Search Results

Search found 12672 results on 507 pages for 'anonymous methods'.

Page 109/507 | < Previous Page | 105 106 107 108 109 110 111 112 113 114 115 116  | Next Page >

  • Class.Class vs Namespace.Class for top level general use class libraries?

    - by Joan Venge
    Which one is more acceptable (best-practice)?: namespace NP public static class IO public static class Xml ... // extension methods using NP; IO.GetAvailableResources (); vs public static class NP public static class IO public static class Xml ... // extension methods NP.IO.GetAvailableResources (); Also for #2, the code size is managed by having partial classes so each nested class can be in a separate file, same for extension methods (except that there is no nested class for them) I prefer #2, for a couple of reasons like being able to use type names that are already commonly used, like IO, that I don't want to replace or collide. Which one do you prefer? Any pros and cons for each? What's the best practice for this case? EDIT: Also would there be a performance difference between the two?

    Read the article

  • Why isn't the eigenclass equivalent to self.class, when it looks so similar?

    - by The Wicked Flea
    I've missed the memo somewhere, and I hope you'll explain this to me. Why is the eigenclass of an object different from self.class? class Foo def initialize(symbol) eigenclass = class << self self end eigenclass.class_eval do attr_accessor symbol end end end My train of logic that equates the eigenclass with class.self is rather simple: class << self is a way of declaring class methods, rather than instance methods. It's a shortcut to def Foo.bar. So within the reference to the class object, returning self should be identical to self.class. This is because class << self would set self to Foo.class for definition of class methods/attributes. Am I just confused? Or, is this a sneaky trick of Ruby meta-programming?

    Read the article

  • How to access the service instance from host object in WCF?

    - by user1048677
    I am trying to incarnate some sort of ad hoc WCF service. I already managed to launch it and make it call its own web methods as some other guy's methods. The issue that I am facing is instance management. I have set [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single)] so it now has a global instance with the same properties for all clients. But besides that I need it to call other services of its kind while listening to incoming requests from clients (similar crazy services). While debugging I noticed that the ServiceHost's constructor calls the constructor of the service class. So, I assumed it has access to the global instance of this class and I need to find a way to call methods of this instance. Please don't ask what I have been smoking, I just have to make it ad hoc.

    Read the article

  • [C++] Simple inheritance question

    - by xbonez
    I was going over some sample questions for an upcoming test, and this question is totally confusing me. Any help would be appreciated. Consider the following code: class GraduateStudent : public Student { ... }; If the word "public" is omitted, GraduateStudent uses private inheritance, which means which of the following? GraduateStudent objects may not use methods of Student. GraduateStudent does not have access to private objects of Student. No method of GraduateStudent may call a method of Student. Only const methods of GraduateStudent can call methods of Student.

    Read the article

  • Rotating Viewbox contents smoothly

    - by user204562
    I'm looking to teach myself better methods of doing things in WPF that I would normally do manually. In this case, I have a ViewBox with an image in it. I also have a button that uses a DoubleAnimation to rotate the image 90 to the right. This animation works fine, but obviously because it's square as it turns, the image does a "best fit" to the ViewBox which makes the rotation look quite bad, as it gets larger and smaller as its longest edge shrinks or grows to fit to that particular rotation angle. I am looking for any advice on the best way to handle this using appropriate WPF methods. Obviously I could do all the calculations manually, but I would be more interested in finding a way to use the controls and methods built into the .NET architecture. Thanks for your help.

    Read the article

  • Delegate Example From C# In Depth Confusion

    - by ChloeRadshaw
    I am looking at this example: List<Product> products = Product. GetSampleProducts() ; products.Sort( (first, second) => first.Name.CompareTo(second. Name) ) ; foreach (Product product in products) { Console. WriteLine(product) ; } What function is actually called in the API when you do that? Does the compiler create a class which implemnents the IComparer interface? I thought delegates were anonymous methods - Here it seems to be an anonymous interface implementation which is casuing confusion

    Read the article

  • proftpd, dynamic IP, and filezilla: port troubles

    - by Yami
    The basic setup: Two computers, one running proftpd, one attempting to connect via filezilla. Both linux (xubuntu on the server, kubuntu on the client). Both are at the moment behind a router on a residential (read: dynamic IP) connection; the client is a laptop I plan to take away from the home network, so I'll need this to work externally. I have my router set up to allow specific ports forwarded to each machine and, where possible, have plugged in those numbers into proftpd (via gadmin, double-checking the config file) and filezilla. Attempting to connect via active mode using the internal IP works: Status: Connecting to 192.168.1.139:8085... Status: Connection established, waiting for welcome message... Response: 220 Crossroads FTP Command: USER <redacted> Response: 331 Password required for <redacted> Command: PASS ******* Response: 230 Anonymous access granted, restrictions apply Command: OPTS UTF8 ON Response: 200 UTF8 set to on Status: Connected Status: Retrieving directory listing... Command: PWD Response: 257 "/" is the current directory Command: TYPE I Response: 200 Type set to I Command: PORT 192,168,1,52,153,140 Response: 200 PORT command successful Command: LIST Response: 150 Opening ASCII mode data connection for file list Response: 226 Transfer complete Status: Directory listing successful Attempting to connect via the domain name, however, leads to issues; in active mode, the PORT is the last command to be received according to the server's logs, and in passive mode, it's the PASV command. This leads me to believe I'm being redirected to a bad port? Active Sample: Status: Resolving address of <url> Status: Connecting to <ip:port> Status: Connection established, waiting for welcome message... Response: 220 Crossroads FTP Command: USER <redacted> Response: 331 Password required for <redacted> Command: PASS ******* Response: 230 Anonymous access granted, restrictions apply Command: OPTS UTF8 ON Response: 200 UTF8 set to on Status: Connected Status: Retrieving directory listing... Command: PWD Response: 257 "/" is the current directory Command: TYPE I Response: 200 Type set to I Command: PORT 174,111,127,27,153,139 Response: 200 PORT command successful Command: LIST Error: Connection timed out Error: Failed to retrieve directory listing Passive sample: Status: Resolving address of ftp.bonsaiwebdesigns.com Status: Connecting to 174.111.127.27:8085... Status: Connection established, waiting for welcome message... Response: 220 Crossroads FTP Command: USER yamikuronue Response: 331 Password required for yamikuronue Command: PASS ******* Response: 230 Anonymous access granted, restrictions apply Command: OPTS UTF8 ON Response: 200 UTF8 set to on Status: Connected Status: Retrieving directory listing... Command: PWD Response: 257 "/" is the current directory Command: TYPE I Response: 200 Type set to I Command: PASV Response: 227 Entering Passive Mode (64,95,64,197,101,88). Command: LIST Error: Connection timed out Error: Failed to retrieve directory listing In both cases, the log file ends at "PORT" or "PASV" - there's no record of ever receiving a "LIST" command. Just above that I can see the attempt to connect actively via the internal IP, which does indeed include a LIST command. My config file includes "PassivePorts 20001-26999", which are the port forwards I set up for the ftp server, and "Port 8085", which is also forwarded to the same machine. I also have a MasqueradeAddress set up to prevent it from reporting its internal IP, which was an earlier issue I had. I think what I'm asking is, is there another setting someplace I have to change to get this setup to work?

    Read the article

  • Exchange Mail Flow

    - by Tuck918
    Hello. I have a question. We have one Exchange 2003 server and two Exchange 2007 servers. Most all of our mailboxes are on 2007 but we do still have one shared mailbox, unity mailbox and a journling mailbox on 2003. Public Folders have been set to replicate to 2007. I have set up a send connector on 2007 with a cost of 1. Receive connectors have Anonymous Users checked on 2007. On 2003 there are two connectors: the Internet Email connector and the connector that connects 2003 to 2007. We have a SPAM filtering device that email goes through before it is handed off to Exchange. The SPAM filtering device is set to send email to one of our Exchange 2007 servers. Here is my question/problem: Even though the SPAM filtering device is set to forward email to Exchange 2007, somehow all of our email is still going through the Exchange 2003 server before it finally hits the users mailboxes on the Exchange 2007 server. How can I change it so that all email goes directly to Exchange 2007 and never routes through Excahnge 2003 both ways, inbound and outbound? Would also like to add: In the EMC under Org- Hub- Send Connector there are two connectors. One is the "Internet Connector" from the 2003 box and the other is the new one I created. THe address space on the 2003 one is set to a cost of 2, no smart hosts and the 2003 box is listed as the Source Server. THe other Send Connector has an address space of 1, no smart host and has the 2 excahnge 2007 servers listed as the source servers. In EMC under Server- Hub- my two exchange 2007 servers are listed. Each one has 2 receive connectors. Both Recieve Connectors are setup the same way. THe Default Receive Connector has Anonymous Users checked. The other Recieve Connector is labled "Client" and I am not sure what it does or why its there. Anonymous Users are not checked. No smart hosts configured on 2003. Additional details Currently we have 3 excahnge servers. One exchange 2003 server and two excahnge 2007 servers. THe exchange 2003 server is the acting "bridgehead" serverand all email is routing through this server, inbound and outbound. We are wanting to decommission this server and use our two exchange 2007 servers as our mailbox servers. All of of user mailboxes are already on one of the exchange 2007 boxes and we want to put whats left on the exchange 2003 box on our other excahnge 2007 box. Both excahnge 2007 servers are currently CAS, HT and MB servers. We have a SPAM filtering device that sits between our excahnge servers and the firewall and have it configured to send messages to one of the excahgne 2007 servers but when we look at the message headers we can see that messgaes are still being routed to the excahnge 2003 box. We want to bypass the exchange 2003 in the routing process as it is dying and is starting to have major issues so everytime it goes down our email is down. Is there possible some sort of AD routing link/site link stuff going on?

    Read the article

  • These are few objective type questions which i was not able to find the solution [closed]

    - by Tarun
    1. Which of the following advantages does System.Collections.IDictionaryEnumerator provide over System.Collections.IEnumerator? a. It adds properties for direct access to both the Key and the Value b. It is optimized to handle the structure of a Dictionary. c. It provides properties to determine if the Dictionary is enumerated in Key or Value order d. It provides reverse lookup methods to distinguish a Key from a specific Value 2. When Implementing System.EnterpriseServices.ServicedComponent derived classes, which of the following statements are true? a. Enabling object pooling requires an attribute on the class and the enabling of pooling in the COM+ catalog. b. Methods can be configured to automatically mark a transaction as complete by the use of attributes. c. You can configure authentication using the AuthenticationOption when the ActivationMode is set to Library. d. You can control the lifecycle policy of an individual instance using the SetLifetimeService method. 3. Which of the following are true regarding event declaration in the code below? class Sample { event MyEventHandlerType MyEvent; } a. MyEventHandlerType must be derived from System.EventHandler or System.EventHandler<TEventArgs> b. MyEventHandlerType must take two parameters, the first of the type Object, and the second of a class derived from System.EventArgs c. MyEventHandlerType may have a non-void return type d. If MyEventHandlerType is a generic type, event declaration must use a specialization of that type. e. MyEventHandlerType cannot be declared static 4. Which of the following statements apply to developing .NET code, using .NET utilities that are available with the SDK or Visual Studio? a. Developers can create assemblies directly from the MSIL Source Code. b. Developers can examine PE header information in an assembly. c. Developers can generate XML Schemas from class definitions contained within an assembly. d. Developers can strip all meta-data from managed assemblies. e. Developers can split an assembly into multiple assemblies. 5. Which of the following characteristics do classes in the System.Drawing namespace such as Brush,Font,Pen, and Icon share? a. They encapsulate native resource and must be properly Disposed to prevent potential exhausting of resources. b. They are all MarshalByRef derived classes, but functionality across AppDomains has specific limitations. c. You can inherit from these classes to provide enhanced or customized functionality 6. Which of the following are required to be true by objects which are going to be used as keys in a System.Collections.HashTable? a. They must handle case-sensitivity identically in both the GetHashCode() and Equals() methods. b. Key objects must be immutable for the duration they are used within a HashTable. c. Get HashCode() must be overridden to provide the same result, given the same parameters, regardless of reference equalityl unless the HashTable constructor is provided with an IEqualityComparer parameter. d. Each Element in a HashTable is stored as a Key/Value pair of the type System.Collections.DictionaryElement e. All of the above 7. Which of the following are true about Nullable types? a. A Nullable type is a reference type. b. A Nullable type is a structure. c. An implicit conversion exists from any non-nullable value type to a nullable form of that type. d. An implicit conversion exists from any nullable value type to a non-nullable form of that type. e. A predefined conversion from the nullable type S? to the nullable type T? exists if there is a predefined conversion from the non-nullable type S to the non-nullable type T 8. When using an automatic property, which of the following statements is true? a. The compiler generates a backing field that is completely inaccessible from the application code. b. The compiler generates a backing field that is a private instance member with a leading underscore that can be programmatically referenced. c. The compiler generates a backing field that is accessible via reflection d. The compiler generates a code that will store the information separately from the instance to ensure its security. 9. Which of the following does using Initializer Syntax with a collection as shown below require? CollectionClass numbers = new CollectionClass { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }; a. The Collection Class must implement System.Collections.Generic.ICollection<T> b. The Collection Class must implement System.Collections.Generic.IList<T> c. Each of the Items in the Initializer List will be passed to the Add<T>(T item) method d. The items in the initializer will be treated as an IEnumerable<T> and passed to the collection constructor+K110 10. What impact will using implicitly typed local variables as in the following example have? var sample = "Hello World"; a. The actual type is determined at compilation time, and has no impact on the runtime b. The actual type is determined at runtime, and late binding takes effect c. The actual type is based on the native VARIANT concept, and no binding to a specific type takes place. d. "var" itself is a specific type defined by the framework, and no special binding takes place 11. Which of the following is not supported by remoting object types? a. well-known singleton b. well-known single call c. client activated d. context-agile 12. In which of the following ways do structs differ from classes? a. Structs can not implement interfaces b. Structs cannot inherit from a base struct c. Structs cannot have events interfaces d. Structs cannot have virtual methods 13. Which of the following is not an unboxing conversion? a. void Sample1(object o) { int i = (int)o; } b. void Sample1(ValueType vt) { int i = (int)vt; } c. enum E { Hello, World} void Sample1(System.Enum et) { E e = (E) et; } d. interface I { int Value { get; set; } } void Sample1(I vt) { int i = vt.Value; } e. class C { public int Value { get; set; } } void Sample1(C vt) { int i = vt.Value; } 14. Which of the following are characteristics of the System.Threading.Timer class? a. The method provided by the TimerCallback delegate will always be invoked on the thread which created the timer. b. The thread which creates the timer must have a message processing loop (i.e. be considered a UI thread) c. The class contains protection to prevent reentrancy to the method provided by the TimerCallback delegate d. You can receive notification of an instance being Disposed by calling an overload of the Dispose method. 15. What is the proper declaration of a method which will handle the following event? Class MyClass { public event EventHandler MyEvent; } a. public void A_MyEvent(object sender, MyArgs e) { } b. public void A_MyEvent(object sender, EventArgs e) { } c. public void A_MyEvent(MyArgs e) { } d. public void A_MyEvent(MyClass sender,EventArgs e) { } 16. Which of the following scenarios are applicable to Window Workflow Foundation? a. Document-centric workflows b. Human workflows c. User-interface page flows d. Builtin support for communications across multiple applications and/or platforms e. All of the above 17. When using an automatic property, which of the following statements is true? a. The compiler generates a backing field that is completely inaccessible from the application code. b. The compiler generates a backing field that is a private instance member with a leading underscore that can be programmatically referenced. c. The compiler generates a backing field that is accessible via reflection d. The compiler generates a code that will store the information separately from the instance to ensure its security. 18 While using the capabilities supplied by the System.Messaging classes, which of the following are true? a. Information must be explicitly converted to/from a byte stream before it uses the MessageQueue class b. Invoking the MessageQueue.Send member defaults to using the System.Messaging.XmlMessageFormatter to serialize the object. c. Objects must be XMLSerializable in order to be transferred over a MessageQueue instance. d. The first entry in a MessageQueue must be removed from the queue before the next entry can be accessed e. Entries removed from a MessageQueue within the scope of a transaction, will be pushed back into the front of the queue if the transaction fails. 19. Which of the following are true about declarative attributes? a. They must be inherited from the System.Attribute. b. Attributes are instantiated at the same time as instances of the class to which they are applied. c. Attribute classes may be restricted to be applied only to application element types. d. By default, a given attribute may be applied multiple times to the same application element. 20. When using version 3.5 of the framework in applications which emit a dynamic code, which of the following are true? a. A Partial trust code can not emit and execute a code b. A Partial trust application must have the SecurityCriticalAttribute attribute have called Assert ReflectionEmit permission c. The generated code no more permissions than the assembly which emitted it. d. It can be executed by calling System.Reflection.Emit.DynamicMethod( string name, Type returnType, Type[] parameterTypes ) without any special permissions Within Windows Workflow Foundation, Compensating Actions are used for: a. provide a means to rollback a failed transaction b. provide a means to undo a successfully committed transaction later c. provide a means to terminate an in process transaction d. achieve load balancing by adapting to the current activity 21. What is the proper declaration of a method which will handle the following event? Class MyClass { public event EventHandler MyEvent; } a. public void A_MyEvent(object sender, MyArgs e) { } b. public void A_MyEvent(object sender, EventArgs e) { } c. public void A_MyEvent(MyArgs e) { } d. public void A_MyEvent(MyClass sender,EventArgs e) { } 22. Which of the following controls allows the use of XSL to transform XML content into formatted content? a. System.Web.UI.WebControls.Xml b. System.Web.UI.WebControls.Xslt c. System.Web.UI.WebControls.Substitution d. System.Web.UI.WebControls.Transform 23. To which of the following do automatic properties refer? a. You declare (explicitly or implicitly) the accessibility of the property and get and set accessors, but do not provide any implementation or backing field b. You attribute a member field so that the compiler will generate get and set accessors c. The compiler creates properties for your class based on class level attributes d. They are properties which are automatically invoked as part of the object construction process 24. Which of the following are true about Nullable types? a. A Nullable type is a reference type. b. An implicit conversion exists from any non-nullable value type to a nullable form of that type. c. A predefined conversion from the nullable type S? to the nullable type T? exists if there is a predefined conversion from the non-nullable type S to the non-nullable type T 25. When using an automatic property, which of the following statements is true? a. The compiler generates a backing field that is completely inaccessible from the application code. b. The compiler generates a backing field that is accessible via reflection. c. The compiler generates a code that will store the information separately from the instance to ensure its security. 26. When using an implicitly typed array, which of the following is most appropriate? a. All elements in the initializer list must be of the same type. b. All elements in the initializer list must be implicitly convertible to a known type which is the actual type of at least one member in the initializer list c. All elements in the initializer list must be implicitly convertible to common type which is a base type of the items actually in the list 27. Which of the following is false about anonymous types? a. They can be derived from any reference type. b. Two anonymous types with the same named parameters in the same order declared in different classes have the same type. c. All properties of an anonymous type are read/write. 28. Which of the following are true about Extension methods. a. They can be declared either static or instance members b. They must be declared in the same assembly (but may be in different source files) c. Extension methods can be used to override existing instance methods d. Extension methods with the same signature for the same class may be declared in multiple namespaces without causing compilation errors

    Read the article

  • Enabling Kerberos Authentication for Reporting Services

    - by robcarrol
    Recently, I’ve helped several customers with Kerberos authentication problems with Reporting Services and Analysis Services, so I’ve decided to write this blog post and pull together some useful resources in one place (there are 2 whitepapers in particular that I found invaluable configuring Kerberos authentication, and these can be found in the references section at the bottom of this post). In most of these cases, the problem has manifested itself with the Login failed for User ‘NT Authority\Anonymous’ (“double-hop”) error. By default, Reporting Services uses Windows Integrated Authentication, which includes the Kerberos and NTLM protocols for network authentication. Additionally, Windows Integrated Authentication includes the negotiate security header, which prompts the client to select Kerberos or NTLM for authentication. The client can access reports which have the appropriate permissions by using Kerberos for authentication. Servers that use Kerberos authentication can impersonate those clients and use their security context to access network resources. You can configure Reporting Services to use both Kerberos and NTLM authentication; however this may lead to a failure to authenticate. With negotiate, if Kerberos cannot be used, the authentication method will default to NTLM. When negotiate is enabled, the Kerberos protocol is always used except when: Clients/servers that are involved in the authentication process cannot use Kerberos. The client does not provide the information necessary to use Kerberos. An in-depth discussion of Kerberos authentication is beyond the scope of this post, however when users execute reports that are configured to use Windows Integrated Authentication, their logon credentials are passed from the report server to the server hosting the data source. Delegation needs to be set on the report server and Service Principle Names (SPNs) set for the relevant services. When a user processes a report, the request must go through a Web server on its way to a database server for processing. Kerberos authentication enables the Web server to request a service ticket from the domain controller; impersonate the client when passing the request to the database server; and then restrict the request based on the user’s permissions. Each time a server is required to pass the request to another server, the same process must be used. Kerberos authentication is supported in both native and SharePoint integrated mode, but I’ll focus on native mode for the purpose of this post (I’ll explain configuring SharePoint integrated mode and Kerberos authentication in a future post). Configuring Kerberos avoids the authentication failures due to double-hop issues. These double-hop errors occur when a users windows domain credentials can’t be passed to another server to complete the user’s request. In the case of my customers, users were executing Reporting Services reports that were configured to query Analysis Services cubes on a separate machine using Windows Integrated security. The double-hop issue occurs as NTLM credentials are valid for only one network hop, subsequent hops result in anonymous authentication. The client attempts to connect to the report server by making a request from a browser (or some other application), and the connection process begins with authentication. With NTLM authentication, client credentials are presented to Computer 2. However Computer 2 can’t use the same credentials to access Computer 3 (so we get the Anonymous login error). To access Computer 3 it is necessary to configure the connection string with stored credentials, which is what a number of customers I have worked with have done to workaround the double-hop authentication error. However, to get the benefits of Windows Integrated security, a better solution is to enable Kerberos authentication. Again, the connection process begins with authentication. With Kerberos authentication, the client and the server must demonstrate to one another that they are genuine, at which point authentication is successful and a secure client/server session is established. In the illustration above, the tiers represent the following: Client tier (computer 1): The client computer from which an application makes a request. Middle tier (computer 2): The Web server or farm where the client’s request is directed. Both the SharePoint and Reporting Services server(s) comprise the middle tier (but we’re only concentrating on native deployments just now). Back end tier (computer 3): The Database/Analysis Services server/Cluster where the requested data is stored. In order to enable Kerberos authentication for Reporting Services it’s necessary to configure the relevant SPNs, configure trust for delegation for server accounts, configure Kerberos with full delegation and configure the authentication types for Reporting Services. Service Principle Names (SPNs) are unique identifiers for services and identify the account’s type of service. If an SPN is not configured for a service, a client account will be unable to authenticate to the servers using Kerberos. You need to be a domain administrator to add an SPN, which can be added using the SetSPN utility. For Reporting Services in native mode, the following SPNs need to be registered --SQL Server Service SETSPN -S mssqlsvc/servername:1433 Domain\SQL For named instances, or if the default instance is running under a different port, then the specific port number should be used. --Reporting Services Service SETSPN -S http/servername Domain\SSRS SETSPN -S http/servername.domain.com Domain\SSRS The SPN should be set for the NETBIOS name of the server and the FQDN. If you access the reports using a host header or DNS alias, then that should also be registered SETSPN -S http/www.reports.com Domain\SSRS --Analysis Services Service SETSPN -S msolapsvc.3/servername Domain\SSAS Next, you need to configure trust for delegation, which refers to enabling a computer to impersonate an authenticated user to services on another computer: Location Description Client 1. The requesting application must support the Kerberos authentication protocol. 2. The user account making the request must be configured on the domain controller. Confirm that the following option is not selected: Account is sensitive and cannot be delegated. Servers 1. The service accounts must be trusted for delegation on the domain controller. 2. The service accounts must have SPNs registered on the domain controller. If the service account is a domain user account, the domain administrator must register the SPNs. In Active Directory Users and Computers, verify that the domain user accounts used to access reports have been configured for delegation (the ‘Account is sensitive and cannot be delegated’ option should not be selected): We then need to configure the Reporting Services service account and computer to use Kerberos with full delegation:   We also need to do the same for the SQL Server or Analysis Services service accounts and computers (depending on what type of data source you are connecting to in your reports). Finally, and this is the part that sometimes gets over-looked, we need to configure the authentication type correctly for reporting services to use Kerberos authentication. This is configured in the Authentication section of the RSReportServer.config file on the report server. <Authentication> <AuthenticationTypes>           <RSWindowsNegotiate/> </AuthenticationTypes> <EnableAuthPersistence>true</EnableAuthPersistence> </Authentication> This will enable Kerberos authentication for Internet Explorer. For other browsers, see the link below. The report server instance must be restarted for these changes to take effect. Once these changes have been made, all that’s left to do is test to make sure Kerberos authentication is working properly by running a report from report manager that is configured to use Windows Integrated authentication (either connecting to Analysis Services or SQL Server back-end). Resources: Manage Kerberos Authentication Issues in a Reporting Services Environment http://download.microsoft.com/download/B/E/1/BE1AABB3-6ED8-4C3C-AF91-448AB733B1AF/SSRSKerberos.docx Configuring Kerberos Authentication for Microsoft SharePoint 2010 Products http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=23176 How to: Configure Windows Authentication in Reporting Services http://msdn.microsoft.com/en-us/library/cc281253.aspx RSReportServer Configuration File http://msdn.microsoft.com/en-us/library/ms157273.aspx#Authentication Planning for Browser Support http://msdn.microsoft.com/en-us/library/ms156511.aspx

    Read the article

  • Parallelism in .NET – Part 7, Some Differences between PLINQ and LINQ to Objects

    - by Reed
    In my previous post on Declarative Data Parallelism, I mentioned that PLINQ extends LINQ to Objects to support parallel operations.  Although nearly all of the same operations are supported, there are some differences between PLINQ and LINQ to Objects.  By introducing Parallelism to our declarative model, we add some extra complexity.  This, in turn, adds some extra requirements that must be addressed. In order to illustrate the main differences, and why they exist, let’s begin by discussing some differences in how the two technologies operate, and look at the underlying types involved in LINQ to Objects and PLINQ . LINQ to Objects is mainly built upon a single class: Enumerable.  The Enumerable class is a static class that defines a large set of extension methods, nearly all of which work upon an IEnumerable<T>.  Many of these methods return a new IEnumerable<T>, allowing the methods to be chained together into a fluent style interface.  This is what allows us to write statements that chain together, and lead to the nice declarative programming model of LINQ: double min = collection .Where(item => item.SomeProperty > 6 && item.SomeProperty < 24) .Min(item => item.PerformComputation()); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Other LINQ variants work in a similar fashion.  For example, most data-oriented LINQ providers are built upon an implementation of IQueryable<T>, which allows the database provider to turn a LINQ statement into an underlying SQL query, to be performed directly on the remote database. PLINQ is similar, but instead of being built upon the Enumerable class, most of PLINQ is built upon a new static class: ParallelEnumerable.  When using PLINQ, you typically begin with any collection which implements IEnumerable<T>, and convert it to a new type using an extension method defined on ParallelEnumerable: AsParallel().  This method takes any IEnumerable<T>, and converts it into a ParallelQuery<T>, the core class for PLINQ.  There is a similar ParallelQuery class for working with non-generic IEnumerable implementations. This brings us to our first subtle, but important difference between PLINQ and LINQ – PLINQ always works upon specific types, which must be explicitly created. Typically, the type you’ll use with PLINQ is ParallelQuery<T>, but it can sometimes be a ParallelQuery or an OrderedParallelQuery<T>.  Instead of dealing with an interface, implemented by an unknown class, we’re dealing with a specific class type.  This works seamlessly from a usage standpoint – ParallelQuery<T> implements IEnumerable<T>, so you can always “switch back” to an IEnumerable<T>.  The difference only arises at the beginning of our parallelization.  When we’re using LINQ, and we want to process a normal collection via PLINQ, we need to explicitly convert the collection into a ParallelQuery<T> by calling AsParallel().  There is an important consideration here – AsParallel() does not need to be called on your specific collection, but rather any IEnumerable<T>.  This allows you to place it anywhere in the chain of methods involved in a LINQ statement, not just at the beginning.  This can be useful if you have an operation which will not parallelize well or is not thread safe.  For example, the following is perfectly valid, and similar to our previous examples: double min = collection .AsParallel() .Select(item => item.SomeOperation()) .Where(item => item.SomeProperty > 6 && item.SomeProperty < 24) .Min(item => item.PerformComputation()); However, if SomeOperation() is not thread safe, we could just as easily do: double min = collection .Select(item => item.SomeOperation()) .AsParallel() .Where(item => item.SomeProperty > 6 && item.SomeProperty < 24) .Min(item => item.PerformComputation()); In this case, we’re using standard LINQ to Objects for the Select(…) method, then converting the results of that map routine to a ParallelQuery<T>, and processing our filter (the Where method) and our aggregation (the Min method) in parallel. PLINQ also provides us with a way to convert a ParallelQuery<T> back into a standard IEnumerable<T>, forcing sequential processing via standard LINQ to Objects.  If SomeOperation() was thread-safe, but PerformComputation() was not thread-safe, we would need to handle this by using the AsEnumerable() method: double min = collection .AsParallel() .Select(item => item.SomeOperation()) .Where(item => item.SomeProperty > 6 && item.SomeProperty < 24) .AsEnumerable() .Min(item => item.PerformComputation()); Here, we’re converting our collection into a ParallelQuery<T>, doing our map operation (the Select(…) method) and our filtering in parallel, then converting the collection back into a standard IEnumerable<T>, which causes our aggregation via Min() to be performed sequentially. This could also be written as two statements, as well, which would allow us to use the language integrated syntax for the first portion: var tempCollection = from item in collection.AsParallel() let e = item.SomeOperation() where (e.SomeProperty > 6 && e.SomeProperty < 24) select e; double min = tempCollection.AsEnumerable().Min(item => item.PerformComputation()); This allows us to use the standard LINQ style language integrated query syntax, but control whether it’s performed in parallel or serial by adding AsParallel() and AsEnumerable() appropriately. The second important difference between PLINQ and LINQ deals with order preservation.  PLINQ, by default, does not preserve the order of of source collection. This is by design.  In order to process a collection in parallel, the system needs to naturally deal with multiple elements at the same time.  Maintaining the original ordering of the sequence adds overhead, which is, in many cases, unnecessary.  Therefore, by default, the system is allowed to completely change the order of your sequence during processing.  If you are doing a standard query operation, this is usually not an issue.  However, there are times when keeping a specific ordering in place is important.  If this is required, you can explicitly request the ordering be preserved throughout all operations done on a ParallelQuery<T> by using the AsOrdered() extension method.  This will cause our sequence ordering to be preserved. For example, suppose we wanted to take a collection, perform an expensive operation which converts it to a new type, and display the first 100 elements.  In LINQ to Objects, our code might look something like: // Using IEnumerable<SourceClass> collection IEnumerable<ResultClass> results = collection .Select(e => e.CreateResult()) .Take(100); If we just converted this to a parallel query naively, like so: IEnumerable<ResultClass> results = collection .AsParallel() .Select(e => e.CreateResult()) .Take(100); We could very easily get a very different, and non-reproducable, set of results, since the ordering of elements in the input collection is not preserved.  To get the same results as our original query, we need to use: IEnumerable<ResultClass> results = collection .AsParallel() .AsOrdered() .Select(e => e.CreateResult()) .Take(100); This requests that PLINQ process our sequence in a way that verifies that our resulting collection is ordered as if it were processed serially.  This will cause our query to run slower, since there is overhead involved in maintaining the ordering.  However, in this case, it is required, since the ordering is required for correctness. PLINQ is incredibly useful.  It allows us to easily take nearly any LINQ to Objects query and run it in parallel, using the same methods and syntax we’ve used previously.  There are some important differences in operation that must be considered, however – it is not a free pass to parallelize everything.  When using PLINQ in order to parallelize your routines declaratively, the same guideline I mentioned before still applies: Parallelization is something that should be handled with care and forethought, added by design, and not just introduced casually.

    Read the article

  • Creating a dynamic proxy generator with c# – Part 3 – Creating the constructors

    - by SeanMcAlinden
    Creating a dynamic proxy generator with c# – Part 1 – Creating the Assembly builder, Module builder and caching mechanism Creating a dynamic proxy generator with c# – Part 2 – Interceptor Design For the latest code go to http://rapidioc.codeplex.com/ When building our proxy type, the first thing we need to do is build the constructors. There needs to be a corresponding constructor for each constructor on the passed in base type. We also want to create a field to store the interceptors and construct this list within each constructor. So assuming the passed in base type is a User<int, IRepository> class, were looking to generate constructor code like the following:   Default Constructor public User`2_RapidDynamicBaseProxy() {     this.interceptors = new List<IInterceptor<User<int, IRepository>>>();     DefaultInterceptor<User<int, IRepository>> item = new DefaultInterceptor<User<int, IRepository>>();     this.interceptors.Add(item); }     Parameterised Constructor public User`2_RapidDynamicBaseProxy(IRepository repository1) : base(repository1) {     this.interceptors = new List<IInterceptor<User<int, IRepository>>>();     DefaultInterceptor<User<int, IRepository>> item = new DefaultInterceptor<User<int, IRepository>>();     this.interceptors.Add(item); }   As you can see, we first populate a field on the class with a new list of the passed in base type. Construct our DefaultInterceptor class. Add the DefaultInterceptor instance to our interceptor collection. Although this seems like a relatively small task, there is a fair amount of work require to get this going. Instead of going through every line of code – please download the latest from http://rapidioc.codeplex.com/ and debug through. In this post I’m going to concentrate on explaining how it works. TypeBuilder The TypeBuilder class is the main class used to create the type. You instantiate a new TypeBuilder using the assembly module we created in part 1. /// <summary> /// Creates a type builder. /// </summary> /// <typeparam name="TBase">The type of the base class to be proxied.</typeparam> public static TypeBuilder CreateTypeBuilder<TBase>() where TBase : class {     TypeBuilder typeBuilder = DynamicModuleCache.Get.DefineType         (             CreateTypeName<TBase>(),             TypeAttributes.Class | TypeAttributes.Public,             typeof(TBase),             new Type[] { typeof(IProxy) }         );       if (typeof(TBase).IsGenericType)     {         GenericsHelper.MakeGenericType(typeof(TBase), typeBuilder);     }       return typeBuilder; }   private static string CreateTypeName<TBase>() where TBase : class {     return string.Format("{0}_RapidDynamicBaseProxy", typeof(TBase).Name); } As you can see, I’ve create a new public class derived from TBase which also implements my IProxy interface, this is used later for adding interceptors. If the base type is generic, the following GenericsHelper.MakeGenericType method is called. GenericsHelper using System; using System.Reflection.Emit; namespace Rapid.DynamicProxy.Types.Helpers {     /// <summary>     /// Helper class for generic types and methods.     /// </summary>     internal static class GenericsHelper     {         /// <summary>         /// Makes the typeBuilder a generic.         /// </summary>         /// <param name="concrete">The concrete.</param>         /// <param name="typeBuilder">The type builder.</param>         public static void MakeGenericType(Type baseType, TypeBuilder typeBuilder)         {             Type[] genericArguments = baseType.GetGenericArguments();               string[] genericArgumentNames = GetArgumentNames(genericArguments);               GenericTypeParameterBuilder[] genericTypeParameterBuilder                 = typeBuilder.DefineGenericParameters(genericArgumentNames);               typeBuilder.MakeGenericType(genericTypeParameterBuilder);         }           /// <summary>         /// Gets the argument names from an array of generic argument types.         /// </summary>         /// <param name="genericArguments">The generic arguments.</param>         public static string[] GetArgumentNames(Type[] genericArguments)         {             string[] genericArgumentNames = new string[genericArguments.Length];               for (int i = 0; i < genericArguments.Length; i++)             {                 genericArgumentNames[i] = genericArguments[i].Name;             }               return genericArgumentNames;         }     } }       As you can see, I’m getting all of the generic argument types and names, creating a GenericTypeParameterBuilder and then using the typeBuilder to make the new type generic. InterceptorsField The interceptors field will store a List<IInterceptor<TBase>>. Fields are simple made using the FieldBuilder class. The following code demonstrates how to create the interceptor field. FieldBuilder interceptorsField = typeBuilder.DefineField(     "interceptors",     typeof(System.Collections.Generic.List<>).MakeGenericType(typeof(IInterceptor<TBase>)),       FieldAttributes.Private     ); The field will now exist with the new Type although it currently has no data – we’ll deal with this in the constructor. Add method for interceptorsField To enable us to add to the interceptorsField list, we are going to utilise the Add method that already exists within the System.Collections.Generic.List class. We still however have to create the methodInfo necessary to call the add method. This can be done similar to the following: Add Interceptor Field MethodInfo addInterceptor = typeof(List<>)     .MakeGenericType(new Type[] { typeof(IInterceptor<>).MakeGenericType(typeof(TBase)) })     .GetMethod     (        "Add",        BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic,        null,        new Type[] { typeof(IInterceptor<>).MakeGenericType(typeof(TBase)) },        null     ); So we’ve create a List<IInterceptor<TBase>> type, then using the type created a method info called Add which accepts an IInterceptor<TBase>. Now in our constructor we can use this to call this.interceptors.Add(// interceptor); Building the Constructors This will be the first hard-core part of the proxy building process so I’m going to show the class and then try to explain what everything is doing. For a clear view, download the source from http://rapidioc.codeplex.com/, go to the test project and debug through the constructor building section. Anyway, here it is: DynamicConstructorBuilder using System; using System.Collections.Generic; using System.Reflection; using System.Reflection.Emit; using Rapid.DynamicProxy.Interception; using Rapid.DynamicProxy.Types.Helpers; namespace Rapid.DynamicProxy.Types.Constructors {     /// <summary>     /// Class for creating the proxy constructors.     /// </summary>     internal static class DynamicConstructorBuilder     {         /// <summary>         /// Builds the constructors.         /// </summary>         /// <typeparam name="TBase">The base type.</typeparam>         /// <param name="typeBuilder">The type builder.</param>         /// <param name="interceptorsField">The interceptors field.</param>         public static void BuildConstructors<TBase>             (                 TypeBuilder typeBuilder,                 FieldBuilder interceptorsField,                 MethodInfo addInterceptor             )             where TBase : class         {             ConstructorInfo interceptorsFieldConstructor = CreateInterceptorsFieldConstructor<TBase>();               ConstructorInfo defaultInterceptorConstructor = CreateDefaultInterceptorConstructor<TBase>();               ConstructorInfo[] constructors = typeof(TBase).GetConstructors();               foreach (ConstructorInfo constructorInfo in constructors)             {                 CreateConstructor<TBase>                     (                         typeBuilder,                         interceptorsField,                         interceptorsFieldConstructor,                         defaultInterceptorConstructor,                         addInterceptor,                         constructorInfo                     );             }         }           #region Private Methods           private static void CreateConstructor<TBase>             (                 TypeBuilder typeBuilder,                 FieldBuilder interceptorsField,                 ConstructorInfo interceptorsFieldConstructor,                 ConstructorInfo defaultInterceptorConstructor,                 MethodInfo AddDefaultInterceptor,                 ConstructorInfo constructorInfo             ) where TBase : class         {             Type[] parameterTypes = GetParameterTypes(constructorInfo);               ConstructorBuilder constructorBuilder = CreateConstructorBuilder(typeBuilder, parameterTypes);               ILGenerator cIL = constructorBuilder.GetILGenerator();               LocalBuilder defaultInterceptorMethodVariable =                 cIL.DeclareLocal(typeof(DefaultInterceptor<>).MakeGenericType(typeof(TBase)));               ConstructInterceptorsField(interceptorsField, interceptorsFieldConstructor, cIL);               ConstructDefaultInterceptor(defaultInterceptorConstructor, cIL, defaultInterceptorMethodVariable);               AddDefaultInterceptorToInterceptorsList                 (                     interceptorsField,                     AddDefaultInterceptor,                     cIL,                     defaultInterceptorMethodVariable                 );               CreateConstructor(constructorInfo, parameterTypes, cIL);         }           private static void CreateConstructor(ConstructorInfo constructorInfo, Type[] parameterTypes, ILGenerator cIL)         {             cIL.Emit(OpCodes.Ldarg_0);               if (parameterTypes.Length > 0)             {                 LoadParameterTypes(parameterTypes, cIL);             }               cIL.Emit(OpCodes.Call, constructorInfo);             cIL.Emit(OpCodes.Ret);         }           private static void LoadParameterTypes(Type[] parameterTypes, ILGenerator cIL)         {             for (int i = 1; i <= parameterTypes.Length; i++)             {                 cIL.Emit(OpCodes.Ldarg_S, i);             }         }           private static void AddDefaultInterceptorToInterceptorsList             (                 FieldBuilder interceptorsField,                 MethodInfo AddDefaultInterceptor,                 ILGenerator cIL,                 LocalBuilder defaultInterceptorMethodVariable             )         {             cIL.Emit(OpCodes.Ldarg_0);             cIL.Emit(OpCodes.Ldfld, interceptorsField);             cIL.Emit(OpCodes.Ldloc, defaultInterceptorMethodVariable);             cIL.Emit(OpCodes.Callvirt, AddDefaultInterceptor);         }           private static void ConstructDefaultInterceptor             (                 ConstructorInfo defaultInterceptorConstructor,                 ILGenerator cIL,                 LocalBuilder defaultInterceptorMethodVariable             )         {             cIL.Emit(OpCodes.Newobj, defaultInterceptorConstructor);             cIL.Emit(OpCodes.Stloc, defaultInterceptorMethodVariable);         }           private static void ConstructInterceptorsField             (                 FieldBuilder interceptorsField,                 ConstructorInfo interceptorsFieldConstructor,                 ILGenerator cIL             )         {             cIL.Emit(OpCodes.Ldarg_0);             cIL.Emit(OpCodes.Newobj, interceptorsFieldConstructor);             cIL.Emit(OpCodes.Stfld, interceptorsField);         }           private static ConstructorBuilder CreateConstructorBuilder(TypeBuilder typeBuilder, Type[] parameterTypes)         {             return typeBuilder.DefineConstructor                 (                     MethodAttributes.Public | MethodAttributes.SpecialName | MethodAttributes.RTSpecialName                     | MethodAttributes.HideBySig, CallingConventions.Standard, parameterTypes                 );         }           private static Type[] GetParameterTypes(ConstructorInfo constructorInfo)         {             ParameterInfo[] parameterInfoArray = constructorInfo.GetParameters();               Type[] parameterTypes = new Type[parameterInfoArray.Length];               for (int p = 0; p < parameterInfoArray.Length; p++)             {                 parameterTypes[p] = parameterInfoArray[p].ParameterType;             }               return parameterTypes;         }           private static ConstructorInfo CreateInterceptorsFieldConstructor<TBase>() where TBase : class         {             return ConstructorHelper.CreateGenericConstructorInfo                 (                     typeof(List<>),                     new Type[] { typeof(IInterceptor<TBase>) },                     BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic                 );         }           private static ConstructorInfo CreateDefaultInterceptorConstructor<TBase>() where TBase : class         {             return ConstructorHelper.CreateGenericConstructorInfo                 (                     typeof(DefaultInterceptor<>),                     new Type[] { typeof(TBase) },                     BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic                 );         }           #endregion     } } So, the first two tasks within the class should be fairly clear, we are creating a ConstructorInfo for the interceptorField list and a ConstructorInfo for the DefaultConstructor, this is for instantiating them in each contructor. We then using Reflection get an array of all of the constructors in the base class, we then loop through the array and create a corresponding proxy contructor. Hopefully, the code is fairly easy to follow other than some new types and the dreaded Opcodes. ConstructorBuilder This class defines a new constructor on the type. ILGenerator The ILGenerator allows the use of Reflection.Emit to create the method body. LocalBuilder The local builder allows the storage of data in local variables within a method, in this case it’s the constructed DefaultInterceptor. Constructing the interceptors field The first bit of IL you’ll come across as you follow through the code is the following private method used for constructing the field list of interceptors. private static void ConstructInterceptorsField             (                 FieldBuilder interceptorsField,                 ConstructorInfo interceptorsFieldConstructor,                 ILGenerator cIL             )         {             cIL.Emit(OpCodes.Ldarg_0);             cIL.Emit(OpCodes.Newobj, interceptorsFieldConstructor);             cIL.Emit(OpCodes.Stfld, interceptorsField);         } The first thing to know about generating code using IL is that you are using a stack, if you want to use something, you need to push it up the stack etc. etc. OpCodes.ldArg_0 This opcode is a really interesting one, basically each method has a hidden first argument of the containing class instance (apart from static classes), constructors are no different. This is the reason you can use syntax like this.myField. So back to the method, as we want to instantiate the List in the interceptorsField, first we need to load the class instance onto the stack, we then load the new object (new List<TBase>) and finally we store it in the interceptorsField. Hopefully, that should follow easily enough in the method. In each constructor you would now have this.interceptors = new List<User<int, IRepository>>(); Constructing and storing the DefaultInterceptor The next bit of code we need to create is the constructed DefaultInterceptor. Firstly, we create a local builder to store the constructed type. Create a local builder LocalBuilder defaultInterceptorMethodVariable =     cIL.DeclareLocal(typeof(DefaultInterceptor<>).MakeGenericType(typeof(TBase))); Once our local builder is ready, we then need to construct the DefaultInterceptor<TBase> and store it in the variable. Connstruct DefaultInterceptor private static void ConstructDefaultInterceptor     (         ConstructorInfo defaultInterceptorConstructor,         ILGenerator cIL,         LocalBuilder defaultInterceptorMethodVariable     ) {     cIL.Emit(OpCodes.Newobj, defaultInterceptorConstructor);     cIL.Emit(OpCodes.Stloc, defaultInterceptorMethodVariable); } As you can see, using the ConstructorInfo named defaultInterceptorConstructor, we load the new object onto the stack. Then using the store local opcode (OpCodes.Stloc), we store the new object in the local builder named defaultInterceptorMethodVariable. Add the constructed DefaultInterceptor to the interceptors field collection Using the add method created earlier in this post, we are going to add the new DefaultInterceptor object to the interceptors field collection. Add Default Interceptor private static void AddDefaultInterceptorToInterceptorsList     (         FieldBuilder interceptorsField,         MethodInfo AddDefaultInterceptor,         ILGenerator cIL,         LocalBuilder defaultInterceptorMethodVariable     ) {     cIL.Emit(OpCodes.Ldarg_0);     cIL.Emit(OpCodes.Ldfld, interceptorsField);     cIL.Emit(OpCodes.Ldloc, defaultInterceptorMethodVariable);     cIL.Emit(OpCodes.Callvirt, AddDefaultInterceptor); } So, here’s whats going on. The class instance is first loaded onto the stack using the load argument at index 0 opcode (OpCodes.Ldarg_0) (remember the first arg is the hidden class instance). The interceptorsField is then loaded onto the stack using the load field opcode (OpCodes.Ldfld). We then load the DefaultInterceptor object we stored locally using the load local opcode (OpCodes.Ldloc). Then finally we call the AddDefaultInterceptor method using the call virtual opcode (Opcodes.Callvirt). Completing the constructor The last thing we need to do is complete the constructor. Complete the constructor private static void CreateConstructor(ConstructorInfo constructorInfo, Type[] parameterTypes, ILGenerator cIL)         {             cIL.Emit(OpCodes.Ldarg_0);               if (parameterTypes.Length > 0)             {                 LoadParameterTypes(parameterTypes, cIL);             }               cIL.Emit(OpCodes.Call, constructorInfo);             cIL.Emit(OpCodes.Ret);         }           private static void LoadParameterTypes(Type[] parameterTypes, ILGenerator cIL)         {             for (int i = 1; i <= parameterTypes.Length; i++)             {                 cIL.Emit(OpCodes.Ldarg_S, i);             }         } So, the first thing we do again is load the class instance using the load argument at index 0 opcode (OpCodes.Ldarg_0). We then load each parameter using OpCode.Ldarg_S, this opcode allows us to specify an index position for each argument. We then setup calling the base constructor using OpCodes.Call and the base constructors ConstructorInfo. Finally, all methods are required to return, even when they have a void return. As there are no values on the stack after the OpCodes.Call line, we can safely call the OpCode.Ret to give the constructor a void return. If there was a value, we would have to pop the value of the stack before calling return otherwise, the method would try and return a value. Conclusion This was a slightly hardcore post but hopefully it hasn’t been too hard to follow. The main thing is that a number of the really useful opcodes have been used and now the dynamic proxy is capable of being constructed. If you download the code and debug through the tests at http://rapidioc.codeplex.com/, you’ll be able to create proxies at this point, they cannon do anything in terms of interception but you can happily run the tests, call base methods and properties and also take a look at the created assembly in Reflector. Hope this is useful. The next post should be up soon, it will be covering creating the private methods for calling the base class methods and properties. Kind Regards, Sean.

    Read the article

  • Entity Framework 4.0: Creating objects of correct type when using lazy loading

    - by DigiMortal
    In my posting about Entity Framework 4.0 and POCOs I introduced lazy loading in EF applications. EF uses proxy classes for lazy loading and this means we have new types in that come and go dynamically in runtime. We don’t have these types available when we write code but we cannot forget that EF may expect us to use dynamically generated types. In this posting I will give you simple hint how to use correct types in your code. The background of lazy loading and proxy classes As a first thing I will explain you in short what is proxy class. Business classes when designed correctly have no knowledge about their birth and death – they don’t know how they are created and they don’t know how their data is persisted. This is the responsibility of object runtime. When we use lazy loading we need a little bit different classes that know how to load data for properties when code accesses the property first time. As we cannot add this functionality to our business classes (they may be stored through more than one data access technology or by more than one Data Access Layer (DAL)) we create proxy classes that extend our business classes. If we have class called Product and product has lazy loaded property called Customer then we need proxy class, let’s say ProductProxy, that has same public signature as Product so we can use it INSTEAD OF product in our code. ProductProxy overrides Customer property. If customer is not asked then customer is null. But if we ask for Customer property then overridden property of ProductProxy loads it from database. This is how lazy loading works. Problem – two types for same thing As lazy loading may introduce dynamically generated proxy types we don’t know in our application code which type is returned. We cannot be sure that we have Product not ProductProxy returned. This leads us to the following question: how can we create Product of correct type if we don’t know the correct type? In EF solution is simple. Solution – use factory methods If you are using repositories and you are not using factories (imho it is pretty pointless with mapper) you can add factory methods to your EF based repositories. Take a look at this class. public class Event {     public int ID { get; set; }     public string Title { get; set; }     public string Location { get; set; }     public virtual Party Organizer { get; set; }     public DateTime Date { get; set; } } We have virtual member called Organizer. This property is virtual because we want to use lazy loading on this class so Organizer is loaded only when we ask it. EF provides us with method called CreateObject<T>(). CreateObject<T>() is member of ObjectContext class and it creates the object based on given type. In runtime proxy type for Event is created for us automatically and when we call CreateObject<T>() for Event it returns as object of Event proxy type. The factory method for events repository is as follows. public Event CreateEvent() {     var evt = _context.CreateObject<Event>();     return evt; } And we are done. Instead of creating factory classes we created factory methods that guarantee that created objects are of correct type. Conclusion Although lazy loading introduces some new objects we cannot use at design time because they live only in runtime we can write code without worrying about exact implementation type of object. This holds true until we have clean code and we don’t make any decisions based on object type. EF4.0 provides us with very simple factory method that create and return objects of correct type. All we had to do was adding factory methods to our repositories.

    Read the article

  • Is code maintenance typically a special project, or is it considered part of daily work?

    - by blueberryfields
    Earlier, I asked to find out which tools are commonly used to monitor methods and code bases, to find out whether the methods have been getting too long. Most of the responses there suggested that, beyond maintenance on the method currently being edited, programmers don't, in general, keep an eye on the rest of the code base. So I thought I'd ask the question in general: Is code maintenance, in general, considered part of your daily work? Do you find that you're spending at least some of your time cleaning up, refactoring, rewriting code in the code base, to improve it, as part of your other assigned work? Is it expected of you/do you expect it of your teammates? Or is it more common to find that cleanup, refactoring, and general maintenance on the codebase as a whole, occurs in bursts (for example, mostly as part of code reviews, or as part of refactoring/cleaning up projects)?

    Read the article

  • C# 4.0: Named And Optional Arguments

    - by Paulo Morgado
    As part of the co-evolution effort of C# and Visual Basic, C# 4.0 introduces Named and Optional Arguments. First of all, let’s clarify what are arguments and parameters: Method definition parameters are the input variables of the method. Method call arguments are the values provided to the method parameters. In fact, the C# Language Specification states the following on §7.5: The argument list (§7.5.1) of a function member invocation provides actual values or variable references for the parameters of the function member. Given the above definitions, we can state that: Parameters have always been named and still are. Parameters have never been optional and still aren’t. Named Arguments Until now, the way the C# compiler matched method call definition arguments with method parameters was by position. The first argument provides the value for the first parameter, the second argument provides the value for the second parameter, and so on and so on, regardless of the name of the parameters. If a parameter was missing a corresponding argument to provide its value, the compiler would emit a compilation error. For this call: Greeting("Mr.", "Morgado", 42); this method: public void Greeting(string title, string name, int age) will receive as parameters: title: “Mr.” name: “Morgado” age: 42 What this new feature allows is to use the names of the parameters to identify the corresponding arguments in the form: name:value Not all arguments in the argument list must be named. However, all named arguments must be at the end of the argument list. The matching between arguments (and the evaluation of its value) and parameters will be done first by name for the named arguments and than by position for the unnamed arguments. This means that, for this method definition: public static void Method(int first, int second, int third) this call declaration: int i = 0; Method(i, third: i++, second: ++i); will have this code generated by the compiler: int i = 0; int CS$0$0000 = i++; int CS$0$0001 = ++i; Method(i, CS$0$0001, CS$0$0000); which will give the method the following parameter values: first: 2 second: 2 third: 0 Notice the variable names. Although invalid being invalid C# identifiers, they are valid .NET identifiers and thus avoiding collision between user written and compiler generated code. Besides allowing to re-order of the argument list, this feature is very useful for auto-documenting the code, for example, when the argument list is very long or not clear, from the call site, what the arguments are. Optional Arguments Parameters can now have default values: public static void Method(int first, int second = 2, int third = 3) Parameters with default values must be the last in the parameter list and its value is used as the value of the parameter if the corresponding argument is missing from the method call declaration. For this call declaration: int i = 0; Method(i, third: ++i); will have this code generated by the compiler: int i = 0; int CS$0$0000 = ++i; Method(i, 2, CS$0$0000); which will give the method the following parameter values: first: 1 second: 2 third: 1 Because, when method parameters have default values, arguments can be omitted from the call declaration, this might seem like method overloading or a good replacement for it, but it isn’t. Although methods like this: public static StreamReader OpenTextFile( string path, Encoding encoding = null, bool detectEncoding = true, int bufferSize = 1024) allow to have its calls written like this: OpenTextFile("foo.txt", Encoding.UTF8); OpenTextFile("foo.txt", Encoding.UTF8, bufferSize: 4096); OpenTextFile( bufferSize: 4096, path: "foo.txt", detectEncoding: false); The complier handles default values like constant fields taking the value and useing it instead of a reference to the value. So, like with constant fields, methods with parameters with default values are exposed publicly (and remember that internal members might be publicly accessible – InternalsVisibleToAttribute). If such methods are publicly accessible and used by another assembly, those values will be hard coded in the calling code and, if the called assembly has its default values changed, they won’t be assumed by already compiled code. At the first glance, I though that using optional arguments for “bad” written code was great, but the ability to write code like that was just pure evil. But than I realized that, since I use private constant fields, it’s OK to use default parameter values on privately accessed methods.

    Read the article

  • using Generics in C# [closed]

    - by Uphaar Goyal
    I have started looking into using generics in C#. As an example what i have done is that I have an abstract class which implements generic methods. these generic methods take a sql query, a connection string and the Type T as parameters and then construct the data set, populate the object and return it back. This way each business object does not need to have a method to populate it with data or construct its data set. All we need to do is pass the type, the sql query and the connection string and these methods do the rest.I am providing the code sample here. I am just looking to discuss with people who might have a better solution to what i have done. using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Data; using System.Data.SqlClient; using MWTWorkUnitMgmtLib.Business; using System.Collections.ObjectModel; using System.Reflection; namespace MWTWorkUnitMgmtLib.TableGateway { public abstract class TableGateway { public TableGateway() { } protected abstract string GetConnection(); protected abstract string GetTableName(); public DataSet GetDataSetFromSql(string connectionString, string sql) { DataSet ds = null; using (SqlConnection connection = new SqlConnection(connectionString)) using (SqlCommand command = connection.CreateCommand()) { command.CommandText = sql; connection.Open(); using (ds = new DataSet()) using (SqlDataAdapter adapter = new SqlDataAdapter(command)) { adapter.Fill(ds); } } return ds; } public static bool ContainsColumnName(DataRow dr, string columnName) { return dr.Table.Columns.Contains(columnName); } public DataTable GetDataTable(string connString, string sql) { DataSet ds = GetDataSetFromSql(connString, sql); DataTable dt = null; if (ds != null) { if (ds.Tables.Count 0) { dt = ds.Tables[0]; } } return dt; } public T Construct(DataRow dr, T t) where T : class, new() { Type t1 = t.GetType(); PropertyInfo[] properties = t1.GetProperties(); foreach (PropertyInfo property in properties) { if (ContainsColumnName(dr, property.Name) && (dr[property.Name] != null)) property.SetValue(t, dr[property.Name], null); } return t; } public T GetByID(string connString, string sql, T t) where T : class, new() { DataTable dt = GetDataTable(connString, sql); DataRow dr = dt.Rows[0]; return Construct(dr, t); } public List GetAll(string connString, string sql, T t) where T : class, new() { List collection = new List(); DataTable dt = GetDataTable(connString, sql); foreach (DataRow dr in dt.Rows) collection.Add(Construct(dr, t)); return collection; } } }

    Read the article

  • Sixeyed.Caching available now on NuGet and GitHub!

    - by Elton Stoneman
    Originally posted on: http://geekswithblogs.net/EltonStoneman/archive/2013/10/22/sixeyed.caching-available-now-on-nuget-and-github.aspxThe good guys at Pluralsight have okayed me to publish my caching framework (as seen in Caching in the .NET Stack: Inside-Out) as an open-source library, and it’s out now. You can get it here: Sixeyed.Caching source code on GitHub, and here: Sixeyed.Caching package v1.0.0 on NuGet. If you haven’t seen the course, there’s a preview here on YouTube: In-Process and Out-of-Process Caches, which gives a good flavour. The library is a wrapper around various cache providers, including the .NET MemoryCache, AppFabric cache, and  memcached*. All the wrappers inherit from a base class which gives you a set of common functionality against all the cache implementations: •    inherits OutputCacheProvider, so you can use your chosen cache provider as an ASP.NET output cache; •    serialization and encryption, so you can configure whether you want your cache items serialized (XML, JSON or binary) and encrypted; •    instrumentation, you can optionally use performance counters to monitor cache attempts and hits, at a low level. The framework wraps up different caches into an ICache interface, and it lets you use a provider directly like this: Cache.Memory.Get<RefData>(refDataKey); - or with configuration to use the default cache provider: Cache.Default.Get<RefData>(refDataKey); The library uses Unity’s interception framework to implement AOP caching, which you can use by flagging methods with the [Cache] attribute: [Cache] public RefData GetItem(string refDataKey) - and you can be more specific on the required cache behaviour: [Cache(CacheType=CacheType.Memory, Days=1] public RefData GetItem(string refDataKey) - or really specific: [Cache(CacheType=CacheType.Disk, SerializationFormat=SerializationFormat.Json, Hours=2, Minutes=59)] public RefData GetItem(string refDataKey) Provided you get instances of classes with cacheable methods from the container, the attributed method results will be cached, and repeated calls will be fetched from the cache. You can also set a bunch of cache defaults in application config, like whether to use encryption and instrumentation, and whether the cache system is enabled at all: <sixeyed.caching enabled="true"> <performanceCounters instrumentCacheTotalCounts="true" instrumentCacheTargetCounts="true" categoryNamePrefix ="Sixeyed.Caching.Tests"/> <encryption enabled="true" key="1234567890abcdef1234567890abcdef" iv="1234567890abcdef"/> <!-- key must be 32 characters, IV must be 16 characters--> </sixeyed.caching> For AOP and methods flagged with the cache attribute, you can override the compile-time cache settings at runtime with more config (keyed by the class and method name): <sixeyed.caching enabled="true"> <targets> <target keyPrefix="MethodLevelCachingStub.GetRandomIntCacheConfiguredInternal" enabled="false"/> <target keyPrefix="MethodLevelCachingStub.GetRandomIntCacheExpiresConfiguredInternal" seconds="1"/> </targets> It’s released under the MIT license, so you can use it freely in your own apps and modify as required. I’ll be adding more content to the GitHub wiki, which will be the main source of documentation, but for now there’s an FAQ to get you started. * - in the course the framework library also wraps NCache Express, but there's no public redistributable library that I can find, so it's not in Sixeyed.Caching.

    Read the article

  • Entity Framework v1 &ndash; tips and Tricks Part 3

    - by Rohit Gupta
    General Tips on Entity Framework v1 & Linq to Entities: ToTraceString() If you need to know the underlying SQL that the EF generates for a Linq To Entities query, then use the ToTraceString() method of the ObjectQuery class. (or use LINQPAD) Note that you need to cast the LINQToEntities query to ObjectQuery before calling TotraceString() as follows: 1: string efSQL = ((ObjectQuery)from c in ctx.Contact 2: where c.Address.Any(a => a.CountryRegion == "US") 3: select c.ContactID).ToTraceString(); ================================================================================ MARS or MultipleActiveResultSet When you create a EDM Model (EDMX file) from the database using Visual Studio, it generates a connection string with the same name as the name of the EntityContainer in CSDL. In the ConnectionString so generated it sets the MultipleActiveResultSet attribute to true by default. So if you are running the following query then it streams multiple readers over the same connection: 1: using (BAEntities context = new BAEntities()) 2: { 3: var cons = 4: from con in context.Contacts 5: where con.FirstName == "Jose" 6: select con; 7: foreach (var c in cons) 8: { 9: if (c.AddDate < new System.DateTime(2007, 1, 1)) 10: { 11: c.Addresses.Load(); 12: } 13: } 14: } ================================================================================= Explicitly opening and closing EntityConnection When you call ToList() or foreach on a LINQToEntities query the EF automatically closes the connection after all the records from the query have been consumed. Thus if you need to run many LINQToEntities queries over the same connection then explicitly open and close the connection as follows: 1: using (BAEntities context = new BAEntities()) 2: { 3: context.Connection.Open(); 4: var cons = from con in context.Contacts where con.FirstName == "Jose" 5: select con; 6: var conList = cons.ToList(); 7: var allCustomers = from con in context.Contacts.OfType<Customer>() 8: select con; 9: var allcustList = allCustomers.ToList(); 10: context.Connection.Close(); 11: } ====================================================================== Dispose ObjectContext only if required After you retrieve entities using the ObjectContext and you are not explicitly disposing the ObjectContext then insure that your code does consume all the records from the LinqToEntities query by calling .ToList() or foreach statement, otherwise the the database connection will remain open and will be closed by the garbage collector when it gets to dispose the ObjectContext. Secondly if you are making updates to the entities retrieved using LinqToEntities then insure that you dont inadverdently dispose of the ObjectContext after the entities are retrieved and before calling .SaveChanges() since you need the SAME ObjectContext to keep track of changes made to the Entities (by using ObjectStateEntry objects). So if you do need to explicitly dispose of the ObjectContext do so only after calling SaveChanges() and only if you dont need to change track the entities retrieved any further. ======================================================================= SQL InjectionAttacks under control with EFv1 LinqToEntities and LinqToSQL queries are parameterized before they are sent to the DB hence they are not vulnerable to SQL Injection attacks. EntitySQL may be slightly vulnerable to attacks since it does not use parameterized queries. However since the EntitySQL demands that the query be valid Entity SQL syntax and valid native SQL syntax at the same time. So the only way one can do a SQLInjection Attack is by knowing the SSDL of the EDM Model and be able to write the correct EntitySQL (note one cannot append regular SQL since then the query wont be a valid EntitySQL syntax) and append it to a parameter. ====================================================================== Improving Performance You can convert the EntitySets and AssociationSets in a EDM Model into precompiled Views using the edmgen utility. for e.g. the Customer Entity can be converted into a precompiled view using edmgen and all LinqToEntities query against the contaxt.Customer EntitySet will use the precompiled View instead of the EntitySet itself (the same being true for relationships (EntityReference & EntityCollections of a Entity)). The advantage being that when using precompiled views the performance will be much better. The syntax for generating precompiled views for a existing EF project is : edmgen /mode:ViewGeneration /inssdl:BAModel.ssdl /incsdl:BAModel.csdl /inmsl:BAModel.msl /p:Chap14.csproj Note that this will only generate precompiled views for EntitySets and Associations and not for existing LinqToEntities queries in the project.(for that use CompiledQuery.Compile<>) Secondly if you have a LinqToEntities query that you need to run multiple times, then one should precompile the query using CompiledQuery.Compile method. The CompiledQuery.Compile<> method accepts a lamda expression as a parameter, which denotes the LinqToEntities query  that you need to precompile. The following is a example of a lamda that we can pass into the CompiledQuery.Compile() method 1: Expression<Func<BAEntities, string, IQueryable<Customer>>> expr = (BAEntities ctx1, string loc) => 2: from c in ctx1.Contacts.OfType<Customer>() 3: where c.Reservations.Any(r => r.Trip.Destination.DestinationName == loc) 4: select c; Then we call the Compile Query as follows: 1: var query = CompiledQuery.Compile<BAEntities, string, IQueryable<Customer>>(expr); 2:  3: using (BAEntities ctx = new BAEntities()) 4: { 5: var loc = "Malta"; 6: IQueryable<Customer> custs = query.Invoke(ctx, loc); 7: var custlist = custs.ToList(); 8: foreach (var item in custlist) 9: { 10: Console.WriteLine(item.FullName); 11: } 12: } Note that if you created a ObjectQuery or a Enitity SQL query instead of the LINQToEntities query, you dont need precompilation for e.g. 1: An Example of EntitySQL query : 2: string esql = "SELECT VALUE c from Contacts AS c where c is of(BAGA.Customer) and c.LastName = 'Gupta'"; 3: ObjectQuery<Customer> custs = CreateQuery<Customer>(esql); 1: An Example of ObjectQuery built using ObjectBuilder methods: 2: from c in Contacts.OfType<Customer>().Where("it.LastName == 'Gupta'") 3: select c This is since the Query plan is cached and thus the performance improves a bit, however since the ObjectQuery or EntitySQL query still needs to materialize the results into Entities hence it will take the same amount of performance hit as with LinqToEntities. However note that not ALL EntitySQL based or QueryBuilder based ObjectQuery plans are cached. So if you are in doubt always create a LinqToEntities compiled query and use that instead ============================================================ GetObjectStateEntry Versus GetObjectByKey We can get to the Entity being referenced by the ObjectStateEntry via its Entity property and there are helper methods in the ObjectStateManager (osm.TryGetObjectStateEntry) to get the ObjectStateEntry for a entity (for which we know the EntityKey). Similarly The ObjectContext has helper methods to get an Entity i.e. TryGetObjectByKey(). TryGetObjectByKey() uses GetObjectStateEntry method under the covers to find the object, however One important difference between these 2 methods is that TryGetObjectByKey queries the database if it is unable to find the object in the context, whereas TryGetObjectStateEntry only looks in the context for existing entries. It will not make a trip to the database ============================================================= POCO objects with EFv1: To create POCO objects that can be used with EFv1. We need to implement 3 key interfaces: IEntityWithKey IEntityWithRelationships IEntityWithChangeTracker Implementing IEntityWithKey is not mandatory, but if you dont then we need to explicitly provide values for the EntityKey for various functions (for e.g. the functions needed to implement IEntityWithChangeTracker and IEntityWithRelationships). Implementation of IEntityWithKey involves exposing a property named EntityKey which returns a EntityKey object. Implementation of IEntityWithChangeTracker involves implementing a method named SetChangeTracker since there can be multiple changetrackers (Object Contexts) existing in memory at the same time. 1: public void SetChangeTracker(IEntityChangeTracker changeTracker) 2: { 3: _changeTracker = changeTracker; 4: } Additionally each property in the POCO object needs to notify the changetracker (objContext) that it is updating itself by calling the EntityMemberChanged and EntityMemberChanging methods on the changeTracker. for e.g.: 1: public EntityKey EntityKey 2: { 3: get { return _entityKey; } 4: set 5: { 6: if (_changeTracker != null) 7: { 8: _changeTracker.EntityMemberChanging("EntityKey"); 9: _entityKey = value; 10: _changeTracker.EntityMemberChanged("EntityKey"); 11: } 12: else 13: _entityKey = value; 14: } 15: } 16: ===================== Custom Property ==================================== 17:  18: [EdmScalarPropertyAttribute(IsNullable = false)] 19: public System.DateTime OrderDate 20: { 21: get { return _orderDate; } 22: set 23: { 24: if (_changeTracker != null) 25: { 26: _changeTracker.EntityMemberChanging("OrderDate"); 27: _orderDate = value; 28: _changeTracker.EntityMemberChanged("OrderDate"); 29: } 30: else 31: _orderDate = value; 32: } 33: } Finally you also need to create the EntityState property as follows: 1: public EntityState EntityState 2: { 3: get { return _changeTracker.EntityState; } 4: } The IEntityWithRelationships involves creating a property that returns RelationshipManager object: 1: public RelationshipManager RelationshipManager 2: { 3: get 4: { 5: if (_relManager == null) 6: _relManager = RelationshipManager.Create(this); 7: return _relManager; 8: } 9: } ============================================================ Tip : ProviderManifestToken – change EDMX File to use SQL 2008 instead of SQL 2005 To use with SQL Server 2008, edit the EDMX file (the raw XML) changing the ProviderManifestToken in the SSDL attributes from "2005" to "2008" ============================================================= With EFv1 we cannot use Structs to replace a anonymous Type while doing projections in a LINQ to Entities query. While the same is supported with LINQToSQL, it is not with LinqToEntities. For e.g. the following is not supported with LinqToEntities since only parameterless constructors and initializers are supported in LINQ to Entities. (the same works with LINQToSQL) 1: public struct CompanyInfo 2: { 3: public int ID { get; set; } 4: public string Name { get; set; } 5: } 6: var companies = (from c in dc.Companies 7: where c.CompanyIcon == null 8: select new CompanyInfo { Name = c.CompanyName, ID = c.CompanyId }).ToList(); ;

    Read the article

  • Metro: Query Selectors

    - by Stephen.Walther
    The goal of this blog entry is to explain how to perform queries using selectors when using the WinJS library. In particular, you learn how to use the WinJS.Utilities.query() method and the QueryCollection class to retrieve and modify the elements of an HTML document. Introduction to Selectors When you are building a Web application, you need some way of easily retrieving elements from an HTML document. For example, you might want to retrieve all of the input elements which have a certain class. Or, you might want to retrieve the one and only element with an id of favoriteColor. The standard way of retrieving elements from an HTML document is by using a selector. Anyone who has ever created a Cascading Style Sheet has already used selectors. You use selectors in Cascading Style Sheets to apply formatting rules to elements in a document. For example, the following Cascading Style Sheet rule changes the background color of every INPUT element with a class of .required in a document to the color red: input.red { background-color: red } The “input.red” part is the selector which matches all INPUT elements with a class of red. The W3C standard for selectors (technically, their recommendation) is entitled “Selectors Level 3” and the standard is located here: http://www.w3.org/TR/css3-selectors/ Selectors are not only useful for adding formatting to the elements of a document. Selectors are also useful when you need to apply behavior to the elements of a document. For example, you might want to select a particular BUTTON element with a selector and add a click handler to the element so that something happens whenever you click the button. Selectors are not specific to Cascading Style Sheets. You can use selectors in your JavaScript code to retrieve elements from an HTML document. jQuery is famous for its support for selectors. Using jQuery, you can use a selector to retrieve matching elements from a document and modify the elements. The WinJS library enables you to perform the same types of queries as jQuery using the W3C selector syntax. Performing Queries with the WinJS.Utilities.query() Method When using the WinJS library, you perform a query using a selector by using the WinJS.Utilities.query() method.  The following HTML document contains a BUTTON and a DIV element: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>Application1</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- Application1 references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> </head> <body> <button>Click Me!</button> <div style="display:none"> <h1>Secret Message</h1> </div> </body> </html> The document contains a reference to the following JavaScript file named \js\default.js: (function () { "use strict"; var app = WinJS.Application; app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { WinJS.Utilities.query("button").listen("click", function () { WinJS.Utilities.query("div").clearStyle("display"); }); } }; app.start(); })(); The default.js script uses the WinJS.Utilities.query() method to retrieve all of the BUTTON elements in the page. The listen() method is used to wire an event handler to the BUTTON click event. When you click the BUTTON, the secret message contained in the hidden DIV element is displayed. The clearStyle() method is used to remove the display:none style attribute from the DIV element. Under the covers, the WinJS.Utilities.query() method uses the standard querySelectorAll() method. This means that you can use any selector which is compatible with the querySelectorAll() method when using the WinJS.Utilities.query() method. The querySelectorAll() method is defined in the W3C Selectors API Level 1 standard located here: http://www.w3.org/TR/selectors-api/ Unlike the querySelectorAll() method, the WinJS.Utilities.query() method returns a QueryCollection. We talk about the methods of the QueryCollection class below. Retrieving a Single Element with the WinJS.Utilities.id() Method If you want to retrieve a single element from a document, instead of matching a set of elements, then you can use the WinJS.Utilities.id() method. For example, the following line of code changes the background color of an element to the color red: WinJS.Utilities.id("message").setStyle("background-color", "red"); The statement above matches the one and only element with an Id of message. For example, the statement matches the following DIV element: <div id="message">Hello!</div> Notice that you do not use a hash when matching a single element with the WinJS.Utilities.id() method. You would need to use a hash when using the WinJS.Utilities.query() method to do the same thing like this: WinJS.Utilities.query("#message").setStyle("background-color", "red"); Under the covers, the WinJS.Utilities.id() method calls the standard document.getElementById() method. The WinJS.Utilities.id() method returns the result as a QueryCollection. If no element matches the identifier passed to WinJS.Utilities.id() then you do not get an error. Instead, you get a QueryCollection with no elements (length=0). Using the WinJS.Utilities.children() method The WinJS.Utilities.children() method enables you to retrieve a QueryCollection which contains all of the children of a DOM element. For example, imagine that you have a DIV element which contains children DIV elements like this: <div id="discussContainer"> <div>Message 1</div> <div>Message 2</div> <div>Message 3</div> </div> You can use the following code to add borders around all of the child DIV element and not the container DIV element: var discussContainer = WinJS.Utilities.id("discussContainer").get(0); WinJS.Utilities.children(discussContainer).setStyle("border", "2px dashed red");   It is important to understand that the WinJS.Utilities.children() method only works with a DOM element and not a QueryCollection. Notice that the get() method is used to retrieve the DOM element which represents the discussContainer. Working with the QueryCollection Class Both the WinJS.Utilities.query() method and the WinJS.Utilities.id() method return an instance of the QueryCollection class. The QueryCollection class derives from the base JavaScript Array class and adds several useful methods for working with HTML elements: addClass(name) – Adds a class to every element in the QueryCollection. clearStyle(name) – Removes a style from every element in the QueryCollection. conrols(ctor, options) – Enables you to create controls. get(index) – Retrieves the element from the QueryCollection at the specified index. getAttribute(name) – Retrieves the value of an attribute for the first element in the QueryCollection. hasClass(name) – Returns true if the first element in the QueryCollection has a certain class. include(items) – Includes a collection of items in the QueryCollection. listen(eventType, listener, capture) – Adds an event listener to every element in the QueryCollection. query(query) – Performs an additional query on the QueryCollection and returns a new QueryCollection. removeClass(name) – Removes a class from the every element in the QueryCollection. removeEventListener(eventType, listener, capture) – Removes an event listener from every element in the QueryCollection. setAttribute(name, value) – Adds an attribute to every element in the QueryCollection. setStyle(name, value) – Adds a style attribute to every element in the QueryCollection. template(templateElement, data, renderDonePromiseContract) – Renders a template using the supplied data.  toggleClass(name) – Toggles the specified class for every element in the QueryCollection. Because the QueryCollection class derives from the base Array class, it also contains all of the standard Array methods like forEach() and slice(). Summary In this blog post, I’ve described how you can perform queries using selectors within a Windows Metro Style application written with JavaScript. You learned how to return an instance of the QueryCollection class by using the WinJS.Utilities.query(), WinJS.Utilities.id(), and WinJS.Utilities.children() methods. You also learned about the methods of the QueryCollection class.

    Read the article

  • Is it bad to have an "Obsessive Refactoring Disorder"?

    - by Rachel
    I was reading this question and realized that could almost be me. I am fairly OCD about refactoring someone else's code when I see that I can improve it. For example, if the code contains duplicate methods to do the same thing with nothing more than a single parameter changing, I feel I have to remove all the copy/paste methods and replace it with one generic one. Is this bad? Should I try and stop? I try not to refactor unless I can actually make improvements to the code performance or readability, or if the person who did the code isn't following our standard naming conventions (I hate expecting a variable to be local because of the naming standard, only to discover it is a global variable which has been incorrectly named)

    Read the article

  • ASP.NET MVC 3 Hosting :: ASP.NET MVC 3 First Look

    - by mbridge
    MVC 3 View Enhancements MVC 3 introduces two improvements to the MVC view engine: - Ability to select the view engine to use. MVC 3 allows you to select from any of your  installed view engines from Visual Studio by selecting Add > View (including the newly introduced ASP.NET “Razor” engine”): - Support for the next ASP.NET “Razor” syntax. The newly previewed Razor syntax is a concise lightweight syntax. MVC 3 Control Enhancements - Global Filters: ASP.NET MVC 3  allows you to specify that a filter which applies globally to all Controllers within an app by adding it to the GlobalFilters collection.  The RegisterGlobalFilters() method is now included in the default Global.asax class template and so provides a convenient place to do this since is will then be called by the Application_Start() method: void RegisterGlobalFilters(GlobalFilterCollection filters) { filters.Add(new HandleLoggingAttribute()); filters.Add(new HandleErrorAttribute()); } void Application_Start() { RegisterGlobalFilters (GlobalFilters.Filters); } - Dynamic ViewModel Property : MVC 3 augments the ViewData API with a new “ViewModel” property on Controller which is of type “dynamic” – and therefore enables you to use the new dynamic language support in C# and VB pass ViewData items using a cleaner syntax than the current dictionary API. Public ActionResult Index() { ViewModel.Message = "Hello World"; return View(); } - New ActionResult Types : MVC 3 includes three new ActionResult types and helper methods: 1. HttpNotFoundResult – indicates that a resource which was requested by the current URL was not found. HttpNotFoundResult will return a 404 HTTP status code to the calling client. 2. PermanentRedirects – The HttpRedirectResult class contains a new Boolean “Permanent” property which is used to indicate that a permanent redirect should be done. Permanent redirects use a HTTP 301 status code.  The Controller class  includes three new methods for performing these permanent redirects: RedirectPermanent(), RedirectToRoutePermanent(), andRedirectToActionPermanent(). All  of these methods will return an instance of the HttpRedirectResult object with the Permanent property set to true. 3. HttpStatusCodeResult – used for setting an explicit response status code and its associated description. MVC 3 AJAX and JavaScript Enhancements MVC 3 ships with built-in JSON binding support which enables action methods to receive JSON-encoded data and then model-bind it to action method parameters. For example a jQuery client-side JavaScript could define a “save” event handler which will be invoked when the save button is clicked on the client. The code in the event handler then constructs a client-side JavaScript “product” object with 3 fields with their values retrieved from HTML input elements. Finally, it uses jQuery’s .ajax() method to POST a JSON based request which contains the product to a /theStore/UpdateProduct URL on the server: $('#save').click(function () { var product = { ProdName: $('#Name').val() Price: $('#Price').val(), } $.ajax({ url: '/theStore/UpdateProduct', type: "POST"; data: JSON.stringify(widget), datatype: "json", contentType: "application/json; charset=utf-8", success: function () { $('#message').html('Saved').fadeIn(), }, error: function () { $('#message').html('Error').fadeIn(), } }); return false; }); MVC will allow you to implement the /theStore/UpdateProduct URL on the server by using an action method as below. The UpdateProduct() action method will accept a strongly-typed Product object for a parameter. MVC 3 can now automatically bind an incoming JSON post value to the .NET Product type on the server without having to write any custom binding. [HttpPost] public ActionResult UpdateProduct(Product product) { // save logic here return null } MVC 3 Model Validation Enhancements MVC 3 builds on the MVC 2 model validation improvements by adding   support for several of the new validation features within the System.ComponentModel.DataAnnotations namespace in .NET 4.0: - Support for the new DataAnnotations metadata attributes like DisplayAttribute. - Support for the improvements made to the ValidationAttribute class which now supports a new IsValid overload that provides more info on  the current validation context, like what object is being validated. - Support for the new IValidatableObject interface which enables you to perform model-level validation and also provide validation error messages which are specific to the state of the overall model. MVC 3 Dependency Injection Enhancements MVC 3 includes better support for applying Dependency Injection (DI) and also integrating with Dependency Injection/IOC containers. Currently MVC 3 Preview 1 has support for DI in the below places: - Controllers (registering & injecting controller factories and injecting controllers) - Views (registering & injecting view engines, also for injecting dependencies into view pages) - Action Filters (locating and  injecting filters) And this is another important blog about Microsoft .NET and technology: - Windows 2008 Blog - SharePoint 2010 Blog - .NET 4 Blog And you can visit here if you're looking for ASP.NET MVC 3 hosting

    Read the article

  • XNA Screen Manager problem with transitions

    - by NexAddo
    I'm having issues using the game statemanagement example in the game I am developing. I have no issues with my first three screens transitioning between one another. I have a main menu screen, a splash screen and a high score screen that cycle: mainMenuScreen->splashScreen->highScoreScreen->mainMenuScreen The screens change every 15 seconds. Transition times public MainMenuScreen() { TransitionOnTime = TimeSpan.FromSeconds(0.5); TransitionOffTime = TimeSpan.FromSeconds(0.0); currentCreditAmount = Global.CurrentCredits; } public SplashScreen() { TransitionOnTime = TimeSpan.FromSeconds(0.5); TransitionOffTime = TimeSpan.FromSeconds(0.5); } public HighScoreScreen() { TransitionOnTime = TimeSpan.FromSeconds(0.5); TransitionOffTime = TimeSpan.FromSeconds(0.5); } public GamePlayScreen() { TransitionOnTime = TimeSpan.FromSeconds(0.5); TransitionOffTime = TimeSpan.FromSeconds(0.5); } When a user inserts credits they can play the game after pressing start mainMenuScreen->splashScreen->highScoreScreen->(loops forever) || || || ===========Credits In============= || Start || \/ LoadingScreen || Start || \/ GamePlayScreen During each of these transitions, between screens, the same code is used, which exits(removes) all current active screens and respects transitions, then adds the new screen to the screen manager: foreach (GameScreen screen in ScreenManager.GetScreens()) screen.ExitScreen(); //AddScreen takes a new screen to manage and the controlling player ScreenManager.AddScreen(new NameOfScreenHere(), null); Each screen is removed from the ScreenManager with ExitScreen() and using this function, each screen transition is respected. The problem I am having is with my gamePlayScreen. When the current game is finished and the transition is complete for the gamePlayScreen, it should be removed and the next screens should be added to the ScreenManager. GamePlayScreen Code Snippet private void FinishCurrentGame() { AudioManager.StopSounds(); this.UnloadContent(); if (Global.SaveDevice.IsReady) Stats.Save(); if (HighScoreScreen.IsInHighscores(timeLimit)) { foreach (GameScreen screen in ScreenManager.GetScreens()) screen.ExitScreen(); Global.TimeRemaining = timeLimit; ScreenManager.AddScreen(new BackgroundScreen(), null); ScreenManager.AddScreen(new MessageBoxScreen("Enter your Initials", true), null); } else { foreach (GameScreen screen in ScreenManager.GetScreens()) screen.ExitScreen(); ScreenManager.AddScreen(new BackgroundScreen(), null); ScreenManager.AddScreen(new MainMenuScreen(), null); } } The problem is that when isExiting is set to true by screen.ExitScreen() for the gamePlayScreen, the transition never completes the transition and removes the screen from the ScreenManager. Every other screen that I use the same technique to add and remove each screen fully transitions On/Off and is removed at the appropriate time from the ScreenManager, but noy my GamePlayScreen. Has anyone that has used the GameStateManagement example experienced this issue or can someone see the mistake I am making? EDIT This is what I tracked down. When the game is done, I call foreach (GameScreen screen in ScreenManager.GetScreens()) screen.ExitScreen(); to start the transition off process for the gameplay screen. At this point there is only 1 screen on the ScreenManager stack. The gamePlay screen gets isExiting set to true and starts to transition off. Right after the above call to ExitScreen() I add a background screen and menu screen to the screenManager: ScreenManager.AddScreen(new background(), null); ScreenManager.AddScreen(new Menu(), null); The count of the ScreenManager is now 3. What I noticed while stepping through the updates for GameScreen and ScreenManager, the gameplay screen never gets to the point where the transistion process finishes so the ScreenManager can remove it from the stack. This anomaly does not happen to any of my other screens when I switch between them. Screen Manager Code #region File Description //----------------------------------------------------------------------------- // ScreenManager.cs // // Microsoft XNA Community Game Platform // Copyright (C) Microsoft Corporation. All rights reserved. //----------------------------------------------------------------------------- #endregion #define DEMO #region Using Statements using System; using System.Diagnostics; using System.Collections.Generic; using Microsoft.Xna.Framework; using Microsoft.Xna.Framework.Content; using Microsoft.Xna.Framework.Graphics; using PerformanceUtility.GameDebugTools; #endregion namespace GameStateManagement { /// <summary> /// The screen manager is a component which manages one or more GameScreen /// instances. It maintains a stack of screens, calls their Update and Draw /// methods at the appropriate times, and automatically routes input to the /// topmost active screen. /// </summary> public class ScreenManager : DrawableGameComponent { #region Fields List<GameScreen> screens = new List<GameScreen>(); List<GameScreen> screensToUpdate = new List<GameScreen>(); InputState input = new InputState(); SpriteBatch spriteBatch; SpriteFont font; Texture2D blankTexture; bool isInitialized; bool getOut; bool traceEnabled; #if DEBUG DebugSystem debugSystem; Stopwatch stopwatch = new Stopwatch(); bool debugTextEnabled; #endif #endregion #region Properties /// <summary> /// A default SpriteBatch shared by all the screens. This saves /// each screen having to bother creating their own local instance. /// </summary> public SpriteBatch SpriteBatch { get { return spriteBatch; } } /// <summary> /// A default font shared by all the screens. This saves /// each screen having to bother loading their own local copy. /// </summary> public SpriteFont Font { get { return font; } } public Rectangle ScreenRectangle { get { return new Rectangle(0, 0, GraphicsDevice.Viewport.Width, GraphicsDevice.Viewport.Height); } } /// <summary> /// If true, the manager prints out a list of all the screens /// each time it is updated. This can be useful for making sure /// everything is being added and removed at the right times. /// </summary> public bool TraceEnabled { get { return traceEnabled; } set { traceEnabled = value; } } #if DEBUG public bool DebugTextEnabled { get { return debugTextEnabled; } set { debugTextEnabled = value; } } public DebugSystem DebugSystem { get { return debugSystem; } } #endif #endregion #region Initialization /// <summary> /// Constructs a new screen manager component. /// </summary> public ScreenManager(Game game) : base(game) { // we must set EnabledGestures before we can query for them, but // we don't assume the game wants to read them. //TouchPanel.EnabledGestures = GestureType.None; } /// <summary> /// Initializes the screen manager component. /// </summary> public override void Initialize() { base.Initialize(); #if DEBUG debugSystem = DebugSystem.Initialize(Game, "Fonts/MenuFont"); #endif isInitialized = true; } /// <summary> /// Load your graphics content. /// </summary> protected override void LoadContent() { // Load content belonging to the screen manager. ContentManager content = Game.Content; spriteBatch = new SpriteBatch(GraphicsDevice); font = content.Load<SpriteFont>(@"Fonts\menufont"); blankTexture = content.Load<Texture2D>(@"Textures\Backgrounds\blank"); // Tell each of the screens to load their content. foreach (GameScreen screen in screens) { screen.LoadContent(); } } /// <summary> /// Unload your graphics content. /// </summary> protected override void UnloadContent() { // Tell each of the screens to unload their content. foreach (GameScreen screen in screens) { screen.UnloadContent(); } } #endregion #region Update and Draw /// <summary> /// Allows each screen to run logic. /// </summary> public override void Update(GameTime gameTime) { #if DEBUG debugSystem.TimeRuler.StartFrame(); debugSystem.TimeRuler.BeginMark("Update", Color.Blue); if (debugTextEnabled && getOut == false) { debugSystem.FpsCounter.Visible = true; debugSystem.TimeRuler.Visible = true; debugSystem.TimeRuler.ShowLog = true; getOut = true; } else if (debugTextEnabled == false) { getOut = false; debugSystem.FpsCounter.Visible = false; debugSystem.TimeRuler.Visible = false; debugSystem.TimeRuler.ShowLog = false; } #endif // Read the keyboard and gamepad. input.Update(); // Make a copy of the master screen list, to avoid confusion if // the process of updating one screen adds or removes others. screensToUpdate.Clear(); foreach (GameScreen screen in screens) screensToUpdate.Add(screen); bool otherScreenHasFocus = !Game.IsActive; bool coveredByOtherScreen = false; // Loop as long as there are screens waiting to be updated. while (screensToUpdate.Count > 0) { // Pop the topmost screen off the waiting list. GameScreen screen = screensToUpdate[screensToUpdate.Count - 1]; screensToUpdate.RemoveAt(screensToUpdate.Count - 1); // Update the screen. screen.Update(gameTime, otherScreenHasFocus, coveredByOtherScreen); if (screen.ScreenState == ScreenState.TransitionOn || screen.ScreenState == ScreenState.Active) { // If this is the first active screen we came across, // give it a chance to handle input. if (!otherScreenHasFocus) { screen.HandleInput(input); otherScreenHasFocus = true; } // If this is an active non-popup, inform any subsequent // screens that they are covered by it. if (!screen.IsPopup) coveredByOtherScreen = true; } } // Print debug trace? if (traceEnabled) TraceScreens(); #if DEBUG debugSystem.TimeRuler.EndMark("Update"); #endif } /// <summary> /// Prints a list of all the screens, for debugging. /// </summary> void TraceScreens() { List<string> screenNames = new List<string>(); foreach (GameScreen screen in screens) screenNames.Add(screen.GetType().Name); Debug.WriteLine(string.Join(", ", screenNames.ToArray())); } /// <summary> /// Tells each screen to draw itself. /// </summary> public override void Draw(GameTime gameTime) { #if DEBUG debugSystem.TimeRuler.StartFrame(); debugSystem.TimeRuler.BeginMark("Draw", Color.Yellow); #endif foreach (GameScreen screen in screens) { if (screen.ScreenState == ScreenState.Hidden) continue; screen.Draw(gameTime); } #if DEBUG debugSystem.TimeRuler.EndMark("Draw"); #endif #if DEMO SpriteBatch.Begin(); SpriteBatch.DrawString(font, "DEMO - NOT FOR RESALE", new Vector2(20, 80), Color.White); SpriteBatch.End(); #endif } #endregion #region Public Methods /// <summary> /// Adds a new screen to the screen manager. /// </summary> public void AddScreen(GameScreen screen, PlayerIndex? controllingPlayer) { screen.ControllingPlayer = controllingPlayer; screen.ScreenManager = this; screen.IsExiting = false; // If we have a graphics device, tell the screen to load content. if (isInitialized) { screen.LoadContent(); } screens.Add(screen); } /// <summary> /// Removes a screen from the screen manager. You should normally /// use GameScreen.ExitScreen instead of calling this directly, so /// the screen can gradually transition off rather than just being /// instantly removed. /// </summary> public void RemoveScreen(GameScreen screen) { // If we have a graphics device, tell the screen to unload content. if (isInitialized) { screen.UnloadContent(); } screens.Remove(screen); screensToUpdate.Remove(screen); } /// <summary> /// Expose an array holding all the screens. We return a copy rather /// than the real master list, because screens should only ever be added /// or removed using the AddScreen and RemoveScreen methods. /// </summary> public GameScreen[] GetScreens() { return screens.ToArray(); } /// <summary> /// Helper draws a translucent black fullscreen sprite, used for fading /// screens in and out, and for darkening the background behind popups. /// </summary> public void FadeBackBufferToBlack(float alpha) { Viewport viewport = GraphicsDevice.Viewport; spriteBatch.Begin(); spriteBatch.Draw(blankTexture, new Rectangle(0, 0, viewport.Width, viewport.Height), Color.Black * alpha); spriteBatch.End(); } #endregion } } Game Screen Parent of GamePlayScreen #region File Description //----------------------------------------------------------------------------- // GameScreen.cs // // Microsoft XNA Community Game Platform // Copyright (C) Microsoft Corporation. All rights reserved. //----------------------------------------------------------------------------- #endregion #region Using Statements using System; using Microsoft.Xna.Framework; using Microsoft.Xna.Framework.Input; //using Microsoft.Xna.Framework.Input.Touch; using System.IO; #endregion namespace GameStateManagement { /// <summary> /// Enum describes the screen transition state. /// </summary> public enum ScreenState { TransitionOn, Active, TransitionOff, Hidden, } /// <summary> /// A screen is a single layer that has update and draw logic, and which /// can be combined with other layers to build up a complex menu system. /// For instance the main menu, the options menu, the "are you sure you /// want to quit" message box, and the main game itself are all implemented /// as screens. /// </summary> public abstract class GameScreen { #region Properties /// <summary> /// Normally when one screen is brought up over the top of another, /// the first screen will transition off to make room for the new /// one. This property indicates whether the screen is only a small /// popup, in which case screens underneath it do not need to bother /// transitioning off. /// </summary> public bool IsPopup { get { return isPopup; } protected set { isPopup = value; } } bool isPopup = false; /// <summary> /// Indicates how long the screen takes to /// transition on when it is activated. /// </summary> public TimeSpan TransitionOnTime { get { return transitionOnTime; } protected set { transitionOnTime = value; } } TimeSpan transitionOnTime = TimeSpan.Zero; /// <summary> /// Indicates how long the screen takes to /// transition off when it is deactivated. /// </summary> public TimeSpan TransitionOffTime { get { return transitionOffTime; } protected set { transitionOffTime = value; } } TimeSpan transitionOffTime = TimeSpan.Zero; /// <summary> /// Gets the current position of the screen transition, ranging /// from zero (fully active, no transition) to one (transitioned /// fully off to nothing). /// </summary> public float TransitionPosition { get { return transitionPosition; } protected set { transitionPosition = value; } } float transitionPosition = 1; /// <summary> /// Gets the current alpha of the screen transition, ranging /// from 1 (fully active, no transition) to 0 (transitioned /// fully off to nothing). /// </summary> public float TransitionAlpha { get { return 1f - TransitionPosition; } } /// <summary> /// Gets the current screen transition state. /// </summary> public ScreenState ScreenState { get { return screenState; } protected set { screenState = value; } } ScreenState screenState = ScreenState.TransitionOn; /// <summary> /// There are two possible reasons why a screen might be transitioning /// off. It could be temporarily going away to make room for another /// screen that is on top of it, or it could be going away for good. /// This property indicates whether the screen is exiting for real: /// if set, the screen will automatically remove itself as soon as the /// transition finishes. /// </summary> public bool IsExiting { get { return isExiting; } protected internal set { isExiting = value; } } bool isExiting = false; /// <summary> /// Checks whether this screen is active and can respond to user input. /// </summary> public bool IsActive { get { return !otherScreenHasFocus && (screenState == ScreenState.TransitionOn || screenState == ScreenState.Active); } } bool otherScreenHasFocus; /// <summary> /// Gets the manager that this screen belongs to. /// </summary> public ScreenManager ScreenManager { get { return screenManager; } internal set { screenManager = value; } } ScreenManager screenManager; public KeyboardState KeyboardState { get {return Keyboard.GetState();} } /// <summary> /// Gets the index of the player who is currently controlling this screen, /// or null if it is accepting input from any player. This is used to lock /// the game to a specific player profile. The main menu responds to input /// from any connected gamepad, but whichever player makes a selection from /// this menu is given control over all subsequent screens, so other gamepads /// are inactive until the controlling player returns to the main menu. /// </summary> public PlayerIndex? ControllingPlayer { get { return controllingPlayer; } internal set { controllingPlayer = value; } } PlayerIndex? controllingPlayer; /// <summary> /// Gets whether or not this screen is serializable. If this is true, /// the screen will be recorded into the screen manager's state and /// its Serialize and Deserialize methods will be called as appropriate. /// If this is false, the screen will be ignored during serialization. /// By default, all screens are assumed to be serializable. /// </summary> public bool IsSerializable { get { return isSerializable; } protected set { isSerializable = value; } } bool isSerializable = true; #endregion #region Initialization /// <summary> /// Load graphics content for the screen. /// </summary> public virtual void LoadContent() { } /// <summary> /// Unload content for the screen. /// </summary> public virtual void UnloadContent() { } #endregion #region Update and Draw /// <summary> /// Allows the screen to run logic, such as updating the transition position. /// Unlike HandleInput, this method is called regardless of whether the screen /// is active, hidden, or in the middle of a transition. /// </summary> public virtual void Update(GameTime gameTime, bool otherScreenHasFocus, bool coveredByOtherScreen) { this.otherScreenHasFocus = otherScreenHasFocus; if (isExiting) { // If the screen is going away to die, it should transition off. screenState = ScreenState.TransitionOff; if (!UpdateTransition(gameTime, transitionOffTime, 1)) { // When the transition finishes, remove the screen. ScreenManager.RemoveScreen(this); } } else if (coveredByOtherScreen) { // If the screen is covered by another, it should transition off. if (UpdateTransition(gameTime, transitionOffTime, 1)) { // Still busy transitioning. screenState = ScreenState.TransitionOff; } else { // Transition finished! screenState = ScreenState.Hidden; } } else { // Otherwise the screen should transition on and become active. if (UpdateTransition(gameTime, transitionOnTime, -1)) { // Still busy transitioning. screenState = ScreenState.TransitionOn; } else { // Transition finished! screenState = ScreenState.Active; } } } /// <summary> /// Helper for updating the screen transition position. /// </summary> bool UpdateTransition(GameTime gameTime, TimeSpan time, int direction) { // How much should we move by? float transitionDelta; if (time == TimeSpan.Zero) transitionDelta = 1; else transitionDelta = (float)(gameTime.ElapsedGameTime.TotalMilliseconds / time.TotalMilliseconds); // Update the transition position. transitionPosition += transitionDelta * direction; // Did we reach the end of the transition? if (((direction < 0) && (transitionPosition <= 0)) || ((direction > 0) && (transitionPosition >= 1))) { transitionPosition = MathHelper.Clamp(transitionPosition, 0, 1); return false; } // Otherwise we are still busy transitioning. return true; } /// <summary> /// Allows the screen to handle user input. Unlike Update, this method /// is only called when the screen is active, and not when some other /// screen has taken the focus. /// </summary> public virtual void HandleInput(InputState input) { } public KeyboardState currentKeyState; public KeyboardState lastKeyState; public bool IsKeyHit(Keys key) { if (currentKeyState.IsKeyDown(key) && lastKeyState.IsKeyUp(key)) return true; return false; } /// <summary> /// This is called when the screen should draw itself. /// </summary> public virtual void Draw(GameTime gameTime) { } #endregion #region Public Methods /// <summary> /// Tells the screen to serialize its state into the given stream. /// </summary> public virtual void Serialize(Stream stream) { } /// <summary> /// Tells the screen to deserialize its state from the given stream. /// </summary> public virtual void Deserialize(Stream stream) { } /// <summary> /// Tells the screen to go away. Unlike ScreenManager.RemoveScreen, which /// instantly kills the screen, this method respects the transition timings /// and will give the screen a chance to gradually transition off. /// </summary> public void ExitScreen() { if (TransitionOffTime == TimeSpan.Zero) { // If the screen has a zero transition time, remove it immediately. ScreenManager.RemoveScreen(this); } else { // Otherwise flag that it should transition off and then exit. isExiting = true; } } #endregion #region Helper Methods /// <summary> /// A helper method which loads assets using the screen manager's /// associated game content loader. /// </summary> /// <typeparam name="T">Type of asset.</typeparam> /// <param name="assetName">Asset name, relative to the loader root /// directory, and not including the .xnb extension.</param> /// <returns></returns> public T Load<T>(string assetName) { return ScreenManager.Game.Content.Load<T>(assetName); } #endregion } }

    Read the article

  • SQLAuthority News – Social Media Series – YouTube and Movies

    - by pinaldave
    Pinal Dave on Youtube! Some people might not know it, but YouTube is actually more than a place to watch funny cat videos and people singing their favorite pop songs – it’s actually a social media site.  When you are a member of YouTube you can follow people who regularly post videos, post video responses of your own, and even gain a following for your own videos.  I myself was not aware of YouTube’s potential until recently, when I started to make SQL Server in Sixty Seconds videos. YouTube is very different than other types of social media, and a big factor is that anyone can look at videos without being a member.  Unlike other social media sites, like Twitter and Facebook, you have to have an account in order to participate.  But on YouTube you are even more anonymous.  To make and post videos you need an account, but anyone who comes to the site can look at what you’ve made without signing in or leaving any trace of having seen your material.  This makes YouTube very anonymous and hard to track. However, we should not overlook the power of video on the internet.  Over the past few months I have been making SQL Server in Sixty Second videos and have come to love it.  It is very exciting to be able to talk about a subject that mostly I write about, and for many people video is far more accessible and easy to understand.   I have really enjoyed diving into something new, and would love to have more people check out these videos and give me feedback.  You can find me at www.youtube.com/user/pinaldave. I am very excited with all the possibilities on YouTube and it might just be the technology evangelist in me, but I would love for other people to discover how fun and exciting this site can be, too.  Don’t think of it as just a place to find funny videos and waste a few minutes of your time, think of it as a place to learn and interact with interesting people.  Come watch a few of my videos, while you’re there.  Remember, everything is free and there are no contracts to sign, but I hope that you get as excited as I am and join up.  We need more people creating good content on this site! Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, SQLServer, T SQL, Technology Tagged: Social Media

    Read the article

  • Is Code Complete still Code Complete? [closed]

    - by Peter Turner
    It's been quite a few years since Code Complete was published. I really love the book, I keep it in the bathroom at the office and read a little out of it once or twice a day. But I don't think it's possible to call Code Complete, "Code Complete" when it doesn't have language features that even Delphi has, like anonymous methods and generics. What key sections are missing from this book, and what should be deprecated?

    Read the article

  • O&rsquo;Reilly E-Book of the Day 15/Aug/2014 - Advanced Quantitative Finance with C++

    - by TATWORTH
    Originally posted on: http://geekswithblogs.net/TATWORTH/archive/2014/08/15/orsquoreilly-e-book-of-the-day-15aug2014---advanced-quantitative-finance.aspxToday’s half-price book of the Day offer from O’Reilly at http://shop.oreilly.com/product/9781782167228.do?code=MSDEAL is Advanced Quantitative Finance with C++. “This book will introduce you to the key mathematical models used to price financial derivatives, as well as the implementation of main numerical models used to solve them. In particular, equity, currency, interest rates, and credit derivatives are discussed. In the first part of the book, the main mathematical models used in the world of financial derivatives are discussed. Next, the numerical methods used to solve the mathematical models are presented. Finally, both the mathematical models and the numerical methods are used to solve some concrete problems in equity, forex, interest rate, and credit derivatives.”

    Read the article

< Previous Page | 105 106 107 108 109 110 111 112 113 114 115 116  | Next Page >