Search Results

Search found 956 results on 39 pages for 'synchronization'.

Page 20/39 | < Previous Page | 16 17 18 19 20 21 22 23 24 25 26 27  | Next Page >

  • SQL SERVER – Integrate Your Data with Skyvia – Cloud ETL Solution

    - by Pinal Dave
    In our days data integration often becomes a key aspect of business success. For business analysts it’s very important to get integrated data from various sources, such as relational databases, cloud CRMs, etc. to make correct and successful decisions. There are various data integration solutions on market, and today I will tell about one of them – Skyvia. Skyvia is a cloud data integration service, which allows integrating data in cloud CRMs and different relational databases. It is a completely online solution and does not require anything except for a browser. Skyvia provides powerful etl tools for data import, export, replication, and synchronization for SQL Server and other databases and cloud CRMs. You can use Skyvia data import tools to load data from various sources to SQL Server (and SQL Azure). Skyvia supports such cloud CRMs as Salesforce and Microsoft Dynamics CRM and such databases as MySQL and PostgreSQL. You even can migrate data from SQL Server to SQL Server, or from SQL Server to other databases and cloud CRMs. Additionally Skyvia supports import of CSV files, either uploaded manually or stored on cloud file storage services, such as Dropbox, Box, Google Drive, or FTP servers. When data import is not enough, Skyvia offers bidirectional data synchronization. With this tool, you can synchronize SQL Server data with other databases and cloud CRMs. After performing the first synchronization, Skyvia tracks data changes in the synchronized data storages. In SQL Server databases (and other relational databases) it creates additional tracking tables and triggers. This allows synchronizing only the changed data. Skyvia also maps records by their primary key values to each other, so it does not require different sources to have the same primary key structure. It still can match the corresponding records without having to add any additional columns or changing data structure. The only requirement for synchronization is that primary keys must be autogenerated. With Skyvia it’s not necessary for data to have the same structure in integrated data storages. Skyvia supports powerful mapping mechanisms that allow synchronizing data with completely different structure. It provides support for complex mathematical and string expressions when mapping data, using lookups, etc. You may use data splitting – loading data from a single CSV file or source table to multiple related target tables. Or you may load data from several source CSV files or tables to several related target tables. In each case Skyvia preserves data relations. It builds corresponding relations between the target data automatically. When you often work with cloud CRM data, native CRM data reporting and analysis tools may be not enough for you. And there is a vast set of professional data analysis and reporting tools available for SQL Server. With Skyvia you can quickly copy your cloud CRM data to an SQL Server database and apply corresponding SQL Server tools to the data. In such case you can use Skyvia data replication tools. It allows you to quickly copy cloud CRM data to SQL Server or other databases without customizing any mapping. You need just to specify columns to copy data from. Target database tables will be created automatically. Skyvia offers powerful filtering settings to replicate only the records you need. Skyvia also provides capability to export data from SQL Server (including SQL Azure) and other databases and cloud CRMs to CSV files. These files can be either downloadable manually or loaded to cloud file storages or FTP server. You can use export, for example, to backup SQL Azure data to Dropbox. Any data integration operation can be scheduled for automatic execution. Thus, you can automate your SQL Azure data backup or data synchronization – just configure it once, then schedule it, and benefit from automatic data integration with Skyvia. Currently registration and using Skyvia is completely free, so you can try it yourself and find out whether its data migration and integration tools suits for you. Visit this link to register on Skyvia: https://app.skyvia.com/register Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL Tagged: Cloud Computing

    Read the article

  • BizTalk: History of one project architecture

    - by Leonid Ganeline
    "In the beginning God made heaven and earth. Then he started to integrate." At the very start was the requirement: integrate two working systems. Small digging up: It was one system. It was good but IT guys want to change it to the new one, much better, chipper, more flexible, and more progressive in technologies, more suitable for the future, for the faster world and hungry competitors. One thing. One small, little thing. We cannot turn off the old system (call it A, because it was the first), turn on the new one (call it B, because it is second but not the last one). The A has a hundreds users all across a country, they must study B. A still has a lot nice custom features, home-made features that cannot disappear. These features have to be moved to the B and it is a long process, months and months of redevelopment. So, the decision was simple. Let’s move not jump, let’s both systems working side-by-side several months. In this time we could teach the users and move all custom A’s special functionality to B. That automatically means both systems should work side-by-side all these months and use the same data. Data in A and B must be in sync. That’s how the integration projects get birth. Moreover, the specific of the user tasks requires the both systems must be in sync in real-time. Nightly synchronization is not working, absolutely.   First draft The first draft seems simple. Both systems keep data in SQL databases. When data changes, the Create, Update, Delete operations performed on the data, and the sync process could be started. The obvious decision is to use triggers on tables. When we are talking about data, we are talking about several entities. For example, Orders and Items [in Orders]. We decided to use the BizTalk Server to synchronize systems. Why it was chosen is another story. Second draft   Let’s take an example how it works in more details. 1.       User creates a new entity in the A system. This fires an insert trigger on the entity table. Trigger has to pass the message “Entity created”. This message includes all attributes of the new entity, but I focused on the Id of this entity in the A system. Notation for this message is id.A. System A sends id.A to the BizTalk Server. 2.       BizTalk transforms id.A to the format of the system B. This is easiest part and I will not focus on this kind of transformations in the following text. The message on the picture is still id.A but it is in slightly different format, that’s why it is changing in color. BizTalk sends id.A to the system B. 3.       The system B creates the entity on its side. But it uses different id-s for entities, these id-s are id.B. System B saves id.A+id.B. System B sends the message id.A+id.B back to the BizTalk. 4.       BizTalk sends the message id.A+id.B to the system A. 5.       System A saves id.A+id.B. Why both id-s should be saved on both systems? It was one of the next requirements. Users of both systems have to know the systems are in sync or not in sync. Users working with the entity on the system A can see the id.B and use it to switch to the system B and work there with the copy of the same entity. The decision was to store the pairs of entity id-s on both sides. If there is only one id, the entities are not in sync yet (for the Create operation). Third draft Next problem was the reliability of the synchronization. The synchronizing process can be interrupted on each step, when message goes through the wires. It can be communication problem, timeout, temporary shutdown one of the systems, the second system cannot be synchronized by some internal reason. There were several potential problems that prevented from enclosing the whole synchronization process in one transaction. Decision was to restart the whole sync process if it was not finished (in case of the error). For this purpose was created an additional service. Let’s call it the Resync service. We still keep the id pairs in both systems, but only for the fast access not for the synchronization process. For the synchronizing these id-s now are kept in one main place, in the Resync service database. The Resync service keeps record as: ·       Id.A ·       Id.B ·       Entity.Type ·       Operation (Create, Update, Delete) ·       IsSyncStarted (true/false) ·       IsSyncFinished (true/false0 The example now looks like: 1.       System A creates id.A. id.A is saved on the A. Id.A is sent to the BizTalk. 2.       BizTalk sends id.A to the Resync and to the B. id.A is saved on the Resync. 3.       System B creates id.B. id.A+id.B are saved on the B. id.A+id.B are sent to the BizTalk. 4.       BizTalk sends id.A+id.B to the Resync and to the A. id.A+id.B are saved on the Resync. 5.       id.A+id.B are saved on the B. Resync changes the IsSyncStarted and IsSyncFinished flags accordingly. The Resync service implements three main methods: ·       Save (id.A, Entity.Type, Operation) ·       Save (id.A, id.B, Entity.Type, Operation) ·       Resync () Two Save() are used to save id-s to the service storage. See in the above example, in 2 and 4 steps. What about the Resync()? It is the method that finishes the interrupted synchronization processes. If Save() is started by the trigger event, the Resync() is working as an independent process. It periodically scans the Resync storage to find out “unfinished” records. Then it restarts the synchronization processes. It tries to synchronize them several times then gives up.     One more thing, both systems A and B must tolerate duplicates of one synchronizing process. Say on the step 3 the system B was not able to send id.A+id.B back. The Resync service must restart the synchronization process that will send the id.A to B second time. In this case system B must just send back again also created id.A+id.B pair without errors. That means “tolerate duplicates”. Fourth draft Next draft was created only because of the aesthetics. As it always happens, aesthetics gave significant performance gain to the whole system. First was the stupid question. Why do we need this additional service with special database? Can we just master the BizTalk to do something like this Resync() does? So the Resync orchestration is doing the same thing as the Resync service. It is started by the Id.A and finished by the id.A+id.B message. The first works as a Start message, the second works as a Finish message.     Here is a diagram the whole process without errors. It is pretty straightforward. The Resync orchestration is waiting for the Finish message specific period of time then resubmits the Id.A message. It resubmits the Id.A message specific number of times then gives up and gets suspended. It can be resubmitted then it starts the whole process again: waiting [, resubmitting [, get suspended]], finishing. Tuning up The Resync orchestration resubmits the id.A message with special “Resubmitted” flag. The subscription filter on the Resync orchestration includes predicate as (Resubmit_Flag != “Resubmitted”). That means only the first Sync orchestration starts the Resync orchestration. Other Sync orchestration instantiated by the resubmitting can finish this Resync orchestration but cannot start another instance of the Resync   Here is a diagram where system B was inaccessible for some period of time. The Resync orchestration resubmitted the id.A two times. Then system B got the response the id.A+id.B and this finished the Resync service execution. What is interesting about this, there were submitted several identical id.A messages and only one id.A+id.B message. Because of this, the system B and the Resync must tolerate the duplicate messages. We also told about this requirement for the system B. Now the same requirement is for the Resunc. Let’s assume the system B was very slow in the first response and the Resync service had time to resubmit two id.A messages. System B responded not, as it was in previous case, with one id.A+id.B but with two id.A+id.B messages. First of them finished the Resync execution for the id.A. What about the second id.A+id.B? Where it goes? So, we have to add one more internal requirement. The whole solution must tolerate many identical id.A+id.B messages. It is easy task with the BizTalk. I added the “SinkExtraMessages” subscriber (orchestration with one receive shape), that just get these messages and do nothing. Real design Real architecture is much more complex and interesting. In reality each system can submit several id.A almost simultaneously and completely unordered. There are not only the “Create entity” operation but the Update and Delete operations. And these operations relate each other. Say the Update operation after Delete means not the same as Update after Create. In reality there are entities related each other. Say the Order and Order Items. Change on one of it could start the series of the operations on another. Moreover, the system internals are the “black boxes” and we cannot predict the exact content and order of the operation series. It worth to say, I had to spend a time to manage the zombie message problems. The zombies are still here, but this is not a problem now. And this is another story. What is interesting in the last design? One orchestration works to help another to be more reliable. Why two orchestration design is more reliable, isn’t it something strange? The Synch orchestration takes all the message exchange between systems, here is the area where most of the errors could happen. The Resync orchestration sends and receives messages only within the BizTalk server. Is there another design? Sure. All Resync functionality could be implemented inside the Sync orchestration. Hey guys, some other ideas?

    Read the article

  • Parallelism in .NET – Part 4, Imperative Data Parallelism: Aggregation

    - by Reed
    In the article on simple data parallelism, I described how to perform an operation on an entire collection of elements in parallel.  Often, this is not adequate, as the parallel operation is going to be performing some form of aggregation. Simple examples of this might include taking the sum of the results of processing a function on each element in the collection, or finding the minimum of the collection given some criteria.  This can be done using the techniques described in simple data parallelism, however, special care needs to be taken into account to synchronize the shared data appropriately.  The Task Parallel Library has tools to assist in this synchronization. The main issue with aggregation when parallelizing a routine is that you need to handle synchronization of data.  Since multiple threads will need to write to a shared portion of data.  Suppose, for example, that we wanted to parallelize a simple loop that looked for the minimum value within a dataset: double min = double.MaxValue; foreach(var item in collection) { double value = item.PerformComputation(); min = System.Math.Min(min, value); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This seems like a good candidate for parallelization, but there is a problem here.  If we just wrap this into a call to Parallel.ForEach, we’ll introduce a critical race condition, and get the wrong answer.  Let’s look at what happens here: // Buggy code! Do not use! double min = double.MaxValue; Parallel.ForEach(collection, item => { double value = item.PerformComputation(); min = System.Math.Min(min, value); }); This code has a fatal flaw: min will be checked, then set, by multiple threads simultaneously.  Two threads may perform the check at the same time, and set the wrong value for min.  Say we get a value of 1 in thread 1, and a value of 2 in thread 2, and these two elements are the first two to run.  If both hit the min check line at the same time, both will determine that min should change, to 1 and 2 respectively.  If element 1 happens to set the variable first, then element 2 sets the min variable, we’ll detect a min value of 2 instead of 1.  This can lead to wrong answers. Unfortunately, fixing this, with the Parallel.ForEach call we’re using, would require adding locking.  We would need to rewrite this like: // Safe, but slow double min = double.MaxValue; // Make a "lock" object object syncObject = new object(); Parallel.ForEach(collection, item => { double value = item.PerformComputation(); lock(syncObject) min = System.Math.Min(min, value); }); This will potentially add a huge amount of overhead to our calculation.  Since we can potentially block while waiting on the lock for every single iteration, we will most likely slow this down to where it is actually quite a bit slower than our serial implementation.  The problem is the lock statement – any time you use lock(object), you’re almost assuring reduced performance in a parallel situation.  This leads to two observations I’ll make: When parallelizing a routine, try to avoid locks. That being said: Always add any and all required synchronization to avoid race conditions. These two observations tend to be opposing forces – we often need to synchronize our algorithms, but we also want to avoid the synchronization when possible.  Looking at our routine, there is no way to directly avoid this lock, since each element is potentially being run on a separate thread, and this lock is necessary in order for our routine to function correctly every time. However, this isn’t the only way to design this routine to implement this algorithm.  Realize that, although our collection may have thousands or even millions of elements, we have a limited number of Processing Elements (PE).  Processing Element is the standard term for a hardware element which can process and execute instructions.  This typically is a core in your processor, but many modern systems have multiple hardware execution threads per core.  The Task Parallel Library will not execute the work for each item in the collection as a separate work item. Instead, when Parallel.ForEach executes, it will partition the collection into larger “chunks” which get processed on different threads via the ThreadPool.  This helps reduce the threading overhead, and help the overall speed.  In general, the Parallel class will only use one thread per PE in the system. Given the fact that there are typically fewer threads than work items, we can rethink our algorithm design.  We can parallelize our algorithm more effectively by approaching it differently.  Because the basic aggregation we are doing here (Min) is communitive, we do not need to perform this in a given order.  We knew this to be true already – otherwise, we wouldn’t have been able to parallelize this routine in the first place.  With this in mind, we can treat each thread’s work independently, allowing each thread to serially process many elements with no locking, then, after all the threads are complete, “merge” together the results. This can be accomplished via a different set of overloads in the Parallel class: Parallel.ForEach<TSource,TLocal>.  The idea behind these overloads is to allow each thread to begin by initializing some local state (TLocal).  The thread will then process an entire set of items in the source collection, providing that state to the delegate which processes an individual item.  Finally, at the end, a separate delegate is run which allows you to handle merging that local state into your final results. To rewriting our routine using Parallel.ForEach<TSource,TLocal>, we need to provide three delegates instead of one.  The most basic version of this function is declared as: public static ParallelLoopResult ForEach<TSource, TLocal>( IEnumerable<TSource> source, Func<TLocal> localInit, Func<TSource, ParallelLoopState, TLocal, TLocal> body, Action<TLocal> localFinally ) The first delegate (the localInit argument) is defined as Func<TLocal>.  This delegate initializes our local state.  It should return some object we can use to track the results of a single thread’s operations. The second delegate (the body argument) is where our main processing occurs, although now, instead of being an Action<T>, we actually provide a Func<TSource, ParallelLoopState, TLocal, TLocal> delegate.  This delegate will receive three arguments: our original element from the collection (TSource), a ParallelLoopState which we can use for early termination, and the instance of our local state we created (TLocal).  It should do whatever processing you wish to occur per element, then return the value of the local state after processing is completed. The third delegate (the localFinally argument) is defined as Action<TLocal>.  This delegate is passed our local state after it’s been processed by all of the elements this thread will handle.  This is where you can merge your final results together.  This may require synchronization, but now, instead of synchronizing once per element (potentially millions of times), you’ll only have to synchronize once per thread, which is an ideal situation. Now that I’ve explained how this works, lets look at the code: // Safe, and fast! double min = double.MaxValue; // Make a "lock" object object syncObject = new object(); Parallel.ForEach( collection, // First, we provide a local state initialization delegate. () => double.MaxValue, // Next, we supply the body, which takes the original item, loop state, // and local state, and returns a new local state (item, loopState, localState) => { double value = item.PerformComputation(); return System.Math.Min(localState, value); }, // Finally, we provide an Action<TLocal>, to "merge" results together localState => { // This requires locking, but it's only once per used thread lock(syncObj) min = System.Math.Min(min, localState); } ); Although this is a bit more complicated than the previous version, it is now both thread-safe, and has minimal locking.  This same approach can be used by Parallel.For, although now, it’s Parallel.For<TLocal>.  When working with Parallel.For<TLocal>, you use the same triplet of delegates, with the same purpose and results. Also, many times, you can completely avoid locking by using a method of the Interlocked class to perform the final aggregation in an atomic operation.  The MSDN example demonstrating this same technique using Parallel.For uses the Interlocked class instead of a lock, since they are doing a sum operation on a long variable, which is possible via Interlocked.Add. By taking advantage of local state, we can use the Parallel class methods to parallelize algorithms such as aggregation, which, at first, may seem like poor candidates for parallelization.  Doing so requires careful consideration, and often requires a slight redesign of the algorithm, but the performance gains can be significant if handled in a way to avoid excessive synchronization.

    Read the article

  • Sync custom AD properties to SharePoint Profile

    - by KunaalKapoor
    Here are some step-by-step instructions regarding configuring SharePoint to sync with custom AD attributes:Add the custom attribute in Active DirectoryThis part will have to be your doing; here is some documentation regarding creating customattributes in AD:http://msdn.microsoft.com/en-us/library/ms675085(VS.85).aspxhttp://technet.microsoft.com/en-us/magazine/2008.05.schema.aspxhttp://blogs.technet.com/b/isingh/archive/2007/02/18/adding-custom-attributes-in-active-directory.aspx2. Open up the miisclient.exe (C:\Program Files\Microsoft Office Servers\14.0\Synchronization Service\UIShell\miisclient.exe)a. This will have to be opened up with the farm admin account3. Click on "Management Agents" in the ribbon4. Right-click the Active Directory Management Agent ("MOSS-<name of sync connection>") and click "Refresh Schema"a. When prompted, enter the credentials for the farm account5. Once complete, close out of miisclient.exe6. Go into Central Admin --> Application Management --> Manage Service Applications --> Go into the User Profile Service Application7. Click on "Manage User Properties"8. Click on "New Property"9. Put in the correct information regarding the attribute that was created10. At the bottom of this page, under the "Source Data Connection" drop down, select the AD synchronization connection you have already configured11. For the "Attribute" drop down, select the new attribute you have created12. For the "Direction" drop down, select "Import"13. Click "OK"14. Run a full synchronization for the user profile service application and the custom property will get synced (as long as the attribute is set in Active Directory for the desired users)

    Read the article

  • DropSpace Syncs Android Files to Dropbox

    - by ETC
    DropSpace is a free Android application that fixes the primary issue that plagues the official Dropbox app for Android–the lack of true file synchronization. Grab a copy of DropSpace and start enjoying true file syncing on the go. The official Dropbox app is limited to grabbing files from your Dropbox account or pushing files from your phone to your Dropbox account. Actual file synchronization, this manual push/pull model aside, is nowhere to be found. DropSpace fills that gap by enabling file synchronization between your SD card directories and your Dropbox directories. It’s packed with handy features including restricting file syncing to Wi-Fi connection only (great if you don’t want to chew up your very limited data plan) as well as numerous toggles for various settings like whether it should delete remote files if the local file is deleted, how often it should run the sync service, and more. Hit up the link below to grab a copy and take it for a test drive. DropSpace is free and works wherever Android does; Dropbox account required. DropSpace [via Addictive Tips] Latest Features How-To Geek ETC Have You Ever Wondered How Your Operating System Got Its Name? Should You Delete Windows 7 Service Pack Backup Files to Save Space? What Can Super Mario Teach Us About Graphics Technology? Windows 7 Service Pack 1 is Released: But Should You Install It? How To Make Hundreds of Complex Photo Edits in Seconds With Photoshop Actions How to Enable User-Specific Wireless Networks in Windows 7 Access the Options for Your Favorite Extensions Easier in Firefox Don’t Sleep Keeps Your Windows Machine Awake DropSpace Syncs Android Files to Dropbox Field of Poppies Wallpaper The History Of Operating Systems [Infographic] DriveSafe.ly Reads Your Text Messages Aloud

    Read the article

  • ItemUpdating called twice after ItemAdded in event receiver

    - by Jason
    I've created an event receiver to handle the ItemAdded and ItemUpdating events on a document library in SharePoint 2010. I've encountered a problem where when I add a document to the library (e.g. by saving it back from Word) the ItemAdded method is correctly called however this is then followed by two calls to ItemUpdating. I have removed all code from my handlers to ensure that it's not something I'm doing inside that is causing the problem. They literally look like: public override void ItemUpdating(SPItemEventProperties properties) { } public override void ItemAdded(SPItemEventProperties properties) { } Does anyone have a solution to this issue? Here is my elements.xml file for the event receiver: <Elements xmlns="http://schemas.microsoft.com/sharepoint/"> <Receivers ListTemplateId="101"> <Receiver> <Name>DocumentsEventReceiverItemUpdating</Name> <Type>ItemUpdating</Type> <Assembly>$SharePoint.Project.AssemblyFullName$</Assembly> <Class>My.Namespace.DocumentsEventReceiver</Class> <SequenceNumber>10000</SequenceNumber> <Synchronization>Synchronous</Synchronization> </Receiver> <Receiver> <Name>DocumentsEventReceiverItemAdded</Name> <Type>ItemAdded</Type> <Assembly>$SharePoint.Project.AssemblyFullName$</Assembly> <Class>My.Namespace.DocumentsEventReceiver</Class> <SequenceNumber>10000</SequenceNumber> <Synchronization>Synchronous</Synchronization> </Receiver> </Receivers> </Elements>

    Read the article

  • C#/.NET Little Wonders: ConcurrentBag and BlockingCollection

    - by James Michael Hare
    In the first week of concurrent collections, began with a general introduction and discussed the ConcurrentStack<T> and ConcurrentQueue<T>.  The last post discussed the ConcurrentDictionary<T> .  Finally this week, we shall close with a discussion of the ConcurrentBag<T> and BlockingCollection<T>. For more of the "Little Wonders" posts, see C#/.NET Little Wonders: A Redux. Recap As you'll recall from the previous posts, the original collections were object-based containers that accomplished synchronization through a Synchronized member.  With the advent of .NET 2.0, the original collections were succeeded by the generic collections which are fully type-safe, but eschew automatic synchronization.  With .NET 4.0, a new breed of collections was born in the System.Collections.Concurrent namespace.  Of these, the final concurrent collection we will examine is the ConcurrentBag and a very useful wrapper class called the BlockingCollection. For some excellent information on the performance of the concurrent collections and how they perform compared to a traditional brute-force locking strategy, see this informative whitepaper by the Microsoft Parallel Computing Platform team here. ConcurrentBag<T> – Thread-safe unordered collection. Unlike the other concurrent collections, the ConcurrentBag<T> has no non-concurrent counterpart in the .NET collections libraries.  Items can be added and removed from a bag just like any other collection, but unlike the other collections, the items are not maintained in any order.  This makes the bag handy for those cases when all you care about is that the data be consumed eventually, without regard for order of consumption or even fairness – that is, it’s possible new items could be consumed before older items given the right circumstances for a period of time. So why would you ever want a container that can be unfair?  Well, to look at it another way, you can use a ConcurrentQueue and get the fairness, but it comes at a cost in that the ordering rules and synchronization required to maintain that ordering can affect scalability a bit.  Thus sometimes the bag is great when you want the fastest way to get the next item to process, and don’t care what item it is or how long its been waiting. The way that the ConcurrentBag works is to take advantage of the new ThreadLocal<T> type (new in System.Threading for .NET 4.0) so that each thread using the bag has a list local to just that thread.  This means that adding or removing to a thread-local list requires very low synchronization.  The problem comes in where a thread goes to consume an item but it’s local list is empty.  In this case the bag performs “work-stealing” where it will rob an item from another thread that has items in its list.  This requires a higher level of synchronization which adds a bit of overhead to the take operation. So, as you can imagine, this makes the ConcurrentBag good for situations where each thread both produces and consumes items from the bag, but it would be less-than-idea in situations where some threads are dedicated producers and the other threads are dedicated consumers because the work-stealing synchronization would outweigh the thread-local optimization for a thread taking its own items. Like the other concurrent collections, there are some curiosities to keep in mind: IsEmpty(), Count, ToArray(), and GetEnumerator() lock collection Each of these needs to take a snapshot of whole bag to determine if empty, thus they tend to be more expensive and cause Add() and Take() operations to block. ToArray() and GetEnumerator() are static snapshots Because it is based on a snapshot, will not show subsequent updates after snapshot. Add() is lightweight Since adding to the thread-local list, there is very little overhead on Add. TryTake() is lightweight if items in thread-local list As long as items are in the thread-local list, TryTake() is very lightweight, much more so than ConcurrentStack() and ConcurrentQueue(), however if the local thread list is empty, it must steal work from another thread, which is more expensive. Remember, a bag is not ideal for all situations, it is mainly ideal for situations where a process consumes an item and either decomposes it into more items to be processed, or handles the item partially and places it back to be processed again until some point when it will complete.  The main point is that the bag works best when each thread both takes and adds items. For example, we could create a totally contrived example where perhaps we want to see the largest power of a number before it crosses a certain threshold.  Yes, obviously we could easily do this with a log function, but bare with me while I use this contrived example for simplicity. So let’s say we have a work function that will take a Tuple out of a bag, this Tuple will contain two ints.  The first int is the original number, and the second int is the last multiple of that number.  So we could load our bag with the initial values (let’s say we want to know the last multiple of each of 2, 3, 5, and 7 under 100. 1: var bag = new ConcurrentBag<Tuple<int, int>> 2: { 3: Tuple.Create(2, 1), 4: Tuple.Create(3, 1), 5: Tuple.Create(5, 1), 6: Tuple.Create(7, 1) 7: }; Then we can create a method that given the bag, will take out an item, apply the multiplier again, 1: public static void FindHighestPowerUnder(ConcurrentBag<Tuple<int,int>> bag, int threshold) 2: { 3: Tuple<int,int> pair; 4:  5: // while there are items to take, this will prefer local first, then steal if no local 6: while (bag.TryTake(out pair)) 7: { 8: // look at next power 9: var result = Math.Pow(pair.Item1, pair.Item2 + 1); 10:  11: if (result < threshold) 12: { 13: // if smaller than threshold bump power by 1 14: bag.Add(Tuple.Create(pair.Item1, pair.Item2 + 1)); 15: } 16: else 17: { 18: // otherwise, we're done 19: Console.WriteLine("Highest power of {0} under {3} is {0}^{1} = {2}.", 20: pair.Item1, pair.Item2, Math.Pow(pair.Item1, pair.Item2), threshold); 21: } 22: } 23: } Now that we have this, we can load up this method as an Action into our Tasks and run it: 1: // create array of tasks, start all, wait for all 2: var tasks = new[] 3: { 4: new Task(() => FindHighestPowerUnder(bag, 100)), 5: new Task(() => FindHighestPowerUnder(bag, 100)), 6: }; 7:  8: Array.ForEach(tasks, t => t.Start()); 9:  10: Task.WaitAll(tasks); Totally contrived, I know, but keep in mind the main point!  When you have a thread or task that operates on an item, and then puts it back for further consumption – or decomposes an item into further sub-items to be processed – you should consider a ConcurrentBag as the thread-local lists will allow for quick processing.  However, if you need ordering or if your processes are dedicated producers or consumers, this collection is not ideal.  As with anything, you should performance test as your mileage will vary depending on your situation! BlockingCollection<T> – A producers & consumers pattern collection The BlockingCollection<T> can be treated like a collection in its own right, but in reality it adds a producers and consumers paradigm to any collection that implements the interface IProducerConsumerCollection<T>.  If you don’t specify one at the time of construction, it will use a ConcurrentQueue<T> as its underlying store. If you don’t want to use the ConcurrentQueue, the ConcurrentStack and ConcurrentBag also implement the interface (though ConcurrentDictionary does not).  In addition, you are of course free to create your own implementation of the interface. So, for those who don’t remember the producers and consumers classical computer-science problem, the gist of it is that you have one (or more) processes that are creating items (producers) and one (or more) processes that are consuming these items (consumers).  Now, the crux of the problem is that there is a bin (queue) where the produced items are placed, and typically that bin has a limited size.  Thus if a producer creates an item, but there is no space to store it, it must wait until an item is consumed.  Also if a consumer goes to consume an item and none exists, it must wait until an item is produced. The BlockingCollection makes it trivial to implement any standard producers/consumers process set by providing that “bin” where the items can be produced into and consumed from with the appropriate blocking operations.  In addition, you can specify whether the bin should have a limited size or can be (theoretically) unbounded, and you can specify timeouts on the blocking operations. As far as your choice of “bin”, for the most part the ConcurrentQueue is the right choice because it is fairly light and maximizes fairness by ordering items so that they are consumed in the same order they are produced.  You can use the concurrent bag or stack, of course, but your ordering would be random-ish in the case of the former and LIFO in the case of the latter. So let’s look at some of the methods of note in BlockingCollection: BoundedCapacity returns capacity of the “bin” If the bin is unbounded, the capacity is int.MaxValue. Count returns an internally-kept count of items This makes it O(1), but if you modify underlying collection directly (not recommended) it is unreliable. CompleteAdding() is used to cut off further adds. This sets IsAddingCompleted and begins to wind down consumers once empty. IsAddingCompleted is true when producers are “done”. Once you are done producing, should complete the add process to alert consumers. IsCompleted is true when producers are “done” and “bin” is empty. Once you mark the producers done, and all items removed, this will be true. Add() is a blocking add to collection. If bin is full, will wait till space frees up Take() is a blocking remove from collection. If bin is empty, will wait until item is produced or adding is completed. GetConsumingEnumerable() is used to iterate and consume items. Unlike the standard enumerator, this one consumes the items instead of iteration. TryAdd() attempts add but does not block completely If adding would block, returns false instead, can specify TimeSpan to wait before stopping. TryTake() attempts to take but does not block completely Like TryAdd(), if taking would block, returns false instead, can specify TimeSpan to wait. Note the use of CompleteAdding() to signal the BlockingCollection that nothing else should be added.  This means that any attempts to TryAdd() or Add() after marked completed will throw an InvalidOperationException.  In addition, once adding is complete you can still continue to TryTake() and Take() until the bin is empty, and then Take() will throw the InvalidOperationException and TryTake() will return false. So let’s create a simple program to try this out.  Let’s say that you have one process that will be producing items, but a slower consumer process that handles them.  This gives us a chance to peek inside what happens when the bin is bounded (by default, the bin is NOT bounded). 1: var bin = new BlockingCollection<int>(5); Now, we create a method to produce items: 1: public static void ProduceItems(BlockingCollection<int> bin, int numToProduce) 2: { 3: for (int i = 0; i < numToProduce; i++) 4: { 5: // try for 10 ms to add an item 6: while (!bin.TryAdd(i, TimeSpan.FromMilliseconds(10))) 7: { 8: Console.WriteLine("Bin is full, retrying..."); 9: } 10: } 11:  12: // once done producing, call CompleteAdding() 13: Console.WriteLine("Adding is completed."); 14: bin.CompleteAdding(); 15: } And one to consume them: 1: public static void ConsumeItems(BlockingCollection<int> bin) 2: { 3: // This will only be true if CompleteAdding() was called AND the bin is empty. 4: while (!bin.IsCompleted) 5: { 6: int item; 7:  8: if (!bin.TryTake(out item, TimeSpan.FromMilliseconds(10))) 9: { 10: Console.WriteLine("Bin is empty, retrying..."); 11: } 12: else 13: { 14: Console.WriteLine("Consuming item {0}.", item); 15: Thread.Sleep(TimeSpan.FromMilliseconds(20)); 16: } 17: } 18: } Then we can fire them off: 1: // create one producer and two consumers 2: var tasks = new[] 3: { 4: new Task(() => ProduceItems(bin, 20)), 5: new Task(() => ConsumeItems(bin)), 6: new Task(() => ConsumeItems(bin)), 7: }; 8:  9: Array.ForEach(tasks, t => t.Start()); 10:  11: Task.WaitAll(tasks); Notice that the producer is faster than the consumer, thus it should be hitting a full bin often and displaying the message after it times out on TryAdd(). 1: Consuming item 0. 2: Consuming item 1. 3: Bin is full, retrying... 4: Bin is full, retrying... 5: Consuming item 3. 6: Consuming item 2. 7: Bin is full, retrying... 8: Consuming item 4. 9: Consuming item 5. 10: Bin is full, retrying... 11: Consuming item 6. 12: Consuming item 7. 13: Bin is full, retrying... 14: Consuming item 8. 15: Consuming item 9. 16: Bin is full, retrying... 17: Consuming item 10. 18: Consuming item 11. 19: Bin is full, retrying... 20: Consuming item 12. 21: Consuming item 13. 22: Bin is full, retrying... 23: Bin is full, retrying... 24: Consuming item 14. 25: Adding is completed. 26: Consuming item 15. 27: Consuming item 16. 28: Consuming item 17. 29: Consuming item 19. 30: Consuming item 18. Also notice that once CompleteAdding() is called and the bin is empty, the IsCompleted property returns true, and the consumers will exit. Summary The ConcurrentBag is an interesting collection that can be used to optimize concurrency scenarios where tasks or threads both produce and consume items.  In this way, it will choose to consume its own work if available, and then steal if not.  However, in situations where you want fair consumption or ordering, or in situations where the producers and consumers are distinct processes, the bag is not optimal. The BlockingCollection is a great wrapper around all of the concurrent queue, stack, and bag that allows you to add producer and consumer semantics easily including waiting when the bin is full or empty. That’s the end of my dive into the concurrent collections.  I’d also strongly recommend, once again, you read this excellent Microsoft white paper that goes into much greater detail on the efficiencies you can gain using these collections judiciously (here). Tweet Technorati Tags: C#,.NET,Concurrent Collections,Little Wonders

    Read the article

  • Firebird query is crashing with org.firebirdsql.jdbc.FBSQLException: GDS Exception. 335544364. reque

    - by user321395
    I am using JdbcTemplate.queryForInt to insert a Row into the DB, and then get the ID back. The Query is "INSERT INTO metadocs(NAME) values (?) RETURNING METADOCID". If I run the statement in Flamerobin, it works fine. However, if I run it from Java, I get the following error: org.springframework.jdbc.UncategorizedSQLException: PreparedStatementCallback; uncategorized SQLException for SQL [INSERT INTO metadocs(NAME) values (?) RETURNING METADOCID]; SQL state [HY000]; error code [335544364]; GDS Exception. 335544364. request synchronization error; nested exception is org.firebirdsql.jdbc.FBSQLException: GDS Exception. 335544364. request synchronization error Caused by: org.firebirdsql.jdbc.FBSQLException: GDS Exception. 335544364. request synchronization error Does anyone have an idea what this could be caused by?

    Read the article

  • Which workaround to use for the following SQL deadlock?

    - by Marko
    I found a SQL deadlock scenario in my application during concurrency. I belive that the two statements that cause the deadlock are (note - I'm using LINQ2SQL and DataContext.ExecuteCommand(), that's where this.studioId.ToString() comes into play): exec sp_executesql N'INSERT INTO HQ.dbo.SynchronizingRows ([StudioId], [UpdatedRowId]) SELECT @p0, [t0].[Id] FROM [dbo].[UpdatedRows] AS [t0] WHERE NOT (EXISTS( SELECT NULL AS [EMPTY] FROM [dbo].[ReceivedUpdatedRows] AS [t1] WHERE ([t1].[StudioId] = @p0) AND ([t1].[UpdatedRowId] = [t0].[Id]) ))',N'@p0 uniqueidentifier',@p0='" + this.studioId.ToString() + "'; and exec sp_executesql N'INSERT INTO HQ.dbo.ReceivedUpdatedRows ([UpdatedRowId], [StudioId], [ReceiveDateTime]) SELECT [t0].[UpdatedRowId], @p0, GETDATE() FROM [dbo].[SynchronizingRows] AS [t0] WHERE ([t0].[StudioId] = @p0)',N'@p0 uniqueidentifier',@p0='" + this.studioId.ToString() + "'; The basic logic of my (client-server) application is this: Every time someone inserts or updates a row on the server side, I also insert a row into the table UpdatedRows, specifying the RowId of the modified row. When a client tries to synchronize data, it first copies all of the rows in the UpdatedRows table, that don't contain a reference row for the specific client in the table ReceivedUpdatedRows, to the table SynchronizingRows (the first statement taking part in the deadlock). Afterwards, during the synchronization I look for modified rows via lookup of the SynchronizingRows table. This step is required, otherwise if someone inserts new rows or modifies rows on the server side during synchronization I will miss them and won't get them during the next synchronization (explanation scenario to long to write here...). Once synchronization is complete, I insert rows to the ReceivedUpdatedRows table specifying that this client has received the UpdatedRows contained in the SynchronizingRows table (the second statement taking part in the deadlock). Finally I delete all rows from the SynchronizingRows table that belong to the current client. The way I see it, the deadlock is occuring on tables SynchronizingRows (abbreviation SR) and ReceivedUpdatedRows (abbreviation RUR) during steps 2 and 3 (one client is in step 2 and is inserting into SR and selecting from RUR; while another client is in step 3 inserting into RUR and selecting from SR). I googled a bit about SQL deadlocks and came to a conclusion that I have three options. Inorder to make a decision I need more input about each option/workaround: Workaround 1: The first advice given on the web about SQL deadlocks - restructure tables/queries so that deadlocks don't happen in the first place. Only problem with this is that with my IQ I don't see a way to do the synchronization logic any differently. If someone wishes to dwelve deeper into my current synchronization logic, how and why it is set up the way it is, I'll post a link for the explanation. Perhaps, with the help of someone smarter than me, it's possible to create a logic that is deadlock free. Workaround 2: The second most common advice seems to be the use of WITH(NOLOCK) hint. The problem with this is that NOLOCK might miss or duplicate some rows. Duplication is not a problem, but missing rows is catastrophic! Another option is the WITH(READPAST) hint. On the face of it, this seems to be a perfect solution. I really don't care about rows that other clients are inserting/modifying, because each row belongs only to a specific client, so I may very well skip locked rows. But the MSDN documentaion makes me a bit worried - "When READPAST is specified, both row-level and page-level locks are skipped". As I said, row-level locks would not be a problem, but page-level locks may very well be, since a page might contain rows that belong to multiple clients (including the current one). While there are lots of blog posts specifically mentioning that NOLOCK might miss rows, there seems to be none about READPAST (never) missing rows. This makes me skeptical and nervous to implement it, since there is no easy way to test it (implementing would be a piece of cake, just pop WITH(READPAST) into both statements SELECT clause and job done). Can someone confirm whether the READPAST hint can miss rows? Workaround 3: The final option is to use ALLOW_SNAPSHOT_ISOLATION and READ_COMMITED_SNAPSHOT. This would seem to be the only option to work 100% - at least I can't find any information that would contradict with it. But it is a little bit trickier to setup (I don't care much about the performance hit), because I'm using LINQ. Off the top of my head I probably need to manually open a SQL connection and pass it to the LINQ2SQL DataContext, etc... I haven't looked into the specifics very deeply. Mostly I would prefer option 2 if somone could only reassure me that READPAST will never miss rows concerning the current client (as I said before, each client has and only ever deals with it's own set of rows). Otherwise I'll likely have to implement option 3, since option 1 is probably impossible... I'll post the table definitions for the three tables as well, just in case: CREATE TABLE [dbo].[UpdatedRows]( [Id] [uniqueidentifier] NOT NULL ROWGUIDCOL DEFAULT NEWSEQUENTIALID() PRIMARY KEY CLUSTERED, [RowId] [uniqueidentifier] NOT NULL, [UpdateDateTime] [datetime] NOT NULL, ) ON [PRIMARY] GO CREATE NONCLUSTERED INDEX IX_RowId ON dbo.UpdatedRows ([RowId] ASC) WITH (STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY] GO CREATE TABLE [dbo].[ReceivedUpdatedRows]( [Id] [uniqueidentifier] NOT NULL ROWGUIDCOL DEFAULT NEWSEQUENTIALID() PRIMARY KEY NONCLUSTERED, [UpdatedRowId] [uniqueidentifier] NOT NULL REFERENCES [dbo].[UpdatedRows] ([Id]), [StudioId] [uniqueidentifier] NOT NULL REFERENCES, [ReceiveDateTime] [datetime] NOT NULL, ) ON [PRIMARY] GO CREATE CLUSTERED INDEX IX_Studios ON dbo.ReceivedUpdatedRows ([StudioId] ASC) WITH (STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY] GO CREATE TABLE [dbo].[SynchronizingRows]( [StudioId] [uniqueidentifier] NOT NULL [UpdatedRowId] [uniqueidentifier] NOT NULL REFERENCES [dbo].[UpdatedRows] ([Id]) PRIMARY KEY CLUSTERED ([StudioId], [UpdatedRowId]) ) ON [PRIMARY] GO PS! Studio = Client. PS2! I just noticed that the index definitions have ALLOW_PAGE_LOCK=ON. If I would turn it off, would that make any difference to READPAST? Are there any negative downsides for turning it off?

    Read the article

  • How do I make my purchased music be synchronized on Rhythmbox and in ~./ubuntuone/Purchased from Ubuntu One?

    - by dln9
    I am signed up for the Ubuntu One service, and have my computer added. Under System ? Preferences ? Ubuntu One, I have enabled all synchronizations, including for music. System ? Prefereneces ? Ubuntu One, it shows this message: "Synchronization Complete". But, when (via Rhythmbox) I purchase a song, no synchronization occurs. I can see the purchased song on the Ubuntu One web page, but the "Purchased Music" folder in Rhythmbox is empty, and the folder ~/.ubuntuone/Purchased from Ubuntu One is also empty. (So, the only way I can get at the song is to manually download it from the Ubuntu One web site to my computer.) I thought that these synchronizations should just happen automatically, but it appears that is not the case for me, and I can't figure out why. Thanks in advance for any help.

    Read the article

  • Synchronizing ODSEE and OUD

    - by Etienne Remillon
    When it comes to synchronizing between ODSEE and OUD, what should be the best options ? Couple  options are available - Use one of OUD internal capability called Replication Gateway - Use our synchronization tool called Directory Integration Platform part of Oracle Directory Services Plus - Manuel export and import Let's check pro and cons on each method. Replication Gateway is the natural, out of the box solution to perform the task. We created this as a feature of OUD because it works at our replication protocol level. The gateway perform the required adaptation between the ODSEE's replication protocol and OUD's one. The benefits of doing this is that it provide strong consistency between the to type of directories. This fully leverage conflict management implemented in the replication protocols to ensure that changes are applied in a coherent and ordered manner. It does not require specific modification on existing ODSEE production instances such as turning on "retro changelog". Changes are propagated at near speed of replication in both directions. Replication Gateway can also synchronize information that are stored internally in the directory server such as "xxxxx" account locking managed at ODSEE server level and not via the nsyyyy attribute. OUD replication gateway does no require any specific tools or installation specific procedure. It is manged like other OUD component with monitoring and configuration via the standard console. OUD Replication Gateway does not perform adaptation between ODSEE and OUD. Using Directory Integration Protocol as external component to OUD, brings flexibility in remapping and transformations between ODSEE and OUD. There is a price to pay in using DIP to perform the synchronization task. You will have to turn on the retro change log to get access to changes on the ODSEE side (this will impact disk and CPU usage and performances which could be a serious challenge for your existing ODSEE environment (if you have not provisioned additional hardware and instances). You will not benefits of conflict resolution management and this might have to be addressed at application level, which is not always possible to implement. Using export and import seams very simple, but this methodology cannot ensure an highly available deployment with up to date entries on booth sides. This solution can be used if full HA with up-to-date data is not needed (during synchronization time). It often used  if data-cleaning need to take place to avoid polluting a new environment with old un-necessary data.

    Read the article

  • Understanding VS2010 C# parallel profiling results

    - by Haggai
    I have a program with many independent computations so I decided to parallelize it. I use Parallel.For/Each. The results were okay for a dual-core machine - CPU utilization of about 80%-90% most of the time. However, with a dual Xeon machine (i.e. 8 cores) I get only about 30%-40% CPU utilization, although the program spends quite a lot of time (sometimes more than 10 seconds) on the parallel sections, and I see it employs about 20-30 more threads in those sections compared to serial sections. Each thread takes more than 1 second to complete, so I see no reason for them to work in parallel - unless there is a synchronization problem. I used the built-in profiler of VS2010, and the results are strange. Even though I use locks only in one place, the profiler reports that about 85% of the program's time is spent on synchronization (also 5-7% sleep, 5-7% execution, under 1% IO). The locked code is only a cache (a dictionary) get/add: bool esn_found; lock (lock_load_esn) esn_found = cache.TryGetValue(st, out esn); if(!esn_found) { esn = pData.esa_inv_idx.esa[term_idx]; esn.populate(pData.esa_inv_idx.datafile); lock (lock_load_esn) { if (!cache.ContainsKey(st)) cache.Add(st, esn); } } lock_load_esn is a static member of the class of type Object. esn.populate reads from a file using a separate StreamReader for each thread. However, when I press the Synchronization button to see what causes the most delay, I see that the profiler reports lines which are function entrance lines, and doesn't report the locked sections themselves. It doesn't even report the function that contains the above code (reminder - the only lock in the program) as part of the blocking profile with noise level 2%. With noise level at 0% it reports all the functions of the program, which I don't understand why they count as blocking synchronizations. So my question is - what is going on here? How can it be that 85% of the time is spent on synchronization? How do I find out what really is the problem with the parallel sections of my program? Thanks.

    Read the article

  • Launching a WPF Window in a Separate Thread, Part 1

    - by Reed
    Typically, I strongly recommend keeping the user interface within an application’s main thread, and using multiple threads to move the actual “work” into background threads.  However, there are rare times when creating a separate, dedicated thread for a Window can be beneficial.  This is even acknowledged in the MSDN samples, such as the Multiple Windows, Multiple Threads sample.  However, doing this correctly is difficult.  Even the referenced MSDN sample has major flaws, and will fail horribly in certain scenarios.  To ease this, I wrote a small class that alleviates some of the difficulties involved. The MSDN Multiple Windows, Multiple Threads Sample shows how to launch a new thread with a WPF Window, and will work in most cases.  The sample code (commented and slightly modified) works out to the following: // Create a thread Thread newWindowThread = new Thread(new ThreadStart( () => { // Create and show the Window Window1 tempWindow = new Window1(); tempWindow.Show(); // Start the Dispatcher Processing System.Windows.Threading.Dispatcher.Run(); })); // Set the apartment state newWindowThread.SetApartmentState(ApartmentState.STA); // Make the thread a background thread newWindowThread.IsBackground = true; // Start the thread newWindowThread.Start(); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This sample creates a thread, marks it as single threaded apartment state, and starts the Dispatcher on that thread. That is the minimum requirements to get a Window displaying and handling messages correctly, but, unfortunately, has some serious flaws. The first issue – the created thread will run continuously until the application shuts down, given the code in the sample.  The problem is that the ThreadStart delegate used ends with running the Dispatcher.  However, nothing ever stops the Dispatcher processing.  The thread was created as a Background thread, which prevents it from keeping the application alive, but the Dispatcher will continue to pump dispatcher frames until the application shuts down. In order to fix this, we need to call Dispatcher.InvokeShutdown after the Window is closed.  This would require modifying the above sample to subscribe to the Window’s Closed event, and, at that point, shutdown the Dispatcher: // Create a thread Thread newWindowThread = new Thread(new ThreadStart( () => { Window1 tempWindow = new Window1(); // When the window closes, shut down the dispatcher tempWindow.Closed += (s,e) => Dispatcher.CurrentDispatcher.BeginInvokeShutdown(DispatcherPriority.Background); tempWindow.Show(); // Start the Dispatcher Processing System.Windows.Threading.Dispatcher.Run(); })); // Setup and start thread as before This eliminates the first issue.  Now, when the Window is closed, the new thread’s Dispatcher will shut itself down, which in turn will cause the thread to complete. The above code will work correctly for most situations.  However, there is still a potential problem which could arise depending on the content of the Window1 class.  This is particularly nasty, as the code could easily work for most windows, but fail on others. The problem is, at the point where the Window is constructed, there is no active SynchronizationContext.  This is unlikely to be a problem in most cases, but is an absolute requirement if there is code within the constructor of Window1 which relies on a context being in place. While this sounds like an edge case, it’s fairly common.  For example, if a BackgroundWorker is started within the constructor, or a TaskScheduler is built using TaskScheduler.FromCurrentSynchronizationContext() with the expectation of synchronizing work to the UI thread, an exception will be raised at some point.  Both of these classes rely on the existence of a proper context being installed to SynchronizationContext.Current, which happens automatically, but not until Dispatcher.Run is called.  In the above case, SynchronizationContext.Current will return null during the Window’s construction, which can cause exceptions to occur or unexpected behavior. Luckily, this is fairly easy to correct.  We need to do three things, in order, prior to creating our Window: Create and initialize the Dispatcher for the new thread manually Create a synchronization context for the thread which uses the Dispatcher Install the synchronization context Creating the Dispatcher is quite simple – The Dispatcher.CurrentDispatcher property gets the current thread’s Dispatcher and “creates a new Dispatcher if one is not already associated with the thread.”  Once we have the correct Dispatcher, we can create a SynchronizationContext which uses the dispatcher by creating a DispatcherSynchronizationContext.  Finally, this synchronization context can be installed as the current thread’s context via SynchronizationContext.SetSynchronizationContext.  These three steps can easily be added to the above via a single line of code: // Create a thread Thread newWindowThread = new Thread(new ThreadStart( () => { // Create our context, and install it: SynchronizationContext.SetSynchronizationContext( new DispatcherSynchronizationContext( Dispatcher.CurrentDispatcher)); Window1 tempWindow = new Window1(); // When the window closes, shut down the dispatcher tempWindow.Closed += (s,e) => Dispatcher.CurrentDispatcher.BeginInvokeShutdown(DispatcherPriority.Background); tempWindow.Show(); // Start the Dispatcher Processing System.Windows.Threading.Dispatcher.Run(); })); // Setup and start thread as before This now forces the synchronization context to be in place before the Window is created and correctly shuts down the Dispatcher when the window closes. However, there are quite a few steps.  In my next post, I’ll show how to make this operation more reusable by creating a class with a far simpler API…

    Read the article

  • Spring transaction : Transaction not active

    - by Videanu Adrian
    i develop a app using struts2, spring 3.1, Jpa2 and Hibernate. From Spring i use transactions and IoC. so, i have an ajax code block that calls for a struts2 action every second (this is happening for every user that is logged into application (simultaneous users are around 20-30 at a time)). this action name is PopupAction public class PopupAction extends VActionBase implements ServletRequestAware { private static final long serialVersionUID = -293004532677112584L; private iIntermedService intermedService; private HttpServletRequest servletRequest; @Override public String execute() { Integer agentId = (Integer) session.get("USER_AGENT_ID"); Intermed iObj; try { iObj = intermedService.getIntermed(agentId,locationsString); } catch (Exception e) { logger.error("Cannot get Intermed!!! "+e.getMessage()); return ERROR; } return SUCCESS; } } and then i have the service class : @Transactional(readOnly=true) public class IntermedServiceImpl extends GenericIService<Intermed, Integer> implements iIntermedService { @Override public Intermed getIntermed (int agentId,String queueIds) throws Exception { Intermed intermedObj = null; //TODO - find a better implementation for this queueIds parameter!!!! try{ String sql = "SELECT i FROM bla bla bla.....)"; Query q = this.em.createQuery(sql); List<Intermed> iList = q.getResultList(); if (iList.size() == 1){ intermedObj = (Intermed) iList.get(0); //get latest object from DB em.refresh(intermedObj); } }catch(Exception e){ e.printStackTrace(); logger.error(e.getCause()+e.getMessage()); throw e; } return intermedObj; } } here is the spring configuration : <bean id="emfI" class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean"> <property name="dataSource" ref="inboundDS" /> <property name="persistenceUnitName" value="I2PU"/> <!-- GlassFish load-time weaving setup --> <property name="loadTimeWeaver"> <bean class="org.springframework.instrument.classloading.glassfish.GlassFishLoadTimeWeaver"/> </property> </bean> <tx:annotation-driven transaction-manager="txManagerI" /> <tx:advice id="txManagerInboundAdvice" transaction-manager="txManagerI"> <tx:attributes> <tx:method name="*" rollback-for="java.lang.Exception"/> </tx:attributes> </tx:advice> I have names for transactionManager because i have 3 datasources and 3 transaction managers. the problem is that my glassfish logs are full of messages like these: -- removed in order to be able to add more recent logs -- So the cause is : Caused by: java.lang.IllegalStateException: Transaction not active. But i have no idea what can cause this. Any help ? thanks Updates So i have added to @Transactional annotation the transaction manager name that he has to use, but this still does not solved my problem. I have captured a log from the time that the transaction is created until i got that exception: 2012-02-08T15:08:55.954+0200|INFO||_ThreadID=184;_ThreadName=Thread-5;|DEBUG [thread-pool-1-80(80)] (AbstractBeanFactory.java:245) - Returning cached instance of singleton bean 'txManagerVA' 2012-02-08T15:08:55.962+0200|INFO||_ThreadID=184;_ThreadName=Thread-5;|DEBUG [thread-pool-1-80(80)] (AbstractPlatformTransactionManager.java:365) - Creating new transaction with name [xxx.vs.common.services.inbound.IntermedServiceImpl.getIntermed]: PROPAGATION_REQUIRED,ISOLATION_DEFAULT,readOnly; '',-java.lang.Exception 2012-02-08T15:08:55.967+0200|INFO||_ThreadID=184;_ThreadName=Thread-5;|DEBUG [thread-pool-1-80(80)] (JpaTransactionManager.java:368) - Opened new EntityManager [org.hibernate.ejb.EntityManagerImpl@edf83f9] for JPA transaction 2012-02-08T15:08:55.976+0200|INFO||_ThreadID=184;_ThreadName=Thread-5;|DEBUG [thread-pool-1-80(80)] (JpaTransactionManager.java:400) - Exposing JPA transaction as JDBC transaction [org.springframework.orm.jpa.vendor.HibernateJpaDialect$HibernateConnectionHandle@725b979b] 2012-02-08T15:08:55.977+0200|INFO||_ThreadID=184;_ThreadName=Thread-5;|DEBUG [thread-pool-1-80(80)] (TransactionSynchronizationManager.java:193) - Bound value [org.springframework.jdbc.datasource.ConnectionHolder@4fb57177] for key [com.sun.gjc.spi.jdbc40.DataSource40@75fa4851] to thread [thread-pool-1-80(80)] 2012-02-08T15:08:55.978+0200|INFO||_ThreadID=184;_ThreadName=Thread-5;|DEBUG [thread-pool-1-80(80)] (TransactionSynchronizationManager.java:193) - Bound value [org.springframework.orm.jpa.EntityManagerHolder@112c6483] for key [org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean@47d4f12f] to thread [thread-pool-1-80(80)] 2012-02-08T15:08:55.979+0200|INFO||_ThreadID=184;_ThreadName=Thread-5;|DEBUG [thread-pool-1-80(80)] (TransactionSynchronizationManager.java:272) - Initializing transaction synchronization 2012-02-08T15:08:55.980+0200|INFO||_ThreadID=184;_ThreadName=Thread-5;|DEBUG [thread-pool-1-80(80)] (TransactionAspectSupport.java:362) - Getting transaction for [xxx.vs.common.services.inbound.IntermedServiceImpl.getIntermed] 2012-02-08T15:08:55.983+0200|INFO||_ThreadID=184;_ThreadName=Thread-5;|DEBUG [thread-pool-1-80(80)] (ExtendedEntityManagerCreator.java:423) - Starting resource local transaction on application-managed EntityManager [org.hibernate.ejb.EntityManagerImpl@46d002f4] 2012-02-08T15:08:55.984+0200|INFO||_ThreadID=184;_ThreadName=Thread-5;|DEBUG [thread-pool-1-80(80)] (TransactionSynchronizationManager.java:193) - Bound value [org.springframework.orm.jpa.ExtendedEntityManagerCreator$ExtendedEntityManagerSynchronization@797add43] for key [org.hibernate.ejb.EntityManagerImpl@46d002f4] to thread [thread-pool-1-80(80)] 2012-02-08T15:08:55.986+0200|INFO||_ThreadID=184;_ThreadName=Thread-5;|DEBUG [thread-pool-1-80(80)] (ExtendedEntityManagerCreator.java:400) - Joined local transaction 2012-02-08T15:08:55.991+0200|INFO||_ThreadID=184;_ThreadName=Thread-5;|DEBUG [thread-pool-1-80(80)] (TransactionAspectSupport.java:391) - Completing transaction for [xxx.vs.common.services.inbound.IntermedServiceImpl.getIntermed] 2012-02-08T15:08:55.992+0200|INFO||_ThreadID=184;_ThreadName=Thread-5;|DEBUG [thread-pool-1-80(80)] (AbstractPlatformTransactionManager.java:922) - Triggering beforeCommit synchronization 2012-02-08T15:08:55.994+0200|INFO||_ThreadID=184;_ThreadName=Thread-5;|DEBUG [thread-pool-1-80(80)] (AbstractPlatformTransactionManager.java:935) - Triggering beforeCompletion synchronization 2012-02-08T15:08:56.001+0200|INFO||_ThreadID=184;_ThreadName=Thread-5;|DEBUG [thread-pool-1-80(80)] (TransactionSynchronizationManager.java:243) - Removed value [org.springframework.orm.jpa.ExtendedEntityManagerCreator$ExtendedEntityManagerSynchronization@797add43] for key [org.hibernate.ejb.EntityManagerImpl@46d002f4] from thread [thread-pool-1-80(80)] 2012-02-08T15:08:56.002+0200|INFO||_ThreadID=184;_ThreadName=Thread-5;|DEBUG [thread-pool-1-80(80)] (AbstractPlatformTransactionManager.java:752) - Initiating transaction commit 2012-02-08T15:08:56.003+0200|INFO||_ThreadID=184;_ThreadName=Thread-5;|DEBUG [thread-pool-1-80(80)] (JpaTransactionManager.java:507) - Committing JPA transaction on EntityManager [org.hibernate.ejb.EntityManagerImpl@edf83f9] 2012-02-08T15:08:56.008+0200|INFO||_ThreadID=184;_ThreadName=Thread-5;|DEBUG [thread-pool-1-80(80)] (AbstractPlatformTransactionManager.java:948) - Triggering afterCommit synchronization 2012-02-08T15:08:56.010+0200|INFO||_ThreadID=184;_ThreadName=Thread-5;|DEBUG [thread-pool-1-80(80)] (AbstractPlatformTransactionManager.java:964) - Triggering afterCompletion synchronization 2012-02-08T15:08:56.011+0200|INFO||_ThreadID=184;_ThreadName=Thread-5;|DEBUG [thread-pool-1-80(80)] (TransactionSynchronizationManager.java:331) - Clearing transaction synchronization 2012-02-08T15:08:56.012+0200|INFO||_ThreadID=184;_ThreadName=Thread-5;|DEBUG [thread-pool-1-80(80)] (TransactionSynchronizationManager.java:243) - Removed value [org.springframework.orm.jpa.EntityManagerHolder@112c6483] for key [org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean@47d4f12f] from thread [thread-pool-1-80(80)] 2012-02-08T15:08:56.021+0200|INFO||_ThreadID=184;_ThreadName=Thread-5;|DEBUG [thread-pool-1-80(80)] (TransactionSynchronizationManager.java:243) - Removed value [org.springframework.jdbc.datasource.ConnectionHolder@4fb57177] for key [com.sun.gjc.spi.jdbc40.DataSource40@75fa4851] from thread [thread-pool-1-80(80)] 2012-02-08T15:08:56.021+0200|INFO||_ThreadID=184;_ThreadName=Thread-5;|DEBUG [thread-pool-1-80(80)] (JpaTransactionManager.java:593) - Closing JPA EntityManager [org.hibernate.ejb.EntityManagerImpl@edf83f9] after transaction 2012-02-08T15:08:56.022+0200|INFO||_ThreadID=184;_ThreadName=Thread-5;|DEBUG [thread-pool-1-80(80)] (EntityManagerFactoryUtils.java:343) - Closing JPA EntityManager 2012-02-08T15:08:56.023+0200|INFO||_ThreadID=184;_ThreadName=Thread-5;|ERROR [thread-pool-1-80(80)] (PopupAction.java:39) - Cannot get Intermed!!! Transaction not active; nested exception is java.lang.IllegalStateException: Transaction not active 2012-02-08T15:08:56.024+0200|SEVERE||_ThreadID=184;_ThreadName=Thread-5;|org.springframework.dao.InvalidDataAccessApiUsageException: Transaction not active; nested exception is java.lang.IllegalStateException: Transaction not active at org.springframework.orm.jpa.EntityManagerFactoryUtils.convertJpaAccessExceptionIfPossible(EntityManagerFactoryUtils.java:298) at org.springframework.orm.jpa.vendor.HibernateJpaDialect.translateExceptionIfPossible(HibernateJpaDialect.java:106) at org.springframework.orm.jpa.ExtendedEntityManagerCreator$ExtendedEntityManagerSynchronization.convertException(ExtendedEntityManagerCreator.java:501) at org.springframework.orm.jpa.ExtendedEntityManagerCreator$ExtendedEntityManagerSynchronization.afterCommit(ExtendedEntityManagerCreator.java:481) at org.springframework.transaction.support.TransactionSynchronizationUtils.invokeAfterCommit(TransactionSynchronizationUtils.java:133) at org.springframework.transaction.support.TransactionSynchronizationUtils.triggerAfterCommit(TransactionSynchronizationUtils.java:121) at org.springframework.transaction.support.AbstractPlatformTransactionManager.triggerAfterCommit(AbstractPlatformTransactionManager.java:950) at org.springframework.transaction.support.AbstractPlatformTransactionManager.processCommit(AbstractPlatformTransactionManager.java:796) at org.springframework.transaction.support.AbstractPlatformTransactionManager.commit(AbstractPlatformTransactionManager.java:723) at org.springframework.transaction.interceptor.TransactionAspectSupport.commitTransactionAfterReturning(TransactionAspectSupport.java:393) at org.springframework.transaction.interceptor.TransactionInterceptor.invoke(TransactionInterceptor.java:120) at org.springframework.aop.framework.ReflectiveMethodInvocation.proceed(ReflectiveMethodInvocation.java:172) at org.springframework.aop.framework.JdkDynamicAopProxy.invoke(JdkDynamicAopProxy.java:202) at $Proxy325.getIntermed(Unknown Source) at xxx.vs.common.actions.PopupAction.execute(PopupAction.java:37) at sun.reflect.GeneratedMethodAccessor1581.invoke(Unknown Source) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:616) at com.opensymphony.xwork2.DefaultActionInvocation.invokeAction(DefaultActionInvocation.java:453) at com.opensymphony.xwork2.DefaultActionInvocation.invokeActionOnly(DefaultActionInvocation.java:292) at com.opensymphony.xwork2.DefaultActionInvocation.invoke(DefaultActionInvocation.java:255) at org.apache.struts2.interceptor.debugging.DebuggingInterceptor.intercept(DebuggingInterceptor.java:256) at com.opensymphony.xwork2.DefaultActionInvocation.invoke(DefaultActionInvocation.java:249) at com.opensymphony.xwork2.interceptor.DefaultWorkflowInterceptor.doIntercept(DefaultWorkflowInterceptor.java:176) at com.opensymphony.xwork2.interceptor.MethodFilterInterceptor.intercept(MethodFilterInterceptor.java:98) at com.opensymphony.xwork2.DefaultActionInvocation.invoke(DefaultActionInvocation.java:249) at com.opensymphony.xwork2.validator.ValidationInterceptor.doIntercept(ValidationInterceptor.java:265) at org.apache.struts2.interceptor.validation.AnnotationValidationInterceptor.doIntercept(AnnotationValidationInterceptor.java:68) at com.opensymphony.xwork2.interceptor.MethodFilterInterceptor.intercept(MethodFilterInterceptor.java:98) at com.opensymphony.xwork2.DefaultActionInvocation.invoke(DefaultActionInvocation.java:249) at com.opensymphony.xwork2.interceptor.ConversionErrorInterceptor.intercept(ConversionErrorInterceptor.java:138) at com.opensymphony.xwork2.DefaultActionInvocation.invoke(DefaultActionInvocation.java:249) at com.opensymphony.xwork2.interceptor.ParametersInterceptor.doIntercept(ParametersInterceptor.java:211) at com.opensymphony.xwork2.interceptor.MethodFilterInterceptor.intercept(MethodFilterInterceptor.java:98) at com.opensymphony.xwork2.DefaultActionInvocation.invoke(DefaultActionInvocation.java:249) at com.opensymphony.xwork2.interceptor.ParametersInterceptor.doIntercept(ParametersInterceptor.java:211) at com.opensymphony.xwork2.interceptor.MethodFilterInterceptor.intercept(MethodFilterInterceptor.java:98) at com.opensymphony.xwork2.DefaultActionInvocation.invoke(DefaultActionInvocation.java:249) at com.opensymphony.xwork2.interceptor.StaticParametersInterceptor.intercept(StaticParametersInterceptor.java:190) at com.opensymphony.xwork2.DefaultActionInvocation.invoke(DefaultActionInvocation.java:249) at org.apache.struts2.interceptor.MultiselectInterceptor.intercept(MultiselectInterceptor.java:75) at com.opensymphony.xwork2.DefaultActionInvocation.invoke(DefaultActionInvocation.java:249) at org.apache.struts2.interceptor.CheckboxInterceptor.intercept(CheckboxInterceptor.java:90) at com.opensymphony.xwork2.DefaultActionInvocation.invoke(DefaultActionInvocation.java:249) at org.apache.struts2.interceptor.FileUploadInterceptor.intercept(FileUploadInterceptor.java:243) at com.opensymphony.xwork2.DefaultActionInvocation.invoke(DefaultActionInvocation.java:249) at com.opensymphony.xwork2.interceptor.ModelDrivenInterceptor.intercept(ModelDrivenInterceptor.java:100) at com.opensymphony.xwork2.DefaultActionInvocation.invoke(DefaultActionInvocation.java:249) at com.opensymphony.xwork2.interceptor.ScopedModelDrivenInterceptor.intercept(ScopedModelDrivenInterceptor.java:141) at com.opensymphony.xwork2.DefaultActionInvocation.invoke(DefaultActionInvocation.java:249) at com.opensymphony.xwork2.interceptor.ChainingInterceptor.intercept(ChainingInterceptor.java:145) at com.opensymphony.xwork2.DefaultActionInvocation.invoke(DefaultActionInvocation.java:249) at com.opensymphony.xwork2.interceptor.PrepareInterceptor.doIntercept(PrepareInterceptor.java:171) at com.opensymphony.xwork2.interceptor.MethodFilterInterceptor.intercept(MethodFilterInterceptor.java:98) at com.opensymphony.xwork2.DefaultActionInvocation.invoke(DefaultActionInvocation.java:249) at com.opensymphony.xwork2.interceptor.I18nInterceptor.intercept(I18nInterceptor.java:176) at com.opensymphony.xwork2.DefaultActionInvocation.invoke(DefaultActionInvocation.java:249) at org.apache.struts2.interceptor.ServletConfigInterceptor.intercept(ServletConfigInterceptor.java:164) at com.opensymphony.xwork2.DefaultActionInvocation.invoke(DefaultActionInvocation.java:249) at com.opensymphony.xwork2.interceptor.AliasInterceptor.intercept(AliasInterceptor.java:192) at com.opensymphony.xwork2.DefaultActionInvocation.invoke(DefaultActionInvocation.java:249) at com.opensymphony.xwork2.interceptor.ExceptionMappingInterceptor.intercept(ExceptionMappingInterceptor.java:187) at com.opensymphony.xwork2.DefaultActionInvocation.invoke(DefaultActionInvocation.java:249) at xxx.vs.common.utils.AuthenticationInterceptor.intercept(AuthenticationInterceptor.java:78) at com.opensymphony.xwork2.DefaultActionInvocation.invoke(DefaultActionInvocation.java:249) at com.googlecode.sslplugin.interceptors.SSLInterceptor.intercept(SSLInterceptor.java:128) at com.opensymphony.xwork2.DefaultActionInvocation.invoke(DefaultActionInvocation.java:249) at org.apache.struts2.impl.StrutsActionProxy.execute(StrutsActionProxy.java:54) at org.apache.struts2.dispatcher.Dispatcher.serviceAction(Dispatcher.java:510) at org.apache.struts2.dispatcher.ng.ExecuteOperations.executeAction(ExecuteOperations.java:77) at org.apache.struts2.dispatcher.ng.filter.StrutsPrepareAndExecuteFilter.doFilter(StrutsPrepareAndExecuteFilter.java:91) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:256) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:217) at org.apache.catalina.core.StandardWrapperValve.invoke(StandardWrapperValve.java:279) at org.apache.catalina.core.StandardContextValve.invoke(StandardContextValve.java:175) at org.apache.catalina.core.StandardPipeline.doInvoke(StandardPipeline.java:655) at org.apache.catalina.core.StandardPipeline.invoke(StandardPipeline.java:595) at com.sun.enterprise.web.WebPipeline.invoke(WebPipeline.java:98) at com.sun.enterprise.web.PESessionLockingStandardPipeline.invoke(PESessionLockingStandardPipeline.java:91) at org.apache.catalina 2012-02-08T15:08:56.024+0200|SEVERE||_ThreadID=184;_ThreadName=Thread-5;|.core.StandardHostValve.invoke(StandardHostValve.java:162) at org.apache.catalina.connector.CoyoteAdapter.doService(CoyoteAdapter.java:330) at org.apache.catalina.connector.CoyoteAdapter.service(CoyoteAdapter.java:231) at com.sun.enterprise.v3.services.impl.ContainerMapper.service(ContainerMapper.java:174) at com.sun.grizzly.http.ProcessorTask.invokeAdapter(ProcessorTask.java:828) at com.sun.grizzly.http.ProcessorTask.doProcess(ProcessorTask.java:725) at com.sun.grizzly.http.ProcessorTask.process(ProcessorTask.java:1019) at com.sun.grizzly.http.DefaultProtocolFilter.execute(DefaultProtocolFilter.java:225) at com.sun.grizzly.DefaultProtocolChain.executeProtocolFilter(DefaultProtocolChain.java:137) at com.sun.grizzly.DefaultProtocolChain.execute(DefaultProtocolChain.java:104) at com.sun.grizzly.DefaultProtocolChain.execute(DefaultProtocolChain.java:90) at com.sun.grizzly.http.HttpProtocolChain.execute(HttpProtocolChain.java:79) at com.sun.grizzly.ProtocolChainContextTask.doCall(ProtocolChainContextTask.java:54) at com.sun.grizzly.SelectionKeyContextTask.call(SelectionKeyContextTask.java:59) at com.sun.grizzly.ContextTask.run(ContextTask.java:71) at com.sun.grizzly.util.AbstractThreadPool$Worker.doWork(AbstractThreadPool.java:532) at com.sun.grizzly.util.AbstractThreadPool$Worker.run(AbstractThreadPool.java:513) at java.lang.Thread.run(Thread.java:679) Caused by: java.lang.IllegalStateException: Transaction not active at org.hibernate.ejb.TransactionImpl.commit(TransactionImpl.java:69) at org.springframework.orm.jpa.ExtendedEntityManagerCreator$ExtendedEntityManagerSynchronization.afterCommit(ExtendedEntityManagerCreator.java:478) ... 93 more so again..... any ideea ?

    Read the article

  • C#/.NET Little Wonders: The ConcurrentDictionary

    - by James Michael Hare
    Once again we consider some of the lesser known classes and keywords of C#.  In this series of posts, we will discuss how the concurrent collections have been developed to help alleviate these multi-threading concerns.  Last week’s post began with a general introduction and discussed the ConcurrentStack<T> and ConcurrentQueue<T>.  Today's post discusses the ConcurrentDictionary<T> (originally I had intended to discuss ConcurrentBag this week as well, but ConcurrentDictionary had enough information to create a very full post on its own!).  Finally next week, we shall close with a discussion of the ConcurrentBag<T> and BlockingCollection<T>. For more of the "Little Wonders" posts, see the index here. Recap As you'll recall from the previous post, the original collections were object-based containers that accomplished synchronization through a Synchronized member.  While these were convenient because you didn't have to worry about writing your own synchronization logic, they were a bit too finely grained and if you needed to perform multiple operations under one lock, the automatic synchronization didn't buy much. With the advent of .NET 2.0, the original collections were succeeded by the generic collections which are fully type-safe, but eschew automatic synchronization.  This cuts both ways in that you have a lot more control as a developer over when and how fine-grained you want to synchronize, but on the other hand if you just want simple synchronization it creates more work. With .NET 4.0, we get the best of both worlds in generic collections.  A new breed of collections was born called the concurrent collections in the System.Collections.Concurrent namespace.  These amazing collections are fine-tuned to have best overall performance for situations requiring concurrent access.  They are not meant to replace the generic collections, but to simply be an alternative to creating your own locking mechanisms. Among those concurrent collections were the ConcurrentStack<T> and ConcurrentQueue<T> which provide classic LIFO and FIFO collections with a concurrent twist.  As we saw, some of the traditional methods that required calls to be made in a certain order (like checking for not IsEmpty before calling Pop()) were replaced in favor of an umbrella operation that combined both under one lock (like TryPop()). Now, let's take a look at the next in our series of concurrent collections!For some excellent information on the performance of the concurrent collections and how they perform compared to a traditional brute-force locking strategy, see this wonderful whitepaper by the Microsoft Parallel Computing Platform team here. ConcurrentDictionary – the fully thread-safe dictionary The ConcurrentDictionary<TKey,TValue> is the thread-safe counterpart to the generic Dictionary<TKey, TValue> collection.  Obviously, both are designed for quick – O(1) – lookups of data based on a key.  If you think of algorithms where you need lightning fast lookups of data and don’t care whether the data is maintained in any particular ordering or not, the unsorted dictionaries are generally the best way to go. Note: as a side note, there are sorted implementations of IDictionary, namely SortedDictionary and SortedList which are stored as an ordered tree and a ordered list respectively.  While these are not as fast as the non-sorted dictionaries – they are O(log2 n) – they are a great combination of both speed and ordering -- and still greatly outperform a linear search. Now, once again keep in mind that if all you need to do is load a collection once and then allow multi-threaded reading you do not need any locking.  Examples of this tend to be situations where you load a lookup or translation table once at program start, then keep it in memory for read-only reference.  In such cases locking is completely non-productive. However, most of the time when we need a concurrent dictionary we are interleaving both reads and updates.  This is where the ConcurrentDictionary really shines!  It achieves its thread-safety with no common lock to improve efficiency.  It actually uses a series of locks to provide concurrent updates, and has lockless reads!  This means that the ConcurrentDictionary gets even more efficient the higher the ratio of reads-to-writes you have. ConcurrentDictionary and Dictionary differences For the most part, the ConcurrentDictionary<TKey,TValue> behaves like it’s Dictionary<TKey,TValue> counterpart with a few differences.  Some notable examples of which are: Add() does not exist in the concurrent dictionary. This means you must use TryAdd(), AddOrUpdate(), or GetOrAdd().  It also means that you can’t use a collection initializer with the concurrent dictionary. TryAdd() replaced Add() to attempt atomic, safe adds. Because Add() only succeeds if the item doesn’t already exist, we need an atomic operation to check if the item exists, and if not add it while still under an atomic lock. TryUpdate() was added to attempt atomic, safe updates. If we want to update an item, we must make sure it exists first and that the original value is what we expected it to be.  If all these are true, we can update the item under one atomic step. TryRemove() was added to attempt atomic, safe removes. To safely attempt to remove a value we need to see if the key exists first, this checks for existence and removes under an atomic lock. AddOrUpdate() was added to attempt an thread-safe “upsert”. There are many times where you want to insert into a dictionary if the key doesn’t exist, or update the value if it does.  This allows you to make a thread-safe add-or-update. GetOrAdd() was added to attempt an thread-safe query/insert. Sometimes, you want to query for whether an item exists in the cache, and if it doesn’t insert a starting value for it.  This allows you to get the value if it exists and insert if not. Count, Keys, Values properties take a snapshot of the dictionary. Accessing these properties may interfere with add and update performance and should be used with caution. ToArray() returns a static snapshot of the dictionary. That is, the dictionary is locked, and then copied to an array as a O(n) operation.  GetEnumerator() is thread-safe and efficient, but allows dirty reads. Because reads require no locking, you can safely iterate over the contents of the dictionary.  The only downside is that, depending on timing, you may get dirty reads. Dirty reads during iteration The last point on GetEnumerator() bears some explanation.  Picture a scenario in which you call GetEnumerator() (or iterate using a foreach, etc.) and then, during that iteration the dictionary gets updated.  This may not sound like a big deal, but it can lead to inconsistent results if used incorrectly.  The problem is that items you already iterated over that are updated a split second after don’t show the update, but items that you iterate over that were updated a split second before do show the update.  Thus you may get a combination of items that are “stale” because you iterated before the update, and “fresh” because they were updated after GetEnumerator() but before the iteration reached them. Let’s illustrate with an example, let’s say you load up a concurrent dictionary like this: 1: // load up a dictionary. 2: var dictionary = new ConcurrentDictionary<string, int>(); 3:  4: dictionary["A"] = 1; 5: dictionary["B"] = 2; 6: dictionary["C"] = 3; 7: dictionary["D"] = 4; 8: dictionary["E"] = 5; 9: dictionary["F"] = 6; Then you have one task (using the wonderful TPL!) to iterate using dirty reads: 1: // attempt iteration in a separate thread 2: var iterationTask = new Task(() => 3: { 4: // iterates using a dirty read 5: foreach (var pair in dictionary) 6: { 7: Console.WriteLine(pair.Key + ":" + pair.Value); 8: } 9: }); And one task to attempt updates in a separate thread (probably): 1: // attempt updates in a separate thread 2: var updateTask = new Task(() => 3: { 4: // iterates, and updates the value by one 5: foreach (var pair in dictionary) 6: { 7: dictionary[pair.Key] = pair.Value + 1; 8: } 9: }); Now that we’ve done this, we can fire up both tasks and wait for them to complete: 1: // start both tasks 2: updateTask.Start(); 3: iterationTask.Start(); 4:  5: // wait for both to complete. 6: Task.WaitAll(updateTask, iterationTask); Now, if I you didn’t know about the dirty reads, you may have expected to see the iteration before the updates (such as A:1, B:2, C:3, D:4, E:5, F:6).  However, because the reads are dirty, we will quite possibly get a combination of some updated, some original.  My own run netted this result: 1: F:6 2: E:6 3: D:5 4: C:4 5: B:3 6: A:2 Note that, of course, iteration is not in order because ConcurrentDictionary, like Dictionary, is unordered.  Also note that both E and F show the value 6.  This is because the output task reached F before the update, but the updates for the rest of the items occurred before their output (probably because console output is very slow, comparatively). If we want to always guarantee that we will get a consistent snapshot to iterate over (that is, at the point we ask for it we see precisely what is in the dictionary and no subsequent updates during iteration), we should iterate over a call to ToArray() instead: 1: // attempt iteration in a separate thread 2: var iterationTask = new Task(() => 3: { 4: // iterates using a dirty read 5: foreach (var pair in dictionary.ToArray()) 6: { 7: Console.WriteLine(pair.Key + ":" + pair.Value); 8: } 9: }); The atomic Try…() methods As you can imagine TryAdd() and TryRemove() have few surprises.  Both first check the existence of the item to determine if it can be added or removed based on whether or not the key currently exists in the dictionary: 1: // try add attempts an add and returns false if it already exists 2: if (dictionary.TryAdd("G", 7)) 3: Console.WriteLine("G did not exist, now inserted with 7"); 4: else 5: Console.WriteLine("G already existed, insert failed."); TryRemove() also has the virtue of returning the value portion of the removed entry matching the given key: 1: // attempt to remove the value, if it exists it is removed and the original is returned 2: int removedValue; 3: if (dictionary.TryRemove("C", out removedValue)) 4: Console.WriteLine("Removed C and its value was " + removedValue); 5: else 6: Console.WriteLine("C did not exist, remove failed."); Now TryUpdate() is an interesting creature.  You might think from it’s name that TryUpdate() first checks for an item’s existence, and then updates if the item exists, otherwise it returns false.  Well, note quite... It turns out when you call TryUpdate() on a concurrent dictionary, you pass it not only the new value you want it to have, but also the value you expected it to have before the update.  If the item exists in the dictionary, and it has the value you expected, it will update it to the new value atomically and return true.  If the item is not in the dictionary or does not have the value you expected, it is not modified and false is returned. 1: // attempt to update the value, if it exists and if it has the expected original value 2: if (dictionary.TryUpdate("G", 42, 7)) 3: Console.WriteLine("G existed and was 7, now it's 42."); 4: else 5: Console.WriteLine("G either didn't exist, or wasn't 7."); The composite Add methods The ConcurrentDictionary also has composite add methods that can be used to perform updates and gets, with an add if the item is not existing at the time of the update or get. The first of these, AddOrUpdate(), allows you to add a new item to the dictionary if it doesn’t exist, or update the existing item if it does.  For example, let’s say you are creating a dictionary of counts of stock ticker symbols you’ve subscribed to from a market data feed: 1: public sealed class SubscriptionManager 2: { 3: private readonly ConcurrentDictionary<string, int> _subscriptions = new ConcurrentDictionary<string, int>(); 4:  5: // adds a new subscription, or increments the count of the existing one. 6: public void AddSubscription(string tickerKey) 7: { 8: // add a new subscription with count of 1, or update existing count by 1 if exists 9: var resultCount = _subscriptions.AddOrUpdate(tickerKey, 1, (symbol, count) => count + 1); 10:  11: // now check the result to see if we just incremented the count, or inserted first count 12: if (resultCount == 1) 13: { 14: // subscribe to symbol... 15: } 16: } 17: } Notice the update value factory Func delegate.  If the key does not exist in the dictionary, the add value is used (in this case 1 representing the first subscription for this symbol), but if the key already exists, it passes the key and current value to the update delegate which computes the new value to be stored in the dictionary.  The return result of this operation is the value used (in our case: 1 if added, existing value + 1 if updated). Likewise, the GetOrAdd() allows you to attempt to retrieve a value from the dictionary, and if the value does not currently exist in the dictionary it will insert a value.  This can be handy in cases where perhaps you wish to cache data, and thus you would query the cache to see if the item exists, and if it doesn’t you would put the item into the cache for the first time: 1: public sealed class PriceCache 2: { 3: private readonly ConcurrentDictionary<string, double> _cache = new ConcurrentDictionary<string, double>(); 4:  5: // adds a new subscription, or increments the count of the existing one. 6: public double QueryPrice(string tickerKey) 7: { 8: // check for the price in the cache, if it doesn't exist it will call the delegate to create value. 9: return _cache.GetOrAdd(tickerKey, symbol => GetCurrentPrice(symbol)); 10: } 11:  12: private double GetCurrentPrice(string tickerKey) 13: { 14: // do code to calculate actual true price. 15: } 16: } There are other variations of these two methods which vary whether a value is provided or a factory delegate, but otherwise they work much the same. Oddities with the composite Add methods The AddOrUpdate() and GetOrAdd() methods are totally thread-safe, on this you may rely, but they are not atomic.  It is important to note that the methods that use delegates execute those delegates outside of the lock.  This was done intentionally so that a user delegate (of which the ConcurrentDictionary has no control of course) does not take too long and lock out other threads. This is not necessarily an issue, per se, but it is something you must consider in your design.  The main thing to consider is that your delegate may get called to generate an item, but that item may not be the one returned!  Consider this scenario: A calls GetOrAdd and sees that the key does not currently exist, so it calls the delegate.  Now thread B also calls GetOrAdd and also sees that the key does not currently exist, and for whatever reason in this race condition it’s delegate completes first and it adds its new value to the dictionary.  Now A is done and goes to get the lock, and now sees that the item now exists.  In this case even though it called the delegate to create the item, it will pitch it because an item arrived between the time it attempted to create one and it attempted to add it. Let’s illustrate, assume this totally contrived example program which has a dictionary of char to int.  And in this dictionary we want to store a char and it’s ordinal (that is, A = 1, B = 2, etc).  So for our value generator, we will simply increment the previous value in a thread-safe way (perhaps using Interlocked): 1: public static class Program 2: { 3: private static int _nextNumber = 0; 4:  5: // the holder of the char to ordinal 6: private static ConcurrentDictionary<char, int> _dictionary 7: = new ConcurrentDictionary<char, int>(); 8:  9: // get the next id value 10: public static int NextId 11: { 12: get { return Interlocked.Increment(ref _nextNumber); } 13: } Then, we add a method that will perform our insert: 1: public static void Inserter() 2: { 3: for (int i = 0; i < 26; i++) 4: { 5: _dictionary.GetOrAdd((char)('A' + i), key => NextId); 6: } 7: } Finally, we run our test by starting two tasks to do this work and get the results… 1: public static void Main() 2: { 3: // 3 tasks attempting to get/insert 4: var tasks = new List<Task> 5: { 6: new Task(Inserter), 7: new Task(Inserter) 8: }; 9:  10: tasks.ForEach(t => t.Start()); 11: Task.WaitAll(tasks.ToArray()); 12:  13: foreach (var pair in _dictionary.OrderBy(p => p.Key)) 14: { 15: Console.WriteLine(pair.Key + ":" + pair.Value); 16: } 17: } If you run this with only one task, you get the expected A:1, B:2, ..., Z:26.  But running this in parallel you will get something a bit more complex.  My run netted these results: 1: A:1 2: B:3 3: C:4 4: D:5 5: E:6 6: F:7 7: G:8 8: H:9 9: I:10 10: J:11 11: K:12 12: L:13 13: M:14 14: N:15 15: O:16 16: P:17 17: Q:18 18: R:19 19: S:20 20: T:21 21: U:22 22: V:23 23: W:24 24: X:25 25: Y:26 26: Z:27 Notice that B is 3?  This is most likely because both threads attempted to call GetOrAdd() at roughly the same time and both saw that B did not exist, thus they both called the generator and one thread got back 2 and the other got back 3.  However, only one of those threads can get the lock at a time for the actual insert, and thus the one that generated the 3 won and the 3 was inserted and the 2 got discarded.  This is why on these methods your factory delegates should be careful not to have any logic that would be unsafe if the value they generate will be pitched in favor of another item generated at roughly the same time.  As such, it is probably a good idea to keep those generators as stateless as possible. Summary The ConcurrentDictionary is a very efficient and thread-safe version of the Dictionary generic collection.  It has all the benefits of type-safety that it’s generic collection counterpart does, and in addition is extremely efficient especially when there are more reads than writes concurrently. Tweet Technorati Tags: C#, .NET, Concurrent Collections, Collections, Little Wonders, Black Rabbit Coder,James Michael Hare

    Read the article

  • Inside the Concurrent Collections: ConcurrentBag

    - by Simon Cooper
    Unlike the other concurrent collections, ConcurrentBag does not really have a non-concurrent analogy. As stated in the MSDN documentation, ConcurrentBag is optimised for the situation where the same thread is both producing and consuming items from the collection. We'll see how this is the case as we take a closer look. Again, I recommend you have ConcurrentBag open in a decompiler for reference. Thread Statics ConcurrentBag makes heavy use of thread statics - static variables marked with ThreadStaticAttribute. This is a special attribute that instructs the CLR to scope any values assigned to or read from the variable to the executing thread, not globally within the AppDomain. This means that if two different threads assign two different values to the same thread static variable, one value will not overwrite the other, and each thread will see the value they assigned to the variable, separately to any other thread. This is a very useful function that allows for ConcurrentBag's concurrency properties. You can think of a thread static variable: [ThreadStatic] private static int m_Value; as doing the same as: private static Dictionary<Thread, int> m_Values; where the executing thread's identity is used to automatically set and retrieve the corresponding value in the dictionary. In .NET 4, this usage of ThreadStaticAttribute is encapsulated in the ThreadLocal class. Lists of lists ConcurrentBag, at its core, operates as a linked list of linked lists: Each outer list node is an instance of ThreadLocalList, and each inner list node is an instance of Node. Each outer ThreadLocalList is owned by a particular thread, accessible through the thread local m_locals variable: private ThreadLocal<ThreadLocalList<T>> m_locals It is important to note that, although the m_locals variable is thread-local, that only applies to accesses through that variable. The objects referenced by the thread (each instance of the ThreadLocalList object) are normal heap objects that are not specific to any thread. Thinking back to the Dictionary analogy above, if each value stored in the dictionary could be accessed by other means, then any thread could access the value belonging to other threads using that mechanism. Only reads and writes to the variable defined as thread-local are re-routed by the CLR according to the executing thread's identity. So, although m_locals is defined as thread-local, the m_headList, m_nextList and m_tailList variables aren't. This means that any thread can access all the thread local lists in the collection by doing a linear search through the outer linked list defined by these variables. Adding items So, onto the collection operations. First, adding items. This one's pretty simple. If the current thread doesn't already own an instance of ThreadLocalList, then one is created (or, if there are lists owned by threads that have stopped, it takes control of one of those). Then the item is added to the head of that thread's list. That's it. Don't worry, it'll get more complicated when we account for the other operations on the list! Taking & Peeking items This is where it gets tricky. If the current thread's list has items in it, then it peeks or removes the head item (not the tail item) from the local list and returns that. However, if the local list is empty, it has to go and steal another item from another list, belonging to a different thread. It iterates through all the thread local lists in the collection using the m_headList and m_nextList variables until it finds one that has items in it, and it steals one item from that list. Up to this point, the two threads had been operating completely independently. To steal an item from another thread's list, the stealing thread has to do it in such a way as to not step on the owning thread's toes. Recall how adding and removing items both operate on the head of the thread's linked list? That gives us an easy way out - a thread trying to steal items from another thread can pop in round the back of another thread's list using the m_tail variable, and steal an item from the back without the owning thread knowing anything about it. The owning thread can carry on completely independently, unaware that one of its items has been nicked. However, this only works when there are at least 3 items in the list, as that guarantees there will be at least one node between the owning thread performing operations on the list head and the thread stealing items from the tail - there's no chance of the two threads operating on the same node at the same time and causing a race condition. If there's less than three items in the list, then there does need to be some synchronization between the two threads. In this case, the lock on the ThreadLocalList object is used to mediate access to a thread's list when there's the possibility of contention. Thread synchronization In ConcurrentBag, this is done using several mechanisms: Operations performed by the owner thread only take out the lock when there are less than three items in the collection. With three or greater items, there won't be any conflict with a stealing thread operating on the tail of the list. If a lock isn't taken out, the owning thread sets the list's m_currentOp variable to a non-zero value for the duration of the operation. This indicates to all other threads that there is a non-locked operation currently occuring on that list. The stealing thread always takes out the lock, to prevent two threads trying to steal from the same list at the same time. After taking out the lock, the stealing thread spinwaits until m_currentOp has been set to zero before actually performing the steal. This ensures there won't be a conflict with the owning thread when the number of items in the list is on the 2-3 item borderline. If any add or remove operations are started in the meantime, and the list is below 3 items, those operations try to take out the list's lock and are blocked until the stealing thread has finished. This allows a thread to steal an item from another thread's list without corrupting it. What about synchronization in the collection as a whole? Collection synchronization Any thread that operates on the collection's global structure (accessing anything outside the thread local lists) has to take out the collection's global lock - m_globalListsLock. This single lock is sufficient when adding a new thread local list, as the items inside each thread's list are unaffected. However, what about operations (such as Count or ToArray) that need to access every item in the collection? In order to ensure a consistent view, all operations on the collection are stopped while the count or ToArray is performed. This is done by freezing the bag at the start, performing the global operation, and unfreezing at the end: The global lock is taken out, to prevent structural alterations to the collection. m_needSync is set to true. This notifies all the threads that they need to take out their list's lock irregardless of what operation they're doing. All the list locks are taken out in order. This blocks all locking operations on the lists. The freezing thread waits for all current lockless operations to finish by spinwaiting on each m_currentOp field. The global operation can then be performed while the bag is frozen, but no other operations can take place at the same time, as all other threads are blocked on a list's lock. Then, once the global operation has finished, the locks are released, m_needSync is unset, and normal concurrent operation resumes. Concurrent principles That's the essence of how ConcurrentBag operates. Each thread operates independently on its own local list, except when they have to steal items from another list. When stealing, only the stealing thread is forced to take out the lock; the owning thread only has to when there is the possibility of contention. And a global lock controls accesses to the structure of the collection outside the thread lists. Operations affecting the entire collection take out all locks in the collection to freeze the contents at a single point in time. So, what principles can we extract here? Threads operate independently Thread-static variables and ThreadLocal makes this easy. Threads operate entirely concurrently on their own structures; only when they need to grab data from another thread is there any thread contention. Minimised lock-taking Even when two threads need to operate on the same data structures (one thread stealing from another), they do so in such a way such that the probability of actually blocking on a lock is minimised; the owning thread always operates on the head of the list, and the stealing thread always operates on the tail. Management of lockless operations Any operations that don't take out a lock still have a 'hook' to force them to lock when necessary. This allows all operations on the collection to be stopped temporarily while a global snapshot is taken. Hopefully, such operations will be short-lived and infrequent. That's all the concurrent collections covered. I hope you've found it as informative and interesting as I have. Next, I'll be taking a closer look at ThreadLocal, which I came across while analyzing ConcurrentBag. As you'll see, the operation of this class deserves a much closer look.

    Read the article

  • Ubuntu One Sync as a File Backup Solution?

    - by Jeff
    I was hoping to utilize Ubuntu One and in particular, the syncing feature within Ubuntu One to provide offsite backup for some of my files. My intention was to mark any of my folders that have important files as 'folders to synchronize' to Ubuntu One. It works great in that whenever an important file is placed in the folder, the file is copied up to Ubuntu One (hence creating a backup). However, if any of these important files are lost or accidently deleted from my computer then due to the synchronization it is also immediately deleted from Ubuntu One. This approach does not work very well to provide backup. On one hand I really like the automatic way in which the synch feature will upload any of my important files to Ubuntu One but on the other hand if I lose the file on my computer it will likely be taken off of the cloud as well (via synchronization). What approach are others taking to backup their important files to Ubuntu One? I didn't want to have to manually upload my important files to Ubuntu One and remember to upload other important files as they are created on my computer. Your thoughts and suggestions are greatly appreciated.

    Read the article

  • WinSCP equivalent for Linux/Ubuntu

    - by Shashank
    I'm shifting most of my projects to a Linux machine, and one of the things that I miss is WinSCP. I've found other answers saying that nautilus, FileZilla etc. can be used for SFTP, but something that I loved about WinSCP was that it has two panes (FileZilla's got that) and I could start synchronization from any directory. Unison or Rsync could work, but I'd have to create a folder pair every time I want to sync two folders. Is there an SFTP client for Linux that has a two-paned view and allows ad-hoc synchronization? Thanks!

    Read the article

  • "Siebel2FusionCRM Integration" solution by ec4u (D)

    - by Richard Lefebvre
    ec4u, a CRM System Integration leader based in Germany and Switzerland, and an historical Oracle/Siebel partner, offers a complete "Siebel2FusionCRM Integration" solution, based on tools methodology and services. ec4u Siebel2FusionCRM Integration solution's main objectives are: Integration between Siebel (on-premise) and Fusion CRM / Marketing (“in the cloud”) Accounts, Contacts and Addresses are maintained by Sales in Siebel CRM and synchronized in real-time into Fusion CRM / Marketing CDM Processing ensures clean data for marketing campaigns (validation and deduplication) Create E-Mail marketing campaigns and newsletters in Fusion The solution features: Upsert processes figure out what information needs to be updated, inserted or terminated (deleted). However, as Siebel is the data master, it is still a one-way synchronization. Handle deleted or nullified information by terminating them in Fusion CRM (set start and end date to define the validity period) Initial load and real-time synchronization use the same processes Invocations/Operations can be repeated due to no transactional support from Fusion web services Tagging sub entries in case of 1 to N mapping (Example: Telephone number is one simple field in Siebel but in Fusion you can have multiple telephone numbers in a sub table) E-Mail-Notification in case of any error (containing error message, instance number, detailed payload) Schematron Validation Interested? Looking for more details or a partnership with ec4u for a "Siebel2FusionCRM Integration" project? Contact: Gregor Bublitz, Director Expert Services ([email protected])

    Read the article

  • JUnit Testing in Multithread Application

    - by e2bady
    This is a problem me and my team faces in almost all of the projects. Testing certain parts of the application with JUnit is not easy and you need to start early and to stick to it, but that's not the question I'm asking. The actual problem is that with n-Threads, locking, possible exceptions within the threads and shared objects the task of testing is not as simple as testing the class, but testing them under endless possible situations within threading. To be more precise, let me tell you about the design of one of our applications: When a user makes a request several threads are started that each analyse a part of the data to complete the analysis, these threads run a certain time depending on the size of the chunk of data (which are endless and of uncertain quality) to analyse, or they may fail if the data was insufficient/lacking quality. After each completed its analysis they call upon a handler which decides after each thread terminates if the collected analysis-data is sufficient to deliver an answer to the request. All of these analysers share certain parts of the applications (some parts because the instances are very big and only a certain number can be loaded into memory and those instances are reusable, some parts because they have a standing connection, where connecting takes time, ex.gr. sql connections) so locking is very common (done with reentrant-locks). While the applications runs very efficient and fast, it's not very easy to test it under real-world conditions. What we do right now is test each class and it's predefined conditions, but there are no automated tests for interlocking and synchronization, which in my opionion is not very good for quality insurances. Given this example how would you handle testing the threading, interlocking and synchronization?

    Read the article

  • Uses of persistent data structures in non-functional languages

    - by Ray Toal
    Languages that are purely functional or near-purely functional benefit from persistent data structures because they are immutable and fit well with the stateless style of functional programming. But from time to time we see libraries of persistent data structures for (state-based, OOP) languages like Java. A claim often heard in favor of persistent data structures is that because they are immutable, they are thread-safe. However, the reason that persistent data structures are thread-safe is that if one thread were to "add" an element to a persistent collection, the operation returns a new collection like the original but with the element added. Other threads therefore see the original collection. The two collections share a lot of internal state, of course -- that's why these persistent structures are efficient. But since different threads see different states of data, it would seem that persistent data structures are not in themselves sufficient to handle scenarios where one thread makes a change that is visible to other threads. For this, it seems we must use devices such as atoms, references, software transactional memory, or even classic locks and synchronization mechanisms. Why then, is the immutability of PDSs touted as something beneficial for "thread safety"? Are there any real examples where PDSs help in synchronization, or solving concurrency problems? Or are PDSs simply a way to provide a stateless interface to an object in support of a functional programming style?

    Read the article

  • Zen and the Art of File and Folder Organization

    - by Mark Virtue
    Is your desk a paragon of neatness, or does it look like a paper-bomb has gone off? If you’ve been putting off getting organized because the task is too huge or daunting, or you don’t know where to start, we’ve got 40 tips to get you on the path to zen mastery of your filing system. For all those readers who would like to get their files and folders organized, or, if they’re already organized, better organized—we have compiled a complete guide to getting organized and staying organized, a comprehensive article that will hopefully cover every possible tip you could want. Signs that Your Computer is Poorly Organized If your computer is a mess, you’re probably already aware of it.  But just in case you’re not, here are some tell-tale signs: Your Desktop has over 40 icons on it “My Documents” contains over 300 files and 60 folders, including MP3s and digital photos You use the Windows’ built-in search facility whenever you need to find a file You can’t find programs in the out-of-control list of programs in your Start Menu You save all your Word documents in one folder, all your spreadsheets in a second folder, etc Any given file that you’re looking for may be in any one of four different sets of folders But before we start, here are some quick notes: We’re going to assume you know what files and folders are, and how to create, save, rename, copy and delete them The organization principles described in this article apply equally to all computer systems.  However, the screenshots here will reflect how things look on Windows (usually Windows 7).  We will also mention some useful features of Windows that can help you get organized. Everyone has their own favorite methodology of organizing and filing, and it’s all too easy to get into “My Way is Better than Your Way” arguments.  The reality is that there is no perfect way of getting things organized.  When I wrote this article, I tried to keep a generalist and objective viewpoint.  I consider myself to be unusually well organized (to the point of obsession, truth be told), and I’ve had 25 years experience in collecting and organizing files on computers.  So I’ve got a lot to say on the subject.  But the tips I have described here are only one way of doing it.  Hopefully some of these tips will work for you too, but please don’t read this as any sort of “right” way to do it. At the end of the article we’ll be asking you, the reader, for your own organization tips. Why Bother Organizing At All? For some, the answer to this question is self-evident. And yet, in this era of powerful desktop search software (the search capabilities built into the Windows Vista and Windows 7 Start Menus, and third-party programs like Google Desktop Search), the question does need to be asked, and answered. I have a friend who puts every file he ever creates, receives or downloads into his My Documents folder and doesn’t bother filing them into subfolders at all.  He relies on the search functionality built into his Windows operating system to help him find whatever he’s looking for.  And he always finds it.  He’s a Search Samurai.  For him, filing is a waste of valuable time that could be spent enjoying life! It’s tempting to follow suit.  On the face of it, why would anyone bother to take the time to organize their hard disk when such excellent search software is available?  Well, if all you ever want to do with the files you own is to locate and open them individually (for listening, editing, etc), then there’s no reason to ever bother doing one scrap of organization.  But consider these common tasks that are not achievable with desktop search software: Find files manually.  Often it’s not convenient, speedy or even possible to utilize your desktop search software to find what you want.  It doesn’t work 100% of the time, or you may not even have it installed.  Sometimes its just plain faster to go straight to the file you want, if you know it’s in a particular sub-folder, rather than trawling through hundreds of search results. Find groups of similar files (e.g. all your “work” files, all the photos of your Europe holiday in 2008, all your music videos, all the MP3s from Dark Side of the Moon, all your letters you wrote to your wife, all your tax returns).  Clever naming of the files will only get you so far.  Sometimes it’s the date the file was created that’s important, other times it’s the file format, and other times it’s the purpose of the file.  How do you name a collection of files so that they’re easy to isolate based on any of the above criteria?  Short answer, you can’t. Move files to a new computer.  It’s time to upgrade your computer.  How do you quickly grab all the files that are important to you?  Or you decide to have two computers now – one for home and one for work.  How do you quickly isolate only the work-related files to move them to the work computer? Synchronize files to other computers.  If you have more than one computer, and you need to mirror some of your files onto the other computer (e.g. your music collection), then you need a way to quickly determine which files are to be synced and which are not.  Surely you don’t want to synchronize everything? Choose which files to back up.  If your backup regime calls for multiple backups, or requires speedy backups, then you’ll need to be able to specify which files are to be backed up, and which are not.  This is not possible if they’re all in the same folder. Finally, if you’re simply someone who takes pleasure in being organized, tidy and ordered (me! me!), then you don’t even need a reason.  Being disorganized is simply unthinkable. Tips on Getting Organized Here we present our 40 best tips on how to get organized.  Or, if you’re already organized, to get better organized. Tip #1.  Choose Your Organization System Carefully The reason that most people are not organized is that it takes time.  And the first thing that takes time is deciding upon a system of organization.  This is always a matter of personal preference, and is not something that a geek on a website can tell you.  You should always choose your own system, based on how your own brain is organized (which makes the assumption that your brain is, in fact, organized). We can’t instruct you, but we can make suggestions: You may want to start off with a system based on the users of the computer.  i.e. “My Files”, “My Wife’s Files”, My Son’s Files”, etc.  Inside “My Files”, you might then break it down into “Personal” and “Business”.  You may then realize that there are overlaps.  For example, everyone may want to share access to the music library, or the photos from the school play.  So you may create another folder called “Family”, for the “common” files. You may decide that the highest-level breakdown of your files is based on the “source” of each file.  In other words, who created the files.  You could have “Files created by ME (business or personal)”, “Files created by people I know (family, friends, etc)”, and finally “Files created by the rest of the world (MP3 music files, downloaded or ripped movies or TV shows, software installation files, gorgeous desktop wallpaper images you’ve collected, etc).”  This system happens to be the one I use myself.  See below:  Mark is for files created by meVC is for files created by my company (Virtual Creations)Others is for files created by my friends and familyData is the rest of the worldAlso, Settings is where I store the configuration files and other program data files for my installed software (more on this in tip #34, below). Each folder will present its own particular set of requirements for further sub-organization.  For example, you may decide to organize your music collection into sub-folders based on the artist’s name, while your digital photos might get organized based on the date they were taken.  It can be different for every sub-folder! Another strategy would be based on “currentness”.  Files you have yet to open and look at live in one folder.  Ones that have been looked at but not yet filed live in another place.  Current, active projects live in yet another place.  All other files (your “archive”, if you like) would live in a fourth folder. (And of course, within that last folder you’d need to create a further sub-system based on one of the previous bullet points). Put some thought into this – changing it when it proves incomplete can be a big hassle!  Before you go to the trouble of implementing any system you come up with, examine a wide cross-section of the files you own and see if they will all be able to find a nice logical place to sit within your system. Tip #2.  When You Decide on Your System, Stick to It! There’s nothing more pointless than going to all the trouble of creating a system and filing all your files, and then whenever you create, receive or download a new file, you simply dump it onto your Desktop.  You need to be disciplined – forever!  Every new file you get, spend those extra few seconds to file it where it belongs!  Otherwise, in just a month or two, you’ll be worse off than before – half your files will be organized and half will be disorganized – and you won’t know which is which! Tip #3.  Choose the Root Folder of Your Structure Carefully Every data file (document, photo, music file, etc) that you create, own or is important to you, no matter where it came from, should be found within one single folder, and that one single folder should be located at the root of your C: drive (as a sub-folder of C:\).  In other words, do not base your folder structure in standard folders like “My Documents”.  If you do, then you’re leaving it up to the operating system engineers to decide what folder structure is best for you.  And every operating system has a different system!  In Windows 7 your files are found in C:\Users\YourName, whilst on Windows XP it was C:\Documents and Settings\YourName\My Documents.  In UNIX systems it’s often /home/YourName. These standard default folders tend to fill up with junk files and folders that are not at all important to you.  “My Documents” is the worst offender.  Every second piece of software you install, it seems, likes to create its own folder in the “My Documents” folder.  These folders usually don’t fit within your organizational structure, so don’t use them!  In fact, don’t even use the “My Documents” folder at all.  Allow it to fill up with junk, and then simply ignore it.  It sounds heretical, but: Don’t ever visit your “My Documents” folder!  Remove your icons/links to “My Documents” and replace them with links to the folders you created and you care about! Create your own file system from scratch!  Probably the best place to put it would be on your D: drive – if you have one.  This way, all your files live on one drive, while all the operating system and software component files live on the C: drive – simply and elegantly separated.  The benefits of that are profound.  Not only are there obvious organizational benefits (see tip #10, below), but when it comes to migrate your data to a new computer, you can (sometimes) simply unplug your D: drive and plug it in as the D: drive of your new computer (this implies that the D: drive is actually a separate physical disk, and not a partition on the same disk as C:).  You also get a slight speed improvement (again, only if your C: and D: drives are on separate physical disks). Warning:  From tip #12, below, you will see that it’s actually a good idea to have exactly the same file system structure – including the drive it’s filed on – on all of the computers you own.  So if you decide to use the D: drive as the storage system for your own files, make sure you are able to use the D: drive on all the computers you own.  If you can’t ensure that, then you can still use a clever geeky trick to store your files on the D: drive, but still access them all via the C: drive (see tip #17, below). If you only have one hard disk (C:), then create a dedicated folder that will contain all your files – something like C:\Files.  The name of the folder is not important, but make it a single, brief word. There are several reasons for this: When creating a backup regime, it’s easy to decide what files should be backed up – they’re all in the one folder! If you ever decide to trade in your computer for a new one, you know exactly which files to migrate You will always know where to begin a search for any file If you synchronize files with other computers, it makes your synchronization routines very simple.   It also causes all your shortcuts to continue to work on the other machines (more about this in tip #24, below). Once you’ve decided where your files should go, then put all your files in there – Everything!  Completely disregard the standard, default folders that are created for you by the operating system (“My Music”, “My Pictures”, etc).  In fact, you can actually relocate many of those folders into your own structure (more about that below, in tip #6). The more completely you get all your data files (documents, photos, music, etc) and all your configuration settings into that one folder, then the easier it will be to perform all of the above tasks. Once this has been done, and all your files live in one folder, all the other folders in C:\ can be thought of as “operating system” folders, and therefore of little day-to-day interest for us. Here’s a screenshot of a nicely organized C: drive, where all user files are located within the \Files folder:   Tip #4.  Use Sub-Folders This would be our simplest and most obvious tip.  It almost goes without saying.  Any organizational system you decide upon (see tip #1) will require that you create sub-folders for your files.  Get used to creating folders on a regular basis. Tip #5.  Don’t be Shy About Depth Create as many levels of sub-folders as you need.  Don’t be scared to do so.  Every time you notice an opportunity to group a set of related files into a sub-folder, do so.  Examples might include:  All the MP3s from one music CD, all the photos from one holiday, or all the documents from one client. It’s perfectly okay to put files into a folder called C:\Files\Me\From Others\Services\WestCo Bank\Statements\2009.  That’s only seven levels deep.  Ten levels is not uncommon.  Of course, it’s possible to take this too far.  If you notice yourself creating a sub-folder to hold only one file, then you’ve probably become a little over-zealous.  On the other hand, if you simply create a structure with only two levels (for example C:\Files\Work) then you really haven’t achieved any level of organization at all (unless you own only six files!).  Your “Work” folder will have become a dumping ground, just like your Desktop was, with most likely hundreds of files in it. Tip #6.  Move the Standard User Folders into Your Own Folder Structure Most operating systems, including Windows, create a set of standard folders for each of its users.  These folders then become the default location for files such as documents, music files, digital photos and downloaded Internet files.  In Windows 7, the full list is shown below: Some of these folders you may never use nor care about (for example, the Favorites folder, if you’re not using Internet Explorer as your browser).  Those ones you can leave where they are.  But you may be using some of the other folders to store files that are important to you.  Even if you’re not using them, Windows will still often treat them as the default storage location for many types of files.  When you go to save a standard file type, it can become annoying to be automatically prompted to save it in a folder that’s not part of your own file structure. But there’s a simple solution:  Move the folders you care about into your own folder structure!  If you do, then the next time you go to save a file of the corresponding type, Windows will prompt you to save it in the new, moved location. Moving the folders is easy.  Simply drag-and-drop them to the new location.  Here’s a screenshot of the default My Music folder being moved to my custom personal folder (Mark): Tip #7.  Name Files and Folders Intelligently This is another one that almost goes without saying, but we’ll say it anyway:  Do not allow files to be created that have meaningless names like Document1.doc, or folders called New Folder (2).  Take that extra 20 seconds and come up with a meaningful name for the file/folder – one that accurately divulges its contents without repeating the entire contents in the name. Tip #8.  Watch Out for Long Filenames Another way to tell if you have not yet created enough depth to your folder hierarchy is that your files often require really long names.  If you need to call a file Johnson Sales Figures March 2009.xls (which might happen to live in the same folder as Abercrombie Budget Report 2008.xls), then you might want to create some sub-folders so that the first file could be simply called March.xls, and living in the Clients\Johnson\Sales Figures\2009 folder. A well-placed file needs only a brief filename! Tip #9.  Use Shortcuts!  Everywhere! This is probably the single most useful and important tip we can offer.  A shortcut allows a file to be in two places at once. Why would you want that?  Well, the file and folder structure of every popular operating system on the market today is hierarchical.  This means that all objects (files and folders) always live within exactly one parent folder.  It’s a bit like a tree.  A tree has branches (folders) and leaves (files).  Each leaf, and each branch, is supported by exactly one parent branch, all the way back to the root of the tree (which, incidentally, is exactly why C:\ is called the “root folder” of the C: drive). That hard disks are structured this way may seem obvious and even necessary, but it’s only one way of organizing data.  There are others:  Relational databases, for example, organize structured data entirely differently.  The main limitation of hierarchical filing structures is that a file can only ever be in one branch of the tree – in only one folder – at a time.  Why is this a problem?  Well, there are two main reasons why this limitation is a problem for computer users: The “correct” place for a file, according to our organizational rationale, is very often a very inconvenient place for that file to be located.  Just because it’s correctly filed doesn’t mean it’s easy to get to.  Your file may be “correctly” buried six levels deep in your sub-folder structure, but you may need regular and speedy access to this file every day.  You could always move it to a more convenient location, but that would mean that you would need to re-file back to its “correct” location it every time you’d finished working on it.  Most unsatisfactory. A file may simply “belong” in two or more different locations within your file structure.  For example, say you’re an accountant and you have just completed the 2009 tax return for John Smith.  It might make sense to you to call this file 2009 Tax Return.doc and file it under Clients\John Smith.  But it may also be important to you to have the 2009 tax returns from all your clients together in the one place.  So you might also want to call the file John Smith.doc and file it under Tax Returns\2009.  The problem is, in a purely hierarchical filing system, you can’t put it in both places.  Grrrrr! Fortunately, Windows (and most other operating systems) offers a way for you to do exactly that:  It’s called a “shortcut” (also known as an “alias” on Macs and a “symbolic link” on UNIX systems).  Shortcuts allow a file to exist in one place, and an icon that represents the file to be created and put anywhere else you please.  In fact, you can create a dozen such icons and scatter them all over your hard disk.  Double-clicking on one of these icons/shortcuts opens up the original file, just as if you had double-clicked on the original file itself. Consider the following two icons: The one on the left is the actual Word document, while the one on the right is a shortcut that represents the Word document.  Double-clicking on either icon will open the same file.  There are two main visual differences between the icons: The shortcut will have a small arrow in the lower-left-hand corner (on Windows, anyway) The shortcut is allowed to have a name that does not include the file extension (the “.docx” part, in this case) You can delete the shortcut at any time without losing any actual data.  The original is still intact.  All you lose is the ability to get to that data from wherever the shortcut was. So why are shortcuts so great?  Because they allow us to easily overcome the main limitation of hierarchical file systems, and put a file in two (or more) places at the same time.  You will always have files that don’t play nice with your organizational rationale, and can’t be filed in only one place.  They demand to exist in two places.  Shortcuts allow this!  Furthermore, they allow you to collect your most often-opened files and folders together in one spot for convenient access.  The cool part is that the original files stay where they are, safe forever in their perfectly organized location. So your collection of most often-opened files can – and should – become a collection of shortcuts! If you’re still not convinced of the utility of shortcuts, consider the following well-known areas of a typical Windows computer: The Start Menu (and all the programs that live within it) The Quick Launch bar (or the Superbar in Windows 7) The “Favorite folders” area in the top-left corner of the Windows Explorer window (in Windows Vista or Windows 7) Your Internet Explorer Favorites or Firefox Bookmarks Each item in each of these areas is a shortcut!  Each of those areas exist for one purpose only:  For convenience – to provide you with a collection of the files and folders you access most often. It should be easy to see by now that shortcuts are designed for one single purpose:  To make accessing your files more convenient.  Each time you double-click on a shortcut, you are saved the hassle of locating the file (or folder, or program, or drive, or control panel icon) that it represents. Shortcuts allow us to invent a golden rule of file and folder organization: “Only ever have one copy of a file – never have two copies of the same file.  Use a shortcut instead” (this rule doesn’t apply to copies created for backup purposes, of course!) There are also lesser rules, like “don’t move a file into your work area – create a shortcut there instead”, and “any time you find yourself frustrated with how long it takes to locate a file, create a shortcut to it and place that shortcut in a convenient location.” So how to we create these massively useful shortcuts?  There are two main ways: “Copy” the original file or folder (click on it and type Ctrl-C, or right-click on it and select Copy):  Then right-click in an empty area of the destination folder (the place where you want the shortcut to go) and select Paste shortcut: Right-drag (drag with the right mouse button) the file from the source folder to the destination folder.  When you let go of the mouse button at the destination folder, a menu pops up: Select Create shortcuts here. Note that when shortcuts are created, they are often named something like Shortcut to Budget Detail.doc (windows XP) or Budget Detail – Shortcut.doc (Windows 7).   If you don’t like those extra words, you can easily rename the shortcuts after they’re created, or you can configure Windows to never insert the extra words in the first place (see our article on how to do this). And of course, you can create shortcuts to folders too, not just to files! Bottom line: Whenever you have a file that you’d like to access from somewhere else (whether it’s convenience you’re after, or because the file simply belongs in two places), create a shortcut to the original file in the new location. Tip #10.  Separate Application Files from Data Files Any digital organization guru will drum this rule into you.  Application files are the components of the software you’ve installed (e.g. Microsoft Word, Adobe Photoshop or Internet Explorer).  Data files are the files that you’ve created for yourself using that software (e.g. Word Documents, digital photos, emails or playlists). Software gets installed, uninstalled and upgraded all the time.  Hopefully you always have the original installation media (or downloaded set-up file) kept somewhere safe, and can thus reinstall your software at any time.  This means that the software component files are of little importance.  Whereas the files you have created with that software is, by definition, important.  It’s a good rule to always separate unimportant files from important files. So when your software prompts you to save a file you’ve just created, take a moment and check out where it’s suggesting that you save the file.  If it’s suggesting that you save the file into the same folder as the software itself, then definitely don’t follow that suggestion.  File it in your own folder!  In fact, see if you can find the program’s configuration option that determines where files are saved by default (if it has one), and change it. Tip #11.  Organize Files Based on Purpose, Not on File Type If you have, for example a folder called Work\Clients\Johnson, and within that folder you have two sub-folders, Word Documents and Spreadsheets (in other words, you’re separating “.doc” files from “.xls” files), then chances are that you’re not optimally organized.  It makes little sense to organize your files based on the program that created them.  Instead, create your sub-folders based on the purpose of the file.  For example, it would make more sense to create sub-folders called Correspondence and Financials.  It may well be that all the files in a given sub-folder are of the same file-type, but this should be more of a coincidence and less of a design feature of your organization system. Tip #12.  Maintain the Same Folder Structure on All Your Computers In other words, whatever organizational system you create, apply it to every computer that you can.  There are several benefits to this: There’s less to remember.  No matter where you are, you always know where to look for your files If you copy or synchronize files from one computer to another, then setting up the synchronization job becomes very simple Shortcuts can be copied or moved from one computer to another with ease (assuming the original files are also copied/moved).  There’s no need to find the target of the shortcut all over again on the second computer Ditto for linked files (e.g Word documents that link to data in a separate Excel file), playlists, and any files that reference the exact file locations of other files. This applies even to the drive that your files are stored on.  If your files are stored on C: on one computer, make sure they’re stored on C: on all your computers.  Otherwise all your shortcuts, playlists and linked files will stop working! Tip #13.  Create an “Inbox” Folder Create yourself a folder where you store all files that you’re currently working on, or that you haven’t gotten around to filing yet.  You can think of this folder as your “to-do” list.  You can call it “Inbox” (making it the same metaphor as your email system), or “Work”, or “To-Do”, or “Scratch”, or whatever name makes sense to you.  It doesn’t matter what you call it – just make sure you have one! Once you have finished working on a file, you then move it from the “Inbox” to its correct location within your organizational structure. You may want to use your Desktop as this “Inbox” folder.  Rightly or wrongly, most people do.  It’s not a bad place to put such files, but be careful:  If you do decide that your Desktop represents your “to-do” list, then make sure that no other files find their way there.  In other words, make sure that your “Inbox”, wherever it is, Desktop or otherwise, is kept free of junk – stray files that don’t belong there. So where should you put this folder, which, almost by definition, lives outside the structure of the rest of your filing system?  Well, first and foremost, it has to be somewhere handy.  This will be one of your most-visited folders, so convenience is key.  Putting it on the Desktop is a great option – especially if you don’t have any other folders on your Desktop:  the folder then becomes supremely easy to find in Windows Explorer: You would then create shortcuts to this folder in convenient spots all over your computer (“Favorite Links”, “Quick Launch”, etc). Tip #14.  Ensure You have Only One “Inbox” Folder Once you’ve created your “Inbox” folder, don’t use any other folder location as your “to-do list”.  Throw every incoming or created file into the Inbox folder as you create/receive it.  This keeps the rest of your computer pristine and free of randomly created or downloaded junk.  The last thing you want to be doing is checking multiple folders to see all your current tasks and projects.  Gather them all together into one folder. Here are some tips to help ensure you only have one Inbox: Set the default “save” location of all your programs to this folder. Set the default “download” location for your browser to this folder. If this folder is not your desktop (recommended) then also see if you can make a point of not putting “to-do” files on your desktop.  This keeps your desktop uncluttered and Zen-like: (the Inbox folder is in the bottom-right corner) Tip #15.  Be Vigilant about Clearing Your “Inbox” Folder This is one of the keys to staying organized.  If you let your “Inbox” overflow (i.e. allow there to be more than, say, 30 files or folders in there), then you’re probably going to start feeling like you’re overwhelmed:  You’re not keeping up with your to-do list.  Once your Inbox gets beyond a certain point (around 30 files, studies have shown), then you’ll simply start to avoid it.  You may continue to put files in there, but you’ll be scared to look at it, fearing the “out of control” feeling that all overworked, chaotic or just plain disorganized people regularly feel. So, here’s what you can do: Visit your Inbox/to-do folder regularly (at least five times per day). Scan the folder regularly for files that you have completed working on and are ready for filing.  File them immediately. Make it a source of pride to keep the number of files in this folder as small as possible.  If you value peace of mind, then make the emptiness of this folder one of your highest (computer) priorities If you know that a particular file has been in the folder for more than, say, six weeks, then admit that you’re not actually going to get around to processing it, and move it to its final resting place. Tip #16.  File Everything Immediately, and Use Shortcuts for Your Active Projects As soon as you create, receive or download a new file, store it away in its “correct” folder immediately.  Then, whenever you need to work on it (possibly straight away), create a shortcut to it in your “Inbox” (“to-do”) folder or your desktop.  That way, all your files are always in their “correct” locations, yet you still have immediate, convenient access to your current, active files.  When you finish working on a file, simply delete the shortcut. Ideally, your “Inbox” folder – and your Desktop – should contain no actual files or folders.  They should simply contain shortcuts. Tip #17.  Use Directory Symbolic Links (or Junctions) to Maintain One Unified Folder Structure Using this tip, we can get around a potential hiccup that we can run into when creating our organizational structure – the issue of having more than one drive on our computer (C:, D:, etc).  We might have files we need to store on the D: drive for space reasons, and yet want to base our organized folder structure on the C: drive (or vice-versa). Your chosen organizational structure may dictate that all your files must be accessed from the C: drive (for example, the root folder of all your files may be something like C:\Files).  And yet you may still have a D: drive and wish to take advantage of the hundreds of spare Gigabytes that it offers.  Did you know that it’s actually possible to store your files on the D: drive and yet access them as if they were on the C: drive?  And no, we’re not talking about shortcuts here (although the concept is very similar). By using the shell command mklink, you can essentially take a folder that lives on one drive and create an alias for it on a different drive (you can do lots more than that with mklink – for a full rundown on this programs capabilities, see our dedicated article).  These aliases are called directory symbolic links (and used to be known as junctions).  You can think of them as “virtual” folders.  They function exactly like regular folders, except they’re physically located somewhere else. For example, you may decide that your entire D: drive contains your complete organizational file structure, but that you need to reference all those files as if they were on the C: drive, under C:\Files.  If that was the case you could create C:\Files as a directory symbolic link – a link to D:, as follows: mklink /d c:\files d:\ Or it may be that the only files you wish to store on the D: drive are your movie collection.  You could locate all your movie files in the root of your D: drive, and then link it to C:\Files\Media\Movies, as follows: mklink /d c:\files\media\movies d:\ (Needless to say, you must run these commands from a command prompt – click the Start button, type cmd and press Enter) Tip #18. Customize Your Folder Icons This is not strictly speaking an organizational tip, but having unique icons for each folder does allow you to more quickly visually identify which folder is which, and thus saves you time when you’re finding files.  An example is below (from my folder that contains all files downloaded from the Internet): To learn how to change your folder icons, please refer to our dedicated article on the subject. Tip #19.  Tidy Your Start Menu The Windows Start Menu is usually one of the messiest parts of any Windows computer.  Every program you install seems to adopt a completely different approach to placing icons in this menu.  Some simply put a single program icon.  Others create a folder based on the name of the software.  And others create a folder based on the name of the software manufacturer.  It’s chaos, and can make it hard to find the software you want to run. Thankfully we can avoid this chaos with useful operating system features like Quick Launch, the Superbar or pinned start menu items. Even so, it would make a lot of sense to get into the guts of the Start Menu itself and give it a good once-over.  All you really need to decide is how you’re going to organize your applications.  A structure based on the purpose of the application is an obvious candidate.  Below is an example of one such structure: In this structure, Utilities means software whose job it is to keep the computer itself running smoothly (configuration tools, backup software, Zip programs, etc).  Applications refers to any productivity software that doesn’t fit under the headings Multimedia, Graphics, Internet, etc. In case you’re not aware, every icon in your Start Menu is a shortcut and can be manipulated like any other shortcut (copied, moved, deleted, etc). With the Windows Start Menu (all version of Windows), Microsoft has decided that there be two parallel folder structures to store your Start Menu shortcuts.  One for you (the logged-in user of the computer) and one for all users of the computer.  Having two parallel structures can often be redundant:  If you are the only user of the computer, then having two parallel structures is totally redundant.  Even if you have several users that regularly log into the computer, most of your installed software will need to be made available to all users, and should thus be moved out of the “just you” version of the Start Menu and into the “all users” area. To take control of your Start Menu, so you can start organizing it, you’ll need to know how to access the actual folders and shortcut files that make up the Start Menu (both versions of it).  To find these folders and files, click the Start button and then right-click on the All Programs text (Windows XP users should right-click on the Start button itself): The Open option refers to the “just you” version of the Start Menu, while the Open All Users option refers to the “all users” version.  Click on the one you want to organize. A Windows Explorer window then opens with your chosen version of the Start Menu selected.  From there it’s easy.  Double-click on the Programs folder and you’ll see all your folders and shortcuts.  Now you can delete/rename/move until it’s just the way you want it. Note:  When you’re reorganizing your Start Menu, you may want to have two Explorer windows open at the same time – one showing the “just you” version and one showing the “all users” version.  You can drag-and-drop between the windows. Tip #20.  Keep Your Start Menu Tidy Once you have a perfectly organized Start Menu, try to be a little vigilant about keeping it that way.  Every time you install a new piece of software, the icons that get created will almost certainly violate your organizational structure. So to keep your Start Menu pristine and organized, make sure you do the following whenever you install a new piece of software: Check whether the software was installed into the “just you” area of the Start Menu, or the “all users” area, and then move it to the correct area. Remove all the unnecessary icons (like the “Read me” icon, the “Help” icon (you can always open the help from within the software itself when it’s running), the “Uninstall” icon, the link(s)to the manufacturer’s website, etc) Rename the main icon(s) of the software to something brief that makes sense to you.  For example, you might like to rename Microsoft Office Word 2010 to simply Word Move the icon(s) into the correct folder based on your Start Menu organizational structure And don’t forget:  when you uninstall a piece of software, the software’s uninstall routine is no longer going to be able to remove the software’s icon from the Start Menu (because you moved and/or renamed it), so you’ll need to remove that icon manually. Tip #21.  Tidy C:\ The root of your C: drive (C:\) is a common dumping ground for files and folders – both by the users of your computer and by the software that you install on your computer.  It can become a mess. There’s almost no software these days that requires itself to be installed in C:\.  99% of the time it can and should be installed into C:\Program Files.  And as for your own files, well, it’s clear that they can (and almost always should) be stored somewhere else. In an ideal world, your C:\ folder should look like this (on Windows 7): Note that there are some system files and folders in C:\ that are usually and deliberately “hidden” (such as the Windows virtual memory file pagefile.sys, the boot loader file bootmgr, and the System Volume Information folder).  Hiding these files and folders is a good idea, as they need to stay where they are and are almost never needed to be opened or even seen by you, the user.  Hiding them prevents you from accidentally messing with them, and enhances your sense of order and well-being when you look at your C: drive folder. Tip #22.  Tidy Your Desktop The Desktop is probably the most abused part of a Windows computer (from an organization point of view).  It usually serves as a dumping ground for all incoming files, as well as holding icons to oft-used applications, plus some regularly opened files and folders.  It often ends up becoming an uncontrolled mess.  See if you can avoid this.  Here’s why… Application icons (Word, Internet Explorer, etc) are often found on the Desktop, but it’s unlikely that this is the optimum place for them.  The “Quick Launch” bar (or the Superbar in Windows 7) is always visible and so represents a perfect location to put your icons.  You’ll only be able to see the icons on your Desktop when all your programs are minimized.  It might be time to get your application icons off your desktop… You may have decided that the Inbox/To-do folder on your computer (see tip #13, above) should be your Desktop.  If so, then enough said.  Simply be vigilant about clearing it and preventing it from being polluted by junk files (see tip #15, above).  On the other hand, if your Desktop is not acting as your “Inbox” folder, then there’s no reason for it to have any data files or folders on it at all, except perhaps a couple of shortcuts to often-opened files and folders (either ongoing or current projects).  Everything else should be moved to your “Inbox” folder. In an ideal world, it might look like this: Tip #23.  Move Permanent Items on Your Desktop Away from the Top-Left Corner When files/folders are dragged onto your desktop in a Windows Explorer window, or when shortcuts are created on your Desktop from Internet Explorer, those icons are always placed in the top-left corner – or as close as they can get.  If you have other files, folders or shortcuts that you keep on the Desktop permanently, then it’s a good idea to separate these permanent icons from the transient ones, so that you can quickly identify which ones the transients are.  An easy way to do this is to move all your permanent icons to the right-hand side of your Desktop.  That should keep them separated from incoming items. Tip #24.  Synchronize If you have more than one computer, you’ll almost certainly want to share files between them.  If the computers are permanently attached to the same local network, then there’s no need to store multiple copies of any one file or folder – shortcuts will suffice.  However, if the computers are not always on the same network, then you will at some point need to copy files between them.  For files that need to permanently live on both computers, the ideal way to do this is to synchronize the files, as opposed to simply copying them. We only have room here to write a brief summary of synchronization, not a full article.  In short, there are several different types of synchronization: Where the contents of one folder are accessible anywhere, such as with Dropbox Where the contents of any number of folders are accessible anywhere, such as with Windows Live Mesh Where any files or folders from anywhere on your computer are synchronized with exactly one other computer, such as with the Windows “Briefcase”, Microsoft SyncToy, or (much more powerful, yet still free) SyncBack from 2BrightSparks.  This only works when both computers are on the same local network, at least temporarily. A great advantage of synchronization solutions is that once you’ve got it configured the way you want it, then the sync process happens automatically, every time.  Click a button (or schedule it to happen automatically) and all your files are automagically put where they’re supposed to be. If you maintain the same file and folder structure on both computers, then you can also sync files depend upon the correct location of other files, like shortcuts, playlists and office documents that link to other office documents, and the synchronized files still work on the other computer! Tip #25.  Hide Files You Never Need to See If you have your files well organized, you will often be able to tell if a file is out of place just by glancing at the contents of a folder (for example, it should be pretty obvious if you look in a folder that contains all the MP3s from one music CD and see a Word document in there).  This is a good thing – it allows you to determine if there are files out of place with a quick glance.  Yet sometimes there are files in a folder that seem out of place but actually need to be there, such as the “folder art” JPEGs in music folders, and various files in the root of the C: drive.  If such files never need to be opened by you, then a good idea is to simply hide them.  Then, the next time you glance at the folder, you won’t have to remember whether that file was supposed to be there or not, because you won’t see it at all! To hide a file, simply right-click on it and choose Properties: Then simply tick the Hidden tick-box:   Tip #26.  Keep Every Setup File These days most software is downloaded from the Internet.  Whenever you download a piece of software, keep it.  You’ll never know when you need to reinstall the software. Further, keep with it an Internet shortcut that links back to the website where you originally downloaded it, in case you ever need to check for updates. See tip #33 below for a full description of the excellence of organizing your setup files. Tip #27.  Try to Minimize the Number of Folders that Contain Both Files and Sub-folders Some of the folders in your organizational structure will contain only files.  Others will contain only sub-folders.  And you will also have some folders that contain both files and sub-folders.  You will notice slight improvements in how long it takes you to locate a file if you try to avoid this third type of folder.  It’s not always possible, of course – you’ll always have some of these folders, but see if you can avoid it. One way of doing this is to take all the leftover files that didn’t end up getting stored in a sub-folder and create a special “Miscellaneous” or “Other” folder for them. Tip #28.  Starting a Filename with an Underscore Brings it to the Top of a List Further to the previous tip, if you name that “Miscellaneous” or “Other” folder in such a way that its name begins with an underscore “_”, then it will appear at the top of the list of files/folders. The screenshot below is an example of this.  Each folder in the list contains a set of digital photos.  The folder at the top of the list, _Misc, contains random photos that didn’t deserve their own dedicated folder: Tip #29.  Clean Up those CD-ROMs and (shudder!) Floppy Disks Have you got a pile of CD-ROMs stacked on a shelf of your office?  Old photos, or files you archived off onto CD-ROM (or even worse, floppy disks!) because you didn’t have enough disk space at the time?  In the meantime have you upgraded your computer and now have 500 Gigabytes of space you don’t know what to do with?  If so, isn’t it time you tidied up that stack of disks and filed them into your gorgeous new folder structure? So what are you waiting for?  Bite the bullet, copy them all back onto your computer, file them in their appropriate folders, and then back the whole lot up onto a shiny new 1000Gig external hard drive! Useful Folders to Create This next section suggests some useful folders that you might want to create within your folder structure.  I’ve personally found them to be indispensable. The first three are all about convenience – handy folders to create and then put somewhere that you can always access instantly.  For each one, it’s not so important where the actual folder is located, but it’s very important where you put the shortcut(s) to the folder.  You might want to locate the shortcuts: On your Desktop In your “Quick Launch” area (or pinned to your Windows 7 Superbar) In your Windows Explorer “Favorite Links” area Tip #30.  Create an “Inbox” (“To-Do”) Folder This has already been mentioned in depth (see tip #13), but we wanted to reiterate its importance here.  This folder contains all the recently created, received or downloaded files that you have not yet had a chance to file away properly, and it also may contain files that you have yet to process.  In effect, it becomes a sort of “to-do list”.  It doesn’t have to be called “Inbox” – you can call it whatever you want. Tip #31.  Create a Folder where Your Current Projects are Collected Rather than going hunting for them all the time, or dumping them all on your desktop, create a special folder where you put links (or work folders) for each of the projects you’re currently working on. You can locate this folder in your “Inbox” folder, on your desktop, or anywhere at all – just so long as there’s a way of getting to it quickly, such as putting a link to it in Windows Explorer’s “Favorite Links” area: Tip #32.  Create a Folder for Files and Folders that You Regularly Open You will always have a few files that you open regularly, whether it be a spreadsheet of your current accounts, or a favorite playlist.  These are not necessarily “current projects”, rather they’re simply files that you always find yourself opening.  Typically such files would be located on your desktop (or even better, shortcuts to those files).  Why not collect all such shortcuts together and put them in their own special folder? As with the “Current Projects” folder (above), you would want to locate that folder somewhere convenient.  Below is an example of a folder called “Quick links”, with about seven files (shortcuts) in it, that is accessible through the Windows Quick Launch bar: See tip #37 below for a full explanation of the power of the Quick Launch bar. Tip #33.  Create a “Set-ups” Folder A typical computer has dozens of applications installed on it.  For each piece of software, there are often many different pieces of information you need to keep track of, including: The original installation setup file(s).  This can be anything from a simple 100Kb setup.exe file you downloaded from a website, all the way up to a 4Gig ISO file that you copied from a DVD-ROM that you purchased. The home page of the software manufacturer (in case you need to look up something on their support pages, their forum or their online help) The page containing the download link for your actual file (in case you need to re-download it, or download an upgraded version) The serial number Your proof-of-purchase documentation Any other template files, plug-ins, themes, etc that also need to get installed For each piece of software, it’s a great idea to gather all of these files together and put them in a single folder.  The folder can be the name of the software (plus possibly a very brief description of what it’s for – in case you can’t remember what the software does based in its name).  Then you would gather all of these folders together into one place, and call it something like “Software” or “Setups”. If you have enough of these folders (I have several hundred, being a geek, collected over 20 years), then you may want to further categorize them.  My own categorization structure is based on “platform” (operating system): The last seven folders each represents one platform/operating system, while _Operating Systems contains set-up files for installing the operating systems themselves.  _Hardware contains ROMs for hardware I own, such as routers. Within the Windows folder (above), you can see the beginnings of the vast library of software I’ve compiled over the years: An example of a typical application folder looks like this: Tip #34.  Have a “Settings” Folder We all know that our documents are important.  So are our photos and music files.  We save all of these files into folders, and then locate them afterwards and double-click on them to open them.  But there are many files that are important to us that can’t be saved into folders, and then searched for and double-clicked later on.  These files certainly contain important information that we need, but are often created internally by an application, and saved wherever that application feels is appropriate. A good example of this is the “PST” file that Outlook creates for us and uses to store all our emails, contacts, appointments and so forth.  Another example would be the collection of Bookmarks that Firefox stores on your behalf. And yet another example would be the customized settings and configuration files of our all our software.  Granted, most Windows programs store their configuration in the Registry, but there are still many programs that use configuration files to store their settings. Imagine if you lost all of the above files!  And yet, when people are backing up their computers, they typically only back up the files they know about – those that are stored in the “My Documents” folder, etc.  If they had a hard disk failure or their computer was lost or stolen, their backup files would not include some of the most vital files they owned.  Also, when migrating to a new computer, it’s vital to ensure that these files make the journey. It can be a very useful idea to create yourself a folder to store all your “settings” – files that are important to you but which you never actually search for by name and double-click on to open them.  Otherwise, next time you go to set up a new computer just the way you want it, you’ll need to spend hours recreating the configuration of your previous computer! So how to we get our important files into this folder?  Well, we have a few options: Some programs (such as Outlook and its PST files) allow you to place these files wherever you want.  If you delve into the program’s options, you will find a setting somewhere that controls the location of the important settings files (or “personal storage” – PST – when it comes to Outlook) Some programs do not allow you to change such locations in any easy way, but if you get into the Registry, you can sometimes find a registry key that refers to the location of the file(s).  Simply move the file into your Settings folder and adjust the registry key to refer to the new location. Some programs stubbornly refuse to allow their settings files to be placed anywhere other then where they stipulate.  When faced with programs like these, you have three choices:  (1) You can ignore those files, (2) You can copy the files into your Settings folder (let’s face it – settings don’t change very often), or (3) you can use synchronization software, such as the Windows Briefcase, to make synchronized copies of all your files in your Settings folder.  All you then have to do is to remember to run your sync software periodically (perhaps just before you run your backup software!). There are some other things you may decide to locate inside this new “Settings” folder: Exports of registry keys (from the many applications that store their configurations in the Registry).  This is useful for backup purposes or for migrating to a new computer Notes you’ve made about all the specific customizations you have made to a particular piece of software (so that you’ll know how to do it all again on your next computer) Shortcuts to webpages that detail how to tweak certain aspects of your operating system or applications so they are just the way you like them (such as how to remove the words “Shortcut to” from the beginning of newly created shortcuts).  In other words, you’d want to create shortcuts to half the pages on the How-To Geek website! Here’s an example of a “Settings” folder: Windows Features that Help with Organization This section details some of the features of Microsoft Windows that are a boon to anyone hoping to stay optimally organized. Tip #35.  Use the “Favorite Links” Area to Access Oft-Used Folders Once you’ve created your great new filing system, work out which folders you access most regularly, or which serve as great starting points for locating the rest of the files in your folder structure, and then put links to those folders in your “Favorite Links” area of the left-hand side of the Windows Explorer window (simply called “Favorites” in Windows 7):   Some ideas for folders you might want to add there include: Your “Inbox” folder (or whatever you’ve called it) – most important! The base of your filing structure (e.g. C:\Files) A folder containing shortcuts to often-accessed folders on other computers around the network (shown above as Network Folders) A folder containing shortcuts to your current projects (unless that folder is in your “Inbox” folder) Getting folders into this area is very simple – just locate the folder you’re interested in and drag it there! Tip #36.  Customize the Places Bar in the File/Open and File/Save Boxes Consider the screenshot below: The highlighted icons (collectively known as the “Places Bar”) can be customized to refer to any folder location you want, allowing instant access to any part of your organizational structure. Note:  These File/Open and File/Save boxes have been superseded by new versions that use the Windows Vista/Windows 7 “Favorite Links”, but the older versions (shown above) are still used by a surprisingly large number of applications. The easiest way to customize these icons is to use the Group Policy Editor, but not everyone has access to this program.  If you do, open it up and navigate to: User Configuration > Administrative Templates > Windows Components > Windows Explorer > Common Open File Dialog If you don’t have access to the Group Policy Editor, then you’ll need to get into the Registry.  Navigate to: HKEY_CURRENT_USER \ Software \ Microsoft  \ Windows \ CurrentVersion \ Policies \ comdlg32 \ Placesbar It should then be easy to make the desired changes.  Log off and log on again to allow the changes to take effect. Tip #37.  Use the Quick Launch Bar as a Application and File Launcher That Quick Launch bar (to the right of the Start button) is a lot more useful than people give it credit for.  Most people simply have half a dozen icons in it, and use it to start just those programs.  But it can actually be used to instantly access just about anything in your filing system: For complete instructions on how to set this up, visit our dedicated article on this topic. Tip #38.  Put a Shortcut to Windows Explorer into Your Quick Launch Bar This is only necessary in Windows Vista and Windows XP.  The Microsoft boffins finally got wise and added it to the Windows 7 Superbar by default. Windows Explorer – the program used for managing your files and folders – is one of the most useful programs in Windows.  Anyone who considers themselves serious about being organized needs instant access to this program at any time.  A great place to create a shortcut to this program is in the Windows XP and Windows Vista “Quick Launch” bar: To get it there, locate it in your Start Menu (usually under “Accessories”) and then right-drag it down into your Quick Launch bar (and create a copy). Tip #39.  Customize the Starting Folder for Your Windows 7 Explorer Superbar Icon If you’re on Windows 7, your Superbar will include a Windows Explorer icon.  Clicking on the icon will launch Windows Explorer (of course), and will start you off in your “Libraries” folder.  Libraries may be fine as a starting point, but if you have created yourself an “Inbox” folder, then it would probably make more sense to start off in this folder every time you launch Windows Explorer. To change this default/starting folder location, then first right-click the Explorer icon in the Superbar, and then right-click Properties:Then, in Target field of the Windows Explorer Properties box that appears, type %windir%\explorer.exe followed by the path of the folder you wish to start in.  For example: %windir%\explorer.exe C:\Files If that folder happened to be on the Desktop (and called, say, “Inbox”), then you would use the following cleverness: %windir%\explorer.exe shell:desktop\Inbox Then click OK and test it out. Tip #40.  Ummmmm…. No, that’s it.  I can’t think of another one.  That’s all of the tips I can come up with.  I only created this one because 40 is such a nice round number… Case Study – An Organized PC To finish off the article, I have included a few screenshots of my (main) computer (running Vista).  The aim here is twofold: To give you a sense of what it looks like when the above, sometimes abstract, tips are applied to a real-life computer, and To offer some ideas about folders and structure that you may want to steal to use on your own PC. Let’s start with the C: drive itself.  Very minimal.  All my files are contained within C:\Files.  I’ll confine the rest of the case study to this folder: That folder contains the following: Mark: My personal files VC: My business (Virtual Creations, Australia) Others contains files created by friends and family Data contains files from the rest of the world (can be thought of as “public” files, usually downloaded from the Net) Settings is described above in tip #34 The Data folder contains the following sub-folders: Audio:  Radio plays, audio books, podcasts, etc Development:  Programmer and developer resources, sample source code, etc (see below) Humour:  Jokes, funnies (those emails that we all receive) Movies:  Downloaded and ripped movies (all legal, of course!), their scripts, DVD covers, etc. Music:  (see below) Setups:  Installation files for software (explained in full in tip #33) System:  (see below) TV:  Downloaded TV shows Writings:  Books, instruction manuals, etc (see below) The Music folder contains the following sub-folders: Album covers:  JPEG scans Guitar tabs:  Text files of guitar sheet music Lists:  e.g. “Top 1000 songs of all time” Lyrics:  Text files MIDI:  Electronic music files MP3 (representing 99% of the Music folder):  MP3s, either ripped from CDs or downloaded, sorted by artist/album name Music Video:  Video clips Sheet Music:  usually PDFs The Data\Writings folder contains the following sub-folders: (all pretty self-explanatory) The Data\Development folder contains the following sub-folders: Again, all pretty self-explanatory (if you’re a geek) The Data\System folder contains the following sub-folders: These are usually themes, plug-ins and other downloadable program-specific resources. The Mark folder contains the following sub-folders: From Others:  Usually letters that other people (friends, family, etc) have written to me For Others:  Letters and other things I have created for other people Green Book:  None of your business Playlists:  M3U files that I have compiled of my favorite songs (plus one M3U playlist file for every album I own) Writing:  Fiction, philosophy and other musings of mine Mark Docs:  Shortcut to C:\Users\Mark Settings:  Shortcut to C:\Files\Settings\Mark The Others folder contains the following sub-folders: The VC (Virtual Creations, my business – I develop websites) folder contains the following sub-folders: And again, all of those are pretty self-explanatory. Conclusion These tips have saved my sanity and helped keep me a productive geek, but what about you? What tips and tricks do you have to keep your files organized?  Please share them with us in the comments.  Come on, don’t be shy… Similar Articles Productive Geek Tips Fix For When Windows Explorer in Vista Stops Showing File NamesWhy Did Windows Vista’s Music Folder Icon Turn Yellow?Print or Create a Text File List of the Contents in a Directory the Easy WayCustomize the Windows 7 or Vista Send To MenuAdd Copy To / Move To on Windows 7 or Vista Right-Click Menu TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips Acronis Online Backup DVDFab 6 Revo Uninstaller Pro Registry Mechanic 9 for Windows Track Daily Goals With 42Goals Video Toolbox is a Superb Online Video Editor Fun with 47 charts and graphs Tomorrow is Mother’s Day Check the Average Speed of YouTube Videos You’ve Watched OutlookStatView Scans and Displays General Usage Statistics

    Read the article

  • SVN - ignoring files already in repository

    - by Alex
    I have a configuration file in my project which needs to be in the repository (so new developers get it when they checkout the project). Each developer might change some values in the file locally - these changes should not be committed and I don't want them showing in the synchronization menu (I'm using eclipse and subversive if it matters). Note that I can't just set the svn:ignore property since it only works on files that aren't under version control - but I do want to keep a base version of the file in the repository. How can I avoid the file showing in synchronization without deleting it from repository? EDIT: A better description - what I actually need is to be able to set a "read-only" property on the config file, so it can't be changed in the repository as long as the property is on. Do you know anything like this? Thanks

    Read the article

< Previous Page | 16 17 18 19 20 21 22 23 24 25 26 27  | Next Page >