Search Results

Search found 444 results on 18 pages for 'shaders'.

Page 12/18 | < Previous Page | 8 9 10 11 12 13 14 15 16 17 18  | Next Page >

  • SharpDX/D3D: How to implement and draw fonts/text

    - by Dmitrij A
    I am playing with SharpDX (Direct3D for .NET) without using "Toolkit", already finished with basic rendering 3D models. But now i am wondering how to program/create fonts for game (2D), or how to simple draw variable text to output with Direct3D? (it is not as SharpDX question as common Direct3D question, how to start with game GUIs? And what should i do to program simple GUI's like menu for a game (generally i understand that it's shaders).

    Read the article

  • glGetActiveAttrib on Android NDK

    - by user408952
    In my code-base I need to link the vertex declarations from a mesh to the attributes of a shader. To do this I retrieve all the attribute names after linking the shader. I use the following code (with some added debug info since it's not really working): int shaders[] = { m_ps, m_vs }; if(linkProgram(shaders, 2)) { ASSERT(glIsProgram(m_program) == GL_TRUE, "program is invalid"); int attrCount = 0; GL_CHECKED(glGetProgramiv(m_program, GL_ACTIVE_ATTRIBUTES, &attrCount)); int maxAttrLength = 0; GL_CHECKED(glGetProgramiv(m_program, GL_ACTIVE_ATTRIBUTE_MAX_LENGTH, &maxAttrLength)); LOG_INFO("shader", "got %d attributes for '%s' (%d) (maxlen: %d)", attrCount, name, m_program, maxAttrLength); m_attrs.reserve(attrCount); GLsizei attrLength = -1; GLint attrSize = -1; GLenum attrType = 0; char tmp[256]; for(int i = 0; i < attrCount; i++) { tmp[0] = 0; GL_CHECKED(glGetActiveAttrib(m_program, GLuint(i), sizeof(tmp), &attrLength, &attrSize, &attrType, tmp)); LOG_INFO("shader", "%d: %d %d '%s'", i, attrLength, attrSize, tmp); m_attrs.append(String(tmp, attrLength)); } } GL_CHECKED is a macro that calls the function and calls glGetError() to see if something went wrong. This code works perfectly on Windows 7 using ANGLE and gives this this output: info:shader: got 2 attributes for 'static/simplecolor.glsl' (3) (maxlen: 11) info:shader: 0: 7 1 'a_Color' info:shader: 1: 10 1 'a_Position' But on my Nexus 7 (1st gen) I get the following (the errors are the output from the GL_CHECKED macro): I/testgame:shader(30865): got 2 attributes for 'static/simplecolor.glsl' (3) (maxlen: 11) E/testgame:gl(30865): 'glGetActiveAttrib(m_program, GLuint(i), sizeof(tmp), &attrLength, &attrSize, &attrType, tmp)' failed: INVALID_VALUE [jni/src/../../../../src/Game/Asset/ShaderAsset.cpp:50] I/testgame:shader(30865): 0: -1 -1 '' E/testgame:gl(30865): 'glGetActiveAttrib(m_program, GLuint(i), sizeof(tmp), &attrLength, &attrSize, &attrType, tmp)' failed: INVALID_VALUE [jni/src/../../../../src/Game/Asset/ShaderAsset.cpp:50] I/testgame:shader(30865): 1: -1 -1 '' I.e. the call to glGetActiveAttrib gives me an INVALID_VALUE. The opengl docs says this about the possible errors: GL_INVALID_VALUE is generated if program is not a value generated by OpenGL. This is not the case, I added an ASSERT to make sure glIsProgram(m_program) == GL_TRUE, and it doesn't trigger. GL_INVALID_OPERATION is generated if program is not a program object. Different error. GL_INVALID_VALUE is generated if index is greater than or equal to the number of active attribute variables in program. i is 0 and 1, and the number of active attribute variables are 2, so this isn't the case. GL_INVALID_VALUE is generated if bufSize is less than 0. Well, it's not zero, it's 256. Does anyone have an idea what's causing this? Am I just lucky that it works in ANGLE, or is the nvidia tegra driver wrong?

    Read the article

  • OpenGL position from depth is wrong

    - by CoffeeandCode
    My engine is currently implemented using a deferred rendering technique, and today I decided to change it up a bit. First I was storing 5 textures as so: DEPTH24_STENCIL8 - Depth and stencil RGBA32F - Position RGBA10_A2 - Normals RGBA8 x 2 - Specular & Diffuse I decided to minimize it and reconstruct positions from the depth buffer. Trying to figure out what is wrong with my method currently has not been fun :/ Currently I get this: which changes whenever I move the camera... weird Vertex shader really simple #version 150 layout(location = 0) in vec3 position; layout(location = 1) in vec2 uv; out vec2 uv_f; void main(){ uv_f = uv; gl_Position = vec4(position, 1.0); } Fragment shader Where the fun (and not so fun) stuff happens #version 150 uniform sampler2D depth_tex; uniform sampler2D normal_tex; uniform sampler2D diffuse_tex; uniform sampler2D specular_tex; uniform mat4 inv_proj_mat; uniform vec2 nearz_farz; in vec2 uv_f; ... other uniforms and such ... layout(location = 3) out vec4 PostProcess; vec3 reconstruct_pos(){ float z = texture(depth_tex, uv_f).x; vec4 sPos = vec4(uv_f * 2.0 - 1.0, z, 1.0); sPos = inv_proj_mat * sPos; return (sPos.xyz / sPos.w); } void main(){ vec3 pos = reconstruct_pos(); vec3 normal = texture(normal_tex, uv_f).rgb; vec3 diffuse = texture(diffuse_tex, uv_f).rgb; vec4 specular = texture(specular_tex, uv_f); ... do lighting ... PostProcess = vec4(pos, 1.0); // Just for testing } Rendering code probably nothing wrong here, seeing as though it always worked before this->gbuffer->bind(); gl::Clear(gl::COLOR_BUFFER_BIT | gl::DEPTH_BUFFER_BIT); gl::Enable(gl::DEPTH_TEST); gl::Enable(gl::CULL_FACE); ... bind geometry shader and draw models and shiz ... gl::Disable(gl::DEPTH_TEST); gl::Disable(gl::CULL_FACE); gl::Enable(gl::BLEND); ... bind textures and lighting shaders shown above then draw each light ... gl::BindFramebuffer(gl::FRAMEBUFFER, 0); gl::Clear(gl::COLOR_BUFFER_BIT | gl::DEPTH_BUFFER_BIT); gl::Disable(gl::BLEND); ... bind screen shaders and draw quad with PostProcess texture ... Rinse_and_repeat(); // not actually a function ;) Why are my positions being output like they are?

    Read the article

  • Debugging HLSL for Windows 8 application [migrated]

    - by Shervanator
    i'm currently in the process of creating a Windows 8 applicaiton using SharpDX (the managed c# directx wrapper). However I have ran into problems with one of my shaders and I want to know if its possible to debug such applications. PIX doesn't seem to work of directX apps as the executable does not like opening directly, and the new visual studio graphics debugging toolkit in VS2012 always states "unable to start the experiment" when I try to capture any information about my session. Thanks!

    Read the article

  • Why doesn't my texture display with this GLSL shader?

    - by Chewy Gumball
    I am trying to display a DXT1 compressed texture on a quad using a VBO and shaders, but I have been unable to get it working. All I get is a black square. I know my texture is uploaded properly because when I use immediate mode without shaders the texture displays fine but I will include that part just in case. Also, when I change the gl_FragColor to something like vec4 (0.0, 1.0, 1.0, 1.0) then I get a nice blue quad so I know that my shader is able to set the colour. It appears to be either the texture is not being bound correctly in the shader or the texture coordinates are not being picked up. However, I can't find the error! What am I doing wrong? I am using OpenTK in C# (not xna). Vertex Shader: void main() { gl_TexCoord[0] = gl_MultiTexCoord0; // Set the position of the current vertex gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex; } Fragment Shader: uniform sampler2D diffuseTexture; void main() { // Set the output color of our current pixel gl_FragColor = texture2D(diffuseTexture, gl_TexCoord[0].st); //gl_FragColor = vec4 (0.0,1.0,1.0,1.0); } Drawing Code: int vb, eb; GL.GenBuffers(1, out vb); GL.GenBuffers(1, out eb); // Position Texture float[] verts = { 0.1f, 0.1f, 0.0f, 0.0f, 0.0f, 1.9f, 0.1f, 0.0f, 1.0f, 0.0f, 1.9f, 1.9f, 0.0f, 1.0f, 1.0f, 0.1f, 1.9f, 0.0f, 0.0f, 1.0f }; uint[] indices = { 0, 1, 2, 0, 2, 3 }; //upload data to the VBO GL.BindBuffer(BufferTarget.ArrayBuffer, vb); GL.BindBuffer(BufferTarget.ElementArrayBuffer, eb); GL.BufferData(BufferTarget.ArrayBuffer, (IntPtr)(verts.Length * sizeof(float)), verts, BufferUsageHint.StaticDraw); GL.BufferData(BufferTarget.ElementArrayBuffer, (IntPtr)(indices.Length * sizeof(uint)), indices, BufferUsageHint.StaticDraw); //Upload texture int buffer = GL.GenTexture(); GL.BindTexture(TextureTarget.Texture2D, buffer); GL.TexParameter(TextureTarget.Texture2D, TextureParameterName.TextureWrapS, (float)TextureWrapMode.Repeat); GL.TexParameter(TextureTarget.Texture2D, TextureParameterName.TextureWrapT, (float)TextureWrapMode.Repeat); GL.TexParameter(TextureTarget.Texture2D, TextureParameterName.TextureMagFilter, (float)TextureMagFilter.Linear); GL.TexParameter(TextureTarget.Texture2D, TextureParameterName.TextureMinFilter, (float)TextureMinFilter.Linear); GL.TexEnv(TextureEnvTarget.TextureEnv, TextureEnvParameter.TextureEnvMode, (float)TextureEnvMode.Modulate); GL.CompressedTexImage2D(TextureTarget.Texture2D, 0, texture.format, texture.width, texture.height, 0, texture.data.Length, texture.data); //Draw GL.UseProgram(shaderProgram); GL.EnableClientState(ArrayCap.VertexArray); GL.EnableClientState(ArrayCap.TextureCoordArray); GL.VertexPointer(3, VertexPointerType.Float, 5 * sizeof(float), 0); GL.TexCoordPointer(2, TexCoordPointerType.Float, 5 * sizeof(float), 3); GL.ActiveTexture(TextureUnit.Texture0); GL.Uniform1(GL.GetUniformLocation(shaderProgram, "diffuseTexture"), 0); GL.DrawElements(BeginMode.Triangles, indices.Length, DrawElementsType.UnsignedInt, 0);

    Read the article

  • GLSL: Strange light reflections

    - by Tom
    According to this tutorial I'm trying to make a normal mapping using GLSL, but something is wrong and I can't find the solution. The output render is in this image: Image1 in this image is a plane with two triangles and each of it is different illuminated (that is bad). The plane has 6 vertices. In the upper left side of this plane are 2 identical vertices (same in the lower right). Here are some vectors same for each vertice: normal vector = 0, 1, 0 (red lines on image) tangent vector = 0, 0,-1 (green lines on image) bitangent vector = -1, 0, 0 (blue lines on image) here I have one question: The two identical vertices does need to have the same tangent and bitangent? I have tried to make other values to the tangents but the effect was still similar. Here are my shaders Vertex shader: #version 130 // Input vertex data, different for all executions of this shader. in vec3 vertexPosition_modelspace; in vec2 vertexUV; in vec3 vertexNormal_modelspace; in vec3 vertexTangent_modelspace; in vec3 vertexBitangent_modelspace; // Output data ; will be interpolated for each fragment. out vec2 UV; out vec3 Position_worldspace; out vec3 EyeDirection_cameraspace; out vec3 LightDirection_cameraspace; out vec3 LightDirection_tangentspace; out vec3 EyeDirection_tangentspace; // Values that stay constant for the whole mesh. uniform mat4 MVP; uniform mat4 V; uniform mat4 M; uniform mat3 MV3x3; uniform vec3 LightPosition_worldspace; void main(){ // Output position of the vertex, in clip space : MVP * position gl_Position = MVP * vec4(vertexPosition_modelspace,1); // Position of the vertex, in worldspace : M * position Position_worldspace = (M * vec4(vertexPosition_modelspace,1)).xyz; // Vector that goes from the vertex to the camera, in camera space. // In camera space, the camera is at the origin (0,0,0). vec3 vertexPosition_cameraspace = ( V * M * vec4(vertexPosition_modelspace,1)).xyz; EyeDirection_cameraspace = vec3(0,0,0) - vertexPosition_cameraspace; // Vector that goes from the vertex to the light, in camera space. M is ommited because it's identity. vec3 LightPosition_cameraspace = ( V * vec4(LightPosition_worldspace,1)).xyz; LightDirection_cameraspace = LightPosition_cameraspace + EyeDirection_cameraspace; // UV of the vertex. No special space for this one. UV = vertexUV; // model to camera = ModelView vec3 vertexTangent_cameraspace = MV3x3 * vertexTangent_modelspace; vec3 vertexBitangent_cameraspace = MV3x3 * vertexBitangent_modelspace; vec3 vertexNormal_cameraspace = MV3x3 * vertexNormal_modelspace; mat3 TBN = transpose(mat3( vertexTangent_cameraspace, vertexBitangent_cameraspace, vertexNormal_cameraspace )); // You can use dot products instead of building this matrix and transposing it. See References for details. LightDirection_tangentspace = TBN * LightDirection_cameraspace; EyeDirection_tangentspace = TBN * EyeDirection_cameraspace; } Fragment shader: #version 130 // Interpolated values from the vertex shaders in vec2 UV; in vec3 Position_worldspace; in vec3 EyeDirection_cameraspace; in vec3 LightDirection_cameraspace; in vec3 LightDirection_tangentspace; in vec3 EyeDirection_tangentspace; // Ouput data out vec3 color; // Values that stay constant for the whole mesh. uniform sampler2D DiffuseTextureSampler; uniform sampler2D NormalTextureSampler; uniform sampler2D SpecularTextureSampler; uniform mat4 V; uniform mat4 M; uniform mat3 MV3x3; uniform vec3 LightPosition_worldspace; void main(){ // Light emission properties // You probably want to put them as uniforms vec3 LightColor = vec3(1,1,1); float LightPower = 40.0; // Material properties vec3 MaterialDiffuseColor = texture2D( DiffuseTextureSampler, vec2(UV.x,-UV.y) ).rgb; vec3 MaterialAmbientColor = vec3(0.1,0.1,0.1) * MaterialDiffuseColor; //vec3 MaterialSpecularColor = texture2D( SpecularTextureSampler, UV ).rgb * 0.3; vec3 MaterialSpecularColor = vec3(0.5,0.5,0.5); // Local normal, in tangent space. V tex coordinate is inverted because normal map is in TGA (not in DDS) for better quality vec3 TextureNormal_tangentspace = normalize(texture2D( NormalTextureSampler, vec2(UV.x,-UV.y) ).rgb*2.0 - 1.0); // Distance to the light float distance = length( LightPosition_worldspace - Position_worldspace ); // Normal of the computed fragment, in camera space vec3 n = TextureNormal_tangentspace; // Direction of the light (from the fragment to the light) vec3 l = normalize(LightDirection_tangentspace); // Cosine of the angle between the normal and the light direction, // clamped above 0 // - light is at the vertical of the triangle -> 1 // - light is perpendicular to the triangle -> 0 // - light is behind the triangle -> 0 float cosTheta = clamp( dot( n,l ), 0,1 ); // Eye vector (towards the camera) vec3 E = normalize(EyeDirection_tangentspace); // Direction in which the triangle reflects the light vec3 R = reflect(-l,n); // Cosine of the angle between the Eye vector and the Reflect vector, // clamped to 0 // - Looking into the reflection -> 1 // - Looking elsewhere -> < 1 float cosAlpha = clamp( dot( E,R ), 0,1 ); color = // Ambient : simulates indirect lighting MaterialAmbientColor + // Diffuse : "color" of the object MaterialDiffuseColor * LightColor * LightPower * cosTheta / (distance*distance) + // Specular : reflective highlight, like a mirror MaterialSpecularColor * LightColor * LightPower * pow(cosAlpha,5) / (distance*distance); //color.xyz = E; //color.xyz = LightDirection_tangentspace; //color.xyz = EyeDirection_tangentspace; } I have replaced the original color value by EyeDirection_tangentspace vector and then I got other strange effect but I can not link the image (not eunogh reputation) Is it possible that with this shaders is something wrong, or maybe in other place in my code e.g with my matrices? SOLVED Solved... 3 days needed for changing one letter from this: glBindBuffer(GL_ARRAY_BUFFER, vbo); glVertexAttribPointer ( 4, // attribute 3, // size GL_FLOAT, // type GL_FALSE, // normalized? sizeof(VboVertex), // stride (void*)(12*sizeof(float)) // array buffer offset ); to this: glBindBuffer(GL_ARRAY_BUFFER, vbo); glVertexAttribPointer ( 4, // attribute 3, // size GL_FLOAT, // type GL_FALSE, // normalized? sizeof(VboVertex), // stride (void*)(11*sizeof(float)) // array buffer offset ); see difference? :)

    Read the article

  • How effects found in "Autodesk Fluid FX" are implemented using OpenGL ES?

    - by afds
    How this kind of effects are technically implemented using OpenGL ES? Are they performing simulation on GPU (using Shaders) or CPU while using some smart vertex positioning and texturing? Why it appears so fast (in terms of performance)? You might check the video of that app here: http://www.youtube.com/watch?v=F4KOk6QP6kQ edit Here is the presentation for the app: http://www.futuregameon.com/FGO2010_JosStam.pdf

    Read the article

  • Doing imagemagick like stuff in Unity (using a mask to edit a texture)

    - by Codejoy
    There is this tutorial in imagemagick http://www.imagemagick.org/Usage/masking/#masks I was wondering if there was some way to mimic the behavior (like cutting the image up based on a black image mask that turns image parts transparent... ) and then trim that image in game... trying to hack around with the webcam feature and reproduce some of the imagemagick opencv stuff in it in Unity but I am saddly unequipped with masks, shaders etc in unity skill/knowledge. Not even sure where to start.

    Read the article

  • Unity 4.5 est disponible et apporte le support d'OpenGL ES 3, un rendu plus naturel de la physique 2D et des optimisations

    Unity 4.5 est disponible : les corrections et améliorations du moteur sont très nombreuses OpenGL ES 3.0, amélioration de la physique 2D, chargement de scène amélioré, amélioration du flux de travail sur les shaders... Alors que dernièrement nous avons découvert ce que Unity 5 sera, l'équipe de développement nous apporte la version 4.5 du moteur. Celle-ci corrige près de 450 bogues mais apporte aussi de nouvelles fonctionnalités au moteur : support d'OpenGL ES 3.0 pour iOS (à partir des périphérique...

    Read the article

  • concurrency::accelerator_view

    - by Daniel Moth
    Overview We saw previously that accelerator represents a target for our C++ AMP computation or memory allocation and that there is a notion of a default accelerator. We ended that post by introducing how one can obtain accelerator_view objects from an accelerator object through the accelerator class's default_view property and the create_view method. The accelerator_view objects can be thought of as handles to an accelerator. You can also construct an accelerator_view given another accelerator_view (through the copy constructor or the assignment operator overload). Speaking of operator overloading, you can also compare (for equality and inequality) two accelerator_view objects between them to determine if they refer to the same underlying accelerator. We'll see later that when we use concurrency::array objects, the allocation of data takes place on an accelerator at array construction time, so there is a constructor overload that accepts an accelerator_view object. We'll also see later that a new concurrency::parallel_for_each function overload can take an accelerator_view object, so it knows on what target to execute the computation (represented by a lambda that the parallel_for_each also accepts). Beyond normal usage, accelerator_view is a quality of service concept that offers isolation to multiple "consumers" of an accelerator. If in your code you are accessing the accelerator from multiple threads (or, in general, from different parts of your app), then you'll want to create separate accelerator_view objects for each thread. flush, wait, and queuing_mode When you create an accelerator_view via the create_view method of the accelerator, you pass in an option of immediate or deferred, which are the two members of the queuing_mode enum. At any point you can access this value from the queuing_mode property of the accelerator_view. When the queuing_mode value is immediate (which is the default), any commands sent to the device such as kernel invocations and data transfers (e.g. parallel_for_each and copy, as we'll see in future posts), will get submitted as soon as the runtime sees fit (that is the definition of immediate). When the value of queuing_mode is deferred, the commands will be batched up. To send all buffered commands to the device for execution, there is a non-blocking flush method that you can call. If you wish to block until all the commands have been sent, there is a wait method you can call. Deferring is a more advanced scenario aimed at performance gains when you are submitting many device commands and you want to avoid the tiny overhead of flushing/submitting each command separately. Querying information Just like accelerator, accelerator_view exposes the is_debug and version properties. In fact, you can always access the accelerator object from the accelerator property on the accelerator_view class to access the accelerator interface we looked at previously. Interop with D3D (aka DX) In a later post I'll show an example of an app that uses C++ AMP to compute data that is used in pixel shaders. In those scenarios, you can benefit by integrating C++ AMP into your graphics pipeline and one of the building blocks for that is being able to use the same device context from both the compute kernel and the other shaders. You can do that by going from accelerator_view to device context (and vice versa), through part of our interop API in amp.h: *get_device, create_accelerator_view. More on those in a later post. Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • Best approach to depth streaming via existing codec

    - by Kevin
    I'm working on a development system (and game) intended for games set mostly in static third-person views. We produce our scenery by CG and photographic techniques. Our background art is rendered off-line by a production-grade renderer. To allow the runtime imagery to properly interact with the background art, I wrote a program to convert from depth output by Mental Ray into a texture, and a pixel shader to draw a quad such that the Z data comes from the texture. This technique is working out very well, but now we've decided that some of the camera angle changes between scenes should be animated. The animation itself is straightforward to produce from our CG models. We intend to encode it to some HD video codec such as H.264. The problem is that in order to maintain our runtime imagery on the screen, the depth buffer will need to be loaded for each video frame. Due to the bandwidth, the video's depth data will need to be compressed efficiently. I've looked into methods for performing temporal compression of depth info and found an interesting research paper here: http://web4.cs.ucl.ac.uk/staff/j.kautz/publications/depth-streaming.pdf The method establishes a mapping between 16-bit depth values and YCbCr values. The mapping is tuned to the properties of existing video codecs in order to maximize precision of the decoded depths after the YCbCr has undergone video compression. It allows an existing, unmodified video codec to be used on the backend. I'm looking at how to pull this off with the least possible work. (This design change was unplanned.) Our game engine itself is native C++, presently for Win32 and DirectX, although we've worked hard to keep platform dependence segregated because we intend other ports. We don't have motion video facilities in the engine yet but will ultimately need that anyway for cinematics. I was planning on using some off-the-shelf motion video solution we can plug into our engine, and haven't chosen one yet. This new added requirement makes selecting one harder since, among other things, we'll now need to bypass colourspace conversion on one of the streams, and also will need to be playing two streams simultaneously in lockstep, on top of in some cases audio on one of them (for the cinematics). I'm also wondering if it's possible (or even useful) to do the conversion from YCbCr to depth in a pixel shader, or if it's better to just do it in CPU and separately load the resulting depth values into a locked tex. The conversion unfortunately does involve branching logic per-pixel. (There are more naive mappings that don't need branching, but they produce inferior results.) It could be reduced to a table lookup but the table would be 32MB. Programming is second-nature to me but I'm not that experienced with pix shaders and have zero knowledge of off-the-shelf video solutions. I'd therefore be interested in advice from others who may have dealt more with depth streaming, pixel shaders, and/or off-the-shelf codecs, regarding how feasible the proposed application is and what off-the-shelf video systems out there would best get along with this usage case.

    Read the article

  • Why do my pyramids fade black and then back to colour again

    - by geminiCoder
    I have the following vertecies and norms GLfloat verts[36] = { -0.5, 0, 0.5, 0, 0, -0.5, 0.5, 0, 0.5, 0, 0, -0.5, 0.5, 0, 0.5, 0, 1, 0, -0.5, 0, 0.5, 0, 0, -0.5, 0, 1, 0, 0.5, 0, 0.5, -0.5, 0, 0.5, 0, 1, 0 }; GLfloat norms[36] = { 0, -1, 0, 0, -1, 0, 0, -1, 0, -1, 0.25, 0.5, -1, 0.25, 0.5, -1, 0.25, 0.5, 1, 0.25, -0.5, 1, 0.25, -0.5, 1, 0.25, -0.5, 0, -0.5, -1, 0, -0.5, -1, 0, -0.5, -1 }; I am writing my fists Open GL game, But I need to know for sure if my Normals are correct as the colours aren't rendering correctly. my Pyramids are coloured then fade to black every half rotation then back again. My app so far is based on the boiler plate code provided by apple. heres my modified setUp Method [EAGLContext setCurrentContext:self.context]; [self loadShaders]; self.effect = [[GLKBaseEffect alloc] init]; self.effect.light0.enabled = GL_TRUE; self.effect.light0.diffuseColor = GLKVector4Make(1.0f, 0.4f, 0.4f, 1.0f); glEnable(GL_DEPTH_TEST); glGenVertexArraysOES(1, &_vertexArray); //create vertex array glBindVertexArrayOES(_vertexArray); glGenBuffers(1, &_vertexBuffer); glBindBuffer(GL_ARRAY_BUFFER, _vertexBuffer); glBufferData(GL_ARRAY_BUFFER, sizeof(verts) + sizeof(norms), NULL, GL_STATIC_DRAW); //create vertex buffer big enough for both verts and norms and pass NULL as data.. uint8_t *ptr = (uint8_t *)glMapBufferOES(GL_ARRAY_BUFFER, GL_WRITE_ONLY_OES); //map buffer to pass data to it memcpy(ptr, verts, sizeof(verts)); //copy verts memcpy(ptr+sizeof(verts), norms, sizeof(norms)); //copy norms to position after verts glUnmapBufferOES(GL_ARRAY_BUFFER); glEnableVertexAttribArray(GLKVertexAttribPosition); glVertexAttribPointer(GLKVertexAttribPosition, 3, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0)); //tell GL where verts are in buffer glEnableVertexAttribArray(GLKVertexAttribNormal); glVertexAttribPointer(GLKVertexAttribNormal, 3, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(sizeof(verts))); //tell GL where norms are in buffer glBindVertexArrayOES(0); And the update method. - (void)update { float aspect = fabsf(self.view.bounds.size.width / self.view.bounds.size.height); GLKMatrix4 projectionMatrix = GLKMatrix4MakePerspective(GLKMathDegreesToRadians(65.0f), aspect, 0.1f, 100.0f); self.effect.transform.projectionMatrix = projectionMatrix; GLKMatrix4 baseModelViewMatrix = GLKMatrix4MakeTranslation(0.0f, 0.0f, -4.0f); baseModelViewMatrix = GLKMatrix4Rotate(baseModelViewMatrix, _rotation, 0.0f, 1.0f, 0.0f); // Compute the model view matrix for the object rendered with GLKit GLKMatrix4 modelViewMatrix = GLKMatrix4MakeTranslation(0.0f, 0.0f, -1.5f); modelViewMatrix = GLKMatrix4Rotate(modelViewMatrix, _rotation, 1.0f, 1.0f, 1.0f); modelViewMatrix = GLKMatrix4Multiply(baseModelViewMatrix, modelViewMatrix); self.effect.transform.modelviewMatrix = modelViewMatrix; // Compute the model view matrix for the object rendered with ES2 modelViewMatrix = GLKMatrix4MakeTranslation(0.0f, 0.0f, 1.5f); modelViewMatrix = GLKMatrix4Rotate(modelViewMatrix, _rotation, 1.0f, 1.0f, 1.0f); modelViewMatrix = GLKMatrix4Multiply(baseModelViewMatrix, modelViewMatrix); _normalMatrix = GLKMatrix3InvertAndTranspose(GLKMatrix4GetMatrix3(modelViewMatrix), NULL); _modelViewProjectionMatrix = GLKMatrix4Multiply(projectionMatrix, modelViewMatrix); _rotation += self.timeSinceLastUpdate * 0.5f; } But providing I understand this correct one pyramid is using the GLKit base effect shaders and the other the shaders which are included in the project. So for both of them to have the same error, I thought it would be the Norms?

    Read the article

  • HLSL 5 interpolation issues

    - by metredigm
    I'm having issues with the depth components of my shadowmapping shaders. The shadow map rendering shader is fine, and works very well. The world rendering shader is more problematic. The only value which seems to definitely be off is the pixel's position from the light's perspective, which I pass in parallel to the position. struct Pixel { float4 position : SV_Position; float4 light_pos : TEXCOORD2; float3 normal : NORMAL; float2 texcoord : TEXCOORD; }; The reason that I used the semantic 'TEXCOORD2' on the light's pixel position is because I believe that the problem lies with Direct3D's interpolation of values between shaders, and I started trying random semantics and also forcing linear and noperspective interpolations. In the world rendering shader, I observed in the pixel shader that the Z value of light_pos was always extremely close to, but less than the W value. This resulted in a depth result of 0.999 or similar for every pixel. Here is the vertex shader code : struct Vertex { float3 position : POSITION; float3 normal : NORMAL; float2 texcoord : TEXCOORD; }; struct Pixel { float4 position : SV_Position; float4 light_pos : TEXCOORD2; float3 normal : NORMAL; float2 texcoord : TEXCOORD; }; cbuffer Camera : register (b0) { matrix world; matrix view; matrix projection; }; cbuffer Light : register (b1) { matrix light_world; matrix light_view; matrix light_projection; }; Pixel RenderVertexShader(Vertex input) { Pixel output; output.position = mul(float4(input.position, 1.0f), world); output.position = mul(output.position, view); output.position = mul(output.position, projection); output.world_pos = mul(float4(input.position, 1.0f), world); output.world_pos = mul(output.world_pos, light_view); output.world_pos = mul(output.world_pos, light_projection); output.texcoord = input.texcoord; output.normal = input.normal; return output; } I suspect interpolation to be the culprit, as I used the camera matrices in place of the light matrices in the vertex shader, and had the same problem. The problem is evident as both of the same vectors were passed to a pixel from the VS, but only one of them showed a change in the PS. I have already thoroughly debugged the matrices' validity, the cbuffers' validity, and the multiplicative validity. I'm very stumped and have been trying to solve this for quite some time. Misc info : The light projection matrix and the camera projection matrix are the same, generated from D3DXMatrixPerspectiveFovLH(), with an FOV of 60.0f * 3.141f / 180.0f, a near clipping plane of 0.1f, and a far clipping plane of 1000.0f. Any ideas on what is happening? (This is a repost from my question on Stack Overflow)

    Read the article

  • Tips for XNA WP7 Developers

    - by Michael B. McLaughlin
    There are several things any XNA developer should know/consider when coming to the Windows Phone 7 platform. This post assumes you are familiar with the XNA Framework and with the changes between XNA 3.1 and XNA 4.0. It’s not exhaustive; it’s simply a list of things I’ve gathered over time. I may come back and add to it over time, and I’m happy to add anything anyone else has experienced or learned as well. Display · The screen is either 800x480 or 480x800. · But you aren’t required to use only those resolutions. · The hardware scaler on the phone will scale up from 240x240. · One dimension will be capped at 800 and the other at 480; which depends on your code, but you cannot have, e.g., an 800x600 back buffer – that will be created as 800x480. · The hardware scaler will not normally change aspect ratio, though, so no unintended stretching. · Any dimension (width, height, or both) below 240 will be adjusted to 240 (without any aspect ratio adjustment such that, e.g. 200x240 will be treated as 240x240). · Dimensions below 240 will be honored in terms of calculating whether to use portrait or landscape. · If dimensions are exactly equal or if height is greater than width then game will be in portrait. · If width is greater than height, the game will be in landscape. · Landscape games will automatically flip if the user turns the phone 180°; no code required. · Default landscape is top = left. In other words a user holding a phone who starts a landscape game will see the first image presented so that the “top” of the screen is along the right edge of his/her phone, such that the natural behavior would be to turn the phone 90° so that the top of the phone will be held in the user’s left hand and the bottom would be held in the user’s right hand. · The status bar (where the clock, battery power, etc., are found) is hidden when the Game-derived class sets GraphicsDeviceManager.IsFullScreen = true. It is shown when IsFullScreen = false. The default value is false (i.e. the status bar is shown). · You should have a good reason for hiding the status bar. Users find it helpful to know what time it is, how much charge their battery has left, and whether or not their phone is in service range. This is especially true for casual games that you expect someone to play for a few minutes at a time, e.g. while waiting for some event to start, for a phone call to come in, or for a train, bus, or subway to arrive. · In portrait mode, the status bar occupies 32 pixels of space. This means that a game with a back buffer of 480x800 will be scaled down to occupy approximately 461x768 screen pixels. Setting the back buffer to 480x768 (or some resolution with the same 0.625 aspect ratio) will avoid this scaling. · In landscape mode, the status bar occupies 72 pixels of space. This means that a game with a back buffer of 800x480 will be scaled down to occupy approximately 728x437 screen pixels. Setting the back buffer to 728x480 (or some resolution with the same 1.51666667 aspect ratio) will avoid this scaling. Input · Touch input is scaled with screen size. · So if your back buffer is 600x360, a tap in the bottom right corner will come in as (599,359). You don’t need to do anything special to get this automatic scaling of touch behavior. · If you do not use full area of the screen, any touch input outside the area you use will still register as a touch input. For example, if you set a portrait resolution of 240x240, it would be scaled up to occupy a 480x480 area, centered in the screen. If you touch anywhere above this area, you will get a touch input of (X,0) where X is a number from 0 to 239 (in accordance with your 240 pixel wide back buffer). Any touch below this area will give a touch input of (X,239). · If you keep the status bar visible, touches within its area will not be passed to your game. · In general, a screen measurement is the diagonal. So a 3.5” screen is 3.5” long from the bottom right corner to the top left corner. With an aspect ratio of 0.6 (480/800 = 0.6), this means that a phone with a 3.5” screen is only approximately 1.8” wide by 3” tall. So there are approximately 267 pixels in an inch on a 3.5” screen. · Again, this time in metric! 3.5 inches is approximately 8.89 cm. So an 8.89 cm screen is 8.89 cm long from the bottom right corner to the top left corner. With an aspect ratio of 0.6, this means that a phone with an 8.89 cm screen is only approximately 4.57 cm wide by 7.62 cm tall. So there are approximately 105 pixels in a centimeter on an 8.89 cm screen. · Think about the size of your finger tip. If you do not have large hands, think about the size of the fingertip of someone with large hands. Consider that when you are sizing your touch input. Especially consider that when you are spacing two touch targets near one another. You need to judge it for yourself, but items that are next to each other and are each 100x100 should be fine when it comes to selecting items individually. Smaller targets than that are ok provided that you leave space between them. · You want your users to have a pleasant experience. Making touch controls too small or too close to one another will make them nervous about whether they will touch the right target. Take this into account when you plan out your game initially. If possible, do some quick size mockups on an actual phone using colored rectangles that you position and size where you plan to have your game controls. Adjust as necessary. · People do not have transparent hands! Nor are their hands the size of a mouse pointer icon. Consider leaving a dedicated space for input rather than forcing the user to cover up to one-third of the screen with a finger just to play the game. · Another benefit of designing your controls to use a dedicated area is that you’re less likely to have players moving their finger(s) so frantically that they accidentally hit the back button, start button, or search button (many phones have one or more of these on the screen itself – it’s easy to hit one by accident and really annoying if you hit, e.g., the search button and then quickly tap back only to find out that the game didn’t save your progress such that you just wasted all the time you spent playing). · People do not like doing somersaults in order to move something forward with accelerometer-based controls. Test your accelerometer-based controls extensively and get a lot of feedback. Very well-known games from noted publishers have created really bad accelerometer controls and been virtually unplayable as a result. Also be wary of exceptions and other possible failures that the documentation warns about. · When done properly, the accelerometer can add a nice touch to your game (see, e.g. ilomilo where the accelerometer was used to move the background; it added a nice touch without frustrating the user; I also think CarniVale does direct accelerometer controls very well). However, if done poorly, it will make your game an abomination unto the Marketplace. Days, weeks, perhaps even months of development time that you will never get back. I won’t name names; you can search the marketplace for games with terrible reviews and you’ll find them. Graphics · The maximum frame rate is 30 frames per second. This was set as a compromise between battery life and quality. · At least one model of phone is known to have a screen refresh rate that is between 59 and 60 hertz. Because of this, using a fixed time step with a target frame rate of 30 will cause a slight internal delay to build up as the framework is forced to wait slightly for the next refresh. Eventually the delay will get to the point where a draw is skipped in order to recover from the delay. (See Nick's comment below for clarification.) · To deal with that delay, you can either stay with a fixed time step and set the frame rate slightly lower or else you can go to a variable time step and make sure to adjust all of your update data (e.g. player movement distance) to take into account the elapsed time from the last update. A variable time step makes your update logic slightly more complicated but will avoid frame skips entirely. · Currently there are no custom shaders. This might change in the future (there is no hardware limitation preventing it; it simply wasn’t a feature that could be implemented in the time available before launch). · There are five built-in shaders. You can create a lot of nice effects with the built-in shaders. · There is more power on the CPU than there is on the GPU so things you might typically off-load to the GPU will instead make sense to do on the CPU side. · This is a phone. It is not a PC. It is not an Xbox 360. The emulator runs on a PC and uses the full power of your PC. It is very good for testing your code for bugs and doing early prototyping and layout. You should not use it to measure performance. Use actual phone hardware instead. · There are many phone models, each of which has slightly different performance levels for I/O, screen blitting, CPU performance, etc. Do not take your game right to the performance limit on your phone since for some other phones you might be crossing their limits and leaving players with a bad experience. Leave a cushion to account for hardware differences. · Smaller screened phones will have slightly more dots per inch (dpi). Larger screened phones will have slightly less. Either way, the dpi will be much higher than the typical 96 found on most computer screens. Make sure that whoever is doing art for your game takes this into account. · Screens are only required to have 16 bit color (65,536 colors). This is common among smart phones. Using gradients on a 16 bit display can produce an ugly artifact known as banding. Banding is when, rather than a smooth transition from one color to another, you instead see distinct lines. Be careful to avoid this when possible. Banding can be avoided through careful art creation. Its effects can be minimized and even unnoticeable when the texture in question is always moving. You should be careful not to rely on “looks good on my phone” since some phones do have 32-bit displays and thus you’ll find yourself wondering why you’re getting bad reviews that complain about the graphics. Avoid gradients; if you can’t, make sure they are 16-bit safe. Audio · Never rely on sounds as your sole signal to the player that something is happening in the game. They might have the sound off. They might be playing somewhere loud. Etc. · You have to provide controls to disable sound & music. These should be separate. · On at least one model of phone, the volume control API currently has no effect. Players can adjust sound with their hardware volume buttons, but in game selectors simply won’t work. As such, it may not be worth the effort of providing anything beyond on/off switches for sound and music. · MediaPlayer.GameHasControl will return true when a game is hooked up to a PC running Zune. When Zune is running, any attempts to do anything (beyond check GameHasControl) with MediaPlayer will cause an exception to be thrown. If this exception is thrown, catch it and disable music. Exceptions take time to propagate; you don’t want one popping up in every single run of your game’s Update method. · Remember that players can already be listening to music or using the FM radio. In this case GameHasControl will be false and you should handle this appropriately. You can, alternately, ask the player for permission to stop their current music and play your music instead, but the (current) requirement that you restore their music when done is very hard (if not impossible) to deal with. · You can still play sound effects even when the game doesn’t have control of the music, but don’t think this is a backdoor to playing music. Your game will fail certification if your “sound effect” seems to be more like music in scope and length.

    Read the article

  • Where are some good resources to learn Game Development with OpenGL ES 2.X

    - by Mahbubur R Aaman
    Background: From http://www.khronos.org/opengles/2_X/ OpenGL ES 2.0 combines a version of the OpenGL Shading Language for programming vertex and fragment shaders that has been adapted for embedded platforms, together with a streamlined API from OpenGL ES 1.1 that has removed any fixed functionality that can be easily replaced by shader programs, to minimize the cost and power consumption of advanced programmable graphics subsystems. Related Resources The OpenGL ES 2.0 specification, header files, and optional extension specifications The OpenGL ES 2.0 Online Manual Pages The OpenGL ES 3.0 Shading LanguageOnline Reference Pages The OpenGL ES 2.0 Quick Reference Card OpenGL ES 1.X OpenGL ES 2.0 From http://www.cocos2d-iphone.org/archives/2003 Cocos2d Version 2 released and one of primary key point noted as OpenGL ES 2.0 support From http://www.h-online.com/open/news/item/Compiz-now-supports-OpenGL-ES-2-0-1674605.html Compiz now supports OpenGL ES 2.0 My Question : Being as a Game Developer ( I have to work with several game engine Cocos2d, Unity). I need several resources to cope up with OpenGL ES 2.X for better outcome while developing games?

    Read the article

  • What's a good way to organize samplers for HLSL?

    - by Rei Miyasaka
    According to MSDN, I can have 4096 samplers per context. That's a lot, considering there's only a handful of common sampler states. That tempts me to initialize an array containing a whole bunch of common sampler states, assign them to every device context I use, and then in the pixel shaders refer to them by index using : register(s[n]) where n is the index in the array. If I want more samplers for whatever reason, I can just add them on after the last slot. Does this work? If not, when should I set the samplers? Should it be done when by the mesh renderer? The texture renderer? Or alongside PSSetShader? Edit: That trick I wrote above doesn't work (at least not yet), as the compiler gives me this error message when I try to use the same register twice: error X4500: overlapping register semantics not yet implemented 's0' So how do people usually organize samplers, then?

    Read the article

  • OpenGL ES 2.0: Vertex and Fragment Shader for 2D with Transparency

    - by Bunkai.Satori
    Could I knindly ask for correct examples of OpenGL ES 2.0 Vertex and Fragment shader for displaying 2D textured sprites with transparency? I have fairly simple shaders that display textured polygon pairs but transparency is not applied despite: texture map contains transparency information Blending is enabled: glEnable(GL_BLEND); glEnable(GL_DEPTH_TEST); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); My Vertex Shader: uniform mat4 uOrthoProjection; uniform vec3 Translation; attribute vec4 Position; attribute vec2 TextureCoord; varying vec2 TextureCoordOut; void main() { gl_Position = uOrthoProjection * (Position + vec4(Translation, 0)); TextureCoordOut = TextureCoord; } My Fragment Shader: varying mediump vec2 TextureCoordOut; uniform sampler2D Sampler; void main() { gl_FragColor = texture2D(Sampler, TextureCoordOut); }

    Read the article

  • How to achieve best performance in DirectX 9.0 while rendering on multiple monitors

    - by Vibhore Tanwer
    I am new to DirectX, and trying to learn best practice. Please suggest what are the best practices for rendering on multiple monitors different things at the same time? how can I boost performance of application? I have gone through this article http://msdn.microsoft.com/en-us/library/windows/desktop/bb147263%28v=vs.85%29.aspx . I am making use of some pixel shaders to achieve some effects. At most 4 effect(4 shader effects) can be applied at same time. What are the best practices to achieve best performance with DirectX 9.0. I read somewhere that DirectX 11 provides support for parallel rendering, but I am not able to get any working sample for DirectX 11.0. Please help me with this, Any help would be of great value. Thanks

    Read the article

  • Castor3D en version 0.6.1.0, le moteur de rendu 3D en C++ supporte désormais OpenGL 3.x et 4.x

    Présentation Ce moteur 3D a l'ambition d'être multi-plateformes et multi-renderer. Pour l'instant, seul le développement sous Windows est exploitable (je galère pour la création d'une fenêtre compatible OpenGL sous Linux). Seul le Renderer OpenGL est implémenté (je n'ai aucune connaissance en Direct3D). La reconnaissance des Shaders est implémentée, uniquement la partie GLSL pour l'instant, on verra un jour pour intégrer Cg. Pas encore de LOD ni de gestion OcTree pour l'instant, mais c'est prévu. Support de plusieurs formats de fichiers : Obj, 3DS, MD2, MD3, PLY. Le système d'animation a un squelette qu'il me faut compléter afin d'avoir une implémentation correcte d'un système d'animation avec ou sans squeleton (...

    Read the article

  • Shadow mapping with deffered shading for directional lights - shadow map projection problem

    - by Harry
    I'm trying to implement shadow mapping to my engine. I started with directional lights because they seemed to be the easiest one, but I was wrong :) I have implemented deferred shading and I retrieve position from depth. I think that there is the biggest problem but code looks ok for me. Now more about problem: Shadow map projected onto meshes looks bad scaled and translated and also some informations from shadow map texture aren't visible. You can see it on this screen: http://img5.imageshack.us/img5/2254/93dn.png Yelow frustum is light frustum and I have mixed shadow map preview and actual scene. As you can see shadows are in wrong place and shadow of cone and sphere aren't visible. Could you look at my codes and tell me where I have a mistake? // create shadow map if(!_shd)glGenTextures(1, &_shd); glBindTexture(GL_TEXTURE_2D, _shd); glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, 1024, 1024, 0, GL_DEPTH_COMPONENT, GL_FLOAT,NULL); // shadow map size glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, _shd, 0); glDrawBuffer(GL_NONE); // setting camera Vector dire=Vector(0,0,1); ACamera.setLookAt(dire,Vector(0)); ACamera.setPerspectiveView(60.0f,1,0.1f,10.0f); // currently needed for proper frustum corners calculation Vector min(ACamera._point[0]),max(ACamera._point[0]); for(int i=0;i<8;i++){ max=Max(max,ACamera._point[i]); min=Min(min,ACamera._point[i]); } ACamera.setOrthogonalView(min.x,max.x,min.y,max.y,-max.z,-min.z); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, _s_buffer); // framebuffer for shadow map // rendering to depth buffer glBindFramebuffer(GL_DRAW_FRAMEBUFFER, _g_buffer); Shaders["DirLight"].set(true); Matrix4 bias; bias.x.set(0.5,0.0,0.0,0.0); bias.y.set(0.0,0.5,0.0,0.0); bias.z.set(0.0,0.0,0.5,0.0); bias.w.set(0.5,0.5,0.5,1.0); Shaders["DirLight"].set("textureMatrix",ACamera.matrix*Projection3D*bias); // order of multiplications are 100% correct, everything gives mi the same result as using glm glActiveTexture(GL_TEXTURE5); glBindTexture(GL_TEXTURE_2D,_shd); lightDir(dir); // light calculations Vertex Shader makes nothing related to shadow calculatons Pixel shader function which calculates if pixel is in shadow or not: float readShadowMap(vec3 eyeDir) { // retrieve depth of pixel float z = texture2D(depth, gl_FragCoord.xy/screen).z; vec3 pos = vec3(gl_FragCoord.xy/screen, z); // transform by the projection and view inverse vec4 worldSpace = inverse(View)*inverse(ProjectionMatrix)*vec4(pos*2-1,1); worldSpace /= worldSpace.w; vec4 coord=textureMatrix*worldSpace; float vis=1.0f; if(texture2D(shadow, coord.xy).z < coord.z-0.001)vis=0.2f; return vis; } I also have question about shadows specifically for directional light. Currently I always look at 0,0,0 position and in further implementation I have to move light frustum along to camera frustum. I've found how to do this here: http://www.gamedev.net/topic/505893-orthographic-projection-for-shadow-mapping/ but it doesn't give me what I want. Maybe because of problems mentioned above, but I want know your opinion. EDIT: vec4 worldSpace is position read from depht of the scene (not shadow map). Maybe I wasn't precise so I'll try quick explain what is what: View is camera view matrix, ProjectionMatrix is camera projection,. First I try to get world space position from depth map and then multiply it by textureMatrix which is light view *light projection*bias. Rest of code is the same as in many tutorials. I can't use vertex shader to make something like gl_Position=textureMatrix*gl_Vertex and get it interpolated in fragment shader because of deffered rendering use so I want get it from depht buffer. EDIT2: I also tried make it as in Coding Labs tutorial about Shadow Mapping with Deferred Rendering but unfortunately this either works wrong.

    Read the article

  • Pix for visual studio express 2012 (Desktop)

    - by JohnB
    (Originally asked on stackoverflow) Using visual c++ express 2010 for direct3d you have to download the directX sdk and there is a tool called pix for debugging shaders, looking at 3d resources etc. With visual studio 2012 express the directx sdk is included in the windows sdk that comes with it but this does not seem to include the winpix.exe tool. Is this very useful tool still available? I guess I can still use the one from the previous sdk but it seems wrong to install the entire sdk just for that tool. Is there a version for VS2012 express that I'm missing?

    Read the article

  • Small 3D Scene Graph

    - by Alon
    I'm looking for a 3D graphics library (not a complete game engine). Preferred a scene graph. Something small (unlike jME, XNA or Unity), that I can easily expand and change. Preferred features: Cross Platform Wrriten in Java/Scala (JOGL or LWJGL), C# (preferred OpenTK), Python or JavaScript/WebGL. Support for OpenGL is a must. Direct3D is optional. Some material system Full support for some model format with full animation support (preferred COLLADA) Level of Detail (LOD) support Lighting support Shaders, GUI, Input and Terrain/Water support are also preferred, but not required Thanks!

    Read the article

  • How to deal with D3DX .dll hell?

    - by bluescrn
    There's a large number of versions of the D3DX dll, from each SDK update, each version having a unique name (http://www.toymaker.info/Games/html/d3dx_dlls.html). All-too-often, people have versions missing. So even though they have a compatible version of DirectX, your D3D-based project won't run on their machine. I want to be able to distribute games (little spare-time projects, game jam entries, etc) as a simple zip file, without the need for an installer. But a significant percentage of users run into missing D3DX .dll errors. And without an installer, Microsoft's official solution (the DirectX web installer/updater) isn't really much of a solution. Unfortunately, Microsoft still won't give us the option of static linking to D3DX (which would be a nice clean solution). And avoiding using D3DX isn't very practical, especially if you're working with shaders (and no, I'm not switching to OpenGL, at least for now) Does anyone have clever solutions to avoiding this DLL hell?

    Read the article

  • Vector Graphics in DirectX

    - by Doug
    I'm curious as to people's thoughts on the best way to use vector graphics in a directX game instead of rasterized textures(think Super Meat Boy). I want to remain resolution independent and don't want to downscale/upscale rasterized graphics. Also the idea would be for all assets to be vector graphics(again think Super Meat Boy). I've looked at Valve's paper "Improved Alpha-Tested Magnification for Vector Textures and Special Effects" and also looked at using shaders http://http.developer.nvidia.com/GPUGems3/gpugems3_ch25.html. Wondering if anyone has done something similar or an alternate approach. Cheers

    Read the article

  • Nothing drawing on screen OpenGL with GLSL

    - by codemonkey
    I hate to be asking this kind of question here, but I am at a complete loss as to what is going wrong, so please bear with me. I am trying to render a single cube (voxel) in the center of the screen, through OpenGL with GLSL on Mac I begin by setting up everything using glut glutInit(&argc, argv); glutInitDisplayMode(GLUT_RGBA|GLUT_ALPHA|GLUT_DOUBLE|GLUT_DEPTH); glutInitWindowSize(DEFAULT_WINDOW_WIDTH, DEFAULT_WINDOW_HEIGHT); glutCreateWindow("Cubez-OSX"); glutReshapeFunc(reshape); glutDisplayFunc(render); glutIdleFunc(idle); _electricSheepEngine=new ElectricSheepEngine(DEFAULT_WINDOW_WIDTH, DEFAULT_WINDOW_HEIGHT); _electricSheepEngine->initWorld(); glutMainLoop(); Then inside the engine init camera & projection matrices: cameraPosition=glm::vec3(2,2,2); cameraTarget=glm::vec3(0,0,0); cameraUp=glm::vec3(0,0,1); glm::vec3 cameraDirection=glm::normalize(cameraPosition-cameraTarget); cameraRight=glm::cross(cameraDirection, cameraUp); cameraRight.z=0; view=glm::lookAt(cameraPosition, cameraTarget, cameraUp); lensAngle=45.0f; aspectRatio=1.0*(windowWidth/windowHeight); nearClippingPlane=0.1f; farClippingPlane=100.0f; projection=glm::perspective(lensAngle, aspectRatio, nearClippingPlane, farClippingPlane); then init shaders and check compilation and bound attributes & uniforms to be correctly bound (my previous question) These are my two shaders, vertex: #version 120 attribute vec3 position; attribute vec3 inColor; uniform mat4 mvp; varying vec3 fragColor; void main(void){ fragColor = inColor; gl_Position = mvp * vec4(position, 1.0); } and fragment: #version 120 varying vec3 fragColor; void main(void) { gl_FragColor = vec4(fragColor,1.0); } init the cube: setPosition(glm::vec3(0,0,0)); struct voxelData data[]={ //front face {{-1.0, -1.0, 1.0}, {0.0, 0.0, 1.0}}, {{ 1.0, -1.0, 1.0}, {0.0, 1.0, 1.0}}, {{ 1.0, 1.0, 1.0}, {0.0, 0.0, 1.0}}, {{-1.0, 1.0, 1.0}, {0.0, 1.0, 1.0}}, //back face {{-1.0, -1.0, -1.0}, {0.0, 0.0, 1.0}}, {{ 1.0, -1.0, -1.0}, {0.0, 1.0, 1.0}}, {{ 1.0, 1.0, -1.0}, {0.0, 0.0, 1.0}}, {{-1.0, 1.0, -1.0}, {0.0, 1.0, 1.0}} }; glGenBuffers(1, &modelVerticesBufferObject); glBindBuffer(GL_ARRAY_BUFFER, modelVerticesBufferObject); glBufferData(GL_ARRAY_BUFFER, sizeof(data), data, GL_STATIC_DRAW); glBindBuffer(GL_ARRAY_BUFFER, 0); const GLubyte indices[] = { // Front 0, 1, 2, 2, 3, 0, // Back 4, 6, 5, 4, 7, 6, // Left 2, 7, 3, 7, 6, 2, // Right 0, 4, 1, 4, 1, 5, // Top 6, 2, 1, 1, 6, 5, // Bottom 0, 3, 7, 0, 7, 4 }; glGenBuffers(1, &modelFacesBufferObject); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, modelFacesBufferObject); glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices, GL_STATIC_DRAW); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); and then the render call: glClearColor(0.52, 0.8, 0.97, 1.0); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glEnable(GL_DEPTH_TEST); //use the shader glUseProgram(shaderProgram); //enable attributes in program glEnableVertexAttribArray(shaderAttribute_position); glEnableVertexAttribArray(shaderAttribute_color); //model matrix using model position vector glm::mat4 mvp=projection*view*voxel->getModelMatrix(); glUniformMatrix4fv(shaderAttribute_mvp, 1, GL_FALSE, glm::value_ptr(mvp)); glBindBuffer(GL_ARRAY_BUFFER, voxel->modelVerticesBufferObject); glVertexAttribPointer(shaderAttribute_position, // attribute 3, // number of elements per vertex, here (x,y) GL_FLOAT, // the type of each element GL_FALSE, // take our values as-is sizeof(struct voxelData), // coord every (sizeof) elements 0 // offset of first element ); glBindBuffer(GL_ARRAY_BUFFER, voxel->modelVerticesBufferObject); glVertexAttribPointer(shaderAttribute_color, // attribute 3, // number of colour elements per vertex, here (x,y) GL_FLOAT, // the type of each element GL_FALSE, // take our values as-is sizeof(struct voxelData), // coord every (sizeof) elements (GLvoid *)(offsetof(struct voxelData, color3D)) // offset of colour data ); //draw the model by going through its elements array glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, voxel->modelFacesBufferObject); int bufferSize; glGetBufferParameteriv(GL_ELEMENT_ARRAY_BUFFER, GL_BUFFER_SIZE, &bufferSize); glDrawElements(GL_TRIANGLES, bufferSize/sizeof(GLushort), GL_UNSIGNED_SHORT, 0); //close up the attribute in program, no more need glDisableVertexAttribArray(shaderAttribute_position); glDisableVertexAttribArray(shaderAttribute_color); but on screen all I get is the clear color :$ I generate my model matrix using: modelMatrix=glm::translate(glm::mat4(1.0), position); which in debug turns out to be for the position of (0,0,0): |1, 0, 0, 0| |0, 1, 0, 0| |0, 0, 1, 0| |0, 0, 0, 1| Sorry for such a question, I know it is annoying to look at someone's code, but I promise I have tried to debug around and figure it out as much as I can, and can't come to a solution Help a noob please? EDIT: Full source here, if anyone wants

    Read the article

< Previous Page | 8 9 10 11 12 13 14 15 16 17 18  | Next Page >