, when the HttpWebRequest class is being used instead, you can pass credentials! Using the HttpWebRequest class is slightly more complex than using the WebClient class, but the end result is that you have access to your precious SharePoint 2010 data. The following code snippet is getting all the announcements of an Annoucements list in a SharePoint site: HttpWebRequest webReq =     (HttpWebRequest)HttpWebRequest.Create("http://yoursite/_vti_bin/listdata.svc/Announcements");webReq.Credentials = new NetworkCredential("username", "password"); webReq.BeginGetResponse(    (result) => {        HttpWebRequest asyncReq = (HttpWebRequest)result.AsyncState;         XDocument xdoc = XDocument.Load(            ((HttpWebResponse)asyncReq.EndGetResponse(result)).GetResponseStream());         XNamespace ns = "http://www.w3.org/2005/Atom";        var items = from item in xdoc.Root.Elements(ns + "entry")                    select new { Title = item.Element(ns + "title").Value };         this.Dispatcher.BeginInvoke(() =>        {            foreach (var item in items)                MessageBox.Show(item.Title);        });    }, webReq); When you try this in a Windows Phone 7 application, make sure you add a reference to the System.Xml.Linq assembly, because the code uses Linq to XML to parse the resulting Atom feed, so the Title of every announcement is being displayed in a MessageBox. Check out my previous post if you’d like to see a more polished sample Windows Phone 7 application that displays SharePoint 2010 data.When you plan to use this technique, it’s of course a good idea to encapsulate the code doing the request, so it becomes really easy to get the data that you need. In the following code snippet you can find the GetAtomFeed method that gets the contents of any Atom feed, even if you need to authenticate to get access to the feed. delegate void GetAtomFeedCallback(Stream responseStream); public MainPage(){    InitializeComponent();     SupportedOrientations = SupportedPageOrientation.Portrait |         SupportedPageOrientation.Landscape;     string url = "http://yoursite/_vti_bin/listdata.svc/Announcements";    string username = "username";    string password = "password";    string domain = "";     GetAtomFeed(url, username, password, domain, (s) =>    {        XNamespace ns = "http://www.w3.org/2005/Atom";        XDocument xdoc = XDocument.Load(s);         var items = from item in xdoc.Root.Elements(ns + "entry")                    select new { Title = item.Element(ns + "title").Value };         this.Dispatcher.BeginInvoke(() =>        {            foreach (var item in items)            {                MessageBox.Show(item.Title);            }        });    });} private static void GetAtomFeed(string url, string username,     string password, string domain, GetAtomFeedCallback cb){    HttpWebRequest webReq = (HttpWebRequest)HttpWebRequest.Create(url);    webReq.Credentials = new NetworkCredential(username, password, domain);     webReq.BeginGetResponse(        (result) =>        {            HttpWebRequest asyncReq = (HttpWebRequest)result.AsyncState;            HttpWebResponse resp = (HttpWebResponse)asyncReq.EndGetResponse(result);            cb(resp.GetResponseStream());        }, webReq);}

    Read the article

  • Silverlight for Everyone!!

    - by subodhnpushpak
    Someone asked me to compare Silverlight / HTML development. I realized that the question can be answered in many ways: Below is the high level comparison between a HTML /JavaScript client and Silverlight client and why silverlight was chosen over HTML / JavaScript client (based on type of users and major functionalities provided): 1. For end users Browser compatibility Silverlight is a plug-in and requires installation first. However, it does provides consistent look and feel across all browsers. For HTML / DHTML, there is a need to tweak JavaScript for each of the browser supported. In fact, tags like <span> and <div> works differently on different browser / version. So, HTML works on most of the systems but also requires lot of efforts coding-wise to adhere to all standards/ browsers / versions. Out of browser support No support in HTML. Third party tools like  Google gears offers some functionalities but there are lots of issues around platform and accessibility. Out of box support for out-of-browser support. provides features like drag and drop onto application surface. Cut and copy paste in HTML HTML is displayed in browser; which, in turn provides facilities for cut copy and paste. Silverlight (specially 4) provides rich features for cut-copy-paste along with full control over what can be cut copy pasted by end users and .advanced features like visual tree printing. Rich user experience HTML can provide some rich experience by use of some JavaScript libraries like JQuery. However, extensive use of JavaScript combined with various versions of browsers and the supported JavaScript makes the solution cumbersome. Silverlight is meant for RIA experience. User data storage on client end In HTML only small amount of data can be stored that too in cookies. In Silverlight large data may be stored, that too in secure way. This increases the response time. Post back In HTML / JavaScript the post back can be stopped by use of AJAX. Extensive use of AJAX can be a bottleneck as browser stack is used for the calls. Both look and feel and data travel over network.                           In Silverlight everything run the client side. Calls are made to server ONLY for data; which also reduces network traffic in long run. 2. For Developers Coding effort HTML / JavaScript can take considerable amount to code if features (requirements) are rich. For AJAX like interfaces; knowledge of third party kits like DOJO / Yahoo UI / JQuery is required which has steep learning curve. ASP .Net coding world revolves mostly along <table> tags for alignments whereas most popular tools provide <div> tags; which requires lots of tweaking. AJAX calls can be a bottlenecks for performance, if the calls are many. In Silverlight; coding is in C#, which is managed code. XAML is also very intuitive and Blend can be used to provide look and feel. Event handling is much clean than in JavaScript. Provides for many clean patterns like MVVM and composable application. Each call to server is asynchronous in silverlight. AJAX is in built into silverlight. Threading can be done at the client side itself to provide for better responsiveness; etc. Debugging Debugging in HTML / JavaScript is difficult. As JavaScript is interpreted; there is NO compile time error handling. Debugging in Silverlight is very helpful. As it is compiled; it provides rich features for both compile time and run time error handling. Multi -targeting browsers HTML / JavaScript have different rendering behaviours in different browsers / and their versions. JavaScript have to be written to sublime the differences in browser behaviours. Silverlight works exactly the same in all browsers and works on almost all popular browser. Multi-targeting desktop No support in HTML / JavaScript Silverlight is very close to WPF. Bot the platform may be easily targeted while maintaining the same source code. Rich toolkit HTML /JavaScript have limited toolkit as controls Silverlight provides a rich set of controls including graphs, audio, video, layout, etc. 3. For Architects Design Patterns Silverlight provides for patterns like MVVM (MVC) and rich (fat)  client architecture. This segregates the "separation of concern" very clearly. Client (silverlight) does what it is expected to do and server does what it is expected of. In HTML / JavaScript world most of the processing is done on the server side. Extensibility Silverlight provides great deal of extensibility as custom controls may be made. Extensibility is NOT restricted by browser but by the plug-in silverlight runs in. HTML / JavaScript works in a certain way and extensibility is generally done on the server side rather than client end. Client side is restricted by the limitations of the browser. Performance Silverlight provides localized storage which may be used for cached data storage. this reduces the response time. As processing can be done on client side itself; there is no need for server round trips. this decreases the round about time. Look and feel of the application is downloaded ONLY initially, afterwards ONLY data is fetched form the server. Security Silverlight is compiled code downloaded as .XAP; As compared to HTML / JavaScript, it provides more secure sandboxed approach. Cross - scripting is inherently prohibited in silverlight by default. If proper guidelines are followed silverlight provides much robust security mechanism as against HTML / JavaScript world. For example; knowing server Address in obfuscated JavaScript is easier than a compressed compiled obfuscated silverlight .XAP file. Some of these like (offline and Canvas support) will be available in HTML5. However, the timelines are not encouraging at all. According to Ian Hickson, editor of the HTML5 specification, the specification to reach the W3C Candidate Recommendation stage during 2012, and W3C Recommendation in the year 2022 or later. see http://en.wikipedia.org/wiki/HTML5 for details. The above is MY opinion. I will love to hear yours; do let me know via comments. Technorati Tags: Silverlight

    Read the article

  • Fast block placement algorithm, advice needed?

    - by James Morris
    I need to emulate the window placement strategy of the Fluxbox window manager. As a rough guide, visualize randomly sized windows filling up the screen one at a time, where the rough size of each results in an average of 80 windows on screen without any window overlapping another. It is important to note that windows will close and the space that closed windows previously occupied becomes available once more for the placement of new windows. The window placement strategy has three binary options: Windows build horizontal rows or vertical columns (potentially) Windows are placed from left to right or right to left Windows are placed from top to bottom or bottom to top Why is the algorithm a problem? It needs to operate to the deadlines of a real time thread in an audio application. At this moment I am only concerned with getting a fast algorithm, don't concern yourself over the implications of real time threads and all the hurdles in programming that that brings. So far I have two choices which I have built loose prototypes for: 1) A port of the Fluxbox placement algorithm into my code. The problem with this is, the client (my program) gets kicked out of the audio server (JACK) when I try placing the worst case scenario of 256 blocks using the algorithm. This algorithm performs over 14000 full (linear) scans of the list of blocks already placed when placing the 256th window. 2) My alternative approach. Only partially implemented, this approach uses a data structure for each area of rectangular free unused space (the list of windows can be entirely separate, and is not required for testing of this algorithm). The data structure acts as a node in a doubly linked list (with sorted insertion), as well as containing the coordinates of the top-left corner, and the width and height. Furthermore, each block data structure also contains four links which connect to each immediately adjacent (touching) block on each of the four sides. IMPORTANT RULE: Each block may only touch with one block per side. The problem with this approach is, it's very complex. I have implemented the straightforward cases where 1) space is removed from one corner of a block, 2) splitting neighbouring blocks so that the IMPORTANT RULE is adhered to. The less straightforward case, where the space to be removed can only be found within a column or row of boxes, is only partially implemented - if one of the blocks to be removed is an exact fit for width (ie column) or height (ie row) then problems occur. And don't even mention the fact this only checks columns one box wide, and rows one box tall. I've implemented this algorithm in C - the language I am using for this project (I've not used C++ for a few years and am uncomfortable using it after having focused all my attention to C development, it's a hobby). The implementation is 700+ lines of code (including plenty of blank lines, brace lines, comments etc). The implementation only works for the horizontal-rows + left-right + top-bottom placement strategy. So I've either got to add some way of making this +700 lines of code work for the other 7 placement strategy options, or I'm going to have to duplicate those +700 lines of code for the other seven options. Neither of these is attractive, the first, because the existing code is complex enough, the second, because of bloat. The algorithm is not even at a stage where I can use it in the real time worst case scenario, because of missing functionality, so I still don't know if it actually performs better or worse than the first approach. What else is there? I've skimmed over and discounted: Bin Packing algorithms: their emphasis on optimal fit does not match the requirements of this algorithm. Recursive Bisection Placement algorithms: sounds promising, but these are for circuit design. Their emphasis is optimal wire length. Both of these, especially the latter, all elements to be placed/packs are known before the algorithm begins. I need an algorithm which works accumulatively with what it is given to do when it is told to do it. What are your thoughts on this? How would you approach it? What other algorithms should I look at? Or even what concepts should I research seeing as I've not studied computer science/software engineering? Please ask questions in comments if further information is needed. [edit] If it makes any difference, the units for the coordinates will not be pixels. The units are unimportant, but the grid where windows/blocks/whatever can be placed will be 127 x 127 units.

    Read the article

  • Slick2d/Nifty-gui input

    - by eerongal
    I'm trying to get input from slick2d into nifty gui. Ive searched online, and I've seen a few examples, but I can't seem to get it working right. i've tried the example on here but I can't seem to get everything working. I'm not entirely sure what I'm doing wrong. I've also looked at examples using the JMonkeyEngine to help point me in the right direction, but still having issues with input. I can get everything else working like i need. Here's the code for my element controller: package gui; import java.util.Properties; import de.lessvoid.nifty.Nifty; import de.lessvoid.nifty.controls.Controller; import de.lessvoid.nifty.elements.Element; import de.lessvoid.nifty.input.NiftyInputEvent; import de.lessvoid.nifty.screen.Screen; import de.lessvoid.xml.xpp3.Attributes; public class BaseElementController implements Controller { private Element element; public void bind(Nifty arg0, Screen arg1, Element arg2, Properties arg3, Attributes arg4) { this.element = element; } public void init(Properties arg0, Attributes arg1) { // TODO Auto-generated method stub } public boolean inputEvent(NiftyInputEvent arg0) { // TODO Auto-generated method stub return false; } public void onFocus(boolean arg0) { // TODO Auto-generated method stub } public void onStartScreen() { // TODO Auto-generated method stub } public void test() { System.out.println("test"); } public void bam() { System.out.println("bam"); } } Here's my XML file: <?xml version="1.0" encoding="UTF-8" standalone="no"?> <nifty> <useStyles filename="nifty-default-styles.xml"/> <useControls filename="nifty-default-controls.xml"/> <screen id="screen2" controller="gui.BaseScreenController"> <layer backgroundColor="#fff0" childLayout="absolute" id="layer4" controller="gui.BaseElementController"> <panel childLayout="center" height="30%" id="panel1" style="nifty-panel-simple" width="50%" x="282" y="334" controller="gui.BaseElementController"> <control id="checkbox1" name="checkbox"/> <control childLayout="center" id="button2" label="button2" name="button" x="381" y="224" visibleToMouse="true" controller="gui.BaseElementController"> <interact onClick="bam()"/> </control> </panel> <text text="${CALL.getPlayerName()}" style="nifty-label" width="100%" height="100%" x="0" y="10" /> </layer> </screen> </nifty> Here's how I'm trying to bind the controller: public void init(GameContainer gc) throws SlickException { Input input = gc.getInput(); inputSystem = new PlainSlickInputSystem(); inputSystem.setInput(input); gui = new Gui(); gui.init(gc, inputSystem, "gui/tset.xml", "screen2"); input.removeListener(this); input.removeListener(inputSystem); input.addListener(inputSystem); } Essentially, all that happens right now is the screen loads up and displays, and it grabs the variable correctly in the label, but none of the input seems to be getting forwarded to Nifty from slick. I assume there's something I'm missing, but I can't seem to figure out what that is. In so far as what I have tried, I attempted to define a custom input listener to pick up events and assign that to my game in order to pick up input, which did not work, so i dropped that implementation, at current i'm trying to take the default inputs and bind then with a PlainSlickInputSystem and assigning that to the input (as shown in the first example link). On code execution, all the code is hit, and i've put several system.out.println's to get ouput of what is happening (the code above has been cleaned for presentation), and i even see the elements getting bound to the controller, yet it doesn't pick up controller events. As far as EXACTLY what's wrong, that I don't know, because I've followed all implementations i can find of this, and none of them seem to do anything it's like the input is just getting thrown out. None of the objects from niftyGui appear to be recognizing any input. Here is the binding from my objects at run time: ******INITIALIZED SCREEN: de.lessvoid.nifty.screen.Screen@4a1ab1c1 ******INITIALIZED ELEMENT: button2 (de.lessvoid.nifty.elements.Element@1e8c1be9) ******INITIALIZED ELEMENT: focusable => true, width => 100px {nifty-button#panel}, backgroundImage => button/button.png {nifty-button#panel}, label => button2, paddingLeft => 7px {nifty-button#panel}, imageMode => sprite-resize:100,23,0,2,96,2,2,2,96,2,19,2,96,2,2 {nifty-button#panel}, paddingRight => 7px {nifty-button#panel}, id => button2, visibleToMouse => true, height => 23px {nifty-button#panel}, style => nifty-button, name => button, inputMapping => de.lessvoid.nifty.input.mapping.MenuInputMapping, childLayout => center, controller => gui.BaseElementController, y => 224, x => 381 ******INITIALIZED SCREEN: de.lessvoid.nifty.screen.Screen@4a1ab1c1 ******INITIALIZED ELEMENT: panel1 (de.lessvoid.nifty.elements.Element@373ec894) ******INITIALIZED ELEMENT: id => panel1, height => 30%, style => nifty-panel-simple, width => 50%, backgroundImage => panel/nifty-panel-simple.png {nifty-panel-simple}, controller => gui.BaseElementController, childLayout => center, padding => 5px {nifty-panel-simple}, imageMode => resize:9,2,9,9,9,2,9,2,9,2,9,9 {nifty-panel-simple}, y => 334, x => 282 ******INITIALIZED SCREEN: de.lessvoid.nifty.screen.Screen@4a1ab1c1 ******INITIALIZED ELEMENT: layer4 (de.lessvoid.nifty.elements.Element@6427d489) ******INITIALIZED ELEMENT: id => layer4, backgroundColor => #fff0, controller => gui.BaseElementController, childLayout => absolute the button2 object is getting bound to my BaseElementController, but i can't seem to get it into the defined "onClick" call.

    Read the article

  • How to free up space on /boot? [closed]

    - by Phrogz
    Possible Duplicate: Free up more space on /boot I logged onto my server today to find the message: => /boot is using 98.9% of 91MB When I look at /boot I see that it is indeed very low on space, and has old-kernel files in it: phrogz@planar:~$ df -h /boot Filesystem Size Used Avail Use% Mounted on /dev/sda1 92M 54M 33M 63% /boot phrogz@planar:~$ la /boot total 81880 drwxr-xr-x 4 root root 3072 2011-12-02 06:26 ./ drwxr-xr-x 22 root root 4096 2011-09-29 06:37 ../ -rw-r--r-- 1 root root 646419 2011-03-01 19:02 abi-2.6.32-30-server -rw-r--r-- 1 root root 646419 2011-04-08 17:07 abi-2.6.32-31-server -rw-r--r-- 1 root root 646454 2011-04-20 16:53 abi-2.6.32-32-server -rw-r--r-- 1 root root 646454 2011-07-29 16:07 abi-2.6.32-33-server -rw-r--r-- 1 root root 646710 2011-09-13 18:00 abi-2.6.32-34-server -rw-r--r-- 1 root root 646820 2011-10-11 11:10 abi-2.6.32-35-server -rw-r--r-- 1 root root 110687 2011-03-01 19:02 config-2.6.32-30-server -rw-r--r-- 1 root root 110676 2011-04-08 17:07 config-2.6.32-31-server -rw-r--r-- 1 root root 110687 2011-04-20 16:53 config-2.6.32-32-server -rw-r--r-- 1 root root 110687 2011-07-29 16:07 config-2.6.32-33-server -rw-r--r-- 1 root root 110687 2011-09-13 18:00 config-2.6.32-34-server -rw-r--r-- 1 root root 110687 2011-10-11 11:10 config-2.6.32-35-server drwxr-xr-x 3 root root 6144 2011-12-02 06:26 grub/ -rw-r--r-- 1 root root 8258196 2011-05-18 11:58 initrd.img-2.6.32-30-server -rw-r--r-- 1 root root 8259568 2011-05-23 20:24 initrd.img-2.6.32-31-server -rw-r--r-- 1 root root 8257374 2011-05-30 07:47 initrd.img-2.6.32-32-server -rw-r--r-- 1 root root 8287489 2011-08-10 06:37 initrd.img-2.6.32-33-server -rw-r--r-- 1 root root 8288075 2011-09-29 06:37 initrd.img-2.6.32-34-server drwx------ 2 root root 12288 2011-05-18 11:46 lost+found/ -rw-r--r-- 1 root root 160280 2010-03-23 03:40 memtest86+.bin -rw-r--r-- 1 root root 2179117 2011-03-01 19:02 System.map-2.6.32-30-server -rw-r--r-- 1 root root 2179628 2011-04-08 17:07 System.map-2.6.32-31-server -rw-r--r-- 1 root root 2178240 2011-04-20 16:53 System.map-2.6.32-32-server -rw-r--r-- 1 root root 2178382 2011-07-29 16:07 System.map-2.6.32-33-server -rw-r--r-- 1 root root 2178952 2011-09-13 18:00 System.map-2.6.32-34-server -rw-r--r-- 1 root root 2179333 2011-10-11 11:10 System.map-2.6.32-35-server -rw-r--r-- 1 root root 1336 2011-03-01 19:08 vmcoreinfo-2.6.32-30-server -rw-r--r-- 1 root root 1336 2011-04-08 17:13 vmcoreinfo-2.6.32-31-server -rw-r--r-- 1 root root 1336 2011-04-20 16:54 vmcoreinfo-2.6.32-32-server -rw-r--r-- 1 root root 1336 2011-07-29 16:08 vmcoreinfo-2.6.32-33-server -rw-r--r-- 1 root root 1336 2011-09-13 18:03 vmcoreinfo-2.6.32-34-server -rw-r--r-- 1 root root 1336 2011-10-11 11:11 vmcoreinfo-2.6.32-35-server -rw-r--r-- 1 root root 4111552 2011-03-01 19:02 vmlinuz-2.6.32-30-server -rw-r--r-- 1 root root 4113344 2011-04-08 17:07 vmlinuz-2.6.32-31-server -rw-r--r-- 1 root root 4106528 2011-04-20 16:53 vmlinuz-2.6.32-32-server -rw-r--r-- 1 root root 4107648 2011-07-29 16:07 vmlinuz-2.6.32-33-server -rw-r--r-- 1 root root 4108960 2011-09-13 18:00 vmlinuz-2.6.32-34-server -rw-r--r-- 1 root root 4111040 2011-10-11 11:10 vmlinuz-2.6.32-35-server I was able to find the old kernel packages like so: phrogz@planar:/boot$ dpkg -l | grep linux-image ii linux-image-2.6.32-30-server 2.6.32-30.59 Linux kernel image for version 2.6.32 on x86 ii linux-image-2.6.32-31-server 2.6.32-31.61 Linux kernel image for version 2.6.32 on x86 ii linux-image-2.6.32-32-server 2.6.32-32.62 Linux kernel image for version 2.6.32 on x86 ii linux-image-2.6.32-33-server 2.6.32-33.72 Linux kernel image for version 2.6.32 on x86 ii linux-image-2.6.32-34-server 2.6.32-34.77 Linux kernel image for version 2.6.32 on x86 iF linux-image-2.6.32-35-server 2.6.32-35.78 Linux kernel image for version 2.6.32 on x86 iU linux-image-server 2.6.32.36.42 Linux kernel image on Server Equipment. …and I can see that many of them are older than my current image: phrogz@planar:/boot$ uname -a Linux planar 2.6.32-34-server #77-Ubuntu SMP Tue Sep 13 20:54:38 UTC 2011 x86_64 GNU/Linux However, I can't actually remove them due to an unmet dependency: phrogz@planar:/boot$ sudo apt-get --purge remove linux-image-2.6.32-30-server Reading package lists... Done Building dependency tree Reading state information... Done You might want to run `apt-get -f install' to correct these: The following packages have unmet dependencies: linux-image-server: Depends: linux-image-2.6.32-36-server but it is not going to be installed E: Unmet dependencies. Try 'apt-get -f install' with no packages (or specify a solution). But I can't fix the dependency (presumably due to low disk space): phrogz@planar:/boot$ sudo apt-get -f install Reading package lists... Done Building dependency tree Reading state information... Done Correcting dependencies... Done The following packages were automatically installed and are no longer required: liblcms1 linux-headers-2.6.32-32-server libnspr4-0d linux-headers-2.6.32-33-server linux-headers-2.6.32-32 linux-headers-2.6.32-33 linux-headers-2.6.32-34 libcups2 tzdata-java libjpeg62 linux-headers-2.6.32-34-server libavahi-client3 ca-certificates-java libnss3-1d Use 'apt-get autoremove' to remove them. The following extra packages will be installed: linux-image-2.6.32-36-server Suggested packages: fdutils linux-doc-2.6.32 linux-source-2.6.32 linux-tools The following NEW packages will be installed: linux-image-2.6.32-36-server 0 upgraded, 1 newly installed, 0 to remove and 8 not upgraded. 3 not fully installed or removed. Need to get 0B/31.8MB of archives. After this operation, 128MB of additional disk space will be used. Do you want to continue [Y/n]? (Reading database ... 145200 files and directories currently installed.) Unpacking linux-image-2.6.32-36-server (from .../linux-image-2.6.32-36-server_2.6.32-36.79_amd64.deb) ... Done. dpkg: error processing /var/cache/apt/archives/linux-image-2.6.32-36-server_2.6.32-36.79_amd64.deb (--unpack): failed in buffer_write(fd) (10, ret=-1): backend dpkg-deb during `./boot/vmlinuz-2.6.32-36-server': No space left on device dpkg-deb: subprocess paste killed by signal (Broken pipe) Running postrm hook script /usr/sbin/update-grub. Generating grub.cfg ... Found linux image: /boot/vmlinuz-2.6.32-35-server Found linux image: /boot/vmlinuz-2.6.32-34-server Found initrd image: /boot/initrd.img-2.6.32-34-server Found linux image: /boot/vmlinuz-2.6.32-33-server Found initrd image: /boot/initrd.img-2.6.32-33-server Found linux image: /boot/vmlinuz-2.6.32-32-server Found initrd image: /boot/initrd.img-2.6.32-32-server Found linux image: /boot/vmlinuz-2.6.32-31-server Found initrd image: /boot/initrd.img-2.6.32-31-server Found linux image: /boot/vmlinuz-2.6.32-30-server Found initrd image: /boot/initrd.img-2.6.32-30-server Found memtest86+ image: /memtest86+.bin done Errors were encountered while processing: /var/cache/apt/archives/linux-image-2.6.32-36-server_2.6.32-36.79_amd64.deb E: Sub-process /usr/bin/dpkg returned an error code (1) How do I free up space on /boot so that I can fix my dependencies? Should I just delete the files manually? And then, should I resize my /boot to be larger, so this doesn't happen again? If so, how? If not, what maintenance should I be running regularly to prevent the accumulation of this cruft?

    Read the article

  • You Say You Want a (Customer Experience) Revolution

    - by Christie Flanagan
    Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} rev-o-lu-tion [rev-uh-loo-shuhn] noun 1. a sudden, radical or complete change 2. fundamental change in the way of thinking about or visualizing something; a change of paradigm 3. a changeover in use or preference especially in technology <the computer revolution> Lately, I've been hearing an awful lot about the customer experience revolution.  Tonight Oracle will be hosting The Experience Revolution, an evening of exploration and networking with customer experience executives in New York City where Oracle President Mark Hurd will introduce Oracle Customer Experience, a cross-stack suite of customer experience products that includes Oracle WebCenter and a number of other Oracle technologies. Then on Tuesday and Wednesday, the Forrester Customer Experience Forum East also kicks off in New York City where they'll examine how businesses can "reap the full business benefits of the customer experience revolution." So, are we in the midst of a customer experience revolution? As a consumer, I can answer that question with a definitive “yes.” When I bought my very first car, I had a lot of questions. How do I know if I’m paying a fair price? How do I know if this dealer is honest? Why do I have to sit through these good cop, bad cop shenanigans between sales and sales management at the dealership? Why do I feel like I’m doing these people a favor by giving them my business? In the end the whole experience left me feeling deeply unsatisfied. I didn’t feel that I held all that much power over the experience and the only real negotiating trick I had was to walk out, which I did, many times before actually making a purchase. Fast forward to a year ago and I found myself back in the market for a new car. The very first car that I bought had finally kicked the bucket after many years, many repair bills, and much wear and tear. Man, I had loved that car. It was time to move on, but I had a knot in my stomach when I reflected back on my last car purchase experience and dreaded the thought of going through that again. Could that have been the reason why I drove my old car for so long? But as I started the process of researching new cars, I started to feel really confident. I had a wealth of online information that helped me in my search. I went to Edmunds and plugged in some information on my preferences and left with a short list of vehicles. After an afternoon spent test driving the cars my short list, I had determined my favorite – it was a model I didn’t even know about until my research on Edmunds! But I didn’t want to go back to the dealership where I test drove it. They were clearly old school and wanted me to buy the way that they wanted to sell. No thanks! After that I went back online. I figured out exactly what people had paid for this car in my area. I found out what kind of discount others were able to negotiate from an online community forum dedicated to the make and model. I found out how the sales people were being incentivized by the manufacturer that month. I learned which dealers had the best ratings and reviews. This was actually getting exciting. I was feeling really empowered. My next step was to request online quotes from the some of the highest rated dealers but I already knew exactly how much I was going to pay. This was really a test for the dealers. My new mantra was “let he who delivers the best customer experience win.” An inside sales rep from one dealer responded to my quote request within a couple of hours. I told him I had already decided on the make and model and it was just a matter of figuring out who I would buy it from. I also told them that I was really busy and wouldn’t set foot in the dealership unless we had come to terms beforehand. Lastly, I let him know that I’d prefer to work out the details via email. He promised to get back to me shortly with a detailed quote. Over the next few days I received calls from other dealers. One asked me a host of questions that I had already answered in their lengthy online form. Another blamed their website performance issues for their delay in responding to my request. But by then it didn’t really matter because I’d already bought the car days before from the dealer who responded to me first and who was willing to adjust their sales process to accommodate my buying one. So, yes, I really do believe we are in the midst of a customer experience revolution. And every revolution leaves some victorious and other vanquished. Which side do you want to be on when it comes to the customer experience revolution?

    Read the article

  • Anatomy of a .NET Assembly - PE Headers

    - by Simon Cooper
    Today, I'll be starting a look at what exactly is inside a .NET assembly - how the metadata and IL is stored, how Windows knows how to load it, and what all those bytes are actually doing. First of all, we need to understand the PE file format. PE files .NET assemblies are built on top of the PE (Portable Executable) file format that is used for all Windows executables and dlls, which itself is built on top of the MSDOS executable file format. The reason for this is that when .NET 1 was released, it wasn't a built-in part of the operating system like it is nowadays. Prior to Windows XP, .NET executables had to load like any other executable, had to execute native code to start the CLR to read & execute the rest of the file. However, starting with Windows XP, the operating system loader knows natively how to deal with .NET assemblies, rendering most of this legacy code & structure unnecessary. It still is part of the spec, and so is part of every .NET assembly. The result of this is that there are a lot of structure values in the assembly that simply aren't meaningful in a .NET assembly, as they refer to features that aren't needed. These are either set to zero or to certain pre-defined values, specified in the CLR spec. There are also several fields that specify the size of other datastructures in the file, which I will generally be glossing over in this initial post. Structure of a PE file Most of a PE file is split up into separate sections; each section stores different types of data. For instance, the .text section stores all the executable code; .rsrc stores unmanaged resources, .debug contains debugging information, and so on. Each section has a section header associated with it; this specifies whether the section is executable, read-only or read/write, whether it can be cached... When an exe or dll is loaded, each section can be mapped into a different location in memory as the OS loader sees fit. In order to reliably address a particular location within a file, most file offsets are specified using a Relative Virtual Address (RVA). This specifies the offset from the start of each section, rather than the offset within the executable file on disk, so the various sections can be moved around in memory without breaking anything. The mapping from RVA to file offset is done using the section headers, which specify the range of RVAs which are valid within that section. For example, if the .rsrc section header specifies that the base RVA is 0x4000, and the section starts at file offset 0xa00, then an RVA of 0x401d (offset 0x1d within the .rsrc section) corresponds to a file offset of 0xa1d. Because each section has its own base RVA, each valid RVA has a one-to-one mapping with a particular file offset. PE headers As I said above, most of the header information isn't relevant to .NET assemblies. To help show what's going on, I've created a diagram identifying all the various parts of the first 512 bytes of a .NET executable assembly. I've highlighted the relevant bytes that I will refer to in this post: Bear in mind that all numbers are stored in the assembly in little-endian format; the hex number 0x0123 will appear as 23 01 in the diagram. The first 64 bytes of every file is the DOS header. This starts with the magic number 'MZ' (0x4D, 0x5A in hex), identifying this file as an executable file of some sort (an .exe or .dll). Most of the rest of this header is zeroed out. The important part of this header is at offset 0x3C - this contains the file offset of the PE signature (0x80). Between the DOS header & PE signature is the DOS stub - this is a stub program that simply prints out 'This program cannot be run in DOS mode.\r\n' to the console. I will be having a closer look at this stub later on. The PE signature starts at offset 0x80, with the magic number 'PE\0\0' (0x50, 0x45, 0x00, 0x00), identifying this file as a PE executable, followed by the PE file header (also known as the COFF header). The relevant field in this header is in the last two bytes, and it specifies whether the file is an executable or a dll; bit 0x2000 is set for a dll. Next up is the PE standard fields, which start with a magic number of 0x010b for x86 and AnyCPU assemblies, and 0x20b for x64 assemblies. Most of the rest of the fields are to do with the CLR loader stub, which I will be covering in a later post. After the PE standard fields comes the NT-specific fields; again, most of these are not relevant for .NET assemblies. The one that is is the highlighted Subsystem field, and specifies if this is a GUI or console app - 0x20 for a GUI app, 0x30 for a console app. Data directories & section headers After the PE and COFF headers come the data directories; each directory specifies the RVA (first 4 bytes) and size (next 4 bytes) of various important parts of the executable. The only relevant ones are the 2nd (Import table), 13th (Import Address table), and 15th (CLI header). The Import and Import Address table are only used by the startup stub, so we will look at those later on. The 15th points to the CLI header, where the CLR-specific metadata begins. After the data directories comes the section headers; one for each section in the file. Each header starts with the section's ASCII name, null-padded to 8 bytes. Again, most of each header is irrelevant, but I've highlighted the base RVA and file offset in each header. In the diagram, you can see the following sections: .text: base RVA 0x2000, file offset 0x200 .rsrc: base RVA 0x4000, file offset 0xa00 .reloc: base RVA 0x6000, file offset 0x1000 The .text section contains all the CLR metadata and code, and so is by far the largest in .NET assemblies. The .rsrc section contains the data you see in the Details page in the right-click file properties page, but is otherwise unused. The .reloc section contains address relocations, which we will look at when we study the CLR startup stub. What about the CLR? As you can see, most of the first 512 bytes of an assembly are largely irrelevant to the CLR, and only a few bytes specify needed things like the bitness (AnyCPU/x86 or x64), whether this is an exe or dll, and the type of app this is. There are some bytes that I haven't covered that affect the layout of the file (eg. the file alignment, which determines where in a file each section can start). These values are pretty much constant in most .NET assemblies, and don't affect the CLR data directly. Conclusion To summarize, the important data in the first 512 bytes of a file is: DOS header. This contains a pointer to the PE signature. DOS stub, which we'll be looking at in a later post. PE signature PE file header (aka COFF header). This specifies whether the file is an exe or a dll. PE standard fields. This specifies whether the file is AnyCPU/32bit or 64bit. PE NT-specific fields. This specifies what type of app this is, if it is an app. Data directories. The 15th entry (at offset 0x168) contains the RVA and size of the CLI header inside the .text section. Section headers. These are used to map between RVA and file offset. The important one is .text, which is where all the CLR data is stored. In my next post, we'll start looking at the metadata used by the CLR directly, which is all inside the .text section.

    Read the article

  • class hierarchy design for small java project

    - by user523956
    I have written a java code which does following:- Main goal is to fetch emails from (inbox, spam) folders and store them in database. It fetches emails from gmail,gmx,web.de,yahoo and Hotmail. Following attributes are stored in mysql database. Slno, messagedigest, messageid, foldername, dateandtime, receiver, sender, subject, cc, size and emlfile. For gmail,gmy and web.de, I have used javamail API, because email form it can be fetched with IMAP. For yahoo and hotmail, I have used html parser and httpclient to fetch emails form spam folder and for inbox folder, I have used pop3 javamail API. I want to have proper class hierarchy which makes my code efficient and easily reusable. As of now I have designed class hierarchy as below: I am sure it can still be improved. So I would like to have different opinions on it. I have following classes and methods as of now. MainController:- Here I pass emailid, password and foldername from which emails have to be fetched. Abstract Class :-EmailProtocol Abstract Methods of it (All methods except executeParser contains method definition):- connectImap() // used by gmx,gmail and web.de email ids connectPop3() // used by hotmail and yahoo to fetch emails of inbox folder createMessageDigest // used by every email provider(gmx, gmail,web.de,yahoo,hotmail) establishDBConnection // used by every email emailAlreadyExists // used by every email which checks whether email already exists in db or not, if not then store it. storeemailproperties // used by every email to store emails properties to mysql database executeParser // nothing written in it. Overwridden and used by just hotmail and yahoo to fetch emails form spam folder. Imap extends EmailProtocol (nothing in it. But I have to have it to access methods of EmailProtocol. This is used to fetch emails from gmail,gmx and web.de) I know this is really a bad way but don't know how to do it other way. Hotmsil extends EmailProtocol Methods:- executeParser() :- This is used by just hotmail email id. fetchjunkemails() :- This is also very specific for only hotmail email id. Yahoo extends EmailProtocol Methods:- executeParser() storeEmailtotemptable() MoveEmailtoInbox() getFoldername() nullorEquals() All above methods are specific for yahoo email id. public DateTimeFormat(class) format() //this formats datetime of gmax,gmail and web.de emails. formatYahoodate //this formats datetime of yahoo email. formatHotmaildate // this formats datetime of hotmail email. public StringFormat ConvertStreamToString() // Accessed by every class except DateTimeFormat class. formatFromTo() // Accessed by every class except DateTimeFormat class. public Class CheckDatabaseExistance public static void checkForDatabaseTablesAvailability() (This method checks at the beginnning whether database and required tables exist in mysql or not. if not it creates them) Please see code of my MainController class so that You can have an idea about how I use different classes. public class MainController { public static void main(String[] args) throws Exception { ArrayList<String> web_de_folders = new ArrayList<String>(); web_de_folders.add("INBOX"); web_de_folders.add("Unbekannt"); web_de_folders.add("Spam"); web_de_folders.add("OUTBOX"); web_de_folders.add("SENT"); web_de_folders.add("DRAFTS"); web_de_folders.add("TRASH"); web_de_folders.add("Trash"); ArrayList<String> gmx_folders = new ArrayList<String>(); gmx_folders.add("INBOX"); gmx_folders.add("Archiv"); gmx_folders.add("Entwürfe"); gmx_folders.add("Gelöscht"); gmx_folders.add("Gesendet"); gmx_folders.add("Spamverdacht"); gmx_folders.add("Trash"); ArrayList<String> gmail_folders = new ArrayList<String>(); gmail_folders.add("Inbox"); gmail_folders.add("[Google Mail]/Spam"); gmail_folders.add("[Google Mail]/Trash"); gmail_folders.add("[Google Mail]/Sent Mail"); ArrayList<String> pop3_folders = new ArrayList<String>(); pop3_folders.add("INBOX"); CheckDatabaseExistance.checkForDatabaseTablesAvailability(); EmailProtocol imap = new Imap(); System.out.println("CHECKING FOR NEW EMAILS IN WEB.DE...(IMAP)"); System.out.println("*********************************************************************************"); imap.connectImap("[email protected]", "pwd", web_de_folders); System.out.println("\nCHECKING FOR NEW EMAILS IN GMX.DE...(IMAP)"); System.out.println("*********************************************************************************"); imap.connectImap("[email protected]", "pwd", gmx_folders); System.out.println("\nCHECKING FOR NEW EMAILS IN GMAIL...(IMAP)"); System.out.println("*********************************************************************************"); imap.connectImap("[email protected]", "pwd", gmail_folders); EmailProtocol yahoo = new Yahoo(); Yahoo y=new Yahoo(); System.out.println("\nEXECUTING YAHOO PARSER"); System.out.println("*********************************************************************************"); y.executeParser("http://de.mc1321.mail.yahoo.com/mc/welcome?ymv=0","[email protected]","pwd"); System.out.println("\nCHECKING FOR NEW EMAILS IN INBOX OF YAHOO (POP3)"); System.out.println("*********************************************************************************"); yahoo.connectPop3("[email protected]","pwd",pop3_folders); System.out.println("\nCHECKING FOR NEW EMAILS IN INBOX OF HOTMAIL (POP3)"); System.out.println("*********************************************************************************"); yahoo.connectPop3("[email protected]","pwd",pop3_folders); EmailProtocol hotmail = new Hotmail(); Hotmail h=new Hotmail(); System.out.println("\nEXECUTING HOTMAIL PARSER"); System.out.println("*********************************************************************************"); h.executeParser("https://login.live.com/ppsecure/post.srf","[email protected]","pwd"); } } I have kept DatetimeFormat and StringFormat class public so that I can access its public methods by just (DatetimeFormat.formatYahoodate for e.g. from different methods). This is the first time I have developed something in java. It serves its purpose but of course code is still not so efficient I think. I need your suggestions on this project.

    Read the article

  • Can Microsoft Build Appliances?

    - by andrewbrust
    Billy Hollis, my Visual Studio Live! colleague and fellow Microsoft Regional Director said recently, and I am paraphrasing, that the computing world, especially on the consumer side, has shifted from one of building hardware and software that makes things possible to do, to building products and technologies that make things easy to do.  Billy crystalized things perfectly, as he often does. In this new world of “easy to do,” Apple has done very well and Microsoft has struggled.  In the old world, customers wanted a Swiss Army Knife, with the most gimmicks and gadgets possible.  In the new world, people want elegantly cutlery.  They may want cake cutters and utility knives too, but they don’t want one device that works for all three tasks.  People don’t want tools, they want utensils.  People don’t want machines.  They want appliances. Microsoft Appliances: They Do Exist Microsoft has built a few appliance-like devices.  I would say XBox 360 is an appliance,  It’s versatile, mind you, but it’s the kind of thing you plug in, turn on and use, as opposed to set-up, tune, and open up to upgrade the internals.  Windows Phone 7 is an appliance too.  It’s a true smartphone, unlike Windows Mobile which was a handheld computer with a radio stack.  Zune is an appliance too, and a nice one.  It hasn’t attained much traction in the market, but that’s probably because the seminal consumer computing appliance -- the iPod – got there so much more quickly. In the embedded world, Mediaroom, Microsoft’s set-top product for the cable industry (used by AT&T U-Verse and others) is an appliance.  So is Microsoft’s Sync technology, used in Ford automobiles.  Even on the enterprise side, Microsoft has an appliance: SQL Server Parallel Data Warehouse Edition (PDW) combines Microsoft software with select OEMs’ server, networking and storage hardware.  You buy the appliance units from the OEMs, plug them in, connect them and go. I would even say that Bing is an appliance.  Not in the hardware sense, mind you.  But from the software perspective, it’s a single-purpose product that you visit or run, use and then move on.  You don’t have to install it (except the iOS and Android native apps where it’s pretty straightforward), you don’t have to customize it, you don’t have to program it.  Basically, you just use it. Microsoft Appliances that Should Exist But Microsoft builds a bunch of things that are not appliances.  Media Center is not an appliance, and it most certainly should be.  Instead, it’s an app that runs on Windows 7.  It runs full-screen and you can use this configuration to conceal the fact that Windows is under it, but eventually something will cause you to abandon that masquerade (like Patch Tuesday). The next version of Windows Home Server won’t, in my opinion, be an appliance either.  Now that the Drive Extender technology is gone, and users can’t just add and remove drives into and from a single storage pool, the product is much more like a IT server and less like an appliance-premised one.  Much has been written about this decision by Microsoft.  I’ll just sum it up in one word: pity. Microsoft doesn’t have anything remotely appliance-like in the tablet category, either.  Until it does, it likely won’t have much market share in that space either.  And of course, the bulk of Microsoft’s product catalog on the business side is geared to enterprise machines and not personal appliances. Appliance DNA: They Gotta Have It. The consumerization of IT is real, because businesspeople are consumers too.  They appreciate the fit and finish of appliances at home, and they increasingly feel entitled to have it at work too.  Secure and reliable push email in a smartphone is necessary, but it isn’t enough.  People want great apps and a pleasurable user experience too.  The full Microsoft Office product is needed at work, but a PC with a keyboard and mouse, or maybe a touch screen that uses a stylus (or requires really small fingers), to run Office isn’t enough either.  People want a flawless touch experience available for the times they want to read and take quick notes.  Until Microsoft realizes this fully and internalizes it, it will suffer defeats in the consumer market and even setbacks in the business market.  Think about how slow the Office upgrade cycle is…now imagine if the next version of Office had a first-class alternate touch UI and consider the possible acceleration in adoption rates. Can Microsoft make the appliance switch?  Can the appliance mentality become pervasive at the company?  Can Microsoft hasten its release cycles dramatically and shed the “some assembly required” paradigm upon which many of its products are based?  Let’s face it, the chances that Microsoft won’t make this transition are significant. But there are also encouraging signs, and they should not be ignored.  The appliances we have already discussed, especially Xbox, Zune and Windows Phone 7, are the most obvious in this regard.  The fact that SQL Server has an appliance SKU now is a more subtle but perhaps also more significant outcome, because that product sits so smack in the middle of Microsoft’s enterprise stack.  Bing is encouraging too, especially given its integrated travel, maps and augmented reality capabilities.  As Bing gains market share, Microsoft has tangible proof that it can transform and win, even when everyone outside the company, and many within it, would bet otherwise. That Great Big Appliance in the Sky Perhaps the most promising (and evolving) proof points toward the appliance mentality, though, are Microsoft’s cloud offerings -- Azure and BPOS/Office 365.  While the cloud does not represent a physical appliance (quite the opposite in fact) its ability to make acquisition, deployment and use of technology simple for the user is absolutely an embodiment of the appliance mentality and spirit.  Azure is primarily a platform as a service offering; it doesn’t just provide infrastructure.  SQL Azure does likewise for databases.  And Office 365 does likewise for SharePoint, Exchange and Lync. You don’t administer, tune and manage servers; instead, you create databases or site collections or mailboxes and start using them. Upgrades come automatically, and it seems like releases will come more frequently.  Fault tolerance and content distribution is just there.  No muss.  No fuss.  You use these services; you don’t have to set them up and think about them.  That’s how appliances work.  To me, these signs point out that Microsoft has the full capability of transforming itself.  But there’s a lot of work ahead.  Microsoft may say they’re “all in” on the cloud, but the majority of the company is still oriented around its old products and models.  There needs to be a wholesale cultural transformation in Redmond.  It can happen, but product management, program management, the field and executive ranks must unify in the effort. So must partners, and even customers.  New leaders must rise up and Microsoft must be able to see itself as a winner.  If Microsoft does this, it could lock-in decades of new success, and be a standard business school case study for doing so.  If not, the company will have missed an opportunity, and may see its undoing.

    Read the article

  • AIX Checklist for stable obiee deployment

    - by user554629
    Common AIX configuration issues     ( last updated 27 Aug 2012 ) OBIEE is a complicated system with many moving parts and connection points.The purpose of this article is to provide a checklist to discuss OBIEE deployment with your systems administrators. The information in this article is time sensitive, and updated as I discover new  issues or details. What makes OBIEE different? When Tech Support suggests AIX component upgrades to a stable, locked-down production AIX environment, it is common to get "push back".  "Why is this necessary?  We aren't we seeing issues with other software?"It's a fair question that I have often struggled to answer; here are the talking points: OBIEE is memory intensive.  It is the entire purpose of the software to trade memory for repetitive, more expensive database requests across a network. OBIEE is implemented in C++ and is very dependent on the C++ runtime to behave correctly. OBIEE is aggressively thread efficient;  if atomic operations on a particular architecture do not work correctly, the software crashes. OBIEE dynamically loads third-party database client libraries directly into the nqsserver process.  If the library is not thread-safe, or corrupts process memory the OBIEE crash happens in an unrelated part of the code.  These are extremely difficult bugs to find. OBIEE software uses 99% common source across multiple platforms:  Windows, Linux, AIX, Solaris and HPUX.  If a crash happens on only one platform, we begin to suspect other factors.  load intensity, system differences, configuration choices, hardware failures.  It is rare to have a single product require so many diverse technical skills.   My role in support is to understand system configurations, performance issues, and crashes.   An analyst trained in Business Analytics can't be expected to know AIX internals in the depth required to make configuration choices.  Here are some guidelines. AIX C++ Runtime must be at  version 11.1.0.4$ lslpp -L | grep xlC.aixobiee software will crash if xlC.aix.rte is downlevel;  this is not a "try it" suggestion.Nov 2011 11.1.0.4 version  is appropriate for all AIX versions ( 5, 6, 7 )Download from here:https://www-304.ibm.com/support/docview.wss?uid=swg24031426 No reboot is necessary to install, it can even be installed while applications are using the current version.Restart the apps, and they will pick up the latest version. AIX 5.3 Technology Level 12 is required when running on Power5,6,7 processorsAIX 6.1 was introduced with the newer Power chips, and we have seen no issues with 6.1 or 7.1 versions.Customers with an unstable deployment, dozens of unexplained crashes, became stable after the upgrade.If your AIX system is 5.3, the minimum TL level should be at or higher than this:$ oslevel -s  5300-12-03-1107IBM typically supports only the two latest versions of AIX ( 6.1 and 7.1, for example).  AIX 5.3 is still supported and popular running in an LPAR. obiee userid limits$ ulimit -Ha  ( hard limits )$ ulimit -a   ( default limits )core file size (blocks)     unlimiteddata seg size (kbytes)      unlimitedfile size (blocks)          unlimitedmax memory size (kbytes)    unlimitedopen files                  10240 cpu time (seconds)          unlimitedvirtual memory (kbytes)     unlimitedIt is best to establish the values in /etc/security/limitsroot user is needed to observe and modify this file.If you modify a limit, you will need to relog in to change it again.  For example,$ ulimit -c 0$ ulimit -c 2097151cannot modify limit: Operation not permitted$ ulimit -c unlimited$ ulimit -c0There are only two meaningful values for ulimit -c ; zero or unlimited.Anything else is likely to produce a truncated core file that cannot be analyzed. Deploy 32-bit or 64-bit ?Early versions of OBIEE offered 32-bit or 64-bit choice to AIX customers.The 32-bit choice was needed if a database vendor did not supply a 64-bit client library.That's no longer an issue and beginning with OBIEE 11, 32-bit code is no longer shipped.A common error that leads to "out of memory" conditions to to accept the 32-bit memory configuration choices on 64-bit deployments.  The significant configuration choices are: Maximum process data (heap) size is in an AIX environment variableLDR_CNTRL=IGNOREUNLOAD@LOADPUBLIC@PREREAD_SHLIB@MAXDATA=0x... Two thread stack sizes are made in obiee NQSConfig.INI[ SERVER ]SERVER_THREAD_STACK_SIZE = 0;DB_GATEWAY_THREAD_STACK_SIZE = 0; Sort memory in NQSConfig.INI[ GENERAL ]SORT_MEMORY_SIZE = 4 MB ;SORT_BUFFER_INCREMENT_SIZE = 256 KB ; Choosing a value for MAXDATA:0x080000000  2GB Default maximum 32-bit heap size ( 8 with 7 zeros )0x100000000  4GB 64-bit breaking even with 32-bit ( 1 with 8 zeros )0x200000000  8GB 64-bit double 32-bit max0x400000000 16GB 64-bit safetyUsing 2GB heap size for a 64-bit process will almost certainly lead to an out-of-memory situation.Registers are twice as big ... consume twice as much memory in the heap.Upgrading to a 4GB heap for a 64-bit process is just "breaking even" with 32-bit.A 32-bit process is constrained by the 32-bit virtual addressing limits.  Heap memory is used for dynamic requirements of obiee software, thread stacks for each of the configured threads, and sometimes for shared libraries. 64-bit processes are not constrained in this way;  extra heap space can be configured for safety against a query that might create a sudden requirement for excessive storage.  If the storage is not available, this query might crash the whole server and disrupt existing users.There is no performance penalty on AIX for configuring more memory than required;  extra memory can be configured for safety.  If there are no other considerations, start with 8GB.Choosing a value for Thread Stack size:zero is the value documented to select an appropriate default for thread stack size.  My preference is to change this to an absolute value, even if you intend to use the documented default;  it provides better documentation and removes the "surprise" factor.There are two thread types that can be configured. GATEWAY is used by a thread pool to call a database client library to establish a DB connection.The default size is 256KB;  many customers raise this to 512KB ( no performance penalty for over-configuring ). This value must be set to 1 MB if Teradata connections are used. SERVER threads are used to run queries.  OBIEE uses recursive algorithms during the analysis of query structures which can consume significant thread stack storage.  It's difficult to provide guidance on a value that depends on data and complexity.  The general notion is to provide more space than you think you need,  "double down" and increase the value if you run out, otherwise inspect the query to understand why it is too complex for the thread stack.  There are protections built into the software to abort a single user query that is too complex, but the algorithms don't cover all situations.256 KB  The default 32-bit stack size.  Many customers increased this to 512KB on 32-bit.  A 64-bit server is very likely to crash with this value;  the stack contains mostly register values, which are twice as big.512 KB  The documented 64-bit default.  Some early releases of obiee didn't set this correctly, resulting in 256KB stacks.1 MB  The recommended 64-bit setting.  If your system only ever uses 512KB of stack space, there is no performance penalty for using 1MB stack size.2 MB  Many large customers use this value for safety.  No performance penalty.nqscheduler does not use the NQSConfig.INI file to set thread stack size.If this process crashes because the thread stack is too small, use this to set 2MB:export OBI_BACKGROUND_STACK_SIZE=2048 Shared libraries are not (shared) When application libraries are loaded at run-time, AIX makes a decision on whether to load the libraries in a "public" memory segment.  If the filesystem library permissions do not have the "Read-Other" permission bit, AIX loads the library into private process memory with two significant side-effects:* The libraries reduce the heap storage available.      Might be significant in 32-bit processes;  irrelevant in 64-bit processes.* Library code is loaded into multiple real pages for execution;  one copy for each process.Multiple execution images is a significant issue for both 32- and 64-bit processes.The "real memory pages" saved by using public memory segments is a minor concern.  Today's machines typically have plenty of real memory.The real problem with private copies of libraries is that they consume processor cache blocks, which are limited.   The same library instructions executing in different real pages will cause memory delays as the i-cache ( instruction cache 128KB blocks) are refreshed from real memory.   Performance loss because instructions are delayed is something that is difficult to measure without access to low-level cache fault data.   The machine just appears to be running slowly for no observable reason.This is an easy problem to detect, and an easy problem to correct.Detection:  "genld -l" AIX command produces a list of the libraries used by each process and the AIX memory address where they are loaded.32-bit public segment is 13 ( "dxxxxxxx" ).   private segments are 2-a.64-bit public segment is 9 ( "9xxxxxxxxxxxxxxx") ; private segment is 8.genld -l | grep -v ' d| 9' | sort +2provides a list of privately loaded libraries. Repair: chmod o+r <libname>AIX shared libraries will have a suffix of ".so" or ".a".Another technique is to change all libraries in a selected directory to repair those that might not be currently loaded.   The usual directories that need repair are obiee code, httpd code and plugins, database client libraries and java.chmod o+r /shr/dir/*.a /shr/dir/*.so Configure your system for diagnosticsProduction systems shouldn't crash, and yet bad things happen to good software.If obiee software crashes and produces a core, you should configure your system for reliable transfer of the failing conditions to Oracle Tech Support.  Here's what we need to be able to diagnose a core file from your system.* fullcore enabled. chdev -lsys0 -a fullcore=true* core naming enabled. chcore -n on -d* ulimit must not truncate core. see item 3.* pstack.sh is used to capture core documentation.* obidoc is used to capture current AIX configuration.* snapcore  AIX utility captures core and libraries. Use the proper syntax. $ snapcore -r corename executable-fullpath   /tmp/snapcore will contain the .pax.Z output file.  It is compressed.* If cores are directed to a common directory, ensure obiee userid can write to the directory.  ( chcore -p /cores -d ; chmod 777 /cores )The filesystem must have sufficient space to hold a crashing obiee application.Use:  df -k  Check the "Free" column ( not "% Used" )  8388608 is 8GB. Disable Oracle Client Library signal handlingThe Oracle DB Client Library is frequently distributed with the sqlplus development kit.By default, the library enables a signal handler, which will document a call stack if the application crashes.   The signal handler is not needed, and definitely disruptive to obiee diagnostics.   It needs to be disabled.   sqlnet.ora is typically located at:   $ORACLE_HOME/network/admin/sqlnet.oraAdd this line at the top of the file:   DIAG_SIGHANDLER_ENABLED=FALSE Disable async query in the RPD connection pool.This might be an obiee 10.1.3.4 issue only ( still checking  )."async query" must be disabled in the connection pools.It was designed to enable query cancellation to a database, and turned out to have too many edge conditions in normal communication that produced random corruption of data and crashes.  Please ensure it is turned off in the RPD. Check AIX error report (errpt).Errors external to obiee applications can trigger crashes.  $ /bin/errpt -aHardware errors ( firmware, adapters, disks ) should be reported to IBM support.All application core files are recorded by AIX;  the most recent ones are listed first. Reserved for something important to say.

    Read the article

  • Custom Lookup Provider For NetBeans Platform CRUD Tutorial

    - by Geertjan
    For a long time I've been planning to rewrite the second part of the NetBeans Platform CRUD Application Tutorial to integrate the loosely coupled capabilities introduced in a seperate series of articles based on articles by Antonio Vieiro (a great series, by the way). Nothing like getting into the Lookup stuff right from the get go (rather than as an afterthought)! The question, of course, is how to integrate the loosely coupled capabilities in a logical way within that tutorial. Today I worked through the tutorial from scratch, up until the point where the prototype is completed, i.e., there's a JTextArea displaying data pulled from a database. That brought me to the place where I needed to be. In fact, as soon as the prototype is completed, i.e., the database connection has been shown to work, the whole story about Lookup.Provider and InstanceContent should be introduced, so that all the subsequent sections, i.e., everything within "Integrating CRUD Functionality" will be done by adding new capabilities to the Lookup.Provider. However, before I perform open heart surgery on that tutorial, I'd like to run the scenario by all those reading this blog who understand what I'm trying to do! (I.e., probably anyone who has read this far into this blog entry.) So, this is what I propose should happen and in this order: Point out the fact that right now the database access code is found directly within our TopComponent. Not good. Because you're mixing view code with data code and, ideally, the developers creating the user interface wouldn't need to know anything about the data access layer. Better to separate out the data access code into a separate class, within the CustomerLibrary module, i.e., far away from the module providing the user interface, with this content: public class CustomerDataAccess { public List<Customer> getAllCustomers() { return Persistence.createEntityManagerFactory("CustomerLibraryPU"). createEntityManager().createNamedQuery("Customer.findAll").getResultList(); } } Point out the fact that there is a concept of "Lookup" (which readers of the tutorial should know about since they should have followed the NetBeans Platform Quick Start), which is a registry into which objects can be published and to which other objects can be listening. In the same way as a TopComponent provides a Lookup, as demonstrated in the NetBeans Platform Quick Start, your own object can also provide a Lookup. So, therefore, let's provide a Lookup for Customer objects.  import org.openide.util.Lookup; import org.openide.util.lookup.AbstractLookup; import org.openide.util.lookup.InstanceContent; public class CustomerLookupProvider implements Lookup.Provider { private Lookup lookup; private InstanceContent instanceContent; public CustomerLookupProvider() { // Create an InstanceContent to hold capabilities... instanceContent = new InstanceContent(); // Create an AbstractLookup to expose the InstanceContent... lookup = new AbstractLookup(instanceContent); // Add a "Read" capability to the Lookup of the provider: //...to come... // Add a "Update" capability to the Lookup of the provider: //...to come... // Add a "Create" capability to the Lookup of the provider: //...to come... // Add a "Delete" capability to the Lookup of the provider: //...to come... } @Override public Lookup getLookup() { return lookup; } } Point out the fact that, in the same way as we can publish an object into the Lookup of a TopComponent, we can now also publish an object into the Lookup of our CustomerLookupProvider. Instead of publishing a String, as in the NetBeans Platform Quick Start, we'll publish an instance of our own type. And here is the type: public interface ReadCapability { public void read() throws Exception; } And here is an implementation of our type added to our Lookup: public class CustomerLookupProvider implements Lookup.Provider { private Set<Customer> customerSet; private Lookup lookup; private InstanceContent instanceContent; public CustomerLookupProvider() { customerSet = new HashSet<Customer>(); // Create an InstanceContent to hold capabilities... instanceContent = new InstanceContent(); // Create an AbstractLookup to expose the InstanceContent... lookup = new AbstractLookup(instanceContent); // Add a "Read" capability to the Lookup of the provider: instanceContent.add(new ReadCapability() { @Override public void read() throws Exception { ProgressHandle handle = ProgressHandleFactory.createHandle("Loading..."); handle.start(); customerSet.addAll(new CustomerDataAccess().getAllCustomers()); handle.finish(); } }); // Add a "Update" capability to the Lookup of the provider: //...to come... // Add a "Create" capability to the Lookup of the provider: //...to come... // Add a "Delete" capability to the Lookup of the provider: //...to come... } @Override public Lookup getLookup() { return lookup; } public Set<Customer> getCustomers() { return customerSet; } } Point out that we can now create a new instance of our Lookup (in some other module, so long as it has a dependency on the module providing the CustomerLookupProvider and the ReadCapability), retrieve the ReadCapability, and then do something with the customers that are returned, here in the rewritten constructor of the TopComponent, without needing to know anything about how the database access is actually achieved since that is hidden in the implementation of our type, above: public CustomerViewerTopComponent() { initComponents(); setName(Bundle.CTL_CustomerViewerTopComponent()); setToolTipText(Bundle.HINT_CustomerViewerTopComponent()); // EntityManager entityManager = Persistence.createEntityManagerFactory("CustomerLibraryPU").createEntityManager(); // Query query = entityManager.createNamedQuery("Customer.findAll"); // List<Customer> resultList = query.getResultList(); // for (Customer c : resultList) { // jTextArea1.append(c.getName() + " (" + c.getCity() + ")" + "\n"); // } CustomerLookupProvider lookup = new CustomerLookupProvider(); ReadCapability rc = lookup.getLookup().lookup(ReadCapability.class); try { rc.read(); for (Customer c : lookup.getCustomers()) { jTextArea1.append(c.getName() + " (" + c.getCity() + ")" + "\n"); } } catch (Exception ex) { Exceptions.printStackTrace(ex); } } Does the above make as much sense to others as it does to me, including the naming of the classes? Feedback would be appreciated! Then I'll integrate into the tutorial and do the same for the other sections, i.e., "Create", "Update", and "Delete". (By the way, of course, the tutorial ends up showing that, rather than using a JTextArea to display data, you can use Nodes and explorer views to do so.)

    Read the article

  • How to merge two different Makefiles?

    - by martijnn2008
    I have did some reading on "Merging Makefiles", one suggest I should leave the two Makefiles separate in different folders [1]. For me this look counter intuitive, because I have the following situation: I have 3 source files (main.cpp flexibility.cpp constraints.cpp) one of them (flexibility.cpp) is making use of the COIN-OR Linear Programming library (Clp) When installing this library on my computer it makes sample Makefiles, which I have adjust the Makefile and it currently makes a good working binary. # Copyright (C) 2006 International Business Machines and others. # All Rights Reserved. # This file is distributed under the Eclipse Public License. # $Id: Makefile.in 726 2006-04-17 04:16:00Z andreasw $ ########################################################################## # You can modify this example makefile to fit for your own program. # # Usually, you only need to change the five CHANGEME entries below. # ########################################################################## # To compile other examples, either changed the following line, or # add the argument DRIVER=problem_name to make DRIVER = main # CHANGEME: This should be the name of your executable EXE = clp # CHANGEME: Here is the name of all object files corresponding to the source # code that you wrote in order to define the problem statement OBJS = $(DRIVER).o constraints.o flexibility.o # CHANGEME: Additional libraries ADDLIBS = # CHANGEME: Additional flags for compilation (e.g., include flags) ADDINCFLAGS = # CHANGEME: Directory to the sources for the (example) problem definition # files SRCDIR = . ########################################################################## # Usually, you don't have to change anything below. Note that if you # # change certain compiler options, you might have to recompile the # # COIN package. # ########################################################################## COIN_HAS_PKGCONFIG = TRUE COIN_CXX_IS_CL = #TRUE COIN_HAS_SAMPLE = TRUE COIN_HAS_NETLIB = #TRUE # C++ Compiler command CXX = g++ # C++ Compiler options CXXFLAGS = -O3 -pipe -DNDEBUG -pedantic-errors -Wparentheses -Wreturn-type -Wcast-qual -Wall -Wpointer-arith -Wwrite-strings -Wconversion -Wno-unknown-pragmas -Wno-long-long -DCLP_BUILD # additional C++ Compiler options for linking CXXLINKFLAGS = -Wl,--rpath -Wl,/home/martijn/Downloads/COIN/coin-Clp/lib # C Compiler command CC = gcc # C Compiler options CFLAGS = -O3 -pipe -DNDEBUG -pedantic-errors -Wimplicit -Wparentheses -Wsequence-point -Wreturn-type -Wcast-qual -Wall -Wno-unknown-pragmas -Wno-long-long -DCLP_BUILD # Sample data directory ifeq ($(COIN_HAS_SAMPLE), TRUE) ifeq ($(COIN_HAS_PKGCONFIG), TRUE) CXXFLAGS += -DSAMPLEDIR=\"`PKG_CONFIG_PATH=/home/martijn/Downloads/COIN/coin-Clp/lib64/pkgconfig:/home/martijn/Downloads/COIN/coin-Clp/lib/pkgconfig:/home/martijn/Downloads/COIN/coin-Clp/share/pkgconfig: pkg-config --variable=datadir coindatasample`\" CFLAGS += -DSAMPLEDIR=\"`PKG_CONFIG_PATH=/home/martijn/Downloads/COIN/coin-Clp/lib64/pkgconfig:/home/martijn/Downloads/COIN/coin-Clp/lib/pkgconfig:/home/martijn/Downloads/COIN/coin-Clp/share/pkgconfig: pkg-config --variable=datadir coindatasample`\" else CXXFLAGS += -DSAMPLEDIR=\"\" CFLAGS += -DSAMPLEDIR=\"\" endif endif # Netlib data directory ifeq ($(COIN_HAS_NETLIB), TRUE) ifeq ($(COIN_HAS_PKGCONFIG), TRUE) CXXFLAGS += -DNETLIBDIR=\"`PKG_CONFIG_PATH=/home/martijn/Downloads/COIN/coin-Clp/lib64/pkgconfig:/home/martijn/Downloads/COIN/coin-Clp/lib/pkgconfig:/home/martijn/Downloads/COIN/coin-Clp/share/pkgconfig: pkg-config --variable=datadir coindatanetlib`\" CFLAGS += -DNETLIBDIR=\"`PKG_CONFIG_PATH=/home/martijn/Downloads/COIN/coin-Clp/lib64/pkgconfig:/home/martijn/Downloads/COIN/coin-Clp/lib/pkgconfig:/home/martijn/Downloads/COIN/coin-Clp/share/pkgconfig: pkg-config --variable=datadir coindatanetlib`\" else CXXFLAGS += -DNETLIBDIR=\"\" CFLAGS += -DNETLIBDIR=\"\" endif endif # Include directories (we use the CYGPATH_W variables to allow compilation with Windows compilers) ifeq ($(COIN_HAS_PKGCONFIG), TRUE) INCL = `PKG_CONFIG_PATH=/home/martijn/Downloads/COIN/coin-Clp/lib64/pkgconfig:/home/martijn/Downloads/COIN/coin-Clp/lib/pkgconfig:/home/martijn/Downloads/COIN/coin-Clp/share/pkgconfig: pkg-config --cflags clp` else INCL = endif INCL += $(ADDINCFLAGS) # Linker flags ifeq ($(COIN_HAS_PKGCONFIG), TRUE) LIBS = `PKG_CONFIG_PATH=/home/martijn/Downloads/COIN/coin-Clp/lib64/pkgconfig:/home/martijn/Downloads/COIN/coin-Clp/lib/pkgconfig:/home/martijn/Downloads/COIN/coin-Clp/share/pkgconfig: pkg-config --libs clp` else ifeq ($(COIN_CXX_IS_CL), TRUE) LIBS = -link -libpath:`$(CYGPATH_W) /home/martijn/Downloads/COIN/coin-Clp/lib` libClp.lib else LIBS = -L/home/martijn/Downloads/COIN/coin-Clp/lib -lClp endif endif # The following is necessary under cygwin, if native compilers are used CYGPATH_W = echo # Here we list all possible generated objects or executables to delete them CLEANFILES = clp \ main.o \ flexibility.o \ constraints.o \ all: $(EXE) .SUFFIXES: .cpp .c .o .obj $(EXE): $(OBJS) bla=;\ for file in $(OBJS); do bla="$$bla `$(CYGPATH_W) $$file`"; done; \ $(CXX) $(CXXLINKFLAGS) $(CXXFLAGS) -o $@ $$bla $(LIBS) $(ADDLIBS) clean: rm -rf $(CLEANFILES) .cpp.o: $(CXX) $(CXXFLAGS) $(INCL) -c -o $@ `test -f '$<' || echo '$(SRCDIR)/'`$< .cpp.obj: $(CXX) $(CXXFLAGS) $(INCL) -c -o $@ `if test -f '$<'; then $(CYGPATH_W) '$<'; else $(CYGPATH_W) '$(SRCDIR)/$<'; fi` .c.o: $(CC) $(CFLAGS) $(INCL) -c -o $@ `test -f '$<' || echo '$(SRCDIR)/'`$< .c.obj: $(CC) $(CFLAGS) $(INCL) -c -o $@ `if test -f '$<'; then $(CYGPATH_W) '$<'; else $(CYGPATH_W) '$(SRCDIR)/$<'; fi` The other Makefile compiles a lot of code and makes use of bison and flex. This one is also made by someone else. I am able to alter this Makefile when I want to add some code. This Makefile also makes a binary. CFLAGS=-Wall LDLIBS=-LC:/GnuWin32/lib -lfl -lm LSOURCES=lex.l YSOURCES=grammar.ypp CSOURCES=debug.cpp esta_plus.cpp heap.cpp main.cpp stjn.cpp timing.cpp tmsp.cpp token.cpp chaining.cpp flexibility.cpp exceptions.cpp HSOURCES=$(CSOURCES:.cpp=.h) includes.h OBJECTS=$(LSOURCES:.l=.o) $(YSOURCES:.ypp=.tab.o) $(CSOURCES:.cpp=.o) all: solver solver: CFLAGS+=-g -O0 -DDEBUG solver: $(OBJECTS) main.o debug.o g++ $(CFLAGS) -o $@ $^ $(LDLIBS) solver.release: CFLAGS+=-O5 solver.release: $(OBJECTS) main.o g++ $(CFLAGS) -o $@ $^ $(LDLIBS) %.o: %.cpp g++ -c $(CFLAGS) -o $@ $< lex.cpp: lex.l grammar.tab.cpp grammar.tab.hpp flex -o$@ $< %.tab.cpp %.tab.hpp: %.ypp bison --verbose -d $< ifneq ($(LSOURCES),) $(LSOURCES:.l=.cpp): $(YSOURCES:.y=.tab.h) endif -include $(OBJECTS:.o=.d) clean: rm -f $(OBJECTS) $(OBJECTS:.o=.d) $(YSOURCES:.ypp=.tab.cpp) $(YSOURCES:.ypp=.tab.hpp) $(YSOURCES:.ypp=.output) $(LSOURCES:.l=.cpp) solver solver.release 2>/dev/null .PHONY: all clean debug release Both of these Makefiles are, for me, hard to understand. I don't know what they exactly do. What I want is to merge the two of them so I get only one binary. The code compiled in the second Makefile should be the result. I want to add flexibility.cpp and constraints.cpp to the second Makefile, but when I do. I get the problem following problem: flexibility.h:4:26: fatal error: ClpSimplex.hpp: No such file or directory #include "ClpSimplex.hpp" So the compiler can't find the Clp library. I also tried to copy-paste more code from the first Makefile into the second, but it still gives me that same error. Q: Can you please help me with merging the two makefiles or pointing out a more elegant way? Q: In this case is it indeed better to merge the two Makefiles? I also tried to use cmake, but I gave upon that one quickly, because I don't know much about flex and bison.

    Read the article

  • CLR Version issues with CorBindRuntimeEx

    - by Rick Strahl
    I’m working on an older FoxPro application that’s using .NET Interop and this app loads its own copy of the .NET runtime through some of our own tools (wwDotNetBridge). This all works fine and it’s fairly straightforward to load and host the runtime and then make calls against it. I’m writing this up for myself mostly because I’ve been bitten by these issues repeatedly and spend 15 minutes each However, things get tricky when calling specific versions of the .NET runtime since .NET 4.0 has shipped. Basically we need to be able to support both .NET 2.0 and 4.0 and we’re currently doing it with the same assembly – a .NET 2.0 assembly that is the AppDomain entry point. This works as .NET 4.0 can easily host .NET 2.0 assemblies and the functionality in the 2.0 assembly provides all the features we need to call .NET 4.0 assemblies via Reflection. In wwDotnetBridge we provide a load flag that allows specification of the runtime version to use. Something like this: do wwDotNetBridge LOCAL loBridge as wwDotNetBridge loBridge = CreateObject("wwDotNetBridge","v4.0.30319") and this works just fine in most cases.  If I specify V4 internally that gets fixed up to a whole version number like “v4.0.30319” which is then actually used to host the .NET runtime. Specifically the ClrVersion setting is handled in this Win32 DLL code that handles loading the runtime for me: /// Starts up the CLR and creates a Default AppDomain DWORD WINAPI ClrLoad(char *ErrorMessage, DWORD *dwErrorSize) { if (spDefAppDomain) return 1; //Retrieve a pointer to the ICorRuntimeHost interface HRESULT hr = CorBindToRuntimeEx( ClrVersion, //Retrieve latest version by default L"wks", //Request a WorkStation build of the CLR STARTUP_LOADER_OPTIMIZATION_MULTI_DOMAIN | STARTUP_CONCURRENT_GC, CLSID_CorRuntimeHost, IID_ICorRuntimeHost, (void**)&spRuntimeHost ); if (FAILED(hr)) { *dwErrorSize = SetError(hr,ErrorMessage); return hr; } //Start the CLR hr = spRuntimeHost->Start(); if (FAILED(hr)) return hr; CComPtr<IUnknown> pUnk; WCHAR domainId[50]; swprintf(domainId,L"%s_%i",L"wwDotNetBridge",GetTickCount()); hr = spRuntimeHost->CreateDomain(domainId,NULL,&pUnk); hr = pUnk->QueryInterface(&spDefAppDomain.p); if (FAILED(hr)) return hr; return 1; } CorBindToRuntimeEx allows for a specific .NET version string to be supplied which is what I’m doing via an API call from the FoxPro code. The behavior of CorBindToRuntimeEx is a bit finicky however. The documentation states that NULL should load the latest version of the .NET runtime available on the machine – but it actually doesn’t. As far as I can see – regardless of runtime overrides even in the .config file – NULL will always load .NET 2.0 even if 4.0 is installed. <supportedRuntime> .config File Settings Things get even more unpredictable once you start adding runtime overrides into the application’s .config file. In my scenario working inside of Visual FoxPro this would be VFP9.exe.config in the FoxPro installation folder (not the current folder). If I have a specific runtime override in the .config file like this: <?xml version="1.0"?> <configuration> <startup> <supportedRuntime version="v2.0.50727" /> </startup> </configuration> Not surprisingly with this I can load a .NET 2.0  runtime, but I will not be able to load Version 4.0 of the .NET runtime even if I explicitly specify it in my call to ClrLoad. Worse I don’t get an error – it will just go ahead and hand me a V2 version of the runtime and assume that’s what I wanted. Yuck! However, if I set the supported runtime to V4 in the .config file: <?xml version="1.0"?> <configuration> <startup> <supportedRuntime version="v4.0.30319" /> </startup> </configuration> Then I can load both V4 and V2 of the runtime. Specifying NULL however will STILL only give me V2 of the runtime. Again this seems pretty inconsistent. If you’re hosting runtimes make sure you check which version of the runtime is actually loading first to ensure you get the one you’re looking for. If the wrong version loads – say 2.0 and you want 4.0 - and you then proceed to load 4.0 assemblies they will all fail to load due to version mismatches. This is how all of this started – I had a bunch of assemblies that weren’t loading and it took a while to figure out that the host was running the wrong version of the CLR and therefore caused the assemblies loading to fail. Arrggh! <supportedRuntime> and Debugger Version <supportedRuntime> also affects the use of the .NET debugger when attached to the target application. Whichever runtime is specified in the key is the version of the debugger that fires up. This can have some interesting side effects. If you load a .NET 2.0 assembly but <supportedRuntime> points at V4.0 (or vice versa) the debugger will never fire because it can only debug in the appropriate runtime version. This has bitten me on several occasions where code runs just fine but the debugger will just breeze by breakpoints without notice. The default version for the debugger is the latest version installed on the system if <supportedRuntime> is not set. Summary Besides all the hassels, I’m thankful I can build a .NET 2.0 assembly and have it host .NET 4.0 and call .NET 4.0 code. This way we’re able to ship a single assembly that provides functionality that supports both .NET 2 and 4 without having to have separate DLLs for both which would be a deployment and update nightmare. The MSDN documentation does point at newer hosting API’s specifically for .NET 4.0 which are way more complicated and even less documented but that doesn’t help here because the runtime needs to be able to host both .NET 4.0 and 2.0. Not pleased about that – the new APIs look way more complex and of course they’re not available with older versions of the runtime installed which in our case makes them useless to me in this scenario where I have to support .NET 2.0 hosting (to provide greater ‘built-in’ platform support). Once you know the behavior above, it’s manageable. However, it’s quite easy to get tripped up here because there are multiple combinations that can really screw up behaviors.© Rick Strahl, West Wind Technologies, 2005-2011Posted in .NET  FoxPro  

    Read the article

  • Avoiding Agnostic Jagged Array Flattening in Powershell

    - by matejhowell
    Hello, I'm running into an interesting problem in Powershell, and haven't been able to find a solution to it. When I google (and find things like this post), nothing quite as involved as what I'm trying to do comes up, so I thought I'd post the question here. The problem has to do with multidimensional arrays with an outer array length of one. It appears Powershell is very adamant about flattening arrays like @( @('A') ) becomes @( 'A' ). Here is the first snippet (prompt is , btw): > $a = @( @( 'Test' ) ) > $a.gettype().isarray True > $a[0].gettype().isarray False So, I'd like to have $a[0].gettype().isarray be true, so that I can index the value as $a[0][0] (the real world scenario is processing dynamic arrays inside of a loop, and I'd like to get the values as $a[$i][$j], but if the inner item is not recognized as an array but as a string (in my case), you start indexing into the characters of the string, as in $a[0][0] -eq 'T'). I have a couple of long code examples, so I have posted them at the end. And, for reference, this is on Windows 7 Ultimate with PSv2 and PSCX installed. Consider code example 1: I build a simple array manually using the += operator. Intermediate array $w is flattened, and consequently is not added to the final array correctly. I have found solutions online for similar problems, which basically involve putting a comma before the inner array to force the outer array to not flatten, which does work, but again, I'm looking for a solution that can build arrays inside a loop (a jagged array of arrays, processing a CSS file), so if I add the leading comma to the single element array (implemented as intermediate array $y), I'd like to do the same for other arrays (like $z), but that adversely affects how $z is added to the final array. Now consider code example 2: This is closer to the actual problem I am having. When a multidimensional array with one element is returned from a function, it is flattened. It is correct before it leaves the function. And again, these are examples, I'm really trying to process a file without having to know if the function is going to come back with @( @( 'color', 'black') ) or with @( @( 'color', 'black'), @( 'background-color', 'white') ) Has anybody encountered this, and has anybody resolved this? I know I can instantiate framework objects, and I'm assuming everything will be fine if I create an object[], or a list<, or something else similar, but I've been dealing with this for a little bit and something sure seems like there has to be a right way to do this (without having to instantiate true framework objects). Code Example 1 function Display($x, [int]$indent, [string]$title) { if($title -ne '') { write-host "$title`: " -foregroundcolor cyan -nonewline } if(!$x.GetType().IsArray) { write-host "'$x'" -foregroundcolor cyan } else { write-host '' $s = new-object string(' ', $indent) for($i = 0; $i -lt $x.length; $i++) { write-host "$s[$i]: " -nonewline -foregroundcolor cyan Display $x[$i] $($indent+1) } } if($title -ne '') { write-host '' } } ### Start Program $final = @( @( 'a', 'b' ), @('c')) Display $final 0 'Initial Value' ### How do we do this part ??? ########### ## $w = @( @('d', 'e') ) ## $x = @( @('f', 'g'), @('h') ) ## # But now $w is flat, $w.length = 2 ## ## ## # Even if we put a leading comma (,) ## # in front of the array, $y will work ## # but $w will not. This can be a ## # problem inside a loop where you don't ## # know the length of the array, and you ## # need to put a comma in front of ## # single- and multidimensional arrays. ## $y = @( ,@('D', 'E') ) ## $z = @( ,@('F', 'G'), @('H') ) ## ## ## ########################################## $final += $w $final += $x $final += $y $final += $z Display $final 0 'Final Value' ### Desired final value: @( @('a', 'b'), @('c'), @('d', 'e'), @('f', 'g'), @('h'), @('D', 'E'), @('F', 'G'), @('H') ) ### As in the below: # # Initial Value: # [0]: # [0]: 'a' # [1]: 'b' # [1]: # [0]: 'c' # # Final Value: # [0]: # [0]: 'a' # [1]: 'b' # [1]: # [0]: 'c' # [2]: # [0]: 'd' # [1]: 'e' # [3]: # [0]: 'f' # [1]: 'g' # [4]: # [0]: 'h' # [5]: # [0]: 'D' # [1]: 'E' # [6]: # [0]: 'F' # [1]: 'G' # [7]: # [0]: 'H' Code Example 2 function Display($x, [int]$indent, [string]$title) { if($title -ne '') { write-host "$title`: " -foregroundcolor cyan -nonewline } if(!$x.GetType().IsArray) { write-host "'$x'" -foregroundcolor cyan } else { write-host '' $s = new-object string(' ', $indent) for($i = 0; $i -lt $x.length; $i++) { write-host "$s[$i]: " -nonewline -foregroundcolor cyan Display $x[$i] $($indent+1) } } if($title -ne '') { write-host '' } } function funA() { $ret = @() $temp = @(0) $temp[0] = @('p', 'q') $ret += $temp Display $ret 0 'Inside Function A' return $ret } function funB() { $ret = @( ,@('r', 's') ) Display $ret 0 'Inside Function B' return $ret } ### Start Program $z = funA Display $z 0 'Return from Function A' $z = funB Display $z 0 'Return from Function B' ### Desired final value: @( @('p', 'q') ) and same for r,s ### As in the below: # # Inside Function A: # [0]: # [0]: 'p' # [1]: 'q' # # Return from Function A: # [0]: # [0]: 'p' # [1]: 'q' Thanks, Matt

    Read the article

  • Adding proper THEAD sections to a GridView

    - by Rick Strahl
    I’m working on some legacy code for a customer today and dealing with a page that has my favorite ‘friend’ on it: A GridView control. The ASP.NET GridView control (and also the older DataGrid control) creates some pretty messed up HTML. One of the more annoying things it does is to generate all rows including the header into the page in the <tbody> section of the document rather than in a properly separated <thead> section. Here’s is typical GridView generated HTML output: <table class="tablesorter blackborder" cellspacing="0" rules="all" border="1" id="Table1" style="border-collapse:collapse;"> <tr> <th scope="col">Name</th> <th scope="col">Company</th> <th scope="col">Entered</th><th scope="col">Balance</th> </tr> <tr> <td>Frank Hobson</td><td>Hobson Inc.</td> <td>10/20/2010 12:00:00 AM</td><td>240.00</td> </tr> ... </table> Notice that all content – both the headers and the body of the table – are generated directly under the <table> tag and there’s no explicit use of <tbody> or <thead> (or <tfooter> for that matter). When the browser renders this the document some default settings kick in and the DOM tree turns into something like this: <table> <tbody> <tr> <-- header <tr> <—detail row <tr> <—detail row </tbody> </table> Now if you’re just rendering the Grid server side and you’re applying all your styles through CssClass assignments this isn’t much of a problem. However, if you want to style your grid more generically using hierarchical CSS selectors it gets a lot more tricky to format tables that don’t properly delineate headers and body content. Also many plug-ins and other JavaScript utilities that work on tables require a properly formed table layout, and many of these simple won’t work out of the box with a GridView. For example, one of the things I wanted to do for this app is use the jQuery TableSorter plug-in which – not surprisingly – requires to work of table headers in the DOM document. Out of the box, the TableSorter plug-in doesn’t work with GridView controls, because the lack of a <thead> section to work on. Luckily with a little help of some jQuery scripting there’s a real easy fix to this problem. Basically, if we know the GridView generated table has a header in it, code like the following will move the headers from <tbody> to <thead>: <script type="text/javascript"> $(document).ready(function () { // Fix up GridView to support THEAD tags $("#gvCustomers tbody").before("<thead><tr></tr></thead>"); $("#gvCustomers thead tr").append($("#gvCustomers th")); $("#gvCustomers tbody tr:first").remove(); $("#gvCustomers").tablesorter({ sortList: [[1, 0]] }); }); </script> And voila you have a table that now works with the TableSorter plug-in. If you use GridView’s a lot you might want something a little more generic so the following does the same thing but should work more generically on any GridView/DataGrid missing its <thead> tag: function fixGridView(tableEl) {            var jTbl = $(tableEl);         if(jTbl.find("tbody>tr>th").length > 0) {         jTbl.find("tbody").before("<thead><tr></tr></thead>");         jTbl.find("thead tr").append(jTbl.find("th"));         jTbl.find("tbody tr:first").remove();     } } which you can call like this: $(document).ready(function () { fixGridView( $("#gvCustomers") ); $("#gvCustomers").tablesorter({ sortList: [[1, 0]] }); }); Server Side THEAD Rendering [updated from comments 11/21/2010] Several commenters pointed out that you can also do this on the server side by using the GridView.HeaderRow.TableSection property to force rendering with a proper table header. I was unaware of this option actually – not exactly an easy one to discover. One issue here is that timing of this needs to happen during the databinding process so you need to use an event handler: this.gvCustomers.DataBound += (object o, EventArgs ev) => { gvCustomers.HeaderRow.TableSection = TableRowSection.TableHeader; }; this.gvCustomers.DataSource = custList; this.gvCustomers.DataBind(); You can apply the same logic for the FooterRow. It’s beyond me why this rendering mode isn’t the default for a GridView – why would you ever want to have a table that doesn’t use a THEAD section??? But I disgress :-) I don’t use GridViews much anymore – opting for more flexible approaches using ListViews or even plain code based views or other custom displays that allow more control over layout, but I still see a lot of old code that does use them old clunkers including my own :) (gulp) and this does make life a little bit easier especially if you’re working with any of the jQuery table related plug-ins that expect a proper table structure.© Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  jQuery  

    Read the article

  • Design for complex ATG applications

    - by Glen Borkowski
    Overview Needless to say, some ATG applications are more complex than others.  Some ATG applications support a single site, single language, single catalog, single currency, have a single development staff, single business team, and a relatively simple business model.  The real complex applications have to support multiple sites, multiple languages, multiple catalogs, multiple currencies, a couple different development teams, multiple business teams, and a highly complex business model (and processes to go along with it).  While it's still important to implement a proper design for simple applications, it's absolutely critical to do this for the complex applications.  Why?  It's all about time and money.  If you are unable to manage your complex applications in an efficient manner, the cost of managing it will increase dramatically as will the time to get things done (time to market).  On the positive side, your competition is most likely in the same situation, so you just need to be more efficient than they are. This article is intended to discuss a number of key areas to think about when designing complex applications on ATG.  Some of this can get fairly technical, so it may help to get some background first.  You can get enough of the required background information from this post.  After reading that, come back here and follow along. Application Design Of all the various types of ATG applications out there, the most complex tend to be the ones in the telecommunications industry - especially the ones which operate in multiple countries.  To get started, let's assume that we are talking about an application like that.  One that has these properties: Operates in multiple countries - must support multiple sites, catalogs, languages, and currencies The organization is fairly loosely-coupled - single brand, but different businesses across different countries There is some common functionality across all sites in all countries There is some common functionality across different sites within the same country Sites within a single country may have some unique functionality - relative to other sites in the same country Complex product catalog (mostly in terms of bundles, eligibility, and compatibility) At this point, I'll assume you have read through the required reading and have a decent understanding of how ATG modules work... Code / configuration - assemble into modules When it comes to defining your modules for a complex application, there are a number of goals: Divide functionality between the modules in a way that maps to your business Group common functionality 'further down in the stack of modules' Provide a good balance between shared resources and autonomy for countries / sites Now I'll describe a high level approach to how you could accomplish those goals...  Let's start from the bottom and work our way up.  At the very bottom, you have the modules that ship with ATG - the 'out of the box' stuff.  You want to make sure that you are leveraging all the modules that make sense in order to get the most value from ATG as possible - and less stuff you'll have to write yourself.  On top of the ATG modules, you should create what we'll refer to as the Corporate Foundation Module described as follows: Sits directly on top of ATG modules Used by all applications across all countries and sites - this is the foundation for everyone Contains everything that is common across all countries / all sites Once established and settled, will change less frequently than other 'higher' modules Encapsulates as many enterprise-wide integrations as possible Will provide means of code sharing therefore less development / testing - faster time to market Contains a 'reference' web application (described below) The next layer up could be multiple modules for each country (you could replace this with region if that makes more sense).  We'll define those modules as follows: Sits on top of the corporate foundation module Contains what is unique to all sites in a given country Responsible for managing any resource bundles for this country (to handle multiple languages) Overrides / replaces corporate integration points with any country-specific ones Finally, we will define what should be a fairly 'thin' (in terms of functionality) set of modules for each site as follows: Sits on top of the country it resides in module Contains what is unique for a given site within a given country Will mostly contain configuration, but could also define some unique functionality as well Contains one or more web applications The graphic below should help to indicate how these modules fit together: Web applications As described in the previous section, there are many opportunities for sharing (minimizing costs) as it relates to the code and configuration aspects of ATG modules.  Web applications are also contained within ATG modules, however, sharing web applications can be a bit more difficult because this is what the end customer actually sees, and since each site may have some degree of unique look & feel, sharing becomes more challenging.  One approach that can help is to define a 'reference' web application at the corporate foundation layer to act as a solid starting point for each site.  Here's a description of the 'reference' web application: Contains minimal / sample reference styling as this will mostly be addressed at the site level web app Focus on functionality - ensure that core functionality is revealed via this web application Each individual site can use this as a starting point There may be multiple types of web apps (i.e. B2C, B2B, etc) There are some techniques to share web application assets - i.e. multiple web applications, defined in the web.xml, and it's worth investigating, but is out of scope here. Reference infrastructure In this complex environment, it is assumed that there is not a single infrastructure for all countries and all sites.  It's more likely that different countries (or regions) could have their own solution for infrastructure.  In this case, it will be advantageous to define a reference infrastructure which contains all the hardware and software that make up the core environment.  Specifications and diagrams should be created to outline what this reference infrastructure looks like, as well as it's baseline cost and the incremental cost to scale up with volume.  Having some consistency in terms of infrastructure will save time and money as new countries / sites come online.  Here are some properties of the reference infrastructure: Standardized approach to setup of hardware Type and number of servers Defines application server, operating system, database, etc... - including vendor and specific versions Consistent naming conventions Provides a consistent base of terminology and understanding across environments Defines which ATG services run on which servers Production Staging BCC / Preview Each site can change as required to meet scale requirements Governance / organization It should be no surprise that the complex application we're talking about is backed by an equally complex organization.  One of the more challenging aspects of efficiently managing a series of complex applications is to ensure the proper level of governance and organization.  Here are some ideas and goals to work towards: Establish a committee to make enterprise-wide decisions that affect all sites Representation should be evenly distributed Should have a clear communication procedure Focus on high level business goals Evaluation of feature / function gaps and how that relates to ATG release schedule / roadmap Determine when to upgrade & ensure value will be realized Determine how to manage various levels of modules Who is responsible for maintaining corporate / country / site layers Determine a procedure for controlling what goes in the corporate foundation module Standardize on source code control, database, hardware, OS versions, J2EE app servers, development procedures, etc only use tested / proven versions - this is something that should be centralized so that every country / site does not have to worry about compatibility between versions Create a innovation team Quickly develop new features, perform proof of concepts All teams can benefit from their findings Summary At this point, it should be clear why the topics above (design, governance, organization, etc) are critical to being able to efficiently manage a complex application.  To summarize, it's all about competitive advantage...  You will need to reduce costs and improve time to market with the goal of providing a better experience for your end customers.  You can reduce cost by reducing development time, time allocated to testing (don't have to test the corporate foundation module over and over again - do it once), and optimizing operations.  With an efficient design, you can improve your time to market and your business will be more flexible  and agile.  Over time, you'll find that you're becoming more focused on offering functionality that is new to the market (creativity) and this will be rewarded - you're now a leader. In addition to the above, you'll realize soft benefits as well.  Your staff will be operating in a culture based on sharing.  You'll want to reward efforts to improve and enhance the foundation as this will benefit everyone.  This culture will inspire innovation, which can only lend itself to your competitive advantage.

    Read the article

  • Oracle Flashback Technologies - Overview

    - by Sridhar_R-Oracle
    Oracle Flashback Technologies - IntroductionIn his May 29th 2014 blog, my colleague Joe Meeks introduced Oracle Maximum Availability Architecture (MAA) and discussed both planned and unplanned outages. Let’s take a closer look at unplanned outages. These can be caused by physical failures (e.g., server, storage, network, file deletion, physical corruption, site failures) or by logical failures – cases where all components and files are physically available, but data is incorrect or corrupt. These logical failures are usually caused by human errors or application logic errors. This blog series focuses on these logical errors – what causes them and how to address and recover from them using Oracle Database Flashback. In this introductory blog post, I’ll provide an overview of the Oracle Database Flashback technologies and will discuss the features in detail in future blog posts. Let’s get started. We are all human beings (unless a machine is reading this), and making mistakes is a part of what we do…often what we do best!  We “fat finger”, we spill drinks on keyboards, unplug the wrong cables, etc.  In addition, many of us, in our lives as DBAs or developers, must have observed, caused, or corrected one or more of the following unpleasant events: Accidentally updated a table with wrong values !! Performed a batch update that went wrong - due to logical errors in the code !! Dropped a table !! How do DBAs typically recover from these types of errors? First, data needs to be restored and recovered to the point-in-time when the error occurred (incomplete or point-in-time recovery).  Moreover, depending on the type of fault, it’s possible that some services – or even the entire database – would have to be taken down during the recovery process.Apart from error conditions, there are other questions that need to be addressed as part of the investigation. For example, what did the data look like in the morning, prior to the error? What were the various changes to the row(s) between two timestamps? Who performed the transaction and how can it be reversed?  Oracle Database includes built-in Flashback technologies, with features that address these challenges and questions, and enable you to perform faster, easier, and convenient recovery from logical corruptions. HistoryFlashback Query, the first Flashback Technology, was introduced in Oracle 9i. It provides a simple, powerful and completely non-disruptive mechanism for data verification and recovery from logical errors, and enables users to view the state of data at a previous point in time.Flashback Technologies were further enhanced in Oracle 10g, to provide fast, easy recovery at the database, table, row, and even at a transaction level.Oracle Database 11g introduced an innovative method to manage and query long-term historical data with Flashback Data Archive. The 11g release also introduced Flashback Transaction, which provides an easy, one-step operation to back out a transaction. Oracle Database versions 11.2.0.2 and beyond further enhanced the performance of these features. Note that all the features listed here work without requiring any kind of restore operation.In addition, Flashback features are fully supported with the new multi-tenant capabilities introduced with Oracle Database 12c, Flashback Features Oracle Flashback Database enables point-in-time-recovery of the entire database without requiring a traditional restore and recovery operation. It rewinds the entire database to a specified point in time in the past by undoing all the changes that were made since that time.Oracle Flashback Table enables an entire table or a set of tables to be recovered to a point in time in the past.Oracle Flashback Drop enables accidentally dropped tables and all dependent objects to be restored.Oracle Flashback Query enables data to be viewed at a point-in-time in the past. This feature can be used to view and reconstruct data that was lost due to unintentional change(s) or deletion(s). This feature can also be used to build self-service error correction into applications, empowering end-users to undo and correct their errors.Oracle Flashback Version Query offers the ability to query the historical changes to data between two points in time or system change numbers (SCN) Oracle Flashback Transaction Query enables changes to be examined at the transaction level. This capability can be used to diagnose problems, perform analysis, audit transactions, and even revert the transaction by undoing SQLOracle Flashback Transaction is a procedure used to back-out a transaction and its dependent transactions.Flashback technologies eliminate the need for a traditional restore and recovery process to fix logical corruptions or make enquiries. Using these technologies, you can recover from the error in the same amount of time it took to generate the error. All the Flashback features can be accessed either via SQL command line (or) via Enterprise Manager.  Most of the Flashback technologies depend on the available UNDO to retrieve older data. The following table describes the various Flashback technologies: their purpose, dependencies and situations where each individual technology can be used.   Example Syntax Error investigation related:The purpose is to investigate what went wrong and what the values were at certain points in timeFlashback Queries  ( select .. as of SCN | Timestamp )   - Helps to see the value of a row/set of rows at a point in timeFlashback Version Queries  ( select .. versions between SCN | Timestamp and SCN | Timestamp)  - Helps determine how the value evolved between certain SCNs or between timestamps Flashback Transaction Queries (select .. XID=)   - Helps to understand how the transaction caused the changes.Error correction related:The purpose is to fix the error and correct the problems,Flashback Table  (flashback table .. to SCN | Timestamp)  - To rewind the table to a particular timestamp or SCN to reverse unwanted updates Flashback Drop (flashback table ..  to before drop )  - To undrop or undelete a table Flashback Database (flashback database to SCN  | Restore Point )  - This is the rewind button for Oracle databases. You can revert the entire database to a particular point in time. It is a fast way to perform a PITR (point-in-time recovery). Flashback Transaction (DBMS_FLASHBACK.TRANSACTION_BACKOUT(XID..))  - To reverse a transaction and its related transactions Advanced use cases Flashback technology is integrated into Oracle Recovery Manager (RMAN) and Oracle Data Guard. So, apart from the basic use cases mentioned above, the following use cases are addressed using Oracle Flashback. Block Media recovery by RMAN - to perform block level recovery Snapshot Standby - where the standby is temporarily converted to a read/write environment for testing, backup, or migration purposes Re-instate old primary in a Data Guard environment – this avoids the need to restore an old backup and perform a recovery to make it a new standby. Guaranteed Restore Points - to bring back the entire database to an older point-in-time in a guaranteed way. and so on..I hope this introductory overview helps you understand how Flashback features can be used to investigate and recover from logical errors.  As mentioned earlier, I will take a deeper-dive into to some of the critical Flashback features in my upcoming blogs and address common use cases.

    Read the article

  • Waterfall Model (SDLC) vs. Prototyping Model

    The characters in the fable of the Tortoise and the Hare can easily be used to demonstrate the similarities and differences between the Waterfall and Prototyping software development models. This children fable is about a race between a consistently slow moving but steadfast turtle and an extremely fast but unreliable rabbit. After closely comparing each character’s attributes in correlation with both software development models, a trend seems to appear in that the Waterfall closely resembles the Tortoise in that Waterfall Model is typically a slow moving process that is broken up in to multiple sequential steps that must be executed in a standard linear pattern. The Tortoise can be quoted several times in the story saying “Slow and steady wins the race.” This is the perfect mantra for the Waterfall Model in that this model is seen as a cumbersome and slow moving. Waterfall Model Phases Requirement Analysis & Definition This phase focuses on defining requirements for a project that is to be developed and determining if the project is even feasible. Requirements are collected by analyzing existing systems and functionality in correlation with the needs of the business and the desires of the end users. The desired output for this phase is a list of specific requirements from the business that are to be designed and implemented in the subsequent steps. In addition this phase is used to determine if any value will be gained by completing the project. System Design This phase focuses primarily on the actual architectural design of a system, and how it will interact within itself and with other existing applications. Projects at this level should be viewed at a high level so that actual implementation details are decided in the implementation phase. However major environmental decision like hardware and platform decision are typically decided in this phase. Furthermore the basic goal of this phase is to design an application at the system level in those classes, interfaces, and interactions are defined. Additionally decisions about scalability, distribution and reliability should also be considered for all decisions. The desired output for this phase is a functional  design document that states all of the architectural decisions that have been made in regards to the project as well as a diagrams like a sequence and class diagrams. Software Design This phase focuses primarily on the refining of the decisions found in the functional design document. Classes and interfaces are further broken down in to logical modules based on the interfaces and interactions previously indicated. The output of this phase is a formal design document. Implementation / Coding This phase focuses primarily on implementing the previously defined modules in to units of code. These units are developed independently are intergraded as the system is put together as part of a whole system. Software Integration & Verification This phase primarily focuses on testing each of the units of code developed as well as testing the system as a whole. There are basic types of testing at this phase and they include: Unit Test and Integration Test. Unit Test are built to test the functionality of a code unit to ensure that it preforms its desired task. Integration testing test the system as a whole because it focuses on results of combining specific units of code and validating it against expected results. The output of this phase is a test plan that includes test with expected results and actual results. System Verification This phase primarily focuses on testing the system as a whole in regards to the list of project requirements and desired operating environment. Operation & Maintenance his phase primarily focuses on handing off the competed project over to the customer so that they can verify that all of their requirements have been met based on their original requirements. This phase will also validate the correctness of their requirements and if any changed need to be made. In addition, any problems not resolved in the previous phase will be handled in this section. The Waterfall Model’s linear and sequential methodology does offer a project certain advantages and disadvantages. Advantages of the Waterfall Model Simplistic to implement and execute for projects and/or company wide Limited demand on resources Large emphasis on documentation Disadvantages of the Waterfall Model Completed phases cannot be revisited regardless if issues arise within a project Accurate requirement are never gather prior to the completion of the requirement phase due to the lack of clarification in regards to client’s desires. Small changes or errors that arise in applications may cause additional problems The client cannot change any requirements once the requirements phase has been completed leaving them no options for changes as they see their requirements changes as the customers desires change. Excess documentation Phases are cumbersome and slow moving Learn more about the Major Process in the Sofware Development Life Cycle and Waterfall Model. Conversely, the Hare shares similar traits with the prototyping software development model in that ideas are rapidly converted to basic working examples and subsequent changes are made to quickly align the project with customers desires as they are formulated and as software strays from the customers vision. The basic concept of prototyping is to eliminate the use of well-defined project requirements. Projects are allowed to grow as the customer needs and request grow. Projects are initially designed according to basic requirements and are refined as requirement become more refined. This process allows customer to feel their way around the application to ensure that they are developing exactly what they want in the application This model also works well for determining the feasibility of certain approaches in regards to an application. Prototypes allow for quickly developing examples of implementing specific functionality based on certain techniques. Advantages of Prototyping Active participation from users and customers Allows customers to change their mind in specifying requirements Customers get a better understanding of the system as it is developed Earlier bug/error detection Promotes communication with customers Prototype could be used as final production Reduced time needed to develop applications compared to the Waterfall method Disadvantages of Prototyping Promotes constantly redefining project requirements that cause major system rewrites Potential for increased complexity of a system as scope of the system expands Customer could believe the prototype as the working version. Implementation compromises could increase the complexity when applying updates and or application fixes When companies trying to decide between the Waterfall model and Prototype model they need to evaluate the benefits and disadvantages for both models. Typically smaller companies or projects that have major time constraints typically head for more of a Prototype model approach because it can reduce the time needed to complete the project because there is more of a focus on building a project and less on defining requirements and scope prior to the start of a project. On the other hand, Companies with well-defined requirements and time allowed to generate proper documentation should steer towards more of a waterfall model because they are in a position to obtain clarified requirements and have to design and optimal solution prior to the start of coding on a project.

    Read the article

< Previous Page | 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030  | Next Page >