Search Results

Search found 5954 results on 239 pages for 'cpu cores'.

Page 225/239 | < Previous Page | 221 222 223 224 225 226 227 228 229 230 231 232  | Next Page >

  • SPARC T4-4 Delivers World Record Performance on Oracle OLAP Perf Version 2 Benchmark

    - by Brian
    Oracle's SPARC T4-4 server delivered world record performance with subsecond response time on the Oracle OLAP Perf Version 2 benchmark using Oracle Database 11g Release 2 running on Oracle Solaris 11. The SPARC T4-4 server achieved throughput of 430,000 cube-queries/hour with an average response time of 0.85 seconds and the median response time of 0.43 seconds. This was achieved by using only 60% of the available CPU resources leaving plenty of headroom for future growth. The SPARC T4-4 server operated on an Oracle OLAP cube with a 4 billion row fact table of sales data containing 4 dimensions. This represents as many as 90 quintillion aggregate rows (90 followed by 18 zeros). Performance Landscape Oracle OLAP Perf Version 2 Benchmark 4 Billion Fact Table Rows System Queries/hour Users* Response Time (sec) Average Median SPARC T4-4 430,000 7,300 0.85 0.43 * Users - the supported number of users with a given think time of 60 seconds Configuration Summary and Results Hardware Configuration: SPARC T4-4 server with 4 x SPARC T4 processors, 3.0 GHz 1 TB memory Data Storage 1 x Sun Fire X4275 (using COMSTAR) 2 x Sun Storage F5100 Flash Array (each with 80 FMODs) Redo Storage 1 x Sun Fire X4275 (using COMSTAR with 8 HDD) Software Configuration: Oracle Solaris 11 11/11 Oracle Database 11g Release 2 (11.2.0.3) with Oracle OLAP option Benchmark Description The Oracle OLAP Perf Version 2 benchmark is a workload designed to demonstrate and stress the Oracle OLAP product's core features of fast query, fast update, and rich calculations on a multi-dimensional model to support enhanced Data Warehousing. The bulk of the benchmark entails running a number of concurrent users, each issuing typical multidimensional queries against an Oracle OLAP cube consisting of a number of years of sales data with fully pre-computed aggregations. The cube has four dimensions: time, product, customer, and channel. Each query user issues approximately 150 different queries. One query chain may ask for total sales in a particular region (e.g South America) for a particular time period (e.g. Q4 of 2010) followed by additional queries which drill down into sales for individual countries (e.g. Chile, Peru, etc.) with further queries drilling down into individual stores, etc. Another query chain may ask for yearly comparisons of total sales for some product category (e.g. major household appliances) and then issue further queries drilling down into particular products (e.g. refrigerators, stoves. etc.), particular regions, particular customers, etc. Results from version 2 of the benchmark are not comparable with version 1. The primary difference is the type of queries along with the query mix. Key Points and Best Practices Since typical BI users are often likely to issue similar queries, with different constants in the where clauses, setting the init.ora prameter "cursor_sharing" to "force" will provide for additional query throughput and a larger number of potential users. Except for this setting, together with making full use of available memory, out of the box performance for the OLAP Perf workload should provide results similar to what is reported here. For a given number of query users with zero think time, the main measured metrics are the average query response time, the median query response time, and the query throughput. A derived metric is the maximum number of users the system can support achieving the measured response time assuming some non-zero think time. The calculation of the maximum number of users follows from the well-known response-time law N = (rt + tt) * tp where rt is the average response time, tt is the think time and tp is the measured throughput. Setting tt to 60 seconds, rt to 0.85 seconds and tp to 119.44 queries/sec (430,000 queries/hour), the above formula shows that the T4-4 server will support 7,300 concurrent users with a think time of 60 seconds and an average response time of 0.85 seconds. For more information see chapter 3 from the book "Quantitative System Performance" cited below. -- See Also Quantitative System Performance Computer System Analysis Using Queueing Network Models Edward D. Lazowska, John Zahorjan, G. Scott Graham, Kenneth C. Sevcik external local Oracle Database 11g – Oracle OLAP oracle.com OTN SPARC T4-4 Server oracle.com OTN Oracle Solaris oracle.com OTN Oracle Database 11g Release 2 oracle.com OTN Disclosure Statement Copyright 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 11/2/2012.

    Read the article

  • Solving Big Problems with Oracle R Enterprise, Part II

    - by dbayard
    Part II – Solving Big Problems with Oracle R Enterprise In the first post in this series (see https://blogs.oracle.com/R/entry/solving_big_problems_with_oracle), we showed how you can use R to perform historical rate of return calculations against investment data sourced from a spreadsheet.  We demonstrated the calculations against sample data for a small set of accounts.  While this worked fine, in the real-world the problem is much bigger because the amount of data is much bigger.  So much bigger that our approach in the previous post won’t scale to meet the real-world needs. From our previous post, here are the challenges we need to conquer: The actual data that needs to be used lives in a database, not in a spreadsheet The actual data is much, much bigger- too big to fit into the normal R memory space and too big to want to move across the network The overall process needs to run fast- much faster than a single processor The actual data needs to be kept secured- another reason to not want to move it from the database and across the network And the process of calculating the IRR needs to be integrated together with other database ETL activities, so that IRR’s can be calculated as part of the data warehouse refresh processes In this post, we will show how we moved from sample data environment to working with full-scale data.  This post is based on actual work we did for a financial services customer during a recent proof-of-concept. Getting started with the Database At this point, we have some sample data and our IRR function.  We were at a similar point in our customer proof-of-concept exercise- we had sample data but we did not have the full customer data yet.  So our database was empty.  But, this was easily rectified by leveraging the transparency features of Oracle R Enterprise (see https://blogs.oracle.com/R/entry/analyzing_big_data_using_the).  The following code shows how we took our sample data SimpleMWRRData and easily turned it into a new Oracle database table called IRR_DATA via ore.create().  The code also shows how we can access the database table IRR_DATA as if it was a normal R data.frame named IRR_DATA. If we go to sql*plus, we can also check out our new IRR_DATA table: At this point, we now have our sample data loaded in the database as a normal Oracle table called IRR_DATA.  So, we now proceeded to test our R function working with database data. As our first test, we retrieved the data from a single account from the IRR_DATA table, pull it into local R memory, then call our IRR function.  This worked.  No SQL coding required! Going from Crawling to Walking Now that we have shown using our R code with database-resident data for a single account, we wanted to experiment with doing this for multiple accounts.  In other words, we wanted to implement the split-apply-combine technique we discussed in our first post in this series.  Fortunately, Oracle R Enterprise provides a very scalable way to do this with a function called ore.groupApply().  You can read more about ore.groupApply() here: https://blogs.oracle.com/R/entry/analyzing_big_data_using_the1 Here is an example of how we ask ORE to take our IRR_DATA table in the database, split it by the ACCOUNT column, apply a function that calls our SimpleMWRR() calculation, and then combine the results. (If you are following along at home, be sure to have installed our myIRR package on your database server via  “R CMD INSTALL myIRR”). The interesting thing about ore.groupApply is that the calculation is not actually performed in my desktop R environment from which I am running.  What actually happens is that ore.groupApply uses the Oracle database to perform the work.  And the Oracle database is what actually splits the IRR_DATA table by ACCOUNT.  Then the Oracle database takes the data for each account and sends it to an embedded R engine running on the database server to apply our R function.  Then the Oracle database combines all the individual results from the calls to the R function. This is significant because now the embedded R engine only needs to deal with the data for a single account at a time.  Regardless of whether we have 20 accounts or 1 million accounts or more, the R engine that performs the calculation does not care.  Given that normal R has a finite amount of memory to hold data, the ore.groupApply approach overcomes the R memory scalability problem since we only need to fit the data from a single account in R memory (not all of the data for all of the accounts). Additionally, the IRR_DATA does not need to be sent from the database to my desktop R program.  Even though I am invoking ore.groupApply from my desktop R program, because the actual SimpleMWRR calculation is run by the embedded R engine on the database server, the IRR_DATA does not need to leave the database server- this is both a performance benefit because network transmission of large amounts of data take time and a security benefit because it is harder to protect private data once you start shipping around your intranet. Another benefit, which we will discuss in a few paragraphs, is the ability to leverage Oracle database parallelism to run these calculations for dozens of accounts at once. From Walking to Running ore.groupApply is rather nice, but it still has the drawback that I run this from a desktop R instance.  This is not ideal for integrating into typical operational processes like nightly data warehouse refreshes or monthly statement generation.  But, this is not an issue for ORE.  Oracle R Enterprise lets us run this from the database using regular SQL, which is easily integrated into standard operations.  That is extremely exciting and the way we actually did these calculations in the customer proof. As part of Oracle R Enterprise, it provides a SQL equivalent to ore.groupApply which it refers to as “rqGroupEval”.  To use rqGroupEval via SQL, there is a bit of simple setup needed.  Basically, the Oracle Database needs to know the structure of the input table and the grouping column, which we are able to define using the database’s pipeline table function mechanisms. Here is the setup script: At this point, our initial setup of rqGroupEval is done for the IRR_DATA table.  The next step is to define our R function to the database.  We do that via a call to ORE’s rqScriptCreate. Now we can test it.  The SQL you use to run rqGroupEval uses the Oracle database pipeline table function syntax.  The first argument to irr_dataGroupEval is a cursor defining our input.  You can add additional where clauses and subqueries to this cursor as appropriate.  The second argument is any additional inputs to the R function.  The third argument is the text of a dummy select statement.  The dummy select statement is used by the database to identify the columns and datatypes to expect the R function to return.  The fourth argument is the column of the input table to split/group by.  The final argument is the name of the R function as you defined it when you called rqScriptCreate(). The Real-World Results In our real customer proof-of-concept, we had more sophisticated calculation requirements than shown in this simplified blog example.  For instance, we had to perform the rate of return calculations for 5 separate time periods, so the R code was enhanced to do so.  In addition, some accounts needed a time-weighted rate of return to be calculated, so we extended our approach and added an R function to do that.  And finally, there were also a few more real-world data irregularities that we needed to account for, so we added logic to our R functions to deal with those exceptions.  For the full-scale customer test, we loaded the customer data onto a Half-Rack Exadata X2-2 Database Machine.  As our half-rack had 48 physical cores (and 96 threads if you consider hyperthreading), we wanted to take advantage of that CPU horsepower to speed up our calculations.  To do so with ORE, it is as simple as leveraging the Oracle Database Parallel Query features.  Let’s look at the SQL used in the customer proof: Notice that we use a parallel hint on the cursor that is the input to our rqGroupEval function.  That is all we need to do to enable Oracle to use parallel R engines. Here are a few screenshots of what this SQL looked like in the Real-Time SQL Monitor when we ran this during the proof of concept (hint: you might need to right-click on these images to be able to view the images full-screen to see the entire image): From the above, you can notice a few things (numbers 1 thru 5 below correspond with highlighted numbers on the images above.  You may need to right click on the above images and view the images full-screen to see the entire image): The SQL completed in 110 seconds (1.8minutes) We calculated rate of returns for 5 time periods for each of 911k accounts (the number of actual rows returned by the IRRSTAGEGROUPEVAL operation) We accessed 103m rows of detailed cash flow/market value data (the number of actual rows returned by the IRR_STAGE2 operation) We ran with 72 degrees of parallelism spread across 4 database servers Most of our 110seconds was spent in the “External Procedure call” event On average, we performed 8,200 executions of our R function per second (110s/911k accounts) On average, each execution was passed 110 rows of data (103m detail rows/911k accounts) On average, we did 41,000 single time period rate of return calculations per second (each of the 8,200 executions of our R function did rate of return calculations for 5 time periods) On average, we processed over 900,000 rows of database data in R per second (103m detail rows/110s) R + Oracle R Enterprise: Best of R + Best of Oracle Database This blog post series started by describing a real customer problem: how to perform a lot of calculations on a lot of data in a short period of time.  While standard R proved to be a very good fit for writing the necessary calculations, the challenge of working with a lot of data in a short period of time remained. This blog post series showed how Oracle R Enterprise enables R to be used in conjunction with the Oracle Database to overcome the data volume and performance issues (as well as simplifying the operations and security issues).  It also showed that we could calculate 5 time periods of rate of returns for almost a million individual accounts in less than 2 minutes. In a future post, we will take the same R function and show how Oracle R Connector for Hadoop can be used in the Hadoop world.  In that next post, instead of having our data in an Oracle database, our data will live in Hadoop and we will how to use the Oracle R Connector for Hadoop and other Oracle Big Data Connectors to move data between Hadoop, R, and the Oracle Database easily.

    Read the article

  • Mobile Apps for Oracle E-Business Suite

    - by Steven Chan (Oracle Development)
    Many things have changed in the mobile space over the last few years. Here's an update on our strategy for mobile apps for the E-Business Suite. Mobile app strategy We're building our family of mobile apps for the E-Business Suite using Oracle Mobile Application Framework.  This framework allows us to write a single application that can be run on Apple iOS and Google Android platforms. Mobile apps for the E-Business Suite will share a common look-and-feel. The E-Business Suite is a suite of over 200 product modules spanning Financials, Supply Chain, Human Resources, and many other areas. Our mobile app strategy is to release standalone apps for specific product modules.  Our Oracle Timecards app, which allows users to create and submit timecards, is an example of a standalone app. Some common functions that span multiple product areas will have dedicated apps, too. An example of this is our Oracle Approvals app, which allows users to review and approve requests for expenses, requisitions, purchase orders, recruitment vacancies and offers, and more. You can read more about our Oracle Mobile Approvals app here: Now Available: Oracle Mobile Approvals for iOS Our goal is to support smaller screen (e.g. smartphones) as well as larger screens (e.g. tablets), with the smaller screen versions generally delivered first.  Where possible, we will deliver these as universal apps.  An example is our Oracle Mobile Field Service app, which allows field service technicians to remotely access customer, product, service request, and task-related information.  This app can run on a smartphone, while providing a richer experience for tablets. Deploying EBS mobile apps The mobile apps, themselves (i.e. client-side components) can be downloaded by end-users from the Apple iTunes today.  Android versions will be available from Google play. You can monitor this blog for Android-related updates. Where possible, our mobile apps should be deployable with a minimum of server-side changes.  These changes will generally involve a consolidated server-side patch for technology-stack components, and possibly a server-side patch for the functional product module. Updates to existing mobile apps may require new server-side components to enable all of the latest mobile functionality. All EBS product modules are certified for internal intranet deployments (i.e. used by employees within an organization's firewall).  Only a subset of EBS products such as iRecruitment are certified to be deployed externally (i.e. used by non-employees outside of an organization's firewall).  Today, many organizations running the E-Business Suite do not expose their EBS environment externally and all of the mobile apps that we're building are intended for internal employee use.  Recognizing this, our mobile apps are currently designed for users who are connected to the organization's intranet via VPN.  We expect that this may change in future updates to our mobile apps. Mobile apps and internationalization The initial releases of our mobile apps will be in English.  Later updates will include translations for all left-to-right languages supported by the E-Business Suite.  Right-to-left languages will not be translated. Customizing apps for enterprise deployments The current generation of mobile apps for Oracle E-Business Suite cannot be customized. We are evaluating options for limited customizations, including corporate branding with logos, corporate color schemes, and others. This is a potentially-complex area with many tricky implications for deployment and maintenance.  We would be interested in hearing your requirements for customizations in enterprise deployments.Prerequisites Apple iOS 7 and higher Android 4.1 (API level 16) and higher, with minimum CPU/memory configurations listed here EBS 12.1: EBS 12.1.3 Family Packs for the related product module EBS 12.2.3 References Oracle E-Business Suite Mobile Apps, Release 12.1 and 12.2 Documentation (Note 1641772.1) Oracle E-Business Suite Mobile Apps Administrator's Guide, Release 12.1 and 12.2 (Note 1642431.1) Related Articles Using Mobile Devices with Oracle E-Business Suite Apple iPads Certified with Oracle E-Business Suite 12.1 Now Available: Oracle Mobile Approvals for iOS The preceding is intended to outline our general product direction.  It is intended for information purposes only, and may not be incorporated into any contract.   It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decision.  The development, release, and timing of any features or functionality described for Oracle’s products remains at the sole discretion of Oracle.

    Read the article

  • Maximize Performance and Availability with Oracle Data Integration

    - by Tanu Sood
    Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif"; mso-fareast-font-family:Calibri; mso-bidi-font-family:"Times New Roman";} Alert: Oracle is hosting the 12c Launch Webcast for Oracle Data Integration and Oracle Golden Gate on Tuesday, November 12 (tomorrow) to discuss the new capabilities in detail and share customer perspectives. Hear directly from customer experts and executives from SolarWorld Industries America, British Telecom and Rittman Mead and get your questions answered live by product experts. Register for this complimentary webcast today and join in the discussion tomorrow. Author: Irem Radzik, Senior Principal Product Director, Oracle Organizations that want to use IT as a strategic point of differentiation prefer Oracle’s complete application offering to drive better business performance and optimize their IT investments. These enterprise applications are in the center of business operations and they contain critical data that needs to be accessed continuously, as well as analyzed and acted upon in a timely manner. These systems also need to operate with high-performance and availability, which means analytical functions should not degrade applications performance, and even system maintenance and upgrades should not interrupt availability. Oracle’s data integration products, Oracle Data Integrator, Oracle GoldenGate, and Oracle Enterprise Data Quality, provide the core foundation for bringing data from various business-critical systems to gain a broader, unified view. As a more advance offering to 3rd party products, Oracle’s data integration products facilitate real-time reporting for Oracle Applications without impacting application performance, and provide ability to upgrade and maintain the system without taking downtime. Oracle GoldenGate is certified for Oracle Applications, including E-Business Suite, Siebel CRM, PeopleSoft, and JD Edwards, for moving transactional data in real-time to a dedicated operational reporting environment. This solution allows the app users to offload the resource-heavy queries to the reporting instance(s), reducing CPU utilization, improving OLTP performance, and extending the lifetime of existing IT assets. In addition, having a dedicated reporting instance with up-to-the-second transactional data allows optimizing the reporting environment and even decreasing costs as GoldenGate can move only the required data from expensive mainframe environments to cost-efficient open system platforms.  With real-time data replication capabilities GoldenGate is also certified to enable application upgrades and database/hardware/OS migration without impacting business operations. GoldenGate is certified for Siebel CRM, Communications Billing and Revenue Management and JD Edwards for supporting zero downtime upgrades to the latest app version. GoldenGate synchronizes a parallel, upgraded system with the old version in real time, thus enables continuous operations during the process. Oracle GoldenGate is also certified for minimal downtime database migrations for Oracle E-Business Suite and other key applications. GoldenGate’s solution also minimizes the risk by offering a failback option after the switchover to the new environment. Furthermore, Oracle GoldenGate’s bidirectional active-active data replication is certified for Oracle ATG Web Commerce to enable geographically load balancing and high availability for ATG customers. For enabling better business insight, Oracle Data Integration products power Oracle BI Applications with high performance bulk and real-time data integration. Oracle Data Integrator (ODI) is embedded in Oracle BI Applications version 11.1.1.7.1 and helps to integrate data end-to-end across the full BI Applications architecture, supporting capabilities such as data-lineage, which helps business users identify report-to-source capabilities. ODI is integrated with Oracle GoldenGate and provides Oracle BI Applications customers the option to use real-time transactional data in analytics, and do so non-intrusively. By using Oracle GoldenGate with the latest release of Oracle BI Applications, organizations not only leverage fresh data in analytics, but also eliminate the need for an ETL batch window and minimize the impact on OLTP systems. You can learn more about Oracle Data Integration products latest 12c version in our upcoming launch webcast and access the app-specific free resources in the new Data Integration for Oracle Applications Resource Center.

    Read the article

  • JNI 'problmatic frame' causes JVM to crash

    - by HJED
    Hi I'm using JNI to access the exiv2 library (written in C++) in Java and I'm getting a weird runtime error in the JNI code. I've tried using various -Xms and -Xmx options, but that seems to have no affect. I've also tried running this code on JDK1.7.0 with the same result. # A fatal error has been detected by the Java Runtime Environment: # # SIGSEGV (0xb) at pc=0x00007ff31807757f, pid=4041, tid=140682078746368 # # JRE version: 6.0_20-b20 # Java VM: OpenJDK 64-Bit Server VM (19.0-b09 mixed mode linux-amd64 ) # Derivative: IcedTea6 1.9.2 # Distribution: Ubuntu 10.10, package 6b20-1.9.2-0ubuntu2 # Problematic frame: # V [libjvm.so+0x42757f] # # If you would like to submit a bug report, please include # instructions how to reproduce the bug and visit: # https://bugs.launchpad.net/ubuntu/+source/openjdk-6/ # --------------- T H R E A D --------------- Current thread (0x000000000190d000): JavaThread "main" [_thread_in_Java, id=4043, stack(0x00007ff319447000,0x00007ff319548000)] siginfo:si_signo=SIGSEGV: si_errno=0, si_code=1 (SEGV_MAPERR), si_addr=0x0000000000000024 Registers: ... Register to memory mapping: RAX=0x0000000000000002 0x0000000000000002 is pointing to unknown location RBX=0x000000000190db90 0x000000000190db90 is pointing to unknown location RCX=0x0000000000000000 0x0000000000000000 is pointing to unknown location RDX=0x00007ff3195463f8 0x00007ff3195463f8 is pointing into the stack for thread: 0x000000000190d000 "main" prio=10 tid=0x000000000190d000 nid=0xfcb runnable [0x0000000000000000] java.lang.Thread.State: RUNNABLE RSP=0x00007ff319546270 0x00007ff319546270 is pointing into the stack for thread: 0x000000000190d000 "main" prio=10 tid=0x000000000190d000 nid=0xfcb runnable [0x0000000000000000] java.lang.Thread.State: RUNNABLE RBP=0x00007ff319546270 0x00007ff319546270 is pointing into the stack for thread: 0x000000000190d000 "main" prio=10 tid=0x000000000190d000 nid=0xfcb runnable [0x0000000000000000] java.lang.Thread.State: RUNNABLE RSI=0x0000000000000024 0x0000000000000024 is pointing to unknown location RDI=0x00007ff3195463e0 0x00007ff3195463e0 is pointing into the stack for thread: 0x000000000190d000 "main" prio=10 tid=0x000000000190d000 nid=0xfcb runnable [0x0000000000000000] java.lang.Thread.State: RUNNABLE R8 =0x000000000190d000 "main" prio=10 tid=0x000000000190d000 nid=0xfcb runnable [0x0000000000000000] java.lang.Thread.State: RUNNABLE R9 =0x000000000190db88 0x000000000190db88 is pointing to unknown location R10=0x00007ff319546300 0x00007ff319546300 is pointing into the stack for thread: 0x000000000190d000 "main" prio=10 tid=0x000000000190d000 nid=0xfcb runnable [0x0000000000000000] java.lang.Thread.State: RUNNABLE R11=0x0000000000000002 0x0000000000000002 is pointing to unknown location R12=0x000000000190d000 "main" prio=10 tid=0x000000000190d000 nid=0xfcb runnable [0x0000000000000000] java.lang.Thread.State: RUNNABLE R13=0x00007ff319546560 0x00007ff319546560 is pointing into the stack for thread: 0x000000000190d000 "main" prio=10 tid=0x000000000190d000 nid=0xfcb runnable [0x0000000000000000] java.lang.Thread.State: RUNNABLE R14=0x00007ff3195463e0 0x00007ff3195463e0 is pointing into the stack for thread: 0x000000000190d000 "main" prio=10 tid=0x000000000190d000 nid=0xfcb runnable [0x0000000000000000] java.lang.Thread.State: RUNNABLE R15=0x0000000000000003 0x0000000000000003 is pointing to unknown location Top of Stack: (sp=0x00007ff319546270) ... Instructions: (pc=0x00007ff31807757f) 0x00007ff31807756f: e2 03 48 03 57 58 31 c9 48 8b 32 48 85 f6 74 03 0x00007ff31807757f: 48 8b 0e 48 89 0a 8b 77 68 83 c0 01 39 f0 7c d1 Stack: [0x00007ff319447000,0x00007ff319548000], sp=0x00007ff319546270, free space=1020k Native frames: (J=compiled Java code, j=interpreted, Vv=VM code, C=native code) V [libjvm.so+0x42757f] V [libjvm.so+0x42866b] V [libjvm.so+0x4275c8] V [libjvm.so+0x4331bd] V [libjvm.so+0x44e5c7] C [libExiff2-binding.so+0x1f16] _ZN7JNIEnv_15CallVoidMethodAEP8_jobjectP10_jmethodIDPK6jvalue+0x40 C [libExiff2-binding.so+0x1b96] _Z8loadIPTCSt8auto_ptrIN5Exiv25ImageEEPKcP7JNIEnv_P8_jobject+0x2ba C [libExiff2-binding.so+0x1d3f] _Z7getVarsPKcP7JNIEnv_P8_jobject+0x176 C [libExiff2-binding.so+0x1de7] Java_photo_exiv2_Exiv2MetaDataStore_impl_1loadFromExiv+0x4b j photo.exiv2.Exiv2MetaDataStore.impl_loadFromExiv(Ljava/lang/String;Lphoto/exiv2/Exiv2MetaDataStore;)V+0 j photo.exiv2.Exiv2MetaDataStore.loadFromExiv2()V+9 j photo.exiv2.Exiv2MetaDataStore.loadData()V+1 j photo.exiv2.Exiv2MetaDataStore.<init>(Lphoto/ImageFile;)V+10 j test.Main.main([Ljava/lang/String;)V+76 v ~StubRoutines::call_stub V [libjvm.so+0x428698] V [libjvm.so+0x4275c8] V [libjvm.so+0x432943] V [libjvm.so+0x447f91] C [java+0x3495] JavaMain+0xd75 --------------- P R O C E S S --------------- Java Threads: ( => current thread ) 0x00007ff2c4027800 JavaThread "Low Memory Detector" daemon [_thread_blocked, id=4060, stack(0x00007ff2c9052000,0x00007ff2c9153000)] 0x00007ff2c4025000 JavaThread "CompilerThread1" daemon [_thread_blocked, id=4059, stack(0x00007ff2c9153000,0x00007ff2c9254000)] 0x00007ff2c4022000 JavaThread "CompilerThread0" daemon [_thread_blocked, id=4058, stack(0x00007ff2c9254000,0x00007ff2c9355000)] 0x00007ff2c401f800 JavaThread "Signal Dispatcher" daemon [_thread_blocked, id=4057, stack(0x00007ff2c9355000,0x00007ff2c9456000)] 0x00007ff2c4001000 JavaThread "Finalizer" daemon [_thread_blocked, id=4056, stack(0x00007ff2c994d000,0x00007ff2c9a4e000)] 0x0000000001984000 JavaThread "Reference Handler" daemon [_thread_blocked, id=4055, stack(0x00007ff2c9a4e000,0x00007ff2c9b4f000)] =>0x000000000190d000 JavaThread "main" [_thread_in_Java, id=4043, stack(0x00007ff319447000,0x00007ff319548000)] Other Threads: 0x000000000197d800 VMThread [stack: 0x00007ff2c9b4f000,0x00007ff2c9c50000] [id=4054] 0x00007ff2c4032000 WatcherThread [stack: 0x00007ff2c8f51000,0x00007ff2c9052000] [id=4061] VM state:not at safepoint (normal execution) VM Mutex/Monitor currently owned by a thread: None Heap PSYoungGen total 18432K, used 316K [0x00007ff2fed30000, 0x00007ff3001c0000, 0x00007ff313730000) eden space 15808K, 2% used [0x00007ff2fed30000,0x00007ff2fed7f0b8,0x00007ff2ffca0000) from space 2624K, 0% used [0x00007ff2fff30000,0x00007ff2fff30000,0x00007ff3001c0000) to space 2624K, 0% used [0x00007ff2ffca0000,0x00007ff2ffca0000,0x00007ff2fff30000) PSOldGen total 42240K, used 0K [0x00007ff2d5930000, 0x00007ff2d8270000, 0x00007ff2fed30000) object space 42240K, 0% used [0x00007ff2d5930000,0x00007ff2d5930000,0x00007ff2d8270000) PSPermGen total 21248K, used 2827K [0x00007ff2cb330000, 0x00007ff2cc7f0000, 0x00007ff2d5930000) object space 21248K, 13% used [0x00007ff2cb330000,0x00007ff2cb5f2f60,0x00007ff2cc7f0000) Dynamic libraries: 00400000-00409000 r-xp 00000000 08:03 141899 /usr/lib/jvm/java-6-openjdk/jre/bin/java 00608000-00609000 r--p 00008000 08:03 141899 /usr/lib/jvm/java-6-openjdk/jre/bin/java 00609000-0060a000 rw-p 00009000 08:03 141899 /usr/lib/jvm/java-6-openjdk/jre/bin/java 01904000-019ad000 rw-p 00000000 00:00 0 [heap] ... 7ff2c820c000-7ff2c8232000 r-xp 00000000 08:03 917704 /lib/libexpat.so.1.5.2 7ff2c8232000-7ff2c8432000 ---p 00026000 08:03 917704 /lib/libexpat.so.1.5.2 7ff2c8432000-7ff2c8434000 r--p 00026000 08:03 917704 /lib/libexpat.so.1.5.2 7ff2c8434000-7ff2c8435000 rw-p 00028000 08:03 917704 /lib/libexpat.so.1.5.2 7ff2c8435000-7ff2c844a000 r-xp 00000000 08:03 917708 /lib/libgcc_s.so.1 7ff2c844a000-7ff2c8649000 ---p 00015000 08:03 917708 /lib/libgcc_s.so.1 7ff2c8649000-7ff2c864a000 r--p 00014000 08:03 917708 /lib/libgcc_s.so.1 7ff2c864a000-7ff2c864b000 rw-p 00015000 08:03 917708 /lib/libgcc_s.so.1 7ff2c864b000-7ff2c8733000 r-xp 00000000 08:03 134995 /usr/lib/libstdc++.so.6.0.14 7ff2c8733000-7ff2c8932000 ---p 000e8000 08:03 134995 /usr/lib/libstdc++.so.6.0.14 7ff2c8932000-7ff2c893a000 r--p 000e7000 08:03 134995 /usr/lib/libstdc++.so.6.0.14 7ff2c893a000-7ff2c893c000 rw-p 000ef000 08:03 134995 /usr/lib/libstdc++.so.6.0.14 7ff2c893c000-7ff2c8951000 rw-p 00000000 00:00 0 7ff2c8951000-7ff2c8af3000 r-xp 00000000 08:03 134599 /usr/lib/libexiv2.so.6.0.0 7ff2c8af3000-7ff2c8cf2000 ---p 001a2000 08:03 134599 /usr/lib/libexiv2.so.6.0.0 7ff2c8cf2000-7ff2c8d0f000 r--p 001a1000 08:03 134599 /usr/lib/libexiv2.so.6.0.0 7ff2c8d0f000-7ff2c8d10000 rw-p 001be000 08:03 134599 /usr/lib/libexiv2.so.6.0.0 7ff2c8d10000-7ff2c8d23000 rw-p 00000000 00:00 0 7ff2c8d42000-7ff2c8d45000 r-xp 00000000 08:03 800718 /home/hjed/libExiff2-binding.so 7ff2c8d45000-7ff2c8f44000 ---p 00003000 08:03 800718 /home/hjed/libExiff2-binding.so 7ff2c8f44000-7ff2c8f45000 r--p 00002000 08:03 800718 /home/hjed/libExiff2-binding.so 7ff2c8f45000-7ff2c8f46000 rw-p 00003000 08:03 800718 /home/hjed/libExiff2-binding.so 7ff2c8f46000-7ff2c8f49000 r--s 0000f000 08:03 141333 /usr/lib/jvm/java-6-openjdk/jre/lib/ext/pulse-java.jar 7ff2c8f49000-7ff2c8f51000 r--s 00066000 08:03 408472 /usr/share/java/gnome-java-bridge.jar ... 7ff2ca559000-7ff2ca55b000 r--s 0001d000 08:03 141354 /usr/lib/jvm/java-6-openjdk/jre/lib/plugin.jar 7ff2ca55b000-7ff2ca560000 r--s 00044000 08:03 141353 /usr/lib/jvm/java-6-openjdk/jre/lib/netx.jar 7ff2ca560000-7ff2ca592000 rw-p 00000000 00:00 0 7ff2ca592000-7ff2ca720000 r--s 038af000 08:03 141833 /usr/lib/jvm/java-6-openjdk/jre/lib/rt.jar ... 7ff31673b000-7ff316742000 r-xp 00000000 08:03 141867 /usr/lib/jvm/java-6-openjdk/jre/lib/amd64/libzip.so 7ff316742000-7ff316941000 ---p 00007000 08:03 141867 /usr/lib/jvm/java-6-openjdk/jre/lib/amd64/libzip.so 7ff316941000-7ff316942000 r--p 00006000 08:03 141867 /usr/lib/jvm/java-6-openjdk/jre/lib/amd64/libzip.so 7ff316942000-7ff316943000 rw-p 00007000 08:03 141867 /usr/lib/jvm/java-6-openjdk/jre/lib/amd64/libzip.so 7ff316943000-7ff31694f000 r-xp 00000000 08:03 921396 /lib/libnss_files-2.12.1.so 7ff31694f000-7ff316b4e000 ---p 0000c000 08:03 921396 /lib/libnss_files-2.12.1.so 7ff316b4e000-7ff316b4f000 r--p 0000b000 08:03 921396 /lib/libnss_files-2.12.1.so 7ff316b4f000-7ff316b50000 rw-p 0000c000 08:03 921396 /lib/libnss_files-2.12.1.so 7ff316b50000-7ff316b5a000 r-xp 00000000 08:03 921398 /lib/libnss_nis-2.12.1.so 7ff316b5a000-7ff316d59000 ---p 0000a000 08:03 921398 /lib/libnss_nis-2.12.1.so 7ff316d59000-7ff316d5a000 r--p 00009000 08:03 921398 /lib/libnss_nis-2.12.1.so 7ff316d5a000-7ff316d5b000 rw-p 0000a000 08:03 921398 /lib/libnss_nis-2.12.1.so 7ff316d5b000-7ff316d63000 r-xp 00000000 08:03 921393 /lib/libnss_compat-2.12.1.so 7ff316d63000-7ff316f62000 ---p 00008000 08:03 921393 /lib/libnss_compat-2.12.1.so 7ff316f62000-7ff316f63000 r--p 00007000 08:03 921393 /lib/libnss_compat-2.12.1.so 7ff316f63000-7ff316f64000 rw-p 00008000 08:03 921393 /lib/libnss_compat-2.12.1.so 7ff316f64000-7ff316f6c000 r-xp 00000000 08:03 141869 /usr/lib/jvm/java-6-openjdk/jre/lib/amd64/native_threads/libhpi.so 7ff316f6c000-7ff31716b000 ---p 00008000 08:03 141869 /usr/lib/jvm/java-6-openjdk/jre/lib/amd64/native_threads/libhpi.so 7ff31716b000-7ff31716c000 r--p 00007000 08:03 141869 /usr/lib/jvm/java-6-openjdk/jre/lib/amd64/native_threads/libhpi.so 7ff31716c000-7ff31716d000 rw-p 00008000 08:03 141869 /usr/lib/jvm/java-6-openjdk/jre/lib/amd64/native_threads/libhpi.so 7ff31716d000-7ff317184000 r-xp 00000000 08:03 921392 /lib/libnsl-2.12.1.so 7ff317184000-7ff317383000 ---p 00017000 08:03 921392 /lib/libnsl-2.12.1.so 7ff317383000-7ff317384000 r--p 00016000 08:03 921392 /lib/libnsl-2.12.1.so 7ff317384000-7ff317385000 rw-p 00017000 08:03 921392 /lib/libnsl-2.12.1.so 7ff317385000-7ff317387000 rw-p 00000000 00:00 0 7ff317387000-7ff3173b2000 r-xp 00000000 08:03 141850 /usr/lib/jvm/java-6-openjdk/jre/lib/amd64/libjava.so 7ff3173b2000-7ff3175b1000 ---p 0002b000 08:03 141850 /usr/lib/jvm/java-6-openjdk/jre/lib/amd64/libjava.so 7ff3175b1000-7ff3175b2000 r--p 0002a000 08:03 141850 /usr/lib/jvm/java-6-openjdk/jre/lib/amd64/libjava.so 7ff3175b2000-7ff3175b5000 rw-p 0002b000 08:03 141850 /usr/lib/jvm/java-6-openjdk/jre/lib/amd64/libjava.so 7ff3175b5000-7ff3175c3000 r-xp 00000000 08:03 141866 /usr/lib/jvm/java-6-openjdk/jre/lib/amd64/libverify.so 7ff3175c3000-7ff3177c2000 ---p 0000e000 08:03 141866 /usr/lib/jvm/java-6-openjdk/jre/lib/amd64/libverify.so 7ff3177c2000-7ff3177c4000 r--p 0000d000 08:03 141866 /usr/lib/jvm/java-6-openjdk/jre/lib/amd64/libverify.so 7ff3177c4000-7ff3177c5000 rw-p 0000f000 08:03 141866 /usr/lib/jvm/java-6-openjdk/jre/lib/amd64/libverify.so 7ff3177c5000-7ff3177cc000 r-xp 00000000 08:03 921405 /lib/librt-2.12.1.so 7ff3177cc000-7ff3179cb000 ---p 00007000 08:03 921405 /lib/librt-2.12.1.so 7ff3179cb000-7ff3179cc000 r--p 00006000 08:03 921405 /lib/librt-2.12.1.so 7ff3179cc000-7ff3179cd000 rw-p 00007000 08:03 921405 /lib/librt-2.12.1.so 7ff3179cd000-7ff317a4f000 r-xp 00000000 08:03 921390 /lib/libm-2.12.1.so 7ff317a4f000-7ff317c4e000 ---p 00082000 08:03 921390 /lib/libm-2.12.1.so 7ff317c4e000-7ff317c4f000 r--p 00081000 08:03 921390 /lib/libm-2.12.1.so 7ff317c4f000-7ff317c50000 rw-p 00082000 08:03 921390 /lib/libm-2.12.1.so 7ff317c50000-7ff3184c4000 r-xp 00000000 08:03 141871 /usr/lib/jvm/java-6-openjdk/jre/lib/amd64/server/libjvm.so 7ff3184c4000-7ff3186c3000 ---p 00874000 08:03 141871 /usr/lib/jvm/java-6-openjdk/jre/lib/amd64/server/libjvm.so 7ff3186c3000-7ff318739000 r--p 00873000 08:03 141871 /usr/lib/jvm/java-6-openjdk/jre/lib/amd64/server/libjvm.so 7ff318739000-7ff318754000 rw-p 008e9000 08:03 141871 /usr/lib/jvm/java-6-openjdk/jre/lib/amd64/server/libjvm.so 7ff318754000-7ff31878d000 rw-p 00000000 00:00 0 7ff31878d000-7ff318907000 r-xp 00000000 08:03 921385 /lib/libc-2.12.1.so 7ff318907000-7ff318b06000 ---p 0017a000 08:03 921385 /lib/libc-2.12.1.so 7ff318b06000-7ff318b0a000 r--p 00179000 08:03 921385 /lib/libc-2.12.1.so 7ff318b0a000-7ff318b0b000 rw-p 0017d000 08:03 921385 /lib/libc-2.12.1.so 7ff318b0b000-7ff318b10000 rw-p 00000000 00:00 0 7ff318b10000-7ff318b12000 r-xp 00000000 08:03 921388 /lib/libdl-2.12.1.so 7ff318b12000-7ff318d12000 ---p 00002000 08:03 921388 /lib/libdl-2.12.1.so 7ff318d12000-7ff318d13000 r--p 00002000 08:03 921388 /lib/libdl-2.12.1.so 7ff318d13000-7ff318d14000 rw-p 00003000 08:03 921388 /lib/libdl-2.12.1.so 7ff318d14000-7ff318d18000 r-xp 00000000 08:03 141838 /usr/lib/jvm/java-6-openjdk/jre/lib/amd64/jli/libjli.so 7ff318d18000-7ff318f17000 ---p 00004000 08:03 141838 /usr/lib/jvm/java-6-openjdk/jre/lib/amd64/jli/libjli.so 7ff318f17000-7ff318f18000 r--p 00003000 08:03 141838 /usr/lib/jvm/java-6-openjdk/jre/lib/amd64/jli/libjli.so 7ff318f18000-7ff318f19000 rw-p 00004000 08:03 141838 /usr/lib/jvm/java-6-openjdk/jre/lib/amd64/jli/libjli.so 7ff318f19000-7ff318f31000 r-xp 00000000 08:03 921401 /lib/libpthread-2.12.1.so 7ff318f31000-7ff319130000 ---p 00018000 08:03 921401 /lib/libpthread-2.12.1.so 7ff319130000-7ff319131000 r--p 00017000 08:03 921401 /lib/libpthread-2.12.1.so 7ff319131000-7ff319132000 rw-p 00018000 08:03 921401 /lib/libpthread-2.12.1.so 7ff319132000-7ff319136000 rw-p 00000000 00:00 0 7ff319136000-7ff31914c000 r-xp 00000000 08:03 917772 /lib/libz.so.1.2.3.4 7ff31914c000-7ff31934c000 ---p 00016000 08:03 917772 /lib/libz.so.1.2.3.4 7ff31934c000-7ff31934d000 r--p 00016000 08:03 917772 /lib/libz.so.1.2.3.4 7ff31934d000-7ff31934e000 rw-p 00017000 08:03 917772 /lib/libz.so.1.2.3.4 7ff31934e000-7ff31936e000 r-xp 00000000 08:03 921379 /lib/ld-2.12.1.so 7ff319387000-7ff319391000 rw-p 00000000 00:00 0 7ff319391000-7ff319447000 rw-p 00000000 00:00 0 7ff319447000-7ff31944a000 ---p 00000000 00:00 0 7ff31944a000-7ff31954d000 rw-p 00000000 00:00 0 7ff319562000-7ff31956a000 rw-s 00000000 08:03 1966453 /tmp/hsperfdata_hjed/4041 7ff31956a000-7ff31956b000 rw-p 00000000 00:00 0 7ff31956b000-7ff31956c000 r--p 00000000 00:00 0 7ff31956c000-7ff31956e000 rw-p 00000000 00:00 0 7ff31956e000-7ff31956f000 r--p 00020000 08:03 921379 /lib/ld-2.12.1.so 7ff31956f000-7ff319570000 rw-p 00021000 08:03 921379 /lib/ld-2.12.1.so 7ff319570000-7ff319571000 rw-p 00000000 00:00 0 7fff0fb03000-7fff0fb24000 rw-p 00000000 00:00 0 [stack] 7fff0fbff000-7fff0fc00000 r-xp 00000000 00:00 0 [vdso] ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00 0 [vsyscall] VM Arguments: jvm_args: -Dfile.encoding=UTF-8 java_command: test.Main Launcher Type: SUN_STANDARD Environment Variables: PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games USERNAME=hjed LD_LIBRARY_PATH=/usr/lib/jvm/java-6-openjdk/jre/lib/amd64/server:/usr/lib/jvm/java-6-openjdk/jre/lib/amd64:/usr/lib/jvm/java-6-openjdk/jre/../lib/amd64 SHELL=/bin/bash DISPLAY=:0.0 Signal Handlers: SIGSEGV: [libjvm.so+0x712700], sa_mask[0]=0x7ffbfeff, sa_flags=0x10000004 SIGBUS: [libjvm.so+0x712700], sa_mask[0]=0x7ffbfeff, sa_flags=0x10000004 SIGFPE: [libjvm.so+0x5d4020], sa_mask[0]=0x7ffbfeff, sa_flags=0x10000004 SIGPIPE: [libjvm.so+0x5d4020], sa_mask[0]=0x7ffbfeff, sa_flags=0x10000004 SIGXFSZ: [libjvm.so+0x5d4020], sa_mask[0]=0x7ffbfeff, sa_flags=0x10000004 SIGILL: [libjvm.so+0x5d4020], sa_mask[0]=0x7ffbfeff, sa_flags=0x10000004 SIGUSR1: SIG_DFL, sa_mask[0]=0x00000000, sa_flags=0x00000000 SIGUSR2: [libjvm.so+0x5d3730], sa_mask[0]=0x00000004, sa_flags=0x10000004 SIGHUP: [libjvm.so+0x5d61a0], sa_mask[0]=0x7ffbfeff, sa_flags=0x10000004 SIGINT: SIG_IGN, sa_mask[0]=0x00000000, sa_flags=0x00000000 SIGTERM: [libjvm.so+0x5d61a0], sa_mask[0]=0x7ffbfeff, sa_flags=0x10000004 SIGQUIT: [libjvm.so+0x5d61a0], sa_mask[0]=0x7ffbfeff, sa_flags=0x10000004 --------------- S Y S T E M --------------- OS:Ubuntu 10.10 (maverick) uname:Linux 2.6.35-24-generic #42-Ubuntu SMP Thu Dec 2 02:41:37 UTC 2010 x86_64 libc:glibc 2.12.1 NPTL 2.12.1 rlimit: STACK 8192k, CORE 0k, NPROC infinity, NOFILE 1024, AS infinity load average:0.25 0.16 0.21 /proc/meminfo: MemTotal: 4048200 kB MemFree: 1230476 kB Buffers: 589572 kB Cached: 911132 kB SwapCached: 0 kB Active: 1321712 kB Inactive: 1202272 kB Active(anon): 1023852 kB Inactive(anon): 7168 kB Active(file): 297860 kB Inactive(file): 1195104 kB Unevictable: 64 kB Mlocked: 64 kB SwapTotal: 7065596 kB SwapFree: 7065596 kB Dirty: 632 kB Writeback: 0 kB AnonPages: 1023368 kB Mapped: 145832 kB Shmem: 7728 kB Slab: 111136 kB SReclaimable: 66316 kB SUnreclaim: 44820 kB KernelStack: 3824 kB PageTables: 27736 kB NFS_Unstable: 0 kB Bounce: 0 kB WritebackTmp: 0 kB CommitLimit: 9089696 kB Committed_AS: 2378396 kB VmallocTotal: 34359738367 kB VmallocUsed: 332928 kB VmallocChunk: 34359397884 kB HardwareCorrupted: 0 kB HugePages_Total: 0 HugePages_Free: 0 HugePages_Rsvd: 0 HugePages_Surp: 0 Hugepagesize: 2048 kB DirectMap4k: 67136 kB DirectMap2M: 4118528 kB CPU:total 8 (4 cores per cpu, 2 threads per core) family 6 model 26 stepping 5, cmov, cx8, fxsr, mmx, sse, sse2, sse3, ssse3, sse4.1, sse4.2, popcnt, ht Memory: 4k page, physical 4048200k(1230476k free), swap 7065596k(7065596k free) vm_info: OpenJDK 64-Bit Server VM (19.0-b09) for linux-amd64 JRE (1.6.0_20-b20), built on Dec 10 2010 19:45:55 by "buildd" with gcc 4.4.5 time: Sat Jan 1 14:12:27 2011 elapsed time: 0 seconds The java code is: ... public class Main { public static void main(String[] args) { ... ImageFile img = new ImageFile(System.getProperty("user.home") + "/PC100001.JPG"); Exiv2MetaDataStore e = new Exiv2MetaDataStore(img); Iterator<Entry<String, String>> i = e.entrySet().iterator(); while (i.hasNext()) { Entry<String, String> entry = i.next(); System.out.println(entry.getKey() + ":" + entry.getValue()); } //if you switch this print statment with the while loop you get the same error. // System.out.print(e.toString()); } } and /** NB: MetaDataStore is an abstract class that extends HashMap<String,String> */ public class Exiv2MetaDataStore extends MetaDataStore{ ... private final ImageFile F; /** * Creates an meta data store from an ImageFile using Exiv2 * this calls loadData(); * @param f */ public Exiv2MetaDataStore(ImageFile f) { F = f; loadData(); } ... @Override protected void loadData() { loadFromExiv2(); } ... private void loadFromExiv2() { impl_loadFromExiv(F.getAbsolutePath(), this); } private native void impl_loadFromExiv(String path, Exiv2MetaDataStore str); //this method called by the C++ code public void exiv2_reciveElement(String key, String value) { super.put(key,value); } static { Runtime.getRuntime().load("/home/hjed/libExiff2-binding.so"); } } C++ code: #include <exif.hpp> #include <image.hpp> #include <iptc.hpp> #include <exiv2/exiv2.hpp> #include <exiv2/error.hpp> #include <iostream> #include <iomanip> #include <cassert> void loadIPTC(Exiv2::Image::AutoPtr image, const char * path, JNIEnv * env, jobject obj) { Exiv2::IptcData &iptcData = image->iptcData(); //load method jclass cls = env->GetObjectClass(obj); jmethodID mid = env->GetMethodID(cls, "exiv2_reciveElement", "(Ljava/lang/String;Ljava/lang/String;)V"); //is there any IPTC data AND check that method exists if (iptcData.empty() | (mid == NULL)) { std::string error(path); error += ": failed loading IPTC data, there may not be any data"; } else { Exiv2::IptcData::iterator end = iptcData.end(); for (Exiv2::IptcData::iterator md = iptcData.begin(); md != end; ++md) { jvalue values[2]; const char* key = md->key().c_str(); values[0].l = env->NewStringUTF(key); md->value().toString().c_str(); const char* value = md->typeName(); values[2].l = env->NewStringUTF(value); //If I replace the code for values[2] with the commented out code I get the same error. //const char* type = md->typeName(); //values[2].l = env->NewStringUTF(type); env->CallVoidMethodA(obj, mid, values); } } } void getVars(const char* path, JNIEnv * env, jobject obj) { //Load image Exiv2::Image::AutoPtr image = Exiv2::ImageFactory::open(path); assert(image.get() != 0); image->readMetadata(); //Load IPTC data loadIPTC(image, path, env, obj); } JNIEXPORT void JNICALL Java_photo_exiv2_Exiv2MetaDataStore_impl_1loadFromExiv(JNIEnv * env, jobject obj, jstring path, jobject obj2) { const char* path2 = env->GetStringUTFChars(path, NULL); getVars(path2, env, obj); env->ReleaseStringUTFChars(path, path2); } I've searched for a fix for this, but I can't find one. I don't have much experience using C++ so if I've made an obvious mistake in the C code I apologies. Thanks for any help, HJED P.S. This is my first post on this site and I wasn't sure how much of the code I needed to show. Sorry if I've put to much up.

    Read the article

  • JavaOne 2012 Sunday Strategy Keynote

    - by Janice J. Heiss
    At the Sunday Strategy Keynote, held at the Masonic Auditorium, Hasan Rizvi, EVP, Middleware and Java Development, stated that the theme for this year's JavaOne is: “Make the future Java”-- meaning that Java continues in its role as the most popular, complete, productive, secure, and innovative development platform. But it also means, he qualified, the process by which we make the future Java -- an open, transparent, collaborative, and community-driven evolution. "Many of you have bet your businesses and your careers on Java, and we have bet our business on Java," he said.Rizvi detailed the three factors they consider critical to the success of Java--technology innovation, community participation, and Oracle's leadership/stewardship. He offered a scorecard in these three realms over the past year--with OS X and Linux ARM support on Java SE, open sourcing of JavaFX by the end of the year, the release of Java Embedded Suite 7.0 middleware platform, and multiple releases on the Java EE side. The JCP process continues, with new JSR activity, and JUGs show a 25% increase in participation since last year. Oracle, meanwhile, continues its commitment to both technology and community development/outreach--with four regional JavaOne conferences last year in various part of the world, as well as the release of Java Magazine, with over 120,000 current subscribers. Georges Saab, VP Development, Java SE, next reviewed features of Java SE 7--the first major revision to the platform under Oracle's stewardship, which has included near-monthly update releases offering hundreds of fixes, performance enhancements, and new features. Saab indicated that developers, ISVs, and hosting providers have all been rapid adopters of the platform. He also noted that Oracle's entire Fusion middleware stack is supported on SE 7. The supported platforms for SE 7 has also increased--from Windows, Linux, and Solaris, to OS X, Linux ARM, and the emerging ARM micro-server market. "In the last year, we've added as many new platforms for Java, as were added in the previous decade," said Saab.Saab also explored the upcoming JDK 8 release--including Project Lambda, Project Nashorn (a modern implementation of JavaScript running on the JVM), and others. He noted that Nashorn functionality had already been used internally in NetBeans 7.3, and announced that they were planning to contribute the implementation to OpenJDK. Nandini Ramani, VP Development, Java Client, ME and Card, discussed the latest news pertaining to JavaFX 2.0--releases on Windows, OS X, and Linux, release of the FX Scene Builder tool, the JavaFX WebView component in NetBeans 7.3, and an OpenJFX project in OpenJDK. Nandini announced, as of Sunday, the availability for download of JavaFX on Linux ARM (developer preview), as well as Scene Builder on Linux. She noted that for next year's JDK 8 release, JavaFX will offer 3D, as well as third-party component integration. Avinder Brar, Senior Software Engineer, Navis, and Dierk König, Canoo Fellow, next took the stage and demonstrated all that JavaFX offers, with a feature-rich, animation-rich, real-time cargo management application that employs Canoo's just open-sourced Dolphin technology.Saab also explored Java SE 9 and beyond--Jigsaw modularity, Penrose Project for interoperability with OSGi, improved multi-tenancy for Java in the cloud, and Project Sumatra. Phil Rogers, HSA Foundation President and AMD Corporate Fellow, explored heterogeneous computing platforms that combine the CPU and the parallel processor of the GPU into a single piece of silicon and shared memory—a hardware technology driven by such advanced functionalities as HD video, face recognition, and cloud workloads. Project Sumatra is an OpenJDK project targeted at bringing Java to such heterogeneous platforms--with hardware and software experts working together to modify the JVM for these advanced applications and platforms.Ramani next discussed the latest with Java in the embedded space--"the Internet of things" and M2M--declaring this to be "the next IT revolution," with Java as the ideal technology for the ecosystem. Last week, Oracle released Java ME Embedded 3.2 (for micro-contollers and low-power devices), and Java Embedded Suite 7.0 (a middleware stack based on Java SE 7). Axel Hansmann, VP Strategy and Marketing, Cinterion, explored his company's use of Java in M2M, and their new release of EHS5, the world's smallest 3G-capable M2M module, running Java ME Embedded. Hansmaan explained that Java offers them the ability to create a "simple to use, scalable, coherent, end-to-end layer" for such diverse edge devices.Marc Brule, Chief Financial Office, Royal Canadian Mint, also explored the fascinating use-case of JavaCard in his country's MintChip e-cash technology--deployable on smartphones, USB device, computer, tablet, or cloud. In parting, Ramani encouraged developers to download the latest releases of Java Embedded, and try them out.Cameron Purdy, VP, Fusion Middleware Development and Java EE, summarized the latest developments and announcements in the Enterprise space--greater developer productivity in Java EE6 (with more on the way in EE 7), portability between platforms, vendors, and even cloud-to-cloud portability. The earliest version of the Java EE 7 SDK is now available for download--in GlassFish 4--with WebSocket support, better JSON support, and more. The final release is scheduled for April of 2013. Nicole Otto, Senior Director, Consumer Digital Technology, Nike, explored her company's Java technology driven enterprise ecosystem for all things sports, including the NikeFuel accelerometer wrist band. Looking beyond Java EE 7, Purdy mentioned NoSQL database functionality for EE 8, the concurrency utilities (possibly in EE 7), some of the Avatar projects in EE 7, some in EE 8, multi-tenancy for the cloud, supporting SaaS applications, and more.Rizvi ended by introducing Dr. Robert Ballard, oceanographer and National Geographic Explorer in Residence--part of Oracle's philanthropic relationship with the National Geographic Society to fund K-12 education around ocean science and conservation. Ballard is best known for having discovered the wreckage of the Titanic. He offered a fascinating video and overview of the cutting edge technology used in such deep-sea explorations, noting that in his early days, high-bandwidth exploration meant that you’d go down in a submarine and "stick your face up against the window." Now, it's a remotely operated, technology telepresence--"I think of my Hercules vehicle as my equivalent of a Na'vi. When I go beneath the sea, I actually send my spirit." Using high bandwidth satellite links, such amazing explorations can now occur via smartphone, laptop, or whatever platform. Ballard’s team regularly offers live feeds and programming out to schools and the world, spanning 188 countries--with embedding educators as part of the expeditions. It's technology at its finest, inspiring the next-generation of scientists and explorers!

    Read the article

  • Mobile Apps for Oracle E-Business Suite

    - by Carlos Chang
    Crosspost from the mobile apps blog.  TL;DR Oracle E-Business Suite is now building mobile apps with Oracle Mobile Application Framework (MAF). Believe it! Build iOS and Android apps with once code base and get it done! By Steven Chan (Oracle Development)  Many things have changed in the mobile space over the last few years. Here's an update on our strategy for mobile apps for the E-Business Suite. Mobile app strategy We're building our family of mobile apps for the E-Business Suite using Oracle Mobile Application Framework.  This framework allows us to write a single application that can be run on Apple iOS and Google Android platforms. Mobile apps for the E-Business Suite will share a common look-and-feel. The E-Business Suite is a suite of over 200 product modules spanning Financials, Supply Chain, Human Resources, and many other areas. Our mobile app strategy is to release standalone apps for specific product modules.  Our Oracle Timecards app, which allows users to create and submit timecards, is an example of a standalone app. Some common functions that span multiple product areas will have dedicated apps, too. An example of this is ourOracle Approvals app, which allows users to review and approve requests for expenses, requisitions, purchase orders, recruitment vacancies and offers, and more. You can read more about our Oracle Mobile Approvals app here: Now Available: Oracle Mobile Approvals for iOS Our goal is to support smaller screen (e.g. smartphones) as well as larger screens (e.g. tablets), with the smaller screen versions generally delivered first.  Where possible, we will deliver these as universal apps.  An example is our Oracle Mobile Field Service app, which allows field service technicians to remotely access customer, product, service request, and task-related information.  This app can run on a smartphone, while providing a richer experience for tablets. Deploying EBS mobile apps The mobile apps, themselves (i.e. client-side components) can be downloaded by end-users from the Apple iTunes today.  Android versions will be available from Google play. You can monitor this blog for Android-related updates. Where possible, our mobile apps should be deployable with a minimum of server-side changes.  These changes will generally involve a consolidated server-side patch for technology-stack components, and possibly a server-side patch for the functional product module. Updates to existing mobile apps may require new server-side components to enable all of the latest mobile functionality. All EBS product modules are certified for internal intranet deployments (i.e. used by employees within an organization's firewall).  Only a subset of EBS products such as iRecruitment are certified to be deployed externally (i.e. used by non-employees outside of an organization's firewall).  Today, many organizations running the E-Business Suite do not expose their EBS environment externally and all of the mobile apps that we're building are intended for internal employee use.  Recognizing this, our mobile apps are currently designed for users who are connected to the organization's intranet via VPN.  We expect that this may change in future updates to our mobile apps. Mobile apps and internationalization The initial releases of our mobile apps will be in English.  Later updates will include translations for all left-to-right languages supported by the E-Business Suite.  Right-to-left languages will not be translated. Customizing apps for enterprise deployments The current generation of mobile apps for Oracle E-Business Suite cannot be customized. We are evaluating options for limited customizations, including corporate branding with logos, corporate color schemes, and others. This is a potentially-complex area with many tricky implications for deployment and maintenance.  We would be interested in hearing your requirements for customizations in enterprise deployments.Prerequisites Apple iOS 7 and higher Android 4.1 (API level 16) and higher, with minimum CPU/memory configurations listed here EBS 12.1: EBS 12.1.3 Family Packs for the related product module EBS 12.2.3 References Oracle E-Business Suite Mobile Apps, Release 12.1 and 12.2 Documentation (Note 1641772.1) Oracle E-Business Suite Mobile Apps Administrator's Guide, Release 12.1 and 12.2 (Note 1642431.1) Follow @OracleMobile on Twitter Oracle Mobile Blog is here. 

    Read the article

  • XNA: Huge Tile Map, long load times

    - by Zach
    Recently I built a tile map generator for a game project. What I am very proud of is that I finally got it to the point where I can have a GIANT 2D map build perfectly on my PC. About 120000pixels by 40000 pixels. I can go larger actually, but I have only 1 draw back. #1 ram, the map currently draws about 320MB of ram and I know the Xbox allows 512MB I think? #2 It takes 20 mins for the map to build then display on the Xbox, on my PC it take less then a few seconds. I need to bring that 20 minutes of generating from 20 mins to how ever little bit I can, and how can a lower the amount of RAM usage while still being able to generate my map. Right now everything is stored in Jagged Arrays, each piece generating in a size of 1280x720 (the mother piece). Up to the amount that I need, every block is exactly 40x40 pixels however the blocks get removed from a List or regenerated in a List depending how close the mother piece is to the player. Saving A LOT of CPU, so at all times its no more then looping through 5184 some blocks. Well at least I'm sure of this. But how can I lower my RAM usage without hurting the size of the map, and how can I lower these INSANE loading times? EDIT: Let me explain my self better. Also I'd like to let everyone know now that I'm inexperienced with many of these things. So here is an example of the arrays I'm using. Here is the overall in a shorter term: int[][] array = new int[30][]; array[0] = new int[] { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 }; array[1] = new int[] { 1, 3, 3, 3, 3, 1, 0, 0, 0, 0, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 }; that goes on for around 30 arrays downward. Now for every time it hits a 1, it goes and generates a tile map 1280x720 and it does that exactly the way it does it above. This is how I loop through those arrays: for (int i = 0; i < array.Length; i += 1) { for (int h = 0; h < array[i].Length; h += 1) { } { Now how the tiles are drawn and removed is something like this: public void Draw(SpriteBatch spriteBatch, Vector2 cam) { if (cam.X >= this.Position.X - 1280) { if (cam.X <= this.Position.X + 2560) { if (cam.Y >= this.Position.Y - 720) { if (cam.Y <= this.Position.Y + 1440) { if (visible) { if (once == 0) { once = 1; visible = false; regen(); } } for (int i = Tiles.Count - 1; i >= 0; i--) { Tiles[i].Draw(spriteBatch, cam); } for (int i = unWalkTiles.Count - 1; i >= 0; i--) { unWalkTiles[i].Draw(spriteBatch, cam); } } else { once = 0; for (int i = Tiles.Count - 1; i >= 0; i--) { Tiles.RemoveAt(i); } for (int i = unWalkTiles.Count - 1; i >= 0; i--) { unWalkTiles.RemoveAt(i); } } } else { once = 0; for (int i = Tiles.Count - 1; i >= 0; i--) { Tiles.RemoveAt(i); } for (int i = unWalkTiles.Count - 1; i >= 0; i--) { unWalkTiles.RemoveAt(i); } } } else { once = 0; for (int i = Tiles.Count - 1; i >= 0; i--) { Tiles.RemoveAt(i); } for (int i = unWalkTiles.Count - 1; i >= 0; i--) { unWalkTiles.RemoveAt(i); } } } else { once = 0; for (int i = Tiles.Count - 1; i >= 0; i--) { Tiles.RemoveAt(i); } for (int i = unWalkTiles.Count - 1; i >= 0; i--) { unWalkTiles.RemoveAt(i); } } } } If you guys still need more information just ask in the comments.

    Read the article

  • Session Report - Java on the Raspberry Pi

    - by Janice J. Heiss
    On mid-day Wednesday, the always colorful Oracle Evangelist Simon Ritter demonstrated Java on the Raspberry Pi at his session, “Do You Like Coffee with Your Dessert?”. The Raspberry Pi consists of a credit card-sized single-board computer developed in the UK with the intention of stimulating the teaching of basic computer science in schools. “I don't think there is a single feature that makes the Raspberry Pi significant,” observed Ritter, “but a combination of things really makes it stand out. First, it's $35 for what is effectively a completely usable computer. You do have to add a power supply, SD card for storage and maybe a screen, keyboard and mouse, but this is still way cheaper than a typical PC. The choice of an ARM (Advanced RISC Machine and Acorn RISC Machine) processor is noteworthy, because it avoids problems like cooling (no heat sink or fan) and can use a USB power brick. When you add in the enormous community support, it offers a great platform for teaching everyone about computing.”Some 200 enthusiastic attendees were present at the session which had the feel of Simon Ritter sharing a fun toy with friends. The main point of the session was to show what Oracle was doing to support Java on the Raspberry Pi in a way that is entertaining and fun. Ritter pointed out that, in addition to being great for teaching, it’s an excellent introduction to the ARM architecture, and runs well with Java and will get better once it has official hard float support. The possibilities are vast.Ritter explained that the Raspberry Pi Project started in 2006 with the goal of devising a computer to inspire children; it drew inspiration from the BBC Micro literacy project of 1981 that produced a series of microcomputers created by the Acorn Computer company. It was officially launched on February 29, 2012, with a first production of 10,000 boards. There were 100,000 pre-orders in one day; currently about 4,000 boards are produced a day. Ritter described the specification as follows:* CPU: ARM 11 core running at 700MHz Broadcom SoC package Can now be overclocked to 1GHz (without breaking the warranty!) * Memory: 256Mb* I/O: HDMI and composite video 2 x USB ports (Model B only) Ethernet (Model B only) Header pins for GPIO, UART, SPI and I2C He took attendees through a brief history of ARM Architecture:* Acorn BBC Micro (6502 based) Not powerful enough for Acorn’s plans for a business computer * Berkeley RISC Project UNIX kernel only used 30% of instruction set of Motorola 68000 More registers, less instructions (Register windows) One chip architecture to come from this was… SPARC * Acorn RISC Machine (ARM) 32-bit data, 26-bit address space, 27 registers First machine was Acorn Archimedes * Spin off from Acorn, Advanced RISC MachinesNext he presented its features:* 32-bit RISC Architecture–  ARM accounts for 75% of embedded 32-bit CPUs today– 6.1 Billion chips sold last year (zero manufactured by ARM)* Abstract architecture and microprocessor core designs– Raspberry Pi is ARM11 using ARMv6 instruction set* Low power consumption– Good for mobile devices– Raspberry Pi can be powered from 700mA 5V only PSU– Raspberry Pi does not require heatsink or fanHe described the current ARM Technology:* ARMv6– ARM 11, ARM Cortex-M* ARMv7– ARM Cortex-A, ARM Cortex-M, ARM Cortex-R* ARMv8 (Announced)– Will support 64-bit data and addressingHe next gave the Java Specifics for ARM: Floating point operations* Despite being an ARMv6 processor it does include an FPU– FPU only became standard as of ARMv7* FPU (Hard Float, or HF) is much faster than a software library* Linux distros and Oracle JVM for ARM assume no HF on ARMv6– Need special build of both– Raspbian distro build now available– Oracle JVM is in the works, release date TBDNot So RISCPerformance Improvements* DSP Enhancements* Jazelle* Thumb / Thumb2 / ThumbEE* Floating Point (VFP)* NEON* Security Enhancements (TrustZone)He spent a few minutes going over the challenges of using Java on the Raspberry Pi and covered:* Sound* Vision * Serial (TTL UART)* USB* GPIOTo implement sound with Java he pointed out:* Sound drivers are now included in new distros* Java Sound API– Remember to add audio to user’s groups– Some bits work, others not so much* Playing (the right format) WAV file works* Using MIDI hangs trying to open a synthesizer* FreeTTS text-to-speech– Should work once sound works properlyHe turned to JavaFX on the Raspberry Pi:* Currently internal builds only– Will be released as technology preview soon* Work involves optimal implementation of Prism graphics engine– X11?* Once the JavaFX implementation is completed there will be little of concern to developers-- It’s just Java (WORA). He explained the basis of the Serial Port:* UART provides TTL level signals (3.3V)* RS-232 uses 12V signals* Use MAX3232 chip to convert* Use this for access to serial consoleHe summarized his key points. The Raspberry Pi is a very cool (and cheap) computer that is great for teaching, a great introduction to ARM that works very well with Java and will work better in the future. The opportunities are limitless. For further info, check out, Raspberry Pi User Guide by Eben Upton and Gareth Halfacree. From there, Ritter tried out several fun demos, some of which worked better than others, but all of which were greeted with considerable enthusiasm and support and good humor (even when he ran into some glitches).  All in all, this was a fun and lively session.

    Read the article

  • Windows for IoT, continued

    - by Valter Minute
    Originally posted on: http://geekswithblogs.net/WindowsEmbeddedCookbook/archive/2014/08/05/windows-for-iot-continued.aspxI received many interesting feedbacks on my previous blog post and I tried to find some time to do some additional tests. Bert Kleinschmidt pointed out that pins 2,3 and 10 of the Galileo are connected directly to the SOC, while pin 13, the one used for the sample sketch is controlled via an I2C I/O expander. I changed my code to use pin 2 instead of 13 (just changing the variable assignment at the beginning of the code) and latency was greatly reduced. Now each pulse lasts for 1.44ms, 44% more than the expected time, but ways better that the result we got using pin 13. I also used SetThreadPriority to increase the priority of the thread that was running the sketch to THREAD_PRIORITY_HIGHEST but that didn't change the results. When I was using the I2C-controlled pin I tried the same and the timings got ways worse (increasing more than 10 times) and so I did not commented on that part, wanting to investigate the issua a bit more in detail. It seems that increasing the priority of the application thread impacts negatively the I2C communication. I tried to use also the Linux-based implementation (using a different Galileo board since the one provided by MS seems to use a different firmware) and the results of running the sample blink sketch modified to use pin 2 and blink the led for 1ms are similar to those we got on the same board running Windows. Here the difference between expected time and measured time is worse, getting around 3.2ms instead of 1 (320% compared to 150% using Windows but far from the 100.1% we got with the 8-bit Arduino). Both systems were not under load during the test, maybe loading some applications that use part of the CPU time would make those timings even less reliable, but I think that those numbers are enough to draw some conclusions. It may not be worth running a full OS if what you need is Arduino compatibility. The Arduino UNO is probably the best Arduino you can find to perform this kind of development. The Galileo running the Linux-based stack or running Windows for IoT is targeted to be a platform for "Internet of Things" devices, whatever that means. At the moment I don't see the "I" part of IoT. We have low level interfaces (SPI, I2C, the GPIO pins) that can be used to connect sensors but the support for connectivity is limited and the amount of work required to deliver some data to the cloud (using a secure HTTP request or a message queuing system like APMQS or MQTT) is still big and the rich OS underneath seems to not provide any help doing that.Why should I use sockets and can't access all the high level connectivity features we have on "full" Windows?I know that it's possible to use some third party libraries, try to build them using the Windows For IoT SDK etc. but this means re-inventing the wheel every time and can also lead to some IP concerns if used for products meant to be closed-source. I hope that MS and Intel (and others) will focus less on the "coolness" of running (some) Arduino sketches and more on providing a better platform to people that really want to design devices that leverage internet connectivity and the cloud processing power to deliver better products and services. Providing a reliable set of connectivity services would be a great start. Providing support for .NET would be even better, leaving native code available for hardware access etc. I know that those components may require additional storage and memory etc. So making the OS componentizable (or, at least, provide a way to install additional components) would be a great way to let developers pick the parts of the system they need to develop their solution, knowing that they will integrate well together. I can understand that the Arduino and Raspberry Pi* success may have attracted the attention of marketing departments worldwide and almost any new development board those days is promoted as "XXX response to Arduino" or "YYYY alternative to Raspberry Pi", but this is misleading and prevents companies from focusing on how to deliver good products and how to integrate "IoT" features with their existing offer to provide, at the end, a better product or service to their customers. Marketing is important, but can't decide the key features of a product (the OS) that is going to be used to develop full products for end customers integrating it with hardware and application software. I really like the "hackable" nature of open-source devices and like to see that companies are getting more and more open in releasing information, providing "hackable" devices and supporting developers with documentation, good samples etc. On the other side being able to run a sketch designed for an 8 bit microcontroller on a full-featured application processor may sound cool and an easy upgrade path for people that just experimented with sensors etc. on Arduino but it's not, in my humble opinion, the main path to follow for people who want to deliver real products.   *Shameless self-promotion: if you are looking for a good book in Italian about the Raspberry Pi , try mine: http://www.amazon.it/Raspberry-Pi-alluso-Digital-LifeStyle-ebook/dp/B00GYY3OKO

    Read the article

  • SQLIO Writes

    - by Grant Fritchey
    SQLIO is a fantastic utility for testing the abilities of the disks in your system. It has a very unfortunate name though, since it's not really a SQL Server testing utility at all. It really is a disk utility. They ought to call it DiskIO because they'd get more people using I think. Anyway, branding is not the point of this blog post. Writes are the point of this blog post. SQLIO works by slamming your disk. It performs as mean reads as it can or it performs as many writes as it can depending on how you've configured your tests. There are much smarter people than me who will get into all the various types of tests you should run. I'd suggest reading a bit of what Jonathan Kehayias (blog|twitter) has to say or wade into Denny Cherry's (blog|twitter) work. They're going to do a better job than I can describing all the benefits and mechanisms around using this excellent piece of software. My concerns are very focused. I needed to set up a series of tests to see how well our product SQL Storage Compress worked. I wanted to know the effects it would have on a system, the disk for sure, but also memory and CPU. How to stress the system? SQLIO of course. But when I set it up and ran it, following the documentation that comes with it, I was seeing better than 99% compression on the files. Don't get me wrong. Our product is magnificent, wonderful, all things great and beautiful, gets you coffee in the morning and is made mostly from bacon. But 99% compression. No, it's not that good. So what's up? Well, it's the configuration. The default mechanism is to load up a file, something large that will overwhelm your disk cache. You're instructed to load the file with a character 0x0. I never got a computer science degree. I went to film school. Because of this, I didn't memorize ASCII tables so when I saw this, I thought it was zero's or something. Nope. It's NULL. That's right, you're making a very large file, but you're filling it with NULL values. That's actually ok when all you're testing is the disk sub-system. But, when you want to test a compression and decompression, that can be an issue. I got around this fairly quickly. Instead of generating a file filled with NULL values, I just copied a database file for my tests. And to test it with SQL Storage Compress, I used a database file that had already been run through compression (about 40% compression on that file if you're interested). Now the reads were taken care of. I am seeing very realistic performance from decompressing the information for reads through SQLIO. But what about writes? Well, the issue is, what does SQLIO write? I don't have access to the code. But I do have access to the results. I did two different tests, just to be sure of what I was seeing. First test, use the .DAT file as described in the documentation. I opened the .DAT file after I was done with SQLIO, using WordPad. Guess what? It's a giant file full of air. SQLIO writes NULL values. What does that do to compression? I did the test again on a copy of an uncompressed database file. Then I ran the original and the SQLIO modified copy through ZIP to see what happened. I got better than 99% compression out of the SQLIO modified file (original file of 624,896kb went to 275,871kb compressed, after SQLIO it went to 608kb compressed). So, what does SQLIO write? It writes air. If you're trying to test it with compression or maybe some other type of file storage mechanism like dedupe, you need to know this because your tests really won't be valid. Should I find some other mechanism for testing? Yeah, if all I'm interested in is establishing performance to my own satisfaction, yes. But, I want to be able to compare my results with other people's results and we all need to be using the same tool in order for that to happen. SQLIO is the common mechanism that most people I know use to establish disk performance behavior. It'd be better if we could get SQLIO to do writes in some other fashion. Oh, and before I go, I get to brag a bit. Measuring IOPS, SQL Storage Compress outperforms my disk alone by about 30%.

    Read the article

  • Soft lockup after upgrade - cannot install from live CD

    - by nbm
    I dual-boot MacIntel Core 2 duo. nVidia graphics. Ran upgrade from ubuntu 13.10 to 14.04 (64 bit). On restart ran into {numbers} Bug: soft lockup - CPU#0 stuck for 22s! [swapper/0:1] Tried loading earlier kernel: same problem Tried re-installing ubuntu from a liveCD that has worked in the past: version 13.04. Same problem. Tried re-partitioning hard drive using Mac OS X disk utility and then installing ubuntu 14.04LTS from liveCD. Same problem. Not possible to verify liveCD disk (creates same "soft lockup" bug.) Tried installing from the liveCD with version 13.04 that I know works (that's how I got Ubuntu on this machine in the first place.) Same problem. I know this is not a hardware problem as OS X works just fine, I am using it right now on the same machine. I have been using various versions of Ubuntu for 2 years. Things I cannot do: Open a terminal Verify CD image Start ubuntu from CD (same soft lockup problem) This problem is similar to some other questions, none of which have been satisfactorily answered: Ubuntu 14.04 soft lockup on Vostro 3500 Cannot do fresh install of Ubuntu 13.04 while booting from DVD: "soft lockup" bug Live CD stalls when installing Ubuntu 13.10 UPDATE 6/11/14: Following some much-appreciated advice from bain (see below) I burned a 12.04LTS disk and started with kernel parameters: noapic, no1apic, acpi=off, nomodeset, elevator=deadline, and clocksource=jiffies. With all of these parameters I was able to load the 12.04LTS CD ("Try without installing"). It worked fine. However, as soon as I tried to install Ubuntu from the CD, my wired ethernet (eth0) connection would hang. There are already various askubuntu questions and bug reports about this problem, none of which had answers for me. (E.g., dhclient eth0 does nothing, none of the various reset commands does anything, manually setting IP &etc does nothing. I could reliably kill the ethernet connection by clicking "install ubuntu" every single time.) I could go ahead and install 12.04 without an internet connection, but the install would freeze after mostly completing (I tried several times.) There were some relevant error messages in the details of the install output script that, IIRC, had to do with searching for missing files and not being able to access eth0 (internet) to get them. To be honest I gave up at that point and I'm not sure I wrote those down. If I find some notes I will post them. At this point I no longer have Ubuntu on my system. I wiped the partitions and am using exclusively OS X. I am leaving this question in case it helps anyone else with similar problems. I love open source and I love Linux, and the next machine I get I will probably just build from Arch. At the moment I miss repositories and a lot of other things about Ubuntu, but the OS X terminal is 'nix, I can pretty much use all the open source apps I like, and while I am not a fan of the Apple software it gets the job done for me. Unlike Ubuntu, which can't even install. I realize this isn't necessarily a place for a soapbox speech, but when I first installed 12.04 several years ago there were already people in the community complaining that Canonical was going too "commercial". But I loved it. Several years later and all I've seen is Canonical adding more not-so-useful bells and whistles to Ubuntu while continually failing to fix basic problems on upgrades. With a dual-boot (and sometimes triple-boot) system it always took me some tweaking to get an upgrade to work, and to some extent that is okay. But at this point I feel like Canonical ought to just put a price tag on Ubuntu. All I see is more commercialism and advertising and product tie-ins, and ongoing problems do not get fixed. I am a big fan of open-source, not-for profit enterprise. I am also a big fan of for-profit enterprise, which certainly has its place and usefulness. I am not a fan of companies who pretend to be in favor of open source but really are just out to make a buck, and IMNSHO that is what Canonical has become. This is a great community and I wish you all the best, but my next install of Linux will not be Ubuntu.

    Read the article

  • Understanding the 'High Performance' meaning in Extreme Transaction Processing

    - by kyap
    Despite my previous blogs entries on SOA/BPM and Identity Management, the domain where I'm the most passionated is definitely the Extreme Transaction Processing, commonly called XTP.I came across XTP back to 2007 while I was still FMW Product Manager in EMEA. At that time Oracle acquired a company called Tangosol, which owned an unique product called Coherence that we renamed to Oracle Coherence. Beside this innovative renaming of the product, to be honest, I didn't know much about it, except being a "distributed in-memory cache for Extreme Transaction Processing"... not very helpful still.In general when people doesn't fully understand a technology or a concept, they tend to find some shortcuts, either correct or not, to justify their lack-of understanding... and of course I was part of this category of individuals. And the shortcut was "Oracle Coherence Cache helps to improve Performance". Excellent marketing slogan... but not very meaningful still. By chance I was able to get away quickly from that group in July 2007* at Thames Valley Park (UK), after I attended one of the most interesting workshops, in my 10 years career in Oracle, delivered by Brian Oliver. The biggest mistake I made was to assume that performance improvement with Coherence was related to the response time. Which can be considered as legitimus at that time, because after-all caches help to reduce latency on cached data access, hence reduce the response-time. But like all caches, you need to define caching and expiration policies, thinking about the cache-missed strategy, and most of the time you have to re-write partially your application in order to work with the cache. At a result, the expected benefit vanishes... so, not very useful then?The key mistake I made was my perception or obsession on how performance improvement should be driven, but I strongly believe this is still a common problem to most of the developers. In fact we all know the that the performance of a system is generally presented by the Capacity (or Throughput), with the 2 important dimensions Speed (response-time) and Volume (load) :Capacity (TPS) = Volume (T) / Speed (S)To increase the Capacity, we can either reduce the Speed(in terms of response-time), or to increase the Volume. However we tend to only focus on reducing the Speed dimension, perhaps it is more concrete and tangible to measure, and nicer to present to our management because there's a direct impact onto the end-users experience. On the other hand, we assume the Volume can be addressed by the underlying hardware or software stack, so if we need more capacity (scale out), we just add more hardware or software. Unfortunately, the reality proves that IT is never as ideal as we assume...The challenge with Speed improvement approach is that it is generally difficult and costly to make things already fast... faster. And by adding Coherence will not necessarily help either. Even though we manage to do so, the Capacity can not increase forever because... the Speed can be influenced by the Volume. For all system, we always have a performance illustration as follow: In all traditional system, the increase of Volume (Transaction) will also increase the Speed (Response-Time) as some point. The reason is simple: most of the time the Application logics were not designed to scale. As an example, if you have a while-loop in your application, it is natural to conceive that parsing 200 entries will require double execution-time compared to 100 entries. If you need to "Speed-up" the execution, you can only upgrade your hardware (scale-up) with faster CPU and/or network to reduce network latency. It is technically limited and economically inefficient. And this is exactly where XTP and Coherence kick in. The primary objective of XTP is about designing applications which can scale-out for increasing the Volume, by applying coding techniques to keep the execution-time as constant as possible, independently of the number of runtime data being manipulated. It is actually not just about having an application running as fast as possible, but about having a much more predictable system, with constant response-time and linearly scale, so we can easily increase throughput by adding more hardwares in parallel. It is in general combined with the Low Latency Programming model, where we tried to optimize the network usage as much as possible, either from the programmatic angle (less network-hoops to complete a task), and/or from a hardware angle (faster network equipments). In this picture, Oracle Coherence can be considered as software-level XTP enabler, via the Distributed-Cache because it can guarantee: - Constant Data Objects access time, independently from the number of Objects and the Coherence Cluster size - Data Objects Distribution by Affinity for in-memory data grouping - In-place Data Processing for parallel executionTo summarize, Oracle Coherence is indeed useful to improve your application performance, just not in the way we commonly think. It's not about the Speed itself, but about the overall Capacity with Extreme Load while keeping consistant Speed. In the future I will keep adding new blog entries around this topic, with some sample codes experiences sharing that I capture in the last few years. In the meanwhile if you want to know more how Oracle Coherence, I strongly suggest you to start with checking how our worldwide customers are using Oracle Coherence first, then you can start playing with the product through our tutorial.Have Fun !

    Read the article

  • Languages and VMs: Features that are hard to optimize and why

    - by mrjoltcola
    I'm doing a survey of features in preparation for a research project. Name a mainstream language or language feature that is hard to optimize, and why the feature is or isn't worth the price paid, or instead, just debunk my theories below with anecdotal evidence. Before anyone flags this as subjective, I am asking for specific examples of languages or features, and ideas for optimization of these features, or important features that I haven't considered. Also, any references to implementations that prove my theories right or wrong. Top on my list of hard to optimize features and my theories (some of my theories are untested and are based on thought experiments): 1) Runtime method overloading (aka multi-method dispatch or signature based dispatch). Is it hard to optimize when combined with features that allow runtime recompilation or method addition. Or is it just hard, anyway? Call site caching is a common optimization for many runtime systems, but multi-methods add additional complexity as well as making it less practical to inline methods. 2) Type morphing / variants (aka value based typing as opposed to variable based) Traditional optimizations simply cannot be applied when you don't know if the type of someting can change in a basic block. Combined with multi-methods, inlining must be done carefully if at all, and probably only for a given threshold of size of the callee. ie. it is easy to consider inlining simple property fetches (getters / setters) but inlining complex methods may result in code bloat. The other issue is I cannot just assign a variant to a register and JIT it to the native instructions because I have to carry around the type info, or every variable needs 2 registers instead of 1. On IA-32 this is inconvenient, even if improved with x64's extra registers. This is probably my favorite feature of dynamic languages, as it simplifies so many things from the programmer's perspective. 3) First class continuations - There are multiple ways to implement them, and I have done so in both of the most common approaches, one being stack copying and the other as implementing the runtime to use continuation passing style, cactus stacks, copy-on-write stack frames, and garbage collection. First class continuations have resource management issues, ie. we must save everything, in case the continuation is resumed, and I'm not aware if any languages support leaving a continuation with "intent" (ie. "I am not coming back here, so you may discard this copy of the world"). Having programmed in the threading model and the contination model, I know both can accomplish the same thing, but continuations' elegance imposes considerable complexity on the runtime and also may affect cache efficienty (locality of stack changes more with use of continuations and co-routines). The other issue is they just don't map to hardware. Optimizing continuations is optimizing for the less-common case, and as we know, the common case should be fast, and the less-common cases should be correct. 4) Pointer arithmetic and ability to mask pointers (storing in integers, etc.) Had to throw this in, but I could actually live without this quite easily. My feelings are that many of the high-level features, particularly in dynamic languages just don't map to hardware. Microprocessor implementations have billions of dollars of research behind the optimizations on the chip, yet the choice of language feature(s) may marginalize many of these features (features like caching, aliasing top of stack to register, instruction parallelism, return address buffers, loop buffers and branch prediction). Macro-applications of micro-features don't necessarily pan out like some developers like to think, and implementing many languages in a VM ends up mapping native ops into function calls (ie. the more dynamic a language is the more we must lookup/cache at runtime, nothing can be assumed, so our instruction mix is made up of a higher percentage of non-local branching than traditional, statically compiled code) and the only thing we can really JIT well is expression evaluation of non-dynamic types and operations on constant or immediate types. It is my gut feeling that bytecode virtual machines and JIT cores are perhaps not always justified for certain languages because of this. I welcome your answers.

    Read the article

  • My Feelings About Microsoft Surface

    - by Valter Minute
    Advice: read the title carefully, I’m talking about “feelings” and not about advanced technical points proved in a scientific and objective way I still haven’t had a chance to play with a MS Surface tablet (I would love to, of course) and so my ideas just came from reading different articles on the net and MS official statements. Remember also that the MVP motto begins with “Independent” (“Independent Experts. Real World Answers.”) and this is just my humble opinion about a product and a technology. I know that, being an MS MVP you can be called an “MS-fanboy”, I don’t care, I hope that people can appreciate my opinion, even if it doesn’t match theirs. The “Surface” brand can be confusing for techies that knew the “original” surface concept but I think that will be a fresh new brand name for most of the people out there. But marketing department are here to confuse people… so I can understand this “recycle” of an existing name. So Microsoft is entering the hardware arena… for me this is good news. Microsoft developed some nice hardware in the past: the xbox, zune (even if the commercial success was quite limited) and, last but not least, the two arc mices (old and new model) that I use and appreciate. In the past Microsoft worked with OEMs and that model lead to good and bad things. Good thing (for microsoft, at least) is market domination by windows-based PCs that only in the last years has been reduced by the return of the Mac and tablets. Google is also moving in the hardware business with its acquisition of Motorola, and Apple leveraged his control of both the hardware and software sides to develop innovative products. Microsoft can scare OEMs and make them fly away from windows (but where?) or just lead the pack, showing how devices should be designed to compete in the market and bring back some of the innovation that disappeared from recent PC products (look at the shelves of your favorite electronics store and try to distinguish a laptop between the huge mass of anonymous PCs on displays… only Macs shine out there…). Having to compete with MS “official” hardware will force OEMs to develop better product and bring back some real competition in a market that was ruled only by prices (the lower the better even when that means low quality) and no innovative features at all (when it was the last time that a new PC surprised you?). Moving into a new market is a big and risky move, but with Windows 8 Microsoft is playing a crucial move for its future, trying to be back in the innovation run against apple and google. MS can’t afford to fail this time. I saw the new devices (the WinRT and Pro) and the specifications are scarce, misleading and confusing. The first impression is that the device looks like an iPad with a nice keyboard cover… Using “HD” and “full HD” to define display resolution instead of using the real figures and reviving the “ClearType” brand (now dead on Win8 as reported here and missed by people who hate to read text on displays, like myself) without providing clear figures (couldn’t you count those damned pixels?) seems to imply that MS was caught by surprise by apple recent “retina” displays that brought very high definition screens on tablets.Also there are no specifications about the processors used (even if some sources report NVidia Tegra for the ARM tablet and i5 for the x86 one) and expected battery life (a critical point for tablets and the point that killed Windows7 x86 based tablets). Also nothing about the price, and this will be another critical point because other platform out there already provide lots of applications and have a good user base, if MS want to enter this market tablets pricing must be competitive. There are some expansion ports (SD and USB), so no fixed storage model (even if the specs talks about 32-64GB for RT and 128-256GB for pro). I like this and don’t like the apple model where flash memory (that it’s dirt cheap used in thumdrives or SD cards) is as expensive as gold (or cocaine to have a more accurate per gram measurement) when mounted inside a tablet/phone. For big files you’ll be able to use external media and an SD card could be used to store files that don’t require super-fast SSD-like access times, I hope. To be honest I really don’t like the marketplace model and the limitation of Windows RT APIs (no local database? from a company that based a good share of its success on VB6+Access!) and lack of desktop support on the ARM (even if the support is here and has been used to port office). It’s a step toward the consumer market (where competitors are making big money), but may impact enterprise (and embedded) users that may not appreciate Windows 8 new UI or the limitations of the new app model (if you aren’t connected you are dead ). Not having compatibility with the desktop will require brand new applications and honestly made all the CPU cycles spent to convert .NET IL into real machine code in the past like a huge waste of time… as soon as a new processor architecture is supported by Windows you still have to rewrite part of your application (and MS is pushing HTML5+JS and native code more than .NET in my perception). On the other side I believe that the development experience provided by Visual Studio is still miles (or kilometres) ahead of the competition and even the all-uppercase menu of VS2012 hasn’t changed this situation. The new metro UI got mixed reviews. On my side I should say that is very pleasant to use on a touch screen, I like the minimalist design (even if sometimes is too minimal and hides stuff that, in my opinion, should be visible) but I should also say that using it with mouse and keyboard is like trying to pick your nose with boxing gloves… Metro is also very interesting for embedded devices where touch screen usage is quite common and where having an application taking all the screen is the norm. For devices like kiosks, vending machines etc. this kind of UI can be a great selling point. I don’t need a new tablet (to be honest I’m pretty happy with my wife’s iPad and with my PC), but I may change my opinion after having a chance to play a little bit with those new devices and understand what’s hidden under all this mysterious and generic announcements and specifications!

    Read the article

  • Parallel processing via multithreading in Java

    - by Robz
    There are certain algorithms whose running time can decrease significantly when one divides up a task and gets each part done in parallel. One of these algorithms is merge sort, where a list is divided into infinitesimally smaller parts and then recombined in a sorted order. I decided to do an experiment to test whether or not I could I increase the speed of this sort by using multiple threads. I am running the following functions in Java on a Quad-Core Dell with Windows Vista. One function (the control case) is simply recursive: // x is an array of N elements in random order public int[] mergeSort(int[] x) { if (x.length == 1) return x; // Dividing the array in half int[] a = new int[x.length/2]; int[] b = new int[x.length/2+((x.length%2 == 1)?1:0)]; for(int i = 0; i < x.length/2; i++) a[i] = x[i]; for(int i = 0; i < x.length/2+((x.length%2 == 1)?1:0); i++) b[i] = x[i+x.length/2]; // Sending them off to continue being divided mergeSort(a); mergeSort(b); // Recombining the two arrays int ia = 0, ib = 0, i = 0; while(ia != a.length || ib != b.length) { if (ia == a.length) { x[i] = b[ib]; ib++; } else if (ib == b.length) { x[i] = a[ia]; ia++; } else if (a[ia] < b[ib]) { x[i] = a[ia]; ia++; } else { x[i] = b[ib]; ib++; } i++; } return x; } The other is in the 'run' function of a class that extends thread, and recursively creates two new threads each time it is called: public class Merger extends Thread { int[] x; boolean finished; public Merger(int[] x) { this.x = x; } public void run() { if (x.length == 1) { finished = true; return; } // Divide the array in half int[] a = new int[x.length/2]; int[] b = new int[x.length/2+((x.length%2 == 1)?1:0)]; for(int i = 0; i < x.length/2; i++) a[i] = x[i]; for(int i = 0; i < x.length/2+((x.length%2 == 1)?1:0); i++) b[i] = x[i+x.length/2]; // Begin two threads to continue to divide the array Merger ma = new Merger(a); ma.run(); Merger mb = new Merger(b); mb.run(); // Wait for the two other threads to finish while(!ma.finished || !mb.finished) ; // Recombine the two arrays int ia = 0, ib = 0, i = 0; while(ia != a.length || ib != b.length) { if (ia == a.length) { x[i] = b[ib]; ib++; } else if (ib == b.length) { x[i] = a[ia]; ia++; } else if (a[ia] < b[ib]) { x[i] = a[ia]; ia++; } else { x[i] = b[ib]; ib++; } i++; } finished = true; } } It turns out that function that does not use multithreading actually runs faster. Why? Does the operating system and the java virtual machine not "communicate" effectively enough to place the different threads on different cores? Or am I missing something obvious?

    Read the article

  • WEBLOGIC 12C HANDS-ON BOOTCAMP

    - by agallego
      Oracle PartnerNetwork | Account | Feedback   JOIN THE ORACLE WEBLOGIC PARTNER COMMUNITY AND ATTEND A WEBLOGIC 12C HANDS-ON BOOTCAMP Dear partner As a valued partner we would like to invite you for the WebLogic Partner Community and our WebLogic 12c hands-on Bootcamps – free of charge! Please first login at http://partner.oracle.com and then visit: WebLogic Partner Community. (If you need support with your account please contact the Oracle Partner Business Center). The goal of the WebLogic Partner Community is to provide you with the latest information on Oracle's offerings and to facilitate the exchange of experience within community members. Register Now FREE Assessment vouchers to become certified and WebLogic Server 12c 200 new Features and Training Connect and Network   WebLogic Blogs   WebLogic on Facebook   WebLogic on LinkedIn   WebLogic on Twitter   WebLogic on Oracle Mix WebLogic 12c hands-on Workshops We offer free3 days hands-on WebLogic 12c workshops for Oracle partners who want to become Application Grid Specialized: Register Here! Country Date Location Registration   Germany  3-5 April 2012 Oracle Düsseldorf Click here   France  24-26 April 2012 Oracle Colombes Click here   Spain 08-10 May 2012  Oracle Madrid  Click here   Netherlands  22-24 May 2012  Oracle Amsterdam  Click here   United Kingdom  06-08 June 2012  Oracle Reading  Click here   Italy  19-21 June 2012  Oracle Cinisello Balsamo  Click here   Portugal  10-12 July 2012  Oracle Lisbon  Click here Skill requirements Attendees need to have the following skills as this is required by the product-set and to make sure they get the most out of the training: Basic knowledge in Java and JavaEE Understanding the Application Server concept Basic knowledge in older releases of WebLogic Server would be beneficial Member of WebLogic Partner Community for registration please vist http://www.oracle.com/partners/goto/wls-emea Hardware requirements Every participant works on his own notebook. The minimal hardware requirements are: 4Gb physical RAM (we will boot the image with 2Gb RAM)  dual core CPU 15 GB HD Software requirements Please install Oracle VM VirtualBox 4.1.8 Follow-up and certification  With the workshop registration you agree to the following next steps Follow-up training attend and pass the Oracle Application Grid Certified Implementation Specialist Registration For details and registration please visit Register Here Free WebLogic Certification (Free assessment voucher to become certified) For all WebLogic experts, we offer free vouchers worth $195 for the Oracle Application Grid Certified Implementation Specialist assessment. To demonstrate your WebLogic knowledge you first have to pass the free online assessment Oracle Application Grid PreSales Specialist. For free vouchers, please send an e-mail with the screenshot of your Oracle Application Grid PreSales certirficate to [email protected] including your Name, Company, E-mail and Country. Note: This offer is limited to partners from Europe Middle East and Africa. Partners from other countries please contact your Oracle partner manager. WebLogic Specialization To become specialized in Application Grid, please make sure that you access the: Application Grid Specialization Guide Application Grid Specialization Checklist If you have any questions please contact the Oracle Partner Business Center. Oracle WebLogic Server 12c Key New Capabilities Java EE 6 and Developer Productivity Simplified Deployment and Management with Virtualization Integrated Traffic Management Enhanced High Availability and Disaster Recovery Much Higher Performance For more information please visit: Presentation from the WebLogic 12c launch Technical Presentation from the WebLogic 12c launch WebLogic OTN Website WebLogic 12c Virtual Conference Environment WebLogic Partner Community For regular information become a member in the WebLogic Partner Community please visit: http://www.oracle.com/partners/goto/wls-emea (OPN account required). If you need support with your account please contact the Oracle Partner Business Center. Best regards, Jürgen Kress WebLogic Partner Adoption EMEA Tel. +49 89 1430 1479 E-Mail: [email protected]   Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Contact PBC | Legal Notices and Terms of Use | Privacy Statement Oracle Corporation - Worldwide Headquarters, 500 Oracle Parkway, OPL - E-mail Services, Redwood Shores, CA 94065, United States Your privacy is important to us. You can login to your account to update your e-mail subscriptions or you can opt-out of all Oracle Marketing e-mails at any time. Please note that opting-out of Marketing communications does not affect your receipt of important business communications related to your current relationship with Oracle such as Security Updates, Event Registration notices, Account Management and Support/Service communications.

    Read the article

  • Lock free multiple readers single writer

    - by dummzeuch
    I have got an in memory data structure that is read by multiple threads and written by only one thread. Currently I am using a critical section to make this access threadsafe. Unfortunately this has the effect of blocking readers even though only another reader is accessing it. There are two options to remedy this: use TMultiReadExclusiveWriteSynchronizer do away with any blocking by using a lock free approach For 2. I have got the following so far (any code that doesn't matter has been left out): type TDataManager = class private FAccessCount: integer; FData: TDataClass; public procedure Read(out _Some: integer; out _Data: double); procedure Write(_Some: integer; _Data: double); end; procedure TDataManager.Read(out _Some: integer; out _Data: double); var Data: TDAtaClass; begin InterlockedIncrement(FAccessCount); try // make sure we get both values from the same TDataClass instance Data := FData; // read the actual data _Some := Data.Some; _Data := Data.Data; finally InterlockedDecrement(FAccessCount); end; end; procedure TDataManager.Write(_Some: integer; _Data: double); var NewData: TDataClass; OldData: TDataClass; ReaderCount: integer; begin NewData := TDataClass.Create(_Some, _Data); InterlockedIncrement(FAccessCount); OldData := TDataClass(InterlockedExchange(integer(FData), integer(NewData)); // now FData points to the new instance but there might still be // readers that got the old one before we exchanged it. ReaderCount := InterlockedDecrement(FAccessCount); if ReaderCount = 0 then // no active readers, so we can safely free the old instance FreeAndNil(OldData) else begin /// here is the problem end; end; Unfortunately there is the small problem of getting rid of the OldData instance after it has been replaced. If no other thread is currently within the Read method (ReaderCount=0), it can safely be disposed and that's it. But what can I do if that's not the case? I could just store it until the next call and dispose it there, but Windows scheduling could in theory let a reader thread sleep while it is within the Read method and still has got a reference to OldData. If you see any other problem with the above code, please tell me about it. This is to be run on computers with multiple cores and the above methods are to be called very frequently. In case this matters: I am using Delphi 2007 with the builtin memory manager. I am aware that the memory manager probably enforces some lock anyway when creating a new class but I want to ignore that for the moment. Edit: It may not have been clear from the above: For the full lifetime of the TDataManager object there is only one thread that writes to the data, not several that might compete for write access. So this is a special case of MREW.

    Read the article

  • Joining on NULLs

    - by Dave Ballantyne
    A problem I see on a fairly regular basis is that of dealing with NULL values.  Specifically here, where we are joining two tables on two columns, one of which is ‘optional’ ie is nullable.  So something like this: i.e. Lookup where all the columns are equal, even when NULL.   NULL’s are a tricky thing to initially wrap your mind around.  Statements like “NULL is not equal to NULL and neither is it not not equal to NULL, it’s NULL” can cause a serious brain freeze and leave you a gibbering wreck and needing your mummy. Before we plod on, time to setup some data to demo against. Create table #SourceTable ( Id integer not null, SubId integer null, AnotherCol char(255) not null ) go create unique clustered index idxSourceTable on #SourceTable(id,subID) go with cteNums as ( select top(1000) number from master..spt_values where type ='P' ) insert into #SourceTable select Num1.number,nullif(Num2.number,0),'SomeJunk' from cteNums num1 cross join cteNums num2 go Create table #LookupTable ( Id integer not null, SubID integer null ) go insert into #LookupTable Select top(100) id,subid from #SourceTable where subid is not null order by newid() go insert into #LookupTable Select top(3) id,subid from #SourceTable where subid is null order by newid() If that has run correctly, you will have 1 million rows in #SourceTable and 103 rows in #LookupTable.  We now want to join one to the other. First attempt – Lets just join select * from #SourceTable join #LookupTable on #LookupTable.id = #SourceTable.id and #LookupTable.SubID = #SourceTable.SubID OK, that’s a fail.  We had 100 rows back,  we didn’t correctly account for the 3 rows that have null values.  Remember NULL <> NULL and the join clause specifies SUBID=SUBID, which for those rows is not true. Second attempt – Lets deal with those pesky NULLS select * from #SourceTable join #LookupTable on #LookupTable.id = #SourceTable.id and isnull(#LookupTable.SubID,0) = isnull(#SourceTable.SubID,0) OK, that’s the right result, well done and 99.9% of the time that is where its left. It is a relatively trivial CPU overhead to wrap ISNULL around both columns and compare that result, so no problems.  But, although that’s true, this a relational database we are using here, not a procedural language.  SQL is a declarative language, we are making a request to the engine to get the results we want.  How we ask for them can make a ton of difference. Lets look at the plan for our second attempt, specifically the clustered index seek on the #SourceTable   There are 2 predicates. The ‘seek predicate’ and ‘predicate’.  The ‘seek predicate’ describes how SQLServer has been able to use an Index.  Here, it has been able to navigate the index to resolve where ID=ID.  So far so good, but what about the ‘predicate’ (aka residual probe) ? This is a row-by-row operation.  For each row found in the index matching the Seek Predicate, the leaf level nodes have been scanned and tested using this logical condition.  In this example [Expr1007] is the result of the IsNull operation on #LookupTable and that is tested for equality with the IsNull operation on #SourceTable.  This residual probe is quite a high overhead, if we can express our statement slightly differently to take full advantage of the index and make the test part of the ‘Seek Predicate’. Third attempt – X is null and Y is null So, lets state the query in a slightly manner: select * from #SourceTable join #LookupTable on #LookupTable.id = #SourceTable.id and ( #LookupTable.SubID = #SourceTable.SubID or (#LookupTable.SubID is null and #SourceTable.SubId is null) ) So its slightly wordier and may not be as clear in its intent to the human reader, that is what comments are for, but the key point is that it is now clearer to the query optimizer what our intention is. Let look at the plan for that query, again specifically the index seek operation on #SourceTable No ‘predicate’, just a ‘Seek Predicate’ against the index to resolve both ID and SubID.  A subtle difference that can be easily overlooked.  But has it made a difference to the performance ? Well, yes , a perhaps surprisingly high one. Clever query optimizer well done. If you are using a scalar function on a column, you a pretty much guaranteeing that a residual probe will be used.  By re-wording the query you may well be able to avoid this and use the index completely to resolve lookups. In-terms of performance and scalability your system will be in a much better position if you can.

    Read the article

  • Increasing efficiency of N-Body gravity simulation

    - by Postman
    I'm making a space exploration type game, it will have many planets and other objects that will all have realistic gravity. I currently have a system in place that works, but if the number of planets goes above 70, the FPS decreases an practically exponential rates. I'm making it in C# and XNA. My guess is that I should be able to do gravity calculations between 100 objects without this kind of strain, so clearly my method is not as efficient as it should be. I have two files, Gravity.cs and EntityEngine.cs. Gravity manages JUST the gravity calculations, EntityEngine creates an instance of Gravity and runs it, along with other entity related methods. EntityEngine.cs public void Update() { foreach (KeyValuePair<string, Entity> e in Entities) { e.Value.Update(); } gravity.Update(); } (Only relevant piece of code from EntityEngine, self explanatory. When an instance of Gravity is made in entityEngine, it passes itself (this) into it, so that gravity can have access to entityEngine.Entities (a dictionary of all planet objects)) Gravity.cs namespace ExplorationEngine { public class Gravity { private EntityEngine entityEngine; private Vector2 Force; private Vector2 VecForce; private float distance; private float mult; public Gravity(EntityEngine e) { entityEngine = e; } public void Update() { //First loop foreach (KeyValuePair<string, Entity> e in entityEngine.Entities) { //Reset the force vector Force = new Vector2(); //Second loop foreach (KeyValuePair<string, Entity> e2 in entityEngine.Entities) { //Make sure the second value is not the current value from the first loop if (e2.Value != e.Value ) { //Find the distance between the two objects. Because Fg = G * ((M1 * M2) / r^2), using Vector2.Distance() and then squaring it //is pointless and inefficient because distance uses a sqrt, squaring the result simple cancels that sqrt. distance = Vector2.DistanceSquared(e2.Value.Position, e.Value.Position); //This makes sure that two planets do not attract eachother if they are touching, completely unnecessary when I add collision, //For now it just makes it so that the planets are not glitchy, performance is not significantly improved by removing this IF if (Math.Sqrt(distance) > (e.Value.Texture.Width / 2 + e2.Value.Texture.Width / 2)) { //Calculate the magnitude of Fg (I'm using my own gravitational constant (G) for the sake of time (I know it's 1 at the moment, but I've been changing it) mult = 1.0f * ((e.Value.Mass * e2.Value.Mass) / distance); //Calculate the direction of the force, simply subtracting the positions and normalizing works, this fixes diagonal vectors //from having a larger value, and basically makes VecForce a direction. VecForce = e2.Value.Position - e.Value.Position; VecForce.Normalize(); //Add the vector for each planet in the second loop to a force var. Force = Vector2.Add(Force, VecForce * mult); //I have tried Force += VecForce * mult, and have not noticed much of an increase in speed. } } } //Add that force to the first loop's planet's position (later on I'll instead add to acceleration, to account for inertia) e.Value.Position += Force; } } } } I have used various tips (about gravity optimizing, not threading) from THIS question (that I made yesterday). I've made this gravity method (Gravity.Update) as efficient as I know how to make it. This O(N^2) algorithm still seems to be eating up all of my CPU power though. Here is a LINK (google drive, go to File download, keep .Exe with the content folder, you will need XNA Framework 4.0 Redist. if you don't already have it) to the current version of my game. Left click makes a planet, right click removes the last planet. Mouse moves the camera, scroll wheel zooms in and out. Watch the FPS and Planet Count to see what I mean about performance issues past 70 planets. (ALL 70 planets must be moving, I've had 100 stationary planets and only 5 or so moving ones while still having 300 fps, the issue arises when 70+ are moving around) After 70 planets are made, performance tanks exponentially. With < 70 planets, I get 330 fps (I have it capped at 300). At 90 planets, the FPS is about 2, more than that and it sticks around at 0 FPS. Strangely enough, when all planets are stationary, the FPS climbs back up to around 300, but as soon as something moves, it goes right back down to what it was, I have no systems in place to make this happen, it just does. I considered multithreading, but that previous question I asked taught me a thing or two, and I see now that that's not a viable option. I've also thought maybe I could do the calculations on my GPU instead, though I don't think it should be necessary. I also do not know how to do this, it is not a simple concept and I want to avoid it unless someone knows a really noob friendly simple way to do it that will work for an n-body gravity calculation. (I have an NVidia gtx 660) Lastly I've considered using a quadtree type system. (Barnes Hut simulation) I've been told (in the previous question) that this is a good method that is commonly used, and it seems logical and straightforward, however the implementation is way over my head and I haven't found a good tutorial for C# yet that explains it in a way I can understand, or uses code I can eventually figure out. So my question is this: How can I make my gravity method more efficient, allowing me to use more than 100 objects (I can render 1000 planets with constant 300+ FPS without gravity calculations), and if I can't do much to improve performance (including some kind of quadtree system), could I use my GPU to do the calculations?

    Read the article

  • What's New in Oracle VM VirtualBox 4.2?

    - by Fat Bloke
    A year is a long time in the IT industry. Since the last VirtualBox feature release, which was a little over a year ago, we've seen: new releases of cool new operating systems, such as Windows 8, ChromeOS, and Mountain Lion; we've seen a myriad of new Linux releases from big Enterprise class distributions like Oracle 6.3, to accessible desktop distros like Ubuntu 12.04 and Fedora 17; and we've also seen the spec of a typical PC or laptop double in power. All of these events have influenced our new VirtualBox version which we're releasing today. Here's how... Powerful hosts  One of the trends we've seen is that as the average host platform becomes more powerful, our users are consistently running more and more vm's. Some of our users have large libraries of vm's of various vintages, whilst others have groups of vm's that are run together as an assembly of the various tiers in a multi-tiered software solution, for example, a database tier, middleware tier, and front-ends.  So we're pleased to unveil a more powerful VirtualBox Manager to address the needs of these users: VM Groups Groups allow you to organize your VM library in a sensible way, e.g.  by platform type, by project, by version, by whatever. To create groups you can drag one VM onto another or select one or more VM's and choose Machine...Group from the menu bar. You can expand and collapse groups to save screen real estate, and you can Enter and Leave a group (think iPad navigation here) by using the right and left arrow keys when groups are selected. But groups are more than passive folders, because you can now also perform operations on groups, rather than all the individual VMs. So if you have a multi-tiered solution you can start the whole stack up with just one click. Autostart Many VirtualBox users run dedicated services in their VMs, for example, running a Wiki. With these types of VM workloads, you really want the VM start up when the host machine boots up. So with 4.2 we've introduced a cross-platform Auto-start mechanism to allow you to treat VMs as host services. Headless VM Launching With VM's such as web servers, wikis, and other types of server-class workloads, the Console of the VM is pretty much redundant. For some time now VirtualBox has offered a separate launch mechanism for these VM's, namely the command-line interface commands VBoxHeadless or VBoxManage startvm ... --type headless commands. But with 4.2 we also allow you launch headless VMs from the Manager. Simply hold down Shift when launching the VM from the Manager.  It's that easy. But how do you stop a headless VM? Well, with 4.2 we allow you to Close the VM from the Manager. (BTW best to use the ACPI Shutdown method which allows the guest VM to close down gracefully.) Easy VM Creation For our expert users, the  New VM Wizard was a little tiresome, so now there's a faster 2-click VM creation mode. Just Hide the description when creating a new VM. Powerful VMs  As the hosts have become more powerful, so are the guests that are running inside them. Here are some of the 4.2 features to accommodate them: Virtual Network Interface Cards  With 4.2, it's now possible to create VMs with up to 36 NICs, when using the ICH9 chipset emulation. But with great power comes great responsibility (didn't Obi-Wan say something similar?), and so we have also introduced bandwidth limiting to prevent a rogue VM stealing the whole pipe. VLAN tagging Some of our users leverage VLANs extensively so we've enhanced the E1000 NICs to support this.  Processor Performance If you are running a CPU which supports Nested Paging (aka EPT in the Intel world) such as most of the Core i5 and i7 CPUs, or are running an AMD Bulldozer or later, you should see some performance improvements from our work with these processors. And while we're talking Processors, we've added support for some of the more modern VIA CPUs too. Powerful Automation Because VirtualBox runs atop a fully blown operating system, it makes sense to leverage the capabilities of the host to run scripts that can drive the guest VMs. Guest Automation was introduced in a prior release but with 4.2 we've revamped the APIs to allow a richer and more powerful set of operations to be executed by the guest. Check out the IGuest APIs in the VirtualBox Programming Guide and Reference (SDK). Powerful Platforms  All the hardcore engineering that has gone into 4.2 has been done for a purpose and that is to deliver a fast and powerful engine that can run almost any x86 OS because of the integrity of the virtualization. So we're pleased to add support for these platforms: Mac OS X "Mountain Lion"  Windows 8 Windows Server 2012 Ubuntu 12.04 (“Precise Pangolin”) Fedora 17 Oracle Linux 6.3  Here's the proof: We don't have time to go into the myriad of smaller improvements such as support for burning audio CDs from a guest, bi-directional clipboard control,  drag-and-drop of files into Linux guests, etc. so we'll leave that as an exercise for the user as soon as you've downloaded from the Oracle or community site and taken a peek at the User Guide. So all in all, a pretty solid release, one that we hope you'll enjoy discovering. - FB 

    Read the article

  • The architecture and technologies to use for a secure, fast, reliable and easily scalable web application

    - by DSoul
    ^ For actual questions, skip to the lists down below I understand, that his is a vague topic, but please, before you turn the other way and disregard me, hear me out. I am currently doing research for a web application(I don't know if application is the correct word for it, but I will proceed w/ that for now), that one day might need to be everything mentioned in the title. I am bound by nothing. That means that every language, OS and framework is acceptable, but only if it proves it's usefulness. And if you are going to say, that scalability and speed depend on the code I write for this application, then I agree, but I am just trying to find something, that wouldn't stand in my way later on. I have done quite a bit reading on this subject, but I still don't have a clear picture, to what suits my needs, so I come to you, StackOverflow, to give me directions. I know you all must be wondering what I'm building, but I assure you, that it doesn't matter. I have heard of 12 factor app though, if you have any similar guidelines or what is, to suggest the please, go ahead. For the sake of keeping your answers as open as possible, I'm not gonna provide you my experience regarding anything written in this question. ^ Skippers, start here First off - the weights of the requirements are probably something like that (on a scale of 10): Security - 10 Speed - 5 Reliability (concurrency) - 7.5 Scalability - 10 Speed and concurrency are not a top priority, in the sense, that the program can be CPU intensive, and therefore slow, and only accept a not-that-high number of concurrent users, but both of these factors must be improvable by scaling the system Anyway, here are my questions: How many layers should the application have, so it would be future-proof and could best fulfill the aforementioned requirements? For now, what I have in mind is the most common version: Completely separated front end, that might be a web page or an MMI application or even both. Some middle-ware handling communication between the front and the back end. This is probably a server that communicates w/ the front end via HTTP. How the communication w/ the back end should be handled is probably dependent on the back end. The back end. Something that handles data through resources like DB and etc. and does various computations w/ the data. This, as the highest priority part of the software, must be easily spread to multiple computers later on and have no known security holes. I think ideally the middle-ware should send a request to a queue from where one of the back end processes takes this request, chops it up to smaller parts and buts these parts of the request back onto the same queue as the initial request, after what these parts will be then handled by other back end processes. Something *map-reduce*y, so to say. What frameworks, languages and etc. should these layers use? The technologies used here are not that important at this moment, you can ignore this part for now I've been pointed to node.js for this part. Do you guys know any better alternatives, or have any reasons why I should (not) use node.js for this particular job. I actually have no good idea, what to use for this job, there are too many options out there, so please direct me. This part (and the 2. one also, I think) depend a lot on the OS, so suggest any OSs alongside w/ the technologies/frameworks. Initially, all computers (or 1 for starters) hosting the back end are going to be virtual machines. Please do give suggestions to any part of the question, that you feel you have comprehensive knowledge and/or experience of. And also, point out if you feel that any part of the current set-up means an instant (or even distant) failure or if I missed a very important aspect to consider. I'm not looking for a definitive answer for how to achieve my goals, because there certainly isn't one, for I haven't provided you w/ all the required information. I'm just looking for recommendations and directions on what to look into. Also, bare in mind, that this isn't something that I have to get done quickly, to sell and let it be re-written by the new owner (which, I've been told for multiple times, is what I should aim for). I have all the time in the world and I really just want to learn doing something really high-end. Also, excuse me if my language isn't the best, I'm not a native. Anyway. Thanks in advance to anyone, who takes the time to help me out here. PS. When I do seem to come up w/ a good architecture/design for this project, I will certainly make it an open project and keep you guys up to date w/ it's development. As in what you could have told me earlier and etc. For obvious reasons the very same question got closed on SO, but could you guys still help me?.

    Read the article

  • C# performance varying due to memory

    - by user1107474
    Hope this is a valid post here, its a combination of C# issues and hardware. I am benchmarking our server because we have found problems with the performance of our quant library (written in C#). I have simulated the same performance issues with some simple C# code- performing very heavy memory-usage. The code below is in a function which is spawned from a threadpool, up to a maximum of 32 threads (because our server has 4x CPUs x 8 cores each). This is all on .Net 3.5 The problem is that we are getting wildly differing performance. I run the below function 1000 times. The average time taken for the code to run could be, say, 3.5s, but the fastest will only be 1.2s and the slowest will be 7s- for the exact same function! I have graphed the memory usage against the timings and there doesnt appear to be any correlation with the GC kicking in. One thing I did notice is that when running in a single thread the timings are identical and there is no wild deviation. I have also tested CPU-bound algorithms and the timings are identical too. This has made us wonder if the memory bus just cannot cope. I was wondering could this be another .net or C# problem, or is it something related to our hardware? Would this be the same experience if I had used C++, or Java?? We are using 4x Intel x7550 with 32GB ram. Is there any way around this problem in general? Stopwatch watch = new Stopwatch(); watch.Start(); List<byte> list1 = new List<byte>(); List<byte> list2 = new List<byte>(); List<byte> list3 = new List<byte>(); int Size1 = 10000000; int Size2 = 2 * Size1; int Size3 = Size1; for (int i = 0; i < Size1; i++) { list1.Add(57); } for (int i = 0; i < Size2; i = i + 2) { list2.Add(56); } for (int i = 0; i < Size3; i++) { byte temp = list1.ElementAt(i); byte temp2 = list2.ElementAt(i); list3.Add(temp); list2[i] = temp; list1[i] = temp2; } watch.Stop(); (the code is just meant to stress out the memory) I would include the threadpool code, but we used a non-standard threadpool library. EDIT: I have reduced "size1" to 100000, which basically doesn't use much memory and I still get a lot of jitter. This suggests it's not the amount of memory being transferred, but the frequency of memory grabs?

    Read the article

  • ????????????????? Oracle Solaris ??? - Solaris 11 ????(??)

    - by kazun
    ???????????????? OS ????????????????????? 20 ??????????????????? Solaris?????????????????????? OS????????????????????????Solaris ???????????????????? ??????Oracle Solaris ??????????????6??????????????????Oracle Solaris ?????????????????????? [????????????] ?????(????????????? ???)?????(??????????????)?????(??????????????)?????(????????)???? ?(?????????????????)?????(???????????)(50??) Solaris????? ??: Solaris ??????????????????????????????????????Solaris ??Solaris ???????????????????????????? 10 ??? Solaris ?????????????????????? OS ?????????????????????????????????????????????????????????????? OS ???? Solaris ?????? ??: Solaris ????????????????????????????OS?????????????????????????????????????????????????????????????????????????????????? ???: ??????????????????????? 15 ??????????????????????????????????????????? Solaris ???????????????????????????????????????????????????????????5 ???10 ??????????????????????????? Solaris ???????????? ??: ??? Solaris ????????????????????????????????????????????????????????????????????????????????????????????? OS ?????????????????????????????????????????????????????????????????????????????????????????????? ??: ??????? OS ?????????????????????????????????????????????????????????????????????????DTrace ????????????????????????????? Solaris ???????? ???: 1980 ?????Sun ???????OS???????????????????????????????????????????????????????????????????????????????? ?Solaris ????1988?????Sun ? AT&T ? System V Release 4.0 ?????????????Sun ????????? System V Release 4.0 ?????????? Unix OS ??? SunOS 5.0(?? 1992 ????????? Solaris 2.0)???????????????????? SMP ?????????????????????????????????????????????????????Solaris 2.0 ?????????????? OS ????????(?)???????????????????????????????? 2.1, 2.2, 2.3 ??????????? 2.0 ????????????????? ??: Solaris ??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????OS?????????? ??: ????????????????????????? ???: ????????????????? OS ??????????? x86 ? SPARC ? 2 ???????????????????????????????????????????????????????????????????????????????????????????????? CPU ????????????????????????????????????????????????????????????????????????????????? Solaris ??? ????? ?? Solaris 2.0 - 2.1 AT&T ? UNIX System V Release 4 ??????????????SMP/?????????????????API ????? SunOS 5.0 ????????Solaris 2.0 ????x86 ?? SPARC ?? Solaris 2.1 ?????????????????????????????? Solaris 2.2 - 2.4 - ???????? (SVR4 ??) - ???????????(2.5.1 ?? PowerPC ?????????) - 2.4 ?? x86 ?????????????????? Solaris 2.6?Solaris 7(2.7 ??????) 64 bit ??(Itanium ?????) Solaris 8 - 9 ?????????? Solaris 10 - 11 ??????????????????(OS ????????????????) Solaris??????? ??: ?????????????????????????????????????????Solaris ?????????????????????????????????????????????????????????????????? ??: ?????????????????? OS ???????????Solaris 2.3 ???????????????????????????????????????????????????????????????????????????????????????????????????? ???: ???????????????????????????????????????????????????????????????????????????????????? OS ????????????? Solaris ??????? ??: ??????????????????????????????????????????????????????????????????????????????????????????????????? ??: ??????????????????????????????????????????????????????????????????????????DTrace ?????????????????????????????????? ??: ????Solaris ? UNIX ????????????????????????????????????? OS ??????????????????????????????????????????????????????????????????????????????????????????????????????????????? Solaris ????????????????????????????????????????????????? OS ??????????????????? Solaris ???????? ??: ??????????????????????????1?? OS ?????????????? OS ??????????????????????????????????????Solaris ????? 1 ?? Solaris ??????????????????OS????????????????? ???: Legacy Container ????????????? Solaris(Solaris 8?Solaris 9) ???????????? ??: Solaris 10 ?????? SMF(Service Management Facility) ??????????????????????????????????????????????????????????????????????????????????????? ??: SMF?FMA (Fault Management Architecture)?????????????????????????????? Solaris ?????????????????????????? ???: ????????????????????????? ??: ?????????????????????1???????????????????????????????????????? Sun ??????????The Network Is The Computer???? ??: ??????Solaris 10 ?????????????????????????????????????????????????????????????????????????????? Solaris?????? ??: Solaris ?????????????????????Sun ?????????????(? 20 ??)??????????????????????????????????????????????????????????????????????????????????????????????????????????????????Sun ????????????????????????????????????????????????????????Sun ?????????????????????????????????????????????????????????????????????????? ???: Solaris ????? SunOS ????????????????????????? OS ??????? ??: ??????????????????????????????Sun ???????????????????????????????????????????????????????????? ??: 1990 ??????????????????? Solaris ???????? ???: ?????X Windows ???? Sun ??????????NeWS??????????????????????????????X Windows ??????????????????????????????????????? Sun ? Solaris ???????????????????????? ??: ???????Solaris ??????????????? OS ??????????????????????????????????????????????????????????????????????????????????????? ??: ????????????????????? Solaris ????????????ZFS ???????????????????????????????? ??: ????? OS ??????? Solaris ??????(???)??????????????? ???: Solaris ???????????????????? Solaris??????Solaris 2.0 ???? 2 ??? 1 ??????????????(?????????)??????Solaris ? 2 ??????????????????????????????????????? 2 ????????????????????????????2 ??? 1 ????????????????????????????????????????????????????????????? ????OS???????????? ???: Solaris ?????? Solaris ????????????OS ??????????????????????????????????????????????????????????????????????????????? ??: ??????????????????????????????????????????????(?)?????????????????????????????????????????????15 ?????????????????????????????????????????????????????????????????????????? ??: Solaris ??????? Solaris ????????????????????????????????????????????????????????? ??: ????????????????????????????????????????????????Solaris ??????????????????????????? ???: ??????????????Solaris ????????????????????????????????????????????????????????????????????????????????????? Solaris ?????????? ??: Solaris ???????????????????????????????????????????????????? ??: ????????????????????????????????????????????????????????????????????????????????????????????????????????????????? ???: 1994 ?????????????????????????????????????? ??: ??????????????????????????Solaris ????????????????????????????????????? ???: ???????????????? ??: ???Solaris ?????? 2 ?????????????????????????????????????? Solaris ?????????????????????????????????????????????????????????????????????????????????????????????OS?????????????????????????????????????????????????????Solaris ???????????? ??????Oracle Solaris ????????????6??????????????????Oracle Solaris ??????????????????????

    Read the article

  • Visual Studio 2010 and .NET 4 Released

    - by ScottGu
    The final release of Visual Studio 2010 and .NET 4 is now available. Download and Install Today MSDN subscribers, as well as WebsiteSpark/BizSpark/DreamSpark members, can now download the final releases of Visual Studio 2010 and TFS 2010 through the MSDN subscribers download center.  If you are not an MSDN Subscriber, you can download free 90-day trial editions of Visual Studio 2010.  Or you can can download the free Visual Studio express editions of Visual Web Developer 2010, Visual Basic 2010, Visual C# 2010 and Visual C++.  These express editions are available completely for free (and never time out).  If you are looking for an easy way to setup a new machine for web-development you can automate installing ASP.NET 4, ASP.NET MVC 2, IIS, SQL Server Express and Visual Web Developer 2010 Express really quickly with the Microsoft Web Platform Installer (just click the install button on the page). What is new with VS 2010 and .NET 4 Today’s release is a big one – and brings with it a ton of new feature and capabilities. One of the things we tried hard to focus on with this release was to invest heavily in making existing applications, projects and developer experiences better.  What this means is that you don’t need to read 1000+ page books or spend time learning major new concepts in order to take advantage of the release.  There are literally thousands of improvements (both big and small) that make you more productive and successful without having to learn big new concepts in order to start using them.  Below is just a small sampling of some of the improvements with this release: Visual Studio 2010 IDE  Visual Studio 2010 now supports multiple-monitors (enabling much better use of screen real-estate).  It has new code Intellisense support that makes it easier to find and use classes and methods. It has improved code navigation support for searching code-bases and seeing how code is called and used.  It has new code visualization support that allows you to see the relationships across projects and classes within projects, as well as to automatically generate sequence diagrams to chart execution flow.  The editor now supports HTML and JavaScript snippet support as well as improved JavaScript intellisense. The VS 2010 Debugger and Profiling support is now much, much richer and enables new features like Intellitrace (aka Historical Debugging), debugging of Crash/Dump files, and better parallel debugging.  VS 2010’s multi-targeting support is now much richer, and enables you to use VS 2010 to target .NET 2, .NET 3, .NET 3.5 and .NET 4 applications.  And the infamous Add Reference dialog now loads much faster. TFS 2010 is now easy to setup (you can now install the server in under 10 minutes) and enables great source-control, bug/work-item tracking, and continuous integration support.  Testing (both automated and manual) is now much, much richer.  And VS 2010 Premium and Ultimate provide much richer architecture and design tooling support. VB and C# Language Features VB and C# in VS 2010 both contain a bunch of new features and capabilities.  VB adds new support for automatic properties, collection initializers, and implicit line continuation support among many other features.  C# adds support for optional parameters and named arguments, a new dynamic keyword, co-variance and contra-variance, and among many other features. ASP.NET 4 and ASP.NET MVC 2 With ASP.NET 4, Web Forms controls now render clean, semantically correct, and CSS friendly HTML markup. Built-in URL routing functionality allows you to expose clean, search engine friendly, URLs and increase the traffic to your Website.  ViewState within applications can now be more easily controlled and made smaller.  ASP.NET Dynamic Data support has been expanded.  More controls, including rich charting and data controls, are now built-into ASP.NET 4 and enable you to build applications even faster.  New starter project templates now make it easier to get going with new projects.  SEO enhancements make it easier to drive traffic to your public facing sites.  And web.config files are now clean and simple. ASP.NET MVC 2 is now built-into VS 2010 and ASP.NET 4, and provides a great way to build web sites and applications using a model-view-controller based pattern. ASP.NET MVC 2 adds features to easily enable client and server validation logic, provides new strongly-typed HTML and UI-scaffolding helper methods.  It also enables more modular/reusable applications.  The new <%: %> syntax in ASP.NET makes it easier to HTML encode output.  Visual Studio 2010 also now includes better tooling support for unit testing and TDD.  In particular, “Consume first intellisense” and “generate from usage" support within VS 2010 make it easier to write your unit tests first, and then drive your implementation from them. Deploying ASP.NET applications gets a lot easier with this release. You can now publish your Websites and applications to a staging or production server from within Visual Studio itself. Visual Studio 2010 makes it easy to transfer all your files, code, configuration, database schema and data in one complete package. VS 2010 also makes it easy to manage separate web.config configuration files settings depending upon whether you are in debug, release, staging or production modes. WPF 4 and Silverlight 4 WPF 4 includes a ton of new improvements and capabilities including more built-in controls, richer graphics features (cached composition, pixel shader 3 support, layoutrounding, and animation easing functions), a much improved text stack (with crisper text rendering, custom dictionary support, and selection and caret brush options).  WPF 4 also includes a bunch of support to enable you to take advantage of new Windows 7 features – including multi-touch and Windows 7 shell integration. Silverlight 4 will launch this week as well.  You can watch my Silverlight 4 launch keynote streamed live Tuesday (April 13th) at 8am Pacific Time.  Silverlight 4 includes a ton of new capabilities – including a bunch for making it possible to build great business applications and out of the browser applications.  I’ll be doing a separate blog post later this week (once it is live on the web) that talks more about its capabilities. Visual Studio 2010 now includes great tooling support for both WPF and Silverlight.  The new VS 2010 WPF and Silverlight designer makes it much easier to build client applications as well as build great line of business solutions, as well as integrate and bind with data.  Tooling support for Silverlight 4 with the final release of Visual Studio 2010 will be available when Silverlight 4 releases to the web this week. SharePoint and Azure Visual Studio 2010 now includes built-in support for building SharePoint applications.  You can now create, edit, build, and debug SharePoint applications directly within Visual Studio 2010.  You can also now use SharePoint with TFS 2010. Support for creating Azure-hosted applications is also now included with VS 2010 – allowing you to build ASP.NET and WCF based applications and host them within the cloud. Data Access Data access has a lot of improvements coming to it with .NET 4.  Entity Framework 4 includes a ton of new features and capabilities – including support for model first and POCO development, default support for lazy loading, built-in support for pluralization/singularization of table/property names within the VS 2010 designer, full support for all the LINQ operators, the ability to optionally expose foreign keys on model objects (useful for some stateless web scenarios), disconnected API support to better handle N-Tier and stateless web scenarios, and T4 template customization support within VS 2010 to allow you to customize and automate how code is generated for you by the data designer.  In addition to improvements with the Entity Framework, LINQ to SQL with .NET 4 also includes a bunch of nice improvements.  WCF and Workflow WCF includes a bunch of great new capabilities – including better REST, activation and configuration support.  WCF Data Services (formerly known as Astoria) and WCF RIA Services also now enable you to easily expose and work with data from remote clients. Windows Workflow is now much faster, includes flowchart services, and now makes it easier to make custom services than before.  More details can be found here. CLR and Core .NET Library Improvements .NET 4 includes the new CLR 4 engine – which includes a lot of nice performance and feature improvements.  CLR 4 engine now runs side-by-side in-process with older versions of the CLR – allowing you to use two different versions of .NET within the same process.  It also includes improved COM interop support.  The .NET 4 base class libraries (BCL) include a bunch of nice additions and refinements.  In particular, the .NET 4 BCL now includes new parallel programming support that makes it much easier to build applications that take advantage of multiple CPUs and cores on a computer.  This work dove-tails nicely with the new VS 2010 parallel debugger (making it much easier to debug parallel applications), as well as the new F# functional language support now included in the VS 2010 IDE.  .NET 4 also now also has the Dynamic Language Runtime (DLR) library built-in – which makes it easier to use dynamic language functionality with .NET.  MEF – a really cool library that enables rich extensibility – is also now built-into .NET 4 and included as part of the base class libraries.  .NET 4 Client Profile The download size of the .NET 4 redist is now much smaller than it was before (the x86 full .NET 4 package is about 36MB).  We also now have a .NET 4 Client Profile package which is a pure sub-set of the full .NET that can be used to streamline client application installs. C++ VS 2010 includes a bunch of great improvements for C++ development.  This includes better C++ Intellisense support, MSBuild support for projects, improved parallel debugging and profiler support, MFC improvements, and a number of language features and compiler optimizations. My VS 2010 and .NET 4 Blog Series I’ve been cranking away on a blog series the last few months that highlights many of the new VS 2010 and .NET 4 improvements.  The good news is that I have about 20 in-depth posts already written.  The bad news (for me) is that I have about 200 more to go until I’m done!  I’m going to try and keep adding a few more each week over the next few months to discuss the new improvements and how best to take advantage of them. Below is a list of the already written ones that you can check out today: Clean Web.Config Files Starter Project Templates Multi-targeting Multiple Monitor Support New Code Focused Web Profile Option HTML / ASP.NET / JavaScript Code Snippets Auto-Start ASP.NET Applications URL Routing with ASP.NET 4 Web Forms Searching and Navigating Code in VS 2010 VS 2010 Code Intellisense Improvements WPF 4 Add Reference Dialog Improvements SEO Improvements with ASP.NET 4 Output Cache Extensibility with ASP.NET 4 Built-in Charting Controls for ASP.NET and Windows Forms Cleaner HTML Markup with ASP.NET 4 - Client IDs Optional Parameters and Named Arguments in C# 4 - and a cool scenarios with ASP.NET MVC 2 Automatic Properties, Collection Initializers and Implicit Line Continuation Support with VB 2010 New <%: %> Syntax for HTML Encoding Output using ASP.NET 4 JavaScript Intellisense Improvements with VS 2010 Stay tuned to my blog as I post more.  Also check out this page which links to a bunch of great articles and videos done by others. VS 2010 Installation Notes If you have installed a previous version of VS 2010 on your machine (either the beta or the RC) you must first uninstall it before installing the final VS 2010 release.  I also recommend uninstalling .NET 4 betas (including both the client and full .NET 4 installs) as well as the other installs that come with VS 2010 (e.g. ASP.NET MVC 2 preview builds, etc).  The uninstalls of the betas/RCs will clean up all the old state on your machine – after which you can install the final VS 2010 version and should have everything just work (this is what I’ve done on all of my machines and I haven’t had any problems). The VS 2010 and .NET 4 installs add a bunch of new managed assemblies to your machine.  Some of these will be “NGEN’d” to native code during the actual install process (making them run fast).  To avoid adding too much time to VS setup, though, we don’t NGEN all assemblies immediately – and instead will NGEN the rest in the background when your machine is idle.  Until it finishes NGENing the assemblies they will be JIT’d to native code the first time they are used in a process – which for large assemblies can sometimes cause a slight performance hit. If you run into this you can manually force all assemblies to be NGEN’d to native code immediately (and not just wait till the machine is idle) by launching the Visual Studio command line prompt from the Windows Start Menu (Microsoft Visual Studio 2010->Visual Studio Tools->Visual Studio Command Prompt).  Within the command prompt type “Ngen executequeueditems” – this will cause everything to be NGEN’d immediately. How to Buy Visual Studio 2010 You can can download and use the free Visual Studio express editions of Visual Web Developer 2010, Visual Basic 2010, Visual C# 2010 and Visual C++.  These express editions are available completely for free (and never time out). You can buy a new copy of VS 2010 Professional that includes a 1 year subscription to MSDN Essentials for $799.  MSDN Essentials includes a developer license of Windows 7 Ultimate, Windows Server 2008 R2 Enterprise, SQL Server 2008 DataCenter R2, and 20 hours of Azure hosting time.  Subscribers also have access to MSDN’s Online Concierge, and Priority Support in MSDN Forums. Upgrade prices from previous releases of Visual Studio are also available.  Existing Visual Studio 2005/2008 Standard customers can upgrade to Visual Studio 2010 Professional for a special $299 retail price until October.  You can take advantage of this VS Standard->Professional upgrade promotion here. Web developers who build applications for others, and who are either independent developers or who work for companies with less than 10 employees, can also optionally take advantage of the Microsoft WebSiteSpark program.  This program gives you three copies of Visual Studio 2010 Professional, 1 copy of Expression Studio, and 4 CPU licenses of both Windows 2008 R2 Web Server and SQL 2008 Web Edition that you can use to both develop and deploy applications with at no cost for 3 years.  At the end of the 3 years there is no obligation to buy anything.  You can sign-up for WebSiteSpark today in under 5 minutes – and immediately have access to the products to download. Summary Today’s release is a big one – and has a bunch of improvements for pretty much every developer.  Thank you everyone who provided feedback, suggestions and reported bugs throughout the development process – we couldn’t have delivered it without you.  Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

< Previous Page | 221 222 223 224 225 226 227 228 229 230 231 232  | Next Page >