Search Results

Search found 260258 results on 10411 pages for 'stack size'.

Page 139/10411 | < Previous Page | 135 136 137 138 139 140 141 142 143 144 145 146  | Next Page >

  • Suggestion for dragster/dropzone like dock menu

    - by Ger Teunis
    I'd like to create a dragster/dropzone like dock menu. Looks a bit like a stack with a nsview in it. After a lot if documentation searching and googling I've found a way to determine a dock icon's location. (http://cocoadev.com/forums/comments.php?DiscussionID=1431) Is nzbdrop creating a view which just looks like an stack to display it's menu or is there a better way of creating this? Additional info: I'm not looking for the drop like functionality just the nice way the DropBox window is displayed as an bubble/stack menu on top of it's app icon.

    Read the article

  • llvm's getelementptr instruction with array types

    - by vava
    I'm trying to use array type in llvm and can't get a hold of it yet. As far as I can understand from documentation, array should grow all by itself. But how does it happen, should I just getelementptr with whatever index I have and it'll grow so that index will still be in bounds? That's not what happens, I get all sorts of funny problems which hide away the moment I create array big enough to accommodate all my data. So, should the following code work by itself or I have to call something else for array to increase it's size? %stack = alloca [0 x i32] ; <[0 x i32]*> %"stack[idx]" = getelementptr [0 x i32]* %stack, i32 0, i32 1 ; <i32*>

    Read the article

  • Help with force close occurrences in my app

    - by Ken
    This is the last issue with this app. Periodic force close situations. I think something should be on another thread but I'm not sure what. Anyway, I can always count on a freeze on first install. If I wait, eventually (maybe 10 seconds) the app comes around, maybe more. here is an excerpt from logcat--the three lines occur after full layout is displayed and I attempt to touch a [game] 'peg' which should spawn a sprite, but the freeze occurs there. Can anybody tell what the issue might be?: I/System.out( 279): TouchDown (17.0,106.0) I/System.out( 279): checking (17,106 I/System.out( 279): hit for bounds Rect(3, 98 - 32, 130) [FREEZE BEGINS] W/webcore ( 279): Can't get the viewWidth after the first layout W/WindowManager( 60): Key dispatching timed out sending to com.live.brainbuilderfree/com.live.brainbuilderfree.BrainBuilderFree W/WindowManager( 60): Previous dispatch state: null W/WindowManager( 60): Current dispatch state: {{null to Window{43fd87a0 com.live.brainbuilderfree/com.live.brainbuilderfree.BrainBuilderFree paused=false} @ 1295232880017 lw=Window{43fd87a0 com.live.brainbuilderfree/com.live.brainbuilderfree.BrainBuilderFree paused=false} lb=android.os.BinderProxy@440523b8 fin=false gfw=true ed=true tts=0 wf=false fp=false mcf=Window{43fd87a0 com.live.brainbuilderfree/com.live.brainbuilderfree.BrainBuilderFree paused=false}}} I/Process ( 60): Sending signal. PID: 279 SIG: 3 I/dalvikvm( 279): threadid=3: reacting to signal 3 D/dalvikvm( 124): GC_EXPLICIT freed 1754 objects / 106104 bytes in 7365ms I/Process ( 60): Sending signal. PID: 60 SIG: 3 I/dalvikvm( 60): threadid=3: reacting to signal 3 I/dalvikvm( 60): Wrote stack traces to '/data/anr/traces.txt' I/Process ( 60): Sending signal. PID: 263 SIG: 3 I/dalvikvm( 263): threadid=3: reacting to signal 3 I/dalvikvm( 279): Wrote stack traces to '/data/anr/traces.txt' I/Process ( 60): Sending signal. PID: 117 SIG: 3 I/dalvikvm( 117): threadid=3: reacting to signal 3 I/dalvikvm( 117): Wrote stack traces to '/data/anr/traces.txt' I/Process ( 60): Sending signal. PID: 254 SIG: 3 I/Process ( 60): Sending signal. PID: 121 SIG: 3 I/dalvikvm( 121): threadid=3: reacting to signal 3 D/AudioSink( 34): bufferCount (4) is too small and increased to 12 I/System.out( 279): making white sprite I/Process ( 60): Sending signal. PID: 186 SIG: 3 I/Process ( 60): Sending signal. PID: 232 SIG: 3 D/MillennialMediaAdSDK( 279): size: 1 D/MillennialMediaAdSDK( 279): num: 1 D/AdWhirl SDK( 279): Millennial success D/AdWhirl SDK( 279): Will call rotateAd() in 120 seconds I/dalvikvm( 232): threadid=3: reacting to signal 3 I/dalvikvm( 121): Wrote stack traces to '/data/anr/traces.txt' I/Process ( 60): Sending signal. PID: 222 SIG: 3 I/MillennialMediaAdSDK( 279): Millennial ad return success D/MillennialMediaAdSDK( 279): View height: 0 D/MillennialMediaAdSDK( 279): nextUrl: [deleted] I/Process ( 60): Sending signal. PID: 239 SIG: 3 I/Process ( 60): Sending signal. PID: 213 SIG: 3 D/AdWhirl SDK( 279): Added subview D/AdWhirl SDK( 279): Pinging URL: [deleted] I/Process ( 60): Sending signal. PID: 197 SIG: 3 I/dalvikvm( 197): threadid=3: reacting to signal 3 I/Process ( 60): Sending signal. PID: 164 SIG: 3 I/dalvikvm( 164): threadid=3: reacting to signal 3 D/dalvikvm( 279): GC_FOR_MALLOC freed 7735 objects / 639688 bytes in 217ms I/Process ( 60): Sending signal. PID: 124 SIG: 3 I/dalvikvm( 124): threadid=3: reacting to signal 3 I/Process ( 60): Sending signal. PID: 158 SIG: 3 I/dalvikvm( 158): threadid=3: reacting to signal 3 I/Process ( 60): Sending signal. PID: 127 SIG: 3 E/ActivityManager( 60): ANR in com.live.brainbuilderfree (com.live.brainbuilderfree/.BrainBuilderFree) E/ActivityManager( 60): Reason: keyDispatchingTimedOut E/ActivityManager( 60): Load: 3.46 / 1.69 / 0.65 E/ActivityManager( 60): CPU usage from 28095ms to 140ms ago: E/ActivityManager( 60): system_server: 30% = 25% user + 4% kernel / faults: 3119 minor 66 major E/ActivityManager( 60): mediaserver: 11% = 7% user + 4% kernel / faults: 746 minor 17 major E/ActivityManager( 60): com.svox.pico: 1% = 0% user + 1% kernel / faults: 2833 minor 8 major E/ActivityManager( 60): d.process.acore: 1% = 0% user + 0% kernel / faults: 1146 minor 36 major E/ActivityManager( 60): ndroid.launcher: 1% = 0% user + 0% kernel / faults: 852 minor 6 major E/ActivityManager( 60): m.android.phone: 0% = 0% user + 0% kernel / faults: 621 minor 7 major E/ActivityManager( 60): kswapd0: 0% = 0% user + 0% kernel E/ActivityManager( 60): ronsoft.openwnn: 0% = 0% user + 0% kernel / faults: 337 minor 2 major E/ActivityManager( 60): adbd: 0% = 0% user + 0% kernel / faults: 3 minor E/ActivityManager( 60): zygote: 0% = 0% user + 0% kernel / faults: 169 minor E/ActivityManager( 60): events/0: 0% = 0% user + 0% kernel E/ActivityManager( 60): rild: 0% = 0% user + 0% kernel / faults: 103 minor 3 major E/ActivityManager( 60): pdflush: 0% = 0% user + 0% kernel E/ActivityManager( 60): .quicksearchbox: 0% = 0% user + 0% kernel / faults: 61 minor E/ActivityManager( 60): id.defcontainer: 0% = 0% user + 0% kernel / faults: 12 minor E/ActivityManager( 60): +rainbuilderfree: 0% = 0% user + 0% kernel E/ActivityManager( 60): +sh: 0% = 0% user + 0% kernel E/ActivityManager( 60): +app_process: 0% = 0% user + 0% kernel E/ActivityManager( 60): TOTAL: 100% = 76% user + 21% kernel + 2% iowait + 0% irq + 0% softirq I/dalvikvm( 127): threadid=3: reacting to signal 3 I/dalvikvm( 186): threadid=3: reacting to signal 3 D/dalvikvm( 60): GC_FOR_MALLOC freed 3747 objects / 228920 bytes in 609ms I/dalvikvm-heap( 60): Grow heap (frag case) to 4.759MB for 36896-byte allocation I/dalvikvm( 239): threadid=3: reacting to signal 3 D/dalvikvm( 60): GC_FOR_MALLOC freed 226 objects / 9952 bytes in 546ms I/dalvikvm( 213): threadid=3: reacting to signal 3 D/dalvikvm( 60): GC_FOR_MALLOC freed 105 objects / 5816 bytes in 492ms I/dalvikvm-heap( 60): Grow heap (frag case) to 4.815MB for 49188-byte allocation I/dalvikvm( 222): threadid=3: reacting to signal 3 D/dalvikvm( 60): GC_FOR_MALLOC freed 77 objects / 5232 bytes in 546ms I/dalvikvm( 254): threadid=3: reacting to signal 3 D/dalvikvm( 60): GC_FOR_MALLOC freed 105 objects / 55856 bytes in 521ms I/dalvikvm-heap( 60): Grow heap (frag case) to 4.876MB for 98360-byte allocation D/dalvikvm( 60): GC_FOR_MALLOC freed 58 objects / 3632 bytes in 340ms D/dalvikvm( 60): GC_FOR_MALLOC freed 1093 objects / 185256 bytes in 572ms W/WindowManager( 60): Continuing to wait for key to be dispatched I/System.out( 279): TouchMove (117.0,124.0) I/System.out( 279): TouchUP (117.0,124.0) D/dalvikvm( 60): GC_FOR_MALLOC freed 141 objects / 108328 bytes in 564ms I/ARMAssembler( 60): generated scanline__00000077:03515104_00000000_00000000 [ 33 ipp] (47 ins) at [0x313d78:0x313e34] in 11621593 ns W/InputManagerService( 60): Window already focused, ignoring focus gain of: com.android.internal.view.IInputMethodClient$Stub$Proxy@43f66a10 I/dalvikvm( 239): Wrote stack traces to '/data/anr/traces.txt' I/dalvikvm( 263): Wrote stack traces to '/data/anr/traces.txt' etc...

    Read the article

  • Can nusoap returns arrray of string ?

    - by Tim
    Hi all, I would like to return an array of string in my web services I've tryed : <?php require_once('nusoap/nusoap.php'); $server = new soap_server(); $server->configureWSDL('NewsService', 'urn:NewsService'); $server->register('GetAllNews', array(), array('return' => 'xsd:string[]'), 'urn:NewsService', 'urn:NewsService#GetAllNews', 'rpc', 'literal', '' ); // Define the method as a PHP function function GetAllNews() { $stack = array("orange", "banana"); array_push($stack, "apple", "raspberry"); return $stack; } but it doesn't work. What is the correct syntax for that ? Thanks in advance for any help

    Read the article

  • Navigation bar's buttons tint color sometimes not set

    - by Felipe
    Refer to the following, short video: http://screencast.com/t/cmnsqVTh The problem is with the color of a navigation bar's back button. The first time I load the app, the navigation bar + its buttons have the default color. I then push a view controller on the stack, and when the new view loads (in the viewDidLoad method), it sets the navigation bar's tint color to pink. The nav bar's buttons are also pink as expected. I then press the back button, and the view is popped from the stack. On the root view controller's viewWillAppear method I set the tint color back to nil so that it's the default color again. The navigation bar looks as expected. However if I push the view controller on the stack yet again, the navigation bar's tint color is pink, but the back button's color is the default light blue. Hope that was understandable. So what's the cause of the problem?

    Read the article

  • A function's static and dynamic parent

    - by legends2k
    I'm reading Thinking in C++ (vol. 2): Whenever a function is called, information about that function is pushed onto the runtime stack in an activation record instance (ARI), also called a stack frame. A typical stack frame contains (1) the address of the calling function (so execution can return to it), (2) a pointer to the ARI of the function’s static parent (the scope that lexically contains the called function, so variables global to the function can be accessed), and (3) a pointer to the function that called it (its dynamic parent). The path that logically results from repetitively following the dynamic parent links is the dynamic chain, or call chain I'm unable to comprehend what the author means as function's static and dynamic parent. Also am not able to differentiate between item 1, 2 or 3. They all seem to be the same. Can someone please explain this passage to me?

    Read the article

  • Core dump equivalence for Java

    - by m3rLinEz
    So far I have learned about generating thread dump and heap dump using jstack and and jmap respectively. However, jstack thread dump contains only texts describing the stack on each thread. And opening heap dump (.hprof file) with Java VisualVM only shows the objects allocated in the heap. What I actually want is to be able see the stack, to switch to particular stack frame, and watch local variables. This kind of post-mortem debugging can be done normally with tools like WinDbg, gdb and a core file (for a native C++ program.) I wonder if such 'core' file (which will allow me to debug in non-live environment) exists in Java?

    Read the article

  • How to do iPad Photos app pinch to expand

    - by Macatomy
    I don't think this has been asked before on this site, but I might be wrong. Does anyone know the basics of how to get that whole effect with the iPad Photos app? Basically, pinching a stack of photos lets you have a "peek" at the photos in that stack, which expands based on the distance between your 2 fingers in the pinch, then fully completing the outwards pinch gesture opens the photos in the stack in a new view. See this video to get what I mean. I know of at least one third party app that uses the same method as the iPad Photo app, so I know it's possible to do. I'm guessing I would do something with UIPinchGestureRecognizer but I'm not sure exactly how to proceed.

    Read the article

  • Can nusoap return array of string ?

    - by Tim
    Hi all, I would like to return an array of string in my web services I've tryed : <?php require_once('nusoap/nusoap.php'); $server = new soap_server(); $server->configureWSDL('NewsService', 'urn:NewsService'); $server->register('GetAllNews', array(), array('return' => 'xsd:string[]'), 'urn:NewsService', 'urn:NewsService#GetAllNews', 'rpc', 'literal', '' ); // Define the method as a PHP function function GetAllNews() { $stack = array("orange", "banana"); array_push($stack, "apple", "raspberry"); return $stack; } but it doesn't work. What is the correct syntax for that ? Thanks in advance for any help

    Read the article

  • iphone - memory leaks in separate thread

    - by Brodie4598
    I create a second thread to call a method that downloads several images using: [NSThread detachNewThreadSelector:@selector(downloadImages) toTarget:self withObject:nil]; It works fine but I get a long list of leaks in the log similar to: 2010-04-18 00:48:12.287 FS Companion[11074:650f] * _NSAutoreleaseNoPool(): Object 0xbec2640 of class NSCFString autoreleased with no pool in place - just leaking Stack: (0xa58af 0xdb452 0x5e973 0x5e770 0x11d029 0x517fa 0x51708 0x85f2 0x3047d 0x30004 0x99481fbd 0x99481e42) 2010-04-18 00:48:12.288 FS Companion[11074:650f] * _NSAutoreleaseNoPool(): Object 0xbe01510 of class NSCFString autoreleased with no pool in place - just leaking Stack: (0xa58af 0xdb452 0x5e7a6 0x11d029 0x517fa 0x51708 0x85f2 0x3047d 0x30004 0x99481fbd 0x99481e42) 2010-04-18 00:48:12.289 FS Companion[11074:650f] * _NSAutoreleaseNoPool(): Object 0xbde6720 of class NSCFString autoreleased with no pool in place - just leaking Stack: (0xa58af 0xdb452 0x5ea73 0x5e7c2 0x11d029 0x517fa 0x51708 0x85f2 0x3047d 0x30004 0x99481fbd 0x99481e42) Can someone help me understand the problem?

    Read the article

  • How to Retrieve Method's Signature in Squeak

    - by Artium
    printThisMethodSig: aSomething stack := thisContext stackOfSize: 2. Transcript show: (stack at: 2); cr. stack at: 2 returns the method context of the current method. It is possible to retrieve the compiled method of the current method using method message. I want to be able to print the whole signature of the method, for example: from:to:. I looked at both MethodContext and CompiledMethod classes but could not find out how to do it. Thank you.

    Read the article

  • What does subl do here?

    - by drozzy
    So... I'm compiling into assembler, with gcc -S -O2 -m32: void h(int y){int x; x=y+1; f(y); f(2); } And it gives me the following: .file "sample.c" .text .p2align 4,,15 .globl h .type h, @function h: pushl %ebp movl %esp, %ebp subl $24, %esp movl 8(%ebp), %eax movl %eax, (%esp) call f movl $2, 8(%ebp) leave jmp f .size h, .-h .ident "GCC: (GNU) 4.4.3 20100127 (Red Hat 4.4.3-4)" .section .note.GNU-stack,"",@progbits Now I know what pushl and movel: they store the current frame pointer onto the stack and then set the value of the frame pointer register to the value of the Stack Pointer. But I have no idea what the subl $24, %esp is. Thanks!

    Read the article

  • Inheritance in Java

    - by Mandar
    Hello, recently I went through the inheritance concept. As we all know, in inheritance, superclass objects are created/initialized prior to subclass objects. So if we create an object of subclass, it will contain all the superclass information. But I got stuck at one point. Do the superclass and the subclass methods are present on separate call-stack? If it is so, is there any specific reason for same? If it is not so, why they don't appear on same call-stack? E.g. // Superclass class A { void play1( ) { // .... } } // Subclass class B extends A { void play2( ) { //..... } } Then does the above 2 methods i.e play1( ) and play2( ) appear on separate call stack? Thanks.

    Read the article

  • Switching between multiple stacks in gdb 6.3

    - by flagmore
    Hello! There are two stacks in the program: one is created by OS and the second is created by program itself to run some code with it. When the program crashes in the second stack, I want to switch to the main stack in gdb and see the backtrace. Is it possible? I tried to save the rsp to a variable and change it after the crash, but the resulting backtrace was not right. I think gdb cannot differentiate frames in stack.

    Read the article

  • Using R to Analyze G1GC Log Files

    - by user12620111
    Using R to Analyze G1GC Log Files body, td { font-family: sans-serif; background-color: white; font-size: 12px; margin: 8px; } tt, code, pre { font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace; } h1 { font-size:2.2em; } h2 { font-size:1.8em; } h3 { font-size:1.4em; } h4 { font-size:1.0em; } h5 { font-size:0.9em; } h6 { font-size:0.8em; } a:visited { color: rgb(50%, 0%, 50%); } pre { margin-top: 0; max-width: 95%; border: 1px solid #ccc; white-space: pre-wrap; } pre code { display: block; padding: 0.5em; } code.r, code.cpp { background-color: #F8F8F8; } table, td, th { border: none; } blockquote { color:#666666; margin:0; padding-left: 1em; border-left: 0.5em #EEE solid; } hr { height: 0px; border-bottom: none; border-top-width: thin; border-top-style: dotted; border-top-color: #999999; } @media print { * { background: transparent !important; color: black !important; filter:none !important; -ms-filter: none !important; } body { font-size:12pt; max-width:100%; } a, a:visited { text-decoration: underline; } hr { visibility: hidden; page-break-before: always; } pre, blockquote { padding-right: 1em; page-break-inside: avoid; } tr, img { page-break-inside: avoid; } img { max-width: 100% !important; } @page :left { margin: 15mm 20mm 15mm 10mm; } @page :right { margin: 15mm 10mm 15mm 20mm; } p, h2, h3 { orphans: 3; widows: 3; } h2, h3 { page-break-after: avoid; } } pre .operator, pre .paren { color: rgb(104, 118, 135) } pre .literal { color: rgb(88, 72, 246) } pre .number { color: rgb(0, 0, 205); } pre .comment { color: rgb(76, 136, 107); } pre .keyword { color: rgb(0, 0, 255); } pre .identifier { color: rgb(0, 0, 0); } pre .string { color: rgb(3, 106, 7); } var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("")}while(p!=v.node);s.splice(r,1);while(r'+M[0]+""}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L1){O=D[D.length-2].cN?"":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.rr.keyword_count+r.r){r=s}if(s.keyword_count+s.rp.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((]+|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML=""+y.value+"";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p|=||=||=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"|=||   Using R to Analyze G1GC Log Files   Using R to Analyze G1GC Log Files Introduction Working in Oracle Platform Integration gives an engineer opportunities to work on a wide array of technologies. My team’s goal is to make Oracle applications run best on the Solaris/SPARC platform. When looking for bottlenecks in a modern applications, one needs to be aware of not only how the CPUs and operating system are executing, but also network, storage, and in some cases, the Java Virtual Machine. I was recently presented with about 1.5 GB of Java Garbage First Garbage Collector log file data. If you’re not familiar with the subject, you might want to review Garbage First Garbage Collector Tuning by Monica Beckwith. The customer had been running Java HotSpot 1.6.0_31 to host a web application server. I was told that the Solaris/SPARC server was running a Java process launched using a commmand line that included the following flags: -d64 -Xms9g -Xmx9g -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -XX:InitiatingHeapOccupancyPercent=80 -XX:PermSize=256m -XX:MaxPermSize=256m -XX:+PrintGC -XX:+PrintGCTimeStamps -XX:+PrintHeapAtGC -XX:+PrintGCDateStamps -XX:+PrintFlagsFinal -XX:+DisableExplicitGC -XX:+UnlockExperimentalVMOptions -XX:ParallelGCThreads=8 Several sources on the internet indicate that if I were to print out the 1.5 GB of log files, it would require enough paper to fill the bed of a pick up truck. Of course, it would be fruitless to try to scan the log files by hand. Tools will be required to summarize the contents of the log files. Others have encountered large Java garbage collection log files. There are existing tools to analyze the log files: IBM’s GC toolkit The chewiebug GCViewer gchisto HPjmeter Instead of using one of the other tools listed, I decide to parse the log files with standard Unix tools, and analyze the data with R. Data Cleansing The log files arrived in two different formats. I guess that the difference is that one set of log files was generated using a more verbose option, maybe -XX:+PrintHeapAtGC, and the other set of log files was generated without that option. Format 1 In some of the log files, the log files with the less verbose format, a single trace, i.e. the report of a singe garbage collection event, looks like this: {Heap before GC invocations=12280 (full 61): garbage-first heap total 9437184K, used 7499918K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 1 young (4096K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. 2014-05-14T07:24:00.988-0700: 60586.353: [GC pause (young) 7324M->7320M(9216M), 0.1567265 secs] Heap after GC invocations=12281 (full 61): garbage-first heap total 9437184K, used 7496533K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 0 young (0K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. } A simple grep can be used to extract a summary: $ grep "\[ GC pause (young" g1gc.log 2014-05-13T13:24:35.091-0700: 3.109: [GC pause (young) 20M->5029K(9216M), 0.0146328 secs] 2014-05-13T13:24:35.440-0700: 3.459: [GC pause (young) 9125K->6077K(9216M), 0.0086723 secs] 2014-05-13T13:24:37.581-0700: 5.599: [GC pause (young) 25M->8470K(9216M), 0.0203820 secs] 2014-05-13T13:24:42.686-0700: 10.704: [GC pause (young) 44M->15M(9216M), 0.0288848 secs] 2014-05-13T13:24:48.941-0700: 16.958: [GC pause (young) 51M->20M(9216M), 0.0491244 secs] 2014-05-13T13:24:56.049-0700: 24.066: [GC pause (young) 92M->26M(9216M), 0.0525368 secs] 2014-05-13T13:25:34.368-0700: 62.383: [GC pause (young) 602M->68M(9216M), 0.1721173 secs] But that format wasn't easily read into R, so I needed to be a bit more tricky. I used the following Unix command to create a summary file that was easy for R to read. $ echo "SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime" $ grep "\[GC pause (young" g1gc.log | grep -v mark | sed -e 's/[A-SU-z\(\),]/ /g' -e 's/->/ /' -e 's/: / /g' | more SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime 2014-05-13T13:24:35.091-0700 3.109 20 5029 9216 0.0146328 2014-05-13T13:24:35.440-0700 3.459 9125 6077 9216 0.0086723 2014-05-13T13:24:37.581-0700 5.599 25 8470 9216 0.0203820 2014-05-13T13:24:42.686-0700 10.704 44 15 9216 0.0288848 2014-05-13T13:24:48.941-0700 16.958 51 20 9216 0.0491244 2014-05-13T13:24:56.049-0700 24.066 92 26 9216 0.0525368 2014-05-13T13:25:34.368-0700 62.383 602 68 9216 0.1721173 Format 2 In some of the log files, the log files with the more verbose format, a single trace, i.e. the report of a singe garbage collection event, was more complicated than Format 1. Here is a text file with an example of a single G1GC trace in the second format. As you can see, it is quite complicated. It is nice that there is so much information available, but the level of detail can be overwhelming. I wrote this awk script (download) to summarize each trace on a single line. #!/usr/bin/env awk -f BEGIN { printf("SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize\n") } ###################### # Save count data from lines that are at the start of each G1GC trace. # Each trace starts out like this: # {Heap before GC invocations=14 (full 0): # garbage-first heap total 9437184K, used 325496K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) ###################### /{Heap.*full/{ gsub ( "\\)" , "" ); nf=split($0,a,"="); split(a[2],b," "); getline; if ( match($0, "first") ) { G1GC=1; IncrementalCount=b[1]; FullCount=substr( b[3], 1, length(b[3])-1 ); } else { G1GC=0; } } ###################### # Pull out time stamps that are in lines with this format: # 2014-05-12T14:02:06.025-0700: 94.312: [GC pause (young), 0.08870154 secs] ###################### /GC pause/ { DateTime=$1; SecondsSinceLaunch=substr($2, 1, length($2)-1); } ###################### # Heap sizes are in lines that look like this: # [ 4842M->4838M(9216M)] ###################### /\[ .*]$/ { gsub ( "\\[" , "" ); gsub ( "\ \]" , "" ); gsub ( "->" , " " ); gsub ( "\\( " , " " ); gsub ( "\ \)" , " " ); split($0,a," "); if ( split(a[1],b,"M") > 1 ) {BeforeSize=b[1]*1024;} if ( split(a[1],b,"K") > 1 ) {BeforeSize=b[1];} if ( split(a[2],b,"M") > 1 ) {AfterSize=b[1]*1024;} if ( split(a[2],b,"K") > 1 ) {AfterSize=b[1];} if ( split(a[3],b,"M") > 1 ) {TotalSize=b[1]*1024;} if ( split(a[3],b,"K") > 1 ) {TotalSize=b[1];} } ###################### # Emit an output line when you find input that looks like this: # [Times: user=1.41 sys=0.08, real=0.24 secs] ###################### /\[Times/ { if (G1GC==1) { gsub ( "," , "" ); split($2,a,"="); UserTime=a[2]; split($3,a,"="); SysTime=a[2]; split($4,a,"="); RealTime=a[2]; print DateTime,SecondsSinceLaunch,IncrementalCount,FullCount,UserTime,SysTime,RealTime,BeforeSize,AfterSize,TotalSize; G1GC=0; } } The resulting summary is about 25X smaller that the original file, but still difficult for a human to digest. SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ... 2014-05-12T18:36:34.669-0700: 3985.744 561 0 0.57 0.06 0.16 1724416 1720320 9437184 2014-05-12T18:36:34.839-0700: 3985.914 562 0 0.51 0.06 0.19 1724416 1720320 9437184 2014-05-12T18:36:35.069-0700: 3986.144 563 0 0.60 0.04 0.27 1724416 1721344 9437184 2014-05-12T18:36:35.354-0700: 3986.429 564 0 0.33 0.04 0.09 1725440 1722368 9437184 2014-05-12T18:36:35.545-0700: 3986.620 565 0 0.58 0.04 0.17 1726464 1722368 9437184 2014-05-12T18:36:35.726-0700: 3986.801 566 0 0.43 0.05 0.12 1726464 1722368 9437184 2014-05-12T18:36:35.856-0700: 3986.930 567 0 0.30 0.04 0.07 1726464 1723392 9437184 2014-05-12T18:36:35.947-0700: 3987.023 568 0 0.61 0.04 0.26 1727488 1723392 9437184 2014-05-12T18:36:36.228-0700: 3987.302 569 0 0.46 0.04 0.16 1731584 1724416 9437184 Reading the Data into R Once the GC log data had been cleansed, either by processing the first format with the shell script, or by processing the second format with the awk script, it was easy to read the data into R. g1gc.df = read.csv("summary.txt", row.names = NULL, stringsAsFactors=FALSE,sep="") str(g1gc.df) ## 'data.frame': 8307 obs. of 10 variables: ## $ row.names : chr "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ... ## $ SecondsSinceLaunch: num 1.16 1.47 1.97 3.83 6.1 ... ## $ IncrementalCount : int 0 1 2 3 4 5 6 7 8 9 ... ## $ FullCount : int 0 0 0 0 0 0 0 0 0 0 ... ## $ UserTime : num 0.11 0.05 0.04 0.21 0.08 0.26 0.31 0.33 0.34 0.56 ... ## $ SysTime : num 0.04 0.01 0.01 0.05 0.01 0.06 0.07 0.06 0.07 0.09 ... ## $ RealTime : num 0.02 0.02 0.01 0.04 0.02 0.04 0.05 0.04 0.04 0.06 ... ## $ BeforeSize : int 8192 5496 5768 22528 24576 43008 34816 53248 55296 93184 ... ## $ AfterSize : int 1400 1672 2557 4907 7072 14336 16384 18432 19456 21504 ... ## $ TotalSize : int 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 ... head(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount ## 1 2014-05-12T14:00:32.868-0700: 1.161 0 ## 2 2014-05-12T14:00:33.179-0700: 1.472 1 ## 3 2014-05-12T14:00:33.677-0700: 1.969 2 ## 4 2014-05-12T14:00:35.538-0700: 3.830 3 ## 5 2014-05-12T14:00:37.811-0700: 6.103 4 ## 6 2014-05-12T14:00:41.428-0700: 9.720 5 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 1 0 0.11 0.04 0.02 8192 1400 9437184 ## 2 0 0.05 0.01 0.02 5496 1672 9437184 ## 3 0 0.04 0.01 0.01 5768 2557 9437184 ## 4 0 0.21 0.05 0.04 22528 4907 9437184 ## 5 0 0.08 0.01 0.02 24576 7072 9437184 ## 6 0 0.26 0.06 0.04 43008 14336 9437184 Basic Statistics Once the data has been read into R, simple statistics are very easy to generate. All of the numbers from high school statistics are available via simple commands. For example, generate a summary of every column: summary(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount FullCount ## Length:8307 Min. : 1 Min. : 0 Min. : 0.0 ## Class :character 1st Qu.: 9977 1st Qu.:2048 1st Qu.: 0.0 ## Mode :character Median :12855 Median :4136 Median : 12.0 ## Mean :12527 Mean :4156 Mean : 31.6 ## 3rd Qu.:15758 3rd Qu.:6262 3rd Qu.: 61.0 ## Max. :55484 Max. :8391 Max. :113.0 ## UserTime SysTime RealTime BeforeSize ## Min. :0.040 Min. :0.0000 Min. : 0.0 Min. : 5476 ## 1st Qu.:0.470 1st Qu.:0.0300 1st Qu.: 0.1 1st Qu.:5137920 ## Median :0.620 Median :0.0300 Median : 0.1 Median :6574080 ## Mean :0.751 Mean :0.0355 Mean : 0.3 Mean :5841855 ## 3rd Qu.:0.920 3rd Qu.:0.0400 3rd Qu.: 0.2 3rd Qu.:7084032 ## Max. :3.370 Max. :1.5600 Max. :488.1 Max. :8696832 ## AfterSize TotalSize ## Min. : 1380 Min. :9437184 ## 1st Qu.:5002752 1st Qu.:9437184 ## Median :6559744 Median :9437184 ## Mean :5785454 Mean :9437184 ## 3rd Qu.:7054336 3rd Qu.:9437184 ## Max. :8482816 Max. :9437184 Q: What is the total amount of User CPU time spent in garbage collection? sum(g1gc.df$UserTime) ## [1] 6236 As you can see, less than two hours of CPU time was spent in garbage collection. Is that too much? To find the percentage of time spent in garbage collection, divide the number above by total_elapsed_time*CPU_count. In this case, there are a lot of CPU’s and it turns out the the overall amount of CPU time spent in garbage collection isn’t a problem when viewed in isolation. When calculating rates, i.e. events per unit time, you need to ask yourself if the rate is homogenous across the time period in the log file. Does the log file include spikes of high activity that should be separately analyzed? Averaging in data from nights and weekends with data from business hours may alias problems. If you have a reason to suspect that the garbage collection rates include peaks and valleys that need independent analysis, see the “Time Series” section, below. Q: How much garbage is collected on each pass? The amount of heap space that is recovered per GC pass is surprisingly low: At least one collection didn’t recover any data. (“Min.=0”) 25% of the passes recovered 3MB or less. (“1st Qu.=3072”) Half of the GC passes recovered 4MB or less. (“Median=4096”) The average amount recovered was 56MB. (“Mean=56390”) 75% of the passes recovered 36MB or less. (“3rd Qu.=36860”) At least one pass recovered 2GB. (“Max.=2121000”) g1gc.df$Delta = g1gc.df$BeforeSize - g1gc.df$AfterSize summary(g1gc.df$Delta) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0 3070 4100 56400 36900 2120000 Q: What is the maximum User CPU time for a single collection? The worst garbage collection (“Max.”) is many standard deviations away from the mean. The data appears to be right skewed. summary(g1gc.df$UserTime) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.040 0.470 0.620 0.751 0.920 3.370 sd(g1gc.df$UserTime) ## [1] 0.3966 Basic Graphics Once the data is in R, it is trivial to plot the data with formats including dot plots, line charts, bar charts (simple, stacked, grouped), pie charts, boxplots, scatter plots histograms, and kernel density plots. Histogram of User CPU Time per Collection I don't think that this graph requires any explanation. hist(g1gc.df$UserTime, main="User CPU Time per Collection", xlab="Seconds", ylab="Frequency") Box plot to identify outliers When the initial data is viewed with a box plot, you can see the one crazy outlier in the real time per GC. Save this data point for future analysis and drop the outlier so that it’s not throwing off our statistics. Now the box plot shows many outliers, which will be examined later, using times series analysis. Notice that the scale of the x-axis changes drastically once the crazy outlier is removed. par(mfrow=c(2,1)) boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(dominated by a crazy outlier)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") crazy.outlier.df=g1gc.df[g1gc.df$RealTime > 400,] g1gc.df=g1gc.df[g1gc.df$RealTime < 400,] boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(crazy outlier excluded)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") box(which = "outer", lty = "solid") Here is the crazy outlier for future analysis: crazy.outlier.df ## row.names SecondsSinceLaunch IncrementalCount ## 8233 2014-05-12T23:15:43.903-0700: 20741 8316 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 8233 112 0.55 0.42 488.1 8381440 8235008 9437184 ## Delta ## 8233 146432 R Time Series Data To analyze the garbage collection as a time series, I’ll use Z’s Ordered Observations (zoo). “zoo is the creator for an S3 class of indexed totally ordered observations which includes irregular time series.” require(zoo) ## Loading required package: zoo ## ## Attaching package: 'zoo' ## ## The following objects are masked from 'package:base': ## ## as.Date, as.Date.numeric head(g1gc.df[,1]) ## [1] "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" ## [3] "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ## [5] "2014-05-12T14:00:37.811-0700:" "2014-05-12T14:00:41.428-0700:" options("digits.secs"=3) times=as.POSIXct( g1gc.df[,1], format="%Y-%m-%dT%H:%M:%OS%z:") g1gc.z = zoo(g1gc.df[,-c(1)], order.by=times) head(g1gc.z) ## SecondsSinceLaunch IncrementalCount FullCount ## 2014-05-12 17:00:32.868 1.161 0 0 ## 2014-05-12 17:00:33.178 1.472 1 0 ## 2014-05-12 17:00:33.677 1.969 2 0 ## 2014-05-12 17:00:35.538 3.830 3 0 ## 2014-05-12 17:00:37.811 6.103 4 0 ## 2014-05-12 17:00:41.427 9.720 5 0 ## UserTime SysTime RealTime BeforeSize AfterSize ## 2014-05-12 17:00:32.868 0.11 0.04 0.02 8192 1400 ## 2014-05-12 17:00:33.178 0.05 0.01 0.02 5496 1672 ## 2014-05-12 17:00:33.677 0.04 0.01 0.01 5768 2557 ## 2014-05-12 17:00:35.538 0.21 0.05 0.04 22528 4907 ## 2014-05-12 17:00:37.811 0.08 0.01 0.02 24576 7072 ## 2014-05-12 17:00:41.427 0.26 0.06 0.04 43008 14336 ## TotalSize Delta ## 2014-05-12 17:00:32.868 9437184 6792 ## 2014-05-12 17:00:33.178 9437184 3824 ## 2014-05-12 17:00:33.677 9437184 3211 ## 2014-05-12 17:00:35.538 9437184 17621 ## 2014-05-12 17:00:37.811 9437184 17504 ## 2014-05-12 17:00:41.427 9437184 28672 Example of Two Benchmark Runs in One Log File The data in the following graph is from a different log file, not the one of primary interest to this article. I’m including this image because it is an example of idle periods followed by busy periods. It would be uninteresting to average the rate of garbage collection over the entire log file period. More interesting would be the rate of garbage collect in the two busy periods. Are they the same or different? Your production data may be similar, for example, bursts when employees return from lunch and idle times on weekend evenings, etc. Once the data is in an R Time Series, you can analyze isolated time windows. Clipping the Time Series data Flashing back to our test case… Viewing the data as a time series is interesting. You can see that the work intensive time period is between 9:00 PM and 3:00 AM. Lets clip the data to the interesting period:     par(mfrow=c(2,1)) plot(g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Complete Log File", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") clipped.g1gc.z=window(g1gc.z, start=as.POSIXct("2014-05-12 21:00:00"), end=as.POSIXct("2014-05-13 03:00:00")) plot(clipped.g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Limited to Benchmark Execution", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") box(which = "outer", lty = "solid") Cumulative Incremental and Full GC count Here is the cumulative incremental and full GC count. When the line is very steep, it indicates that the GCs are repeating very quickly. Notice that the scale on the Y axis is different for full vs. incremental. plot(clipped.g1gc.z[,c(2:3)], main="Cumulative Incremental and Full GC count", xlab="Time of Day", col="#1b9e77") GC Analysis of Benchmark Execution using Time Series data In the following series of 3 graphs: The “After Size” show the amount of heap space in use after each garbage collection. Many Java objects are still referenced, i.e. alive, during each garbage collection. This may indicate that the application has a memory leak, or may indicate that the application has a very large memory footprint. Typically, an application's memory footprint plateau's in the early stage of execution. One would expect this graph to have a flat top. The steep decline in the heap space may indicate that the application crashed after 2:00. The second graph shows that the outliers in real execution time, discussed above, occur near 2:00. when the Java heap seems to be quite full. The third graph shows that Full GCs are infrequent during the first few hours of execution. The rate of Full GC's, (the slope of the cummulative Full GC line), changes near midnight.   plot(clipped.g1gc.z[,c("AfterSize","RealTime","FullCount")], xlab="Time of Day", col=c("#1b9e77","red","#1b9e77")) GC Analysis of heap recovered Each GC trace includes the amount of heap space in use before and after the individual GC event. During garbage coolection, unreferenced objects are identified, the space holding the unreferenced objects is freed, and thus, the difference in before and after usage indicates how much space has been freed. The following box plot and bar chart both demonstrate the same point - the amount of heap space freed per garbage colloection is surprisingly low. par(mfrow=c(2,1)) boxplot(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", horizontal = TRUE, col="red") hist(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", breaks=100, col="red") box(which = "outer", lty = "solid") This graph is the most interesting. The dark blue area shows how much heap is occupied by referenced Java objects. This represents memory that holds live data. The red fringe at the top shows how much data was recovered after each garbage collection. barplot(clipped.g1gc.z[,c("AfterSize","Delta")], col=c("#7570b3","#e7298a"), xlab="Time of Day", border=NA) legend("topleft", c("Live Objects","Heap Recovered on GC"), fill=c("#7570b3","#e7298a")) box(which = "outer", lty = "solid") When I discuss the data in the log files with the customer, I will ask for an explaination for the large amount of referenced data resident in the Java heap. There are two are posibilities: There is a memory leak and the amount of space required to hold referenced objects will continue to grow, limited only by the maximum heap size. After the maximum heap size is reached, the JVM will throw an “Out of Memory” exception every time that the application tries to allocate a new object. If this is the case, the aplication needs to be debugged to identify why old objects are referenced when they are no longer needed. The application has a legitimate requirement to keep a large amount of data in memory. The customer may want to further increase the maximum heap size. Another possible solution would be to partition the application across multiple cluster nodes, where each node has responsibility for managing a unique subset of the data. Conclusion In conclusion, R is a very powerful tool for the analysis of Java garbage collection log files. The primary difficulty is data cleansing so that information can be read into an R data frame. Once the data has been read into R, a rich set of tools may be used for thorough evaluation.

    Read the article

  • Telling someone to "let the world judge their development practices" without being condicending?

    - by leeand00
    There's a person in management on my team, that: Doesn't ask questions on Stack Overflow. Doesn't read development blogs. Doesn't use development best practices. This person is about to make some major decisions about the technology stack that will be used throughout the company. (I asked him what the technology stack was they were planning to use was, and it included many things that are not even development tools). How can I tell them to "Let the world's experience" judge their development practices, before they set them in stone; without being condescending or upsetting them?

    Read the article

  • How to stop an Android Service ONLY when there are no other activities in my app running?

    - by johnrock
    Is there a way I can test if there are any other activities in my app still alive? I am looking to stop a service in an onDestroy method, but only want to do this if there are no other activities from my app still alive on the stack. I have the call stop the service in the main activity's onDestroy() method. This works perfect EXCEPT that if a user launches my app, then launches a few activities in my app, then hits the home screen and RELAUNCHES my app, they will subvert my order and the main activity will now be above other activities of my app. From this state, if they hit the back button and 'back out' of my home screen they will trigger the onDestroy() method and kill the service even though there are other activities open on the stack. I want to avoid this by stopping the service ONLY if I am sure there are no other activities of mine open on the stack. Possible?

    Read the article

  • Visual Studio 2010 UML Tools. How do they integrate with the code? For small/mid size products is t

    - by punkouter
    I just got a book that goes over all the VS2010 tools. Most I have never used like load testing/web testing, UML Tools, Layer Diagrams.... Has anyone had any real world experience with using these VS2010 tools like the UML diagramming? I am wondering if it is something that would really be useful starting a new project or is it just busy work that no one ever uses once they are made? How are the UML diagrams integrated with the rest of development in VS2010 ? The last project we just made some really basic Visio diagrams but maybe this is better. Alot of VS2010 Ultimate tools are over kill (layer diagram) for small/mid level projects it seems. UML seems to be one of those things I hear about past 10 years but never seem to use.

    Read the article

  • Simple Emacs keybindings

    - by User1
    I have two operations that I do all the time in Emacs: Create a new buffer and paste the clipboard. [C-S-n] Close the current buffer. [C-S-w] Switch to the last viewed buffer [C-TAB] I feel like a keyboard acrobat when doing the first two operations. I think it would be worth trying some custom keybindings and macros. A few questions about this customization: How would I make a macro for #1? Are these good keybindings (i know this is a bit subjective, but they might be used by something popular that I don't use) Has anyone found a Ctrl-Tab macro that will act like Alt-Tab in Linux/Windows? Specifically, I want it have a stack of buffers according to the last viewed timestamp (most recent on top). I want to continue cycling through the stack until I let go of the ctrl key. When the ctrl key is released, I want the current buffer to get an updated position on the stack.

    Read the article

  • iPhone objective-c autoreleasing leaking

    - by okami
    I do this: NSString *fullpath = [[NSBundle mainBundle] pathForResource:@"text_file" ofType:@"txt"]; Why the following message appear? Is my code leaking? 2010-03-31 13:44:18.649 MJIPhone[2175:207] *** _NSAutoreleaseNoPool(): Object 0x3909ba0 of class NSPathStore2 autoreleased with no pool in place - just leaking Stack: (0x1656bf 0xc80d0 0xcf2ad 0xcee0e 0xd3327 0x2482 0x2426) 2010-03-31 13:44:18.653 MJIPhone[2175:207] *** _NSAutoreleaseNoPool(): Object 0x390b0b0 of class NSPathStore2 autoreleased with no pool in place - just leaking Stack: (0x1656bf 0xc80d0 0xc7159 0xd0c6f 0xd3421 0x2482 0x2426) 2010-03-31 13:44:18.672 MJIPhone[2175:207] *** _NSAutoreleaseNoPool(): Object 0x390d140 of class NSCFString autoreleased with no pool in place - just leaking Stack: (0x1656bf 0xc6e62 0xcec1b 0xd4386 0x24ac 0x2426)

    Read the article

  • Print stacktrace from C code with embedded lua

    - by Matt H
    If I understand this correctly, Lua by default will call the debug library "debug.traceback" when an error occurs. However, when embedding Lua into C code like done in the example here: Simple Lua API Example We only have available the error message on the top of the stack. i.e. if (status) { /* If something went wrong, error message is at the top of */ /* the stack */ fprintf(stderr, "Couldn't load file: %s\n", lua_tostring(L, -1)); /* I want to print a stacktrace here. How do I do that? */ exit(1); } How do I print the stack trace from C after the initial error?

    Read the article

  • Java and Different Types of Stacks

    - by Rarge
    Currently the only stack I know anything about is Vector, I normally use this in place of an array but I understand that there is other types of stacks and they all suit different jobs. The project I am currently working on requires me to be inserting objects in a certain position inside a stack, not always the front of the stack and I am under the impression that a Vector may not be the best class for this job. Could somebody please give me a brief description of the other types of stacks available to me with the Java language and their advantages and disadvantages? Are these names homogeneous? E.g. Are they only used in the Java language or are they used as general terms in Computer Science? Thank you

    Read the article

  • Closing several android activities simultaneously

    - by teedyay
    In my application you can navigate through several Activities until the Activity stack is quite deep. We'd like a button on every Activity that will take you straight back to the main menu - i.e. pop all Activities from the stack except the first one. I've put the button in a View that I can easily put on every Activity in the application, but I can't figure out how to close several Activities in one fell swoop. (If possible, it would be good if the View could work out how many Activities to close by itself - i.e. detect how deep on the stack its own Activity is.)

    Read the article

  • Navigation problem with view controllers.

    - by abdulsamad
    Hi All I have some problem with the my view controllers. When i have about 50 or more records in one of my table view which is below in the stack of view controllers and if i tap the back button quickly the navigation bar on the tap changes but the view does't change. For example: if i have the search controller below in the stack and detail controller up in the stack in this case on tapping the back button quickly the navigation bar comes to the search but the view controller remains on detail page. can any one can give me cause or solution of this problem. your help will be highly appreciated.

    Read the article

  • Is this a valid C statement ?

    - by Philando Gullible
    Lets say I write char c[99] = {'Stack Overflow'}; in C or C++ it does compiles fine but does this valid? By valid I meant not invoking any kind of undefined or unspecified behavior. Again if I write char c[99] = 'Stack Overflow'; gcc complains about multicharacter constant which is obvious but in the above when I am enclosing within curly brackets compiler is happy! why is it so ? I also notice that puts(c); after the first statement will output 'w' precisely the last character of a general string in-place of Stack Overflow. why so ? Could somebody explain this behavior may be separately.

    Read the article

< Previous Page | 135 136 137 138 139 140 141 142 143 144 145 146  | Next Page >