Search Results

Search found 39788 results on 1592 pages for 'action method'.

Page 150/1592 | < Previous Page | 146 147 148 149 150 151 152 153 154 155 156 157  | Next Page >

  • Handling HTTP 404 Error in ASP.NET Web API

    - by imran_ku07
            Introduction:                     Building modern HTTP/RESTful/RPC services has become very easy with the new ASP.NET Web API framework. Using ASP.NET Web API framework, you can create HTTP services which can be accessed from browsers, machines, mobile devices and other clients. Developing HTTP services is now become more easy for ASP.NET MVC developer becasue ASP.NET Web API is now included in ASP.NET MVC. In addition to developing HTTP services, it is also important to return meaningful response to client if a resource(uri) not found(HTTP 404) for a reason(for example, mistyped resource uri). It is also important to make this response centralized so you can configure all of 'HTTP 404 Not Found' resource at one place. In this article, I will show you how to handle 'HTTP 404 Not Found' at one place.         Description:                     Let's say that you are developing a HTTP RESTful application using ASP.NET Web API framework. In this application you need to handle HTTP 404 errors in a centralized location. From ASP.NET Web API point of you, you need to handle these situations, No route matched. Route is matched but no {controller} has been found on route. No type with {controller} name has been found. No matching action method found in the selected controller due to no action method start with the request HTTP method verb or no action method with IActionHttpMethodProviderRoute implemented attribute found or no method with {action} name found or no method with the matching {action} name found.                                          Now, let create a ErrorController with Handle404 action method. This action method will be used in all of the above cases for sending HTTP 404 response message to the client.  public class ErrorController : ApiController { [HttpGet, HttpPost, HttpPut, HttpDelete, HttpHead, HttpOptions, AcceptVerbs("PATCH")] public HttpResponseMessage Handle404() { var responseMessage = new HttpResponseMessage(HttpStatusCode.NotFound); responseMessage.ReasonPhrase = "The requested resource is not found"; return responseMessage; } }                     You can easily change the above action method to send some other specific HTTP 404 error response. If a client of your HTTP service send a request to a resource(uri) and no route matched with this uri on server then you can route the request to the above Handle404 method using a custom route. Put this route at the very bottom of route configuration,  routes.MapHttpRoute( name: "Error404", routeTemplate: "{*url}", defaults: new { controller = "Error", action = "Handle404" } );                     Now you need handle the case when there is no {controller} in the matching route or when there is no type with {controller} name found. You can easily handle this case and route the request to the above Handle404 method using a custom IHttpControllerSelector. Here is the definition of a custom IHttpControllerSelector, public class HttpNotFoundAwareDefaultHttpControllerSelector : DefaultHttpControllerSelector { public HttpNotFoundAwareDefaultHttpControllerSelector(HttpConfiguration configuration) : base(configuration) { } public override HttpControllerDescriptor SelectController(HttpRequestMessage request) { HttpControllerDescriptor decriptor = null; try { decriptor = base.SelectController(request); } catch (HttpResponseException ex) { var code = ex.Response.StatusCode; if (code != HttpStatusCode.NotFound) throw; var routeValues = request.GetRouteData().Values; routeValues["controller"] = "Error"; routeValues["action"] = "Handle404"; decriptor = base.SelectController(request); } return decriptor; } }                     Next, it is also required to pass the request to the above Handle404 method if no matching action method found in the selected controller due to the reason discussed above. This situation can also be easily handled through a custom IHttpActionSelector. Here is the source of custom IHttpActionSelector,  public class HttpNotFoundAwareControllerActionSelector : ApiControllerActionSelector { public HttpNotFoundAwareControllerActionSelector() { } public override HttpActionDescriptor SelectAction(HttpControllerContext controllerContext) { HttpActionDescriptor decriptor = null; try { decriptor = base.SelectAction(controllerContext); } catch (HttpResponseException ex) { var code = ex.Response.StatusCode; if (code != HttpStatusCode.NotFound && code != HttpStatusCode.MethodNotAllowed) throw; var routeData = controllerContext.RouteData; routeData.Values["action"] = "Handle404"; IHttpController httpController = new ErrorController(); controllerContext.Controller = httpController; controllerContext.ControllerDescriptor = new HttpControllerDescriptor(controllerContext.Configuration, "Error", httpController.GetType()); decriptor = base.SelectAction(controllerContext); } return decriptor; } }                     Finally, we need to register the custom IHttpControllerSelector and IHttpActionSelector. Open global.asax.cs file and add these lines,  configuration.Services.Replace(typeof(IHttpControllerSelector), new HttpNotFoundAwareDefaultHttpControllerSelector(configuration)); configuration.Services.Replace(typeof(IHttpActionSelector), new HttpNotFoundAwareControllerActionSelector());         Summary:                       In addition to building an application for HTTP services, it is also important to send meaningful centralized information in response when something goes wrong, for example 'HTTP 404 Not Found' error.  In this article, I showed you how to handle 'HTTP 404 Not Found' error in a centralized location. Hopefully you will enjoy this article too.

    Read the article

  • What do the 4 keyboard input method systems in 10.04 mean?

    - by Android Eve
    I am trying to install another language support (in addition to the default US). Checking that language checkbox in "Install / Remove Languages..." wasn't too difficult. :) But now I want to add keyboard support, too, for that language. Again, I am prompted with a nice listbox with the following 4 options: none ibus lo-gtk th-gtk But I have no idea what these mean. I googled "ubuntu 10.04 keyboard input method system none ibus lo-gtk th-gtk" but all I could find was descriptions of problems, not an actual definition. Could you please point me to a webpage where I can learn about the meanings of these 4 different methods and +'s and -'s of each?

    Read the article

  • Z600 Workstation ACPI Fan Noise

    - by dpb
    Hi -- I have an HP z600 workstation that has the FAN running full when idle. In fact, after the boot, the fan never slows down or varies. I looked in dmesg, and noticed this: [ 1.516778] ACPI Error (dsfield-0143): [CAPD] Namespace lookup failure, AE_ALREADY_EXISTS [ 1.516781] ACPI Error (psparse-0537): Method parse/execution failed [\_SB_.PCI0._OSC] (Node ffff8801b8c4e3e0), AE_ALREADY_EXISTS [ 1.516786] ACPI: Marking method _OSC as Serialized because of AE_ALREADY_EXISTS error [ 1.519868] ACPI Error (dsfield-0143): [CAPD] Namespace lookup failure, AE_ALREADY_EXISTS [ 1.519872] ACPI Error (psparse-0537): Method parse/execution failed [\_SB_.PCI0._OSC] (Node ffff8801b8c4e3e0), AE_ALREADY_EXISTS [ 1.624638] ACPI Error (dsfield-0143): [CAPD] Namespace lookup failure, AE_ALREADY_EXISTS [ 1.624642] ACPI Error (psparse-0537): Method parse/execution failed [\_SB_.PCI0._OSC] (Node ffff8801b8c4e3e0), AE_ALREADY_EXISTS [ 1.624726] ACPI Error (dsfield-0143): [CAPD] Namespace lookup failure, AE_ALREADY_EXISTS [ 1.624729] ACPI Error (psparse-0537): Method parse/execution failed [\_SB_.PCI0._OSC] (Node ffff8801b8c4e3e0), AE_ALREADY_EXISTS [ 1.624802] ACPI Error (dsfield-0143): [CAPD] Namespace lookup failure, AE_ALREADY_EXISTS [ 1.624805] ACPI Error (psparse-0537): Method parse/execution failed [\_SB_.PCI0._OSC] (Node ffff8801b8c4e3e0), AE_ALREADY_EXISTS [ 1.624895] ACPI Error (dsfield-0143): [CAPD] Namespace lookup failure, AE_ALREADY_EXISTS [ 1.624898] ACPI Error (psparse-0537): Method parse/execution failed [\_SB_.PCI0._OSC] (Node ffff8801b8c4e3e0), AE_ALREADY_EXISTS [ 1.624977] ACPI Error (dsfield-0143): [CAPD] Namespace lookup failure, AE_ALREADY_EXISTS [ 1.624981] ACPI Error (psparse-0537): Method parse/execution failed [\_SB_.PCI0._OSC] (Node ffff8801b8c4e3e0), AE_ALREADY_EXISTS [ 1.625070] ACPI Error (dsfield-0143): [CAPD] Namespace lookup failure, AE_ALREADY_EXISTS [ 1.625074] ACPI Error (psparse-0537): Method parse/execution failed [\_SB_.PCI0._OSC] (Node ffff8801b8c4e3e0), AE_ALREADY_EXISTS [ 1.625153] ACPI Error (dsfield-0143): [CAPD] Namespace lookup failure, AE_ALREADY_EXISTS [ 1.625157] ACPI Error (psparse-0537): Method parse/execution failed [\_SB_.PCI0._OSC] (Node ffff8801b8c4e3e0), AE_ALREADY_EXISTS Anyone know what could be done to fix this?

    Read the article

  • My Code Kata–A Solution Kata

    - by Glav
    There are many developers and coders out there who like to do code Kata’s to keep their coding ability up to scratch and to practice their skills. I think it is a good idea. While I like the concept, I find them dead boring and of minimal purpose. Yes, they serve to hone your skills but that’s about it. They are often quite abstract, in that they usually focus on a small problem set requiring specific solutions. It is fair enough as that is how they are designed but again, I find them quite boring. What I personally like to do is go for something a little larger and a little more fun. It takes a little more time and is not as easily executed as a kata though, but it services the same purposes from a practice perspective and allows me to continue to solve some problems that are not directly part of the initial goal. This means I can cover a broader learning range and have a bit more fun. If I am lucky, sometimes they even end up being useful tools. With that in mind, I thought I’d share my current ‘kata’. It is not really a code kata as it is too big. I prefer to think of it as a ‘solution kata’. The code is on bitbucket here. What I wanted to do was create a kind of simplistic virtual world where I can create a player, or a class, stuff it into the world, and see if it survives, and can navigate its way to the exit. Requirements were pretty simple: Must be able to define a map to describe the world using simple X,Y co-ordinates. Z co-ordinates as well if you feel like getting clever. Should have the concept of entrances, exists, solid blocks, and potentially other materials (again if you want to get clever). A coder should be able to easily write a class which will act as an inhabitant of the world. An inhabitant will receive stimulus from the world in the form of surrounding environment and be able to make a decision on action which it passes back to the ‘world’ for processing. At a minimum, an inhabitant will have sight and speed characteristics which determine how far they can ‘see’ in the world, and how fast they can move. Coders who write a really bad ‘inhabitant’ should not adversely affect the rest of world. Should allow multiple inhabitants in the world. So that was the solution I set out to act as a practice solution and a little bit of fun. It had some interesting problems to solve and I figured, if it turned out ok, I could potentially use this as a ‘developer test’ for interviews. Ask a potential coder to write a class for an inhabitant. Show the coder the map they will navigate, but also mention that we will use their code to navigate a map they have not yet seen and a little more complex. I have been playing with solution for a short time now and have it working in basic concepts. Below is a screen shot using a very basic console visualiser that shows the map, boundaries, blocks, entrance, exit and players/inhabitants. The yellow asterisks ‘*’ are the players, green ‘O’ the entrance, purple ‘^’ the exit, maroon/browny ‘#’ are solid blocks. The players can move around at different speeds, knock into each others, and make directional movement decisions based on what they see and who is around them. It has been quite fun to write and it is also quite fun to develop different players to inject into the world. The code below shows a really simple implementation of an inhabitant that can work out what to do based on stimulus from the world. It is pretty simple and just tries to move in some direction if there is nothing blocking the path. public class TestPlayer:LivingEntity { public TestPlayer() { Name = "Beta Boy"; LifeKey = Guid.NewGuid(); } public override ActionResult DecideActionToPerform(EcoDev.Core.Common.Actions.ActionContext actionContext) { try { var action = new MovementAction(); // move forward if we can if (actionContext.Position.ForwardFacingPositions.Length > 0) { if (CheckAccessibilityOfMapBlock(actionContext.Position.ForwardFacingPositions[0])) { action.DirectionToMove = MovementDirection.Forward; return action; } } if (actionContext.Position.LeftFacingPositions.Length > 0) { if (CheckAccessibilityOfMapBlock(actionContext.Position.LeftFacingPositions[0])) { action.DirectionToMove = MovementDirection.Left; return action; } } if (actionContext.Position.RearFacingPositions.Length > 0) { if (CheckAccessibilityOfMapBlock(actionContext.Position.RearFacingPositions[0])) { action.DirectionToMove = MovementDirection.Back; return action; } } if (actionContext.Position.RightFacingPositions.Length > 0) { if (CheckAccessibilityOfMapBlock(actionContext.Position.RightFacingPositions[0])) { action.DirectionToMove = MovementDirection.Right; return action; } } return action; } catch (Exception ex) { World.WriteDebugInformation("Player: "+ Name, string.Format("Player Generated exception: {0}",ex.Message)); throw ex; } } private bool CheckAccessibilityOfMapBlock(MapBlock block) { if (block == null || block.Accessibility == MapBlockAccessibility.AllowEntry || block.Accessibility == MapBlockAccessibility.AllowExit || block.Accessibility == MapBlockAccessibility.AllowPotentialEntry) { return true; } return false; } } It is simple and it seems to work well. The world implementation itself decides the stimulus context that is passed to he inhabitant to make an action decision. All movement is carried out on separate threads and timed appropriately to be as fair as possible and to cater for additional skills such as speed, and eventually maybe stamina, strength, with actions like fighting. It is pretty fun to make up random maps and see how your inhabitant does. You can download the code from here. Along the way I have played with parallel extensions to make the compute intensive stuff spread across all cores, had to heavily factor in visibility of methods and properties so design of classes was paramount, work out movement algorithms that play fairly in the world and properly favour the players with higher abilities, as well as a host of other issues. So that is my ‘solution kata’. If I keep going with it, I may develop a web interface for it where people can upload assemblies and watch their player within a web browser visualiser and maybe even a map designer. What do you do to keep the fires burning?

    Read the article

  • rhythmbox plugin code for hot key not working

    - by Bunny Rabbit
    def activate(self,shell): self.shell = shell self.copy_selected() self.action = gtk.Action ('foo','bar','baz',None) self.activate_id = self.action.connect ('activate', self.call_bk_fn,self.shell) self.action_group = gtk.ActionGroup ('hot_key_action_group') self.action_group.add_action_with_accel (self.action, "<control>E") uim = shell.get_ui_manager () uim.insert_action_group (self.action_group, 0) uim.ensure_update () def call_bk_fn(): print('hello world') i am using the above code in a plugin for rhythmbox ,and here i am trying to register the key ctr+e so that the call_bk_fn gets called whenever the key combination is pressed , but its not working why is that so ?

    Read the article

  • Understanding C# async / await (1) Compilation

    - by Dixin
    Now the async / await keywords are in C#. Just like the async and ! in F#, this new C# feature provides great convenience. There are many nice documents talking about how to use async / await in specific scenarios, like using async methods in ASP.NET 4.5 and in ASP.NET MVC 4, etc. In this article we will look at the real code working behind the syntax sugar. According to MSDN: The async modifier indicates that the method, lambda expression, or anonymous method that it modifies is asynchronous. Since lambda expression / anonymous method will be compiled to normal method, we will focus on normal async method. Preparation First of all, Some helper methods need to make up. internal class HelperMethods { internal static int Method(int arg0, int arg1) { // Do some IO. WebClient client = new WebClient(); Enumerable.Repeat("http://weblogs.asp.net/dixin", 10) .Select(client.DownloadString).ToArray(); int result = arg0 + arg1; return result; } internal static Task<int> MethodTask(int arg0, int arg1) { Task<int> task = new Task<int>(() => Method(arg0, arg1)); task.Start(); // Hot task (started task) should always be returned. return task; } internal static void Before() { } internal static void Continuation1(int arg) { } internal static void Continuation2(int arg) { } } Here Method() is a long running method doing some IO. Then MethodTask() wraps it into a Task and return that Task. Nothing special here. Await something in async method Since MethodTask() returns Task, let’s try to await it: internal class AsyncMethods { internal static async Task<int> MethodAsync(int arg0, int arg1) { int result = await HelperMethods.MethodTask(arg0, arg1); return result; } } Because we used await in the method, async must be put on the method. Now we get the first async method. According to the naming convenience, it is called MethodAsync. Of course a async method can be awaited. So we have a CallMethodAsync() to call MethodAsync(): internal class AsyncMethods { internal static async Task<int> CallMethodAsync(int arg0, int arg1) { int result = await MethodAsync(arg0, arg1); return result; } } After compilation, MethodAsync() and CallMethodAsync() becomes the same logic. This is the code of MethodAsyc(): internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MethodAsync(int arg0, int arg1) { MethodAsyncStateMachine methodAsyncStateMachine = new MethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; methodAsyncStateMachine.Builder.Start(ref methodAsyncStateMachine); return methodAsyncStateMachine.Builder.Task; } } It just creates and starts a state machine MethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Result; private TaskAwaiter<int> awaitor; void IAsyncStateMachine.MoveNext() { try { if (this.State != 0) { this.awaitor = HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaitor.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaitor, ref this); return; } } else { this.State = -1; } this.Result = this.awaitor.GetResult(); } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); return; } this.State = -2; this.Builder.SetResult(this.Result); } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine param0) { this.Builder.SetStateMachine(param0); } } The generated code has been cleaned up so it is readable and can be compiled. Several things can be observed here: The async modifier is gone, which shows, unlike other modifiers (e.g. static), there is no such IL/CLR level “async” stuff. It becomes a AsyncStateMachineAttribute. This is similar to the compilation of extension method. The generated state machine is very similar to the state machine of C# yield syntax sugar. The local variables (arg0, arg1, result) are compiled to fields of the state machine. The real code (await HelperMethods.MethodTask(arg0, arg1)) is compiled into MoveNext(): HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(). CallMethodAsync() will create and start its own state machine CallMethodAsyncStateMachine: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(CallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> CallMethodAsync(int arg0, int arg1) { CallMethodAsyncStateMachine callMethodAsyncStateMachine = new CallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; callMethodAsyncStateMachine.Builder.Start(ref callMethodAsyncStateMachine); return callMethodAsyncStateMachine.Builder.Task; } } CallMethodAsyncStateMachine has the same logic as MethodAsyncStateMachine above. The detail of the state machine will be discussed soon. Now it is clear that: async /await is a C# level syntax sugar. There is no difference to await a async method or a normal method. A method returning Task will be awaitable. State machine and continuation To demonstrate more details in the state machine, a more complex method is created: internal class AsyncMethods { internal static async Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; } } In this method: There are multiple awaits. There are code before the awaits, and continuation code after each await After compilation, this multi-await method becomes the same as above single-await methods: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; multiCallMethodAsyncStateMachine.Builder.Start(ref multiCallMethodAsyncStateMachine); return multiCallMethodAsyncStateMachine.Builder.Task; } } It creates and starts one single state machine, MultiCallMethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Arg2; public int Arg3; public int ResultOfAwait1; public int ResultOfAwait2; public int ResultToReturn; private TaskAwaiter<int> awaiter; void IAsyncStateMachine.MoveNext() { try { switch (this.State) { case -1: HelperMethods.Before(); this.awaiter = AsyncMethods.MethodAsync(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 0: this.ResultOfAwait1 = this.awaiter.GetResult(); HelperMethods.Continuation1(this.ResultOfAwait1); this.awaiter = AsyncMethods.MethodAsync(this.Arg2, this.Arg3).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 1; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 1: this.ResultOfAwait2 = this.awaiter.GetResult(); HelperMethods.Continuation2(this.ResultOfAwait2); this.ResultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; this.State = -2; this.Builder.SetResult(this.ResultToReturn); break; } } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); } } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine stateMachine) { this.Builder.SetStateMachine(stateMachine); } } The above code is already cleaned up, but there are still a lot of things. More clean up can be done, and the state machine can be very simple: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { // State: // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End public int State; public TaskCompletionSource<int> ResultToReturn; // int resultToReturn ... public int Arg0; // int Arg0 public int Arg1; // int arg1 public int Arg2; // int arg2 public int Arg3; // int arg3 public int ResultOfAwait1; // int resultOfAwait1 ... public int ResultOfAwait2; // int resultOfAwait2 ... private Task<int> currentTaskToAwait; /// <summary> /// Moves the state machine to its next state. /// </summary> void IAsyncStateMachine.MoveNext() { try { switch (this.State) { // Orginal code is splitted by "case"s: // case -1: // HelperMethods.Before(); // MethodAsync(Arg0, arg1); // case 0: // int resultOfAwait1 = await ... // HelperMethods.Continuation1(resultOfAwait1); // MethodAsync(arg2, arg3); // case 1: // int resultOfAwait2 = await ... // HelperMethods.Continuation2(resultOfAwait2); // int resultToReturn = resultOfAwait1 + resultOfAwait2; // return resultToReturn; case -1: // -1 is begin. HelperMethods.Before(); // Code before 1st await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg0, this.Arg1); // 1st task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 0. this.State = 0; IAsyncStateMachine this1 = this; // Cannot use "this" in lambda so create a local variable. this.currentTaskToAwait.ContinueWith(_ => this1.MoveNext()); // Callback break; case 0: // Now 1st await is done. this.ResultOfAwait1 = this.currentTaskToAwait.Result; // Get 1st await's result. HelperMethods.Continuation1(this.ResultOfAwait1); // Code after 1st await and before 2nd await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg2, this.Arg3); // 2nd task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 1. this.State = 1; IAsyncStateMachine this2 = this; // Cannot use "this" in lambda so create a local variable. this.currentTaskToAwait.ContinueWith(_ => this2.MoveNext()); // Callback break; case 1: // Now 2nd await is done. this.ResultOfAwait2 = this.currentTaskToAwait.Result; // Get 2nd await's result. HelperMethods.Continuation2(this.ResultOfAwait2); // Code after 2nd await. int resultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; // Code after 2nd await. // End with resultToReturn. this.State = -2; // -2 is end. this.ResultToReturn.SetResult(resultToReturn); break; } } catch (Exception exception) { // End with exception. this.State = -2; // -2 is end. this.ResultToReturn.SetException(exception); } } /// <summary> /// Configures the state machine with a heap-allocated replica. /// </summary> /// <param name="stateMachine">The heap-allocated replica.</param> [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine stateMachine) { // No core logic. } } Only Task and TaskCompletionSource are involved in this version. And MultiCallMethodAsync() can be simplified to: [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync_(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, ResultToReturn = new TaskCompletionSource<int>(), // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End State = -1 }; (multiCallMethodAsyncStateMachine as IAsyncStateMachine).MoveNext(); // Original code are in this method. return multiCallMethodAsyncStateMachine.ResultToReturn.Task; } Now the whole state machine becomes very clear - it is about callback: Original code are split into pieces by “await”s, and each piece is put into each “case” in the state machine. Here the 2 awaits split the code into 3 pieces, so there are 3 “case”s. The “piece”s are chained by callback, that is done by Builder.AwaitUnsafeOnCompleted(callback), or currentTaskToAwait.ContinueWith(callback) in the simplified code. A previous “piece” will end with a Task (which is to be awaited), when the task is done, it will callback the next “piece”. The state machine’s state works with the “case”s to ensure the code “piece”s executes one after another. Callback Since it is about callback, the simplification  can go even further – the entire state machine can be completely purged. Now MultiCallMethodAsync() becomes: internal static Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { TaskCompletionSource<int> taskCompletionSource = new TaskCompletionSource<int>(); try { // Oringinal code begins. HelperMethods.Before(); MethodAsync(arg0, arg1).ContinueWith(await1 => { int resultOfAwait1 = await1.Result; HelperMethods.Continuation1(resultOfAwait1); MethodAsync(arg2, arg3).ContinueWith(await2 => { int resultOfAwait2 = await2.Result; HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; // Oringinal code ends. taskCompletionSource.SetResult(resultToReturn); }); }); } catch (Exception exception) { taskCompletionSource.SetException(exception); } return taskCompletionSource.Task; } Please compare with the original async / await code: HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; Yeah that is the magic of C# async / await: Await is literally pretending to wait. In a await expression, a Task object will be return immediately so that caller is not blocked. The continuation code is compiled as that Task’s callback code. When that task is done, continuation code will execute. Please notice that many details inside the state machine are omitted for simplicity, like context caring, etc. If you want to have a detailed picture, please do check out the source code of AsyncTaskMethodBuilder and TaskAwaiter.

    Read the article

  • Understanding C# async / await (1) Compilation

    - by Dixin
    Now the async / await keywords are in C#. Just like the async and ! in F#, this new C# feature provides great convenience. There are many nice documents talking about how to use async / await in specific scenarios, like using async methods in ASP.NET 4.5 and in ASP.NET MVC 4, etc. In this article we will look at the real code working behind the syntax sugar. According to MSDN: The async modifier indicates that the method, lambda expression, or anonymous method that it modifies is asynchronous. Since lambda expression / anonymous method will be compiled to normal method, we will focus on normal async method. Preparation First of all, Some helper methods need to make up. internal class HelperMethods { internal static int Method(int arg0, int arg1) { // Do some IO. WebClient client = new WebClient(); Enumerable.Repeat("http://weblogs.asp.net/dixin", 10) .Select(client.DownloadString).ToArray(); int result = arg0 + arg1; return result; } internal static Task<int> MethodTask(int arg0, int arg1) { Task<int> task = new Task<int>(() => Method(arg0, arg1)); task.Start(); // Hot task (started task) should always be returned. return task; } internal static void Before() { } internal static void Continuation1(int arg) { } internal static void Continuation2(int arg) { } } Here Method() is a long running method doing some IO. Then MethodTask() wraps it into a Task and return that Task. Nothing special here. Await something in async method Since MethodTask() returns Task, let’s try to await it: internal class AsyncMethods { internal static async Task<int> MethodAsync(int arg0, int arg1) { int result = await HelperMethods.MethodTask(arg0, arg1); return result; } } Because we used await in the method, async must be put on the method. Now we get the first async method. According to the naming convenience, it is named MethodAsync. Of course a async method can be awaited. So we have a CallMethodAsync() to call MethodAsync(): internal class AsyncMethods { internal static async Task<int> CallMethodAsync(int arg0, int arg1) { int result = await MethodAsync(arg0, arg1); return result; } } After compilation, MethodAsync() and CallMethodAsync() becomes the same logic. This is the code of MethodAsyc(): internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MethodAsync(int arg0, int arg1) { MethodAsyncStateMachine methodAsyncStateMachine = new MethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; methodAsyncStateMachine.Builder.Start(ref methodAsyncStateMachine); return methodAsyncStateMachine.Builder.Task; } } It just creates and starts a state machine, MethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Result; private TaskAwaiter<int> awaitor; void IAsyncStateMachine.MoveNext() { try { if (this.State != 0) { this.awaitor = HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaitor.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaitor, ref this); return; } } else { this.State = -1; } this.Result = this.awaitor.GetResult(); } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); return; } this.State = -2; this.Builder.SetResult(this.Result); } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine param0) { this.Builder.SetStateMachine(param0); } } The generated code has been refactored, so it is readable and can be compiled. Several things can be observed here: The async modifier is gone, which shows, unlike other modifiers (e.g. static), there is no such IL/CLR level “async” stuff. It becomes a AsyncStateMachineAttribute. This is similar to the compilation of extension method. The generated state machine is very similar to the state machine of C# yield syntax sugar. The local variables (arg0, arg1, result) are compiled to fields of the state machine. The real code (await HelperMethods.MethodTask(arg0, arg1)) is compiled into MoveNext(): HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(). CallMethodAsync() will create and start its own state machine CallMethodAsyncStateMachine: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(CallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> CallMethodAsync(int arg0, int arg1) { CallMethodAsyncStateMachine callMethodAsyncStateMachine = new CallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; callMethodAsyncStateMachine.Builder.Start(ref callMethodAsyncStateMachine); return callMethodAsyncStateMachine.Builder.Task; } } CallMethodAsyncStateMachine has the same logic as MethodAsyncStateMachine above. The detail of the state machine will be discussed soon. Now it is clear that: async /await is a C# language level syntax sugar. There is no difference to await a async method or a normal method. As long as a method returns Task, it is awaitable. State machine and continuation To demonstrate more details in the state machine, a more complex method is created: internal class AsyncMethods { internal static async Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; } } In this method: There are multiple awaits. There are code before the awaits, and continuation code after each await After compilation, this multi-await method becomes the same as above single-await methods: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; multiCallMethodAsyncStateMachine.Builder.Start(ref multiCallMethodAsyncStateMachine); return multiCallMethodAsyncStateMachine.Builder.Task; } } It creates and starts one single state machine, MultiCallMethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Arg2; public int Arg3; public int ResultOfAwait1; public int ResultOfAwait2; public int ResultToReturn; private TaskAwaiter<int> awaiter; void IAsyncStateMachine.MoveNext() { try { switch (this.State) { case -1: HelperMethods.Before(); this.awaiter = AsyncMethods.MethodAsync(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 0: this.ResultOfAwait1 = this.awaiter.GetResult(); HelperMethods.Continuation1(this.ResultOfAwait1); this.awaiter = AsyncMethods.MethodAsync(this.Arg2, this.Arg3).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 1; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 1: this.ResultOfAwait2 = this.awaiter.GetResult(); HelperMethods.Continuation2(this.ResultOfAwait2); this.ResultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; this.State = -2; this.Builder.SetResult(this.ResultToReturn); break; } } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); } } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine stateMachine) { this.Builder.SetStateMachine(stateMachine); } } Once again, the above state machine code is already refactored, but it still has a lot of things. More clean up can be done if we only keep the core logic, and the state machine can become very simple: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { // State: // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End public int State; public TaskCompletionSource<int> ResultToReturn; // int resultToReturn ... public int Arg0; // int Arg0 public int Arg1; // int arg1 public int Arg2; // int arg2 public int Arg3; // int arg3 public int ResultOfAwait1; // int resultOfAwait1 ... public int ResultOfAwait2; // int resultOfAwait2 ... private Task<int> currentTaskToAwait; /// <summary> /// Moves the state machine to its next state. /// </summary> public void MoveNext() // IAsyncStateMachine member. { try { switch (this.State) { // Original code is split by "await"s into "case"s: // case -1: // HelperMethods.Before(); // MethodAsync(Arg0, arg1); // case 0: // int resultOfAwait1 = await ... // HelperMethods.Continuation1(resultOfAwait1); // MethodAsync(arg2, arg3); // case 1: // int resultOfAwait2 = await ... // HelperMethods.Continuation2(resultOfAwait2); // int resultToReturn = resultOfAwait1 + resultOfAwait2; // return resultToReturn; case -1: // -1 is begin. HelperMethods.Before(); // Code before 1st await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg0, this.Arg1); // 1st task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 0. this.State = 0; MultiCallMethodAsyncStateMachine that1 = this; // Cannot use "this" in lambda so create a local variable. this.currentTaskToAwait.ContinueWith(_ => that1.MoveNext()); break; case 0: // Now 1st await is done. this.ResultOfAwait1 = this.currentTaskToAwait.Result; // Get 1st await's result. HelperMethods.Continuation1(this.ResultOfAwait1); // Code after 1st await and before 2nd await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg2, this.Arg3); // 2nd task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 1. this.State = 1; MultiCallMethodAsyncStateMachine that2 = this; this.currentTaskToAwait.ContinueWith(_ => that2.MoveNext()); break; case 1: // Now 2nd await is done. this.ResultOfAwait2 = this.currentTaskToAwait.Result; // Get 2nd await's result. HelperMethods.Continuation2(this.ResultOfAwait2); // Code after 2nd await. int resultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; // Code after 2nd await. // End with resultToReturn. this.State = -2; // -2 is end. this.ResultToReturn.SetResult(resultToReturn); break; } } catch (Exception exception) { // End with exception. this.State = -2; // -2 is end. this.ResultToReturn.SetException(exception); } } /// <summary> /// Configures the state machine with a heap-allocated replica. /// </summary> /// <param name="stateMachine">The heap-allocated replica.</param> [DebuggerHidden] public void SetStateMachine(IAsyncStateMachine stateMachine) // IAsyncStateMachine member. { // No core logic. } } Only Task and TaskCompletionSource are involved in this version. And MultiCallMethodAsync() can be simplified to: [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, ResultToReturn = new TaskCompletionSource<int>(), // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End State = -1 }; multiCallMethodAsyncStateMachine.MoveNext(); // Original code are moved into this method. return multiCallMethodAsyncStateMachine.ResultToReturn.Task; } Now the whole state machine becomes very clean - it is about callback: Original code are split into pieces by “await”s, and each piece is put into each “case” in the state machine. Here the 2 awaits split the code into 3 pieces, so there are 3 “case”s. The “piece”s are chained by callback, that is done by Builder.AwaitUnsafeOnCompleted(callback), or currentTaskToAwait.ContinueWith(callback) in the simplified code. A previous “piece” will end with a Task (which is to be awaited), when the task is done, it will callback the next “piece”. The state machine’s state works with the “case”s to ensure the code “piece”s executes one after another. Callback If we focus on the point of callback, the simplification  can go even further – the entire state machine can be completely purged, and we can just keep the code inside MoveNext(). Now MultiCallMethodAsync() becomes: internal static Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { TaskCompletionSource<int> taskCompletionSource = new TaskCompletionSource<int>(); try { // Oringinal code begins. HelperMethods.Before(); MethodAsync(arg0, arg1).ContinueWith(await1 => { int resultOfAwait1 = await1.Result; HelperMethods.Continuation1(resultOfAwait1); MethodAsync(arg2, arg3).ContinueWith(await2 => { int resultOfAwait2 = await2.Result; HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; // Oringinal code ends. taskCompletionSource.SetResult(resultToReturn); }); }); } catch (Exception exception) { taskCompletionSource.SetException(exception); } return taskCompletionSource.Task; } Please compare with the original async / await code: HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; Yeah that is the magic of C# async / await: Await is not to wait. In a await expression, a Task object will be return immediately so that execution is not blocked. The continuation code is compiled as that Task’s callback code. When that task is done, continuation code will execute. Please notice that many details inside the state machine are omitted for simplicity, like context caring, etc. If you want to have a detailed picture, please do check out the source code of AsyncTaskMethodBuilder and TaskAwaiter.

    Read the article

  • Using the ASP.NET Cache to cache data in a Model or Business Object layer, without a dependency on System.Web in the layer - Part One.

    - by Rhames
    ASP.NET applications can make use of the System.Web.Caching.Cache object to cache data and prevent repeated expensive calls to a database or other store. However, ideally an application should make use of caching at the point where data is retrieved from the database, which typically is inside a Business Objects or Model layer. One of the key features of using a UI pattern such as Model-View-Presenter (MVP) or Model-View-Controller (MVC) is that the Model and Presenter (or Controller) layers are developed without any knowledge of the UI layer. Introducing a dependency on System.Web into the Model layer would break this independence of the Model from the View. This article gives a solution to this problem, using dependency injection to inject the caching implementation into the Model layer at runtime. This allows caching to be used within the Model layer, without any knowledge of the actual caching mechanism that will be used. Create a sample application to use the caching solution Create a test SQL Server database This solution uses a SQL Server database with the same Sales data used in my previous post on calculating running totals. The advantage of using this data is that it gives nice slow queries that will exaggerate the effect of using caching! To create the data, first create a new SQL database called CacheSample. Next run the following script to create the Sale table and populate it: USE CacheSample GO   CREATE TABLE Sale(DayCount smallint, Sales money) CREATE CLUSTERED INDEX ndx_DayCount ON Sale(DayCount) go INSERT Sale VALUES (1,120) INSERT Sale VALUES (2,60) INSERT Sale VALUES (3,125) INSERT Sale VALUES (4,40)   DECLARE @DayCount smallint, @Sales money SET @DayCount = 5 SET @Sales = 10   WHILE @DayCount < 5000  BEGIN  INSERT Sale VALUES (@DayCount,@Sales)  SET @DayCount = @DayCount + 1  SET @Sales = @Sales + 15  END Next create a stored procedure to calculate the running total, and return a specified number of rows from the Sale table, using the following script: USE [CacheSample] GO   SET ANSI_NULLS ON GO   SET QUOTED_IDENTIFIER ON GO   -- ============================================= -- Author:        Robin -- Create date: -- Description:   -- ============================================= CREATE PROCEDURE [dbo].[spGetRunningTotals]       -- Add the parameters for the stored procedure here       @HighestDayCount smallint = null AS BEGIN       -- SET NOCOUNT ON added to prevent extra result sets from       -- interfering with SELECT statements.       SET NOCOUNT ON;         IF @HighestDayCount IS NULL             SELECT @HighestDayCount = MAX(DayCount) FROM dbo.Sale                   DECLARE @SaleTbl TABLE (DayCount smallint, Sales money, RunningTotal money)         DECLARE @DayCount smallint,                   @Sales money,                   @RunningTotal money         SET @RunningTotal = 0       SET @DayCount = 0         DECLARE rt_cursor CURSOR       FOR       SELECT DayCount, Sales       FROM Sale       ORDER BY DayCount         OPEN rt_cursor         FETCH NEXT FROM rt_cursor INTO @DayCount,@Sales         WHILE @@FETCH_STATUS = 0 AND @DayCount <= @HighestDayCount        BEGIN        SET @RunningTotal = @RunningTotal + @Sales        INSERT @SaleTbl VALUES (@DayCount,@Sales,@RunningTotal)        FETCH NEXT FROM rt_cursor INTO @DayCount,@Sales        END         CLOSE rt_cursor       DEALLOCATE rt_cursor         SELECT DayCount, Sales, RunningTotal       FROM @SaleTbl   END   GO   Create the Sample ASP.NET application In Visual Studio create a new solution and add a class library project called CacheSample.BusinessObjects and an ASP.NET web application called CacheSample.UI. The CacheSample.BusinessObjects project will contain a single class to represent a Sale data item, with all the code to retrieve the sales from the database included in it for simplicity (normally I would at least have a separate Repository or other object that is responsible for retrieving data, and probably a data access layer as well, but for this sample I want to keep it simple). The C# code for the Sale class is shown below: using System; using System.Collections.Generic; using System.Data; using System.Data.SqlClient;   namespace CacheSample.BusinessObjects {     public class Sale     {         public Int16 DayCount { get; set; }         public decimal Sales { get; set; }         public decimal RunningTotal { get; set; }           public static IEnumerable<Sale> GetSales(int? highestDayCount)         {             List<Sale> sales = new List<Sale>();               SqlParameter highestDayCountParameter = new SqlParameter("@HighestDayCount", SqlDbType.SmallInt);             if (highestDayCount.HasValue)                 highestDayCountParameter.Value = highestDayCount;             else                 highestDayCountParameter.Value = DBNull.Value;               string connectionStr = System.Configuration.ConfigurationManager .ConnectionStrings["CacheSample"].ConnectionString;               using(SqlConnection sqlConn = new SqlConnection(connectionStr))             using (SqlCommand sqlCmd = sqlConn.CreateCommand())             {                 sqlCmd.CommandText = "spGetRunningTotals";                 sqlCmd.CommandType = CommandType.StoredProcedure;                 sqlCmd.Parameters.Add(highestDayCountParameter);                   sqlConn.Open();                   using (SqlDataReader dr = sqlCmd.ExecuteReader())                 {                     while (dr.Read())                     {                         Sale newSale = new Sale();                         newSale.DayCount = dr.GetInt16(0);                         newSale.Sales = dr.GetDecimal(1);                         newSale.RunningTotal = dr.GetDecimal(2);                           sales.Add(newSale);                     }                 }             }               return sales;         }     } }   The static GetSale() method makes a call to the spGetRunningTotals stored procedure and then reads each row from the returned SqlDataReader into an instance of the Sale class, it then returns a List of the Sale objects, as IEnnumerable<Sale>. A reference to System.Configuration needs to be added to the CacheSample.BusinessObjects project so that the connection string can be read from the web.config file. In the CacheSample.UI ASP.NET project, create a single web page called ShowSales.aspx, and make this the default start up page. This page will contain a single button to call the GetSales() method and a label to display the results. The html mark up and the C# code behind are shown below: ShowSales.aspx <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="ShowSales.aspx.cs" Inherits="CacheSample.UI.ShowSales" %>   <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">   <html xmlns="http://www.w3.org/1999/xhtml"> <head runat="server">     <title>Cache Sample - Show All Sales</title> </head> <body>     <form id="form1" runat="server">     <div>         <asp:Button ID="btnTest1" runat="server" onclick="btnTest1_Click"             Text="Get All Sales" />         &nbsp;&nbsp;&nbsp;         <asp:Label ID="lblResults" runat="server"></asp:Label>         </div>     </form> </body> </html>   ShowSales.aspx.cs using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Web.UI; using System.Web.UI.WebControls;   using CacheSample.BusinessObjects;   namespace CacheSample.UI {     public partial class ShowSales : System.Web.UI.Page     {         protected void Page_Load(object sender, EventArgs e)         {         }           protected void btnTest1_Click(object sender, EventArgs e)         {             System.Diagnostics.Stopwatch stopWatch = new System.Diagnostics.Stopwatch();             stopWatch.Start();               var sales = Sale.GetSales(null);               var lastSales = sales.Last();               stopWatch.Stop();               lblResults.Text = string.Format( "Count of Sales: {0}, Last DayCount: {1}, Total Sales: {2}. Query took {3} ms", sales.Count(), lastSales.DayCount, lastSales.RunningTotal, stopWatch.ElapsedMilliseconds);         }       } }   Finally we need to add a connection string to the CacheSample SQL Server database, called CacheSample, to the web.config file: <?xmlversion="1.0"?>   <configuration>    <connectionStrings>     <addname="CacheSample"          connectionString="data source=.\SQLEXPRESS;Integrated Security=SSPI;Initial Catalog=CacheSample"          providerName="System.Data.SqlClient" />  </connectionStrings>    <system.web>     <compilationdebug="true"targetFramework="4.0" />  </system.web>   </configuration>   Run the application and click the button a few times to see how long each call to the database takes. On my system, each query takes about 450ms. Next I shall look at a solution to use the ASP.NET caching to cache the data returned by the query, so that subsequent requests to the GetSales() method are much faster. Adding Data Caching Support I am going to create my caching support in a separate project called CacheSample.Caching, so the next step is to add a class library to the solution. We shall be using the application configuration to define the implementation of our caching system, so we need a reference to System.Configuration adding to the project. ICacheProvider<T> Interface The first step in adding caching to our application is to define an interface, called ICacheProvider, in the CacheSample.Caching project, with methods to retrieve any data from the cache or to retrieve the data from the data source if it is not present in the cache. Dependency Injection will then be used to inject an implementation of this interface at runtime, allowing the users of the interface (i.e. the CacheSample.BusinessObjects project) to be completely unaware of how the caching is actually implemented. As data of any type maybe retrieved from the data source, it makes sense to use generics in the interface, with a generic type parameter defining the data type associated with a particular instance of the cache interface implementation. The C# code for the ICacheProvider interface is shown below: using System; using System.Collections.Generic;   namespace CacheSample.Caching {     public interface ICacheProvider     {     }       public interface ICacheProvider<T> : ICacheProvider     {         T Fetch(string key, Func<T> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry);           IEnumerable<T> Fetch(string key, Func<IEnumerable<T>> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry);     } }   The empty non-generic interface will be used as a type in a Dictionary generic collection later to store instances of the ICacheProvider<T> implementation for reuse, I prefer to use a base interface when doing this, as I think the alternative of using object makes for less clear code. The ICacheProvider<T> interface defines two overloaded Fetch methods, the difference between these is that one will return a single instance of the type T and the other will return an IEnumerable<T>, providing support for easy caching of collections of data items. Both methods will take a key parameter, which will uniquely identify the cached data, a delegate of type Func<T> or Func<IEnumerable<T>> which will provide the code to retrieve the data from the store if it is not present in the cache, and absolute or relative expiry policies to define when a cached item should expire. Note that at present there is no support for cache dependencies, but I shall be showing a method of adding this in part two of this article. CacheProviderFactory Class We need a mechanism of creating instances of our ICacheProvider<T> interface, using Dependency Injection to get the implementation of the interface. To do this we shall create a CacheProviderFactory static class in the CacheSample.Caching project. This factory will provide a generic static method called GetCacheProvider<T>(), which shall return instances of ICacheProvider<T>. We can then call this factory method with the relevant data type (for example the Sale class in the CacheSample.BusinessObject project) to get a instance of ICacheProvider for that type (e.g. call CacheProviderFactory.GetCacheProvider<Sale>() to get the ICacheProvider<Sale> implementation). The C# code for the CacheProviderFactory is shown below: using System; using System.Collections.Generic;   using CacheSample.Caching.Configuration;   namespace CacheSample.Caching {     public static class CacheProviderFactory     {         private static Dictionary<Type, ICacheProvider> cacheProviders = new Dictionary<Type, ICacheProvider>();         private static object syncRoot = new object();           ///<summary>         /// Factory method to create or retrieve an implementation of the  /// ICacheProvider interface for type <typeparamref name="T"/>.         ///</summary>         ///<typeparam name="T">  /// The type that this cache provider instance will work with  ///</typeparam>         ///<returns>An instance of the implementation of ICacheProvider for type  ///<typeparamref name="T"/>, as specified by the application  /// configuration</returns>         public static ICacheProvider<T> GetCacheProvider<T>()         {             ICacheProvider<T> cacheProvider = null;             // Get the Type reference for the type parameter T             Type typeOfT = typeof(T);               // Lock the access to the cacheProviders dictionary             // so multiple threads can work with it             lock (syncRoot)             {                 // First check if an instance of the ICacheProvider implementation  // already exists in the cacheProviders dictionary for the type T                 if (cacheProviders.ContainsKey(typeOfT))                     cacheProvider = (ICacheProvider<T>)cacheProviders[typeOfT];                 else                 {                     // There is not already an instance of the ICacheProvider in       // cacheProviders for the type T                     // so we need to create one                       // Get the Type reference for the application's implementation of       // ICacheProvider from the configuration                     Type cacheProviderType = Type.GetType(CacheProviderConfigurationSection.Current. CacheProviderType);                     if (cacheProviderType != null)                     {                         // Now get a Type reference for the Cache Provider with the                         // type T generic parameter                         Type typeOfCacheProviderTypeForT = cacheProviderType.MakeGenericType(new Type[] { typeOfT });                         if (typeOfCacheProviderTypeForT != null)                         {                             // Create the instance of the Cache Provider and add it to // the cacheProviders dictionary for future use                             cacheProvider = (ICacheProvider<T>)Activator. CreateInstance(typeOfCacheProviderTypeForT);                             cacheProviders.Add(typeOfT, cacheProvider);                         }                     }                 }             }               return cacheProvider;                 }     } }   As this code uses Activator.CreateInstance() to create instances of the ICacheProvider<T> implementation, which is a slow process, the factory class maintains a Dictionary of the previously created instances so that a cache provider needs to be created only once for each type. The type of the implementation of ICacheProvider<T> is read from a custom configuration section in the application configuration file, via the CacheProviderConfigurationSection class, which is described below. CacheProviderConfigurationSection Class The implementation of ICacheProvider<T> will be specified in a custom configuration section in the application’s configuration. To handle this create a folder in the CacheSample.Caching project called Configuration, and add a class called CacheProviderConfigurationSection to this folder. This class will extend the System.Configuration.ConfigurationSection class, and will contain a single string property called CacheProviderType. The C# code for this class is shown below: using System; using System.Configuration;   namespace CacheSample.Caching.Configuration {     internal class CacheProviderConfigurationSection : ConfigurationSection     {         public static CacheProviderConfigurationSection Current         {             get             {                 return (CacheProviderConfigurationSection) ConfigurationManager.GetSection("cacheProvider");             }         }           [ConfigurationProperty("type", IsRequired=true)]         public string CacheProviderType         {             get             {                 return (string)this["type"];             }         }     } }   Adding Data Caching to the Sales Class We now have enough code in place to add caching to the GetSales() method in the CacheSample.BusinessObjects.Sale class, even though we do not yet have an implementation of the ICacheProvider<T> interface. We need to add a reference to the CacheSample.Caching project to CacheSample.BusinessObjects so that we can use the ICacheProvider<T> interface within the GetSales() method. Once the reference is added, we can first create a unique string key based on the method name and the parameter value, so that the same cache key is used for repeated calls to the method with the same parameter values. Then we get an instance of the cache provider for the Sales type, using the CacheProviderFactory, and pass the existing code to retrieve the data from the database as the retrievalMethod delegate in a call to the Cache Provider Fetch() method. The C# code for the modified GetSales() method is shown below: public static IEnumerable<Sale> GetSales(int? highestDayCount) {     string cacheKey = string.Format("CacheSample.BusinessObjects.GetSalesWithCache({0})", highestDayCount);       return CacheSample.Caching.CacheProviderFactory. GetCacheProvider<Sale>().Fetch(cacheKey,         delegate()         {             List<Sale> sales = new List<Sale>();               SqlParameter highestDayCountParameter = new SqlParameter("@HighestDayCount", SqlDbType.SmallInt);             if (highestDayCount.HasValue)                 highestDayCountParameter.Value = highestDayCount;             else                 highestDayCountParameter.Value = DBNull.Value;               string connectionStr = System.Configuration.ConfigurationManager. ConnectionStrings["CacheSample"].ConnectionString;               using (SqlConnection sqlConn = new SqlConnection(connectionStr))             using (SqlCommand sqlCmd = sqlConn.CreateCommand())             {                 sqlCmd.CommandText = "spGetRunningTotals";                 sqlCmd.CommandType = CommandType.StoredProcedure;                 sqlCmd.Parameters.Add(highestDayCountParameter);                   sqlConn.Open();                   using (SqlDataReader dr = sqlCmd.ExecuteReader())                 {                     while (dr.Read())                     {                         Sale newSale = new Sale();                         newSale.DayCount = dr.GetInt16(0);                         newSale.Sales = dr.GetDecimal(1);                         newSale.RunningTotal = dr.GetDecimal(2);                           sales.Add(newSale);                     }                 }             }               return sales;         },         null,         new TimeSpan(0, 10, 0)); }     This example passes the code to retrieve the Sales data from the database to the Cache Provider as an anonymous method, however it could also be written as a lambda. The main advantage of using an anonymous function (method or lambda) is that the code inside the anonymous function can access the parameters passed to the GetSales() method. Finally the absolute expiry is set to null, and the relative expiry set to 10 minutes, to indicate that the cache entry should be removed 10 minutes after the last request for the data. As the ICacheProvider<T> has a Fetch() method that returns IEnumerable<T>, we can simply return the results of the Fetch() method to the caller of the GetSales() method. This should be all that is needed for the GetSales() method to now retrieve data from a cache after the first time the data has be retrieved from the database. Implementing a ASP.NET Cache Provider The final step is to actually implement the ICacheProvider<T> interface, and add the implementation details to the web.config file for the dependency injection. The cache provider implementation needs to have access to System.Web. Therefore it could be placed in the CacheSample.UI project, or in its own project that has a reference to System.Web. Implementing the Cache Provider in a separate project is my favoured approach. Create a new project inside the solution called CacheSample.CacheProvider, and add references to System.Web and CacheSample.Caching to this project. Add a class to the project called AspNetCacheProvider. Make the class a generic class by adding the generic parameter <T> and indicate that the class implements ICacheProvider<T>. The C# code for the AspNetCacheProvider class is shown below: using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Web.Caching;   using CacheSample.Caching;   namespace CacheSample.CacheProvider {     public class AspNetCacheProvider<T> : ICacheProvider<T>     {         #region ICacheProvider<T> Members           public T Fetch(string key, Func<T> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry)         {             return FetchAndCache<T>(key, retrieveData, absoluteExpiry, relativeExpiry);         }           public IEnumerable<T> Fetch(string key, Func<IEnumerable<T>> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry)         {             return FetchAndCache<IEnumerable<T>>(key, retrieveData, absoluteExpiry, relativeExpiry);         }           #endregion           #region Helper Methods           private U FetchAndCache<U>(string key, Func<U> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry)         {             U value;             if (!TryGetValue<U>(key, out value))             {                 value = retrieveData();                 if (!absoluteExpiry.HasValue)                     absoluteExpiry = Cache.NoAbsoluteExpiration;                   if (!relativeExpiry.HasValue)                     relativeExpiry = Cache.NoSlidingExpiration;                   HttpContext.Current.Cache.Insert(key, value, null, absoluteExpiry.Value, relativeExpiry.Value);             }             return value;         }           private bool TryGetValue<U>(string key, out U value)         {             object cachedValue = HttpContext.Current.Cache.Get(key);             if (cachedValue == null)             {                 value = default(U);                 return false;             }             else             {                 try                 {                     value = (U)cachedValue;                     return true;                 }                 catch                 {                     value = default(U);                     return false;                 }             }         }           #endregion       } }   The two interface Fetch() methods call a private method called FetchAndCache(). This method first checks for a element in the HttpContext.Current.Cache with the specified cache key, and if so tries to cast this to the specified type (either T or IEnumerable<T>). If the cached element is found, the FetchAndCache() method simply returns it. If it is not found in the cache, the method calls the retrievalMethod delegate to get the data from the data source, and then adds this to the HttpContext.Current.Cache. The final step is to add the AspNetCacheProvider class to the relevant custom configuration section in the CacheSample.UI.Web.Config file. To do this there needs to be a <configSections> element added as the first element in <configuration>. This will match a custom section called <cacheProvider> with the CacheProviderConfigurationSection. Then we add a <cacheProvider> element, with a type property set to the fully qualified assembly name of the AspNetCacheProvider class, as shown below: <?xmlversion="1.0"?>   <configuration>  <configSections>     <sectionname="cacheProvider" type="CacheSample.Base.Configuration.CacheProviderConfigurationSection, CacheSample.Base" />  </configSections>    <connectionStrings>     <addname="CacheSample"          connectionString="data source=.\SQLEXPRESS;Integrated Security=SSPI;Initial Catalog=CacheSample"          providerName="System.Data.SqlClient" />  </connectionStrings>    <cacheProvidertype="CacheSample.CacheProvider.AspNetCacheProvider`1, CacheSample.CacheProvider, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null">  </cacheProvider>    <system.web>     <compilationdebug="true"targetFramework="4.0" />  </system.web>   </configuration>   One point to note is that the fully qualified assembly name of the AspNetCacheProvider class includes the notation `1 after the class name, which indicates that it is a generic class with a single generic type parameter. The CacheSample.UI project needs to have references added to CacheSample.Caching and CacheSample.CacheProvider so that the actual application is aware of the relevant cache provider implementation. Conclusion After implementing this solution, you should have a working cache provider mechanism, that will allow the middle and data access layers to implement caching support when retrieving data, without any knowledge of the actually caching implementation. If the UI is not ASP.NET based, if for example it is Winforms or WPF, the implementation of ICacheProvider<T> would be written around whatever technology is available. It could even be a standalone caching system that takes full responsibility for adding and removing items from a global store. The next part of this article will show how this caching mechanism may be extended to provide support for cache dependencies, such as the System.Web.Caching.SqlCacheDependency. Another possible extension would be to cache the cache provider implementations instead of storing them in a static Dictionary in the CacheProviderFactory. This would prevent a build up of seldom used cache providers in the application memory, as they could be removed from the cache if not used often enough, although in reality there are probably unlikely to be vast numbers of cache provider implementation instances, as most applications do not have a massive number of business object or model types.

    Read the article

  • Is a cluster the most cost effective redundancy method for windows server 2003?

    - by Ryan
    We had a server with bad ram which caused a long outage while they figured it out and our client facing apps had to go down for a while. We are coming up with a solution for instant fail-over but are not sure what the most cost effective method would be. Is a windows server cluster the best method for this? Also note we are using Parallels Virtuozzo if that makes any difference here. We found Parallels has a documented method for setting this up but it said it required a Domain Controller as well as a Fiber connection to shared storage, is all that really needed? Thanks.

    Read the article

  • Removing Menu Items from Window Tabs

    - by Geertjan
    So you're working on your NetBeans Platform application and you notice that when you right-click on tabs in the predefined windows, e.g., the Projects window, you see a long list of popup menus. For whatever the reason is, you decide you don't want those popup menus. You right-click the application and go to the Branding dialog. There you uncheck the checkboxes that are unchecked below: As you can see above, you've removed three features, all of them related to closing the windows in your application. Therefore, "Close" and "Close Group" are now gone from the list of popup menus: But that's not enough. You also don't want the popup menus that relate to maximizing and minimizing the predefined windows, so you uncheck those checkboxes that relate to that: And, hey, now they're gone too: Next, you decide to remove the feature for floating, i.e., undocking the windows from the main window: And now they're gone too: However, even when you uncheck all the remaining checkboxes, as shown here... You're still left with those last few pesky popup menu items that just will not go away no matter what you do: The reason for the above? Those actions are hardcoded into the action list, which is a bug. Until it is fixed, here's a handy workaround: Set an implementation dependency on "Core - Windows" (core.window). That is, set a dependency and then specify that it is an implementation dependency, i.e., that you'll be using an internal class, not one of the official APIs. In one of your existing modules, or in a new one, make sure you have (in addition to the above) a dependency on Lookup API and Window System API. And then, add the class below to the module: import javax.swing.Action; import org.netbeans.core.windows.actions.ActionsFactory; import org.openide.util.lookup.ServiceProvider; import org.openide.windows.Mode; import org.openide.windows.TopComponent; @ServiceProvider(service = ActionsFactory.class) public class EmptyActionsFactory extends ActionsFactory { @Override public Action[] createPopupActions(TopComponent tc, Action[] actions) { return new Action[]{}; } @Override public Action[] createPopupActions(Mode mode, Action[] actions) { return new Action[]{}; } } Hurray. Farewell to superfluous popup menu items on your window tabs. In the screenshot below, the tab of the Projects window is being right-clicked and no popup menu items are shown, which is true for all the other windows, those that are predefined as well as those that you add afterwards:

    Read the article

  • Using PreApplicationStartMethod for ASP.NET 4.0 Application to Initialize assemblies

    - by ChrisD
    Sometimes your ASP.NET application needs to hook up some code before even the Application is started. Assemblies supports a custom attribute called PreApplicationStartMethod which can be applied to any assembly that should be loaded to your ASP.NET application, and the ASP.NET engine will call the method you specify within it before actually running any of code defined in the application. Lets discuss how to use it using Steps : 1. Add an assembly to an application and add this custom attribute to the AssemblyInfo.cs. Remember, the method you speicify for initialize should be public static void method without any argument. Lets define a method Initialize. You need to write : [assembly:PreApplicationStartMethod(typeof(MyInitializer.InitializeType), "InitializeApp")] 2. After you define this to an assembly you need to add some code inside InitializeType.InitializeApp method within the assembly. public static class InitializeType {     public static void InitializeApp()     {           // Initialize application     } } 3. You must reference this class library so that when the application starts and ASP.NET starts loading the dependent assemblies, it will call the method InitializeApp automatically. Warning Even though you can use this attribute easily, you should be aware that you can define these kind of method in all of your assemblies that you reference, but there is no guarantee in what order each of the method to be called. Hence it is recommended to define this method to be isolated and without side effect of other dependent assemblies. The method InitializeApp will be called way before the Application_start event or even before the App_code is compiled. This attribute is mainly used to write code for registering assemblies or build providers. Read Documentation I hope this post would come helpful.

    Read the article

  • Is there an antipattern to describe this method of coding?

    - by P.Brian.Mackey
    I have a codebase where the programmer tended to wrap things up in areas that don't make sense. For example, given an Error log we have you can log via ErrorLog.Log(ex, "friendly message"); He added various other means to accomplish the exact same task. E.G. SomeClass.Log(ex, "friendly message"); Which simply turns around and calls the first method. This adds levels of complexity with no added benefit. Is there an anti-pattern to describe this?

    Read the article

  • protected abstract override Foo(); &ndash; er... what?

    - by Muljadi Budiman
    A couple of weeks back, a co-worker was pondering a situation he was facing.  He was looking at the following class hierarchy: abstract class OriginalBase { protected virtual void Test() { } } abstract class SecondaryBase : OriginalBase { } class FirstConcrete : SecondaryBase { } class SecondConcrete : SecondaryBase { } Basically, the first 2 classes are abstract classes, but the OriginalBase class has Test implemented as a virtual method.  What he needed was to force concrete class implementations to provide a proper body for the Test method, but he can’t do mark the method as abstract since it is already implemented in the OriginalBase class. One way to solve this is to hide the original implementation and then force further derived classes to properly implemented another method that will replace it.  The code will look like the following: abstract class OriginalBase { protected virtual void Test() { } } abstract class SecondaryBase : OriginalBase { protected sealed override void Test() { Test2(); } protected abstract void Test2(); } class FirstConcrete : SecondaryBase { // Have to override Test2 here } class SecondConcrete : SecondaryBase { // Have to override Test2 here } With the above code, SecondaryBase class will seal the Test method so it can no longer be overridden.  Then it also made an abstract method Test2 available, which will force the concrete classes to override and provide the proper implementation.  Calling Test will properly call the proper Test2 implementation in each respective concrete classes. I was wondering if there’s a way to tell the compiler to treat the Test method in SecondaryBase as abstract, and apparently you can, by combining the abstract and override keywords.  The code looks like the following: abstract class OriginalBase { protected virtual void Test() { } } abstract class SecondaryBase : OriginalBase { protected abstract override void Test(); } class FirstConcrete : SecondaryBase { // Have to override Test here } class SecondConcrete : SecondaryBase { // Have to override Test here } The method signature makes it look a bit funky, because most people will treat the override keyword to mean you then need to provide the implementation as well, but the effect is exactly as we desired.  The concepts are still valid: you’re overriding the Test method from its original implementation in the OriginalBase class, but you don’t want to implement it, rather you want to classes that derive from SecondaryBase to provide the proper implementation, so you also make it as an abstract method. I don’t think I’ve ever seen this before in the wild, so it was pretty neat to find that the compiler does support this case.

    Read the article

  • Key Promoter for NetBeans

    - by Geertjan
    Whenever a menu item or toolbar button is clicked, it would be handy if NetBeans were to tell you 'hey, did you know, you can actually do this via the following keyboard shortcut', if a keyboard shortcut exists for the invoked action. After all, ultimately, a lot of developers would like to do everything with the keyboard and a key promoter feature of this kind is a helpful tool in learning the keyboard shortcuts related to the menu items and toolbar buttons you're clicking with your mouse. Above, you see the balloon message that appears for each menu item and toolbar button that you click and, below, you can see a list of all the actions that have been logged in the Notifications window. That happens automatically when an action is invoked (assuming the plugin described in this blog entry is installed), showing the display name of the action, together with the keyboard shortcut, which is presented as a hyperlink which, when clicked, re-invokes the action (which might not always be relevant, especially for context-sensitive actions, though for others it is quite useful, e.g., reopen the New Project wizard). And here's all the code. Notice that I'm hooking into the 'uigestures' functionality, which was suggested by Tim Boudreau, and I have added my own handler, which was suggested by Jaroslav Tulach, which gets a specific parameter from each new log entry handled by the 'org.netbeans.ui.actions' logger, makes sure that the parameter actually is an action, and then gets the relevant info from the action, if the relevant info exists: @OnShowingpublic class Startable implements Runnable {    @Override    public void run() {        Logger logger = Logger.getLogger("org.netbeans.ui.actions");        logger.addHandler(new StreamHandler() {            @Override            public void publish(LogRecord record) {                Object[] parameters = record.getParameters();                if (parameters[2] instanceof Action) {                    Action a = (Action) parameters[2];                    JMenuItem menu = new JMenuItem();                    Mnemonics.setLocalizedText(                            menu,                             a.getValue(Action.NAME).toString());                    String name = menu.getText();                    if (a.getValue(Action.ACCELERATOR_KEY) != null) {                        String accelerator = a.getValue(Action.ACCELERATOR_KEY).toString();                        NotificationDisplayer.getDefault().notify(                                name,                                 new ImageIcon("/org/nb/kp/car.png"),                                 accelerator,                                 new ActionListener() {                            @Override                            public void actionPerformed(ActionEvent e) {                                a.actionPerformed(e);                            }                        });                    }                }            }        });    }} Indeed, inspired by the Key Promoter in IntelliJ IDEA. Interested in trying it out? If there's interest in it, I'll put it in the NetBeans Plugin Portal.

    Read the article

  • Is there an application or method to log of data transfers?

    - by Gaurav_Java
    My friend asked me for some files that I let him take from my system. I did not see he doing that. Then I was left with a doubt: what extra files or data did he take from my system? I was thinking is here any application or method which shows what data is copied to which USB (if name available then shows name or otherwise device id) and what data is being copied to Ubuntu machine . It is some like history of USB and System data. I think this feature exists in KDE This will really useful in may ways. It provides real time and monitoring utility to monitor USB mass storage devices activities on any machine.

    Read the article

  • Rhythmbox plugin code for hot key not working - why?

    - by Bunny Rabbit
    def activate(self,shell): self.shell = shell self.copy_selected() self.action = gtk.Action ('foo','bar','baz',None) self.activate_id = self.action.connect ('activate', self.call_bk_fn,self.shell) self.action_group = gtk.ActionGroup ('hot_key_action_group') self.action_group.add_action_with_accel (self.action, "<control>E") uim = shell.get_ui_manager () uim.insert_action_group (self.action_group, 0) uim.ensure_update () def call_bk_fn(): print('hello world') I am using the above code in a plugin for Rhythmbox and here I am trying to register the key Ctrl+E so that the call_bk_fn gets called whenever the key combination is pressed but its not working. Why is that so ?

    Read the article

  • Reliable method for google analytics tracking for print advertising campaign?

    - by chrisjlee
    A client is looking to track advertising clicks through a newspaper ad to measure success. They have rigid business requirements that it will be a unique domain... e.g. foowidgetsnews.net instead of foodwidgets.com/contact-form-page.php What is the most reliable method of building redirected url to a landing page so it will be tracked in google analytics as a direct hit from the newspaper? Finally, we would like to track the foowidgetsnews.net as the main url in google analytics because 301 redirect isn't tracked in google analytics like the way we would like it to.

    Read the article

  • Is the php method md5() secure? Can it be used for passwords? [migrated]

    - by awiebe
    So executing a php script causes the form values to be sent to the server, and then they are processed. If you want to store a password in your db than you want it to be a cryptographic hash(so your client side is secure, can you generate an md5 using php securely( without submitting the user:password pair in the clear), or is there an alternative standard method of doing this, without having the unecrypted pasword leaving the clients machine? Sorry if this is a stupid question I'm kind of new at this. I think this can be done somehow using https, and on that note if a site's login page does not use https, does that mean that while the databse storage is secure, the transportation is not?

    Read the article

  • How to forward a 'saved' request stream to another Action within the same controller?

    - by Moe Howard
    We have a need to chunk-up large http requests sent by our mobile devices. These smaller chunk streams are merged to a file on the server. Once all chunks are received we need a way to submit the saved merged request to an another method(Action) within the same controller that will process this large http request. How can this be done? The code we tried below results in the service hanging. Is there a way to do this without a round-trip? //Open merged chunked file FileStream fileStream = new FileStream(fileName, FileMode.Open, FileAccess.Read); //Read steam support variables int bytesRead = 0; byte[] buffer = new byte[1024]; //Build New Web Request. The target Action is called "Upload", this method we are in is called "UploadChunk" HttpWebRequest webRequest; webRequest = (HttpWebRequest)WebRequest.Create(Request.Url.ToString().Replace("Chunk", string.Empty)); webRequest.Method = "POST"; webRequest.ContentType = "text/xml"; webRequest.KeepAlive = true; webRequest.Timeout = 600000; webRequest.ReadWriteTimeout = 600000; webRequest.Credentials = System.Net.CredentialCache.DefaultCredentials; Stream webStream = webRequest.GetRequestStream(); //Hangs here, no errors, just hangs I have looked into using RedirectToAction and RedirecctToRoute but these methods don't fit well with what we are looking to do as we cannot edit the Request.InputStream (as it is read-only) to carry out large request stream. Thanks, Moe

    Read the article

  • How to stop MVC caching the results of invoking and action method?

    - by Trey Carroll
    I am experiencing a problem with IE caching the results of an action method. Other articles I found were related to security and the [Authorize] attribute. This problem has nothing to do with security. This is a very simple "record a vote, grab the average, return the avg and the number of votes" method. The only slightly interesting thing about it is that it is invoked via Ajax and returns a Json object. I believe that it is the Json object that is getting catched. When I run it from FireFox and watch the XHR traffic with Firebug, everything works perfectly. However, under IE 8 the "throbber" graphic doesn't ever have time to show up and the page elements that display the "new" avg and count that are being injected into the page with jQuery are never different. I need a way to tell MVC to never cache this action method. This article seems to address the problem, but I cannot understand it: http://stackoverflow.com/questions/1441467/prevent-caching-of-attributes-in-asp-net-mvc-force-attribute-execution-every-tim I need a bit more context for the solution to understand how to extend AuthorizationAttribute. Please address your answer as if you were speaking to someone who lacks a deep understanding of MVC even if that means replying with an article on some basics/prerequisites that are required. Thanks, Trey Carroll

    Read the article

  • How to remove the file suffix/extension (.jsp and .action) using the Stripes Framework?

    - by Dolph Mathews
    I'm looking to use pretty / clean URL's in my web app. I would like the following URL: http://mydomain.com/myapp/calculator .. to resolve to: com.mydomain.myapp.action.CalculatorActionBean I tried overwriting the NameBasedActionResolver with: public class CustomActionResolver extends NameBasedActionResolver { public static final String DEFAULT_BINDING_SUFFIX = "."; @Override protected String getBindingSuffix() { return DEFAULT_BINDING_SUFFIX; } @Override protected List<String> getActionBeanSuffixes() { List<String> suffixes = new ArrayList<String>(super.getActionBeanSuffixes()); suffixes.add(DEFAULT_BINDING_SUFFIX); return suffixes; } } And adding this to web.xml: <servlet-mapping> <servlet-name>StripesDispatcher</servlet-name> <url-pattern>*.</url-pattern> </servlet-mapping> Which gets me to: http://mydomain.com/myapp/Calculator. But: A stray "." is still neither pretty nor clean. The class name is still capitalized in the URL..? That still leaves me with *.jsp..? Is it even possible to get rid of both .action and .jsp?

    Read the article

  • Initial text and paperclipped-URL for action in UIActivityViewController & UIActivityItemSource?

    - by Benjamin Kreeger
    Finally been making it through Apple's (rather dismal) documentation on the new UIActivityViewController class and the UIActivityItemSource protocol, and I'm trying to send different data sets to different actions called from the activity view. To simplify things, I'm looking at two things. A Facebook posting action, which should say "Check this out!" and also attach a URL to the post (with that cute little paperclip). A Twitter posting action, which should say "Check this out, with #hashtag!" and also attach that same URL (with the same paperclip). Here's the code I've got implemented right now. - (id)activityViewController:(UIActivityViewController *)activityViewController itemForActivityType:(NSString *)activityType { if ([activityType isEqualToString:UIActivityTypePostToFacebook]) { return @"Check this out!"; } else if ([activityType isEqualToString:UIActivityTypePostToTwitter]) { return @"Check this out, with #hashtag!"; } return @""; } - (id)activityViewControllerPlaceholderItem:(UIActivityViewController *)activityViewController { return @""; } And then when I set up this activity view controller (it's in the same class), this is what I do. UIActivityViewController *activityView = [[UIActivityViewController alloc] initWithActivityItems:@[self] applicationActivities:nil]; [self presentViewController:activityView animated:YES completion:nil]; My dilemma is how to attach that NSURL object. It's relatively easy when calling the iOS 6 SL-class posting modals; you just call the individual methods to attach a URL or an image. How would I go about doing this here? I'll note that instead of returning NSString objects from -activityViewController:itemForActivityType, if I return just NSURL objects, they show up with that paperclip, with no body text in the post. If I return an array of those two items, nothing shows up at all.

    Read the article

  • ASP.NET MVC jQuery autocomplete with url.action helper in a script included in a page.

    - by Boob
    I have been building my first ASP.NET MVC web app. I have been using the jQuery autocomplete widget in a number of places like this: <head> $("#model").autocomplete({ source: '<%= Url.Action("Model", "AutoComplete") %>' }); </head> The thing is I have this jQuery code in a number of different places through my web app. So i thought I would create a seperate javascript script (script.js) where I could put this code and then just include it in the master page. Then i can put all these repeated pieces of code in that script and just call them where I need too. So I did this. My code is shown below: In the site.js script I put this function: function doAutoComplete() { $("#model").autocomplete({ source: '<%= Url.Action("Model", "AutoComplete") %>' }); } On the page I have: <head> <script src="../../Scripts/site.js" type="text/javascript"></script> doAutoComplete(); </head> But when I do this I get an Invalid Argument exception and the autocomplete doesnt work. What am I doing wrong? Any ideas?Do i need to pass something to the doAutoComplete function?

    Read the article

  • How to use Grails Spring Security Plugin to require logging in before access an action?

    - by Hoàng Long
    Hi all, I know that I can use annotation or Request mapping to restrict access to an ACTION by some specific ROLES. But now I have a different circumstance. My scenario is: every user of my site can create posts, and they can make their own post public, private, or only share to some other users. I implement sharing post by a database table PERMISSION, which specify if a user have the right to view a post or not. The problem arises here is that when a customer access a post through a direct link, how can I determine he/she have the privilege to view it? There's 3 circumstances: The post is public, so it can be viewed by anyone (include not-login user) The post is private, so only the login-owner can view it The post is sharing, it means only the login-user that is shared and the owner can view it. I want to process like this: If the requested post is public: ok. If the requested post is private/sharing: I want to redirect the customer to the login page; after logging in, the user will be re-direct to the page he wants to see. The problem here is that I can redirect the user to login controller/ auth action, but after that I don't know how to redirect it back. The link to every post is different by post_id, so I can't use SpringSecurityUtils.securityConfig.successHandler.defaultTargetUrl Could anyone know a way to do this?

    Read the article

  • Rails: Added new Action in Controller, but there is no path?

    - by Newbie
    Hello! I try to do following: A user is on his profile page. Now he edits his profile. He klicks on update and the data is saved. Now I want to redirect the user to another kind of profile-edit-page. I did the following in my users_controller.rb: def update @user = User.find(params[:id]) respond_to do |format| if @user.update_attributes(params[:user]) flash[:notice] = 'User was successfully updated.' if(@user.team_id != nil) format.html { redirect_to(@user) } else format.html { redirect_to choose_team_path } end format.xml { head :ok } else format.html { render :action => "edit" } format.xml { render :xml => @user.errors, :status => :unprocessable_entity } end end end def choose_team @user = User.find(params[:id]) end I created a view: /users/choose_team.html.erb Now I get the following error: undefined local variable or method `choose_team_path' for #<UsersController:0x1f56650> So I added choose_team to my routes.rb: map.choose_team 'choose-team', :controller => 'users', :action => 'choose_team' Now, after submitting my first edit form, it redirects me to http://localhost:3000/choose-team and I get following error: Couldn't find User without an ID What I want: If a user has no team_id, he should be redirected to my choose_team.html.erb for choosing a team, else he should be redirected to his profile/show. How to do this?

    Read the article

< Previous Page | 146 147 148 149 150 151 152 153 154 155 156 157  | Next Page >