Search Results

Search found 6142 results on 246 pages for 'singleton pattern'.

Page 228/246 | < Previous Page | 224 225 226 227 228 229 230 231 232 233 234 235  | Next Page >

  • Computer Networks UNISA - Chap 8 &ndash; Wireless Networking

    - by MarkPearl
    After reading this section you should be able to Explain how nodes exchange wireless signals Identify potential obstacles to successful transmission and their repercussions, such as interference and reflection Understand WLAN architecture Specify the characteristics of popular WLAN transmission methods including 802.11 a/b/g/n Install and configure wireless access points and their clients Describe wireless MAN and WAN technologies, including 802.16 and satellite communications The Wireless Spectrum All wireless signals are carried through the air by electromagnetic waves. The wireless spectrum is a continuum of the electromagnetic waves used for data and voice communication. The wireless spectrum falls between 9KHZ and 300 GHZ. Characteristics of Wireless Transmission Antennas Each type of wireless service requires an antenna specifically designed for that service. The service’s specification determine the antenna’s power output, frequency, and radiation pattern. A directional antenna issues wireless signals along a single direction. An omnidirectional antenna issues and receives wireless signals with equal strength and clarity in all directions The geographical area that an antenna or wireless system can reach is known as its range Signal Propagation LOS (line of sight) uses the least amount of energy and results in the reception of the clearest possible signal. When there is an obstacle in the way, the signal may… pass through the object or be obsrobed by the object or may be subject to reflection, diffraction or scattering. Reflection – waves encounter an object and bounces off it. Diffraction – signal splits into secondary waves when it encounters an obstruction Scattering – is the diffusion or the reflection in multiple different directions of a signal Signal Degradation Fading occurs as a signal hits various objects. Because of fading, the strength of the signal that reaches the receiver is lower than the transmitted signal strength. The further a signal moves from its source, the weaker it gets (this is called attenuation) Signals are also affected by noise – the electromagnetic interference) Interference can distort and weaken a wireless signal in the same way that noise distorts and weakens a wired signal. Frequency Ranges Older wireless devices used the 2.4 GHZ band to send and receive signals. This had 11 communication channels that are unlicensed. Newer wireless devices can also use the 5 GHZ band which has 24 unlicensed bands Narrowband, Broadband, and Spread Spectrum Signals Narrowband – a transmitter concentrates the signal energy at a single frequency or in a very small range of frequencies Broadband – uses a relatively wide band of the wireless spectrum and offers higher throughputs than narrowband technologies The use of multiple frequencies to transmit a signal is known as spread-spectrum technology. In other words a signal never stays continuously within one frequency range during its transmission. One specific implementation of spread spectrum is FHSS (frequency hoping spread spectrum). Another type is known as DSS (direct sequence spread spectrum) Fixed vs. Mobile Each type of wireless communication falls into one of two categories Fixed – the location of the transmitted and receiver do not move (results in energy saved because weaker signal strength is possible with directional antennas) Mobile – the location can change WLAN (Wireless LAN) Architecture There are two main types of arrangements Adhoc – data is sent directly between devices – good for small local devices Infrastructure mode – a wireless access point is placed centrally, that all devices connect with 802.11 WLANs The most popular wireless standards used on contemporary LANs are those developed by IEEE’s 802.11 committee. Over the years several distinct standards related to wireless networking have been released. Four of the best known standards are also referred to as Wi-Fi. They are…. 802.11b 802.11a 802.11g 802.11n These four standards share many characteristics. i.e. All 4 use half duplex signalling Follow the same access method Access Method 802.11 standards specify the use of CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance) to access a shared medium. Using CSMA/CA before a station begins to send data on an 802.11 network, it checks for existing wireless transmissions. If the source node detects no transmission activity on the network, it waits a brief period of time and then sends its transmission. If the source does detect activity, it waits a brief period of time before checking again. The destination node receives the transmission and, after verifying its accuracy, issues an acknowledgement (ACT) packet to the source. If the source receives the ACK it assumes the transmission was successful, – if it does not receive an ACK it assumes the transmission failed and sends it again. Association Two types of scanning… Active – station transmits a special frame, known as a prove, on all available channels within its frequency range. When an access point finds the probe frame, it issues a probe response. Passive – wireless station listens on all channels within its frequency range for a special signal, known as a beacon frame, issued from an access point – the beacon frame contains information necessary to connect to the point. Re-association occurs when a mobile user moves out of one access point’s range and into the range of another. Frames Read page 378 – 381 about frames and specific 802.11 protocols Bluetooth Networks Sony Ericson originally invented the Bluetooth technology in the early 1990s. In 1998 other manufacturers joined Ericsson in the Special Interest Group (SIG) whose aim was to refine and standardize the technology. Bluetooth was designed to be used on small networks composed of personal communications devices. It has become popular wireless technology for communicating among cellular telephones, phone headsets, etc. Wireless WANs and Internet Access Refer to pages 396 – 402 of the textbook for details.

    Read the article

  • How customers view and interact with a company

    The Harvard Business Review article written by Rayport and Jaworski is aptly titled “Best Face Forward” because it sheds light on how customers view and interact with a company. In the past most business interaction between customers was performed in a face to face meeting where one party would present an item for sale and then the other would decide whether to purchase the item. In addition, if there was a problem with a purchased item then they would bring the item back to the person who sold the item for resolution. One of my earliest examples of witnessing this was when I was around 6 or 7 years old and I was allowed to spend the summer in Tennessee with my Grandparents. My Grandfather had just written a book about the local history of his town and was selling them to his friends and local bookstores. I still remember he offered to pay me a small commission for every book I helped him sell because I was carrying the books around for him. Every sale he made was face to face with his customers which allowed him to share his excitement for the book with everyone. In today’s modern world there is less and less human interaction as the use of computers and other technologies allow us to communicate within seconds even though both parties may be across the globe or just next door. That being said, customers view a company through multiple access points called faces that represent the ability to interact without actually seeing a human face. As a software engineer this is a good and a bad thing because direct human interaction and technology based interaction have both good and bad attributes based on the customer. How organizations coordinate business and IT functions, to provide quality service varies based on each individual business and the goals and directives put in place by its management. According to Rayport and Jaworski, the type of interaction used through a particular access point may lend itself to be people-dominate, machine-dominate, or a combination of both. The method by which a company communicates information through an access point is a strategic choice that relates costs and customer outcomes. To simplify this, the choice is based on what can give the customer the best experience interacting with the company when the cost of the interaction is also a factor. I personally see examples of this every day at work. The company website is machine-dominate with people updating and maintaining information, our groups department is people dominate because most of the customer interaction is done at the customers location and is backed up by machine based data sources, and our sales/member service department is a hybrid because employees work in tandem with machines in order for them to assist customers with signing up or any other issue they may have. The positive and negative aspects of human and machine interfaces are a key aspect in deciding which interface to use when allowing customers to access a company or a combination of the two. Rayport and Jaworski also used MIT professor Erik Brynjolfsson preliminary catalog of human and machine strengths. He stated that humans outperform machines in judgment, pattern recognition, exception processing, insight, and creativity. I have found this to be true based on the example of how sales and member service reps at my company handle a multitude of questions and various situations with a lot of unknown variables. A machine interface could never effectively be able to handle these scenarios because there are too many variables to consider and would not have the built-in logic to process each customer’s claims and needs. In addition, he also stated that machines outperform humans in collecting, storing, transmitting and routine processing. An example of this would be my employer’s website. Customers can simply go online and purchase a product without even talking to a sales or member services representative. The information is then stored in a database so that the customer can always go back and review there order, and access their selected services. A human, no matter how smart they are would never be able to keep track of hundreds of thousands of customers let alone know what they purchased or how much they paid. In today’s technology driven economy every company must offer their customers multiple methods of accessibly in order to survive. The more of an opportunity a company has to create a positive experience for their customers, in my opinion, they more likely the customer will return to that company again. I have noticed this with my personal shopping habits and experiences. References Rayport, J., & Jaworski, B. (2004). Best Face Forward. Harvard Business Review, 82(12), 47-58. Retrieved from Business Source Complete database.

    Read the article

  • ROracle support for TimesTen In-Memory Database

    - by Sherry LaMonica
    Today's guest post comes from Jason Feldhaus, a Consulting Member of Technical Staff in the TimesTen Database organization at Oracle.  He shares with us a sample session using ROracle with the TimesTen In-Memory database.  Beginning in version 1.1-4, ROracle includes support for the Oracle Times Ten In-Memory Database, version 11.2.2. TimesTen is a relational database providing very fast and high throughput through its memory-centric architecture.  TimesTen is designed for low latency, high-volume data, and event and transaction management. A TimesTen database resides entirely in memory, so no disk I/O is required for transactions and query operations. TimesTen is used in applications requiring very fast and predictable response time, such as real-time financial services trading applications and large web applications. TimesTen can be used as the database of record or as a relational cache database to Oracle Database. ROracle provides an interface between R and the database, providing the rich functionality of the R statistical programming environment using the SQL query language. ROracle uses the OCI libraries to handle database connections, providing much better performance than standard ODBC.The latest ROracle enhancements include: Support for Oracle TimesTen In-Memory Database Support for Date-Time using R's POSIXct/POSIXlt data types RAW, BLOB and BFILE data type support Option to specify number of rows per fetch operation Option to prefetch LOB data Break support using Ctrl-C Statement caching support Times Ten 11.2.2 contains enhanced support for analytics workloads and complex queries: Analytic functions: AVG, SUM, COUNT, MAX, MIN, DENSE_RANK, RANK, ROW_NUMBER, FIRST_VALUE and LAST_VALUE Analytic clauses: OVER PARTITION BY and OVER ORDER BY Multidimensional grouping operators: Grouping clauses: GROUP BY CUBE, GROUP BY ROLLUP, GROUP BY GROUPING SETS Grouping functions: GROUP, GROUPING_ID, GROUP_ID WITH clause, which allows repeated references to a named subquery block Aggregate expressions over DISTINCT expressions General expressions that return a character string in the source or a pattern within the LIKE predicate Ability to order nulls first or last in a sort result (NULLS FIRST or NULLS LAST in the ORDER BY clause) Note: Some functionality is only available with Oracle Exalytics, refer to the TimesTen product licensing document for details. Connecting to TimesTen is easy with ROracle. Simply install and load the ROracle package and load the driver. > install.packages("ROracle") > library(ROracle) Loading required package: DBI > drv <- dbDriver("Oracle") Once the ROracle package is installed, create a database connection object and connect to a TimesTen direct driver DSN as the OS user. > conn <- dbConnect(drv, username ="", password="", dbname = "localhost/SampleDb_1122:timesten_direct") You have the option to report the server type - Oracle or TimesTen? > print (paste ("Server type =", dbGetInfo (conn)$serverType)) [1] "Server type = TimesTen IMDB" To create tables in the database using R data frame objects, use the function dbWriteTable. In the following example we write the built-in iris data frame to TimesTen. The iris data set is a small example data set containing 150 rows and 5 columns. We include it here not to highlight performance, but so users can easily run this example in their R session. > dbWriteTable (conn, "IRIS", iris, overwrite=TRUE, ora.number=FALSE) [1] TRUE Verify that the newly created IRIS table is available in the database. To list the available tables and table columns in the database, use dbListTables and dbListFields, respectively. > dbListTables (conn) [1] "IRIS" > dbListFields (conn, "IRIS") [1] "SEPAL.LENGTH" "SEPAL.WIDTH" "PETAL.LENGTH" "PETAL.WIDTH" "SPECIES" To retrieve a summary of the data from the database we need to save the results to a local object. The following call saves the results of the query as a local R object, iris.summary. The ROracle function dbGetQuery is used to execute an arbitrary SQL statement against the database. When connected to TimesTen, the SQL statement is processed completely within main memory for the fastest response time. > iris.summary <- dbGetQuery(conn, 'SELECT SPECIES, AVG ("SEPAL.LENGTH") AS AVG_SLENGTH, AVG ("SEPAL.WIDTH") AS AVG_SWIDTH, AVG ("PETAL.LENGTH") AS AVG_PLENGTH, AVG ("PETAL.WIDTH") AS AVG_PWIDTH FROM IRIS GROUP BY ROLLUP (SPECIES)') > iris.summary SPECIES AVG_SLENGTH AVG_SWIDTH AVG_PLENGTH AVG_PWIDTH 1 setosa 5.006000 3.428000 1.462 0.246000 2 versicolor 5.936000 2.770000 4.260 1.326000 3 virginica 6.588000 2.974000 5.552 2.026000 4 <NA> 5.843333 3.057333 3.758 1.199333 Finally, disconnect from the TimesTen Database. > dbCommit (conn) [1] TRUE > dbDisconnect (conn) [1] TRUE We encourage you download Oracle software for evaluation from the Oracle Technology Network. See these links for our software: Times Ten In-Memory Database,  ROracle.  As always, we welcome comments and questions on the TimesTen and  Oracle R technical forums.

    Read the article

  • Right-Time Retail Part 2

    - by David Dorf
    This is part two of the three-part series. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Right-Time Integration Of course these real-time enabling technologies are only as good as the systems that utilize them, and it only takes one bottleneck to slow everyone else down. What good is an immediate stock-out notification if the supply chain can’t react until tomorrow? Since being formed in 2006, Oracle Retail has been not only adding more integrations between systems, but also modernizing integrations for appropriate speed. Notice I tossed in the word “appropriate.” Not everything needs to be real-time – again, we’re talking about Right-Time Retail. The speed of data capture, analysis, and execution must be synchronized or you’re wasting effort. Unfortunately, there isn’t an enterprise-wide dial that you can crank-up for your estate. You’ll need to improve things piecemeal, with people and processes as limiting factors while choosing the appropriate types of integrations. There are three integration styles we see in the retail industry. First is batch. I know, the word “batch” just sounds slow, but this pattern is less about velocity and more about volume. When there are large amounts of data to be moved, you’ll want to use batch processes. Our technology of choice here is Oracle Data Integrator (ODI), which provides a fast version of Extract-Transform-Load (ETL). Instead of the three-step process, the load and transform steps are combined to save time. ODI is a key technology for moving data into Retail Analytics where we can apply science. Performing analytics on each sale as it occurs doesn’t make any sense, so we batch up a statistically significant amount and submit all at once. The second style is fire-and-forget. For some types of data, we want the data to arrive ASAP but immediacy is not necessary. Speed is less important than guaranteed delivery, so we use message-oriented middleware available in both Weblogic and the Oracle database. For example, Point-of-Service transactions are queued for delivery to Central Office at corporate. If the network is offline, those transactions remain in the queue and will be delivered when the network returns. Transactions cannot be lost and they must be delivered in order. (Ever tried processing a return before the sale?) To enhance the standard queues, we offer the Retail Integration Bus (RIB) to help the management and monitoring of fire-and-forget messaging in the enterprise. The third style is request-response and is most commonly implemented as Web services. This is a synchronous message where the sender waits for a response. In this situation, the volume of data is small, guaranteed delivery is not necessary, but speed is very important. Examples include the website checking inventory, a price lookup, or processing a credit card authorization. The Oracle Service Bus (OSB) typically handles the routing of such messages, and we’ve enhanced its abilities with the Retail Service Backbone (RSB). To better understand these integration patterns and where they apply within the retail enterprise, we’re providing the Retail Reference Library (RRL) at no charge to Oracle Retail customers. The library is composed of a large number of industry business processes, including those necessary to support Commerce Anywhere, as well as detailed architectural diagrams. These diagrams allow implementers to understand the systems involved in integrations and the specific data payloads. Furthermore, with our upcoming release we’ll be providing a new tool called the Retail Integration Console (RIC) that allows IT to monitor and manage integrations from a single point. Using RIC, retailers can quickly discern where integration activity is occurring, volume statistics, average response times, and errors. The dashboards provide the ability to dive down into the architecture documentation to gather information all the way down to the specific payload. Retailers that want real-time integrations will also need real-time monitoring of those integrations to ensure service-level agreements are maintained. Part 3 looks at marketing.

    Read the article

  • ADF Reusable Artefacts

    - by Arda Eralp
    Primary reusable ADF Business Component: Entity Objects (EOs) View Objects (VOs) Application Modules (AMs) Framework Extensions Classes Primary reusable ADF Controller: Bounded Task Flows (BTFs) Task Flow Templates Primary reusable ADF Faces: Page Templates Skins Declarative Components Utility Classes Certain components will often be used more than once. Whether the reuse happens within the same application, or across different applications, it is often advantageous to package these reusable components into a library that can be shared between different developers, across different teams, and even across departments within an organization. In the world of Java object-oriented programming, reusing classes and objects is just standard procedure. With the introduction of the model-view-controller (MVC) architecture, applications can be further modularized into separate model, view, and controller layers. By separating the data (model and business services layers) from the presentation (view and controller layers), you ensure that changes to any one layer do not affect the integrity of the other layers. You can change business logic without having to change the UI, or redesign the web pages or front end without having to recode domain logic. Oracle ADF and JDeveloper support the MVC design pattern. When you create an application in JDeveloper, you can choose many application templates that automatically set up data model and user interface projects. Because the different MVC layers are decoupled from each other, development can proceed on different projects in parallel and with a certain amount of independence. ADF Library further extends this modularity of design by providing a convenient and practical way to create, deploy, and reuse high-level components. When you first design your application, you design it with component reusability in mind. If you created components that can be reused, you can package them into JAR files and add them to a reusable component repository. If you need a component, you may look into the repository for those components and then add them into your project or application. For example, you can create an application module for a domain and package it to be used as the data model project in several different applications. Or, if your application will be consuming components, you may be able to load a page template component from a repository of ADF Library JARs to create common look and feel pages. Then you can put your page flow together by stringing together several task flow components pulled from the library. An ADF Library JAR contains ADF components and does not, and cannot, contain other JARs. It should not be confused with the JDeveloper library, Java EE library, or Oracle WebLogic shared library. Reusable Component Description Data Control Any data control can be packaged into an ADF Library JAR. Some of the data controls supported by Oracle ADF include application modules, Enterprise JavaBeans, web services, URL services, JavaBeans, and placeholder data controls. Application Module When you are using ADF Business Components and you generate an application module, an associated application module data control is also generated. When you package an application module data control, you also package up the ADF Business Components associated with that application module. The relevant entity objects, view objects, and associations will be a part of the ADF Library JAR and available for reuse. Business Components Business components are the entity objects, view objects, and associations used in the ADF Business Components data model project. You can package business components by themselves or together with an application module. Task Flows & Task Flow Templates Task flows can be packaged into an ADF Library JAR for reuse. If you drop a bounded task flow that uses page fragments, JDeveloper adds a region to the page and binds it to the dropped task flow. ADF bounded task flows built using pages can be dropped onto pages. The drop will create a link to call the bounded task flow. A task flow call activity and control flow will automatically be added to the task flow, with the view activity referencing the page. If there is more than one existing task flow with a view activity referencing the page, it will prompt you to select the one to automatically add a task flow call activity and control flow. If an ADF task flow template was created in the same project as the task flow, the ADF task flow template will be included in the ADF Library JAR and will be reusable. Page Templates You can package a page template and its artifacts into an ADF Library JAR. If the template uses image files and they are included in a directory within your project, these files will also be available for the template during reuse. Declarative Components You can create declarative components and package them for reuse. The tag libraries associated with the component will be included and loaded into the consuming project. You can also package up projects that have several different reusable components if you expect that more than one component will be consumed. For example, you can create a project that has both an application module and a bounded task flow. When this ADF Library JAR file is consumed, the application will have both the application module and the task flow available for use. You can package multiple components into one JAR file, or you can package a single component into a JAR file. Oracle ADF and JDeveloper give you the option and flexibility to create reusable components that best suit you and your organization. You create a reusable component by using JDeveloper to package and deploy the project that contains the components into a ADF Library JAR file. You use the components by adding that JAR to the consuming project. At design time, the JAR is added to the consuming project's class path and so is available for reuse. At runtime, the reused component runs from the JAR file by reference.

    Read the article

  • jQuery Templates, Data Link

    - by Renso
    Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Query Templates, Data Link, and Globalization I am sure you must have read Scott Guthrie’s blog post about jQuery support and officially supporting jQuery's templating, data linking and globalization, if not here it is: jQuery Templating Since we are an open source shop and use jQuery and jQuery plugins extensively to say the least, decided to look into the templating a bit and see what data linking is all about. For those not familiar with those terms here is the summary, plenty of material out there on what it is, but here is what in my experience it means: jQuery Templating: A templating engine that allows you to specify a client-side template where you indicate which properties/tags you want dynamically updated. You in a sense specify which parts of the html is dynamic and since it is pluggable you are able to use tools data jQuery data linking and others to let it sync up your template with data. What makes it more powerful is that you can easily work with rows of data, adding and removing rows. Once the template has been generated, which you do dynamically on a client-side event, you then append/inject the resulting template somewhere in your DOM, like for example you would get a JSON object from the database, map it to your template, it populates the template with your data in the indicated places, and then let’s say for example append it to a row in a table. I have not found it that useful for lets say a single record of data since you could easily just get a partial view from the server via an html type ajax call. It really shines when you dynamically add/remove rows from a list in the DOM. I have not found an alternative that meets the functionality of the jQuery template and helps of course that Microsoft officially supports it. In future versions of the jQuery plug-in it may even ship as part of the standard jQuery library and with future versions of Visual Studio. jQuery Data Linking: In short I was fascinated by it initially by how with one line of code I can sync up my JSON object with my form elements. That's where my enthusiasm stopped. It was one-line to let is deal with syncing up your form with your JSON object, but it is not bidirectional as they state and I tried all the work arounds they suggested and none of them work. The problem is that when you update your JSON object it DOES NOT sync it up with your form. In an example, accounts are being edited client side by selecting the account from a list by clicking on the row, it then fetches the entire account JSON object via ajax json-type call and then refreshes the form with the account’s details from the new JSON object. What is the use of syncing up my JSON with the form if I still have to programmatically sync up my new JSON object with each DOM property?! So you may ask: “what is the alternative”? Good question and the same one I was pondering, maybe I can just use it for keeping my from n sync with my JSON object so I can post that JSON object back to the server and update my database. That’s when I discovered Knockout: Knockout It addresses the issues mentioned above and also supports event handling through the observer pattern. Not wanting to go into detail here, Steve Sanderson, the creator of Knockout, has already done a terrific job of that, thanks Steve for a great plug-in! Best of all it integrates perfectly with the jQuery Templating engine as well. I have not found an alternative to this plugin that supports the depth and width of functionality and would recommend it to anyone. The only drawback is the embedded html attributes (data-bind=””) tags that you have to add to the HTML, in my opinion tying your behavior to your HTML, where I like to separate behavior from HTML as well as CSS, so the HTML is purely to define content, not styling or behavior. But there are plusses to this as well and also a nifty work around to this that I will just shortly mention here with an example. Instead of data binding an html tag with knockout event handling like so:  <%=Html.TextBox("PrepayDiscount", String.Empty, new { @class = "number" })%>   Do: <%=Html.DataBoundTextBox("PrepayDiscount", String.Empty, new { @class = "number" })%>   The html extension above then takes care of the internals and you could then swap Knockout for something else if you want to inside the extension and keep the HTML plugin agnostic. Here is what the extension looks like, you can easily build a whole library to support all kinds of data binding options from this:      public static class HtmlExtensions       {         public static MvcHtmlString DataBoundTextBox(this HtmlHelper helper, string name, object value, object htmlAttributes)         {             var dic = new RouteValueDictionary(htmlAttributes);             dic.Add("data-bind", String.Format("value: {0}", name));             return helper.TextBox(name, value, dic);         }       }   Hope this helps in making a decision when and where to consider jQuery templating, data linking and Knockout.

    Read the article

  • Speakers, Please Check Your Time

    - by AjarnMark
    Woodrow Wilson was once asked how long it would take him to prepare for a 10 minute speech. He replied "Two weeks". He was then asked how long it would take for a 1 hour speech. "One week", he replied. 2 hour speech? "I'm ready right now," he replied.  Whether that is a true story or an urban legend, I don’t really know, but either way, it is a poignant reminder for all speakers, and particularly apropos this week leading up to the PASS Community Summit. (Cross-posted to the PASS Professional Development Virtual Chapter blog #PASSProfDev.) What’s the point of that story?  Simply this…if you have plenty of time to do your presentation, you don’t need to prepare much because it is easy to throw in more and more material to stretch out to your allotted time.  But if you are on a tight time constraint, then it will take significant preparation to distill your talk down to only the essential points. I have attended seven of the last eight North American Summit events, and every one of them has been fantastic.  The speakers are great, the material is timely and relevant, and the networking opportunities are awesome.  And every year, there is one little thing that just bugs me…speakers going over their allotted time.  Why does it bother me so?  Well, if you look at a typical schedule for a Summit, you’ll see that there are six or more sessions going on at the same time, and only 15 minutes to move from one to another.  If you’re trying to maximize your training dollar by attending something during every session time slot, and you don’t want to be the last guy trying to squeeze into the middle of the row, then those 15 minutes can be critical.  All the more so if you need to stop and use the bathroom or if you have to hike to the opposite end of the convention center.  It is really a bad position to find yourself having to choose between learning the last key points of Speaker A who is going over time, and getting over to Speaker B on time so you don’t miss her key opening remarks. And frankly, I think it is just rude.  Yes, the speakers are the function, after all they are bringing the content that the rest of us are paying to learn.  But it is also an honor to be given the opportunity to speak at a conference like this, and no one speaker is so important that the conference would be a disaster without him.  Speakers know when they submit their abstract, long before the conference, how much time they will have.  It has been the same pattern at the Summit for at least the last eight years.  Program Sessions are 75 minutes long.  Some speakers who have a good track record, and meet other qualifying criteria, are extended an invitation to present a Spotlight Session which is 90 minutes (a 20% increase).  So there really is no excuse.  It’s not like you were promised a 2-hour segment and then discovered when you got here that it was only 75 minutes.  In fact, it’s not like PASS advertised 90-minute sessions for everyone and then a select few were cut back to only 75.  As a speaker, you know well before you get here which type of session you are doing and how long it is, so as a professional, you should plan accordingly. Now you might think that this only happens to rookies, but I’ll tell you that some of the worst offenders are big-name veterans who draw huge attendance numbers for their sessions.  Some attendees blow this off as, “Hey, it’s so-and-so, and I’d stay here for hours and listen to him/her talk.”  To which I would reply, “Then they should have submitted for a pre- or post-conference day-long seminar instead, but don’t try to squeeze your day-long talk into a 90-minute session.”  Now I don’t really believe that these speakers are being malicious or just selfishly trying to extend their time in the spotlight.  I think that most of them are merely being undisciplined and did not trim their presentation sufficiently, or allowed themselves to get off-track (often in a generous attempt to help someone in the audience with a question or problem that really should have been noted for further discussion after the session). So here is my recommendation…my plea, even.  TRIM THE FAT!  Now.  Before it’s too late.  Before you even get on the airplane, take a long, hard look at your presentation and eliminate some of the points that you originally thought you had to make, but in reality are not truly crucial to your main topic.  Delete a few slides.  Test your demos and have them already scripted rather than typing them during your talk.  It is better to cut out too much and end up with plenty of time at the end for Questions & Answers.  And you can always keep some notes on the stuff that you cut out so that you could fill it back in at the end as bonus material if you really do end up with a whole bunch of time on your hands.  But I don’t think you will.  And if you do, that will look even better to the audience as it will look like you’re giving them something extra that not every audience gets.  And they will thank you for that.

    Read the article

  • BizTalk 2009 - Custom Functoid Wizard

    - by StuartBrierley
    When creating BizTalk maps you may find that there are times when you need perform tasks that the standard functoids do not cover.  At other times you may find yourself reapeating a pattern of standard functoids over and over again, adding visual complexity to an otherwise simple process.  In these cases you may find it preferable to create your own custom functoids.  In the past I have created a number of custom functoids from scratch, but recently I decided to try out the Custom Functoid Wizard for BizTalk 2009. After downloading and installing the wizard you should start Visual Studio and select to create a new BizTalk Server Functoid Project. Following the splash screen you will be presented with the General Properties screen, where you can set the classname, namespace, assembly name and strong name key file. The next screen is the first set of properties for the functoid.  First of all is the fuctoid ID; this must be a value above 6000. You should also then set the name, tooltip and description of the functoid.  The name will appear in the visual studio toolbox and the tooltip on hover over in the toolbox.  The descrition will be shown when you configure the functoid inputs when using it in a map; as such it should provide a decent level of information to allow the functoid to be used. Next you must set the category, exception mesage, icon and implementation language.  The category will affect the positioning of the functoid within the toolbox and also some of the behaviours of the functoid. We must then define the parameters and connections for our new functoid.  Here you can define the names and types of your input parameters along with the minimum and maximum number of input connections.  You will also need to define the types of connections accepted and the output type of the functoid. Finally you can click finish and your custom functoid project will be created. The results of this process can be seen in the solution explorer, where you will see that a project, functoid class file and a resource file have been created for you. If you open the class file you will see that the following code has been created for you: The "base" function sets all the properties that you previsouly detailed in the custom functoid wizard.  public TestFunctoids():base()  {    int functoidID;    // This has to be a number greater than 6000    functoidID = System.Convert.ToInt32(resmgr.GetString("FunctoidId"));    this.ID = functoidID;    // Set Resource strings, bitmaps    SetupResourceAssembly(ResourceName, Assembly.GetExecutingAssembly());    SetName("FunctoidName");                     SetTooltip("FunctoidToolTip");    SetDescription("FunctoidDescription");    SetBitmap("FunctoidBitmap");    // Minimum and maximum parameters that the functoid accepts    this.SetMinParams(2);    this.SetMaxParams(2);    /// Function name that needs to be called when this Functoid is invoked.    /// Put this in GAC.    SetExternalFunctionName(GetType().Assembly.FullName,     "MyCompany.BizTalk.Functoids.TestFuntoids.TestFunctoids", "Execute");    // Category for this functoid.    this.Category = FunctoidCategory.String;    // Input and output Connection type    this.OutputConnectionType = ConnectionType.AllExceptRecord;    AddInputConnectionType(ConnectionType.AllExceptRecord);   } The "Execute" function provides a skeleton function that contains the code to be executed by your new functoid.  The inputs and outputs should match those you defined in the Custom Functoid Wizard.   public System.Int32 Execute(System.Int32 Cool)   {    ResourceManager resmgr = new ResourceManager(ResourceName, Assembly.GetExecutingAssembly());    try    {     // TODO: Implement Functoid Logic    }    catch (Exception e)    {     throw new Exception(resmgr.GetString("FunctoidException"), e);    }   } Opening the resource file you will see some of the various string values that you defined in the Custom Functoid Wizard - Name, Tooltip, Description and Exception. You can also select to look at the image resources.  This will display the embedded icon image for the functoid.  To change this right click the icon and select "Import from File". Once you have completed the skeleton code you can then look at trying out your functoid. To do this you will need to build the project, copy the compiled DLL to C:\Program Files\Microsoft BizTalk Server 2009\Developer Tools\Mapper Extensions and then refresh the toolbox in visual studio.

    Read the article

  • Proxied calls not working as expected

    - by AndyH
    I have been modifying an application to have a cleaner client/server split to allow for load splitting and resource sharing etc. Everything is written to an interface so it was easy to add a remoting layer to the interface using a proxy. Everything worked fine. The next phase was to add a caching layer to the interface and again this worked fine and speed was improved but not as much as I would have expected. On inspection it became very clear what was going on. I feel sure that this behavior has been seen many times before and there is probably a design pattern to solve the problem but it eludes me and I'm not even sure how to describe it. It is easiest explained with an example. Let's imagine the interface is interface IMyCode { List<IThing> getLots( List<String> ); IThing getOne( String id ); } The getLots() method calls getOne() and fills up the list before returning. The interface is implemented at the client which is proxied to a remoting client which then calls the remoting server which in turn calls the implementation at the server. At the client and the server layers there is also a cache. So we have :- Client interface | Client cache | Remote client | Remote server | Server cache | Server interface If we call getOne("A") at the client interface, the call is passed to the client cache which faults. This then calls the remote client which passes the call to the remote server. This then calls the server cache which also faults and so the call is eventually passed to the server interface which actually gets the IThing. In turn the server cache is filled and finally the client cache also. If getOne("A") is again called at the client interface the client cache has the data and it gets returned immediately. If a second client called getOne("B") it would fill the server cache with "B" as well as it's own client cache. Then, when the first client calls getOne("B") the client cache faults but the server cache has the data. This is all as one would expect and works well. Now lets call getLots( [ "C", "D" ] ). This works as you would expect by calling getOne() twice but there is a subtlety here. The call to getLots() cannot directly make use of the cache. Therefore the sequence is to call the client interface which in turn calls the remote client, then the remote server and eventually the server interface. This then calls getOne() to fill the list before returning. The problem is that the getOne() calls are being satisfied at the server when ideally they should be satisfied at the client. If you imagine that the client/server link is really slow then it becomes clear why the client call is more efficient than the server call once the client cache has the data. This example is contrived to illustrate the point. The more general problem is that you cannot just keep adding proxied layers to an interface and expect it to work as you would imagine. As soon as the call goes 'through' the proxy any subsequent calls are on the proxied side rather than 'self' side. Have I failed to learn or not learned something correctly? All this is implemented in Java and I haven't used EJBs. It seems that the example may be confusing. The problem is nothing to do with cache efficiencies. It is more to do with an illusion created by the use of proxies or AOP techniques in general. When you have an object whose class implements an interface there is an assumption that a call on that object might make further calls on that same object. For example, public String getInternalString() { return InetAddress.getLocalHost().toString(); } public String getString() { return getInternalString(); } If you get an object and call getString() the result depends where the code is running. If you add a remoting proxy to the class then the result could be different for calls to getString() and getInternalString() on the same object. This is because the initial call gets 'deproxied' before the actual method is called. I find this not only confusing but I wonder how I can control this behavior especially as the use of the proxy may be by a third party. The concept is fine but the practice is certainly not what I expected. Have I missed the point somewhere?

    Read the article

  • Modifying the SL/WIF Integration Bits to support Issued Token Credentials

    - by Your DisplayName here!
    The SL/WIF integration code that ships with the Identity Training Kit only supports Windows and UserName credentials to request tokens from an STS. This is fine for simple single STS scenarios (like a single IdP). But the more common pattern for claims/token based systems is to split the STS roles into an IdP and a Resource STS (or whatever you wanna call it). In this case, the 2nd leg requires to present the issued token from the 1st leg – this is not directly supported by the bits. But they can be easily modified to accomplish this. The Credential Fist we need a class that represents an issued token credential. Here we store the RSTR that got returned from the client to IdP request: public class IssuedTokenCredentials : IRequestCredentials {     public string IssuedToken { get; set; }     public RequestSecurityTokenResponse RSTR { get; set; }     public IssuedTokenCredentials(RequestSecurityTokenResponse rstr)     {         RSTR = rstr;         IssuedToken = rstr.RequestedSecurityToken.RawToken;     } } The Binding Next we need a binding to be used with issued token credential requests. This assumes you have an STS endpoint for mixed mode security with SecureConversation turned off. public class WSTrustBindingIssuedTokenMixed : WSTrustBinding {     public WSTrustBindingIssuedTokenMixed()     {         this.Elements.Add( new HttpsTransportBindingElement() );     } } WSTrustClient The last step is to make some modifications to WSTrustClient to make it issued token aware. In the constructor you have to check for the credential type, and if it is an issued token, store it away. private RequestSecurityTokenResponse _rstr; public WSTrustClient( Binding binding, EndpointAddress remoteAddress, IRequestCredentials credentials )     : base( binding, remoteAddress ) {     if ( null == credentials )     {         throw new ArgumentNullException( "credentials" );     }     if (credentials is UsernameCredentials)     {         UsernameCredentials usernname = credentials as UsernameCredentials;         base.ChannelFactory.Credentials.UserName.UserName = usernname.Username;         base.ChannelFactory.Credentials.UserName.Password = usernname.Password;     }     else if (credentials is IssuedTokenCredentials)     {         var issuedToken = credentials as IssuedTokenCredentials;         _rstr = issuedToken.RSTR;     }     else if (credentials is WindowsCredentials)     { }     else     {         throw new ArgumentOutOfRangeException("credentials", "type was not expected");     } } Next – when WSTrustClient constructs the RST message to the STS, the issued token header must be embedded when needed: private Message BuildRequestAsMessage( RequestSecurityToken request ) {     var message = Message.CreateMessage( base.Endpoint.Binding.MessageVersion ?? MessageVersion.Default,       IssueAction,       (BodyWriter) new WSTrustRequestBodyWriter( request ) );     if (_rstr != null)     {         message.Headers.Add(new IssuedTokenHeader(_rstr));     }     return message; } HTH

    Read the article

  • Coherence Data Guarantees for Data Reads - Basic Terminology

    - by jpurdy
    When integrating Coherence into applications, each application has its own set of requirements with respect to data integrity guarantees. Developers often describe these requirements using expressions like "avoiding dirty reads" or "making sure that updates are transactional", but we often find that even in a small group of people, there may be a wide range of opinions as to what these terms mean. This may simply be due to a lack of familiarity, but given that Coherence sits at an intersection of several (mostly) unrelated fields, it may be a matter of conflicting vocabularies (e.g. "consistency" is similar but different in transaction processing versus multi-threaded programming). Since almost all data read consistency issues are related to the concept of concurrency, it is helpful to start with a definition of that, or rather what it means for two operations to be concurrent. Rather than implying that they occur "at the same time", concurrency is a slightly weaker statement -- it simply means that it can't be proven that one event precedes (or follows) the other. As an example, in a Coherence application, if two client members mutate two different cache entries sitting on two different cache servers at roughly the same time, it is likely that one update will precede the other by a significant amount of time (say 0.1ms). However, since there is no guarantee that all four members have their clocks perfectly synchronized, and there is no way to precisely measure the time it takes to send a given message between any two members (that have differing clocks), we consider these to be concurrent operations since we can not (easily) prove otherwise. So this leads to a question that we hear quite frequently: "Are the contents of the near cache always synchronized with the underlying distributed cache?". It's easy to see that if an update on a cache server results in a message being sent to each near cache, and then that near cache being updated that there is a window where the contents are different. However, this is irrelevant, since even if the application reads directly from the distributed cache, another thread update the cache before the read is returned to the application. Even if no other member modifies a cache entry prior to the local near cache entry being updated (and subsequently read), the purpose of reading a cache entry is to do something with the result, usually either displaying for consumption by a human, or by updating the entry based on the current state of the entry. In the former case, it's clear that if the data is updated faster than a human can perceive, then there is no problem (and in many cases this can be relaxed even further). For the latter case, the application must assume that the value might potentially be updated before it has a chance to update it. This almost aways the case with read-only caches, and the solution is the traditional optimistic transaction pattern, which requires the application to explicitly state what assumptions it made about the old value of the cache entry. If the application doesn't want to bother stating those assumptions, it is free to lock the cache entry prior to reading it, ensuring that no other threads will mutate the entry, a pessimistic approach. The optimistic approach relies on what is sometimes called a "fuzzy read". In other words, the application assumes that the read should be correct, but it also acknowledges that it might not be. (I use the qualifier "sometimes" because in some writings, "fuzzy read" indicates the situation where the application actually sees an original value and then later sees an updated value within the same transaction -- however, both definitions are roughly equivalent from an application design perspective). If the read is not correct it is called a "stale read". Going back to the definition of concurrency, it may seem difficult to precisely define a stale read, but the practical way of detecting a stale read is that is will cause the encompassing transaction to roll back if it tries to update that value. The pessimistic approach relies on a "coherent read", a guarantee that the value returned is not only the same as the primary copy of that value, but also that it will remain that way. In most cases this can be used interchangeably with "repeatable read" (though that term has additional implications when used in the context of a database system). In none of cases above is it possible for the application to perform a "dirty read". A dirty read occurs when the application reads a piece of data that was never committed. In practice the only way this can occur is with multi-phase updates such as transactions, where a value may be temporarily update but then withdrawn when a transaction is rolled back. If another thread sees that value prior to the rollback, it is a dirty read. If an application uses optimistic transactions, dirty reads will merely result in a lack of forward progress (this is actually one of the main risks of dirty reads -- they can be chained and potentially cause cascading rollbacks). The concepts of dirty reads, fuzzy reads, stale reads and coherent reads are able to describe the vast majority of requirements that we see in the field. However, the important thing is to define the terms used to define requirements. A quick web search for each of the terms in this article will show multiple meanings, so I've selected what are generally the most common variations, but it never hurts to state each definition explicitly if they are critical to the success of a project (many applications have sufficiently loose requirements that precise terminology can be avoided).

    Read the article

  • Cloud Computing Forces Better Design Practices

    - by Herve Roggero
    Is cloud computing simply different than on premise development, or is cloud computing actually forcing you to create better applications than you normally would? In other words, is cloud computing merely imposing different design principles, or forcing better design principles?  A little while back I got into a discussion with a developer in which I was arguing that cloud computing, and specifically Windows Azure in his case, was forcing developers to adopt better design principles. His opinion was that cloud computing was not yielding better systems; just different systems. In this blog, I will argue that cloud computing does force developers to use better design practices, and hence better applications. So the first thing to define, of course, is the word “better”, in the context of application development. Looking at a few definitions online, better means “superior quality”. As it relates to this discussion then, I stipulate that cloud computing can yield higher quality applications in terms of scalability, everything else being equal. Before going further I need to also outline the difference between performance and scalability. Performance and scalability are two related concepts, but they don’t mean the same thing. Scalability is the measure of system performance given various loads. So when developers design for performance, they usually give higher priority to a given load and tend to optimize for the given load. When developers design for scalability, the actual performance at a given load is not as important; the ability to ensure reasonable performance regardless of the load becomes the objective. This can lead to very different design choices. For example, if your objective is to obtains the fastest response time possible for a service you are building, you may choose the implement a TCP connection that never closes until the client chooses to close the connection (in other words, a tightly coupled service from a connectivity standpoint), and on which a connection session is established for faster processing on the next request (like SQL Server or other database systems for example). If you objective is to scale, you may implement a service that answers to requests without keeping session state, so that server resources are released as quickly as possible, like a REST service for example. This alternate design would likely have a slower response time than the TCP service for any given load, but would continue to function at very large loads because of its inherently loosely coupled design. An example of a REST service is the NO-SQL implementation in the Microsoft cloud called Azure Tables. Now, back to cloud computing… Cloud computing is designed to help you scale your applications, specifically when you use Platform as a Service (PaaS) offerings. However it’s not automatic. You can design a tightly-coupled TCP service as discussed above, and as you can imagine, it probably won’t scale even if you place the service in the cloud because it isn’t using a connection pattern that will allow it to scale [note: I am not implying that all TCP systems do not scale; I am just illustrating the scalability concepts with an imaginary TCP service that isn’t designed to scale for the purpose of this discussion]. The other service, using REST, will have a better chance to scale because, by design, it minimizes resource consumption for individual requests and doesn’t tie a client connection to a specific endpoint (which means you can easily deploy this service to hundreds of machines without much trouble, as long as your pockets are deep enough). The TCP and REST services discussed above are both valid designs; the TCP service is faster and the REST service scales better. So is it fair to say that one service is fundamentally better than the other? No; not unless you need to scale. And if you don’t need to scale, then you don’t need the cloud in the first place. However, it is interesting to note that if you do need to scale, then a loosely coupled system becomes a better design because it can almost always scale better than a tightly-coupled system. And because most applications grow overtime, with an increasing user base, new functional requirements, increased data and so forth, most applications eventually do need to scale. So in my humble opinion, I conclude that a loosely coupled system is not just different than a tightly coupled system; it is a better design, because it will stand the test of time. And in my book, if a system stands the test of time better than another, it is of superior quality. Because cloud computing demands loosely coupled systems so that its underlying service architecture can be leveraged, developers ultimately have no choice but to design loosely coupled systems for the cloud. And because loosely coupled systems are better… … the cloud forces better design practices. My 2 cents.

    Read the article

  • How to Load Oracle Tables From Hadoop Tutorial (Part 5 - Leveraging Parallelism in OSCH)

    - by Bob Hanckel
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Using OSCH: Beyond Hello World In the previous post we discussed a “Hello World” example for OSCH focusing on the mechanics of getting a toy end-to-end example working. In this post we are going to talk about how to make it work for big data loads. We will explain how to optimize an OSCH external table for load, paying particular attention to Oracle’s DOP (degree of parallelism), the number of external table location files we use, and the number of HDFS files that make up the payload. We will provide some rules that serve as best practices when using OSCH. The assumption is that you have read the previous post and have some end to end OSCH external tables working and now you want to ramp up the size of the loads. Using OSCH External Tables for Access and Loading OSCH external tables are no different from any other Oracle external tables.  They can be used to access HDFS content using Oracle SQL: SELECT * FROM my_hdfs_external_table; or use the same SQL access to load a table in Oracle. INSERT INTO my_oracle_table SELECT * FROM my_hdfs_external_table; To speed up the load time, you will want to control the degree of parallelism (i.e. DOP) and add two SQL hints. ALTER SESSION FORCE PARALLEL DML PARALLEL  8; ALTER SESSION FORCE PARALLEL QUERY PARALLEL 8; INSERT /*+ append pq_distribute(my_oracle_table, none) */ INTO my_oracle_table SELECT * FROM my_hdfs_external_table; There are various ways of either hinting at what level of DOP you want to use.  The ALTER SESSION statements above force the issue assuming you (the user of the session) are allowed to assert the DOP (more on that in the next section).  Alternatively you could embed additional parallel hints directly into the INSERT and SELECT clause respectively. /*+ parallel(my_oracle_table,8) *//*+ parallel(my_hdfs_external_table,8) */ Note that the "append" hint lets you load a target table by reserving space above a given "high watermark" in storage and uses Direct Path load.  In other doesn't try to fill blocks that are already allocated and partially filled. It uses unallocated blocks.  It is an optimized way of loading a table without incurring the typical resource overhead associated with run-of-the-mill inserts.  The "pq_distribute" hint in this context unifies the INSERT and SELECT operators to make data flow during a load more efficient. Finally your target Oracle table should be defined with "NOLOGGING" and "PARALLEL" attributes.   The combination of the "NOLOGGING" and use of the "append" hint disables REDO logging, and its overhead.  The "PARALLEL" clause tells Oracle to try to use parallel execution when operating on the target table. Determine Your DOP It might feel natural to build your datasets in Hadoop, then afterwards figure out how to tune the OSCH external table definition, but you should start backwards. You should focus on Oracle database, specifically the DOP you want to use when loading (or accessing) HDFS content using external tables. The DOP in Oracle controls how many PQ slaves are launched in parallel when executing an external table. Typically the DOP is something you want to Oracle to control transparently, but for loading content from Hadoop with OSCH, it's something that you will want to control. Oracle computes the maximum DOP that can be used by an Oracle user. The maximum value that can be assigned is an integer value typically equal to the number of CPUs on your Oracle instances, times the number of cores per CPU, times the number of Oracle instances. For example, suppose you have a RAC environment with 2 Oracle instances. And suppose that each system has 2 CPUs with 32 cores. The maximum DOP would be 128 (i.e. 2*2*32). In point of fact if you are running on a production system, the maximum DOP you are allowed to use will be restricted by the Oracle DBA. This is because using a system maximum DOP can subsume all system resources on Oracle and starve anything else that is executing. Obviously on a production system where resources need to be shared 24x7, this can’t be allowed to happen. The use cases for being able to run OSCH with a maximum DOP are when you have exclusive access to all the resources on an Oracle system. This can be in situations when your are first seeding tables in a new Oracle database, or there is a time where normal activity in the production database can be safely taken off-line for a few hours to free up resources for a big incremental load. Using OSCH on high end machines (specifically Oracle Exadata and Oracle BDA cabled with Infiniband), this mode of operation can load up to 15TB per hour. The bottom line is that you should first figure out what DOP you will be allowed to run with by talking to the DBAs who manage the production system. You then use that number to derive the number of location files, and (optionally) the number of HDFS data files that you want to generate, assuming that is flexible. Rule 1: Find out the maximum DOP you will be allowed to use with OSCH on the target Oracle system Determining the Number of Location Files Let’s assume that the DBA told you that your maximum DOP was 8. You want the number of location files in your external table to be big enough to utilize all 8 PQ slaves, and you want them to represent equally balanced workloads. Remember location files in OSCH are metadata lists of HDFS files and are created using OSCH’s External Table tool. They also represent the workload size given to an individual Oracle PQ slave (i.e. a PQ slave is given one location file to process at a time, and only it will process the contents of the location file.) Rule 2: The size of the workload of a single location file (and the PQ slave that processes it) is the sum of the content size of the HDFS files it lists For example, if a location file lists 5 HDFS files which are each 100GB in size, the workload size for that location file is 500GB. The number of location files that you generate is something you control by providing a number as input to OSCH’s External Table tool. Rule 3: The number of location files chosen should be a small multiple of the DOP Each location file represents one workload for one PQ slave. So the goal is to keep all slaves busy and try to give them equivalent workloads. Obviously if you run with a DOP of 8 but have 5 location files, only five PQ slaves will have something to do and the other three will have nothing to do and will quietly exit. If you run with 9 location files, then the PQ slaves will pick up the first 8 location files, and assuming they have equal work loads, will finish up about the same time. But the first PQ slave to finish its job will then be rescheduled to process the ninth location file, potentially doubling the end to end processing time. So for this DOP using 8, 16, or 32 location files would be a good idea. Determining the Number of HDFS Files Let’s start with the next rule and then explain it: Rule 4: The number of HDFS files should try to be a multiple of the number of location files and try to be relatively the same size In our running example, the DOP is 8. This means that the number of location files should be a small multiple of 8. Remember that each location file represents a list of unique HDFS files to load, and that the sum of the files listed in each location file is a workload for one Oracle PQ slave. The OSCH External Table tool will look in an HDFS directory for a set of HDFS files to load.  It will generate N number of location files (where N is the value you gave to the tool). It will then try to divvy up the HDFS files and do its best to make sure the workload across location files is as balanced as possible. (The tool uses a greedy algorithm that grabs the biggest HDFS file and delegates it to a particular location file. It then looks for the next biggest file and puts in some other location file, and so on). The tools ability to balance is reduced if HDFS file sizes are grossly out of balance or are too few. For example suppose my DOP is 8 and the number of location files is 8. Suppose I have only 8 HDFS files, where one file is 900GB and the others are 100GB. When the tool tries to balance the load it will be forced to put the singleton 900GB into one location file, and put each of the 100GB files in the 7 remaining location files. The load balance skew is 9 to 1. One PQ slave will be working overtime, while the slacker PQ slaves are off enjoying happy hour. If however the total payload (1600 GB) were broken up into smaller HDFS files, the OSCH External Table tool would have an easier time generating a list where each workload for each location file is relatively the same.  Applying Rule 4 above to our DOP of 8, we could divide the workload into160 files that were approximately 10 GB in size.  For this scenario the OSCH External Table tool would populate each location file with 20 HDFS file references, and all location files would have similar workloads (approximately 200GB per location file.) As a rule, when the OSCH External Table tool has to deal with more and smaller files it will be able to create more balanced loads. How small should HDFS files get? Not so small that the HDFS open and close file overhead starts having a substantial impact. For our performance test system (Exadata/BDA with Infiniband), I compared three OSCH loads of 1 TiB. One load had 128 HDFS files living in 64 location files where each HDFS file was about 8GB. I then did the same load with 12800 files where each HDFS file was about 80MB size. The end to end load time was virtually the same. However when I got ridiculously small (i.e. 128000 files at about 8MB per file), it started to make an impact and slow down the load time. What happens if you break rules 3 or 4 above? Nothing draconian, everything will still function. You just won’t be taking full advantage of the generous DOP that was allocated to you by your friendly DBA. The key point of the rules articulated above is this: if you know that HDFS content is ultimately going to be loaded into Oracle using OSCH, it makes sense to chop them up into the right number of files roughly the same size, derived from the DOP that you expect to use for loading. Next Steps So far we have talked about OLH and OSCH as alternative models for loading. That’s not quite the whole story. They can be used together in a way that provides for more efficient OSCH loads and allows one to be more flexible about scheduling on a Hadoop cluster and an Oracle Database to perform load operations. The next lesson will talk about Oracle Data Pump files generated by OLH, and loaded using OSCH. It will also outline the pros and cons of using various load methods.  This will be followed up with a final tutorial lesson focusing on how to optimize OLH and OSCH for use on Oracle's engineered systems: specifically Exadata and the BDA. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin;}

    Read the article

  • Collaborative Whiteboard using WebSocket in GlassFish 4 - Text/JSON and Binary/ArrayBuffer Data Transfer (TOTD #189)

    - by arungupta
    This blog has published a few blogs on using JSR 356 Reference Implementation (Tyrus) as its integrated in GlassFish 4 promoted builds. TOTD #183: Getting Started with WebSocket in GlassFish TOTD #184: Logging WebSocket Frames using Chrome Developer Tools, Net-internals and Wireshark TOTD #185: Processing Text and Binary (Blob, ArrayBuffer, ArrayBufferView) Payload in WebSocket TOTD #186: Custom Text and Binary Payloads using WebSocket One of the typical usecase for WebSocket is online collaborative games. This Tip Of The Day (TOTD) explains a sample that can be used to build such games easily. The application is a collaborative whiteboard where different shapes can be drawn in multiple colors. The shapes drawn on one browser are automatically drawn on all other peer browsers that are connected to the same endpoint. The shape, color, and coordinates of the image are transfered using a JSON structure. A browser may opt-out of sharing the figures. Alternatively any browser can send a snapshot of their existing whiteboard to all other browsers. Take a look at this video to understand how the application work and the underlying code. The complete sample code can be downloaded here. The code behind the application is also explained below. The web page (index.jsp) has a HTML5 Canvas as shown: <canvas id="myCanvas" width="150" height="150" style="border:1px solid #000000;"></canvas> And some radio buttons to choose the color and shape. By default, the shape, color, and coordinates of any figure drawn on the canvas are put in a JSON structure and sent as a message to the WebSocket endpoint. The JSON structure looks like: { "shape": "square", "color": "#FF0000", "coords": { "x": 31.59999942779541, "y": 49.91999053955078 }} The endpoint definition looks like: @WebSocketEndpoint(value = "websocket",encoders = {FigureDecoderEncoder.class},decoders = {FigureDecoderEncoder.class})public class Whiteboard { As you can see, the endpoint has decoder and encoder registered that decodes JSON to a Figure (a POJO class) and vice versa respectively. The decode method looks like: public Figure decode(String string) throws DecodeException { try { JSONObject jsonObject = new JSONObject(string); return new Figure(jsonObject); } catch (JSONException ex) { throw new DecodeException("Error parsing JSON", ex.getMessage(), ex.fillInStackTrace()); }} And the encode method looks like: public String encode(Figure figure) throws EncodeException { return figure.getJson().toString();} FigureDecoderEncoder implements both decoder and encoder functionality but thats purely for convenience. But the recommended design pattern is to keep them in separate classes. In certain cases, you may even need only one of them. On the client-side, the Canvas is initialized as: var canvas = document.getElementById("myCanvas");var context = canvas.getContext("2d");canvas.addEventListener("click", defineImage, false); The defineImage method constructs the JSON structure as shown above and sends it to the endpoint using websocket.send(). An instant snapshot of the canvas is sent using binary transfer with WebSocket. The WebSocket is initialized as: var wsUri = "ws://localhost:8080/whiteboard/websocket";var websocket = new WebSocket(wsUri);websocket.binaryType = "arraybuffer"; The important part is to set the binaryType property of WebSocket to arraybuffer. This ensures that any binary transfers using WebSocket are done using ArrayBuffer as the default type seem to be blob. The actual binary data transfer is done using the following: var image = context.getImageData(0, 0, canvas.width, canvas.height);var buffer = new ArrayBuffer(image.data.length);var bytes = new Uint8Array(buffer);for (var i=0; i<bytes.length; i++) { bytes[i] = image.data[i];}websocket.send(bytes); This comprehensive sample shows the following features of JSR 356 API: Annotation-driven endpoints Send/receive text and binary payload in WebSocket Encoders/decoders for custom text payload In addition, it also shows how images can be captured and drawn using HTML5 Canvas in a JSP. How could this be turned in to an online game ? Imagine drawing a Tic-tac-toe board on the canvas with two players playing and others watching. Then you can build access rights and controls within the application itself. Instead of sending a snapshot of the canvas on demand, a new peer joining the game could be automatically transferred the current state as well. Do you want to build this game ? I built a similar game a few years ago. Do somebody want to rewrite the game using WebSocket APIs ? :-) Many thanks to Jitu and Akshay for helping through the WebSocket internals! Here are some references for you: JSR 356: Java API for WebSocket - Specification (Early Draft) and Implementation (already integrated in GlassFish 4 promoted builds) Subsequent blogs will discuss the following topics (not necessary in that order) ... Error handling Interface-driven WebSocket endpoint Java client API Client and Server configuration Security Subprotocols Extensions Other topics from the API

    Read the article

  • The sign of a true manager is delegation (C# style)

    - by MarkPearl
    Today I thought I would write a bit about delegates in C#. Up till recently I have managed to side step any real understanding of what delegates do and why they are useful – I mean, I know roughly what they do and have used them a lot, but I have never really got down dirty with them and mucked about. Recently however with my renewed interest in Silverlight delegates came up again as a possible solution to a particular problem, and suddenly I found myself opening a bland little console application to just see exactly how far I could take delegates with my limited knowledge. So, let’s first look at the MSDN definition of delegates… A delegate declaration defines a reference type that can be used to encapsulate a method with a specific signature. A delegate instance encapsulates a static or an instance method. Delegates are roughly similar to function pointers in C++; however, delegates are type-safe and secure. Well, don’t you love MSDN for such a useful definition. I must give it credit though… later on it really explains it a bit better by saying “A delegate lets you pass a function as a parameter. The type safety of delegates requires the function you pass as a delegate to have the same signature as the delegate declaration.” A little more reading up on delegates mentions that delegates are similar to interfaces in that they enable the separation of specification and implementation. A delegate declares a single method, while an interface declares a group of methods. So enough reading - lets look at some code and see a basic example of a delegate… Let’s assume we have a console application with a simple delegate declared called AdjustValue like below… class Program { private delegate int AdjustValue(int val); static void Main(string[] args) { } } In a sense, all we have said is that we will be creating one or more methods that follow the same pattern as AdjustValue – i.e. they will take one input value of type int and return an integer. We could then expand our code to have various methods that match the structure of our delegate AdjustValue (remember the structure is int xxx (int xxx)) class Program { private delegate int AdjustValue(int val); private static int Dbl(int val) { return val * 2; } private static int AlwaysOne(int val) { return 1; } static void Main(string[] args) { } }  Above I have expanded my project to have two methods, one called Dbl and the other AlwaysOne. Dbl always returns double the input val and AlwaysOne always returns 1. I could now declare a variable and assign it to be one of those functions, like the following… class Program { private delegate int AdjustValue(int val); private static int Dbl(int val) { return val * 2; } private static int AlwaysOne(int val) { return 1; } static void Main(string[] args) { AdjustValue myDelegate; myDelegate = Dbl; Console.WriteLine(myDelegate(1).ToString()); Console.ReadLine(); } } In this instance I have declared an instance of the AdjustValue delegate called myDelegate; I have then told myDelegate to point to the method Dbl, and then called myDelegate(1). What would the result be? Yes, in this instance it would be exactly the same as me calling the following code… static void Main(string[] args) { Console.WriteLine(Dbl(1).ToString()); Console.ReadLine(); }   So why all the extra work for delegates when we could just do what we did above and call the method directly? Well… that separation of specification to implementation comes to mind. So, this all seems pretty simple. Let’s take a slightly more complicated variation to the console application. Assume that my project is the same as the one previously except that my main method is adjusted as follows… static void Main(string[] args) { AdjustValue myDelegate; myDelegate = Dbl; myDelegate = AlwaysOne; Console.WriteLine(myDelegate(1).ToString()); Console.ReadLine(); } What would happen in this scenario? Quite simply “1” would be written to the console, the reason being that myDelegate was last pointing to the AlwaysOne method before it was called. Make sense? In a way, the myDelegate is a variable method that can be swapped and changed when needed. Let’s make the code a little more confusing by using a delegate in the declaration of another delegate as shown below… class Program { private delegate int AdjustValue(InputValue val); private delegate int InputValue(); private static int Dbl(InputValue val) { return val()*2; } private static int GetInputVal() { Console.WriteLine("Enter a whole number : "); return Convert.ToInt32(Console.ReadLine()); } static void Main(string[] args) { AdjustValue myDelegate; myDelegate = Dbl; Console.WriteLine(myDelegate(GetInputVal).ToString()); Console.ReadLine(); } }   Now it gets really interesting because it looks like we have passed a method into a function in the main method by declaring… Console.WriteLine(myDelegate(GetInputVal).ToString()); So, what it the output? Well, try take a guess on what will happen – then copy the code and see if you got it right. Well that brings me to the end of this short explanation of Delegates. Hopefully it made sense!

    Read the article

  • How can I implement a database TableView like thing in C++?

    - by Industrial-antidepressant
    How can I implement a TableView like thing in C++? I want to emulating a tiny relation database like thing in C++. I have data tables, and I want to transform it somehow, so I need a TableView like class. I want filtering, sorting, freely add and remove items and transforming (ex. view as UPPERCASE and so on). The whole thing is inside a GUI application, so datatables and views are attached to a GUI (or HTML or something). So how can I identify an item in the view? How can I signal it when the table is changed? Is there some design pattern for this? Here is a simple table, and a simple data item: #include <string> #include <boost/multi_index_container.hpp> #include <boost/multi_index/member.hpp> #include <boost/multi_index/ordered_index.hpp> #include <boost/multi_index/random_access_index.hpp> using boost::multi_index_container; using namespace boost::multi_index; struct Data { Data() {} int id; std::string name; }; struct row{}; struct id{}; struct name{}; typedef boost::multi_index_container< Data, indexed_by< random_access<tag<row> >, ordered_unique<tag<id>, member<Data, int, &Data::id> >, ordered_unique<tag<name>, member<Data, std::string, &Data::name> > > > TDataTable; class DataTable { public: typedef Data item_type; typedef TDataTable::value_type value_type; typedef TDataTable::const_reference const_reference; typedef TDataTable::index<row>::type TRowIndex; typedef TDataTable::index<id>::type TIdIndex; typedef TDataTable::index<name>::type TNameIndex; typedef TRowIndex::iterator iterator; DataTable() : row_index(rule_table.get<row>()), id_index(rule_table.get<id>()), name_index(rule_table.get<name>()), row_index_writeable(rule_table.get<row>()) { } TDataTable::const_reference operator[](TDataTable::size_type n) const { return rule_table[n]; } std::pair<iterator,bool> push_back(const value_type& x) { return row_index_writeable.push_back(x); } iterator erase(iterator position) { return row_index_writeable.erase(position); } bool replace(iterator position,const value_type& x) { return row_index_writeable.replace(position, x); } template<typename InputIterator> void rearrange(InputIterator first) { return row_index_writeable.rearrange(first); } void print_table() const; unsigned size() const { return row_index.size(); } TDataTable rule_table; const TRowIndex& row_index; const TIdIndex& id_index; const TNameIndex& name_index; private: TRowIndex& row_index_writeable; }; class DataTableView { DataTableView(const DataTable& source_table) {} // How can I implement this? // I want filtering, sorting, signaling upper GUI layer, and sorting, and ... }; int main() { Data data1; data1.id = 1; data1.name = "name1"; Data data2; data2.id = 2; data2.name = "name2"; DataTable table; table.push_back(data1); DataTable::iterator it1 = table.row_index.iterator_to(table[0]); table.erase(it1); table.push_back(data1); Data new_data(table[0]); new_data.name = "new_name"; table.replace(table.row_index.iterator_to(table[0]), new_data); for (unsigned i = 0; i < table.size(); ++i) std::cout << table[i].name << std::endl; #if 0 // using scenarios: DataTableView table_view(table); table_view.fill_from_source(); // synchronization with source table_view.remove(data_item1); // remove item from view table_view.add(data_item2); // add item from source table table_view.filter(filterfunc); // filtering table_view.sort(sortfunc); // sorting // modifying from source_able, hot to signal the table_view? // FYI: Table view is atteched to a GUI item table.erase(data); table.replace(data); #endif return 0; }

    Read the article

  • How do I dig myself out of this DEEP hole? [closed]

    - by user74847
    I may be a bit bias in the way i word this but any opinions and suggestions are welcome. I should start by saying i have a MSc in CS and a degree in new media +6 years expereince and im probably around a middleweight developer. I started a web development company with my friend from uni a year ago, there was a 4 month gap in the middle where i went miles away work on a big project. Ive since returned and picked up where we left off. A year on though i find im still staying up til 5am and getting up at 9 sometimes 2-3 days without sleep. While i was away i was working 9-5 and struggling to keep up with doing stuff for my clients 8 hours ahead, after work, so things stagnated. We currently have about 12 active projects, with one other part time developer and a full time freelancer who is dealing with one of our major projects. I am solely responsible for concurrently developing 2 big sites similar to gumtree in functionality, at the same time as about 5-6+ small WordPress based 5-10page sites. a lot of the content isnt in yet or the client is delaying so i chop and change project every other day which does my head in. Is it reasonable to expect myself to remember the intricate details of each project when i come back to it a week later? and remember the details of a task which hasnt been written down? my business partner seems to think so. or am i just forgetful? Im particularly bad at estimating timescales which doesnt help, added to that a lot of the technologies im am using are new to me (a magento site took weeks to theme rather than days and was full of bugs, even after 1000's of google searches and hours reading forums) im still trying to learn and find the best CMS for us to use and getting my head around the likes of Bootstrap and jquery, Cpanel / Linux (we just got a blank vps for me to set up with no experience) even installing an SSL certificate caused everyone's mail clients to go down which was more stress for me to sort out. I find the pressure of the workload and timescales and trying to learn this stuff so fast is beginning to turn me against my career path. The fact that i never seem to get anything done really winds up my business partner and iv come to associate him with the stress and pain of the whole situation especially when I get berated or a look that says "oh you retard" when I forget something. Even today i spent hours learning how a particular themeforest theme worked with wordpress and how i could twist it to work for our partiuclar needs, on the surface had done no work, that triggered a 30 minute tirade of anger and stress and questioning what i had done from my business partner. had i taken too long to work on that? shoudl i have done it in 2 hours instead of 6? i told him i would take 2 hours. i was wrong. I feel like im running myself into the ground. My sleeping pattern has got so bad that when im working im half asleep and making mistakes, my eyes are constantly purple underneath, i literally fall asleep at my desk, its affecting my social life too, ive not slept more than lightly for the last year and grind through impossible code puzzles in my half sleep wich keeps me awake, when im already exhausted. plus the work is rushed and buggy when it does get done so drags on into the next project. I also procrastinate quite badly, pacing the livingroom, looking out the window when Im alone for three days straight in the flat and start to get cabin fever which means i do even less work and the negative feedback loop continues. I get told im the only one with the problem when i say that i cant work from home any more, and examples of other freelancers get brought up. an office wouldnt bring any extra cash in to the company but im convinced having that moving more than 2 meters away from my bed to go to "work" would get me working, at the moment i feel guilty like i should be working 24-7. It is important that we do all this work to raise enough cash to get our business to the next level but every month still feels like a struggle to pay the rent (there is about £20K coming in by Jan) and i have to borrow money from friends often to buy food or get a taxi to a meeting, so it is vital the money keeps coming in. (im also 20 mins late for nearly all meetings but thats a different issue) have you experienced anything similar? how can i deal with the issues ive raised? is it realistic to develop 10 sites at once? how can i improve my relationship with my business partner? do you struggle to work at home? how do you deal with that? i think if i dont get my life on track by feb i will seriously consider giving it all up, but that seems like such a waste. any ideas!!? i need help! Thanks.

    Read the article

  • Using Subjects to Deploy Queries Dynamically

    - by Roman Schindlauer
    In the previous blog posting, we showed how to construct and deploy query fragments to a StreamInsight server, and how to re-use them later. In today’s posting we’ll integrate this pattern into a method of dynamically composing a new query with an existing one. The construct that enables this scenario in StreamInsight V2.1 is a Subject. A Subject lets me create a junction element in an existing query that I can tap into while the query is running. To set this up as an end-to-end example, let’s first define a stream simulator as our data source: var generator = myApp.DefineObservable(     (TimeSpan t) => Observable.Interval(t).Select(_ => new SourcePayload())); This ‘generator’ produces a new instance of SourcePayload with a period of t (system time) as an IObservable. SourcePayload happens to have a property of type double as its payload data. Let’s also define a sink for our example—an IObserver of double values that writes to the console: var console = myApp.DefineObserver(     (string label) => Observer.Create<double>(e => Console.WriteLine("{0}: {1}", label, e)))     .Deploy("ConsoleSink"); The observer takes a string as parameter which is used as a label on the console, so that we can distinguish the output of different sink instances. Note that we also deploy this observer, so that we can retrieve it later from the server from a different process. Remember how we defined the aggregation as an IQStreamable function in the previous article? We will use that as well: var avg = myApp     .DefineStreamable((IQStreamable<SourcePayload> s, TimeSpan w) =>         from win in s.TumblingWindow(w)         select win.Avg(e => e.Value))     .Deploy("AverageQuery"); Then we define the Subject, which acts as an observable sequence as well as an observer. Thus, we can feed a single source into the Subject and have multiple consumers—that can come and go at runtime—on the other side: var subject = myApp.CreateSubject("Subject", () => new Subject<SourcePayload>()); Subject are always deployed automatically. Their name is used to retrieve them from a (potentially) different process (see below). Note that the Subject as we defined it here doesn’t know anything about temporal streams. It is merely a sequence of SourcePayloads, without any notion of StreamInsight point events or CTIs. So in order to compose a temporal query on top of the Subject, we need to 'promote' the sequence of SourcePayloads into an IQStreamable of point events, including CTIs: var stream = subject.ToPointStreamable(     e => PointEvent.CreateInsert<SourcePayload>(e.Timestamp, e),     AdvanceTimeSettings.StrictlyIncreasingStartTime); In a later posting we will show how to use Subjects that have more awareness of time and can be used as a junction between QStreamables instead of IQbservables. Having turned the Subject into a temporal stream, we can now define the aggregate on this stream. We will use the IQStreamable entity avg that we defined above: var longAverages = avg(stream, TimeSpan.FromSeconds(5)); In order to run the query, we need to bind it to a sink, and bind the subject to the source: var standardQuery = longAverages     .Bind(console("5sec average"))     .With(generator(TimeSpan.FromMilliseconds(300)).Bind(subject)); Lastly, we start the process: standardQuery.Run("StandardProcess"); Now we have a simple query running end-to-end, producing results. What follows next is the crucial part of tapping into the Subject and adding another query that runs in parallel, using the same query definition (the “AverageQuery”) but with a different window length. We are assuming that we connected to the same StreamInsight server from a different process or even client, and thus have to retrieve the previously deployed entities through their names: // simulate the addition of a 'fast' query from a separate server connection, // by retrieving the aggregation query fragment // (instead of simply using the 'avg' object) var averageQuery = myApp     .GetStreamable<IQStreamable<SourcePayload>, TimeSpan, double>("AverageQuery"); // retrieve the input sequence as a subject var inputSequence = myApp     .GetSubject<SourcePayload, SourcePayload>("Subject"); // retrieve the registered sink var sink = myApp.GetObserver<string, double>("ConsoleSink"); // turn the sequence into a temporal stream var stream2 = inputSequence.ToPointStreamable(     e => PointEvent.CreateInsert<SourcePayload>(e.Timestamp, e),     AdvanceTimeSettings.StrictlyIncreasingStartTime); // apply the query, now with a different window length var shortAverages = averageQuery(stream2, TimeSpan.FromSeconds(1)); // bind new sink to query and run it var fastQuery = shortAverages     .Bind(sink("1sec average"))     .Run("FastProcess"); The attached solution demonstrates the sample end-to-end. Regards, The StreamInsight Team

    Read the article

  • Different fan behaviour in my laptop after upgrade, what to do now?

    - by student
    After upgrading from lubuntu 13.10 to 14.04 the fan of my laptop seems to run much more often than in 13.10. When it runs, it doesn't run continously but starts and stops every second. fwts fan results in Results generated by fwts: Version V14.03.01 (2014-03-27 02:14:17). Some of this work - Copyright (c) 1999 - 2014, Intel Corp. All rights reserved. Some of this work - Copyright (c) 2010 - 2014, Canonical. This test run on 12/05/14 at 21:40:13 on host Linux einstein 3.13.0-24-generic #47-Ubuntu SMP Fri May 2 23:30:00 UTC 2014 x86_64. Command: "fwts fan". Running tests: fan. fan: Simple fan tests. -------------------------------------------------------------------------------- Test 1 of 2: Test fan status. Test how many fans there are in the system. Check for the current status of the fan(s). PASSED: Test 1, Fan cooling_device0 of type Processor has max cooling state 10 and current cooling state 0. PASSED: Test 1, Fan cooling_device1 of type Processor has max cooling state 10 and current cooling state 0. PASSED: Test 1, Fan cooling_device2 of type LCD has max cooling state 15 and current cooling state 10. Test 2 of 2: Load system, check CPU fan status. Test how many fans there are in the system. Check for the current status of the fan(s). Loading CPUs for 20 seconds to try and get fan speeds to change. Fan cooling_device0 current state did not change from value 0 while CPUs were busy. Fan cooling_device1 current state did not change from value 0 while CPUs were busy. ADVICE: Did not detect any change in the CPU related thermal cooling device states. It could be that the devices are returning static information back to the driver and/or the fan speed is automatically being controlled by firmware using System Management Mode in which case the kernel interfaces being examined may not work anyway. ================================================================================ 3 passed, 0 failed, 0 warning, 0 aborted, 0 skipped, 0 info only. ================================================================================ 3 passed, 0 failed, 0 warning, 0 aborted, 0 skipped, 0 info only. Test Failure Summary ================================================================================ Critical failures: NONE High failures: NONE Medium failures: NONE Low failures: NONE Other failures: NONE Test |Pass |Fail |Abort|Warn |Skip |Info | ---------------+-----+-----+-----+-----+-----+-----+ fan | 3| | | | | | ---------------+-----+-----+-----+-----+-----+-----+ Total: | 3| 0| 0| 0| 0| 0| ---------------+-----+-----+-----+-----+-----+-----+ Here is the output of lsmod lsmod Module Size Used by i8k 14421 0 zram 18478 2 dm_crypt 23177 0 gpio_ich 13476 0 dell_wmi 12761 0 sparse_keymap 13948 1 dell_wmi snd_hda_codec_hdmi 46207 1 snd_hda_codec_idt 54645 1 rfcomm 69160 0 arc4 12608 2 dell_laptop 18168 0 bnep 19624 2 dcdbas 14928 1 dell_laptop bluetooth 395423 10 bnep,rfcomm iwldvm 232285 0 mac80211 626511 1 iwldvm snd_hda_intel 52355 3 snd_hda_codec 192906 3 snd_hda_codec_hdmi,snd_hda_codec_idt,snd_hda_intel snd_hwdep 13602 1 snd_hda_codec snd_pcm 102099 3 snd_hda_codec_hdmi,snd_hda_codec,snd_hda_intel snd_page_alloc 18710 2 snd_pcm,snd_hda_intel snd_seq_midi 13324 0 snd_seq_midi_event 14899 1 snd_seq_midi snd_rawmidi 30144 1 snd_seq_midi coretemp 13435 0 kvm_intel 143060 0 kvm 451511 1 kvm_intel snd_seq 61560 2 snd_seq_midi_event,snd_seq_midi joydev 17381 0 serio_raw 13462 0 iwlwifi 169932 1 iwldvm pcmcia 62299 0 snd_seq_device 14497 3 snd_seq,snd_rawmidi,snd_seq_midi snd_timer 29482 2 snd_pcm,snd_seq lpc_ich 21080 0 cfg80211 484040 3 iwlwifi,mac80211,iwldvm yenta_socket 41027 0 pcmcia_rsrc 18407 1 yenta_socket pcmcia_core 23592 3 pcmcia,pcmcia_rsrc,yenta_socket binfmt_misc 17468 1 snd 69238 17 snd_hwdep,snd_timer,snd_hda_codec_hdmi,snd_hda_codec_idt,snd_pcm,snd_seq,snd_rawmidi,snd_hda_codec,snd_hda_intel,snd_seq_device,snd_seq_midi soundcore 12680 1 snd parport_pc 32701 0 mac_hid 13205 0 ppdev 17671 0 lp 17759 0 parport 42348 3 lp,ppdev,parport_pc firewire_ohci 40409 0 psmouse 102222 0 sdhci_pci 23172 0 sdhci 43015 1 sdhci_pci firewire_core 68769 1 firewire_ohci crc_itu_t 12707 1 firewire_core ahci 25819 2 libahci 32168 1 ahci i915 783485 2 wmi 19177 1 dell_wmi i2c_algo_bit 13413 1 i915 drm_kms_helper 52758 1 i915 e1000e 254433 0 drm 302817 3 i915,drm_kms_helper ptp 18933 1 e1000e pps_core 19382 1 ptp video 19476 1 i915 I tried one answer to the similar question: loud fan on Ubuntu 14.04 and created a /etc/i8kmon.conf like the following: # Run as daemon, override with --daemon option set config(daemon) 1 # Automatic fan control, override with --auto option set config(auto) 1 # Status check timeout (seconds), override with --timeout option set config(timeout) 2 # Report status on stdout, override with --verbose option set config(verbose) 1 # Temperature thresholds: {fan_speeds low_ac high_ac low_batt high_batt} set config(0) {{0 0} -1 55 -1 55} set config(1) {{0 1} 50 60 55 65} set config(2) {{1 1} 55 80 60 85} set config(3) {{2 2} 70 128 75 128} With this setup the fan goes on even if the temperature is below 50 degree celsius (I don't see a pattern). However I get the impression that the CPU got's hotter in average than without this file. What changes from 13.10 to 14.04 may be responsible for this? If this is a bug, for which package I should report the bug?

    Read the article

  • Copies of GameScene created when called additional times

    - by Orin MacGregor
    I have a game with a level select managed by a SceneManager, which basically just uses ReplaceScene. The first time I load a level everything works fine. On subsequent calls, for example: completing the level and continuing to the next, things blow up. The level loads fine, but when I try to pan the map or try to move the player the game crashes. Debugging through I found that there are multiple occurrences of self and related children like player and mapLayer. As a test, I put this code in my ccTouchesBegan: NSLog(@"test %i", [self retainCount]); The first time a level is loaded, it gives: test 2 The second time I load a level it gives: test 2 test 1 as in it spits out both values by looping through twice, not just appending an output to the last. It continues with this pattern for each subsequent load. So the third time will give 2 1 1. Particular code that causes the game to crash involve calling _tileMap.tileSize because there is a second GameScene with a tileMap that was supposedly destroyed, so it has tileSize and mapSize of 0. I noticed dealloc doesn't really ever get called, so I tried to manage some things with -(void) onExit -(void) onExit { [self unscheduleAllSelectors]; [_player stopAllActions]; //stop any animations just in case. normally handled in ccTouchesEnded [self removeAllChildrenWithCleanup:YES]; } I never replace the GameScene while I'm in a GameScene; if the level is completed it goes to a GameOver scene, or I use a back button that goes to the LevelSelect scene. This is [the relevant parts of] my init, in case something like the adding of children matters: -(id) init { _mapLayer = [CCLayer node]; //load data for level GameData *gameData = [GameDataParser loadData]; int selectedChapter = gameData.selectedChapter; int selectedLevel = gameData.selectedLevel; Levels *chapterLevels = [LevelParser loadLevelsForChapter:selectedChapter]; //loop until we get selected level, then do stuff for (Level *level in chapterLevels.levels) { if (level.number == selectedLevel) { //load the level map _tileMap = [CCTMXTiledMap tiledMapWithTMXFile:level.file]; } } _background = [_tileMap layerNamed:@"Background"]; _foreground = [_tileMap layerNamed:@"Foreground"]; _meta = [_tileMap layerNamed:@"Meta"]; _meta.visible = NO; //initialize Spawn Point object and place player there CCTMXObjectGroup *objects = [_tileMap objectGroupNamed:@"Objects"]; NSAssert(objects != nil, @"'Objects' object group not found"); NSMutableDictionary *spawnPoint = [objects objectNamed:@"SpawnPoint"]; NSAssert(spawnPoint != nil, @"SpawnPoint object not found"); int x = [[spawnPoint valueForKey:@"x"] intValue] / retinaScaling; int y = [[spawnPoint valueForKey:@"y"] intValue] / retinaScaling; //setup animations [[CCSpriteFrameCache sharedSpriteFrameCache] addSpriteFramesWithFile:@"MouseRightAnim_24x21.plist"]; CCSpriteBatchNode *spriteSheet = [CCSpriteBatchNode batchNodeWithFile:@"MouseRightAnim_24x21.png"]; [_mapLayer addChild:spriteSheet z:1]; NSMutableArray *rightAnimFrames = [NSMutableArray array]; for(int i = 1; i <= 3; ++i) { [rightAnimFrames addObject: [[CCSpriteFrameCache sharedSpriteFrameCache] spriteFrameByName: [NSString stringWithFormat:@"MouseRight%d_24x21.png", i]]]; } CCAnimation *rightAnim = [CCAnimation animationWithSpriteFrames:rightAnimFrames delay:0.1f]; self.player = [CCSprite spriteWithSpriteFrameName:@"MouseRight2_24x21.png"]; _player.position = ccp(x, y); self.rightAction = [CCRepeatForever actionWithAction:[CCAnimate actionWithAnimation:rightAnim]]; rightAnim.restoreOriginalFrame = NO; [spriteSheet addChild:_player]; //get map size in pixels mapHeight = _tileMap.contentSize.height; mapWidth = _tileMap.contentSize.width; //setup defaults //this value works well for the calculation later, trial and error really distance = 150; lastGoodDistance = 150; mapScale = 1; [self setViewpointCenter:_player.position]; [_mapLayer addChild:_tileMap]; [self addChild:_mapLayer z:-1]; self.isTouchEnabled = YES; } return self; } And here's the SceneManager code for replacing scenes: +(void) goGameScene { CCLayer *gameLayer = [GameScene node]; [SceneManager go:gameLayer:[GameHUD node]]; } //this is what every call looks like besides the GameScene one above +(void) goLevelSelect { [SceneManager go:[LevelSelect node]:nil]; } +(void) go:(CCLayer *)layer: (CCLayer *)hudLayer { CCDirector *director = [CCDirector sharedDirector]; CCScene *newScene = [SceneManager wrap:layer:hudLayer]; if ([director runningScene]) { [director replaceScene:newScene]; } else { [director runWithScene:newScene]; } } +(CCScene *) wrap:(CCLayer *)layer: (CCLayer *)hudLayer { CCScene *newScene = [CCScene node]; [newScene addChild: layer]; if (hudLayer != nil) { [newScene addChild: hudLayer z:1]; } return newScene; } Any ideas why I'm getting these fatal artifacts? I'm hoping this isn't considered too localized since it basically combines 3 tutorials that anyone could end up following. (Ray Wenderlich Animations, Tim Roadley Scene Manager, Pan and Zoom with Tiled Maps.

    Read the article

  • Branding Support for TopComponents

    - by Geertjan
    In yesterday's blog entry, you saw how a menu item can be created, in this case with the label "Brand", especially for Java classes that extend TopComponent: And, as you can see here, it's not about the name of the class, i.e., not because the class above is named "BlaTopComponent" because below the "Brand" men item is also available for the class named "Bla": Both the files BlaTopComponent.java and Bla.java have the "Brand" menu item available, because both extend the "org.openide.windows.TopComponent"  class, as shown yesterday. Now we continue by creating a new JPanel, with checkboxes for each part of a TopComponent that we consider to be brandable. In my case, this is the end result, at deployment, when the Brand menu item is clicked for the Bla class: When the user (who, in this case, is a developer) clicks OK, a constructor is created and the related client properties are added, depending on which of the checkboxes are clicked: public Bla() {     putClientProperty(TopComponent.PROP_SLIDING_DISABLED, false);     putClientProperty(TopComponent.PROP_UNDOCKING_DISABLED, true);     putClientProperty(TopComponent.PROP_MAXIMIZATION_DISABLED, false);     putClientProperty(TopComponent.PROP_CLOSING_DISABLED, true);     putClientProperty(TopComponent.PROP_DRAGGING_DISABLED, false); } At this point, no check is done to see whether a constructor already exists, nor whether the client properties are already available. That's for an upcoming blog entry! Right now, the constructor is always created, regardless of whether it already exists, and the client properties are always added. The key to all this is the 'actionPeformed' of the TopComponent, which was left empty yesterday. We start by creating a JDialog from the JPanel and we retrieve the selected state of the checkboxes defined in the JPanel: @Override public void actionPerformed(ActionEvent ev) {     String msg = dobj.getName() + " Branding";     final BrandTopComponentPanel brandTopComponentPanel = new BrandTopComponentPanel();     dd = new DialogDescriptor(brandTopComponentPanel, msg, true, new ActionListener() {         @Override         public void actionPerformed(ActionEvent e) {             Object result = dd.getValue();             if (DialogDescriptor.OK_OPTION == result) {                 isClosing = brandTopComponentPanel.getClosingCheckBox().isSelected();                 isDragging = brandTopComponentPanel.getDraggingCheckBox().isSelected();                 isMaximization = brandTopComponentPanel.getMaximizationCheckBox().isSelected();                 isSliding = brandTopComponentPanel.getSlidingCheckBox().isSelected();                 isUndocking = brandTopComponentPanel.getUndockingCheckBox().isSelected();                 JavaSource javaSource = JavaSource.forFileObject(dobj.getPrimaryFile());                 try {                     javaSource.runUserActionTask(new ScanTask(javaSource), true);                 } catch (IOException ex) {                     Exceptions.printStackTrace(ex);                 }             }         }     });     DialogDisplayer.getDefault().createDialog(dd).setVisible(true); } Then we start a scan process, which introduces the branding. We're already doing a scan process for identifying whether a class is a TopComponent. So, let's combine those two scans, branching out based on which one we're doing: private class ScanTask implements Task<CompilationController> {     private BrandTopComponentAction action = null;     private JavaSource js = null;     private ScanTask(JavaSource js) {         this.js = js;     }     private ScanTask(BrandTopComponentAction action) {         this.action = action;     }     @Override     public void run(final CompilationController info) throws Exception {         info.toPhase(Phase.ELEMENTS_RESOLVED);         if (action != null) {             new EnableIfTopComponentScanner(info, action).scan(                     info.getCompilationUnit(), null);         } else {             introduceBranding();         }     }     private void introduceBranding() throws IOException {         CancellableTask task = new CancellableTask<WorkingCopy>() {             @Override             public void run(WorkingCopy workingCopy) throws IOException {                 workingCopy.toPhase(Phase.RESOLVED);                 CompilationUnitTree cut = workingCopy.getCompilationUnit();                 TreeMaker treeMaker = workingCopy.getTreeMaker();                 for (Tree typeDecl : cut.getTypeDecls()) {                     if (Tree.Kind.CLASS == typeDecl.getKind()) {                         ClassTree clazz = (ClassTree) typeDecl;                         ModifiersTree methodModifiers = treeMaker.Modifiers(Collections.<Modifier>singleton(Modifier.PUBLIC));                         MethodTree newMethod =                                 treeMaker.Method(methodModifiers,                                 "<init>",                                 treeMaker.PrimitiveType(TypeKind.VOID),                                 Collections.<TypeParameterTree>emptyList(),                                 Collections.EMPTY_LIST,                                 Collections.<ExpressionTree>emptyList(),                                 "{ putClientProperty(TopComponent.PROP_SLIDING_DISABLED, " + isSliding + ");\n"+                                 "  putClientProperty(TopComponent.PROP_UNDOCKING_DISABLED, " + isUndocking + ");\n"+                                 "  putClientProperty(TopComponent.PROP_MAXIMIZATION_DISABLED, " + isMaximization + ");\n"+                                 "  putClientProperty(TopComponent.PROP_CLOSING_DISABLED, " + isClosing + ");\n"+                                 "  putClientProperty(TopComponent.PROP_DRAGGING_DISABLED, " + isDragging + "); }\n",                                 null);                         ClassTree modifiedClazz = treeMaker.addClassMember(clazz, newMethod);                         workingCopy.rewrite(clazz, modifiedClazz);                     }                 }             }             @Override             public void cancel() {             }         };         ModificationResult result = js.runModificationTask(task);         result.commit();     } } private static class EnableIfTopComponentScanner extends TreePathScanner<Void, Void> {     private CompilationInfo info;     private final AbstractAction action;     public EnableIfTopComponentScanner(CompilationInfo info, AbstractAction action) {         this.info = info;         this.action = action;     }     @Override     public Void visitClass(ClassTree t, Void v) {         Element el = info.getTrees().getElement(getCurrentPath());         if (el != null) {             TypeElement te = (TypeElement) el;             if (te.getSuperclass().toString().equals("org.openide.windows.TopComponent")) {                 action.setEnabled(true);             } else {                 action.setEnabled(false);             }         }         return null;     } }

    Read the article

  • NoSQL with RavenDB and ASP.NET MVC - Part 1

    - by shiju
     A while back, I have blogged NoSQL with MongoDB, NoRM and ASP.NET MVC Part 1 and Part 2 on how to use MongoDB with an ASP.NET MVC application. The NoSQL movement is getting big attention and RavenDB is the latest addition to the NoSQL and document database world. RavenDB is an Open Source (with a commercial option) document database for the .NET/Windows platform developed  by Ayende Rahien.  Raven stores schema-less JSON documents, allow you to define indexes using Linq queries and focus on low latency and high performance. RavenDB is .NET focused document database which comes with a fully functional .NET client API  and supports LINQ. RavenDB comes with two components, a server and a client API. RavenDB is a REST based system, so you can write your own HTTP cleint API. As a .NET developer, RavenDB is becoming my favorite document database. Unlike other document databases, RavenDB is supports transactions using System.Transactions. Also it's supports both embedded and server mode of database. You can access RavenDB site at http://ravendb.netA demo App with ASP.NET MVCLet's create a simple demo app with RavenDB and ASP.NET MVC. To work with RavenDB, do the following steps. Go to http://ravendb.net/download and download the latest build.Unzip the downloaded file.Go to the /Server directory and run the RavenDB.exe. This will start the RavenDB server listening on localhost:8080You can change the port of RavenDB  by modifying the "Raven/Port" appSetting value in the RavenDB.exe.config file.When running the RavenDB, it will automatically create a database in the /Data directory. You can change the directory name data by modifying "Raven/DataDirt" appSetting value in the RavenDB.exe.config file.RavenDB provides a browser based admin tool. When the Raven server is running, You can be access the browser based admin tool and view and edit documents and index using your browser admin tool. The web admin tool available at http://localhost:8080The below is the some screen shots of web admin tool     Working with ASP.NET MVC  To working with RavenDB in our demo ASP.NET MVC application, do the following steps Step 1 - Add reference to Raven Cleint API In our ASP.NET MVC application, Add a reference to the Raven.Client.Lightweight.dll from the Client directory. Step 2 - Create DocumentStoreThe document store would be created once per application. Let's create a DocumentStore on application start-up in the Global.asax.cs. documentStore = new DocumentStore { Url = "http://localhost:8080/" }; documentStore.Initialise(); The above code will create a Raven DB document store and will be listening the server locahost at port 8080    Step 3 - Create DocumentSession on BeginRequest   Let's create a DocumentSession on BeginRequest event in the Global.asax.cs. We are using the document session for every unit of work. In our demo app, every HTTP request would be a single Unit of Work (UoW). BeginRequest += (sender, args) =>   HttpContext.Current.Items[RavenSessionKey] = documentStore.OpenSession(); Step 4 - Destroy the DocumentSession on EndRequest  EndRequest += (o, eventArgs) => {     var disposable = HttpContext.Current.Items[RavenSessionKey] as IDisposable;     if (disposable != null)         disposable.Dispose(); };  At the end of HTTP request, we are destroying the DocumentSession  object.The below  code block shown all the code in the Global.asax.cs  private const string RavenSessionKey = "RavenMVC.Session"; private static DocumentStore documentStore;   protected void Application_Start() { //Create a DocumentStore in Application_Start //DocumentStore should be created once per application and stored as a singleton. documentStore = new DocumentStore { Url = "http://localhost:8080/" }; documentStore.Initialise(); AreaRegistration.RegisterAllAreas(); RegisterRoutes(RouteTable.Routes); //DI using Unity 2.0 ConfigureUnity(); }   public MvcApplication() { //Create a DocumentSession on BeginRequest   //create a document session for every unit of work BeginRequest += (sender, args) =>     HttpContext.Current.Items[RavenSessionKey] = documentStore.OpenSession(); //Destroy the DocumentSession on EndRequest EndRequest += (o, eventArgs) => { var disposable = HttpContext.Current.Items[RavenSessionKey] as IDisposable; if (disposable != null) disposable.Dispose(); }; }   //Getting the current DocumentSession public static IDocumentSession CurrentSession {   get { return (IDocumentSession)HttpContext.Current.Items[RavenSessionKey]; } }  We have setup all necessary code in the Global.asax.cs for working with RavenDB. For our demo app, Let’s write a domain class  public class Category {       public string Id { get; set; }       [Required(ErrorMessage = "Name Required")]     [StringLength(25, ErrorMessage = "Must be less than 25 characters")]     public string Name { get; set;}     public string Description { get; set; }   } We have created simple domain entity Category. Let's create repository class for performing CRUD operations against our domain entity Category.  public interface ICategoryRepository {     Category Load(string id);     IEnumerable<Category> GetCategories();     void Save(Category category);     void Delete(string id);       }    public class CategoryRepository : ICategoryRepository {     private IDocumentSession session;     public CategoryRepository()     {             session = MvcApplication.CurrentSession;     }     //Load category based on Id     public Category Load(string id)     {         return session.Load<Category>(id);     }     //Get all categories     public IEnumerable<Category> GetCategories()     {         var categories= session.LuceneQuery<Category>()                 .WaitForNonStaleResults()             .ToArray();         return categories;       }     //Insert/Update category     public void Save(Category category)     {         if (string.IsNullOrEmpty(category.Id))         {             //insert new record             session.Store(category);         }         else         {             //edit record             var categoryToEdit = Load(category.Id);             categoryToEdit.Name = category.Name;             categoryToEdit.Description = category.Description;         }         //save the document session         session.SaveChanges();     }     //delete a category     public void Delete(string id)     {         var category = Load(id);         session.Delete<Category>(category);         session.SaveChanges();     }        } For every CRUD operations, we are taking the current document session object from HttpContext object. session = MvcApplication.CurrentSession; We are calling the static method CurrentSession from the Global.asax.cs public static IDocumentSession CurrentSession {     get { return (IDocumentSession)HttpContext.Current.Items[RavenSessionKey]; } }  Retrieve Entities  The Load method get the single Category object based on the Id. RavenDB is working based on the REST principles and the Id would be like categories/1. The Id would be created by automatically when a new object is inserted to the document store. The REST uri categories/1 represents a single category object with Id representation of 1.   public Category Load(string id) {    return session.Load<Category>(id); } The GetCategories method returns all the categories calling the session.LuceneQuery method. RavenDB is using a lucen query syntax for querying. I will explain more details about querying and indexing in my future posts.   public IEnumerable<Category> GetCategories() {     var categories= session.LuceneQuery<Category>()             .WaitForNonStaleResults()         .ToArray();     return categories;   } Insert/Update entityFor insert/Update a Category entity, we have created Save method in repository class. If  the Id property of Category is null, we call Store method of Documentsession for insert a new record. For editing a existing record, we load the Category object and assign the values to the loaded Category object. The session.SaveChanges() will save the changes to document store.  //Insert/Update category public void Save(Category category) {     if (string.IsNullOrEmpty(category.Id))     {         //insert new record         session.Store(category);     }     else     {         //edit record         var categoryToEdit = Load(category.Id);         categoryToEdit.Name = category.Name;         categoryToEdit.Description = category.Description;     }     //save the document session     session.SaveChanges(); }  Delete Entity  In the Delete method, we call the document session's delete method and call the SaveChanges method to reflect changes in the document store.  public void Delete(string id) {     var category = Load(id);     session.Delete<Category>(category);     session.SaveChanges(); }  Let’s create ASP.NET MVC controller and controller actions for handling CRUD operations for the domain class Category  public class CategoryController : Controller { private ICategoryRepository categoyRepository; //DI enabled constructor public CategoryController(ICategoryRepository categoyRepository) {     this.categoyRepository = categoyRepository; } public ActionResult Index() {         var categories = categoyRepository.GetCategories();     if (categories == null)         return RedirectToAction("Create");     return View(categories); }   [HttpGet] public ActionResult Edit(string id) {     var category = categoyRepository.Load(id);         return View("Save",category); } // GET: /Category/Create [HttpGet] public ActionResult Create() {     var category = new Category();     return View("Save", category); } [HttpPost] public ActionResult Save(Category category) {     if (!ModelState.IsValid)     {         return View("Save", category);     }           categoyRepository.Save(category);         return RedirectToAction("Index");     }        [HttpPost] public ActionResult Delete(string id) {     categoyRepository.Delete(id);     var categories = categoyRepository.GetCategories();     return PartialView("CategoryList", categories);      }        }  RavenDB is an awesome document database and I hope that it will be the winner in .NET space of document database world.  The source code of demo application available at http://ravenmvc.codeplex.com/

    Read the article

  • Using Durandal to Create Single Page Apps

    - by Stephen.Walther
    A few days ago, I gave a talk on building Single Page Apps on the Microsoft Stack. In that talk, I recommended that people use Knockout, Sammy, and RequireJS to build their presentation layer and use the ASP.NET Web API to expose data from their server. After I gave the talk, several people contacted me and suggested that I investigate a new open-source JavaScript library named Durandal. Durandal stitches together Knockout, Sammy, and RequireJS to make it easier to use these technologies together. In this blog entry, I want to provide a brief walkthrough of using Durandal to create a simple Single Page App. I am going to demonstrate how you can create a simple Movies App which contains (virtual) pages for viewing a list of movies, adding new movies, and viewing movie details. The goal of this blog entry is to give you a sense of what it is like to build apps with Durandal. Installing Durandal First things first. How do you get Durandal? The GitHub project for Durandal is located here: https://github.com/BlueSpire/Durandal The Wiki — located at the GitHub project — contains all of the current documentation for Durandal. Currently, the documentation is a little sparse, but it is enough to get you started. Instead of downloading the Durandal source from GitHub, a better option for getting started with Durandal is to install one of the Durandal NuGet packages. I built the Movies App described in this blog entry by first creating a new ASP.NET MVC 4 Web Application with the Basic Template. Next, I executed the following command from the Package Manager Console: Install-Package Durandal.StarterKit As you can see from the screenshot of the Package Manager Console above, the Durandal Starter Kit package has several dependencies including: · jQuery · Knockout · Sammy · Twitter Bootstrap The Durandal Starter Kit package includes a sample Durandal application. You can get to the Starter Kit app by navigating to the Durandal controller. Unfortunately, when I first tried to run the Starter Kit app, I got an error because the Starter Kit is hard-coded to use a particular version of jQuery which is already out of date. You can fix this issue by modifying the App_Start\DurandalBundleConfig.cs file so it is jQuery version agnostic like this: bundles.Add( new ScriptBundle("~/scripts/vendor") .Include("~/Scripts/jquery-{version}.js") .Include("~/Scripts/knockout-{version}.js") .Include("~/Scripts/sammy-{version}.js") // .Include("~/Scripts/jquery-1.9.0.min.js") // .Include("~/Scripts/knockout-2.2.1.js") // .Include("~/Scripts/sammy-0.7.4.min.js") .Include("~/Scripts/bootstrap.min.js") ); The recommendation is that you create a Durandal app in a folder off your project root named App. The App folder in the Starter Kit contains the following subfolders and files: · durandal – This folder contains the actual durandal JavaScript library. · viewmodels – This folder contains all of your application’s view models. · views – This folder contains all of your application’s views. · main.js — This file contains all of the JavaScript startup code for your app including the client-side routing configuration. · main-built.js – This file contains an optimized version of your application. You need to build this file by using the RequireJS optimizer (unfortunately, before you can run the optimizer, you must first install NodeJS). For the purpose of this blog entry, I wanted to start from scratch when building the Movies app, so I deleted all of these files and folders except for the durandal folder which contains the durandal library. Creating the ASP.NET MVC Controller and View A Durandal app is built using a single server-side ASP.NET MVC controller and ASP.NET MVC view. A Durandal app is a Single Page App. When you navigate between pages, you are not navigating to new pages on the server. Instead, you are loading new virtual pages into the one-and-only-one server-side view. For the Movies app, I created the following ASP.NET MVC Home controller: public class HomeController : Controller { public ActionResult Index() { return View(); } } There is nothing special about the Home controller – it is as basic as it gets. Next, I created the following server-side ASP.NET view. This is the one-and-only server-side view used by the Movies app: @{ Layout = null; } <!DOCTYPE html> <html> <head> <title>Index</title> </head> <body> <div id="applicationHost"> Loading app.... </div> @Scripts.Render("~/scripts/vendor") <script type="text/javascript" src="~/App/durandal/amd/require.js" data-main="/App/main"></script> </body> </html> Notice that I set the Layout property for the view to the value null. If you neglect to do this, then the default ASP.NET MVC layout will be applied to the view and you will get the <!DOCTYPE> and opening and closing <html> tags twice. Next, notice that the view contains a DIV element with the Id applicationHost. This marks the area where virtual pages are loaded. When you navigate from page to page in a Durandal app, HTML page fragments are retrieved from the server and stuck in the applicationHost DIV element. Inside the applicationHost element, you can place any content which you want to display when a Durandal app is starting up. For example, you can create a fancy splash screen. I opted for simply displaying the text “Loading app…”: Next, notice the view above includes a call to the Scripts.Render() helper. This helper renders out all of the JavaScript files required by the Durandal library such as jQuery and Knockout. Remember to fix the App_Start\DurandalBundleConfig.cs as described above or Durandal will attempt to load an old version of jQuery and throw a JavaScript exception and stop working. Your application JavaScript code is not included in the scripts rendered by the Scripts.Render helper. Your application code is loaded dynamically by RequireJS with the help of the following SCRIPT element located at the bottom of the view: <script type="text/javascript" src="~/App/durandal/amd/require.js" data-main="/App/main"></script> The data-main attribute on the SCRIPT element causes RequireJS to load your /app/main.js JavaScript file to kick-off your Durandal app. Creating the Durandal Main.js File The Durandal Main.js JavaScript file, located in your App folder, contains all of the code required to configure the behavior of Durandal. Here’s what the Main.js file looks like in the case of the Movies app: require.config({ paths: { 'text': 'durandal/amd/text' } }); define(function (require) { var app = require('durandal/app'), viewLocator = require('durandal/viewLocator'), system = require('durandal/system'), router = require('durandal/plugins/router'); //>>excludeStart("build", true); system.debug(true); //>>excludeEnd("build"); app.start().then(function () { //Replace 'viewmodels' in the moduleId with 'views' to locate the view. //Look for partial views in a 'views' folder in the root. viewLocator.useConvention(); //configure routing router.useConvention(); router.mapNav("movies/show"); router.mapNav("movies/add"); router.mapNav("movies/details/:id"); app.adaptToDevice(); //Show the app by setting the root view model for our application with a transition. app.setRoot('viewmodels/shell', 'entrance'); }); }); There are three important things to notice about the main.js file above. First, notice that it contains a section which enables debugging which looks like this: //>>excludeStart(“build”, true); system.debug(true); //>>excludeEnd(“build”); This code enables debugging for your Durandal app which is very useful when things go wrong. When you call system.debug(true), Durandal writes out debugging information to your browser JavaScript console. For example, you can use the debugging information to diagnose issues with your client-side routes: (The funny looking //> symbols around the system.debug() call are RequireJS optimizer pragmas). The main.js file is also the place where you configure your client-side routes. In the case of the Movies app, the main.js file is used to configure routes for three page: the movies show, add, and details pages. //configure routing router.useConvention(); router.mapNav("movies/show"); router.mapNav("movies/add"); router.mapNav("movies/details/:id");   The route for movie details includes a route parameter named id. Later, we will use the id parameter to lookup and display the details for the right movie. Finally, the main.js file above contains the following line of code: //Show the app by setting the root view model for our application with a transition. app.setRoot('viewmodels/shell', 'entrance'); This line of code causes Durandal to load up a JavaScript file named shell.js and an HTML fragment named shell.html. I’ll discuss the shell in the next section. Creating the Durandal Shell You can think of the Durandal shell as the layout or master page for a Durandal app. The shell is where you put all of the content which you want to remain constant as a user navigates from virtual page to virtual page. For example, the shell is a great place to put your website logo and navigation links. The Durandal shell is composed from two parts: a JavaScript file and an HTML file. Here’s what the HTML file looks like for the Movies app: <h1>Movies App</h1> <div class="container-fluid page-host"> <!--ko compose: { model: router.activeItem, //wiring the router afterCompose: router.afterCompose, //wiring the router transition:'entrance', //use the 'entrance' transition when switching views cacheViews:true //telling composition to keep views in the dom, and reuse them (only a good idea with singleton view models) }--><!--/ko--> </div> And here is what the JavaScript file looks like: define(function (require) { var router = require('durandal/plugins/router'); return { router: router, activate: function () { return router.activate('movies/show'); } }; }); The JavaScript file contains the view model for the shell. This view model returns the Durandal router so you can access the list of configured routes from your shell. Notice that the JavaScript file includes a function named activate(). This function loads the movies/show page as the first page in the Movies app. If you want to create a different default Durandal page, then pass the name of a different age to the router.activate() method. Creating the Movies Show Page Durandal pages are created out of a view model and a view. The view model contains all of the data and view logic required for the view. The view contains all of the HTML markup for rendering the view model. Let’s start with the movies show page. The movies show page displays a list of movies. The view model for the show page looks like this: define(function (require) { var moviesRepository = require("repositories/moviesRepository"); return { movies: ko.observable(), activate: function() { this.movies(moviesRepository.listMovies()); } }; }); You create a view model by defining a new RequireJS module (see http://requirejs.org). You create a RequireJS module by placing all of your JavaScript code into an anonymous function passed to the RequireJS define() method. A RequireJS module has two parts. You retrieve all of the modules which your module requires at the top of your module. The code above depends on another RequireJS module named repositories/moviesRepository. Next, you return the implementation of your module. The code above returns a JavaScript object which contains a property named movies and a method named activate. The activate() method is a magic method which Durandal calls whenever it activates your view model. Your view model is activated whenever you navigate to a page which uses it. In the code above, the activate() method is used to get the list of movies from the movies repository and assign the list to the view model movies property. The HTML for the movies show page looks like this: <table> <thead> <tr> <th>Title</th><th>Director</th> </tr> </thead> <tbody data-bind="foreach:movies"> <tr> <td data-bind="text:title"></td> <td data-bind="text:director"></td> <td><a data-bind="attr:{href:'#/movies/details/'+id}">Details</a></td> </tr> </tbody> </table> <a href="#/movies/add">Add Movie</a> Notice that this is an HTML fragment. This fragment will be stuffed into the page-host DIV element in the shell.html file which is stuffed, in turn, into the applicationHost DIV element in the server-side MVC view. The HTML markup above contains data-bind attributes used by Knockout to display the list of movies (To learn more about Knockout, visit http://knockoutjs.com). The list of movies from the view model is displayed in an HTML table. Notice that the page includes a link to a page for adding a new movie. The link uses the following URL which starts with a hash: #/movies/add. Because the link starts with a hash, clicking the link does not cause a request back to the server. Instead, you navigate to the movies/add page virtually. Creating the Movies Add Page The movies add page also consists of a view model and view. The add page enables you to add a new movie to the movie database. Here’s the view model for the add page: define(function (require) { var app = require('durandal/app'); var router = require('durandal/plugins/router'); var moviesRepository = require("repositories/moviesRepository"); return { movieToAdd: { title: ko.observable(), director: ko.observable() }, activate: function () { this.movieToAdd.title(""); this.movieToAdd.director(""); this._movieAdded = false; }, canDeactivate: function () { if (this._movieAdded == false) { return app.showMessage('Are you sure you want to leave this page?', 'Navigate', ['Yes', 'No']); } else { return true; } }, addMovie: function () { // Add movie to db moviesRepository.addMovie(ko.toJS(this.movieToAdd)); // flag new movie this._movieAdded = true; // return to list of movies router.navigateTo("#/movies/show"); } }; }); The view model contains one property named movieToAdd which is bound to the add movie form. The view model also has the following three methods: 1. activate() – This method is called by Durandal when you navigate to the add movie page. The activate() method resets the add movie form by clearing out the movie title and director properties. 2. canDeactivate() – This method is called by Durandal when you attempt to navigate away from the add movie page. If you return false then navigation is cancelled. 3. addMovie() – This method executes when the add movie form is submitted. This code adds the new movie to the movie repository. I really like the Durandal canDeactivate() method. In the code above, I use the canDeactivate() method to show a warning to a user if they navigate away from the add movie page – either by clicking the Cancel button or by hitting the browser back button – before submitting the add movie form: The view for the add movie page looks like this: <form data-bind="submit:addMovie"> <fieldset> <legend>Add Movie</legend> <div> <label> Title: <input data-bind="value:movieToAdd.title" required /> </label> </div> <div> <label> Director: <input data-bind="value:movieToAdd.director" required /> </label> </div> <div> <input type="submit" value="Add" /> <a href="#/movies/show">Cancel</a> </div> </fieldset> </form> I am using Knockout to bind the movieToAdd property from the view model to the INPUT elements of the HTML form. Notice that the FORM element includes a data-bind attribute which invokes the addMovie() method from the view model when the HTML form is submitted. Creating the Movies Details Page You navigate to the movies details Page by clicking the Details link which appears next to each movie in the movies show page: The Details links pass the movie ids to the details page: #/movies/details/0 #/movies/details/1 #/movies/details/2 Here’s what the view model for the movies details page looks like: define(function (require) { var router = require('durandal/plugins/router'); var moviesRepository = require("repositories/moviesRepository"); return { movieToShow: { title: ko.observable(), director: ko.observable() }, activate: function (context) { // Grab movie from repository var movie = moviesRepository.getMovie(context.id); // Add to view model this.movieToShow.title(movie.title); this.movieToShow.director(movie.director); } }; }); Notice that the view model activate() method accepts a parameter named context. You can take advantage of the context parameter to retrieve route parameters such as the movie Id. In the code above, the context.id property is used to retrieve the correct movie from the movie repository and the movie is assigned to a property named movieToShow exposed by the view model. The movie details view displays the movieToShow property by taking advantage of Knockout bindings: <div> <h2 data-bind="text:movieToShow.title"></h2> directed by <span data-bind="text:movieToShow.director"></span> </div> Summary The goal of this blog entry was to walkthrough building a simple Single Page App using Durandal and to get a feel for what it is like to use this library. I really like how Durandal stitches together Knockout, Sammy, and RequireJS and establishes patterns for using these libraries to build Single Page Apps. Having a standard pattern which developers on a team can use to build new pages is super valuable. Once you get the hang of it, using Durandal to create new virtual pages is dead simple. Just define a new route, view model, and view and you are done. I also appreciate the fact that Durandal did not attempt to re-invent the wheel and that Durandal leverages existing JavaScript libraries such as Knockout, RequireJS, and Sammy. These existing libraries are powerful libraries and I have already invested a considerable amount of time in learning how to use them. Durandal makes it easier to use these libraries together without losing any of their power. Durandal has some additional interesting features which I have not had a chance to play with yet. For example, you can use the RequireJS optimizer to combine and minify all of a Durandal app’s code. Also, Durandal supports a way to create custom widgets (client-side controls) by composing widgets from a controller and view. You can download the code for the Movies app by clicking the following link (this is a Visual Studio 2012 project): Durandal Movie App

    Read the article

  • Syncing Data with a Server using Silverlight and HTTP Polling Duplex

    - by dwahlin
    Many applications have the need to stay in-sync with data provided by a service. Although web applications typically rely on standard polling techniques to check if data has changed, Silverlight provides several interesting options for keeping an application in-sync that rely on server “push” technologies. A few years back I wrote several blog posts covering different “push” technologies available in Silverlight that rely on sockets or HTTP Polling Duplex. We recently had a project that looked like it could benefit from pushing data from a server to one or more clients so I thought I’d revisit the subject and provide some updates to the original code posted. If you’ve worked with AJAX before in Web applications then you know that until browsers fully support web sockets or other duplex (bi-directional communication) technologies that it’s difficult to keep applications in-sync with a server without relying on polling. The problem with polling is that you have to check for changes on the server on a timed-basis which can often be wasteful and take up unnecessary resources. With server “push” technologies, data can be pushed from the server to the client as it changes. Once the data is received, the client can update the user interface as appropriate. Using “push” technologies allows the client to listen for changes from the data but stay 100% focused on client activities as opposed to worrying about polling and asking the server if anything has changed. Silverlight provides several options for pushing data from a server to a client including sockets, TCP bindings and HTTP Polling Duplex.  Each has its own strengths and weaknesses as far as performance and setup work with HTTP Polling Duplex arguably being the easiest to setup and get going.  In this article I’ll demonstrate how HTTP Polling Duplex can be used in Silverlight 4 applications to push data and show how you can create a WCF server that provides an HTTP Polling Duplex binding that a Silverlight client can consume.   What is HTTP Polling Duplex? Technologies that allow data to be pushed from a server to a client rely on duplex functionality. Duplex (or bi-directional) communication allows data to be passed in both directions.  A client can call a service and the server can call the client. HTTP Polling Duplex (as its name implies) allows a server to communicate with a client without forcing the client to constantly poll the server. It has the benefit of being able to run on port 80 making setup a breeze compared to the other options which require specific ports to be used and cross-domain policy files to be exposed on port 943 (as with sockets and TCP bindings). Having said that, if you’re looking for the best speed possible then sockets and TCP bindings are the way to go. But, they’re not the only game in town when it comes to duplex communication. The first time I heard about HTTP Polling Duplex (initially available in Silverlight 2) I wasn’t exactly sure how it was any better than standard polling used in AJAX applications. I read the Silverlight SDK, looked at various resources and generally found the following definition unhelpful as far as understanding the actual benefits that HTTP Polling Duplex provided: "The Silverlight client periodically polls the service on the network layer, and checks for any new messages that the service wants to send on the callback channel. The service queues all messages sent on the client callback channel and delivers them to the client when the client polls the service." Although the previous definition explained the overall process, it sounded as if standard polling was used. Fortunately, Microsoft’s Scott Guthrie provided me with a more clear definition several years back that explains the benefits provided by HTTP Polling Duplex quite well (used with his permission): "The [HTTP Polling Duplex] duplex support does use polling in the background to implement notifications – although the way it does it is different than manual polling. It initiates a network request, and then the request is effectively “put to sleep” waiting for the server to respond (it doesn’t come back immediately). The server then keeps the connection open but not active until it has something to send back (or the connection times out after 90 seconds – at which point the duplex client will connect again and wait). This way you are avoiding hitting the server repeatedly – but still get an immediate response when there is data to send." After hearing Scott’s definition the light bulb went on and it all made sense. A client makes a request to a server to check for changes, but instead of the request returning immediately, it parks itself on the server and waits for data. It’s kind of like waiting to pick up a pizza at the store. Instead of calling the store over and over to check the status, you sit in the store and wait until the pizza (the request data) is ready. Once it’s ready you take it back home (to the client). This technique provides a lot of efficiency gains over standard polling techniques even though it does use some polling of its own as a request is initially made from a client to a server. So how do you implement HTTP Polling Duplex in your Silverlight applications? Let’s take a look at the process by starting with the server. Creating an HTTP Polling Duplex WCF Service Creating a WCF service that exposes an HTTP Polling Duplex binding is straightforward as far as coding goes. Add some one way operations into an interface, create a client callback interface and you’re ready to go. The most challenging part comes into play when configuring the service to properly support the necessary binding and that’s more of a cut and paste operation once you know the configuration code to use. To create an HTTP Polling Duplex service you’ll need to expose server-side and client-side interfaces and reference the System.ServiceModel.PollingDuplex assembly (located at C:\Program Files (x86)\Microsoft SDKs\Silverlight\v4.0\Libraries\Server on my machine) in the server project. For the demo application I upgraded a basketball simulation service to support the latest polling duplex assemblies. The service simulates a simple basketball game using a Game class and pushes information about the game such as score, fouls, shots and more to the client as the game changes over time. Before jumping too far into the game push service, it’s important to discuss two interfaces used by the service to communicate in a bi-directional manner. The first is called IGameStreamService and defines the methods/operations that the client can call on the server (see Listing 1). The second is IGameStreamClient which defines the callback methods that a server can use to communicate with a client (see Listing 2).   [ServiceContract(Namespace = "Silverlight", CallbackContract = typeof(IGameStreamClient))] public interface IGameStreamService { [OperationContract(IsOneWay = true)] void GetTeamData(); } Listing 1. The IGameStreamService interface defines server operations that can be called on the server.   [ServiceContract] public interface IGameStreamClient { [OperationContract(IsOneWay = true)] void ReceiveTeamData(List<Team> teamData); [OperationContract(IsOneWay = true, AsyncPattern=true)] IAsyncResult BeginReceiveGameData(GameData gameData, AsyncCallback callback, object state); void EndReceiveGameData(IAsyncResult result); } Listing 2. The IGameStreamClient interfaces defines client operations that a server can call.   The IGameStreamService interface is decorated with the standard ServiceContract attribute but also contains a value for the CallbackContract property.  This property is used to define the interface that the client will expose (IGameStreamClient in this example) and use to receive data pushed from the service. Notice that each OperationContract attribute in both interfaces sets the IsOneWay property to true. This means that the operation can be called and passed data as appropriate, however, no data will be passed back. Instead, data will be pushed back to the client as it’s available.  Looking through the IGameStreamService interface you can see that the client can request team data whereas the IGameStreamClient interface allows team and game data to be received by the client. One interesting point about the IGameStreamClient interface is the inclusion of the AsyncPattern property on the BeginReceiveGameData operation. I initially created this operation as a standard one way operation and it worked most of the time. However, as I disconnected clients and reconnected new ones game data wasn’t being passed properly. After researching the problem more I realized that because the service could take up to 7 seconds to return game data, things were getting hung up. By setting the AsyncPattern property to true on the BeginReceivedGameData operation and providing a corresponding EndReceiveGameData operation I was able to get around this problem and get everything running properly. I’ll provide more details on the implementation of these two methods later in this post. Once the interfaces were created I moved on to the game service class. The first order of business was to create a class that implemented the IGameStreamService interface. Since the service can be used by multiple clients wanting game data I added the ServiceBehavior attribute to the class definition so that I could set its InstanceContextMode to InstanceContextMode.Single (in effect creating a Singleton service object). Listing 3 shows the game service class as well as its fields and constructor.   [ServiceBehavior(ConcurrencyMode = ConcurrencyMode.Multiple, InstanceContextMode = InstanceContextMode.Single)] public class GameStreamService : IGameStreamService { object _Key = new object(); Game _Game = null; Timer _Timer = null; Random _Random = null; Dictionary<string, IGameStreamClient> _ClientCallbacks = new Dictionary<string, IGameStreamClient>(); static AsyncCallback _ReceiveGameDataCompleted = new AsyncCallback(ReceiveGameDataCompleted); public GameStreamService() { _Game = new Game(); _Timer = new Timer { Enabled = false, Interval = 2000, AutoReset = true }; _Timer.Elapsed += new ElapsedEventHandler(_Timer_Elapsed); _Timer.Start(); _Random = new Random(); }} Listing 3. The GameStreamService implements the IGameStreamService interface which defines a callback contract that allows the service class to push data back to the client. By implementing the IGameStreamService interface, GameStreamService must supply a GetTeamData() method which is responsible for supplying information about the teams that are playing as well as individual players.  GetTeamData() also acts as a client subscription method that tracks clients wanting to receive game data.  Listing 4 shows the GetTeamData() method. public void GetTeamData() { //Get client callback channel var context = OperationContext.Current; var sessionID = context.SessionId; var currClient = context.GetCallbackChannel<IGameStreamClient>(); context.Channel.Faulted += Disconnect; context.Channel.Closed += Disconnect; IGameStreamClient client; if (!_ClientCallbacks.TryGetValue(sessionID, out client)) { lock (_Key) { _ClientCallbacks[sessionID] = currClient; } } currClient.ReceiveTeamData(_Game.GetTeamData()); //Start timer which when fired sends updated score information to client if (!_Timer.Enabled) { _Timer.Enabled = true; } } Listing 4. The GetTeamData() method subscribes a given client to the game service and returns. The key the line of code in the GetTeamData() method is the call to GetCallbackChannel<IGameStreamClient>().  This method is responsible for accessing the calling client’s callback channel. The callback channel is defined by the IGameStreamClient interface shown earlier in Listing 2 and used by the server to communicate with the client. Before passing team data back to the client, GetTeamData() grabs the client’s session ID and checks if it already exists in the _ClientCallbacks dictionary object used to track clients wanting callbacks from the server. If the client doesn’t exist it adds it into the collection. It then pushes team data from the Game class back to the client by calling ReceiveTeamData().  Since the service simulates a basketball game, a timer is then started if it’s not already enabled which is then used to randomly send data to the client. When the timer fires, game data is pushed down to the client. Listing 5 shows the _Timer_Elapsed() method that is called when the timer fires as well as the SendGameData() method used to send data to the client. void _Timer_Elapsed(object sender, ElapsedEventArgs e) { int interval = _Random.Next(3000, 7000); lock (_Key) { _Timer.Interval = interval; _Timer.Enabled = false; } SendGameData(_Game.GetGameData()); } private void SendGameData(GameData gameData) { var cbs = _ClientCallbacks.Where(cb => ((IContextChannel)cb.Value).State == CommunicationState.Opened); for (int i = 0; i < cbs.Count(); i++) { var cb = cbs.ElementAt(i).Value; try { cb.BeginReceiveGameData(gameData, _ReceiveGameDataCompleted, cb); } catch (TimeoutException texp) { //Log timeout error } catch (CommunicationException cexp) { //Log communication error } } lock (_Key) _Timer.Enabled = true; } private static void ReceiveGameDataCompleted(IAsyncResult result) { try { ((IGameStreamClient)(result.AsyncState)).EndReceiveGameData(result); } catch (CommunicationException) { // empty } catch (TimeoutException) { // empty } } LIsting 5. _Timer_Elapsed is used to simulate time in a basketball game. When _Timer_Elapsed() fires the SendGameData() method is called which iterates through the clients wanting to be notified of changes. As each client is identified, their respective BeginReceiveGameData() method is called which ultimately pushes game data down to the client. Recall that this method was defined in the client callback interface named IGameStreamClient shown earlier in Listing 2. Notice that BeginReceiveGameData() accepts _ReceiveGameDataCompleted as its second parameter (an AsyncCallback delegate defined in the service class) and passes the client callback as the third parameter. The initial version of the sample application had a standard ReceiveGameData() method in the client callback interface. However, sometimes the client callbacks would work properly and sometimes they wouldn’t which was a little baffling at first glance. After some investigation I realized that I needed to implement an asynchronous pattern for client callbacks to work properly since 3 – 7 second delays are occurring as a result of the timer. Once I added the BeginReceiveGameData() and ReceiveGameDataCompleted() methods everything worked properly since each call was handled in an asynchronous manner. The final task that had to be completed to get the server working properly with HTTP Polling Duplex was adding configuration code into web.config. In the interest of brevity I won’t post all of the code here since the sample application includes everything you need. However, Listing 6 shows the key configuration code to handle creating a custom binding named pollingDuplexBinding and associate it with the service’s endpoint.   <bindings> <customBinding> <binding name="pollingDuplexBinding"> <binaryMessageEncoding /> <pollingDuplex maxPendingSessions="2147483647" maxPendingMessagesPerSession="2147483647" inactivityTimeout="02:00:00" serverPollTimeout="00:05:00"/> <httpTransport /> </binding> </customBinding> </bindings> <services> <service name="GameService.GameStreamService" behaviorConfiguration="GameStreamServiceBehavior"> <endpoint address="" binding="customBinding" bindingConfiguration="pollingDuplexBinding" contract="GameService.IGameStreamService"/> <endpoint address="mex" binding="mexHttpBinding" contract="IMetadataExchange" /> </service> </services>   Listing 6. Configuring an HTTP Polling Duplex binding in web.config and associating an endpoint with it. Calling the Service and Receiving “Pushed” Data Calling the service and handling data that is pushed from the server is a simple and straightforward process in Silverlight. Since the service is configured with a MEX endpoint and exposes a WSDL file, you can right-click on the Silverlight project and select the standard Add Service Reference item. After the web service proxy is created you may notice that the ServiceReferences.ClientConfig file only contains an empty configuration element instead of the normal configuration elements created when creating a standard WCF proxy. You can certainly update the file if you want to read from it at runtime but for the sample application I fed the service URI directly to the service proxy as shown next: var address = new EndpointAddress("http://localhost.:5661/GameStreamService.svc"); var binding = new PollingDuplexHttpBinding(); _Proxy = new GameStreamServiceClient(binding, address); _Proxy.ReceiveTeamDataReceived += _Proxy_ReceiveTeamDataReceived; _Proxy.ReceiveGameDataReceived += _Proxy_ReceiveGameDataReceived; _Proxy.GetTeamDataAsync(); This code creates the proxy and passes the endpoint address and binding to use to its constructor. It then wires the different receive events to callback methods and calls GetTeamDataAsync().  Calling GetTeamDataAsync() causes the server to store the client in the server-side dictionary collection mentioned earlier so that it can receive data that is pushed.  As the server-side timer fires and game data is pushed to the client, the user interface is updated as shown in Listing 7. Listing 8 shows the _Proxy_ReceiveGameDataReceived() method responsible for handling the data and calling UpdateGameData() to process it.   Listing 7. The Silverlight interface. Game data is pushed from the server to the client using HTTP Polling Duplex. void _Proxy_ReceiveGameDataReceived(object sender, ReceiveGameDataReceivedEventArgs e) { UpdateGameData(e.gameData); } private void UpdateGameData(GameData gameData) { //Update Score this.tbTeam1Score.Text = gameData.Team1Score.ToString(); this.tbTeam2Score.Text = gameData.Team2Score.ToString(); //Update ball visibility if (gameData.Action != ActionsEnum.Foul) { if (tbTeam1.Text == gameData.TeamOnOffense) { AnimateBall(this.BB1, this.BB2); } else //Team 2 { AnimateBall(this.BB2, this.BB1); } } if (this.lbActions.Items.Count > 9) this.lbActions.Items.Clear(); this.lbActions.Items.Add(gameData.LastAction); if (this.lbActions.Visibility == Visibility.Collapsed) this.lbActions.Visibility = Visibility.Visible; } private void AnimateBall(Image onBall, Image offBall) { this.FadeIn.Stop(); Storyboard.SetTarget(this.FadeInAnimation, onBall); Storyboard.SetTarget(this.FadeOutAnimation, offBall); this.FadeIn.Begin(); } Listing 8. As the server pushes game data, the client’s _Proxy_ReceiveGameDataReceived() method is called to process the data. In a real-life application I’d go with a ViewModel class to handle retrieving team data, setup data bindings and handle data that is pushed from the server. However, for the sample application I wanted to focus on HTTP Polling Duplex and keep things as simple as possible.   Summary Silverlight supports three options when duplex communication is required in an application including TCP bindins, sockets and HTTP Polling Duplex. In this post you’ve seen how HTTP Polling Duplex interfaces can be created and implemented on the server as well as how they can be consumed by a Silverlight client. HTTP Polling Duplex provides a nice way to “push” data from a server while still allowing the data to flow over port 80 or another port of your choice.   Sample Application Download

    Read the article

  • Squid refresh_pattern won't cache "Expires: ..."

    - by Marcelo Cantos
    Background I frequent the OpenGL ES documentation site at http://www.khronos.org/opengles/sdk/1.1/docs/man/. Even though the content is completely static, it seems to force a reload on every single page I visit, which is very annoying. I have a squid 3.0 proxy set up (apt-get install squid3 on Ubuntu 10.04), and I added a refresh_pattern to force the pages to cache: refresh_pattern ^http://www.khronos.org/opengles/sdk/1\.1/docs/man/ … 1440 20% 10080 … override-expire ignore-reload ignore-no-cache ignore-private ignore-no-store This is all on one line, of course. While this appears to work for the XHTML documents (e.g., glBindTexture), it fails to cache the linked content, such as the DTD, some .ent files (?) and some XSL files. The delay in fetching these extra files delays rendering of the main document, so my principal annoyance isn't fixed. The only difference I can glean with these ancillary files is that they come with an Expires: header set to the current time, whereas the XHTML document has none. But I would have expected the override-expire option to fix this. I have confirmed that documents have the same base URL. I have also truncated the pattern to varying degrees, with no effect. My questions Why does the override-expire option not seem to work? Is there a simple way to tell squid to unconditionally cache a document, no matter what it finds in the response headers? (Hopefully) relevant output cache.log Jan 01 10:33:30 1970/06/25 21:18:27| Processing Configuration File: /etc/squid3/squid.conf (depth 0) Jan 01 10:33:30 1970/06/25 21:18:27| WARNING: use of 'override-expire' in 'refresh_pattern' violates HTTP Jan 01 10:33:30 1970/06/25 21:18:27| WARNING: use of 'ignore-reload' in 'refresh_pattern' violates HTTP Jan 01 10:33:30 1970/06/25 21:18:27| WARNING: use of 'ignore-no-cache' in 'refresh_pattern' violates HTTP Jan 01 10:33:30 1970/06/25 21:18:27| WARNING: use of 'ignore-no-store' in 'refresh_pattern' violates HTTP Jan 01 10:33:30 1970/06/25 21:18:27| WARNING: use of 'ignore-private' in 'refresh_pattern' violates HTTP Jan 01 10:33:30 1970/06/25 21:18:27| DNS Socket created at 0.0.0.0, port 37082, FD 10 Jan 01 10:33:30 1970/06/25 21:18:27| Adding nameserver 192.168.1.1 from /etc/resolv.conf Jan 01 10:33:30 1970/06/25 21:18:27| Accepting HTTP connections at 0.0.0.0, port 3128, FD 11. Jan 01 10:33:30 1970/06/25 21:18:27| Accepting ICP messages at 0.0.0.0, port 3130, FD 13. Jan 01 10:33:30 1970/06/25 21:18:27| HTCP Disabled. Jan 01 10:33:30 1970/06/25 21:18:27| Loaded Icons. Jan 01 10:33:30 1970/06/25 21:18:27| Ready to serve requests. access.log Jun 25 21:19:35 2010.710 0 192.168.1.50 TCP_MEM_HIT/200 2452 GET http://www.khronos.org/opengles/sdk/1.1/docs/man/glBindTexture.xml - NONE/- text/xml Jun 25 21:19:36 2010.263 543 192.168.1.50 TCP_MISS/304 322 GET http://www.khronos.org/opengles/sdk/1.1/docs/man/xhtml1-transitional.dtd - DIRECT/74.54.224.215 - Jun 25 21:19:36 2010.276 556 192.168.1.50 TCP_MISS/304 370 GET http://www.khronos.org/opengles/sdk/1.1/docs/man/mathml.xsl - DIRECT/74.54.224.215 - Jun 25 21:19:36 2010.666 278 192.168.1.50 TCP_MISS/304 322 GET http://www.khronos.org/opengles/sdk/1.1/docs/man/xhtml-lat1.ent - DIRECT/74.54.224.215 - Jun 25 21:19:36 2010.958 279 192.168.1.50 TCP_MISS/304 322 GET http://www.khronos.org/opengles/sdk/1.1/docs/man/xhtml-symbol.ent - DIRECT/74.54.224.215 - Jun 25 21:19:37 2010.251 276 192.168.1.50 TCP_MISS/304 322 GET http://www.khronos.org/opengles/sdk/1.1/docs/man/xhtml-special.ent - DIRECT/74.54.224.215 - Jun 25 21:19:37 2010.332 0 192.168.1.50 TCP_IMS_HIT/304 316 GET http://www.khronos.org/opengles/sdk/1.1/docs/man/ctop.xsl - NONE/- text/xml Jun 25 21:19:37 2010.332 0 192.168.1.50 TCP_IMS_HIT/304 316 GET http://www.khronos.org/opengles/sdk/1.1/docs/man/pmathml.xsl - NONE/- text/xml store.log Jun 25 21:19:36 2010.263 RELEASE -1 FFFFFFFF D3056C09B42659631A65A08F97794E45 304 1277464776 -1 1277464776 unknown -1/0 GET http://www.khronos.org/opengles/sdk/1.1/docs/man/xhtml1-transitional.dtd Jun 25 21:19:36 2010.276 RELEASE -1 FFFFFFFF 9BF7F37442FD84DD0AC0479E38329E3C 304 1277464776 -1 1277464776 unknown -1/0 GET http://www.khronos.org/opengles/sdk/1.1/docs/man/mathml.xsl Jun 25 21:19:36 2010.666 RELEASE -1 FFFFFFFF 7BCFCE88EC91578C8E2589CB6310B3A1 304 1277464776 -1 1277464776 unknown -1/0 GET http://www.khronos.org/opengles/sdk/1.1/docs/man/xhtml-lat1.ent Jun 25 21:19:36 2010.958 RELEASE -1 FFFFFFFF ECF1B24E437CFAA08A2785AA31A042A0 304 1277464777 -1 1277464777 unknown -1/0 GET http://www.khronos.org/opengles/sdk/1.1/docs/man/xhtml-symbol.ent Jun 25 21:19:37 2010.251 RELEASE -1 FFFFFFFF 36FE3D76C80F0106E6E9F3B7DCE924FA 304 1277464777 -1 1277464777 unknown -1/0 GET http://www.khronos.org/opengles/sdk/1.1/docs/man/xhtml-special.ent Jun 25 21:19:37 2010.332 RELEASE -1 FFFFFFFF A33E5A5CCA2BFA059C0FA25163485192 304 1277462871 1221139523 1277462871 text/xml -1/0 GET http://www.khronos.org/opengles/sdk/1.1/docs/man/ctop.xsl Jun 25 21:19:37 2010.332 RELEASE -1 FFFFFFFF E2CF8854443275755915346052ACE14E 304 1277462872 1221139523 1277462872 text/xml -1/0 GET http://www.khronos.org/opengles/sdk/1.1/docs/man/pmathml.xsl

    Read the article

< Previous Page | 224 225 226 227 228 229 230 231 232 233 234 235  | Next Page >