Search Results

Search found 91480 results on 3660 pages for 'large data in sharepoint list'.

Page 151/3660 | < Previous Page | 147 148 149 150 151 152 153 154 155 156 157 158  | Next Page >

  • WCF data services - Limiting related objects returned based on critera

    - by Mike Morley
    I have an object graph consisting of a base employee object, and a set of related message objects. I am able to return the employee objects based on search criteria on the employee properties (eg team) etc. However, if I expand on the messages, I get the full collection of messages back. I would like to be able to either take the top n messages (i.e. restrict to 10 most recent) or ideally use a date range on the message objects to limit how many are brought back. So far I have not been able to figure out a way of doing this: I get an error if I attempt to filter on properties on the message (&$filter=employee/message/StartDate gives an error "No property 'StartDate' exists in type 'System.Data.Objects.DataClasses.EntityCollection`1). Attempting to use Top on the message related object doesn't work either. I have also tried using a WebGet extension that takes a string list of employee IDs. That works until the list gets too long, and then fails due to the URL getting too long (it might be possible to setup a paging mechanism on this approach)... Unfortunately the UI control I am using requires the data to be in a fairly specific hierarchical shape, so I can't easily come at this from starting on the message side and working backwards. Outside of making multiple calls does anyone know of a method to accomplish this with wcf data services? Thanks! M.

    Read the article

  • Display data FROM Sheet1 on Sheet2 based on conditional value

    - by Shawn
    Imagine a worksheet with 30 pieces of information, such as: A1= Start Date A2 = End Date A3 = Resource Name A4 = Cost .... A30 = Whatever B1 = 1/1/2010 B2 = 2/15/2010 B3 = Joe Smith B4 = $10,000.00 ... B30 = Blah Blah Now imagine a third column, C. The purpose of the third column is to determine WHICH report that row of data needs to appear in. C1 = Report 1 C2 = Report 1 and Report 2 C3 = Report 4 and Report 7 C4 = Report 1 and Report 5 ... C30 = Report 2 Each report is on Sheets 2, 3, 4, 5 and so on (depending on how many I decide to create). As you can see form my example above, some data may need to appear in multiple reports. For example, the data in Row 3 (Resource Name: Joe Smith) needs to appear in Report 4 and Report 7. That is to say, it needs to DYNAMICALLY appear on two additional worksheets. If I change the values in column C, then the reports need to update automatically. How can I create the worksheets which will serve as the reports such that they only diaplay the rows which have been "flagged" to be displayed in that report? Thanks!

    Read the article

  • Python, web log data mining for frequent patterns

    - by descent
    Hello! I need to develop a tool for web log data mining. Having many sequences of urls, requested in a particular user session (retrieved from web-application logs), I need to figure out the patterns of usage and groups (clusters) of users of the website. I am new to Data Mining, and now examining Google a lot. Found some useful info, i.e. querying Frequent Pattern Mining in Web Log Data seems to point to almost exactly similar studies. So my questions are: Are there any python-based tools that do what I need or at least smth similar? Can Orange toolkit be of any help? Can reading the book Programming Collective Intelligence be of any help? What to Google for, what to read, which relatively simple algorithms to use best? I am very limited in time (to around a week), so any help would be extremely precious. What I need is to point me into the right direction and the advice of how to accomplish the task in the shortest time. Thanks in advance!

    Read the article

  • Data Integration Solution?

    - by Shlomo
    At my company we have a number of data feeds and processing that run on any given day. The number of feeds and processing steps is starting to out-number the ability to manage it ad-hoc as it is managed currently. Is there a good solution that helps with logging and managing/scheduling dependencies? For example: A: When file x is FTP dropped into directory D1, kick off processing step B B: Load flat file into DB1 C: When file y is FTP dropped into directory D2, kick off processing Step D D: Load flat file into DB11 E: When B and D are done, churn through the data, and load new data into DB111. F: When Step E is done, launch application process P G: etc... I want those steps to run at the appropriate times, not to mention if B fails, there's no reason to run steps E & F, but I could still run C & D. When I re-run B successfully, it should trigger just E & F to re-run, not C & D. We're a .NET/C#/Sql Server shop, and I'm already familiar with SSIS. Is that really the best there is? That manages steps well, but not external dependencies, or logging. Open source (.NET) preferred, but not required.

    Read the article

  • Save many-to-one relationship from JSON into Core Data

    - by Snow Crash
    I'm wanting to save a Many-to-one relationship parsed from JSON into Core Data. The code that parses the JSON and does the insert into Core Data looks like this: for (NSDictionary *thisRecipe in recipes) { Recipe *recipe = [NSEntityDescription insertNewObjectForEntityForName:@"Recipe" inManagedObjectContext:insertionContext]; recipe.title = [thisRecipe objectForKey:@"Title"]; NSDictionary *ingredientsForRecipe = [thisRecipe objectForKey:@"Ingredients"]; NSArray *ingredientsArray = [ingredientsForRecipe objectForKey:@"Results"]; for (NSDictionary *thisIngredient in ingredientsArray) { Ingredient *ingredient = [NSEntityDescription insertNewObjectForEntityForName:@"Ingredient" inManagedObjectContext:insertionContext]; ingredient.name = [thisIngredient objectForKey:@"Name"]; } } NSSet *ingredientsSet = [NSSet ingredientsArray]; [recipe setIngredients:ingredientsSet]; Notes: "setIngredients" is a Core Data generated accessor method. There is a many-to-one relationship between Ingredients and Recipe However, when I run this I get the following error: NSCFDictionary managedObjectContext]: unrecognized selector sent to instance If I remove the last line (i.e. [recipe setIngredients:ingredientsSet];) then, taking a peek at the SQLite database, I see the Recipe and Ingredients have been stored but no relationship has been created between Recipe and Ingredients Any suggestions as to how to ensure the relationship is stored correctly?

    Read the article

  • Parallelism in .NET – Part 2, Simple Imperative Data Parallelism

    - by Reed
    In my discussion of Decomposition of the problem space, I mentioned that Data Decomposition is often the simplest abstraction to use when trying to parallelize a routine.  If a problem can be decomposed based off the data, we will often want to use what MSDN refers to as Data Parallelism as our strategy for implementing our routine.  The Task Parallel Library in .NET 4 makes implementing Data Parallelism, for most cases, very simple. Data Parallelism is the main technique we use to parallelize a routine which can be decomposed based off dataData Parallelism refers to taking a single collection of data, and having a single operation be performed concurrently on elements in the collection.  One side note here: Data Parallelism is also sometimes referred to as the Loop Parallelism Pattern or Loop-level Parallelism.  In general, for this series, I will try to use the terminology used in the MSDN Documentation for the Task Parallel Library.  This should make it easier to investigate these topics in more detail. Once we’ve determined we have a problem that, potentially, can be decomposed based on data, implementation using Data Parallelism in the TPL is quite simple.  Let’s take our example from the Data Decomposition discussion – a simple contrast stretching filter.  Here, we have a collection of data (pixels), and we need to run a simple operation on each element of the pixel.  Once we know the minimum and maximum values, we most likely would have some simple code like the following: for (int row=0; row < pixelData.GetUpperBound(0); ++row) { for (int col=0; col < pixelData.GetUpperBound(1); ++col) { pixelData[row, col] = AdjustContrast(pixelData[row, col], minPixel, maxPixel); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This simple routine loops through a two dimensional array of pixelData, and calls the AdjustContrast routine on each pixel. As I mentioned, when you’re decomposing a problem space, most iteration statements are potentially candidates for data decomposition.  Here, we’re using two for loops – one looping through rows in the image, and a second nested loop iterating through the columns.  We then perform one, independent operation on each element based on those loop positions. This is a prime candidate – we have no shared data, no dependencies on anything but the pixel which we want to change.  Since we’re using a for loop, we can easily parallelize this using the Parallel.For method in the TPL: Parallel.For(0, pixelData.GetUpperBound(0), row => { for (int col=0; col < pixelData.GetUpperBound(1); ++col) { pixelData[row, col] = AdjustContrast(pixelData[row, col], minPixel, maxPixel); } }); Here, by simply changing our first for loop to a call to Parallel.For, we can parallelize this portion of our routine.  Parallel.For works, as do many methods in the TPL, by creating a delegate and using it as an argument to a method.  In this case, our for loop iteration block becomes a delegate creating via a lambda expression.  This lets you write code that, superficially, looks similar to the familiar for loop, but functions quite differently at runtime. We could easily do this to our second for loop as well, but that may not be a good idea.  There is a balance to be struck when writing parallel code.  We want to have enough work items to keep all of our processors busy, but the more we partition our data, the more overhead we introduce.  In this case, we have an image of data – most likely hundreds of pixels in both dimensions.  By just parallelizing our first loop, each row of pixels can be run as a single task.  With hundreds of rows of data, we are providing fine enough granularity to keep all of our processors busy. If we parallelize both loops, we’re potentially creating millions of independent tasks.  This introduces extra overhead with no extra gain, and will actually reduce our overall performance.  This leads to my first guideline when writing parallel code: Partition your problem into enough tasks to keep each processor busy throughout the operation, but not more than necessary to keep each processor busy. Also note that I parallelized the outer loop.  I could have just as easily partitioned the inner loop.  However, partitioning the inner loop would have led to many more discrete work items, each with a smaller amount of work (operate on one pixel instead of one row of pixels).  My second guideline when writing parallel code reflects this: Partition your problem in a way to place the most work possible into each task. This typically means, in practice, that you will want to parallelize the routine at the “highest” point possible in the routine, typically the outermost loop.  If you’re looking at parallelizing methods which call other methods, you’ll want to try to partition your work high up in the stack – as you get into lower level methods, the performance impact of parallelizing your routines may not overcome the overhead introduced. Parallel.For works great for situations where we know the number of elements we’re going to process in advance.  If we’re iterating through an IList<T> or an array, this is a typical approach.  However, there are other iteration statements common in C#.  In many situations, we’ll use foreach instead of a for loop.  This can be more understandable and easier to read, but also has the advantage of working with collections which only implement IEnumerable<T>, where we do not know the number of elements involved in advance. As an example, lets take the following situation.  Say we have a collection of Customers, and we want to iterate through each customer, check some information about the customer, and if a certain case is met, send an email to the customer and update our instance to reflect this change.  Normally, this might look something like: foreach(var customer in customers) { // Run some process that takes some time... DateTime lastContact = theStore.GetLastContact(customer); TimeSpan timeSinceContact = DateTime.Now - lastContact; // If it's been more than two weeks, send an email, and update... if (timeSinceContact.Days > 14) { theStore.EmailCustomer(customer); customer.LastEmailContact = DateTime.Now; } } Here, we’re doing a fair amount of work for each customer in our collection, but we don’t know how many customers exist.  If we assume that theStore.GetLastContact(customer) and theStore.EmailCustomer(customer) are both side-effect free, thread safe operations, we could parallelize this using Parallel.ForEach: Parallel.ForEach(customers, customer => { // Run some process that takes some time... DateTime lastContact = theStore.GetLastContact(customer); TimeSpan timeSinceContact = DateTime.Now - lastContact; // If it's been more than two weeks, send an email, and update... if (timeSinceContact.Days > 14) { theStore.EmailCustomer(customer); customer.LastEmailContact = DateTime.Now; } }); Just like Parallel.For, we rework our loop into a method call accepting a delegate created via a lambda expression.  This keeps our new code very similar to our original iteration statement, however, this will now execute in parallel.  The same guidelines apply with Parallel.ForEach as with Parallel.For. The other iteration statements, do and while, do not have direct equivalents in the Task Parallel Library.  These, however, are very easy to implement using Parallel.ForEach and the yield keyword. Most applications can benefit from implementing some form of Data Parallelism.  Iterating through collections and performing “work” is a very common pattern in nearly every application.  When the problem can be decomposed by data, we often can parallelize the workload by merely changing foreach statements to Parallel.ForEach method calls, and for loops to Parallel.For method calls.  Any time your program operates on a collection, and does a set of work on each item in the collection where that work is not dependent on other information, you very likely have an opportunity to parallelize your routine.

    Read the article

  • Data Profiling without SSIS

    Strangely enough for a predominantly SSIS blog, this post is all about how to perform data profiling without using SSIS. Whilst the Data Profiling Task is a worthy addition, there are a couple of limitations I’ve encountered of late. The first is that it requires SQL Server 2008, and not everyone is there yet. The second is that it can only target SQL Server 2005 and above. What about older systems, which are the ones that we probably need to investigate the most, or other vendor databases such as Oracle? With these limitations in mind I did some searching to find a quick and easy alternative to help me perform some data profiling for a project I was working on recently. I only had SQL Server 2005 available, and anyway most of my target source systems were Oracle, and of course I had short timescales. I looked at several options. Some never got beyond the download stage, they failed to install or just did not run, and others provided less than I could have produced myself by spending 2 minutes writing some basic SQL queries. In the end I settled on an open source product called DataCleaner. To quote from their website: DataCleaner is an Open Source application for profiling, validating and comparing data. These activities help you administer and monitor your data quality in order to ensure that your data is useful and applicable to your business situation. DataCleaner is the free alternative to software for master data management (MDM) methodologies, data warehousing (DW) projects, statistical research, preparation for extract-transform-load (ETL) activities and more. DataCleaner is developed in Java and licensed under LGPL. As quoted above it claims to support profiling, validating and comparing data, but I didn’t really get past the profiling functions, so won’t comment on the other two. The profiling whilst not prefect certainly saved some time compared to the limited alternatives. The ability to profile heterogeneous data sources is a big advantage over the SSIS option, and I found it overall quite easy to use and performance was good. I could see it struggling at times, but actually for what it does I was impressed. It had some data type niggles with Oracle, and some metrics seem a little strange, although thankfully they were easy to augment with some SQL queries to ensure a consistent picture. The report export options didn’t do it for me, but copy and paste with a bit of Excel magic was sufficient. One initial point for me personally is that I have had limited exposure to things of the Java persuasion and whilst I normally get by fine, sometimes the simplest things can throw me. For example installing a JDBC driver, why do I have to copy files to make it all work, has nobody ever heard of an MSI? In case there are other people out there like me who have become totally indoctrinated with the Microsoft software paradigm, I’ve written a quick start guide that details every step required. Steps 1- 5 are the key ones, the rest is really an excuse for some screenshots to show you the tool. Quick Start Guide Step 1  - Download Data Cleaner. The Microsoft Windows zipped exe option, and I chose the latest stable build, currently DataCleaner 1.5.3 (final). Extract the files to a suitable location. Step 2 - Download Java. If you try and run datacleaner.exe without Java it will warn you, and then open your default browser and take you to the Java download site. Follow the installation instructions from there, normally just click Download Java a couple of times and you’re done. Step 3 - Download Microsoft SQL Server JDBC Driver. You may have SQL Server installed, but you won’t have a JDBC driver. Version 3.0 is the latest as of April 2010. There is no real installer, we are in the Java world here, but run the exe you downloaded to extract the files. The default Unzip to folder is not much help, so try a fully qualified path such as C:\Program Files\Microsoft SQL Server JDBC Driver 3.0\ to ensure you can find the files afterwards. Step 4 - If you wish to use Windows Authentication to connect to your SQL Server then first we need to copy a file so that Data Cleaner can find it. Browse to the JDBC extract location from Step 3 and drill down to the file sqljdbc_auth.dll. You will have to choose the correct directory for your processor architecture. e.g. C:\Program Files\Microsoft SQL Server JDBC Driver 3.0\sqljdbc_3.0\enu\auth\x86\sqljdbc_auth.dll. Now copy this file to the Data Cleaner extract folder you chose in Step 1. An alternative method is to edit datacleaner.cmd in the data cleaner extract folder as detailed in this data cleaner wiki topic, but I find copying the file simpler. Step 5 – Now lets run Data Cleaner, just run datacleaner.exe from the extract folder you chose in Step 1. Step 6 – Complete or skip the registration screen, and ignore the task window for now. In the main window click settings. Step 7 – In the Settings dialog, select the Database drivers tab, then click Register database driver and select the Local JAR file option. Step 8 – Browse to the JDBC driver extract location from Step 3 and drill down to select sqljdbc4.jar. e.g. C:\Program Files\Microsoft SQL Server JDBC Driver 3.0\sqljdbc_3.0\enu\sqljdbc4.jar Step 9 – Select the Database driver class as com.microsoft.sqlserver.jdbc.SQLServerDriver, and then click the Test and Save database driver button. Step 10 - You should be back at the Settings dialog with a the list of drivers that includes SQL Server. Just click Save Settings to persist all your hard work. Step 11 – Now we can start to profile some data. In the main Data Cleaner window click New Task, and then Profile from the task window. Step 12 – In the Profile window click Open Database Step 13 – Now choose the SQL Server connection string option. Selecting a connection string gives us a template like jdbc:sqlserver://<hostname>:1433;databaseName=<database>, but obviously it requires some details to be entered for example  jdbc:sqlserver://localhost:1433;databaseName=SQLBits. This will connect to the database called SQLBits on my local machine. The port may also have to be changed if using such as when you have a multiple instances of SQL Server running. If using SQL Server Authentication enter a username and password as required and then click Connect to database. You can use Window Authentication, just add integratedSecurity=true to the end of your connection string. e.g jdbc:sqlserver://localhost:1433;databaseName=SQLBits;integratedSecurity=true.  If you didn’t complete Step 4 above you will need to do so now and restart Data Cleaner before it will work. Manually setting the connection string is fine, but creating a named connection makes more sense if you will be spending any length of time profiling a specific database. As highlighted in the left-hand screen-shot, at the bottom of the dialog it includes partial instructions on how to create named connections. In the folder shown C:\Users\<Username>\.datacleaner\1.5.3, open the datacleaner-config.xml file in your editor of choice add your own details. You’ll see a sample connection in the file already, just add yours following the same pattern. e.g. <!-- Darren's Named Connections --> <bean class="dk.eobjects.datacleaner.gui.model.NamedConnection"> <property name="name" value="SQLBits Local Connection" /> <property name="driverClass" value="com.microsoft.sqlserver.jdbc.SQLServerDriver" /> <property name="connectionString" value="jdbc:sqlserver://localhost:1433;databaseName=SQLBits;integratedSecurity=true" /> <property name="tableTypes"> <list> <value>TABLE</value> <value>VIEW</value> </list> </property> </bean> Step 14 – Once back at the Profile window, you should now see your schemas, tables and/or views listed down the left hand side. Browse this tree and double-click a table to select it for profiling. You can then click Add profile, and choose some profiling options, before finally clicking Run profiling. You can see below a sample output for three of the most common profiles, click the image for full size.   I hope this has given you a taster for DataCleaner, and should help you get up and running pretty quickly.

    Read the article

  • Compress Large Video Files with DivX / Xvid and AutoGK

    - by DigitalGeekery
    Have you ever recorded home video on a camcorder only to find the video size is enormous? What if you wanted to share a video clip on YouTube or another video sharing site, but the file size was bigger than the maximum upload size? Today we’ll look at a way to compress certain video files, such as MPEG and AVI, with Auto Gordian Knot (AutoGK). AutoGK is a free application that runs on Windows. It supports Mpeg1, Mpeg2, Transport Streams, Vobs, and virtually any codec used for an .AVI file. AutoGK will accept as input the following file types: MPG, MPEG, VOB, VRO, M2V, DAT, IFO, TS, TP, TRP, M2T, and AVI. Files are output as .AVI files and are converted using the DivX or XviD codecs. Installing and Using AutoGK Download and install AutoGK (link below) Open the AutoGK. You’ll need to navigate a few wizard screens, but you can just accept the defaults.   Choose your video file by clicking on the folder to the right of the Input file text box.   Browse for and select your video file and click “Open.”   For this example, we’ll be working with an .AVI file that’s 167MB in size.   The output file is copied into the same directory as the input file by default, but you can change this if you choose. If the input file is also .AVI, AutoGK will append an _agk to the output file so that the original is not overwritten. Next, you’ll see any audio tracks listed. You can unselect the check box if you’d like to remove the audio track. You can choose one of the Predefined size options… Or, select a Custom size in MB or Target Quality in percentage. For our example, we’ll be compressing our 167MB file to 35MB. Click on Advanced Settings. Here you can choose your codec, if you have a preference, as well as output resolution and output audio. If you’d like to use the DivX codec, you’ll need to download and install it separately. (See link below) Typically you’ll want to keep the defaults. Click “OK.” Now you’re ready to add your file conversion job to the Job queue. Click Add Job to add it to the queue. You can add multiple files conversions to the job queue and  convert them in one batch. Click Start to begin the conversion process. The process will begin. You’ll be able to see the progress in the Log window on the bottom left. When the conversion is complete you’ll see a “Job finished” and the total time in the log window.   Check your output file to see it’s compressed size. Test your video just to make sure the output quality is satisfactory.   Note:  Conversion times can vary greatly depending on the size of the file and your computer hardware. Files that are several GBs in size may take several hours to compress. AutoGK is no longer being actively developed but is still a wonderful DivX/XviD conversion tool. It can also be used to compress and convert non-copy protected DVDs. Downloads AutoGordianKnot DivX (optional) Similar Articles Productive Geek Tips Use Your Mac Mini as a Media Server Part 2Make Disk Cleanup Compress Older(or Newer) Files on XPMysticgeek Blog: Exclusive Look Inside Vreel – Including Interview With Vreel Founder!Friday Fun: Watch HD Video Content with MeevidConvert a DVD Movie Directly to AVI with FairUse Wizard 2.9 TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips DVDFab 6 Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 Penolo Lets You Share Sketches On Twitter Visit Woolyss.com for Old School Games, Music and Videos Add a Custom Title in IE using Spybot or Spyware Blaster When You Need to Hail a Taxi in NYC Live Map of Marine Traffic NoSquint Remembers Site Specific Zoom Levels (Firefox)

    Read the article

  • Oracle Data Integration Solutions and the Oracle EXADATA Database Machine

    - by João Vilanova
    Oracle's data integration solutions provide a complete, open and integrated solution for building, deploying, and managing real-time data-centric architectures in operational and analytical environments. Fully integrated with and optimized for the Oracle Exadata Database Machine, Oracle's data integration solutions take data integration to the next level and delivers extremeperformance and scalability for all the enterprise data movement and transformation needs. Easy-to-use, open and standards-based Oracle's data integration solutions dramatically improve productivity, provide unparalleled efficiency, and lower the cost of ownership.You can watch a video about this subject, after clicking on the link below.DIS for EXADATA Video

    Read the article

  • Call Webservices&hellip;Maybe!?

    - by MOSSLover
    So I have been doing preliminary work for my iOS talk for a while, but did not get into the meat of the project until recently.  One day I envision my talk uploading pictures from a camera on an iPhone or iPad into SharePoint and telling people how I did it.  As you know with my Silverlight talk and any new technology, building new talks with new technologies always ends up with some pain points that you must jump over just to grab data.  So step 1 always starts out with how do we even access a webservice using the new technology. I started out watching every single SPC video available on oAuth and Rest Webservices in SharePoint 2013.  I also sent an email to Eric Shupps about some REST and 2013 examples.  The videos further confused me, because all the videos were on SharePoint hosted apps (provider and autohosted).  I did not want to create a SharePoint hosted app, but instead a mobile app outside of the SharePoint context altogether.  Nick Swan sent me his code and it was great for a starting point on how the JSON calls would look like on iOS, but I was still missing a piece.  Nick does a great job on showing how to use the REST/JSON calls in a non-MS tech, however his presentation uses the SharePoint context and can grab the SPAppToken.  At this point I had to ask the question how do you grab the SAML token outside of SharePoint 2013 in iOS using Objective-C?  After reading all the MSDN documentation, some documentation on Restkit and Objective-C/oAuth calls, and some SharePoint 2013 blog post my head was swimming.  I was dreaming about REST and iOS in SharePoint 2013.  SAML tokens were taunting me.  I was nowhere near understanding 2013. I started talking to my friend, Pedro Jimenez, who is also playing with Objective-C and went to SPC.  He found me a couple good MSDN posts with REST/JSON calls that basically showed the accessToken was all I needed (at this point I was still thinking iOS needed to be a provider hosted app which is wrong).  So then again I had to ask the SAML token question…How do you get a SAML token outside of SharePoint without the TokenHelper class? So then I started talking to people and thinking why do I need to completely avoid TokenHelper…The solution in concept is basically create a webservice in Azure wrapped into a Provider Hosted App in SharePoint.  Wictor Wilen created a helper webservice in the following blog post: http://www.wictorwilen.se/Post/How-to-do-active-authentication-to-Office-365-and-SharePoint-Online.aspx. So now I have to basically stand up the webservice, the SharePoint app wrapper, and then use Restkit to call the first webservice to grab the token and then the second webservice to pass in the token and grab some SharePoint data.  What this means is that you can no longer just pass credentials into SharePoint webservices and get data back.  You have to pass in a SAML token with every single webservice call to SharePoint.  The theory is that this token is associated with the permissions the app can handle (read, write, whatever).  It seems like a ton of pain and a lot of work, but this is step 1 in my crusade to pull some piece of data into iOS from SharePoint and show people how to do it themselves.  In the upcoming months hopefully I can get halfway to my end goal. Technorati Tags: SharePoint 2013,REST,oAuth,Objective-C,iOS

    Read the article

  • BIWA Wednesday TechCast Series - Opposition to Data Warehouse Initiatives

    - by jenny.gelhausen
    BIWA Wednesday TechCast Series - 19th Event! Opposition to Data Warehouse Initiatives Please join us for this webcast on Wednesday, March 24, 12 noon Eastern or check your local area's time Webcast is open to clients, prospects and partners. No matter how good your technology and technical skills, organizational issues can derail a data warehousing or BI project. Therefore BIWA presents a vital topic that crosses product boundaries: organizational resistance to data warehouse initiatives - how to recognize it and what to do about it. Many a DW/BI professional has been surprised by organizational resistance to DW/BI initiatives. Yet real organizational imperatives may be behind this apparently irrational behavior. Based on in-depth interviews with IT professionals, industry consultants, and power users, our speaker Bruce Jenks will present his research findings about what drives organizational resistance to data warehouse initiatives. The talk will cover specific behaviors that can signal organizational resistance to a data warehouse program and what organizations have done to address such resistance. Presenter: Bruce Jenks of Dun and Bradstreet Bruce Jenks has over 20 years experience in data warehousing and business intelligence, much of it as a consultant to large organizations spanning the US. Bruce's data warehousing clients have included firms such as Sprint, Gallo Wines, Southern California Edison, The Gap, and Safeway. He started his data warehousing career at Metaphor Computers, a pioneering DW/BI firm from which a number of industry luminaries sprang including Ralph Kimball (author of The Data Warehouse Toolkit ). Bruce continued his data warehousing career at HP, Stanford University and other firms. Bruce is currently completing his doctorate in business administration at Golden Gate University, and today's material arises from his doctoral research. He is also a principal consultant for Dun and Bradstreet. Audio Dial-In: 866 682 4770 Audio Meeting ID: 1683901 Audio Meeting Passcode: 334451 Web Conference: Please register at https://www1.gotomeeting.com/register/807185273 After you register you will be provided with a link to the TechCast. Invitation to Speakers: All BIWA members and Oracle professionals (experts, end users, managers, DBAs, developers, data analysts, ISVs, partners, etc.) may submit abstracts for 45 minute technical webcasts to our Oracle BIWA (IOUG SIG) Community. Submit your BIWA TechCast abstract today! BIWA is a worldwide forum with over 2000 members who are business intelligence, warehousing and analytics professionals. BIWA presents information, experiences and best practices in successfully deploying Oracle Database-centric BI, Data Warehousing, and Analytics products, features and Options--the Oracle Database "BIWA" platform. Attendance Information & Replays at the BIWA website: oraclebiwa.org var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www."); document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E")); try { var pageTracker = _gat._getTracker("UA-13185312-1"); pageTracker._trackPageview(); } catch(err) {}

    Read the article

  • SQL Monitor’s data repository

    - by Chris Lambrou
    As one of the developers of SQL Monitor, I often get requests passed on by our support people from customers who are looking to dip into SQL Monitor’s own data repository, in order to pull out bits of information that they’re interested in. Since there’s clearly interest out there in playing around directly with the data repository, I thought I’d write some blog posts to start to describe how it all works. The hardest part for me is knowing where to begin, since the schema of the data repository is pretty big. Hmmm… I guess it’s tricky for anyone to write anything but the most trivial of queries against the data repository without understanding the hierarchy of monitored objects, so perhaps my first post should start there. I always imagine that whenever a customer fires up SSMS and starts to explore their SQL Monitor data repository database, they become immediately bewildered by the schema – that was certainly my experience when I did so for the first time. The following query shows the number of different object types in the data repository schema: SELECT type_desc, COUNT(*) AS [count] FROM sys.objects GROUP BY type_desc ORDER BY type_desc;  type_desccount 1DEFAULT_CONSTRAINT63 2FOREIGN_KEY_CONSTRAINT181 3INTERNAL_TABLE3 4PRIMARY_KEY_CONSTRAINT190 5SERVICE_QUEUE3 6SQL_INLINE_TABLE_VALUED_FUNCTION381 7SQL_SCALAR_FUNCTION2 8SQL_STORED_PROCEDURE100 9SYSTEM_TABLE41 10UNIQUE_CONSTRAINT54 11USER_TABLE193 12VIEW124 With 193 tables, 124 views, 100 stored procedures and 381 table valued functions, that’s quite a hefty schema, and when you browse through it using SSMS, it can be a bit daunting at first. So, where to begin? Well, let’s narrow things down a bit and only look at the tables belonging to the data schema. That’s where all of the collected monitoring data is stored by SQL Monitor. The following query gives us the names of those tables: SELECT sch.name + '.' + obj.name AS [name] FROM sys.objects obj JOIN sys.schemas sch ON sch.schema_id = obj.schema_id WHERE obj.type_desc = 'USER_TABLE' AND sch.name = 'data' ORDER BY sch.name, obj.name; This query still returns 110 tables. I won’t show them all here, but let’s have a look at the first few of them:  name 1data.Cluster_Keys 2data.Cluster_Machine_ClockSkew_UnstableSamples 3data.Cluster_Machine_Cluster_StableSamples 4data.Cluster_Machine_Keys 5data.Cluster_Machine_LogicalDisk_Capacity_StableSamples 6data.Cluster_Machine_LogicalDisk_Keys 7data.Cluster_Machine_LogicalDisk_Sightings 8data.Cluster_Machine_LogicalDisk_UnstableSamples 9data.Cluster_Machine_LogicalDisk_Volume_StableSamples 10data.Cluster_Machine_Memory_Capacity_StableSamples 11data.Cluster_Machine_Memory_UnstableSamples 12data.Cluster_Machine_Network_Capacity_StableSamples 13data.Cluster_Machine_Network_Keys 14data.Cluster_Machine_Network_Sightings 15data.Cluster_Machine_Network_UnstableSamples 16data.Cluster_Machine_OperatingSystem_StableSamples 17data.Cluster_Machine_Ping_UnstableSamples 18data.Cluster_Machine_Process_Instances 19data.Cluster_Machine_Process_Keys 20data.Cluster_Machine_Process_Owner_Instances 21data.Cluster_Machine_Process_Sightings 22data.Cluster_Machine_Process_UnstableSamples 23… There are two things I want to draw your attention to: The table names describe a hierarchy of the different types of object that are monitored by SQL Monitor (e.g. clusters, machines and disks). For each object type in the hierarchy, there are multiple tables, ending in the suffixes _Keys, _Sightings, _StableSamples and _UnstableSamples. Not every object type has a table for every suffix, but the _Keys suffix is especially important and a _Keys table does indeed exist for every object type. In fact, if we limit the query to return only those tables ending in _Keys, we reveal the full object hierarchy: SELECT sch.name + '.' + obj.name AS [name] FROM sys.objects obj JOIN sys.schemas sch ON sch.schema_id = obj.schema_id WHERE obj.type_desc = 'USER_TABLE' AND sch.name = 'data' AND obj.name LIKE '%_Keys' ORDER BY sch.name, obj.name;  name 1data.Cluster_Keys 2data.Cluster_Machine_Keys 3data.Cluster_Machine_LogicalDisk_Keys 4data.Cluster_Machine_Network_Keys 5data.Cluster_Machine_Process_Keys 6data.Cluster_Machine_Services_Keys 7data.Cluster_ResourceGroup_Keys 8data.Cluster_ResourceGroup_Resource_Keys 9data.Cluster_SqlServer_Agent_Job_History_Keys 10data.Cluster_SqlServer_Agent_Job_Keys 11data.Cluster_SqlServer_Database_BackupType_Backup_Keys 12data.Cluster_SqlServer_Database_BackupType_Keys 13data.Cluster_SqlServer_Database_CustomMetric_Keys 14data.Cluster_SqlServer_Database_File_Keys 15data.Cluster_SqlServer_Database_Keys 16data.Cluster_SqlServer_Database_Table_Index_Keys 17data.Cluster_SqlServer_Database_Table_Keys 18data.Cluster_SqlServer_Error_Keys 19data.Cluster_SqlServer_Keys 20data.Cluster_SqlServer_Services_Keys 21data.Cluster_SqlServer_SqlProcess_Keys 22data.Cluster_SqlServer_TopQueries_Keys 23data.Cluster_SqlServer_Trace_Keys 24data.Group_Keys The full object type hierarchy looks like this: Cluster Machine LogicalDisk Network Process Services ResourceGroup Resource SqlServer Agent Job History Database BackupType Backup CustomMetric File Table Index Error Services SqlProcess TopQueries Trace Group Okay, but what about the individual objects themselves represented at each level in this hierarchy? Well that’s what the _Keys tables are for. This is probably best illustrated by way of a simple example – how can I query my own data repository to find the databases on my own PC for which monitoring data has been collected? Like this: SELECT clstr._Name AS cluster_name, srvr._Name AS instance_name, db._Name AS database_name FROM data.Cluster_SqlServer_Database_Keys db JOIN data.Cluster_SqlServer_Keys srvr ON db.ParentId = srvr.Id -- Note here how the parent of a Database is a Server JOIN data.Cluster_Keys clstr ON srvr.ParentId = clstr.Id -- Note here how the parent of a Server is a Cluster WHERE clstr._Name = 'dev-chrisl2' -- This is the hostname of my own PC ORDER BY clstr._Name, srvr._Name, db._Name;  cluster_nameinstance_namedatabase_name 1dev-chrisl2SqlMonitorData 2dev-chrisl2master 3dev-chrisl2model 4dev-chrisl2msdb 5dev-chrisl2mssqlsystemresource 6dev-chrisl2tempdb 7dev-chrisl2sql2005SqlMonitorData 8dev-chrisl2sql2005TestDatabase 9dev-chrisl2sql2005master 10dev-chrisl2sql2005model 11dev-chrisl2sql2005msdb 12dev-chrisl2sql2005mssqlsystemresource 13dev-chrisl2sql2005tempdb 14dev-chrisl2sql2008SqlMonitorData 15dev-chrisl2sql2008master 16dev-chrisl2sql2008model 17dev-chrisl2sql2008msdb 18dev-chrisl2sql2008mssqlsystemresource 19dev-chrisl2sql2008tempdb These results show that I have three SQL Server instances on my machine (a default instance, one named sql2005 and one named sql2008), and each instance has the usual set of system databases, along with a database named SqlMonitorData. Basically, this is where I test SQL Monitor on different versions of SQL Server, when I’m developing. There are a few important things we can learn from this query: Each _Keys table has a column named Id. This is the primary key. Each _Keys table has a column named ParentId. A foreign key relationship is defined between each _Keys table and its parent _Keys table in the hierarchy. There are two exceptions to this, Cluster_Keys and Group_Keys, because clusters and groups live at the root level of the object hierarchy. Each _Keys table has a column named _Name. This is used to uniquely identify objects in the table within the scope of the same shared parent object. Actually, that last item isn’t always true. In some cases, the _Name column is actually called something else. For example, the data.Cluster_Machine_Services_Keys table has a column named _ServiceName instead of _Name (sorry for the inconsistency). In other cases, a name isn’t sufficient to uniquely identify an object. For example, right now my PC has multiple processes running, all sharing the same name, Chrome (one for each tab open in my web-browser). In such cases, multiple columns are used to uniquely identify an object within the scope of the same shared parent object. Well, that’s it for now. I’ve given you enough information for you to explore the _Keys tables to see how objects are stored in your own data repositories. In a future post, I’ll try to explain how monitoring data is stored for each object, using the _StableSamples and _UnstableSamples tables. If you have any questions about this post, or suggestions for future posts, just submit them in the comments section below.

    Read the article

  • SQL – Migrate Database from SQL Server to NuoDB – A Quick Tutorial

    - by Pinal Dave
    Data is growing exponentially and every organization with growing data is thinking of next big innovation in the world of Big Data. Big data is a indeed a future for every organization at one point of the time. Just like every other next big thing, big data has its own challenges and issues. The biggest challenge associated with the big data is to find the ideal platform which supports the scalability and growth of the data. If you are a regular reader of this blog, you must be familiar with NuoDB. I have been working with NuoDB for a while and their recent release is the best thus far. NuoDB is an elastically scalable SQL database that can run on local host, datacenter and cloud-based resources. A key feature of the product is that it does not require sharding (read more here). Last week, I was able to install NuoDB in less than 90 seconds and have explored their Explorer and Admin sections. You can read about my experiences in these posts: SQL – Step by Step Guide to Download and Install NuoDB – Getting Started with NuoDB SQL – Quick Start with Admin Sections of NuoDB – Manage NuoDB Database SQL – Quick Start with Explorer Sections of NuoDB – Query NuoDB Database Many SQL Authority readers have been following me in my journey to evaluate NuoDB. One of the frequently asked questions I’ve received from you is if there is any way to migrate data from SQL Server to NuoDB. The fact is that there is indeed a way to do so and NuoDB provides a fantastic tool which can help users to do it. NuoDB Migrator is a command line utility that supports the migration of Microsoft SQL Server, MySQL, Oracle, and PostgreSQL schemas and data to NuoDB. The migration to NuoDB is a three-step process: NuoDB Migrator generates a schema for a target NuoDB database It loads data into the target NuoDB database It dumps data from the source database Let’s see how we can migrate our data from SQL Server to NuoDB using a simple three-step approach. But before we do that we will create a sample database in MSSQL and later we will migrate the same database to NuoDB: Setup Step 1: Build a sample data CREATE DATABASE [Test]; CREATE TABLE [Department]( [DepartmentID] [smallint] NOT NULL, [Name] VARCHAR(100) NOT NULL, [GroupName] VARCHAR(100) NOT NULL, [ModifiedDate] [datetime] NOT NULL, CONSTRAINT [PK_Department_DepartmentID] PRIMARY KEY CLUSTERED ( [DepartmentID] ASC ) ) ON [PRIMARY]; INSERT INTO Department SELECT * FROM AdventureWorks2012.HumanResources.Department; Note that I am using the SQL Server AdventureWorks database to build this sample table but you can build this sample table any way you prefer. Setup Step 2: Install Java 64 bit Before you can begin the migration process to NuoDB, make sure you have 64-bit Java installed on your computer. This is due to the fact that the NuoDB Migrator tool is built in Java. You can download 64-bit Java for Windows, Mac OSX, or Linux from the following link: http://java.com/en/download/manual.jsp. One more thing to remember is that you make sure that the path in your environment settings is set to your JAVA_HOME directory or else the tool will not work. Here is how you can do it: Go to My Computer >> Right Click >> Select Properties >> Click on Advanced System Settings >> Click on Environment Variables >> Click on New and enter the following values. Variable Name: JAVA_HOME Variable Value: C:\Program Files\Java\jre7 Make sure you enter your Java installation directory in the Variable Value field. Setup Step 3: Install JDBC driver for SQL Server. There are two JDBC drivers available for SQL Server.  Select the one you prefer to use by following one of the two links below: Microsoft JDBC Driver jTDS JDBC Driver In this example we will be using jTDS JDBC driver. Once you download the driver, move the driver to your NuoDB installation folder. In my case, I have moved the JAR file of the driver into the C:\Program Files\NuoDB\tools\migrator\jar folder as this is my NuoDB installation directory. Now we are all set to start the three-step migration process from SQL Server to NuoDB: Migration Step 1: NuoDB Schema Generation Here is the command I use to generate a schema of my SQL Server Database in NuoDB. First I go to the folder C:\Program Files\NuoDB\tools\migrator\bin and execute the nuodb-migrator.bat file. Note that my database name is ‘test’. Additionally my username and password is also ‘test’. You can see that my SQL Server database is running on my localhost on port 1433. Additionally, the schema of the table is ‘dbo’. nuodb-migrator schema –source.driver=net.sourceforge.jtds.jdbc.Driver –source.url=jdbc:jtds:sqlserver://localhost:1433/ –source.username=test –source.password=test –source.catalog=test –source.schema=dbo –output.path=/tmp/schema.sql The above script will generate a schema of all my SQL Server tables and will put it in the folder C:\tmp\schema.sql . You can open the schema.sql file and execute this file directly in your NuoDB instance. You can follow the link here to see how you can execute the SQL script in NuoDB. Please note that if you have not yet created the schema in the NuoDB database, you should create it before executing this step. Step 2: Generate the Dump File of the Data Once you have recreated your schema in NuoDB from SQL Server, the next step is very easy. Here we create a CSV format dump file, which will contain all the data from all the tables from the SQL Server database. The command to do so is very similar to the above command. Be aware that this step may take a bit of time based on your database size. nuodb-migrator dump –source.driver=net.sourceforge.jtds.jdbc.Driver –source.url=jdbc:jtds:sqlserver://localhost:1433/ –source.username=test –source.password=test –source.catalog=test –source.schema=dbo –output.type=csv –output.path=/tmp/dump.cat Once the above command is successfully executed you can find your CSV file in the C:\tmp\ folder. However, you do not have to do anything manually. The third and final step will take care of completing the migration process. Migration Step 3: Load the Data into NuoDB After building schema and taking a dump of the data, the very next step is essential and crucial. It will take the CSV file and load it into the NuoDB database. nuodb-migrator load –target.url=jdbc:com.nuodb://localhost:48004/mytest –target.schema=dbo –target.username=test –target.password=test –input.path=/tmp/dump.cat Please note that in the above script we are now targeting the NuoDB database, which we have already created with the name of “MyTest”. If the database does not exist, create it manually before executing the above script. I have kept the username and password as “test”, but please make sure that you create a more secure password for your database for security reasons. Voila!  You’re Done That’s it. You are done. It took 3 setup and 3 migration steps to migrate your SQL Server database to NuoDB.  You can now start exploring the database and build excellent, scale-out applications. In this blog post, I have done my best to come up with simple and easy process, which you can follow to migrate your app from SQL Server to NuoDB. Download NuoDB I strongly encourage you to download NuoDB and go through my 3-step migration tutorial from SQL Server to NuoDB. Additionally here are two very important blog post from NuoDB CTO Seth Proctor. He has written excellent blog posts on the concept of the Administrative Domains. NuoDB has this concept of an Administrative Domain, which is a collection of hosts that can run one or multiple databases.  Each database has its own TEs and SMs, but all are managed within the Admin Console for that particular domain. http://www.nuodb.com/techblog/2013/03/11/getting-started-provisioning-a-domain/ http://www.nuodb.com/techblog/2013/03/14/getting-started-running-a-database/ Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Big Data, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology Tagged: NuoDB

    Read the article

  • AWS Large Instance: /mnt does not show all the space that should be available

    - by Emile Baizel
    I just created a Large (m1.large) 64 bit instance which comes with 850 GB instance storage. Look at the Large Instance http://aws.amazon.com/ec2/instance-types/ A 'df -h' from the root folder gives me the output below. The /mnt is where I'm thinking the instance storage is but here it is only showing me 414G. I have set up two servers and both are showing the same numbers. root@ip-11-11-11-11:/# df -h Filesystem Size Used Avail Use% Mounted on /dev/sda1 7.9G 1.1G 6.5G 14% / none 3.7G 112K 3.7G 1% /dev none 3.7G 0 3.7G 0% /dev/shm none 3.7G 48K 3.7G 1% /var/run none 3.7G 0 3.7G 0% /var/lock /dev/sdb 414G 199M 393G 1% /mnt

    Read the article

  • Ameristar Wins with Oracle GoldenGate’s Heterogeneous Real-Time Data Integration

    - by Irem Radzik
    Today we announced a press release about another successful project with Oracle GoldenGate. This time at Ameristar. Ameristar is a casino gaming company and needed a single data integration solution to connect multiple heterogeneous systems to its Teradata data warehouse. The project involves integration of Ameristar’s promotional and gaming data from 14 data sources across its 7 casino hotel properties in real time into a central Teradata data warehouse. The source systems include the Aristocrat gaming and MGT promotional management platforms running on Microsoft SQL Server 2000 databases. As you can notice, there was no Oracle Database involved in this project, but Ameristar’s IT leadership knew that  GoldenGate’s strong heterogeneous and real-time data integration capabilities is the right technology for their data warehousing project. With GoldenGate Ameristar was able to reduce data latency to the enterprise data warehouse, and use this real-time customer information for marketing teams in improving overall customer experience. Ameristar customers receive more targeted and timely campaign offers, and the company has more up-to-date visibility into financial metrics of the company. One other key benefit the company experienced with GoldenGate is in operational costs. The previous data capture solution Ameristar used was trigger based and required a lot of effort to manage. They needed dedicated IT staff to maintain it. With GoldenGate, the solution runs seamlessly without needing a fully-dedicated staff, giving the IT team at Ameristar more resources for their other IT projects. If you want to learn more about GoldenGate and the latest features for Oracle Database and non-Oracle databases, please watch our on demand webcast about Oracle GoldenGate 11g Release 2.

    Read the article

  • Deploying a SharePoint 2007 theme using Features

    - by Kelly Jones
    I recently had a requirement to update the branding on an existing Windows SharePoint Services (WSS version 3.0) site.  I needed to update the theme, along with the master page.  An additional requirement is that my client likes to have all changes bundled up in SharePoint solutions.  This makes it much easier to move code from dev to test to prod and more importantly, makes it easier to undo code migrations if any issues would arise (I agree with this approach). Updating the theme was easy enough.  I created a new theme, along with a two new features.  The first feature, scoped at the farm level, deploys the theme, adding it to the spthemes.xml file (in the 12 hive –> \Template\layouts\1033 folder).  Here’s the method that I call from the feature activated event: private static void AddThemeToSpThemes(string id, string name, string description, string thumbnail, string preview, SPFeatureReceiverProperties properties) { XmlDocument spThemes = new XmlDocument(); //use GetGenericSetupPath to find the 12 hive folder string spThemesPath = SPUtility.GetGenericSetupPath(@"TEMPLATE\LAYOUTS\1033\spThemes.xml"); //load the spthemes file into our xmldocument, since it is just xml spThemes.Load(spThemesPath); XmlNode root = spThemes.DocumentElement; //search the themes file to see if our theme is already added bool found = false; foreach (XmlNode node in root.ChildNodes) { foreach (XmlNode prop in node.ChildNodes) { if (prop.Name.Equals("TemplateID")) { if (prop.InnerText.Equals(id)) { found = true; break; } } } if (found) { break; } } if (!found) //theme not found, so add it { //This is what we need to add: // <Templates> // <TemplateID>ThemeName</TemplateID> // <DisplayName>Theme Display Name</DisplayName> // <Description>My theme description</Description> // <Thumbnail>images/mythemethumb.gif</Thumbnail> // <Preview>images/mythemepreview.gif</Preview> // </Templates> StringBuilder sb = new StringBuilder(); sb.Append("<Templates><TemplateID>"); sb.Append(id); sb.Append("</TemplateID><DisplayName>"); sb.Append(name); sb.Append("</DisplayName><Description>"); sb.Append(description); sb.Append("</Description><Thumbnail>"); sb.Append(thumbnail); sb.Append("</Thumbnail><Preview>"); sb.Append(preview); sb.Append("</Preview></Templates>"); root.CreateNavigator().AppendChild(sb.ToString()); spThemes.Save(spThemesPath); } } Just as important, is the code that removes the theme when the feature is deactivated: private static void RemoveThemeFromSpThemes(string id) { XmlDocument spThemes = new XmlDocument(); string spThemesPath = HostingEnvironment.MapPath("/_layouts/") + @"1033\spThemes.xml"; spThemes.Load(spThemesPath); XmlNode root = spThemes.DocumentElement; foreach (XmlNode node in root.ChildNodes) { foreach (XmlNode prop in node.ChildNodes) { if (prop.Name.Equals("TemplateID")) { if (prop.InnerText.Equals(id)) { root.RemoveChild(node); spThemes.Save(spThemesPath); break; } } } } } So, that takes care of deploying the theme.  In order to apply the theme to the web, my activate feature method looks like this: public override void FeatureDeactivating(SPFeatureReceiverProperties properties) { using (SPWeb curweb = (SPWeb)properties.Feature.Parent) { curweb.ApplyTheme("myThemeName"); curweb.Update(); } } Deactivating is just as simple: public override void FeatureDeactivating(SPFeatureReceiverProperties properties) { using (SPWeb curweb = (SPWeb)properties.Feature.Parent) { curweb.ApplyTheme("none"); curweb.Update(); } } Ok, that’s the code necessary to deploy, apply, un-apply, and retract the theme.  Also, the solution (WSP file) contains the actual theme files. SO, next is the master page, which I’ll cover in my next blog post.

    Read the article

  • C#/.NET &ndash; Finding an Item&rsquo;s Index in IEnumerable&lt;T&gt;

    - by James Michael Hare
    Sorry for the long blogging hiatus.  First it was, of course, the holidays hustle and bustle, then my brother and his wife gave birth to their son, so I’ve been away from my blogging for two weeks. Background: Finding an item’s index in List<T> is easy… Many times in our day to day programming activities, we want to find the index of an item in a collection.  Now, if we have a List<T> and we’re looking for the item itself this is trivial: 1: // assume have a list of ints: 2: var list = new List<int> { 1, 13, 42, 64, 121, 77, 5, 99, 132 }; 3:  4: // can find the exact item using IndexOf() 5: var pos = list.IndexOf(64); This will return the position of the item if it’s found, or –1 if not.  It’s easy to see how this works for primitive types where equality is well defined.  For complex types, however, it will attempt to compare them using EqualityComparer<T>.Default which, in a nutshell, relies on the object’s Equals() method. So what if we want to search for a condition instead of equality?  That’s also easy in a List<T> with the FindIndex() method: 1: // assume have a list of ints: 2: var list = new List<int> { 1, 13, 42, 64, 121, 77, 5, 99, 132 }; 3:  4: // finds index of first even number or -1 if not found. 5: var pos = list.FindIndex(i => i % 2 == 0);   Problem: Finding an item’s index in IEnumerable<T> is not so easy... This is all well and good for lists, but what if we want to do the same thing for IEnumerable<T>?  A collection of IEnumerable<T> has no indexing, so there’s no direct method to find an item’s index.  LINQ, as powerful as it is, gives us many tools to get us this information, but not in one step.  As with almost any problem involving collections, there are several ways to accomplish the same goal.  And once again as with almost any problem involving collections, the choice of the solution somewhat depends on the situation. So let’s look at a few possible alternatives.  I’m going to express each of these as extension methods for simplicity and consistency. Solution: The TakeWhile() and Count() combo One of the things you can do is to perform a TakeWhile() on the list as long as your find condition is not true, and then do a Count() of the items it took.  The only downside to this method is that if the item is not in the list, the index will be the full Count() of items, and not –1.  So if you don’t know the size of the list beforehand, this can be confusing. 1: // a collection of extra extension methods off IEnumerable<T> 2: public static class EnumerableExtensions 3: { 4: // Finds an item in the collection, similar to List<T>.FindIndex() 5: public static int FindIndex<T>(this IEnumerable<T> list, Predicate<T> finder) 6: { 7: // note if item not found, result is length and not -1! 8: return list.TakeWhile(i => !finder(i)).Count(); 9: } 10: } Personally, I don’t like switching the paradigm of not found away from –1, so this is one of my least favorites.  Solution: Select with index Many people don’t realize that there is an alternative form of the LINQ Select() method that will provide you an index of the item being selected: 1: list.Select( (item,index) => do something here with the item and/or index... ) This can come in handy, but must be treated with care.  This is because the index provided is only as pertains to the result of previous operations (if any).  For example: 1: // assume have a list of ints: 2: var list = new List<int> { 1, 13, 42, 64, 121, 77, 5, 99, 132 }; 3:  4: // you'd hope this would give you the indexes of the even numbers 5: // which would be 2, 3, 8, but in reality it gives you 0, 1, 2 6: list.Where(item => item % 2 == 0).Select((item,index) => index); The reason the example gives you the collection { 0, 1, 2 } is because the where clause passes over any items that are odd, and therefore only the even items are given to the select and only they are given indexes. Conversely, we can’t select the index and then test the item in a Where() clause, because then the Where() clause would be operating on the index and not the item! So, what we have to do is to select the item and index and put them together in an anonymous type.  It looks ugly, but it works: 1: // extensions defined on IEnumerable<T> 2: public static class EnumerableExtensions 3: { 4: // finds an item in a collection, similar to List<T>.FindIndex() 5: public static int FindIndex<T>(this IEnumerable<T> list, Predicate<T> finder) 6: { 7: // if you don't name the anonymous properties they are the variable names 8: return list.Select((item, index) => new { item, index }) 9: .Where(p => finder(p.item)) 10: .Select(p => p.index + 1) 11: .FirstOrDefault() - 1; 12: } 13: }     So let’s look at this, because i know it’s convoluted: First Select() joins the items and their indexes into an anonymous type. Where() filters that list to only the ones matching the predicate. Second Select() picks the index of the matches and adds 1 – this is to distinguish between not found and first item. FirstOrDefault() returns the first item found from the previous clauses or default (zero) if not found. Subtract one so that not found (zero) will be –1, and first item (one) will be zero. The bad thing is, this is ugly as hell and creates anonymous objects for each item tested until it finds the match.  This concerns me a bit but we’ll defer judgment until compare the relative performances below. Solution: Convert ToList() and use FindIndex() This solution is easy enough.  We know any IEnumerable<T> can be converted to List<T> using the LINQ extension method ToList(), so we can easily convert the collection to a list and then just use the FindIndex() method baked into List<T>. 1: // a collection of extension methods for IEnumerable<T> 2: public static class EnumerableExtensions 3: { 4: // find the index of an item in the collection similar to List<T>.FindIndex() 5: public static int FindIndex<T>(this IEnumerable<T> list, Predicate<T> finder) 6: { 7: return list.ToList().FindIndex(finder); 8: } 9: } This solution is simplicity itself!  It is very concise and elegant and you need not worry about anyone misinterpreting what it’s trying to do (as opposed to the more convoluted LINQ methods above). But the main thing I’m concerned about here is the performance hit to allocate the List<T> in the ToList() call, but once again we’ll explore that in a second. Solution: Roll your own FindIndex() for IEnumerable<T> Of course, you can always roll your own FindIndex() method for IEnumerable<T>.  It would be a very simple for loop which scans for the item and counts as it goes.  There’s many ways to do this, but one such way might look like: 1: // extension methods for IEnumerable<T> 2: public static class EnumerableExtensions 3: { 4: // Finds an item matching a predicate in the enumeration, much like List<T>.FindIndex() 5: public static int FindIndex<T>(this IEnumerable<T> list, Predicate<T> finder) 6: { 7: int index = 0; 8: foreach (var item in list) 9: { 10: if (finder(item)) 11: { 12: return index; 13: } 14:  15: index++; 16: } 17:  18: return -1; 19: } 20: } Well, it’s not quite simplicity, and those less familiar with LINQ may prefer it since it doesn’t include all of the lambdas and behind the scenes iterators that come with deferred execution.  But does having this long, blown out method really gain us much in performance? Comparison of Proposed Solutions So we’ve now seen four solutions, let’s analyze their collective performance.  I took each of the four methods described above and run them over 100,000 iterations of lists of size 10, 100, 1000, and 10000 and here’s the performance results.  Then I looked for targets at the begining of the list (best case), middle of the list (the average case) and not in the list (worst case as must scan all of the list). Each of the times below is the average time in milliseconds for one execution as computer over the 100,000 iterations: Searches Matching First Item (Best Case)   10 100 1000 10000 TakeWhile 0.0003 0.0003 0.0003 0.0003 Select 0.0005 0.0005 0.0005 0.0005 ToList 0.0002 0.0003 0.0013 0.0121 Manual 0.0001 0.0001 0.0001 0.0001   Searches Matching Middle Item (Average Case)   10 100 1000 10000 TakeWhile 0.0004 0.0020 0.0191 0.1889 Select 0.0008 0.0042 0.0387 0.3802 ToList 0.0002 0.0007 0.0057 0.0562 Manual 0.0002 0.0013 0.0129 0.1255   Searches Where Not Found (Worst Case)   10 100 1000 10000 TakeWhile 0.0006 0.0039 0.0381 0.3770 Select 0.0012 0.0081 0.0758 0.7583 ToList 0.0002 0.0012 0.0100 0.0996 Manual 0.0003 0.0026 0.0253 0.2514   Notice something interesting here, you’d think the “roll your own” loop would be the most efficient, but it only wins when the item is first (or very close to it) regardless of list size.  In almost all other cases though and in particular the average case and worst case, the ToList()/FindIndex() combo wins for performance, even though it is creating some temporary memory to hold the List<T>.  If you examine the algorithm, the reason why is most likely because once it’s in a ToList() form, internally FindIndex() scans the internal array which is much more efficient to iterate over.  Thus, it takes a one time performance hit (not including any GC impact) to create the List<T> but after that the performance is much better. Summary If you’re concerned about too many throw-away objects, you can always roll your own FindIndex() method, but for sheer simplicity and overall performance, using the ToList()/FindIndex() combo performs best on nearly all list sizes in the average and worst cases.    Technorati Tags: C#,.NET,Litte Wonders,BlackRabbitCoder,Software,LINQ,List

    Read the article

  • How to create managed properties at site collection level in SharePoint2013

    - by ybbest
    In SharePoint2013, you can create managed properties at site collection. Today, I’d like to show you how to do so through PowerShell. 1. Define your managed properties and crawled properties and managed property Type in an external csv file. PowerShell script will read this file and create the managed and the mapping. 2. As you can see I also defined variant Type, this is because you need the variant type to create the crawled property. In order to have the crawled properties, you need to do a full crawl and also make sure you have data populated for your custom column. However, if you do not want to a full crawl to create those crawled properties, you can create them yourself by using the PowerShell; however you need to make sure the crawled properties you created have the same name if created by a full crawl. Managed properties type: Text = 1 Integer = 2 Decimal = 3 DateTime = 4 YesNo = 5 Binary = 6 Variant Type: Text = 31 Integer = 20 Decimal = 5 DateTime = 64 YesNo = 11 3. You can use the following script to create your managed properties at site collection level, the differences for creating managed property at site collection level is to pass in the site collection id. param( [string] $siteUrl="http://SP2013/", [string] $searchAppName = "Search Service Application", $ManagedPropertiesList=(IMPORT-CSV ".\ManagedProperties.csv") ) Add-PSSnapin Microsoft.SharePoint.PowerShell -ErrorAction SilentlyContinue $searchapp = $null function AppendLog { param ([string] $msg, [string] $msgColor) $currentDateTime = Get-Date $msg = $msg + " --- " + $currentDateTime if (!($logOnly -eq $True)) { # write to console Write-Host -f $msgColor $msg } # write to log file Add-Content $logFilePath $msg } $scriptPath = Split-Path $myInvocation.MyCommand.Path $logFilePath = $scriptPath + "\CreateManagedProperties_Log.txt" function CreateRefiner {param ([string] $crawledName, [string] $managedPropertyName, [Int32] $variantType, [Int32] $managedPropertyType,[System.GUID] $siteID) $cat = Get-SPEnterpriseSearchMetadataCategory –Identity SharePoint -SearchApplication $searchapp $crawledproperty = Get-SPEnterpriseSearchMetadataCrawledProperty -Name $crawledName -SearchApplication $searchapp -SiteCollection $siteID if($crawledproperty -eq $null) { Write-Host AppendLog "Creating Crawled Property for $managedPropertyName" Yellow $crawledproperty = New-SPEnterpriseSearchMetadataCrawledProperty -SearchApplication $searchapp -VariantType $variantType -SiteCollection $siteID -Category $cat -PropSet "00130329-0000-0130-c000-000000131346" -Name $crawledName -IsNameEnum $false } $managedproperty = Get-SPEnterpriseSearchMetadataManagedProperty -Identity $managedPropertyName -SearchApplication $searchapp -SiteCollection $siteID -ErrorAction SilentlyContinue if($managedproperty -eq $null) { Write-Host AppendLog "Creating Managed Property for $managedPropertyName" Yellow $managedproperty = New-SPEnterpriseSearchMetadataManagedProperty -Name $managedPropertyName -Type $managedPropertyType -SiteCollection $siteID -SearchApplication $searchapp -Queryable:$true -Retrievable:$true -FullTextQueriable:$true -RemoveDuplicates:$false -RespectPriority:$true -IncludeInMd5:$true } $mappedProperty = $crawledproperty.GetMappedManagedProperties() | ?{$_.Name -eq $managedProperty.Name } if($mappedProperty -eq $null) { Write-Host AppendLog "Creating Crawled -> Managed Property mapping for $managedPropertyName" Yellow New-SPEnterpriseSearchMetadataMapping -CrawledProperty $crawledproperty -ManagedProperty $managedproperty -SearchApplication $searchapp -SiteCollection $siteID } $mappedProperty = $crawledproperty.GetMappedManagedProperties() | ?{$_.Name -eq $managedProperty.Name } #Get-FASTSearchMetadataCrawledPropertyMapping -ManagedProperty $managedproperty } $searchapp = Get-SPEnterpriseSearchServiceApplication $searchAppName $site= Get-SPSite $siteUrl $siteId=$site.id Write-Host "Start creating Managed properties" $i = 1 FOREACH ($property in $ManagedPropertiesList) { $propertyName=$property.managedPropertyName $crawledName=$property.crawledName $managedPropertyType=$property.managedPropertyType $variantType=$property.variantType Write-Host $managedPropertyType Write-Host "Processing managed property $propertyName $($i)..." $i++ CreateRefiner $crawledName $propertyName $variantType $managedPropertyType $siteId Write-Host "Managed property created " $propertyName } Key Concepts Crawled Properties: Crawled properties are discovered by the search index service component when crawling content. Managed Properties: Properties that are part of the Search user experience, which means they are available for search results, advanced search, and so on, are managed properties. Mapping Crawled Properties to Managed Properties: To make a crawled property available for the Search experience—to make it available for Search queries and display it in Advanced Search and search results—you must map it to a managed property. References Administer search in SharePoint 2013 Preview Managing Metadata

    Read the article

  • Oracle Database 11g now certified on Oracle Linux 6 and RHEL 6

    - by Chuck Speaks
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 DefSemiHidden="true" DefQFormat="false" DefPriority="99" LatentStyleCount="267" UnhideWhenUsed="false" QFormat="true" Name="Normal"/ UnhideWhenUsed="false" QFormat="true" Name="heading 1"/ UnhideWhenUsed="false" QFormat="true" Name="Title"/ UnhideWhenUsed="false" QFormat="true" Name="Subtitle"/ UnhideWhenUsed="false" QFormat="true" Name="Strong"/ UnhideWhenUsed="false" QFormat="true" Name="Emphasis"/ UnhideWhenUsed="false" Name="Table Grid"/ UnhideWhenUsed="false" QFormat="true" Name="No Spacing"/ UnhideWhenUsed="false" Name="Light Shading"/ UnhideWhenUsed="false" Name="Light List"/ UnhideWhenUsed="false" Name="Light Grid"/ UnhideWhenUsed="false" Name="Medium Shading 1"/ UnhideWhenUsed="false" Name="Medium Shading 2"/ UnhideWhenUsed="false" Name="Medium List 1"/ UnhideWhenUsed="false" Name="Medium List 2"/ UnhideWhenUsed="false" Name="Medium Grid 1"/ UnhideWhenUsed="false" Name="Medium Grid 2"/ UnhideWhenUsed="false" Name="Medium Grid 3"/ UnhideWhenUsed="false" Name="Dark List"/ UnhideWhenUsed="false" Name="Colorful Shading"/ UnhideWhenUsed="false" Name="Colorful List"/ UnhideWhenUsed="false" Name="Colorful Grid"/ UnhideWhenUsed="false" Name="Light Shading Accent 1"/ UnhideWhenUsed="false" Name="Light List Accent 1"/ UnhideWhenUsed="false" Name="Light Grid Accent 1"/ UnhideWhenUsed="false" Name="Medium Shading 1 Accent 1"/ UnhideWhenUsed="false" Name="Medium Shading 2 Accent 1"/ UnhideWhenUsed="false" Name="Medium List 1 Accent 1"/ UnhideWhenUsed="false" QFormat="true" Name="List Paragraph"/ UnhideWhenUsed="false" QFormat="true" Name="Quote"/ UnhideWhenUsed="false" QFormat="true" Name="Intense Quote"/ UnhideWhenUsed="false" Name="Medium List 2 Accent 1"/ UnhideWhenUsed="false" Name="Medium Grid 1 Accent 1"/ UnhideWhenUsed="false" Name="Medium Grid 2 Accent 1"/ UnhideWhenUsed="false" Name="Medium Grid 3 Accent 1"/ UnhideWhenUsed="false" Name="Dark List Accent 1"/ UnhideWhenUsed="false" Name="Colorful Shading Accent 1"/ UnhideWhenUsed="false" Name="Colorful List Accent 1"/ UnhideWhenUsed="false" Name="Colorful Grid Accent 1"/ UnhideWhenUsed="false" Name="Light Shading Accent 2"/ UnhideWhenUsed="false" Name="Light List Accent 2"/ UnhideWhenUsed="false" Name="Light Grid Accent 2"/ UnhideWhenUsed="false" Name="Medium Shading 1 Accent 2"/ UnhideWhenUsed="false" Name="Medium Shading 2 Accent 2"/ UnhideWhenUsed="false" Name="Medium List 1 Accent 2"/ UnhideWhenUsed="false" Name="Medium List 2 Accent 2"/ UnhideWhenUsed="false" Name="Medium Grid 1 Accent 2"/ UnhideWhenUsed="false" Name="Medium Grid 2 Accent 2"/ UnhideWhenUsed="false" Name="Medium Grid 3 Accent 2"/ UnhideWhenUsed="false" Name="Dark List Accent 2"/ UnhideWhenUsed="false" Name="Colorful Shading Accent 2"/ UnhideWhenUsed="false" Name="Colorful List Accent 2"/ UnhideWhenUsed="false" Name="Colorful Grid Accent 2"/ UnhideWhenUsed="false" Name="Light Shading Accent 3"/ UnhideWhenUsed="false" Name="Light List Accent 3"/ UnhideWhenUsed="false" Name="Light Grid Accent 3"/ UnhideWhenUsed="false" Name="Medium Shading 1 Accent 3"/ UnhideWhenUsed="false" Name="Medium Shading 2 Accent 3"/ UnhideWhenUsed="false" Name="Medium List 1 Accent 3"/ UnhideWhenUsed="false" Name="Medium List 2 Accent 3"/ UnhideWhenUsed="false" Name="Medium Grid 1 Accent 3"/ UnhideWhenUsed="false" Name="Medium Grid 2 Accent 3"/ UnhideWhenUsed="false" Name="Medium Grid 3 Accent 3"/ UnhideWhenUsed="false" Name="Dark List Accent 3"/ UnhideWhenUsed="false" Name="Colorful Shading Accent 3"/ UnhideWhenUsed="false" Name="Colorful List Accent 3"/ UnhideWhenUsed="false" Name="Colorful Grid Accent 3"/ UnhideWhenUsed="false" Name="Light Shading Accent 4"/ UnhideWhenUsed="false" Name="Light List Accent 4"/ UnhideWhenUsed="false" Name="Light Grid Accent 4"/ UnhideWhenUsed="false" Name="Medium Shading 1 Accent 4"/ UnhideWhenUsed="false" Name="Medium Shading 2 Accent 4"/ UnhideWhenUsed="false" Name="Medium List 1 Accent 4"/ UnhideWhenUsed="false" Name="Medium List 2 Accent 4"/ UnhideWhenUsed="false" Name="Medium Grid 1 Accent 4"/ UnhideWhenUsed="false" Name="Medium Grid 2 Accent 4"/ UnhideWhenUsed="false" Name="Medium Grid 3 Accent 4"/ UnhideWhenUsed="false" Name="Dark List Accent 4"/ UnhideWhenUsed="false" Name="Colorful Shading Accent 4"/ UnhideWhenUsed="false" Name="Colorful List Accent 4"/ UnhideWhenUsed="false" Name="Colorful Grid Accent 4"/ UnhideWhenUsed="false" Name="Light Shading Accent 5"/ UnhideWhenUsed="false" Name="Light List Accent 5"/ UnhideWhenUsed="false" Name="Light Grid Accent 5"/ UnhideWhenUsed="false" Name="Medium Shading 1 Accent 5"/ UnhideWhenUsed="false" Name="Medium Shading 2 Accent 5"/ UnhideWhenUsed="false" Name="Medium List 1 Accent 5"/ UnhideWhenUsed="false" Name="Medium List 2 Accent 5"/ UnhideWhenUsed="false" Name="Medium Grid 1 Accent 5"/ UnhideWhenUsed="false" Name="Medium Grid 2 Accent 5"/ UnhideWhenUsed="false" Name="Medium Grid 3 Accent 5"/ UnhideWhenUsed="false" Name="Dark List Accent 5"/ UnhideWhenUsed="false" Name="Colorful Shading Accent 5"/ UnhideWhenUsed="false" Name="Colorful List Accent 5"/ UnhideWhenUsed="false" Name="Colorful Grid Accent 5"/ UnhideWhenUsed="false" Name="Light Shading Accent 6"/ UnhideWhenUsed="false" Name="Light List Accent 6"/ UnhideWhenUsed="false" Name="Light Grid Accent 6"/ UnhideWhenUsed="false" Name="Medium Shading 1 Accent 6"/ UnhideWhenUsed="false" Name="Medium Shading 2 Accent 6"/ UnhideWhenUsed="false" Name="Medium List 1 Accent 6"/ UnhideWhenUsed="false" Name="Medium List 2 Accent 6"/ UnhideWhenUsed="false" Name="Medium Grid 1 Accent 6"/ UnhideWhenUsed="false" Name="Medium Grid 2 Accent 6"/ UnhideWhenUsed="false" Name="Medium Grid 3 Accent 6"/ UnhideWhenUsed="false" Name="Dark List Accent 6"/ UnhideWhenUsed="false" Name="Colorful Shading Accent 6"/ UnhideWhenUsed="false" Name="Colorful List Accent 6"/ UnhideWhenUsed="false" Name="Colorful Grid Accent 6"/ UnhideWhenUsed="false" QFormat="true" Name="Subtle Emphasis"/ UnhideWhenUsed="false" QFormat="true" Name="Intense Emphasis"/ UnhideWhenUsed="false" QFormat="true" Name="Subtle Reference"/ UnhideWhenUsed="false" QFormat="true" Name="Intense Reference"/ UnhideWhenUsed="false" QFormat="true" Name="Book Title"/ /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} http://www.oracle.com/us/corporate/press/1563775  By popular demand....The Oracle 11g database is now certified on Oracle Linux 6 and RHEL 6.  See the link for details. Chuck Speaks @ChuckatOracle

    Read the article

  • My Take on Hadoop World 2011

    - by Jean-Pierre Dijcks
    I’m sure some of you have read pieces about Hadoop World and I did see some headlines which were somewhat, shall we say, interesting? I thought the keynote by Larry Feinsmith of JP Morgan Chase & Co was one of the highlights of the conference for me. The reason was very simple, he addressed some real use cases outside of internet and ad platforms. The following are my notes, since the keynote was recorded I presume you can go and look at Hadoopworld.com at some point… On the use cases that were mentioned: ETL – how can I do complex data transformation at scale Doing Basel III liquidity analysis Private banking – transaction filtering to feed [relational] data marts Common Data Platform – a place to keep data that is (or will be) valuable some day, to someone, somewhere 360 Degree view of customers – become pro-active and look at events across lines of business. For example make sure the mortgage folks know about direct deposits being stopped into an account and ensure the bank is pro-active to service the customer Treasury and Security – Global Payment Hub [I think this is really consolidation of data to cross reference activity across business and geographies] Data Mining Bypass data engineering [I interpret this as running a lot of a large data set rather than on samples] Fraud prevention – work on event triggers, say a number of failed log-ins to the website. When they occur grab web logs, firewall logs and rules and start to figure out who is trying to log in. Is this me, who forget his password, or is it someone in some other country trying to guess passwords Trade quality analysis – do a batch analysis or all trades done and run them through an analysis or comparison pipeline One of the key requests – if you can say it like that – was for vendors and entrepreneurs to make sure that new tools work with existing tools. JPMC has a large footprint of BI Tools and Big Data reporting and tools should work with those tools, rather than be separate. Security and Entitlement – how to protect data within a large cluster from unwanted snooping was another topic that came up. I thought his Elephant ears graph was interesting (couldn’t actually read the points on it, but the concept certainly made some sense) and it was interesting – when asked to show hands – how the audience did not (!) think that RDBMS and Hadoop technology would overlap completely within a few years. Another interesting session was the session from Disney discussing how Disney is building a DaaS (Data as a Service) platform and how Hadoop processing capabilities are mixed with Database technologies. I thought this one of the best sessions I have seen in a long time. It discussed real use case, where problems existed, how they were solved and how Disney planned some of it. The planning focused on three things/phases: Determine the Strategy – Design a platform and evangelize this within the organization Focus on the people – Hire key people, grow and train the staff (and do not overload what you have with new things on top of their day-to-day job), leverage a partner with experience Work on Execution of the strategy – Implement the platform Hadoop next to the other technologies and work toward the DaaS platform This kind of fitted with some of the Linked-In comments, best summarized in “Think Platform – Think Hadoop”. In other words [my interpretation], step back and engineer a platform (like DaaS in the Disney example), then layer the rest of the solutions on top of this platform. One general observation, I got the impression that we have knowledge gaps left and right. On the one hand are people looking for more information and details on the Hadoop tools and languages. On the other I got the impression that the capabilities of today’s relational databases are underestimated. Mostly in terms of data volumes and parallel processing capabilities or things like commodity hardware scale-out models. All in all I liked this conference, it was great to chat with a wide range of people on Oracle big data, on big data, on use cases and all sorts of other stuff. Just hope they get a set of bigger rooms next time… and yes, I hope I’m going to be back next year!

    Read the article

  • Is there a language where collections can be used as objects without altering the behavior?

    - by Dokkat
    Is there a language where collections can be used as objects without altering the behavior? As an example, first, imagine those functions work: function capitalize(str) //suppose this *modifies* a string object capitalizing it function greet(person): print("Hello, " + person) capitalize("pedro") >> "Pedro" greet("Pedro") >> "Hello, Pedro" Now, suppose we define a standard collection with some strings: people = ["ed","steve","john"] Then, this will call toUpper() on each object on that list people.toUpper() >> ["Ed","Steve","John"] And this will call greet once for EACH people on the list, instead of sending the list as argument greet(people) >> "Hello, Ed" >> "Hello, Steve" >> "Hello, John"

    Read the article

  • Exadata Parameter _AUTO_MANAGE_EXADATA_DISKS

    - by AVargas
    Normal 0 false false false EN-US X-NONE HE MicrosoftInternetExplorer4 DefSemiHidden="true" DefQFormat="false" DefPriority="99" LatentStyleCount="267" UnhideWhenUsed="false" QFormat="true" Name="Normal"/ UnhideWhenUsed="false" QFormat="true" Name="heading 1"/ UnhideWhenUsed="false" QFormat="true" Name="Title"/ UnhideWhenUsed="false" QFormat="true" Name="Subtitle"/ UnhideWhenUsed="false" QFormat="true" Name="Strong"/ UnhideWhenUsed="false" QFormat="true" Name="Emphasis"/ UnhideWhenUsed="false" Name="Table Grid"/ UnhideWhenUsed="false" QFormat="true" Name="No Spacing"/ UnhideWhenUsed="false" Name="Light Shading"/ UnhideWhenUsed="false" Name="Light List"/ UnhideWhenUsed="false" Name="Light Grid"/ UnhideWhenUsed="false" Name="Medium Shading 1"/ UnhideWhenUsed="false" Name="Medium Shading 2"/ UnhideWhenUsed="false" Name="Medium List 1"/ UnhideWhenUsed="false" Name="Medium List 2"/ UnhideWhenUsed="false" Name="Medium Grid 1"/ UnhideWhenUsed="false" Name="Medium Grid 2"/ UnhideWhenUsed="false" Name="Medium Grid 3"/ UnhideWhenUsed="false" Name="Dark List"/ UnhideWhenUsed="false" Name="Colorful Shading"/ UnhideWhenUsed="false" Name="Colorful List"/ UnhideWhenUsed="false" Name="Colorful Grid"/ UnhideWhenUsed="false" Name="Light Shading Accent 1"/ UnhideWhenUsed="false" Name="Light List Accent 1"/ UnhideWhenUsed="false" Name="Light Grid Accent 1"/ UnhideWhenUsed="false" Name="Medium Shading 1 Accent 1"/ UnhideWhenUsed="false" Name="Medium Shading 2 Accent 1"/ UnhideWhenUsed="false" Name="Medium List 1 Accent 1"/ UnhideWhenUsed="false" QFormat="true" Name="List Paragraph"/ UnhideWhenUsed="false" QFormat="true" Name="Quote"/ UnhideWhenUsed="false" QFormat="true" Name="Intense Quote"/ UnhideWhenUsed="false" Name="Medium List 2 Accent 1"/ UnhideWhenUsed="false" Name="Medium Grid 1 Accent 1"/ UnhideWhenUsed="false" Name="Medium Grid 2 Accent 1"/ UnhideWhenUsed="false" Name="Medium Grid 3 Accent 1"/ UnhideWhenUsed="false" Name="Dark List Accent 1"/ UnhideWhenUsed="false" Name="Colorful Shading Accent 1"/ UnhideWhenUsed="false" Name="Colorful List Accent 1"/ UnhideWhenUsed="false" Name="Colorful Grid Accent 1"/ UnhideWhenUsed="false" Name="Light Shading Accent 2"/ UnhideWhenUsed="false" Name="Light List Accent 2"/ UnhideWhenUsed="false" Name="Light Grid Accent 2"/ UnhideWhenUsed="false" Name="Medium Shading 1 Accent 2"/ UnhideWhenUsed="false" Name="Medium Shading 2 Accent 2"/ UnhideWhenUsed="false" Name="Medium List 1 Accent 2"/ UnhideWhenUsed="false" Name="Medium List 2 Accent 2"/ UnhideWhenUsed="false" Name="Medium Grid 1 Accent 2"/ UnhideWhenUsed="false" Name="Medium Grid 2 Accent 2"/ UnhideWhenUsed="false" Name="Medium Grid 3 Accent 2"/ UnhideWhenUsed="false" Name="Dark List Accent 2"/ UnhideWhenUsed="false" Name="Colorful Shading Accent 2"/ UnhideWhenUsed="false" Name="Colorful List Accent 2"/ UnhideWhenUsed="false" Name="Colorful Grid Accent 2"/ UnhideWhenUsed="false" Name="Light Shading Accent 3"/ UnhideWhenUsed="false" Name="Light List Accent 3"/ UnhideWhenUsed="false" Name="Light Grid Accent 3"/ UnhideWhenUsed="false" Name="Medium Shading 1 Accent 3"/ UnhideWhenUsed="false" Name="Medium Shading 2 Accent 3"/ UnhideWhenUsed="false" Name="Medium List 1 Accent 3"/ UnhideWhenUsed="false" Name="Medium List 2 Accent 3"/ UnhideWhenUsed="false" Name="Medium Grid 1 Accent 3"/ UnhideWhenUsed="false" Name="Medium Grid 2 Accent 3"/ UnhideWhenUsed="false" Name="Medium Grid 3 Accent 3"/ UnhideWhenUsed="false" Name="Dark List Accent 3"/ UnhideWhenUsed="false" Name="Colorful Shading Accent 3"/ UnhideWhenUsed="false" Name="Colorful List Accent 3"/ UnhideWhenUsed="false" Name="Colorful Grid Accent 3"/ UnhideWhenUsed="false" Name="Light Shading Accent 4"/ UnhideWhenUsed="false" Name="Light List Accent 4"/ UnhideWhenUsed="false" Name="Light Grid Accent 4"/ UnhideWhenUsed="false" Name="Medium Shading 1 Accent 4"/ UnhideWhenUsed="false" Name="Medium Shading 2 Accent 4"/ UnhideWhenUsed="false" Name="Medium List 1 Accent 4"/ UnhideWhenUsed="false" Name="Medium List 2 Accent 4"/ UnhideWhenUsed="false" Name="Medium Grid 1 Accent 4"/ UnhideWhenUsed="false" Name="Medium Grid 2 Accent 4"/ UnhideWhenUsed="false" Name="Medium Grid 3 Accent 4"/ UnhideWhenUsed="false" Name="Dark List Accent 4"/ UnhideWhenUsed="false" Name="Colorful Shading Accent 4"/ UnhideWhenUsed="false" Name="Colorful List Accent 4"/ UnhideWhenUsed="false" Name="Colorful Grid Accent 4"/ UnhideWhenUsed="false" Name="Light Shading Accent 5"/ UnhideWhenUsed="false" Name="Light List Accent 5"/ UnhideWhenUsed="false" Name="Light Grid Accent 5"/ UnhideWhenUsed="false" Name="Medium Shading 1 Accent 5"/ UnhideWhenUsed="false" Name="Medium Shading 2 Accent 5"/ UnhideWhenUsed="false" Name="Medium List 1 Accent 5"/ UnhideWhenUsed="false" Name="Medium List 2 Accent 5"/ UnhideWhenUsed="false" Name="Medium Grid 1 Accent 5"/ UnhideWhenUsed="false" Name="Medium Grid 2 Accent 5"/ UnhideWhenUsed="false" Name="Medium Grid 3 Accent 5"/ UnhideWhenUsed="false" Name="Dark List Accent 5"/ UnhideWhenUsed="false" Name="Colorful Shading Accent 5"/ UnhideWhenUsed="false" Name="Colorful List Accent 5"/ UnhideWhenUsed="false" Name="Colorful Grid Accent 5"/ UnhideWhenUsed="false" Name="Light Shading Accent 6"/ UnhideWhenUsed="false" Name="Light List Accent 6"/ UnhideWhenUsed="false" Name="Light Grid Accent 6"/ UnhideWhenUsed="false" Name="Medium Shading 1 Accent 6"/ UnhideWhenUsed="false" Name="Medium Shading 2 Accent 6"/ UnhideWhenUsed="false" Name="Medium List 1 Accent 6"/ UnhideWhenUsed="false" Name="Medium List 2 Accent 6"/ UnhideWhenUsed="false" Name="Medium Grid 1 Accent 6"/ UnhideWhenUsed="false" Name="Medium Grid 2 Accent 6"/ UnhideWhenUsed="false" Name="Medium Grid 3 Accent 6"/ UnhideWhenUsed="false" Name="Dark List Accent 6"/ UnhideWhenUsed="false" Name="Colorful Shading Accent 6"/ UnhideWhenUsed="false" Name="Colorful List Accent 6"/ UnhideWhenUsed="false" Name="Colorful Grid Accent 6"/ UnhideWhenUsed="false" QFormat="true" Name="Subtle Emphasis"/ UnhideWhenUsed="false" QFormat="true" Name="Intense Emphasis"/ UnhideWhenUsed="false" QFormat="true" Name="Subtle Reference"/ UnhideWhenUsed="false" QFormat="true" Name="Intense Reference"/ UnhideWhenUsed="false" QFormat="true" Name="Book Title"/ /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi;} Exadata auto disk management is controlled by the parameter _AUTO_MANAGE_EXADATA_DISKS. The default value for this parameter is TRUE.When _AUTO_MANAGE_EXADATA_DISKS is enabled, Exadata automate the following disk operations:If a griddisk becomes unavailable/available, ASM will OFFLINE/ONLINE it.If a physicaldisk fails or its status change to predictive failure, for all griddisks built on it ASM will DROP FORCE the failed ones and DROP the ones with predictive failures.If a flashdisk performance degrades, if there are griddisks built on it, they will be DROPPED FORCE in ASM.If a physicaldisk is replaced, the celldisk and griddisks will be recreated and the griddisks will be automatically ADDED in ASM, if they were automatically dropped by ASM. If you manually drop the disks, that will not happen.If a NORMAL, ONLINE griddisk is manually dropped, FORCE option should not be used, otherwise the disk will be automatically added back in ASM. If a gridisk is inactivated, ASM will automatically OFFLINE it.If a gridisk is activated, ASM will automatically ONLINED it. There are some error conditions that may require to temporarily disable _AUTO_MANAGE_EXADATA_DISKS.Details on MOS 1408865.1 - Exadata Auto Disk Management Add disk failing and ASM Rebalance interrupted with error ORA-15074. Immediately after taking care of the problem _AUTO_MANAGE_EXADATA_DISKS should be set back to its default value of TRUE. Full details on Auto disk management feature in Exadata (Doc ID 1484274.1)

    Read the article

  • How do you dive into large code bases?

    - by miku
    What tools and techniques do you use for exploring and learning an unknown code base? I am thinking of tools like grep, ctags, unit-tests, functional test, class-diagram generators, call graphs, code metrics like sloccount and so on. I'd be interested in your experiences, the helpers you used or wrote yourself and the size of the codebase, with which you worked with. I realize, that this is also a process (happening over time) and that learning can mean "can give a ten minute intro" to "can refactor and shrink this to 30% of the size". Let's leave that open for now.

    Read the article

  • Reducing brightness of large areas containing bright colours

    - by intuited
    I do most of my work in either a terminal or a web browser. I prefer my terminals to use bright colours on dark. I would really prefer that web pages tended to look this way as well, but that's not under my control. The problem is that when I switch from a light-on-dark terminal to a dark-on-light web page (like this one), my eyes have to adjust to the overall rise in screen brightness. Apparently this is bad for your eyes, in addition to being painful and annoying. It would seem to be possible for some layer of the interface to adjust the displayed colours for parts of the screen, or perhaps for particular windows, to reduce the brightness of the brighter areas of the screen. Can this be done, possibly with a Compiz extension?

    Read the article

  • Best method to organize/manage dependencies in the VCS within a large solution

    - by SnOrfus
    A simple scenario: 2 projects are in version control The application The test(s) A significant number of checkins are made to the application daily. CI builds and runs all of the automation nightly. In order to write and/or run tests you need to have built the application (to reference/load instrumented assemblies). Now, consider the application to be massive, such that building it is prohibitive in time (an entire day to compile). The obvious side effect here, is that once you've performed a build locally, it is immediately inconsistent with latest. For instance: If I were to sync with latest, and open up one of the test projects, it would not locally build until I built the application. This is the same when syncing to another branch/build/tag. So, in order to even start working, I need to wait a day to build the application locally, so that the assemblies could be loaded - and then those assemblies wouldn't be latest. How do you organize the repository or (ideally) your development environment such that you can continually develop tests against whatever the current build is, or a given specific build, while minimizing building the application as much as possible?

    Read the article

< Previous Page | 147 148 149 150 151 152 153 154 155 156 157 158  | Next Page >