Search Results

Search found 19483 results on 780 pages for 'load average'.

Page 139/780 | < Previous Page | 135 136 137 138 139 140 141 142 143 144 145 146  | Next Page >

  • Loading JNI lib on Mac OS X?

    - by Clinton
    Background So I am attempting to load a jnilib (specifically JOGL) into Java on Mac OS X at runtime. I have been following along the relevant Stack Overflow questions: Maven and the JOGL Library Loading DLL in Java - Eclipse - JNI How to make a jar file that include all jar files The end goal for me is to package platform specific JOGL files into a JAR and unzip them into a temp directory and load them at start-up. I worked my problem back to simply attempting to load JOGL using hard-coded paths: File f = new File("/var/folders/+n/+nfb8NHsHiSpEh6AHMCyvE+++TI/-Tmp-/libjogl.jnilib"); System.load(f.toString()); f = new File ("/var/folders/+n/+nfb8NHsHiSpEh6AHMCyvE+++TI/-Tmp-/libjogl_awt.jnilib"); System.load(f.toString()); I get the following exception when attempting to use the JOGL API: Exception in thread "main" java.lang.UnsatisfiedLinkError: no jogl in java.library.path But when I specify java.library.path by adding the following JVM option: -Djava.library.path="/var/folders/+n/+nfb8NHsHiSpEh6AHMCyvE+++TI/-Tmp-/" Everything works fine. Question Is it possible use System.load (or some other variant) on Mac OS X as a replacement for -Djava.library.path that is invoked at runtime?

    Read the article

  • how to solve nested list programs [closed]

    - by riya
    write a function to get most popular car that accepts a car detail as input and returns the most popular car name along with its average rating .Each element of car details list is a sublist that provides the below information about a car (a)name of a car(b)car price (c) list of ratings obtained by car from various agencies.Incase two cars have the same average rating then the car with the lesser price qualifies as most popular car? here's my solution-: (define-struct cardetails ("name" price list of '(ratings)) (define car1 (make-cardetails "toyota" 123 '( 1 2 3))) (define car2 (make-cardetails "santro" 321 '( 2 2 3))) (define car3 (make-cardetails "toyota" 100 '( 1 2 3))) (define cardetailslist(list(car1) (car2)(car 3))) (let loop ((count 0)) (let (len (length cardetailslist)) (if(< count len) (string-ref (string-ref n)0) now please tell me how to find maximum average and display car name.it's not a homework question tomorrow is my test and we have not been taught this concept in class although it is very important from test point of view

    Read the article

  • OOP PHP simple question

    - by Tristan
    Hello, I'm new to OOP in PHP, is that to seems correct ? class whatever { Function Maths() { $this->sql->query($requete); $i = 0; while($val = mysql_fetch_array($this)) { $tab[i][average] = $val['average']; $tab[i][randomData] = $val['sum']; $i=$i+1; } return $tab; } I want to access the data contained in the array $foo = new whatever(); $foo->Maths(); for ($i, $i <= endOfTheArray; i++) { echo Maths->tab[i][average]; echo Maths->tab[i][randomData]; } Thank you ;)

    Read the article

  • How to evaluate json member using variable ?

    - by Miftah
    Hi i've got a problem evaluating json. My goal is to insert json member value to a function variable, take a look at this function func_load_session(svar){ var id = ''; $.getJSON('data/session.php?load='+svar, function(json){ eval('id = json.'+svar); }); return id; } this code i load session from php file that i've store beforehand. i store that session variable using dynamic var. <?php /* * format ?var=[nama_var]&val=[nilai_nama_var] */ $var = $_GET['var']; $val = $_GET['val']; $load = $_GET['load']; session_start(); if($var){ $_SESSION["$var"] = $val; echo "Store SESSION[\"$var\"] = '".$_SESSION["$var"]."'"; }else if($load){ echo $_SESSION["$load"]; } ?> using firebug, i get expected response but i also received error uncaught exception: Syntax error, unrecognized expression: ) pointing at this eval('id = json.'+svar); i wonder how to solve this

    Read the article

  • Handling a binary operation that makes sense only for part of a hierarchy.

    - by usersmarvin_
    I have a hierarchy, which I'll simplify greatly, of implementations of interface Value. Assume that I have two implementations, NumberValue, and StringValue. There is an average operation which only makes sense for NumberValue, with the signature NumberValue average(NumberValue numberValue){ ... } At some point after creating such variables and using them in various collections, I need to average a collection which I know is only of type NumberValue, there are three possible ways of doing this I think: Very complicated generic signatures which preserve the type info in compile time (what I'm doing now, and results in hard to maintain code) Moving the operation to the Value level, and: throwing an unsupportedOperationException for StringValue, and casting for NumberValue. Casting at the point where I know for sure that I have a NumberValue, using slightly less complicated generics to insure this. Does anybody have any better ideas, or a recommendation on oop best practices?

    Read the article

  • Where to declare variable? C#

    - by user1303781
    I am trying to make an average function... 'Total' adds them, then 'Total' is divided by n, the number of entries... No matter where I put 'double Total;', I get an error message. In this example I get... Use of unassigned local variable 'Total' If I put it before the comment, both references show up as error... I'm sure it's something simple..... namespace frmAssignment3 { class StatisticalFunctions { public static class Statistics { //public static double Average(List<MachineData.MachineRecord> argMachineDataList) public static double Average(List<double> argMachineDataList) { double Total; int n; for (n = 1; n <= argMachineDataList.Count; n++) { Total = argMachineDataList[n]; } return Total / n; } public static double StDevSample(List<MachineData.MachineRecord> argMachineDataList) { return -1; } } } }

    Read the article

  • Get last row of many matrices (ASCII text files) and create a new matrix from these rows

    - by nofunsally
    I have over a thousand matrices (6 x 2000, ASCII files, comma delimited) that I generated from MATLAB. I want to get the last row of each matrix / text file and save them in a new matrix / text file. The text files have crazy names so when I load them I can name them whatever. Right now I would do this to achieve my goal: % A = load('crazyname.txt'); % B = load('crazynameagain.txt'); % C = load('crazynameyetagain.txt'); A = [5 5 5; 5 5 5; 1 1 1]; B = [5 5 5; 5 5 5; 2 2 2]; C = [5 5 5; 5 5 5; 3 3 3]; D(1,:)=A(end,:); D(2,:)=B(end,:); D(3,:)=C(end,:); I will create each command (e.g. load, building D step by step) in Excel by combining text cells to create a command. Is there a better way to do this? Could I load / assign the matrices with a name that would better suit them to be used in a for loop? Or is some other MATLAB command that would facilitate this? Thanks.

    Read the article

  • Rendering ASP.NET Script References into the Html Header

    - by Rick Strahl
    One thing that I’ve come to appreciate in control development in ASP.NET that use JavaScript is the ability to have more control over script and script include placement than ASP.NET provides natively. Specifically in ASP.NET you can use either the ClientScriptManager or ScriptManager to embed scripts and script references into pages via code. This works reasonably well, but the script references that get generated are generated into the HTML body and there’s very little operational control for placement of scripts. If you have multiple controls or several of the same control that need to place the same scripts onto the page it’s not difficult to end up with scripts that render in the wrong order and stop working correctly. This is especially critical if you load script libraries with dependencies either via resources or even if you are rendering referenced to CDN resources. Natively ASP.NET provides a host of methods that help embedding scripts into the page via either Page.ClientScript or the ASP.NET ScriptManager control (both with slightly different syntax): RegisterClientScriptBlock Renders a script block at the top of the HTML body and should be used for embedding callable functions/classes. RegisterStartupScript Renders a script block just prior to the </form> tag and should be used to for embedding code that should execute when the page is first loaded. Not recommended – use jQuery.ready() or equivalent load time routines. RegisterClientScriptInclude Embeds a reference to a script from a url into the page. RegisterClientScriptResource Embeds a reference to a Script from a resource file generating a long resource file string All 4 of these methods render their <script> tags into the HTML body. The script blocks give you a little bit of control by having a ‘top’ and ‘bottom’ of the document location which gives you some flexibility over script placement and precedence. Script includes and resource url unfortunately do not even get that much control – references are simply rendered into the page in the order of declaration. The ASP.NET ScriptManager control facilitates this task a little bit with the abililty to specify scripts in code and the ability to programmatically check what scripts have already been registered, but it doesn’t provide any more control over the script rendering process itself. Further the ScriptManager is a bear to deal with generically because generic code has to always check and see if it is actually present. Some time ago I posted a ClientScriptProxy class that helps with managing the latter process of sending script references either to ClientScript or ScriptManager if it’s available. Since I last posted about this there have been a number of improvements in this API, one of which is the ability to control placement of scripts and script includes in the page which I think is rather important and a missing feature in the ASP.NET native functionality. Handling ScriptRenderModes One of the big enhancements that I’ve come to rely on is the ability of the various script rendering functions described above to support rendering in multiple locations: /// <summary> /// Determines how scripts are included into the page /// </summary> public enum ScriptRenderModes { /// <summary> /// Inherits the setting from the control or from the ClientScript.DefaultScriptRenderMode /// </summary> Inherit, /// Renders the script include at the location of the control /// </summary> Inline, /// <summary> /// Renders the script include into the bottom of the header of the page /// </summary> Header, /// <summary> /// Renders the script include into the top of the header of the page /// </summary> HeaderTop, /// <summary> /// Uses ClientScript or ScriptManager to embed the script include to /// provide standard ASP.NET style rendering in the HTML body. /// </summary> Script, /// <summary> /// Renders script at the bottom of the page before the last Page.Controls /// literal control. Note this may result in unexpected behavior /// if /body and /html are not the last thing in the markup page. /// </summary> BottomOfPage } This enum is then applied to the various Register functions to allow more control over where scripts actually show up. Why is this useful? For me I often render scripts out of control resources and these scripts often include things like a JavaScript Library (jquery) and a few plug-ins. The order in which these can be loaded is critical so that jQuery.js always loads before any plug-in for example. Typically I end up with a general script layout like this: Core Libraries- HeaderTop Plug-ins: Header ScriptBlocks: Header or Script depending on other dependencies There’s also an option to render scripts and CSS at the very bottom of the page before the last Page control on the page which can be useful for speeding up page load when lots of scripts are loaded. The API syntax of the ClientScriptProxy methods is closely compatible with ScriptManager’s using static methods and control references to gain access to the page and embedding scripts. For example, to render some script into the current page in the header: // Create script block in header ClientScriptProxy.Current.RegisterClientScriptBlock(this, typeof(ControlResources), "hello_function", "function helloWorld() { alert('hello'); }", true, ScriptRenderModes.Header); // Same again - shouldn't be rendered because it's the same id ClientScriptProxy.Current.RegisterClientScriptBlock(this, typeof(ControlResources), "hello_function", "function helloWorld() { alert('hello'); }", true, ScriptRenderModes.Header); // Create a second script block in header ClientScriptProxy.Current.RegisterClientScriptBlock(this, typeof(ControlResources), "hello_function2", "function helloWorld2() { alert('hello2'); }", true, ScriptRenderModes.Header); // This just calls ClientScript and renders into bottom of document ClientScriptProxy.Current.RegisterStartupScript(this,typeof(ControlResources), "call_hello", "helloWorld();helloWorld2();", true); which generates: <html xmlns="http://www.w3.org/1999/xhtml" > <head><title> </title> <script type="text/javascript"> function helloWorld() { alert('hello'); } </script> <script type="text/javascript"> function helloWorld2() { alert('hello2'); } </script> </head> <body> … <script type="text/javascript"> //<![CDATA[ helloWorld();helloWorld2();//]]> </script> </form> </body> </html> Note that the scripts are generated into the header rather than the body except for the last script block which is the call to RegisterStartupScript. In general I wouldn’t recommend using RegisterStartupScript – ever. It’s a much better practice to use a script base load event to handle ‘startup’ code that should fire when the page first loads. So instead of the code above I’d actually recommend doing: ClientScriptProxy.Current.RegisterClientScriptBlock(this, typeof(ControlResources), "call_hello", "$().ready( function() { alert('hello2'); });", true, ScriptRenderModes.Header); assuming you’re using jQuery on the page. For script includes from a Url the following demonstrates how to embed scripts into the header. This example injects a jQuery and jQuery.UI script reference from the Google CDN then checks each with a script block to ensure that it has loaded and if not loads it from a server local location: // load jquery from CDN ClientScriptProxy.Current.RegisterClientScriptInclude(this, typeof(ControlResources), "http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jquery.min.js", ScriptRenderModes.HeaderTop); // check if jquery loaded - if it didn't we're not online string scriptCheck = @"if (typeof jQuery != 'object') document.write(unescape(""%3Cscript src='{0}' type='text/javascript'%3E%3C/script%3E""));"; string jQueryUrl = ClientScriptProxy.Current.GetWebResourceUrl(this, typeof(ControlResources), ControlResources.JQUERY_SCRIPT_RESOURCE); ClientScriptProxy.Current.RegisterClientScriptBlock(this, typeof(ControlResources), "jquery_register", string.Format(scriptCheck,jQueryUrl),true, ScriptRenderModes.HeaderTop); // Load jquery-ui from cdn ClientScriptProxy.Current.RegisterClientScriptInclude(this, typeof(ControlResources), "http://ajax.googleapis.com/ajax/libs/jqueryui/1.7.2/jquery-ui.min.js", ScriptRenderModes.Header); // check if we need to load from local string jQueryUiUrl = ResolveUrl("~/scripts/jquery-ui-custom.min.js"); ClientScriptProxy.Current.RegisterClientScriptBlock(this, typeof(ControlResources), "jqueryui_register", string.Format(scriptCheck, jQueryUiUrl), true, ScriptRenderModes.Header); // Create script block in header ClientScriptProxy.Current.RegisterClientScriptBlock(this, typeof(ControlResources), "hello_function", "$().ready( function() { alert('hello'); });", true, ScriptRenderModes.Header); which in turn generates this HTML: <html xmlns="http://www.w3.org/1999/xhtml" > <head> <script src="http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jquery.min.js" type="text/javascript"></script> <script type="text/javascript"> if (typeof jQuery != 'object') document.write(unescape("%3Cscript src='/WestWindWebToolkitWeb/WebResource.axd?d=DIykvYhJ_oXCr-TA_dr35i4AayJoV1mgnQAQGPaZsoPM2LCdvoD3cIsRRitHKlKJfV5K_jQvylK7tsqO3lQIFw2&t=633979863959332352' type='text/javascript'%3E%3C/script%3E")); </script> <title> </title> <script src="http://ajax.googleapis.com/ajax/libs/jqueryui/1.7.2/jquery-ui.min.js" type="text/javascript"></script> <script type="text/javascript"> if (typeof jQuery != 'object') document.write(unescape("%3Cscript src='/WestWindWebToolkitWeb/scripts/jquery-ui-custom.min.js' type='text/javascript'%3E%3C/script%3E")); </script> <script type="text/javascript"> $().ready(function() { alert('hello'); }); </script> </head> <body> …</body> </html> As you can see there’s a bit more control in this process as you can inject both script includes and script blocks into the document at the top or bottom of the header, plus if necessary at the usual body locations. This is quite useful especially if you create custom server controls that interoperate with script and have certain dependencies. The above is a good example of a useful switchable routine where you can switch where scripts load from by default – the above pulls from Google CDN but a configuration switch may automatically switch to pull from the local development copies if your doing development for example. How does it work? As mentioned the ClientScriptProxy object mimicks many of the ScriptManager script related methods and so provides close API compatibility with it although it contains many additional overloads that enhance functionality. It does however work against ScriptManager if it’s available on the page, or Page.ClientScript if it’s not so it provides a single unified frontend to script access. There are however many overloads of the original SM methods like the above to provide additional functionality. The implementation of script header rendering is pretty straight forward – as long as a server header (ie. it has to have runat=”server” set) is available. Otherwise these routines fall back to using the default document level insertions of ScriptManager/ClientScript. Given that there is a server header it’s relatively easy to generate the script tags and code and append them to the header either at the top or bottom. I suspect Microsoft didn’t provide header rendering functionality precisely because a runat=”server” header is not required by ASP.NET so behavior would be slightly unpredictable. That’s not really a problem for a custom implementation however. Here’s the RegisterClientScriptBlock implementation that takes a ScriptRenderModes parameter to allow header rendering: /// <summary> /// Renders client script block with the option of rendering the script block in /// the Html header /// /// For this to work Header must be defined as runat="server" /// </summary> /// <param name="control">any control that instance typically page</param> /// <param name="type">Type that identifies this rendering</param> /// <param name="key">unique script block id</param> /// <param name="script">The script code to render</param> /// <param name="addScriptTags">Ignored for header rendering used for all other insertions</param> /// <param name="renderMode">Where the block is rendered</param> public void RegisterClientScriptBlock(Control control, Type type, string key, string script, bool addScriptTags, ScriptRenderModes renderMode) { if (renderMode == ScriptRenderModes.Inherit) renderMode = DefaultScriptRenderMode; if (control.Page.Header == null || renderMode != ScriptRenderModes.HeaderTop && renderMode != ScriptRenderModes.Header && renderMode != ScriptRenderModes.BottomOfPage) { RegisterClientScriptBlock(control, type, key, script, addScriptTags); return; } // No dupes - ref script include only once const string identifier = "scriptblock_"; if (HttpContext.Current.Items.Contains(identifier + key)) return; HttpContext.Current.Items.Add(identifier + key, string.Empty); StringBuilder sb = new StringBuilder(); // Embed in header sb.AppendLine("\r\n<script type=\"text/javascript\">"); sb.AppendLine(script); sb.AppendLine("</script>"); int? index = HttpContext.Current.Items["__ScriptResourceIndex"] as int?; if (index == null) index = 0; if (renderMode == ScriptRenderModes.HeaderTop) { control.Page.Header.Controls.AddAt(index.Value, new LiteralControl(sb.ToString())); index++; } else if(renderMode == ScriptRenderModes.Header) control.Page.Header.Controls.Add(new LiteralControl(sb.ToString())); else if (renderMode == ScriptRenderModes.BottomOfPage) control.Page.Controls.AddAt(control.Page.Controls.Count-1,new LiteralControl(sb.ToString())); HttpContext.Current.Items["__ScriptResourceIndex"] = index; } Note that the routine has to keep track of items inserted by id so that if the same item is added again with the same key it won’t generate two script entries. Additionally the code has to keep track of how many insertions have been made at the top of the document so that entries are added in the proper order. The RegisterScriptInclude method is similar but there’s some additional logic in here to deal with script file references and ClientScriptProxy’s (optional) custom resource handler that provides script compression /// <summary> /// Registers a client script reference into the page with the option to specify /// the script location in the page /// </summary> /// <param name="control">Any control instance - typically page</param> /// <param name="type">Type that acts as qualifier (uniqueness)</param> /// <param name="url">the Url to the script resource</param> /// <param name="ScriptRenderModes">Determines where the script is rendered</param> public void RegisterClientScriptInclude(Control control, Type type, string url, ScriptRenderModes renderMode) { const string STR_ScriptResourceIndex = "__ScriptResourceIndex"; if (string.IsNullOrEmpty(url)) return; if (renderMode == ScriptRenderModes.Inherit) renderMode = DefaultScriptRenderMode; // Extract just the script filename string fileId = null; // Check resource IDs and try to match to mapped file resources // Used to allow scripts not to be loaded more than once whether // embedded manually (script tag) or via resources with ClientScriptProxy if (url.Contains(".axd?r=")) { string res = HttpUtility.UrlDecode( StringUtils.ExtractString(url, "?r=", "&", false, true) ); foreach (ScriptResourceAlias item in ScriptResourceAliases) { if (item.Resource == res) { fileId = item.Alias + ".js"; break; } } if (fileId == null) fileId = url.ToLower(); } else fileId = Path.GetFileName(url).ToLower(); // No dupes - ref script include only once const string identifier = "script_"; if (HttpContext.Current.Items.Contains( identifier + fileId ) ) return; HttpContext.Current.Items.Add(identifier + fileId, string.Empty); // just use script manager or ClientScriptManager if (control.Page.Header == null || renderMode == ScriptRenderModes.Script || renderMode == ScriptRenderModes.Inline) { RegisterClientScriptInclude(control, type,url, url); return; } // Retrieve script index in header int? index = HttpContext.Current.Items[STR_ScriptResourceIndex] as int?; if (index == null) index = 0; StringBuilder sb = new StringBuilder(256); url = WebUtils.ResolveUrl(url); // Embed in header sb.AppendLine("\r\n<script src=\"" + url + "\" type=\"text/javascript\"></script>"); if (renderMode == ScriptRenderModes.HeaderTop) { control.Page.Header.Controls.AddAt(index.Value, new LiteralControl(sb.ToString())); index++; } else if (renderMode == ScriptRenderModes.Header) control.Page.Header.Controls.Add(new LiteralControl(sb.ToString())); else if (renderMode == ScriptRenderModes.BottomOfPage) control.Page.Controls.AddAt(control.Page.Controls.Count-1, new LiteralControl(sb.ToString())); HttpContext.Current.Items[STR_ScriptResourceIndex] = index; } There’s a little more code here that deals with cleaning up the passed in Url and also some custom handling of script resources that run through the ScriptCompressionModule – any script resources loaded in this fashion are automatically cached based on the resource id. Raw urls extract just the filename from the URL and cache based on that. All of this to avoid doubling up of scripts if called multiple times by multiple instances of the same control for example or several controls that all load the same resources/includes. Finally RegisterClientScriptResource utilizes the previous method to wrap the WebResourceUrl as well as some custom functionality for the resource compression module: /// <summary> /// Returns a WebResource or ScriptResource URL for script resources that are to be /// embedded as script includes. /// </summary> /// <param name="control">Any control</param> /// <param name="type">A type in assembly where resources are located</param> /// <param name="resourceName">Name of the resource to load</param> /// <param name="renderMode">Determines where in the document the link is rendered</param> public void RegisterClientScriptResource(Control control, Type type, string resourceName, ScriptRenderModes renderMode) { string resourceUrl = GetClientScriptResourceUrl(control, type, resourceName); RegisterClientScriptInclude(control, type, resourceUrl, renderMode); } /// <summary> /// Works like GetWebResourceUrl but can be used with javascript resources /// to allow using of resource compression (if the module is loaded). /// </summary> /// <param name="control"></param> /// <param name="type"></param> /// <param name="resourceName"></param> /// <returns></returns> public string GetClientScriptResourceUrl(Control control, Type type, string resourceName) { #if IncludeScriptCompressionModuleSupport // If wwScriptCompression Module through Web.config is loaded use it to compress // script resources by using wcSC.axd Url the module intercepts if (ScriptCompressionModule.ScriptCompressionModuleActive) { string url = "~/wwSC.axd?r=" + HttpUtility.UrlEncode(resourceName); if (type.Assembly != GetType().Assembly) url += "&t=" + HttpUtility.UrlEncode(type.FullName); return WebUtils.ResolveUrl(url); } #endif return control.Page.ClientScript.GetWebResourceUrl(type, resourceName); } This code merely retrieves the resource URL and then simply calls back to RegisterClientScriptInclude with the URL to be embedded which means there’s nothing specific to deal with other than the custom compression module logic which is nice and easy. What else is there in ClientScriptProxy? ClientscriptProxy also provides a few other useful services beyond what I’ve already covered here: Transparent ScriptManager and ClientScript calls ClientScriptProxy includes a host of routines that help figure out whether a script manager is available or not and all functions in this class call the appropriate object – ScriptManager or ClientScript – that is available in the current page to ensure that scripts get embedded into pages properly. This is especially useful for control development where controls have no control over the scripting environment in place on the page. RegisterCssLink and RegisterCssResource Much like the script embedding functions these two methods allow embedding of CSS links. CSS links are appended to the header or to a form declared with runat=”server”. LoadControlScript Is a high level resource loading routine that can be used to easily switch between different script linking modes. It supports loading from a WebResource, a url or not loading anything at all. This is very useful if you build controls that deal with specification of resource urls/ids in a standard way. Check out the full Code You can check out the full code to the ClientScriptProxyClass here: ClientScriptProxy.cs ClientScriptProxy Documentation (class reference) Note that the ClientScriptProxy has a few dependencies in the West Wind Web Toolkit of which it is part of. ControlResources holds a few standard constants and script resource links and the ScriptCompressionModule which is referenced in a few of the script inclusion methods. There’s also another useful ScriptContainer companion control  to the ClientScriptProxy that allows scripts to be placed onto the page’s markup including the ability to specify the script location and script minification options. You can find all the dependencies in the West Wind Web Toolkit repository: West Wind Web Toolkit Repository West Wind Web Toolkit Home Page© Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  JavaScript  

    Read the article

  • Creating a dynamic proxy generator with c# – Part 3 – Creating the constructors

    - by SeanMcAlinden
    Creating a dynamic proxy generator with c# – Part 1 – Creating the Assembly builder, Module builder and caching mechanism Creating a dynamic proxy generator with c# – Part 2 – Interceptor Design For the latest code go to http://rapidioc.codeplex.com/ When building our proxy type, the first thing we need to do is build the constructors. There needs to be a corresponding constructor for each constructor on the passed in base type. We also want to create a field to store the interceptors and construct this list within each constructor. So assuming the passed in base type is a User<int, IRepository> class, were looking to generate constructor code like the following:   Default Constructor public User`2_RapidDynamicBaseProxy() {     this.interceptors = new List<IInterceptor<User<int, IRepository>>>();     DefaultInterceptor<User<int, IRepository>> item = new DefaultInterceptor<User<int, IRepository>>();     this.interceptors.Add(item); }     Parameterised Constructor public User`2_RapidDynamicBaseProxy(IRepository repository1) : base(repository1) {     this.interceptors = new List<IInterceptor<User<int, IRepository>>>();     DefaultInterceptor<User<int, IRepository>> item = new DefaultInterceptor<User<int, IRepository>>();     this.interceptors.Add(item); }   As you can see, we first populate a field on the class with a new list of the passed in base type. Construct our DefaultInterceptor class. Add the DefaultInterceptor instance to our interceptor collection. Although this seems like a relatively small task, there is a fair amount of work require to get this going. Instead of going through every line of code – please download the latest from http://rapidioc.codeplex.com/ and debug through. In this post I’m going to concentrate on explaining how it works. TypeBuilder The TypeBuilder class is the main class used to create the type. You instantiate a new TypeBuilder using the assembly module we created in part 1. /// <summary> /// Creates a type builder. /// </summary> /// <typeparam name="TBase">The type of the base class to be proxied.</typeparam> public static TypeBuilder CreateTypeBuilder<TBase>() where TBase : class {     TypeBuilder typeBuilder = DynamicModuleCache.Get.DefineType         (             CreateTypeName<TBase>(),             TypeAttributes.Class | TypeAttributes.Public,             typeof(TBase),             new Type[] { typeof(IProxy) }         );       if (typeof(TBase).IsGenericType)     {         GenericsHelper.MakeGenericType(typeof(TBase), typeBuilder);     }       return typeBuilder; }   private static string CreateTypeName<TBase>() where TBase : class {     return string.Format("{0}_RapidDynamicBaseProxy", typeof(TBase).Name); } As you can see, I’ve create a new public class derived from TBase which also implements my IProxy interface, this is used later for adding interceptors. If the base type is generic, the following GenericsHelper.MakeGenericType method is called. GenericsHelper using System; using System.Reflection.Emit; namespace Rapid.DynamicProxy.Types.Helpers {     /// <summary>     /// Helper class for generic types and methods.     /// </summary>     internal static class GenericsHelper     {         /// <summary>         /// Makes the typeBuilder a generic.         /// </summary>         /// <param name="concrete">The concrete.</param>         /// <param name="typeBuilder">The type builder.</param>         public static void MakeGenericType(Type baseType, TypeBuilder typeBuilder)         {             Type[] genericArguments = baseType.GetGenericArguments();               string[] genericArgumentNames = GetArgumentNames(genericArguments);               GenericTypeParameterBuilder[] genericTypeParameterBuilder                 = typeBuilder.DefineGenericParameters(genericArgumentNames);               typeBuilder.MakeGenericType(genericTypeParameterBuilder);         }           /// <summary>         /// Gets the argument names from an array of generic argument types.         /// </summary>         /// <param name="genericArguments">The generic arguments.</param>         public static string[] GetArgumentNames(Type[] genericArguments)         {             string[] genericArgumentNames = new string[genericArguments.Length];               for (int i = 0; i < genericArguments.Length; i++)             {                 genericArgumentNames[i] = genericArguments[i].Name;             }               return genericArgumentNames;         }     } }       As you can see, I’m getting all of the generic argument types and names, creating a GenericTypeParameterBuilder and then using the typeBuilder to make the new type generic. InterceptorsField The interceptors field will store a List<IInterceptor<TBase>>. Fields are simple made using the FieldBuilder class. The following code demonstrates how to create the interceptor field. FieldBuilder interceptorsField = typeBuilder.DefineField(     "interceptors",     typeof(System.Collections.Generic.List<>).MakeGenericType(typeof(IInterceptor<TBase>)),       FieldAttributes.Private     ); The field will now exist with the new Type although it currently has no data – we’ll deal with this in the constructor. Add method for interceptorsField To enable us to add to the interceptorsField list, we are going to utilise the Add method that already exists within the System.Collections.Generic.List class. We still however have to create the methodInfo necessary to call the add method. This can be done similar to the following: Add Interceptor Field MethodInfo addInterceptor = typeof(List<>)     .MakeGenericType(new Type[] { typeof(IInterceptor<>).MakeGenericType(typeof(TBase)) })     .GetMethod     (        "Add",        BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic,        null,        new Type[] { typeof(IInterceptor<>).MakeGenericType(typeof(TBase)) },        null     ); So we’ve create a List<IInterceptor<TBase>> type, then using the type created a method info called Add which accepts an IInterceptor<TBase>. Now in our constructor we can use this to call this.interceptors.Add(// interceptor); Building the Constructors This will be the first hard-core part of the proxy building process so I’m going to show the class and then try to explain what everything is doing. For a clear view, download the source from http://rapidioc.codeplex.com/, go to the test project and debug through the constructor building section. Anyway, here it is: DynamicConstructorBuilder using System; using System.Collections.Generic; using System.Reflection; using System.Reflection.Emit; using Rapid.DynamicProxy.Interception; using Rapid.DynamicProxy.Types.Helpers; namespace Rapid.DynamicProxy.Types.Constructors {     /// <summary>     /// Class for creating the proxy constructors.     /// </summary>     internal static class DynamicConstructorBuilder     {         /// <summary>         /// Builds the constructors.         /// </summary>         /// <typeparam name="TBase">The base type.</typeparam>         /// <param name="typeBuilder">The type builder.</param>         /// <param name="interceptorsField">The interceptors field.</param>         public static void BuildConstructors<TBase>             (                 TypeBuilder typeBuilder,                 FieldBuilder interceptorsField,                 MethodInfo addInterceptor             )             where TBase : class         {             ConstructorInfo interceptorsFieldConstructor = CreateInterceptorsFieldConstructor<TBase>();               ConstructorInfo defaultInterceptorConstructor = CreateDefaultInterceptorConstructor<TBase>();               ConstructorInfo[] constructors = typeof(TBase).GetConstructors();               foreach (ConstructorInfo constructorInfo in constructors)             {                 CreateConstructor<TBase>                     (                         typeBuilder,                         interceptorsField,                         interceptorsFieldConstructor,                         defaultInterceptorConstructor,                         addInterceptor,                         constructorInfo                     );             }         }           #region Private Methods           private static void CreateConstructor<TBase>             (                 TypeBuilder typeBuilder,                 FieldBuilder interceptorsField,                 ConstructorInfo interceptorsFieldConstructor,                 ConstructorInfo defaultInterceptorConstructor,                 MethodInfo AddDefaultInterceptor,                 ConstructorInfo constructorInfo             ) where TBase : class         {             Type[] parameterTypes = GetParameterTypes(constructorInfo);               ConstructorBuilder constructorBuilder = CreateConstructorBuilder(typeBuilder, parameterTypes);               ILGenerator cIL = constructorBuilder.GetILGenerator();               LocalBuilder defaultInterceptorMethodVariable =                 cIL.DeclareLocal(typeof(DefaultInterceptor<>).MakeGenericType(typeof(TBase)));               ConstructInterceptorsField(interceptorsField, interceptorsFieldConstructor, cIL);               ConstructDefaultInterceptor(defaultInterceptorConstructor, cIL, defaultInterceptorMethodVariable);               AddDefaultInterceptorToInterceptorsList                 (                     interceptorsField,                     AddDefaultInterceptor,                     cIL,                     defaultInterceptorMethodVariable                 );               CreateConstructor(constructorInfo, parameterTypes, cIL);         }           private static void CreateConstructor(ConstructorInfo constructorInfo, Type[] parameterTypes, ILGenerator cIL)         {             cIL.Emit(OpCodes.Ldarg_0);               if (parameterTypes.Length > 0)             {                 LoadParameterTypes(parameterTypes, cIL);             }               cIL.Emit(OpCodes.Call, constructorInfo);             cIL.Emit(OpCodes.Ret);         }           private static void LoadParameterTypes(Type[] parameterTypes, ILGenerator cIL)         {             for (int i = 1; i <= parameterTypes.Length; i++)             {                 cIL.Emit(OpCodes.Ldarg_S, i);             }         }           private static void AddDefaultInterceptorToInterceptorsList             (                 FieldBuilder interceptorsField,                 MethodInfo AddDefaultInterceptor,                 ILGenerator cIL,                 LocalBuilder defaultInterceptorMethodVariable             )         {             cIL.Emit(OpCodes.Ldarg_0);             cIL.Emit(OpCodes.Ldfld, interceptorsField);             cIL.Emit(OpCodes.Ldloc, defaultInterceptorMethodVariable);             cIL.Emit(OpCodes.Callvirt, AddDefaultInterceptor);         }           private static void ConstructDefaultInterceptor             (                 ConstructorInfo defaultInterceptorConstructor,                 ILGenerator cIL,                 LocalBuilder defaultInterceptorMethodVariable             )         {             cIL.Emit(OpCodes.Newobj, defaultInterceptorConstructor);             cIL.Emit(OpCodes.Stloc, defaultInterceptorMethodVariable);         }           private static void ConstructInterceptorsField             (                 FieldBuilder interceptorsField,                 ConstructorInfo interceptorsFieldConstructor,                 ILGenerator cIL             )         {             cIL.Emit(OpCodes.Ldarg_0);             cIL.Emit(OpCodes.Newobj, interceptorsFieldConstructor);             cIL.Emit(OpCodes.Stfld, interceptorsField);         }           private static ConstructorBuilder CreateConstructorBuilder(TypeBuilder typeBuilder, Type[] parameterTypes)         {             return typeBuilder.DefineConstructor                 (                     MethodAttributes.Public | MethodAttributes.SpecialName | MethodAttributes.RTSpecialName                     | MethodAttributes.HideBySig, CallingConventions.Standard, parameterTypes                 );         }           private static Type[] GetParameterTypes(ConstructorInfo constructorInfo)         {             ParameterInfo[] parameterInfoArray = constructorInfo.GetParameters();               Type[] parameterTypes = new Type[parameterInfoArray.Length];               for (int p = 0; p < parameterInfoArray.Length; p++)             {                 parameterTypes[p] = parameterInfoArray[p].ParameterType;             }               return parameterTypes;         }           private static ConstructorInfo CreateInterceptorsFieldConstructor<TBase>() where TBase : class         {             return ConstructorHelper.CreateGenericConstructorInfo                 (                     typeof(List<>),                     new Type[] { typeof(IInterceptor<TBase>) },                     BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic                 );         }           private static ConstructorInfo CreateDefaultInterceptorConstructor<TBase>() where TBase : class         {             return ConstructorHelper.CreateGenericConstructorInfo                 (                     typeof(DefaultInterceptor<>),                     new Type[] { typeof(TBase) },                     BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic                 );         }           #endregion     } } So, the first two tasks within the class should be fairly clear, we are creating a ConstructorInfo for the interceptorField list and a ConstructorInfo for the DefaultConstructor, this is for instantiating them in each contructor. We then using Reflection get an array of all of the constructors in the base class, we then loop through the array and create a corresponding proxy contructor. Hopefully, the code is fairly easy to follow other than some new types and the dreaded Opcodes. ConstructorBuilder This class defines a new constructor on the type. ILGenerator The ILGenerator allows the use of Reflection.Emit to create the method body. LocalBuilder The local builder allows the storage of data in local variables within a method, in this case it’s the constructed DefaultInterceptor. Constructing the interceptors field The first bit of IL you’ll come across as you follow through the code is the following private method used for constructing the field list of interceptors. private static void ConstructInterceptorsField             (                 FieldBuilder interceptorsField,                 ConstructorInfo interceptorsFieldConstructor,                 ILGenerator cIL             )         {             cIL.Emit(OpCodes.Ldarg_0);             cIL.Emit(OpCodes.Newobj, interceptorsFieldConstructor);             cIL.Emit(OpCodes.Stfld, interceptorsField);         } The first thing to know about generating code using IL is that you are using a stack, if you want to use something, you need to push it up the stack etc. etc. OpCodes.ldArg_0 This opcode is a really interesting one, basically each method has a hidden first argument of the containing class instance (apart from static classes), constructors are no different. This is the reason you can use syntax like this.myField. So back to the method, as we want to instantiate the List in the interceptorsField, first we need to load the class instance onto the stack, we then load the new object (new List<TBase>) and finally we store it in the interceptorsField. Hopefully, that should follow easily enough in the method. In each constructor you would now have this.interceptors = new List<User<int, IRepository>>(); Constructing and storing the DefaultInterceptor The next bit of code we need to create is the constructed DefaultInterceptor. Firstly, we create a local builder to store the constructed type. Create a local builder LocalBuilder defaultInterceptorMethodVariable =     cIL.DeclareLocal(typeof(DefaultInterceptor<>).MakeGenericType(typeof(TBase))); Once our local builder is ready, we then need to construct the DefaultInterceptor<TBase> and store it in the variable. Connstruct DefaultInterceptor private static void ConstructDefaultInterceptor     (         ConstructorInfo defaultInterceptorConstructor,         ILGenerator cIL,         LocalBuilder defaultInterceptorMethodVariable     ) {     cIL.Emit(OpCodes.Newobj, defaultInterceptorConstructor);     cIL.Emit(OpCodes.Stloc, defaultInterceptorMethodVariable); } As you can see, using the ConstructorInfo named defaultInterceptorConstructor, we load the new object onto the stack. Then using the store local opcode (OpCodes.Stloc), we store the new object in the local builder named defaultInterceptorMethodVariable. Add the constructed DefaultInterceptor to the interceptors field collection Using the add method created earlier in this post, we are going to add the new DefaultInterceptor object to the interceptors field collection. Add Default Interceptor private static void AddDefaultInterceptorToInterceptorsList     (         FieldBuilder interceptorsField,         MethodInfo AddDefaultInterceptor,         ILGenerator cIL,         LocalBuilder defaultInterceptorMethodVariable     ) {     cIL.Emit(OpCodes.Ldarg_0);     cIL.Emit(OpCodes.Ldfld, interceptorsField);     cIL.Emit(OpCodes.Ldloc, defaultInterceptorMethodVariable);     cIL.Emit(OpCodes.Callvirt, AddDefaultInterceptor); } So, here’s whats going on. The class instance is first loaded onto the stack using the load argument at index 0 opcode (OpCodes.Ldarg_0) (remember the first arg is the hidden class instance). The interceptorsField is then loaded onto the stack using the load field opcode (OpCodes.Ldfld). We then load the DefaultInterceptor object we stored locally using the load local opcode (OpCodes.Ldloc). Then finally we call the AddDefaultInterceptor method using the call virtual opcode (Opcodes.Callvirt). Completing the constructor The last thing we need to do is complete the constructor. Complete the constructor private static void CreateConstructor(ConstructorInfo constructorInfo, Type[] parameterTypes, ILGenerator cIL)         {             cIL.Emit(OpCodes.Ldarg_0);               if (parameterTypes.Length > 0)             {                 LoadParameterTypes(parameterTypes, cIL);             }               cIL.Emit(OpCodes.Call, constructorInfo);             cIL.Emit(OpCodes.Ret);         }           private static void LoadParameterTypes(Type[] parameterTypes, ILGenerator cIL)         {             for (int i = 1; i <= parameterTypes.Length; i++)             {                 cIL.Emit(OpCodes.Ldarg_S, i);             }         } So, the first thing we do again is load the class instance using the load argument at index 0 opcode (OpCodes.Ldarg_0). We then load each parameter using OpCode.Ldarg_S, this opcode allows us to specify an index position for each argument. We then setup calling the base constructor using OpCodes.Call and the base constructors ConstructorInfo. Finally, all methods are required to return, even when they have a void return. As there are no values on the stack after the OpCodes.Call line, we can safely call the OpCode.Ret to give the constructor a void return. If there was a value, we would have to pop the value of the stack before calling return otherwise, the method would try and return a value. Conclusion This was a slightly hardcore post but hopefully it hasn’t been too hard to follow. The main thing is that a number of the really useful opcodes have been used and now the dynamic proxy is capable of being constructed. If you download the code and debug through the tests at http://rapidioc.codeplex.com/, you’ll be able to create proxies at this point, they cannon do anything in terms of interception but you can happily run the tests, call base methods and properties and also take a look at the created assembly in Reflector. Hope this is useful. The next post should be up soon, it will be covering creating the private methods for calling the base class methods and properties. Kind Regards, Sean.

    Read the article

  • Pinning Projects and Solutions with Visual Studio 2010

    - by ScottGu
    This is the twenty-fourth in a series of blog posts I’m doing on the VS 2010 and .NET 4 release. Today’s blog post covers a very small, but still useful, feature of VS 2010 – the ability to “pin” projects and solutions to both the Windows 7 taskbar as well VS 2010 Start Page.  This makes it easier to quickly find and open projects in the IDE. [In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu] VS 2010 Jump List on Windows 7 Taskbar Windows 7 added support for customizing the taskbar at the bottom of your screen.  You can “pin” and re-arrange your application icons on it however you want. Most developers using Visual Studio 2010 on Windows 7 probably already know that they can “pin” the Visual Studio icon to the Windows 7 taskbar – making it always present.  What you might not yet have discovered, though, is that Visual Studio 2010 also exposes a Taskbar “jump list” that you can use to quickly find and load your most recently used projects as well. To activate this, simply right-click on the VS 2010 icon in the task bar and you’ll see a list of your most recent projects.  Clicking one will load it within Visual Studio 2010: Pinning Projects on the VS 2010 Jump List with Windows 7 One nice feature also supported by VS 2010 is the ability to optionally “pin” projects to the jump-list as well – which makes them always listed at the top.  To enable this, simply hover over the project you want to pin and then click the “pin” icon that appears on the right of it: When you click the pin the project will be added to a new “Pinned” list at the top of the jumplist: This enables you to always display your own list of projects at the top of the list.  You can optionally click and drag them to display in any order you want. VS 2010 Start Page and Project Pinning VS 2010 has a new “start page” that displays by default each time you launch a new instance of Visual Studio.  In addition to displaying learning and help resources, it also includes a “Recent Projects” section that you can use to quickly load previous projects that you have recently worked on: The “Recent Projects” section of the start page also supports the concept of “pinning” a link to projects you want to always keep in the list – regardless of how recently they’ve been accessed. To “pin” a project to the list you simply select the “pin” icon that appears when you hover over an item within the list: Once you’ve pinned a project to the start page list it will always show up in it (at least until you “unpin” it). Summary This project pinning support is a small but nice usability improvement with VS 2010 and can make it easier to quickly find and load projects/solutions.  If you work with a lot of projects at the same time it offers a nice shortcut to load them. Hope this helps, Scott

    Read the article

  • NoSQL with RavenDB and ASP.NET MVC - Part 2

    - by shiju
    In my previous post, we have discussed on how to work with RavenDB document database in an ASP.NET MVC application. We have setup RavenDB for our ASP.NET MVC application and did basic CRUD operations against a simple domain entity. In this post, let’s discuss on domain entity with deep object graph and how to query against RavenDB documents using Indexes.Let's create two domain entities for our demo ASP.NET MVC appplication  public class Category {       public string Id { get; set; }     [Required(ErrorMessage = "Name Required")]     [StringLength(25, ErrorMessage = "Must be less than 25 characters")]     public string Name { get; set;}     public string Description { get; set; }     public List<Expense> Expenses { get; set; }       public Category()     {         Expenses = new List<Expense>();     } }    public class Expense {       public string Id { get; set; }     public Category Category { get; set; }     public string  Transaction { get; set; }     public DateTime Date { get; set; }     public double Amount { get; set; }   }  We have two domain entities - Category and Expense. A single category contains a list of expense transactions and every expense transaction should have a Category.Let's create  ASP.NET MVC view model  for Expense transaction public class ExpenseViewModel {     public string Id { get; set; }       public string CategoryId { get; set; }       [Required(ErrorMessage = "Transaction Required")]            public string Transaction { get; set; }       [Required(ErrorMessage = "Date Required")]            public DateTime Date { get; set; }       [Required(ErrorMessage = "Amount Required")]     public double Amount { get; set; }       public IEnumerable<SelectListItem> Category { get; set; } } Let's create a contract type for Expense Repository  public interface IExpenseRepository {     Expense Load(string id);     IEnumerable<Expense> GetExpenseTransactions(DateTime startDate,DateTime endDate);     void Save(Expense expense,string categoryId);     void Delete(string id);  } Let's create a concrete type for Expense Repository for handling CRUD operations. public class ExpenseRepository : IExpenseRepository {   private IDocumentSession session; public ExpenseRepository() {         session = MvcApplication.CurrentSession; } public Expense Load(string id) {     return session.Load<Expense>(id); } public IEnumerable<Expense> GetExpenseTransactions(DateTime startDate, DateTime endDate) {             //Querying using the Index name "ExpenseTransactions"     //filtering with dates     var expenses = session.LuceneQuery<Expense>("ExpenseTransactions")         .WaitForNonStaleResults()         .Where(exp => exp.Date >= startDate && exp.Date <= endDate)         .ToArray();     return expenses; } public void Save(Expense expense,string categoryId) {     var category = session.Load<Category>(categoryId);     if (string.IsNullOrEmpty(expense.Id))     {         //new expense transaction         expense.Category = category;         session.Store(expense);     }     else     {         //modifying an existing expense transaction         var expenseToEdit = Load(expense.Id);         //Copy values to  expenseToEdit         ModelCopier.CopyModel(expense, expenseToEdit);         //set category object         expenseToEdit.Category = category;       }     //save changes     session.SaveChanges(); } public void Delete(string id) {     var expense = Load(id);     session.Delete<Expense>(expense);     session.SaveChanges(); }   }  Insert/Update Expense Transaction The Save method is used for both insert a new expense record and modifying an existing expense transaction. For a new expense transaction, we store the expense object with associated category into document session object and load the existing expense object and assign values to it for editing a existing record.  public void Save(Expense expense,string categoryId) {     var category = session.Load<Category>(categoryId);     if (string.IsNullOrEmpty(expense.Id))     {         //new expense transaction         expense.Category = category;         session.Store(expense);     }     else     {         //modifying an existing expense transaction         var expenseToEdit = Load(expense.Id);         //Copy values to  expenseToEdit         ModelCopier.CopyModel(expense, expenseToEdit);         //set category object         expenseToEdit.Category = category;       }     //save changes     session.SaveChanges(); } Querying Expense transactions   public IEnumerable<Expense> GetExpenseTransactions(DateTime startDate, DateTime endDate) {             //Querying using the Index name "ExpenseTransactions"     //filtering with dates     var expenses = session.LuceneQuery<Expense>("ExpenseTransactions")         .WaitForNonStaleResults()         .Where(exp => exp.Date >= startDate && exp.Date <= endDate)         .ToArray();     return expenses; }  The GetExpenseTransactions method returns expense transactions using a LINQ query expression with a Date comparison filter. The Lucene Query is using a index named "ExpenseTransactions" for getting the result set. In RavenDB, Indexes are LINQ queries stored in the RavenDB server and would be  executed on the background and will perform query against the JSON documents. Indexes will be working with a lucene query expression or a set operation. Indexes are composed using a Map and Reduce function. Check out Ayende's blog post on Map/Reduce We can create index using RavenDB web admin tool as well as programmitically using its Client API. The below shows the screen shot of creating index using web admin tool. We can also create Indexes using Raven Cleint API as shown in the following code documentStore.DatabaseCommands.PutIndex("ExpenseTransactions",     new IndexDefinition<Expense,Expense>() {     Map = Expenses => from exp in Expenses                     select new { exp.Date } });  In the Map function, we used a Linq expression as shown in the following from exp in docs.Expensesselect new { exp.Date };We have not used a Reduce function for the above index. A Reduce function is useful while performing aggregate functions based on the results from the Map function. Indexes can be use with set operations of RavenDB.SET OperationsUnlike other document databases, RavenDB supports set based operations that lets you to perform updates, deletes and inserts to the bulk_docs endpoint of RavenDB. For doing this, you just pass a query to a Index as shown in the following commandDELETE http://localhost:8080/bulk_docs/ExpenseTransactions?query=Date:20100531The above command using the Index named "ExpenseTransactions" for querying the documents with Date filter and  will delete all the documents that match the query criteria. The above command is equivalent of the following queryDELETE FROM ExpensesWHERE Date='2010-05-31' Controller & ActionsWe have created Expense Repository class for performing CRUD operations for the Expense transactions. Let's create a controller class for handling expense transactions.   public class ExpenseController : Controller { private ICategoryRepository categoyRepository; private IExpenseRepository expenseRepository; public ExpenseController(ICategoryRepository categoyRepository, IExpenseRepository expenseRepository) {     this.categoyRepository = categoyRepository;     this.expenseRepository = expenseRepository; } //Get Expense transactions based on dates public ActionResult Index(DateTime? StartDate, DateTime? EndDate) {     //If date is not passed, take current month's first and last dte     DateTime dtNow;     dtNow = DateTime.Today;     if (!StartDate.HasValue)     {         StartDate = new DateTime(dtNow.Year, dtNow.Month, 1);         EndDate = StartDate.Value.AddMonths(1).AddDays(-1);     }     //take last date of startdate's month, if endate is not passed     if (StartDate.HasValue && !EndDate.HasValue)     {         EndDate = (new DateTime(StartDate.Value.Year, StartDate.Value.Month, 1)).AddMonths(1).AddDays(-1);     }       var expenses = expenseRepository.GetExpenseTransactions(StartDate.Value, EndDate.Value);     if (Request.IsAjaxRequest())     {           return PartialView("ExpenseList", expenses);     }     ViewData.Add("StartDate", StartDate.Value.ToShortDateString());     ViewData.Add("EndDate", EndDate.Value.ToShortDateString());             return View(expenses);            }   // GET: /Expense/Edit public ActionResult Edit(string id) {       var expenseModel = new ExpenseViewModel();     var expense = expenseRepository.Load(id);     ModelCopier.CopyModel(expense, expenseModel);     var categories = categoyRepository.GetCategories();     expenseModel.Category = categories.ToSelectListItems(expense.Category.Id.ToString());                    return View("Save", expenseModel);          }   // // GET: /Expense/Create   public ActionResult Create() {     var expenseModel = new ExpenseViewModel();               var categories = categoyRepository.GetCategories();     expenseModel.Category = categories.ToSelectListItems("-1");     expenseModel.Date = DateTime.Today;     return View("Save", expenseModel); }   // // POST: /Expense/Save // Insert/Update Expense Tansaction [HttpPost] public ActionResult Save(ExpenseViewModel expenseViewModel) {     try     {         if (!ModelState.IsValid)         {               var categories = categoyRepository.GetCategories();                 expenseViewModel.Category = categories.ToSelectListItems(expenseViewModel.CategoryId);                               return View("Save", expenseViewModel);         }           var expense=new Expense();         ModelCopier.CopyModel(expenseViewModel, expense);          expenseRepository.Save(expense, expenseViewModel.CategoryId);                       return RedirectToAction("Index");     }     catch     {         return View();     } } //Delete a Expense Transaction public ActionResult Delete(string id) {     expenseRepository.Delete(id);     return RedirectToAction("Index");     }     }     Download the Source - You can download the source code from http://ravenmvc.codeplex.com

    Read the article

  • Implementing the Reactive Manifesto with Azure and AWS

    - by Elton Stoneman
    Originally posted on: http://geekswithblogs.net/EltonStoneman/archive/2013/10/31/implementing-the-reactive-manifesto-with-azure-and-aws.aspxMy latest Pluralsight course, Implementing the Reactive Manifesto with Azure and AWS has just been published! I’d planned to do a course on dual-running a messaging-based solution in Azure and AWS for super-high availability and scale, and the Reactive Manifesto encapsulates exactly what I wanted to do. A “reactive” application describes an architecture which is inherently resilient and scalable, being event-driven at the core, and using asynchronous communication between components. In the course, I compare that architecture to a classic n-tier approach, and go on to build out an app which exhibits all the reactive traits: responsive, event-driven, scalable and resilient. I use a suite of technologies which are enablers for all those traits: ASP.NET SignalR for presentation, with server push notifications to the user Messaging in the middle layer for asynchronous communication between presentation and compute Azure Service Bus Queues and Topics AWS Simple Queue Service AWS Simple Notification Service MongoDB at the storage layer for easy HA and scale, with minimal locking under load. Starting with a couple of console apps to demonstrate message sending, I build the solution up over 7 modules, deploying to Azure and AWS and running the app across both clouds concurrently for the whole stack - web servers, messaging infrastructure, message handlers and database servers. I demonstrating failover by killing off bits of infrastructure, and show how a reactive app deployed across two clouds can survive machine failure, data centre failure and even whole cloud failure. The course finishes by configuring auto-scaling in AWS and Azure for the compute and presentation layers, and running a load test with blitz.io. The test pushes masses of load into the app, which is deployed across four data centres in Azure and AWS, and the infrastructure scales up seamlessly to meet the load – the blitz report is pretty impressive: That’s 99.9% success rate for hits to the website, with the potential to serve over 36,000,000 hits per day – all from a few hours’ build time, and a fairly limited set of auto-scale configurations. When the load stops, the infrastructure scales back down again to a minimal set of servers for high availability, so the app doesn’t cost much to host unless it’s getting a lot of traffic. This is my third course for Pluralsight, with Nginx and PHP Fundamentals and Caching in the .NET Stack: Inside-Out released earlier this year. Now that it’s out, I’m starting on the fourth one, which is focused on C#, and should be out by the end of the year.

    Read the article

  • Google slideshow shows a blank screen when calling from ajax

    - by ufk
    I'm having problems implementing google slideshow (http://www.google.com/uds/solutions/slideshow/index.html) to my web application by loading it using a jquery load() function. index.html: <script type="text/javascript" src="jquery-1.3.2.js"></script> <div id="moshe"></div> <script type="text/javascript"> $(document).ready(function(){ $('#moshe').load('test.html'); }); </script> test.html: <script type="text/javascript"> function load() { var samples = "http://dlc0421.googlepages.com/gfss.rss"; var options = { displayTime: 2000, transistionTime: 600, linkTarget : google.feeds.LINK_TARGET_BLANK }; new GFslideShow(samples, "slideshow", options); } google.load("feeds", "1"); google.setOnLoadCallback(load); </script> <div id="slideshow" class="gslideshow" style="width:300px;height:300px;position:relative; border: 2px solid blue">Loading...</div> When i execute the test.html, it loads the slideshow just fine. when i try to load using index.html that actually calls Jquery's $.load() function that loads the content of test.html into a specific div element, i see that the gallery is loading on that div, but when it's about to show images the entire page clears and all i have is a blank page. Any ideas ? a different version of index.html without using jquery: <script type="text/javascript"> function makeRequest(url) { var httpRequest; if (window.XMLHttpRequest) { // Mozilla, Safari, ... httpRequest = new XMLHttpRequest(); if (httpRequest.overrideMimeType) { httpRequest.overrideMimeType('text/xml'); // See note below about this line } } else if (window.ActiveXObject) { // IE try { httpRequest = new ActiveXObject("Msxml2.XMLHTTP"); } catch (e) { try { httpRequest = new ActiveXObject("Microsoft.XMLHTTP"); } catch (e) {} } } if (!httpRequest) { alert('Giving up :( Cannot create an XMLHTTP instance'); return false; } httpRequest.onreadystatechange = function() { alertContents(httpRequest); }; httpRequest.open('GET', url, true); httpRequest.send(''); } function alertContents(httpRequest) { if (httpRequest.readyState == 4) { if (httpRequest.status == 200) { document.getElementById('moshe').innerHTML=httpRequest.responseText; } else { alert('There was a problem with the request.'); } } } makeRequest('test.html'); </script>

    Read the article

  • How do I avoid the loader lock?

    - by Mark0978
    We have a managed app, that uses an assembly. That assembly uses some unmanaged C++ code. The Managed C++ code is in a dll, that depends on several other dlls. All of those Dlls are loaded by this code. (We load all the dll's that ImageCore.dll depends on first, so we can tell which ones are missing, otherwise it would just show up as ImageCore.dll failed to load, and the log file would give no clues as to why). class Interop { private const int DONT_RESOLVE_DLL_REFERENCES = 1; private static log4net.ILog log = log4net.LogManager.GetLogger("Imagecore.NET"); [DllImport("kernel32.dll", CharSet = CharSet.Auto, SetLastError = true)] private static extern IntPtr LoadLibraryEx(string fileName, IntPtr dummy, int flags); [DllImport("kernel32.dll", CharSet = CharSet.Auto, SetLastError = true)] private static extern IntPtr FreeLibrary(IntPtr hModule); static private String[] libs = { "log4cplus.dll", "yaz.dll", "zlib1.dll", "libxml2.dll" }; public static void PreloadAssemblies() { for (int i=0; i < libs.Length; ++i) { String libname = libs[i]; IntPtr hModule = LoadLibraryEx(libname, IntPtr.Zero, DONT_RESOLVE_DLL_REFERENCES); if(hModule == IntPtr.Zero) { log.Error("Unable to pre-load '" + libname + "'"); throw new DllNotFoundException("Unable to pre-load '" + libname + "'"); } else { FreeLibrary(hModule); } } IntPtr h = LoadLibraryEx("ImageCore.dll", IntPtr.Zero, 0); if (h == IntPtr.Zero) { throw new DllNotFoundException("Unable to pre-load ImageCore.dll"); } } } And this code is called by public class ImageDoc : IDisposable { static ImageDoc() { ImageHawk.ImageCore.Utility.Interop.PreloadAssemblies(); } ... } Which is static constructor. As near as I can understand it, as soon as we attempt to use an ImageDoc object, the dll that contains that assembly is loaded and as part of that load, the static constructor is called which in turn causes several other DLLs to be loaded as well. What I'm trying to figure out, is how do we defer loading of those DLLs so that we don't run smack dab into this loader lock that is being kicked out because of the static constructor. I've pieced this much together by looking at: http://social.msdn.microsoft.com/Forums/en-US/vsto/thread/dd192d7e-ce92-49ce-beef-3816c88e5a86 http://msdn.microsoft.com/en-us/library/aa290048%28VS.71%29.aspx http://forums.devx.com/showthread.php?t=53529 http://www.yoda.arachsys.com/csharp/beforefieldinit.html But I just can't seem to find a way to get these external DLLs to load without it happening at the point the class is loading. I think I need to get these LoadLibrary calls out of the static constructor, but don't know how to get them called before they are needed (except for how it is done here). I would prefer to not have to put this kind of knowledge of the dlls into every app that uses this assembly. (And I'm not sure that would even fix the problem.... The strange thing is that the exception only appears to be happening while running within the debugger, not while running outside the debugger.

    Read the article

  • Dealing with C++ web views

    - by Jeffrey
    I'm working, as an hobby (before any one rage out of their mind, I'm just trying to study C++ regarding something I love: web. I'm not trying to reinvent your precious wheel, and I'm not trying to create the new web technology. I just have the time to go for it.), creating a web CGI C++ library. I'm at a pretty good point, but in the future I see one big problem: views. I'm used to the great <body><?php echo "Hey!"; ?></body> embedded php, but there's no such thing in C++, so I'm wondering: How would you deal with views? Would you create a simple find-replace-variable templating system and deal with thousands of partial views? For example: View view; view.load("header.html"); view.load("nav.html"); view.load("post_start.html"); for (int i = 0; i < 10; i++) { std::map<std::string, std::string> post; Post p(i); post = p.get(); view.load(post_view.html, post); // p is passed as argument and every `{% varname %}` in the html will be replaced with its value inside the map } view.load(post_end.html); view.load(footer); Would you create a simple templating system? So that we can deal with this C++ code: std::vector<std::map<std::string, std::string>> posts; Posts p; posts = p.getAll(); view.load(posts.html, posts); and then this HTML/TPL: <html> ... <body> <h2> Posts </h2> {% for (i = 0; i < 10; i++): %} <div class="post">...</div> {% endfor %} </body> </html> Is there any other way? What is the best way to do this? (And no, I don't think this is subjective question)

    Read the article

  • AngularJs ng-cloak Problems on large Pages

    - by Rick Strahl
    I’ve been working on a rather complex and large Angular page. Unlike a typical AngularJs SPA style ‘application’ this particular page is just that: a single page with a large amount of data on it that has to be visible all at once. The problem is that when this large page loads it flickers and displays template markup briefly before kicking into its actual content rendering. This is is what the Angular ng-cloak is supposed to address, but in this case I had no luck getting it to work properly. This application is a shop floor app where workers need to see all related information in one big screen view, so some of the benefits of Angular’s routing and view swapping features couldn’t be applied. Instead, we decided to have one very big view but lots of ng-controllers and directives to break out the logic for code separation. For code separation this works great – there are a number of small controllers that deal with their own individual and isolated application concerns. For HTML separation we used partial ASP.NET MVC Razor Views which made breaking out the HTML into manageable pieces super easy and made migration of this page from a previous server side Razor page much easier. We were also able to leverage most of our server side localization without a lot of  changes as a bonus. But as a result of this choice the initial HTML document that loads is rather large – even without any data loaded into it, resulting in a fairly large DOM tree that Angular must manage. Large Page and Angular Startup The problem on this particular page is that there’s quite a bit of markup – 35k’s worth of markup without any data loaded, in fact. It’s a large HTML page with a complex DOM tree. There are quite a lot of Angular {{ }} markup expressions in the document. Angular provides the ng-cloak directive to try and hide the element it cloaks so that you don’t see the flash of these markup expressions when the page initially loads before Angular has a chance to render the data into the markup expressions.<div id="mainContainer" class="mainContainer boxshadow" ng-app="app" ng-cloak> Note the ng-cloak attribute on this element, which here is an outer wrapper element of the most of this large page’s content. ng-cloak is supposed to prevent displaying the content below it, until Angular has taken control and is ready to render the data into the templates. Alas, with this large page the end result unfortunately is a brief flicker of un-rendered markup which looks like this: It’s brief, but plenty ugly – right?  And depending on the speed of the machine this flash gets more noticeable with slow machines that take longer to process the initial HTML DOM. ng-cloak Styles ng-cloak works by temporarily hiding the marked up element and it does this by essentially applying a style that does this:[ng\:cloak], [ng-cloak], [data-ng-cloak], [x-ng-cloak], .ng-cloak, .x-ng-cloak { display: none !important; } This style is inlined as part of AngularJs itself. If you looking at the angular.js source file you’ll find this at the very end of the file:!angular.$$csp() && angular.element(document) .find('head') .prepend('<style type="text/css">@charset "UTF-8";[ng\\:cloak],[ng-cloak],' + '[data-ng-cloak],[x-ng-cloak],.ng-cloak,.x-ng-cloak,' + '.ng-hide{display:none !important;}ng\\:form{display:block;}' '.ng-animate-block-transitions{transition:0s all!important;-webkit-transition:0s all!important;}' + '</style>'); This is is meant to initially hide any elements that contain the ng-cloak attribute or one of the other Angular directive permutation markup. Unfortunately on this particular web page ng-cloak had no effect – I still see the flicker. Why doesn’t ng-cloak work? The problem is of course – timing. The problem is that Angular actually needs to get control of the page before it ever starts doing anything like process even the ng-cloak attribute (or style etc). Because this page is rather large (about 35k of non-data HTML) it takes a while for the DOM to actually plow through the HTML. With the Angular <script> tag defined at the bottom of the page after the HTML DOM content there’s a slight delay which causes the flicker. For smaller pages the initial DOM load/parse cycle is so fast that the markup never shows, but with larger content pages it may show and become an annoying problem. Workarounds There a number of simple ways around this issue and some of them are hinted on in the Angular documentation. Load Angular Sooner One obvious thing that would help with this is to load Angular at the top of the page  BEFORE the DOM loads and that would give it much earlier control. The old ng-cloak documentation actually recommended putting the Angular.js script into the header of the page (apparently this was recently removed), but generally it’s not a good practice to load scripts in the header for page load performance. This is especially true if you load other libraries like jQuery which should be loaded prior to loading Angular so it can use jQuery rather than its own jqLite subset. This is not something I normally would like to do and also something that I’d likely forget in the future and end up right back here :-). Use ng-include for Child Content Angular supports nesting of child templates via the ng-include directive which essentially delay loads HTML content. This helps by removing a lot of the template content out of the main page and so getting control to Angular a lot sooner in order to hide the markup template content. In the application in question, I realize that in hindsight it might have been smarter to break this page out with client side ng-include directives instead of MVC Razor partial views we used to break up the page sections. Razor partial views give that nice separation as well, but in the end Razor puts humpty dumpty (ie. the HTML) back together into a whole single and rather large HTML document. Razor provides the logical separation, but still results in a large physical result document. But Razor also ended up being helpful to have a few security related blocks handled via server side template logic that simply excludes certain parts of the UI the user is not allowed to see – something that you can’t really do with client side exclusion like ng-hide/ng-show – client side content is always there whereas on the server side you can simply not send it to the client. Another reason I’m not a huge fan of ng-include is that it adds another HTTP hit to a request as templates are loaded from the server dynamically as needed. Given that this page was already heavy with resources adding another 10 separate ng-include directives wouldn’t be beneficial :-) ng-include is a valid option if you start from scratch and partition your logic. Of course if you don’t have complex pages, having completely separate views that are swapped in as they are accessed are even better, but we didn’t have this option due to the information having to be on screen all at once. Avoid using {{ }}  Expressions The biggest issue that ng-cloak attempts to address isn’t so much displaying the original content – it’s displaying empty {{ }} markup expression tags that get embedded into content. It gives you the dreaded “now you see it, now you don’t” effect where you sometimes see three separate rendering states: Markup junk, empty views, then views filled with data. If we can remove {{ }} expressions from the page you remove most of the perceived double draw effect as you would effectively start with a blank form and go straight to a filled form. To do this you can forego {{ }}  expressions and replace them with ng-bind directives on DOM elements. For example you can turn:<div class="list-item-name listViewOrderNo"> <a href='#'>{{lineItem.MpsOrderNo}}</a> </div>into:<div class="list-item-name listViewOrderNo"> <a href="#" ng-bind="lineItem.MpsOrderNo"></a> </div> to get identical results but because the {{ }}  expression has been removed there’s no double draw effect for this element. Again, not a great solution. The {{ }} syntax sure reads cleaner and is more fluent to type IMHO. In some cases you may also not have an outer element to attach ng-bind to which then requires you to artificially inject DOM elements into the page. This is especially painful if you have several consecutive values like {{Firstname}} {{Lastname}} for example. It’s an option though especially if you think of this issue up front and you don’t have a ton of expressions to deal with. Add the ng-cloak Styles manually You can also explicitly define the .css styles that Angular injects via code manually in your application’s style sheet. By doing so the styles become immediately available and so are applied right when the page loads – no flicker. I use the minimal:[ng-cloak] { display: none !important; } which works for:<div id="mainContainer" class="mainContainer dialog boxshadow" ng-app="app" ng-cloak> If you use one of the other combinations add the other CSS selectors as well or use the full style shown earlier. Angular will still load its version of the ng-cloak styling but it overrides those settings later, but this will do the trick of hiding the content before that CSS is injected into the page. Adding the CSS in your own style sheet works well, and is IMHO by far the best option. The nuclear option: Hiding the Content manually Using the explicit CSS is the best choice, so the following shouldn’t ever be necessary. But I’ll mention it here as it gives some insight how you can hide/show content manually on load for other frameworks or in your own markup based templates. Before I figured out that I could explicitly embed the CSS style into the page, I had tried to figure out why ng-cloak wasn’t doing its job. After wasting an hour getting nowhere I finally decided to just manually hide and show the container. The idea is simple – initially hide the container, then show it once Angular has done its initial processing and removal of the template markup from the page. You can manually hide the content and make it visible after Angular has gotten control. To do this I used:<div id="mainContainer" class="mainContainer boxshadow" ng-app="app" style="display:none"> Notice the display: none style that explicitly hides the element initially on the page. Then once Angular has run its initialization and effectively processed the template markup on the page you can show the content. For Angular this ‘ready’ event is the app.run() function:app.run( function ($rootScope, $location, cellService) { $("#mainContainer").show(); … }); This effectively removes the display:none style and the content displays. By the time app.run() fires the DOM is ready to displayed with filled data or at least empty data – Angular has gotten control. Edge Case Clearly this is an edge case. In general the initial HTML pages tend to be reasonably sized and the load time for the HTML and Angular are fast enough that there’s no flicker between the rendering times. This only becomes an issue as the initial pages get rather large. Regardless – if you have an Angular application it’s probably a good idea to add the CSS style into your application’s CSS (or a common shared one) just to make sure that content is always hidden. You never know how slow of a browser somebody might be running and while your super fast dev machine might not show any flicker, grandma’s old XP box very well might…© Rick Strahl, West Wind Technologies, 2005-2014Posted in Angular  JavaScript  CSS  HTML   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Spritebatch drawing sprite with jagged borders

    - by Mutoh
    Alright, I've been on the making of a sprite class and a sprite sheet manager, but have come across this problem. Pretty much, the project is acting like so; for example: Let's take this .png image, with a transparent background. Note how it has alpha-transparent pixels around it in the lineart. Now, in the latter link's image, in the left (with CornflowerBlue background) it is shown the image drawn in another project (let's call it "Project1") with a simpler sprite class - there, it works. The right (with Purple background for differentiating) shows it drawn with a different class in "Project2" - where the problem manifests itself. This is the Sprite class of Project1: using System; using System.Collections.Generic; using System.Linq; using System.Text; using Microsoft.Xna.Framework; using Microsoft.Xna.Framework.Content; using Microsoft.Xna.Framework.Graphics; namespace WindowsGame2 { class Sprite { Vector2 pos = new Vector2(0, 0); Texture2D image; Rectangle size; float scale = 1.0f; // --- public float X { get { return pos.X; } set { pos.X = value; } } public float Y { get { return pos.Y; } set { pos.Y = value; } } public float Width { get { return size.Width; } } public float Height { get { return size.Height; } } public float Scale { get { return scale; } set { if (value < 0) value = 0; scale = value; if (image != null) { size.Width = (int)(image.Width * scale); size.Height = (int)(image.Height * scale); } } } // --- public void Load(ContentManager Man, string filename) { image = Man.Load<Texture2D>(filename); size = new Rectangle( 0, 0, (int)(image.Width * scale), (int)(image.Height * scale) ); } public void Become(Texture2D frame) { image = frame; size = new Rectangle( 0, 0, (int)(image.Width * scale), (int)(image.Height * scale) ); } public void Draw(SpriteBatch Desenhista) { // Desenhista.Draw(image, pos, Color.White); Desenhista.Draw( image, pos, new Rectangle( 0, 0, image.Width, image.Height ), Color.White, 0.0f, Vector2.Zero, scale, SpriteEffects.None, 0 ); } } } And this is the code in Project2, a rewritten, pretty much, version of the previous class. In this one I added sprite sheet managing and, in particular, removed Load and Become, to allow for static resources and only actual Sprites to be instantiated. using System; using System.Collections.Generic; using System.Linq; using System.Text; using Microsoft.Xna.Framework; using Microsoft.Xna.Framework.Content; using Microsoft.Xna.Framework.Graphics; namespace Mobby_s_Adventure { // Actually, I might desconsider this, and instead use static AnimationLocation[] and instanciated ID and Frame; // For determining the starting frame of an animation in a sheet and being able to iterate through // the Rectangles vector of the Sheet; class AnimationLocation { public int Location; public int FrameCount; // --- public AnimationLocation(int StartingRow, int StartingColumn, int SheetWidth, int NumberOfFrames) { Location = (StartingRow * SheetWidth) + StartingColumn; FrameCount = NumberOfFrames; } public AnimationLocation(int PositionInSheet, int NumberOfFrames) { Location = PositionInSheet; FrameCount = NumberOfFrames; } public static int CalculatePosition(int StartingRow, int StartingColumn, SheetManager Sheet) { return ((StartingRow * Sheet.Width) + StartingColumn); } } class Sprite { // The general stuff; protected SheetManager Sheet; protected Vector2 Position; public Vector2 Axis; protected Color _Tint; public float Angle; public float Scale; protected SpriteEffects _Effect; // --- // protected AnimationManager Animation; // For managing the animations; protected AnimationLocation[] Animation; public int AnimationID; protected int Frame; // --- // Properties for easy accessing of the position of the sprite; public float X { get { return Position.X; } set { Position.X = Axis.X + value; } } public float Y { get { return Position.Y; } set { Position.Y = Axis.Y + value; } } // --- // Properties for knowing the size of the sprite's frames public float Width { get { return Sheet.FrameWidth * Scale; } } public float Height { get { return Sheet.FrameHeight * Scale; } } // --- // Properties for more stuff; public Color Tint { set { _Tint = value; } } public SpriteEffects Effect { set { _Effect = value; } } public int FrameID { get { return Frame; } set { if (value >= (Animation[AnimationID].FrameCount)) value = 0; Frame = value; } } // --- // The only things that will be constantly modified will be AnimationID and FrameID, anything else only // occasionally; public Sprite(SheetManager SpriteSheet, AnimationLocation[] Animations, Vector2 Location, Nullable<Vector2> Origin = null) { // Assign the sprite's sprite sheet; // (Passed by reference! To allow STATIC sheets!) Sheet = SpriteSheet; // Define the animations that the sprite has available; // (Passed by reference! To allow STATIC animation boundaries!) Animation = Animations; // Defaulting some numerical values; Angle = 0.0f; Scale = 1.0f; _Tint = Color.White; _Effect = SpriteEffects.None; // If the user wants a default Axis, it is set in the middle of the frame; if (Origin != null) Axis = Origin.Value; else Axis = new Vector2( Sheet.FrameWidth / 2, Sheet.FrameHeight / 2 ); // Now that we have the axis, we can set the position with no worries; X = Location.X; Y = Location.Y; } // Simply put, draw the sprite with all its characteristics; public void Draw(SpriteBatch Drafter) { Drafter.Draw( Sheet.Texture, Position, Sheet.Rectangles[Animation[AnimationID].Location + FrameID], // Find the rectangle which frames the wanted image; _Tint, Angle, Axis, Scale, _Effect, 0.0f ); } } } And, in any case, this is the SheetManager class found in the previous code: using System; using System.Collections.Generic; using System.Linq; using System.Text; using Microsoft.Xna.Framework; using Microsoft.Xna.Framework.Content; using Microsoft.Xna.Framework.Graphics; namespace Mobby_s_Adventure { class SheetManager { protected Texture2D SpriteSheet; // For storing the sprite sheet; // Number of rows and frames in each row in the SpriteSheet; protected int NumberOfRows; protected int NumberOfColumns; // Size of a single frame; protected int _FrameWidth; protected int _FrameHeight; public Rectangle[] Rectangles; // For storing each frame; // --- public int Width { get { return NumberOfColumns; } } public int Height { get { return NumberOfRows; } } // --- public int FrameWidth { get { return _FrameWidth; } } public int FrameHeight { get { return _FrameHeight; } } // --- public Texture2D Texture { get { return SpriteSheet; } } // --- public SheetManager (Texture2D Texture, int Rows, int FramesInEachRow) { // Normal assigning SpriteSheet = Texture; NumberOfRows = Rows; NumberOfColumns = FramesInEachRow; _FrameHeight = Texture.Height / NumberOfRows; _FrameWidth = Texture.Width / NumberOfColumns; // Framing everything Rectangles = new Rectangle[NumberOfRows * NumberOfColumns]; int ID = 0; for (int i = 0; i < NumberOfRows; i++) { for (int j = 0; j < NumberOfColumns; j++) { Rectangles[ID] = new Rectangle ( _FrameWidth * j, _FrameHeight * i, _FrameWidth, _FrameHeight ); ID++; } } } public SheetManager (Texture2D Texture, int NumberOfFrames): this(Texture, 1, NumberOfFrames) { } } } For even more comprehending, if needed, here is how the main code looks like (it's just messing with the class' capacities, nothing actually; the result is a disembodied feet walking in place animation on the top-left of the screen and a static axe nearby): using System; using System.Collections.Generic; using System.Linq; using Microsoft.Xna.Framework; using Microsoft.Xna.Framework.Audio; using Microsoft.Xna.Framework.Content; using Microsoft.Xna.Framework.GamerServices; using Microsoft.Xna.Framework.Graphics; using Microsoft.Xna.Framework.Input; using Microsoft.Xna.Framework.Media; using System.Threading; namespace Mobby_s_Adventure { /// <summary> /// This is the main type for your game /// </summary> public class Game1 : Microsoft.Xna.Framework.Game { GraphicsDeviceManager graphics; SpriteBatch spriteBatch; static List<Sprite> ToDraw; static Texture2D AxeSheet; static Texture2D FeetSheet; static SheetManager Axe; static Sprite Jojora; static AnimationLocation[] Hack = new AnimationLocation[1]; static SheetManager Feet; static Sprite Mutoh; static AnimationLocation[] FeetAnimations = new AnimationLocation[2]; public Game1() { graphics = new GraphicsDeviceManager(this); Content.RootDirectory = "Content"; this.TargetElapsedTime = TimeSpan.FromMilliseconds(100); this.IsFixedTimeStep = true; } /// <summary> /// Allows the game to perform any initialization it needs to before starting to run. /// This is where it can query for any required services and load any non-graphic /// related content. Calling base.Initialize will enumerate through any components /// and initialize them as well. /// </summary> protected override void Initialize() { // TODO: Add your initialization logic here base.Initialize(); } /// <summary> /// LoadContent will be called once per game and is the place to load /// all of your content. /// </summary> protected override void LoadContent() { // Create a new SpriteBatch, which can be used to draw textures. spriteBatch = new SpriteBatch(GraphicsDevice); // Loading logic ToDraw = new List<Sprite>(); AxeSheet = Content.Load<Texture2D>("Sheet"); FeetSheet = Content.Load<Texture2D>("Feet Sheet"); Axe = new SheetManager(AxeSheet, 1); Hack[0] = new AnimationLocation(0, 1); Jojora = new Sprite(Axe, Hack, new Vector2(100, 100), new Vector2(5, 55)); Jojora.AnimationID = 0; Jojora.FrameID = 0; Feet = new SheetManager(FeetSheet, 8); FeetAnimations[0] = new AnimationLocation(1, 7); FeetAnimations[1] = new AnimationLocation(0, 1); Mutoh = new Sprite(Feet, FeetAnimations, new Vector2(0, 0)); Mutoh.AnimationID = 0; Mutoh.FrameID = 0; } /// <summary> /// UnloadContent will be called once per game and is the place to unload /// all content. /// </summary> protected override void UnloadContent() { // TODO: Unload any non ContentManager content here } /// <summary> /// Allows the game to run logic such as updating the world, /// checking for collisions, gathering input, and playing audio. /// </summary> /// <param name="gameTime">Provides a snapshot of timing values.</param> protected override void Update(GameTime gameTime) { // Allows the game to exit if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed) this.Exit(); // Update logic Mutoh.FrameID++; ToDraw.Add(Mutoh); ToDraw.Add(Jojora); base.Update(gameTime); } /// <summary> /// This is called when the game should draw itself. /// </summary> /// <param name="gameTime">Provides a snapshot of timing values.</param> protected override void Draw(GameTime gameTime) { GraphicsDevice.Clear(Color.Purple); // Drawing logic spriteBatch.Begin(); foreach (Sprite Element in ToDraw) { Element.Draw(spriteBatch); } spriteBatch.Draw(Content.Load<Texture2D>("Sheet"), new Rectangle(50, 50, 55, 60), Color.White); spriteBatch.End(); base.Draw(gameTime); } } } Please help me find out what I'm overlooking! One thing that I have noticed and could aid is that, if inserted the equivalent of this code spriteBatch.Draw( Content.Load<Texture2D>("Image Location"), new Rectangle(X, Y, images width, height), Color.White ); in Project2's Draw(GameTime) of the main loop, it works. EDIT Ok, even if the matter remains unsolved, I have made some more progress! As you see, I managed to get the two kinds of rendering in the same project (the aforementioned Project2, with the more complex Sprite class). This was achieved by adding the following code to Draw(GameTime): protected override void Draw(GameTime gameTime) { GraphicsDevice.Clear(Color.Purple); // Drawing logic spriteBatch.Begin(); foreach (Sprite Element in ToDraw) { Element.Draw(spriteBatch); } // Starting here spriteBatch.Draw( Axe.Texture, new Vector2(65, 100), new Rectangle ( 0, 0, Axe.FrameWidth, Axe.FrameHeight ), Color.White, 0.0f, new Vector2(0, 0), 1.0f, SpriteEffects.None, 0.0f ); // Ending here spriteBatch.End(); base.Draw(gameTime); } (Supposing that Axe is the SheetManager containing the texture, sorry if the "jargons" of my code confuse you :s) Thus, I have noticed that the problem is within the Sprite class. But I only get more clueless, because even after modifying its Draw function to this: public void Draw(SpriteBatch Drafter) { /*Drafter.Draw( Sheet.Texture, Position, Sheet.Rectangles[Animation[AnimationID].Location + FrameID], // Find the rectangle which frames the wanted image; _Tint, Angle, Axis, Scale, _Effect, 0.0f );*/ Drafter.Draw( Sheet.Texture, Position, new Rectangle( 0, 0, Sheet.FrameWidth, Sheet.FrameHeight ), Color.White, 0.0f, Vector2.Zero, Scale, SpriteEffects.None, 0 ); } to make it as simple as the patch of code that works, it still draws the sprite jaggedly!

    Read the article

  • Unable to start Tomcat6 with HTTPS enabled

    - by ram
    I have the following server.xml settings for my tomcat6 server <!-- COMMENTED <Connector port="8080" maxThreads="150" enableLookups="false" acceptCount="100" scheme="http" redirectPort="8443"/> --> <!-- COMMENTED <Connector port="80" maxThreads="150" enableLookups="false" acceptCount="100" scheme="http" redirectPort="443"/> --> <Connector port="443" maxHttpHeaderSize="8192" maxThreads="150" enableLookups="false" disableUploadTimeout="true" acceptCount="100" scheme="https" secure="true" SSLEnabled="true" SSLCertificateFile="%SSL_CERT%" SSLCertificateKeyFile="%SSL_KEY%" SSLCipherSuite="ALL:!ADH:!kEDH:!SSLv2:!EXPORT40:!EXP:!LOW" compression="on" compressableMimeType="text/html,text/xml,text/plain,application/javascript,application/json,text/javascript"/> Complete server.xml is here but when I try to start the application I get the following error in catalina.*.log file INFO: Initializing Coyote HTTP/1.1 on http-80 Apr 7, 2013 8:38:38 PM org.apache.coyote.http11.Http11AprProtocol init SEVERE: Error initializing endpoint java.lang.Exception: Invalid Server SSL Protocol (error:00000000:lib(0):func(0):reason(0)) at org.apache.tomcat.jni.SSLContext.make(Native Method) at org.apache.tomcat.util.net.AprEndpoint.init(AprEndpoint.java:729) at org.apache.coyote.http11.Http11AprProtocol.init(Http11AprProtocol.java:107) at org.apache.catalina.connector.Connector.initialize(Connector.java:1049) at org.apache.catalina.core.StandardService.initialize(StandardService.java:703) at org.apache.catalina.core.StandardServer.initialize(StandardServer.java:838) at org.apache.catalina.startup.Catalina.load(Catalina.java:538) at org.apache.catalina.startup.Catalina.load(Catalina.java:562) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.apache.catalina.startup.Bootstrap.load(Bootstrap.java:261) at org.apache.catalina.startup.Bootstrap.main(Bootstrap.java:413) Apr 7, 2013 8:38:38 PM org.apache.catalina.core.StandardService initialize SEVERE: Failed to initialize connector [Connector[HTTP/1.1-443]] LifecycleException: Protocol handler initialization failed: java.lang.Exception: Invalid Server SSL Protocol (error:00000000:lib(0):func(0):reason(0)) at org.apache.catalina.connector.Connector.initialize(Connector.java:1051) at org.apache.catalina.core.StandardService.initialize(StandardService.java:703) at org.apache.catalina.core.StandardServer.initialize(StandardServer.java:838) at org.apache.catalina.startup.Catalina.load(Catalina.java:538) at org.apache.catalina.startup.Catalina.load(Catalina.java:562) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.apache.catalina.startup.Bootstrap.load(Bootstrap.java:261) at org.apache.catalina.startup.Bootstrap.main(Bootstrap.java:413) I've checked the following things already I have given read permissions for everyone for .crt and .key files I copied server.xml to a different working tomcat6 server and it works there, server.xml from the mentioned working tomcat5 webserver doesn't work here and it fails with the same error Works well with just HTTP enabled explicitly mentioning protocol in the Connector i.e. protocol="org.apache.coyote.http11.Http11AprProtocol" results in the same exception Please help me if I am missing something. Thanks in advance

    Read the article

  • Back to Basics: When does a .NET Assembly Dependency get loaded

    - by Rick Strahl
    When we work on typical day to day applications, it's easy to forget some of the core features of the .NET framework. For me personally it's been a long time since I've learned about some of the underlying CLR system level services even though I rely on them on a daily basis. I often think only about high level application constructs and/or high level framework functionality, but the low level stuff is often just taken for granted. Over the last week at DevConnections I had all sorts of low level discussions with other developers about the inner workings of this or that technology (especially in light of my Low Level ASP.NET Architecture talk and the Razor Hosting talk). One topic that came up a couple of times and ended up a point of confusion even amongst some seasoned developers (including some folks from Microsoft <snicker>) is when assemblies actually load into a .NET process. There are a number of different ways that assemblies are loaded in .NET. When you create a typical project assemblies usually come from: The Assembly reference list of the top level 'executable' project The Assembly references of referenced projects Dynamically loaded at runtime via AppDomain/Reflection loading In addition .NET automatically loads mscorlib (most of the System namespace) the boot process that hosts the .NET runtime in EXE apps, or some other kind of runtime hosting environment (runtime hosting in servers like IIS, SQL Server or COM Interop). In hosting environments the runtime host may also pre-load a bunch of assemblies on its own (for example the ASP.NET host requires all sorts of assemblies just to run itself, before ever routing into your user specific code). Assembly Loading The most obvious source of loaded assemblies is the top level application's assembly reference list. You can add assembly references to a top level application and those assembly references are then available to the application. In a nutshell, referenced assemblies are not immediately loaded - they are loaded on the fly as needed. So regardless of whether you have an assembly reference in a top level project, or a dependent assembly assemblies typically load on an as needed basis, unless explicitly loaded by user code. The same is true of dependent assemblies. To check this out I ran a simple test: I have a utility assembly Westwind.Utilities which is a general purpose library that can work in any type of project. Due to a couple of small requirements for encoding and a logging piece that allows logging Web content (dependency on HttpContext.Current) this utility library has a dependency on System.Web. Now System.Web is a pretty large assembly and generally you'd want to avoid adding it to a non-Web project if it can be helped. So I created a Console Application that loads my utility library: You can see that the top level Console app a reference to Westwind.Utilities and System.Data (beyond the core .NET libs). The Westwind.Utilities project on the other hand has quite a few dependencies including System.Web. I then add a main program that accesses only a simple utillity method in the Westwind.Utilities library that doesn't require any of the classes that access System.Web: static void Main(string[] args) { Console.WriteLine(StringUtils.NewStringId()); Console.ReadLine(); } StringUtils.NewStringId() calls into Westwind.Utilities, but it doesn't rely on System.Web. Any guesses what the assembly list looks like when I stop the code on the ReadLine() command? I'll wait here while you think about it… … … So, when I stop on ReadLine() and then fire up Process Explorer and check the assembly list I get: We can see here that .NET has not actually loaded any of the dependencies of the Westwind.Utilities assembly. Also not loaded is the top level System.Data reference even though it's in the dependent assembly list of the top level project. Since this particular function I called only uses core System functionality (contained in mscorlib) there's in fact nothing else loaded beyond the main application and my Westwind.Utilities assembly that contains the method accessed. None of the dependencies of Westwind.Utilities loaded. If you were to open the assembly in a disassembler like Reflector or ILSpy, you would however see all the compiled in dependencies. The referenced assemblies are in the dependency list and they are loadable, but they are not immediately loaded by the application. In other words the C# compiler and .NET linker are smart enough to figure out the dependencies based on the code that actually is referenced from your application and any dependencies cascading down into the dependencies from your top level application into the referenced assemblies. In the example above the usage requirement is pretty obvious since I'm only calling a single static method and then exiting the app, but in more complex applications these dependency relationships become very complicated - however it's all taken care of by the compiler and linker figuring out what types and members are actually referenced and including only those assemblies that are in fact referenced in your code or required by any of your dependencies. The good news here is: That if you are referencing an assembly that has a dependency on something like System.Web in a few places that are not actually accessed by any of your code or any dependent assembly code that you are calling, that assembly is never loaded into memory! Some Hosting Environments pre-load Assemblies The load behavior can vary however. In Console and desktop applications we have full control over assembly loading so we see the core CLR behavior. However other environments like ASP.NET for example will preload referenced assemblies explicitly as part of the startup process - primarily to minimize load conflicts. Specifically ASP.NET pre-loads all assemblies referenced in the assembly list and the /bin folder. So in Web applications it definitely pays to minimize your top level assemblies if they are not used. Understanding when Assemblies Load To clarify and see it actually happen what I described in the first example , let's look at a couple of other scenarios. To see assemblies loading at runtime in real time lets create a utility function to print out loaded assemblies to the console: public static void PrintAssemblies() { var assemblies = AppDomain.CurrentDomain.GetAssemblies(); foreach (var assembly in assemblies) { Console.WriteLine(assembly.GetName()); } } Now let's look at the first scenario where I have class method that references internally uses System.Web. In the first scenario lets add a method to my main program like this: static void Main(string[] args) { Console.WriteLine(StringUtils.NewStringId()); Console.ReadLine(); PrintAssemblies(); } public static void WebLogEntry() { var entry = new WebLogEntry(); entry.UpdateFromRequest(); Console.WriteLine(entry.QueryString); } UpdateFromWebRequest() internally accesses HttpContext.Current to read some information of the ASP.NET Request object so it clearly needs a reference System.Web to work. In this first example, the method that holds the calling code is never called, but exists as a static method that can potentially be called externally at some point. What do you think will happen here with the assembly loading? Will System.Web load in this example? No - it doesn't. Because the WebLogEntry() method is never called by the mainline application (or anywhere else) System.Web is not loaded. .NET dynamically loads assemblies as code that needs it is called. No code references the WebLogEntry() method and so System.Web is never loaded. Next, let's add the call to this method, which should trigger System.Web to be loaded because a dependency exists. Let's change the code to: static void Main(string[] args) { Console.WriteLine(StringUtils.NewStringId()); Console.WriteLine("--- Before:"); PrintAssemblies(); WebLogEntry(); Console.WriteLine("--- After:"); PrintAssemblies(); Console.ReadLine(); } public static void WebLogEntry() { var entry = new WebLogEntry(); entry.UpdateFromRequest(); Console.WriteLine(entry.QueryString); } Looking at the code now, when do you think System.Web will be loaded? Will the before list include it? Yup System.Web gets loaded, but only after it's actually referenced. In fact, just until before the call to UpdateFromRequest() System.Web is not loaded - it only loads when the method is actually called and requires the reference in the executing code. Moral of the Story So what have we learned - or maybe remembered again? Dependent Assembly References are not pre-loaded when an application starts (by default) Dependent Assemblies that are not referenced by executing code are never loaded Dependent Assemblies are just in time loaded when first referenced in code All of this is nothing new - .NET has always worked like this. But it's good to have a refresher now and then and go through the exercise of seeing it work in action. It's not one of those things we think about everyday, and as I found out last week, I couldn't remember exactly how it worked since it's been so long since I've learned about this. And apparently I'm not the only one as several other people I had discussions with in relation to loaded assemblies also didn't recall exactly what should happen or assumed incorrectly that just having a reference automatically loads the assembly. The moral of the story for me is: Trying at all costs to eliminate an assembly reference from a component is not quite as important as it's often made out to be. For example, the Westwind.Utilities module described above has a logging component, including a Web specific logging entry that supports pulling information from the active HTTP Context. Adding that feature requires a reference to System.Web. Should I worry about this in the scope of this library? Probably not, because if I don't use that one class of nearly a hundred, System.Web never gets pulled into the parent process. IOW, System.Web only loads when I use that specific feature and if I am, well I clearly have to be running in a Web environment anyway to use it realistically. The alternative would be considerably uglier: Pulling out the WebLogEntry class and sticking it into another assembly and breaking up the logging code. In this case - definitely not worth it. So, .NET definitely goes through some pretty nifty optimizations to ensure that it loads only what it needs and in most cases you can just rely on .NET to do the right thing. Sometimes though assembly loading can go wrong (especially when signed and versioned local assemblies are involved), but that's subject for a whole other post…© Rick Strahl, West Wind Technologies, 2005-2012Posted in .NET  CSharp   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • How to configure emacs by using this file?

    - by Andy Leman
    From http://public.halogen-dg.com/browser/alex-emacs-settings/.emacs?rev=1346 I got: (setq load-path (cons "/home/alex/.emacs.d/" load-path)) (setq load-path (cons "/home/alex/.emacs.d/configs/" load-path)) (defconst emacs-config-dir "~/.emacs.d/configs/" "") (defun load-cfg-files (filelist) (dolist (file filelist) (load (expand-file-name (concat emacs-config-dir file))) (message "Loaded config file:%s" file) )) (load-cfg-files '("cfg_initsplit" "cfg_variables_and_faces" "cfg_keybindings" "cfg_site_gentoo" "cfg_conf-mode" "cfg_mail-mode" "cfg_region_hooks" "cfg_apache-mode" "cfg_crontab-mode" "cfg_gnuserv" "cfg_subversion" "cfg_css-mode" "cfg_php-mode" "cfg_tramp" "cfg_killbuffer" "cfg_color-theme" "cfg_uniquify" "cfg_tabbar" "cfg_python" "cfg_ack" "cfg_scpaste" "cfg_ido-mode" "cfg_javascript" "cfg_ange_ftp" "cfg_font-lock" "cfg_default_face" "cfg_ecb" "cfg_browser" "cfg_orgmode" ; "cfg_gnus" ; "cfg_cyrillic" )) ; enable disabled advanced features (put 'downcase-region 'disabled nil) (put 'scroll-left 'disabled nil) (put 'upcase-region 'disabled nil) ; narrow cursor ;(setq-default cursor-type 'hbar) (cua-mode) ; highlight current line (global-hl-line-mode 1) ; AV: non-aggressive scrolling (setq scroll-conservatively 100) (setq scroll-preserve-screen-position 't) (setq scroll-margin 0) (custom-set-variables ;; custom-set-variables was added by Custom. ;; If you edit it by hand, you could mess it up, so be careful. ;; Your init file should contain only one such instance. ;; If there is more than one, they won't work right. '(ange-ftp-passive-host-alist (quote (("redbus2.chalkface.com" . "on") ("zope.halogen-dg.com" . "on") ("85.119.217.50" . "on")))) '(blink-cursor-mode nil) '(browse-url-browser-function (quote browse-url-firefox)) '(browse-url-new-window-flag t) '(buffers-menu-max-size 30) '(buffers-menu-show-directories t) '(buffers-menu-show-status nil) '(case-fold-search t) '(column-number-mode t) '(cua-enable-cua-keys nil) '(user-mail-address "[email protected]") '(cua-mode t nil (cua-base)) '(current-language-environment "UTF-8") '(file-name-shadow-mode t) '(fill-column 79) '(grep-command "grep --color=never -nHr -e * | grep -v .svn --color=never") '(grep-use-null-device nil) '(inhibit-startup-screen t) '(initial-frame-alist (quote ((width . 80) (height . 40)))) '(initsplit-customizations-alist (quote (("tabbar" "configs/cfg_tabbar.el" t) ("ecb" "configs/cfg_ecb.el" t) ("ange\\-ftp" "configs/cfg_ange_ftp.el" t) ("planner" "configs/cfg_planner.el" t) ("dired" "configs/cfg_dired.el" t) ("font\\-lock" "configs/cfg_font-lock.el" t) ("speedbar" "configs/cfg_ecb.el" t) ("muse" "configs/cfg_muse.el" t) ("tramp" "configs/cfg_tramp.el" t) ("uniquify" "configs/cfg_uniquify.el" t) ("default" "configs/cfg_font-lock.el" t) ("ido" "configs/cfg_ido-mode.el" t) ("org" "configs/cfg_orgmode.el" t) ("gnus" "configs/cfg_gnus.el" t) ("nnmail" "configs/cfg_gnus.el" t)))) '(ispell-program-name "aspell") '(jabber-account-list (quote (("[email protected]")))) '(jabber-nickname "AVK") '(jabber-password nil) '(jabber-server "halogen-dg.com") '(jabber-username "alex") '(remember-data-file "~/Plans/remember.org") '(safe-local-variable-values (quote ((dtml-top-element . "body")))) '(save-place t nil (saveplace)) '(scroll-bar-mode (quote right)) '(semantic-idle-scheduler-idle-time 432000) '(show-paren-mode t) '(svn-status-hide-unmodified t) '(tool-bar-mode nil nil (tool-bar)) '(transient-mark-mode t) '(truncate-lines f) '(woman-use-own-frame nil)) ; ?? ????? ??????? y ??? n? (fset 'yes-or-no-p 'y-or-n-p) (custom-set-faces ;; custom-set-faces was added by Custom. ;; If you edit it by hand, you could mess it up, so be careful. ;; Your init file should contain only one such instance. ;; If there is more than one, they won't work right. '(compilation-error ((t (:foreground "tomato" :weight bold)))) '(cursor ((t (:background "red1")))) '(custom-variable-tag ((((class color) (background dark)) (:inherit variable-pitch :foreground "DarkOrange" :weight bold)))) '(hl-line ((t (:background "grey24")))) '(isearch ((t (:background "orange" :foreground "black")))) '(message-cited-text ((((class color) (background dark)) (:foreground "SandyBrown")))) '(message-header-name ((((class color) (background dark)) (:foreground "DarkGrey")))) '(message-header-other ((((class color) (background dark)) (:foreground "LightPink2")))) '(message-header-subject ((((class color) (background dark)) (:foreground "yellow2")))) '(message-separator ((((class color) (background dark)) (:foreground "thistle")))) '(region ((t (:background "brown")))) '(tooltip ((((class color)) (:inherit variable-pitch :background "IndianRed1" :foreground "black"))))) The above is a python emacs configure file. Where should I put it to use it? And, are there any other changes I need to make?

    Read the article

  • Google Webmasters tools search queries position

    - by user1592845
    In my website account on Google Webmasters tools, some search queries show average position 1.0. This make me understand that it should be displayed as the first result. When I search for this query I could not able to find my website's page listed as a result?! In some cases I navigate to the third or the fourth result page and I could not find it! What are factors that make my website loss its average position for a search query? and when Google webmasters tools updates their values?

    Read the article

  • Macports Apache not starting at Mac OS X snow leopard boot [closed]

    - by greg
    I've done the launchctl load command, the symlinks point to my /opt/local/etc/LaunchDaemeons/org.macports.apache2/org.macports.apache2.plist, but it never starts. I can start it manually, works fine after that. Just won't load on startup. My server is named in my /opt/local/apache2/conf/httd.conf, I had read that sometimes makes a difference. I've done the launchctl unload and load trick, all with no results. I'm out of ideas.

    Read the article

  • Investigation: Can different combinations of components effect Dataflow performance?

    - by jamiet
    Introduction The Dataflow task is one of the core components (if not the core component) of SQL Server Integration Services (SSIS) and often the most misunderstood. This is not surprising, its an incredibly complicated beast and we’re abstracted away from that complexity via some boxes that go yellow red or green and that have some lines drawn between them. Example dataflow In this blog post I intend to look under that facade and get into some of the nuts and bolts of the Dataflow Task by investigating how the decisions we make when building our packages can affect performance. I will do this by comparing the performance of three dataflows that all have the same input, all produce the same output, but which all operate slightly differently by way of having different transformation components. I also want to use this blog post to challenge a common held opinion that I see perpetuated over and over again on the SSIS forum. That is, that people assume adding components to a dataflow will be detrimental to overall performance. Its not surprising that people think this –it is intuitive to think that more components means more work- however this is not a view that I share. I have always been of the opinion that there are many factors affecting dataflow duration and the number of components is actually one of the less important ones; having said that I have never proven that assertion and that is one reason for this investigation. I have actually seen evidence that some people think dataflow duration is simply a function of number of rows and number of components. I’ll happily call that one out as a myth even without any investigation!  The Setup I have a 2GB datafile which is a list of 4731904 (~4.7million) customer records with various attributes against them and it contains 2 columns that I am going to use for categorisation: [YearlyIncome] [BirthDate] The data file is a SSIS raw format file which I chose to use because it is the quickest way of getting data into a dataflow and given that I am testing the transformations, not the source or destination adapters, I want to minimise external influences as much as possible. In the test I will split the customers according to month of birth (12 of those) and whether or not their yearly income is above or below 50000 (2 of those); in other words I will be splitting them into 24 discrete categories and in order to do it I shall be using different combinations of SSIS’ Conditional Split and Derived Column transformation components. The 24 datapaths that occur will each input to a rowcount component, again because this is the least resource intensive means of terminating a datapath. The test is being carried out on a Dell XPS Studio laptop with a quad core (8 logical Procs) Intel Core i7 at 1.73GHz and Samsung SSD hard drive. Its running SQL Server 2008 R2 on Windows 7. The Variables Here are the three combinations of components that I am going to test:     One Conditional Split - A single Conditional Split component CSPL Split by Month of Birth and income category that will use expressions on [YearlyIncome] & [BirthDate] to send each row to one of 24 outputs. This next screenshot displays the expression logic in use: Derived Column & Conditional Split - A Derived Column component DER Income Category that adds a new column [IncomeCategory] which will contain one of two possible text values {“LessThan50000”,”GreaterThan50000”} and uses [YearlyIncome] to determine which value each row should get. A Conditional Split component CSPL Split by Month of Birth and Income Category then uses that new column in conjunction with [BirthDate] to determine which of the same 24 outputs to send each row to. Put more simply, I am separating the Conditional Split of #1 into a Derived Column and a Conditional Split. The next screenshots display the expression logic in use: DER Income Category         CSPL Split by Month of Birth and Income Category       Three Conditional Splits - A Conditional Split component that produces two outputs based on [YearlyIncome], one for each Income Category. Each of those outputs will go to a further Conditional Split that splits the input into 12 outputs, one for each month of birth (identical logic in each). In this case then I am separating the single Conditional Split of #1 into three Conditional Split components. The next screenshots display the expression logic in use: CSPL Split by Income Category         CSPL Split by Month of Birth 1& 2       Each of these combinations will provide an input to one of the 24 rowcount components, just the same as before. For illustration here is a screenshot of the dataflow containing three Conditional Split components: As you can these dataflows have a fair bit of work to do and remember that they’re doing that work for 4.7million rows. I will execute each dataflow 10 times and use the average for comparison. I foresee three possible outcomes: The dataflow containing just one Conditional Split (i.e. #1) will be quicker There is no significant difference between any of them One of the two dataflows containing multiple transformation components will be quicker Regardless of which of those outcomes come to pass we will have learnt something and that makes this an interesting test to carry out. Note that I will be executing the dataflows using dtexec.exe rather than hitting F5 within BIDS. The Results and Analysis The table below shows all of the executions, 10 for each dataflow. It also shows the average for each along with a standard deviation. All durations are in seconds. I’m pasting a screenshot because I frankly can’t be bothered with the faffing about needed to make a presentable HTML table. It is plain to see from the average that the dataflow containing three conditional splits is significantly faster, the other two taking 43% and 52% longer respectively. This seems strange though, right? Why does the dataflow containing the most components outperform the other two by such a big margin? The answer is actually quite logical when you put some thought into it and I’ll explain that below. Before progressing, a side note. The standard deviation for the “Three Conditional Splits” dataflow is orders of magnitude smaller – indicating that performance for this dataflow can be predicted with much greater confidence too. The Explanation I refer you to the screenshot above that shows how CSPL Split by Month of Birth and salary category in the first dataflow is setup. Observe that there is a case for each combination of Month Of Date and Income Category – 24 in total. These expressions get evaluated in the order that they appear and hence if we assume that Month of Date and Income Category are uniformly distributed in the dataset we can deduce that the expected number of expression evaluations for each row is 12.5 i.e. 1 (the minimum) + 24 (the maximum) divided by 2 = 12.5. Now take a look at the screenshots for the second dataflow. We are doing one expression evaluation in DER Income Category and we have the same 24 cases in CSPL Split by Month of Birth and Income Category as we had before, only the expression differs slightly. In this case then we have 1 + 12.5 = 13.5 expected evaluations for each row – that would account for the slightly longer average execution time for this dataflow. Now onto the third dataflow, the quick one. CSPL Split by Income Category does a maximum of 2 expression evaluations thus the expected number of evaluations per row is 1.5. CSPL Split by Month of Birth 1 & CSPL Split by Month of Birth 2 both have less work to do than the previous Conditional Split components because they only have 12 cases to test for thus the expected number of expression evaluations is 6.5 There are two of them so total expected number of expression evaluations for this dataflow is 6.5 + 6.5 + 1.5 = 14.5. 14.5 is still more than 12.5 & 13.5 though so why is the third dataflow so much quicker? Simple, the conditional expressions in the first two dataflows have two boolean predicates to evaluate – one for Income Category and one for Month of Birth; the expressions in the Conditional Split in the third dataflow however only have one predicate thus they are doing a lot less work. To sum up, the difference in execution times can be attributed to the difference between: MONTH(BirthDate) == 1 && YearlyIncome <= 50000 and MONTH(BirthDate) == 1 In the first two dataflows YearlyIncome <= 50000 gets evaluated an average of 12.5 times for every row whereas in the third dataflow it is evaluated once and once only. Multiply those 11.5 extra operations by 4.7million rows and you get a significant amount of extra CPU cycles – that’s where our duration difference comes from. The Wrap-up The obvious point here is that adding new components to a dataflow isn’t necessarily going to make it go any slower, moreover you may be able to achieve significant improvements by splitting logic over multiple components rather than one. Performance tuning is all about reducing the amount of work that needs to be done and that doesn’t necessarily mean use less components, indeed sometimes you may be able to reduce workload in ways that aren’t immediately obvious as I think I have proven here. Of course there are many variables in play here and your mileage will most definitely vary. I encourage you to download the package and see if you get similar results – let me know in the comments. The package contains all three dataflows plus a fourth dataflow that will create the 2GB raw file for you (you will also need the [AdventureWorksDW2008] sample database from which to source the data); simply disable all dataflows except the one you want to test before executing the package and remember, execute using dtexec, not within BIDS. If you want to explore dataflow performance tuning in more detail then here are some links you might want to check out: Inequality joins, Asynchronous transformations and Lookups Destination Adapter Comparison Don’t turn the dataflow into a cursor SSIS Dataflow – Designing for performance (webinar) Any comments? Let me know! @Jamiet

    Read the article

  • how to best config for synflood setup in csf but web response still fast

    - by Binh Nguyen
    my server down random every day 4-5 time cause get high load very quick.. I have install csf and with some config server now stable.. load around 5. BUT the big isuse is : the real user very hard to access website specially from IE browser you can test at xaluan.com the flowing is config using in csf: SYNFLOOD = "1" SYNFLOOD_RATE = "100/s" SYNFLOOD_BURST = "10" CONNLIMIT = "80;30" PORTFLOOD = "80;tcp;70;5" CT_LIMIT = "29" # other config may same as default i playing around with this config for a week but still not work around.. If increase the rate SYNFLOOD_RATE = "140/s" or more.. the website response very fast.. be side have bad effect of server load increase so fast normal 20 and may be up to few hundred in peck time .. my need is response time fast but load still low.. please help thanks ps: server runing nginx frontend, apache, mysql, php ,, the home page has around 70 elements which will cached in browser in fist time access..

    Read the article

  • 8 Reasons Why Even Microsoft Agrees the Windows Desktop is a Nightmare

    - by Chris Hoffman
    Let’s be honest: The Windows desktop is a mess. Sure, it’s extremely powerful and has a huge software library, but it’s not a good experience for average people. It’s not even a good experience for geeks, although we tolerate it. Even Microsoft agrees about this. Microsoft’s Surface tablets with Windows RT don’t support any third-party desktop apps. They consider this a feature — users can’t install malware and other desktop junk, so the system will always be speedy and secure. Malware is Still Common Malware may not affect geeks, but it certainly continues to affect average people. Securing Windows, keeping it secure, and avoiding unsafe programs is a complex process. There are over 50 different file extensions that can contain harmful code to keep track of. It’s easy to have theoretical discussions about how malware could infect Mac computers, Android devices, and other systems. But Mac malware is extremely rare, and has  generally been caused by problem with the terrible Java plug-in. Macs are configured to only run executables from identified developers by default, whereas Windows will run everything. Android malware is talked about a lot, but Android malware is rare in the real world and is generally confined to users who disable security protections and install pirated apps. Google has also taken action, rolling out built-in antivirus-like app checking to all Android devices, even old ones running Android 2.3, via Play Services. Whatever the reason, Windows malware is still common while malware for other systems isn’t. We all know it — anyone who does tech support for average users has dealt with infected Windows computers. Even users who can avoid malware are stuck dealing with complex and nagging antivirus programs, especially since it’s now so difficult to trust Microsoft’s antivirus products. Manufacturer-Installed Bloatware is Terrible Sit down with a new Mac, Chromebook, iPad, Android tablet, Linux laptop, or even a Surface running Windows RT and you can enjoy using your new device. The system is a clean slate for you to start exploring and installing your new software. Sit down with a new Windows PC and the system is a mess. Rather than be delighted, you’re stuck reinstalling Windows and then installing the necessary drivers or you’re forced to start uninstalling useless bloatware programs one-by-one, trying to figure out which ones are actually useful. After uninstalling the useless programs, you may end up with a system tray full of icons for ten different hardware utilities anyway. The first experience of using a new Windows PC is frustration, not delight. Yes, bloatware is still a problem on Windows 8 PCs. Manufacturers can customize the Refresh image, preventing bloatware rom easily being removed. Finding a Desktop Program is Dangerous Want to install a Windows desktop program? Well, you’ll have to head to your web browser and start searching. It’s up to you, the user, to know which programs are safe and which are dangerous. Even if you find a website for a reputable program, the advertisements on that page will often try to trick you into downloading fake installers full of adware. While it’s great to have the ability to leave the app store and get software that the platform’s owner hasn’t approved — as on Android — this is no excuse for not providing a good, secure software installation experience for typical users installing typical programs. Even Reputable Desktop Programs Try to Install Junk Even if you do find an entirely reputable program, you’ll have to keep your eyes open while installing it. It will likely try to install adware, add browse toolbars, change your default search engine, or change your web browser’s home page. Even Microsoft’s own programs do this — when you install Skype for Windows desktop, it will attempt to modify your browser settings t ouse Bing, even if you’re specially chosen another search engine and home page. With Microsoft setting such an example, it’s no surprise so many other software developers have followed suit. Geeks know how to avoid this stuff, but there’s a reason program installers continue to do this. It works and tricks many users, who end up with junk installed and settings changed. The Update Process is Confusing On iOS, Android, and Windows RT, software updates come from a single place — the app store. On Linux, software updates come from the package manager. On Mac OS X, typical users’ software updates likely come from the Mac App Store. On the Windows desktop, software updates come from… well, every program has to create its own update mechanism. Users have to keep track of all these updaters and make sure their software is up-to-date. Most programs now have their act together and automatically update by default, but users who have old versions of Flash and Adobe Reader installed are vulnerable until they realize their software isn’t automatically updating. Even if every program updates properly, the sheer mess of updaters is clunky, slow, and confusing in comparison to a centralized update process. Browser Plugins Open Security Holes It’s no surprise that other modern platforms like iOS, Android, Chrome OS, Windows RT, and Windows Phone don’t allow traditional browser plugins, or only allow Flash and build it into the system. Browser plugins provide a wealth of different ways for malicious web pages to exploit the browser and open the system to attack. Browser plugins are one of the most popular attack vectors because of how many users have out-of-date plugins and how many plugins, especially Java, seem to be designed without taking security seriously. Oracle’s Java plugin even tries to install the terrible Ask toolbar when installing security updates. That’s right — the security update process is also used to cram additional adware into users’ machines so unscrupulous companies like Oracle can make a quick buck. It’s no wonder that most Windows PCs have an out-of-date, vulnerable version of Java installed. Battery Life is Terrible Windows PCs have bad battery life compared to Macs, IOS devices, and Android tablets, all of which Windows now competes with. Even Microsoft’s own Surface Pro 2 has bad battery life. Apple’s 11-inch MacBook Air, which has very similar hardware to the Surface Pro 2, offers double its battery life when web browsing. Microsoft has been fond of blaming third-party hardware manufacturers for their poorly optimized drivers in the past, but there’s no longer any room to hide. The problem is clearly Windows. Why is this? No one really knows for sure. Perhaps Microsoft has kept on piling Windows component on top of Windows component and many older Windows components were never properly optimized. Windows Users Become Stuck on Old Windows Versions Apple’s new OS X 10.9 Mavericks upgrade is completely free to all Mac users and supports Macs going back to 2007. Apple has also announced their intention that all new releases of Mac OS X will be free. In 2007, Microsoft had just shipped Windows Vista. Macs from the Windows Vista era are being upgraded to the latest version of the Mac operating system for free, while Windows PCs from the same era are probably still using Windows Vista. There’s no easy upgrade path for these people. They’re stuck using Windows Vista and maybe even the outdated Internet Explorer 9 if they haven’t installed a third-party web browser. Microsoft’s upgrade path is for these people to pay $120 for a full copy of Windows 8.1 and go through a complicated process that’s actaully a clean install. Even users of Windows 8 devices will probably have to pay money to upgrade to Windows 9, while updates for other operating systems are completely free. If you’re a PC geek, a PC gamer, or someone who just requires specialized software that only runs on Windows, you probably use the Windows desktop and don’t want to switch. That’s fine, but it doesn’t mean the Windows desktop is actually a good experience. Much of the burden falls on average users, who have to struggle with malware, bloatware, adware bundled in installers, complex software installation processes, and out-of-date software. In return, all they get is the ability to use a web browser and some basic Office apps that they could use on almost any other platform without all the hassle. Microsoft would agree with this, touting Windows RT and their new “Windows 8-style” app platform as the solution. Why else would Microsoft, a “devices and services” company, position the Surface — a device without traditional Windows desktop programs — as their mass-market device recommended for average people? This isn’t necessarily an endorsement of Windows RT. If you’re tech support for your family members and it comes time for them to upgrade, you may want to get them off the Windows desktop and tell them to get a Mac or something else that’s simple. Better yet, if they get a Mac, you can tell them to visit the Apple Store for help instead of calling you. That’s another thing Windows PCs don’t offer — good manufacturer support. Image Credit: Blanca Stella Mejia on Flickr, Collin Andserson on Flickr, Luca Conti on Flickr     

    Read the article

< Previous Page | 135 136 137 138 139 140 141 142 143 144 145 146  | Next Page >