Search Results

Search found 8258 results on 331 pages for 'sequence points'.

Page 229/331 | < Previous Page | 225 226 227 228 229 230 231 232 233 234 235 236  | Next Page >

  • What key concepts and nuances in C++ you know?

    - by Narek
    What kind of key points and concepts should a person know from C++ (and from programming in general) to be considered that he/she possesses C++ (and programming, in general) skills good. e.g. //Even if sizeof(T) may not be equal to 1, this code steps over array elements T v[]; for(T *p = v ; *p != 0 ; p++) cout<<*p<<endl; P.S. I hope by exchanging this info we will help each other to know C++ and programing thechnics better by doing explicit our notion that we got from practice.

    Read the article

  • Working with sets of rows in (My)SQL and comparing values

    - by Pep.
    Hello, I am trying to figure out the SQL for doing some relatively simple operations on sets of records in a table but I am stuck. Consider a table with multiple rows per item, all identified by a common key. For example: serial model color XX1 A blue XX2 A blue XX3 A green XX5 B red XX6 B blue XX1 B blue What I would for example want to do is: Assuming that all model A rows must have the same color, find the rows which dont. (for example, XX3 is green). Assuming that a given serial number can only point to a single type of model, find out the rows which that does not occur (for example XX1 points both to A and B) These are all simple logically things to do. To abstract it, I want to know how to group things by using a single key (or combination of keys) and then compare the values of those records. Should I use a join on the same table? should i use some sort of array or similar? thanks for your help

    Read the article

  • mysql_close(): supplied argument is not a valid MySQL-Link resource

    - by maxedison
    I'm trying to get the hang of using custom session handlers to store session data in a MySQL database. However, I keep getting the following warning: mysql_close(): supplied argument is not a valid MySQL-Link resource Here's the code I'm using, which I got from here: function _open(){ global $_sess_db; $_sess_db = mysql_connect("localhost", "root", "******"); if ($_sess_db) { return mysql_select_db('style', $_sess_db); } return false; } function _close(){ global $_sess_db; return mysql_close($_sess_db); //error happens here } The full text of the error message ultimately points to the final "return mysql_close($_sess_db);" line. I can confirm that the mysql_connect info does in fact work, and I do have the rest of the session handler functions defined as well. And in case it helps, I get these errors immediately upon page load, without actually calling any of the session handler functions, and without having any current sessions open.

    Read the article

  • Inventory Management OOP design

    - by rgamber
    This was an OOP design and implementation interview question, which I came across on glassdoor.com. Design and implement a inventory management system to minimize the number of missed delivery dates while keeping costs to the company low. Of course there is no right answer to this, but I am not sure I understand the question correctly and am wondering what would be a good answer. Is this as simple as creating an undirected graph with nodes as the delivery points, and edges having weights as the cost of the delivery, and then use a single-source-shortest-path algorithm (like Dijkstras, or Bellman-Ford) on the graph? Not sure if this type of question should be asked here,so let me know and I will delete it.

    Read the article

  • Gmock setting out parameter

    - by user1135541
    Have a gmock method, and during test, need to set the out parameter to variable address. So that the out parameter of dequeue, which is data points to variable ch; MOCK_METHOD1(dequeue, void(void* data)); char ch = 'm'; void* a = (void*)&ch; EXPECT_CALL(FQO, dequeue(_)) .WillOnce(/*here I need to set argument to a*/); I tried to figure out side effects: https://code.google.com/p/googlemock/wiki/V1_7_CheatSheet#Side_Effects but keep getting an error.

    Read the article

  • (iphone) Does it make difference to provide more images when the object is moving in a straight line?

    - by Eugene
    Hi. Among many animation scenarios, there are times when I want an object to move a straight line then change direction, move another straight line and so forth. Assuming I would use either UIImageView or CABasicAnimation with image arrays. Does it make difference to provide more images when the object is moving in a straight line? For example, point1 ---------point2 ------- point3 (all points are in a straight line) Providing an image at point2 to UIImageView or CABasicAnimation, gives any better animation result, assuming I don't need to change the animation speed along the course? If I were flashing each image myself, yes it would make the animation look smooth, but I'm giving the images to UIImageView/CABasicAnimation, and wonder what they do. Thank you

    Read the article

  • Mapping C structure to an XML element

    - by EFraim
    Suppose I have a structure in C or C++, such as: struct ConfigurableElement { int ID; char* strName; long prop1; long prop2; ... }; I would like to load/save it to/from the following XML element: <ConfigurableElement ID="1" strName="namedElem" prop1="2" prop2="3" ... /> Such a mapping can be trivially done in Java/C# or any other language with run-time reflection for the matter. Can it be done in any non-tedious way in C++ with macros/template trickery? Bonus points for handling nested structures/unions.

    Read the article

  • How did this Ruby on Rails app get deployed?

    - by Ciera
    I have a Ruby on Rails app running on my server, and I can't figure out how it was deployed (someone else set it up). The app is located in /var/www/myapp. Before it was deployed, I had been able to go in there and make minor edits to the app. The person helping me out with RoR then "deployed" it. It was unclear what deploying actually did, since it points to the same database and is on the same server. However, I can no longer edit it (or at least, the files I am editing are not being pointed to by the server). Any way to figure out how this thing was deployed so I can take it down to edit it? Or should I basically just start over?

    Read the article

  • Scale 2D coordinates and keep their relative euclidean distances intact?

    - by eiaxlid
    I have a set of points like: pointA(3302.34,9392.32), pointB(34322.32,11102.03), etc. I need to scale these so each x- and y-coordinate is in the range (0.0 - 1.0). I tried doing this by first finding the largest x value in the data set (maximum_x_value), and the largest y value in the set (minimum_y_value). I then did the following: pointA.x = (pointA.x - minimum_x_value) / (maximum_x_value - minimum_x_value) pointA.y = (pointA.y - minimum_y_value) / (maximum_y_value - minimum_y_value) This changes the relative distances(?), and therefore makes the data useless for my purposes. Is there a way to scale these coordinates while keeping their relative distances the intact?

    Read the article

  • In linux, is it possible to do partial reads on a regular file

    - by Jimm
    I need to write an application that spits out log entries to a regular file at a very fast rate. Also, there will be another process, that can read the same file concurrently at the time, other process would be writing to it. I have following questions How does read() determine EOF, specially in the case, where the underlying file could be concurrently being modified? Is it possible for read() to return partially written data from the other process write? For example, the write process wrote half a line and read would pick that half line and return? The application would be written in C on linux 2.6.x using Ex4 filesystem UPDATE: Below link points to the patch, that locks inode in EXT4, before reading and writing. http://patchwork.ozlabs.org/patch/91834/

    Read the article

  • C++ template + typedef

    - by MMS
    What is wrong in the following code: Point2D.h template <class T> class Point2D { private: T x; T y; ... }; PointsList.h template <class T> class Point2D; template <class T> struct TPointsList { typedef std::vector <Point2D <T> > Type; }; template <class T> class PointsList { private: TPointsList <T>::Type points; //Compiler error ... }; I would like to create new user type TPointsList without direct type specification...

    Read the article

  • Create Macro With Several Variables

    - by Daniel
    I have several worksheets with similar code, so I'd like to turn it into a macro. My only problem is that there are several variables. So at certain points the code looks like this: Dim Msg_1 As String Dim Msg_2 As String Public Sub ListBox1_LostFocus() ListBox1.Height = 15 With ListBox1 Msg1 = "'" For i = 0 To .ListCount - 1 If .Selected(i) Then Msg1 = Msg1 & .List(i) & "','" End If Next i End With Msg1 = Left(Msg1, Len(Msg1) - 2) Sheets("Sheet1").Range("R3", "R3") = Msg1 End Sub and so on. How can I pass in a new value for Msg1, Msg2, Msg3 for each worksheet?

    Read the article

  • Macro C++ Issues __VA_ARGS__

    - by CodeLizard
    What (if any) are some potential problems with a C++ macro usage like this? Would an inline function be a more appropriate solution? #define EVENT_INFO(_format_, ...) CMyEvent::Generate(__FILE__, __LINE__, CMyEvent::EVT_HIGH, _format_, __VA_ARGS__) void CMyEvent::Generate( const char* file, // filename int line, // line number CMyEvent::LEVEL level, // severity level const char *format, // format of the msg / data ...) // variable arguments { // Get a message from the pool CMyEvent* p_msg = GetMessageFromPool(); if(p_msg != NULL) { va_list arguments; // points to each unnamed argument va_start(arguments, format); // Fill the object with strings and data. p_msg->Fill(file, line, level, 0, format, arguments); va_end(arguments); } }

    Read the article

  • What will or won't cause a thread to block (a question from a test)

    - by fingerprint211b
    I've had a test, and there was a question I lost some points on, because I wasn't able to answer it : Which of the following is NOT a condition which can cause a thread to block : Calling an objects's wait() method Waiting for an I/O operation Calling sleep() Calling yield() Calling join() As far as I know, all of these are blocking calls : wait() returns when an something calls notify(), blocks until then If the thread is WAITING for an I/O operation then it's obviously blocked sleep(), obviously, blocks until the time runs out, or something wakes up the thread yield() "cancels the rest of the thread's timeslice" (lacking a better term), and returns only when the thread is active again join() blocks until the thread it's waiting for terminates. Am I missing something here?

    Read the article

  • What is the memoy size of a Java object array after it has been created?

    - by brenns10
    This probably doesn't even need asking, but I want to make sure I'm right on this. When you create an array of any object in Java like so: Object[] objArr = new Object[10]; The variable objArr is located in stack memory, and it points to a location in the heap where the array object is located. The size of that array in the heap is equal to a 12 byte object header + 4 (or 8, depending on the reference size) bytes * the number of entries in the array. Is this accurate? My question, then, is as follows. Since the array above is empty, does it take up 12 + 4*10 = 52 bytes of memory in the heap immediately after the execution of that line of code? Or does the JVM wait until you start putting things into the array before it instantiates it? Do the null references in the array take up space?

    Read the article

  • Tomcat 6: Access Control Exception?

    - by iftrue
    I'm trying to setup a tomcat6 server, and I'm trying to match another setup someone else established. However, my deployment (default Ubuntu install) uses a policy.d/ directory structure, and the established server just uses a catalina.policy file. I've tried setting every entry in policy.d to match the given catalina.policy, but I still get the following stacktrace on boot (from localhost log). I have two questions, then. First, how do I get tomcat to use a single poilcy file, rather than the directory structure presented by policy.d/? Secondly, why, when I specify all files to use the same policy, do I still get the stack trace below? Stack trace: SEVERE: Servlet /myapp threw load() exception java.security.AccessControlException: access denied (java.lang.RuntimePermission accessClassInPackage.org.apache.jasper) at java.security.AccessControlContext.checkPermission(AccessControlContext.java:342) at java.security.AccessController.checkPermission(AccessController.java:553) at java.lang.SecurityManager.checkPermission(SecurityManager.java:549) at java.lang.SecurityManager.checkPackageAccess(SecurityManager.java:1529) at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:291) at java.lang.ClassLoader.loadClass(ClassLoader.java:264) at org.apache.catalina.loader.WebappClassLoader.loadClass(WebappClassLoader.java:1314) at org.apache.catalina.loader.WebappClassLoader.loadClass(WebappClassLoader.java:1245) at java.lang.ClassLoader.loadClassInternal(ClassLoader.java:332) at org.apache.jasper.servlet.JspServlet.init(JspServlet.java:100) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:616) at org.apache.catalina.security.SecurityUtil$1.run(SecurityUtil.java:244) at java.security.AccessController.doPrivileged(Native Method) at javax.security.auth.Subject.doAsPrivileged(Subject.java:537) at org.apache.catalina.security.SecurityUtil.execute(SecurityUtil.java:276) at org.apache.catalina.security.SecurityUtil.doAsPrivilege(SecurityUtil.java:162) at org.apache.catalina.security.SecurityUtil.doAsPrivilege(SecurityUtil.java:115) at org.apache.catalina.core.StandardWrapper.loadServlet(StandardWrapper.java:1166) at org.apache.catalina.core.StandardWrapper.load(StandardWrapper.java:992) at org.apache.catalina.core.StandardContext.loadOnStartup(StandardContext.java:4058) at org.apache.catalina.core.StandardContext.start(StandardContext.java:4367) at org.apache.catalina.core.ContainerBase.addChildInternal(ContainerBase.java:791) at org.apache.catalina.core.ContainerBase.access$000(ContainerBase.java:123) at org.apache.catalina.core.ContainerBase$PrivilegedAddChild.run(ContainerBase.java:145) at java.security.AccessController.doPrivileged(Native Method) at org.apache.catalina.core.ContainerBase.addChild(ContainerBase.java:769) at org.apache.catalina.core.StandardHost.addChild(StandardHost.java:525) at org.apache.catalina.startup.HostConfig.deployDirectory(HostConfig.java:978) at org.apache.catalina.startup.HostConfig.deployDirectories(HostConfig.java:941) at org.apache.catalina.startup.HostConfig.deployApps(HostConfig.java:499) at org.apache.catalina.startup.HostConfig.start(HostConfig.java:1201) at org.apache.catalina.startup.HostConfig.lifecycleEvent(HostConfig.java:318) at org.apache.catalina.util.LifecycleSupport.fireLifecycleEvent(LifecycleSupport.java:117) at org.apache.catalina.core.ContainerBase.start(ContainerBase.java:1053) at org.apache.catalina.core.StandardHost.start(StandardHost.java:719) at org.apache.catalina.core.ContainerBase.start(ContainerBase.java:1045) at org.apache.catalina.core.StandardEngine.start(StandardEngine.java:443) at org.apache.catalina.core.StandardService.start(StandardService.java:516) at org.apache.catalina.core.StandardServer.start(StandardServer.java:710) at org.apache.catalina.startup.Catalina.start(Catalina.java:578) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:616) at org.apache.catalina.startup.Bootstrap.start(Bootstrap.java:288) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:616) at org.apache.commons.daemon.support.DaemonLoader.start(DaemonLoader.java:177) Policy.d grant codeBase "file:${java.home}/lib/-" { permission java.security.AllPermission; }; // These permissions apply to all shared system extensions grant codeBase "file:${java.home}/jre/lib/ext/-" { permission java.security.AllPermission; }; // These permissions apply to javac when ${java.home] points at $JAVA_HOME/jre grant codeBase "file:${java.home}/../lib/-" { permission java.security.AllPermission; }; // These permissions apply to all shared system extensions when // ${java.home} points at $JAVA_HOME/jre grant codeBase "file:${java.home}/lib/ext/-" { permission java.security.AllPermission; }; // ========== CATALINA CODE PERMISSIONS ======================================= // These permissions apply to the daemon code grant codeBase "file:${catalina.home}/bin/commons-daemon.jar" { permission java.security.AllPermission; }; // These permissions apply to the logging API grant codeBase "file:${catalina.home}/bin/tomcat-juli.jar" { permission java.util.PropertyPermission "java.util.logging.config.class", "read"; permission java.util.PropertyPermission "java.util.logging.config.file", "read"; permission java.io.FilePermission "${java.home}${file.separator}lib${file.separator}logging.properties", "read"; permission java.lang.RuntimePermission "shutdownHooks"; permission java.io.FilePermission "${catalina.base}${file.separator}conf${file.separator}logging.properties", "read"; permission java.util.PropertyPermission "catalina.base", "read"; permission java.util.logging.LoggingPermission "control"; permission java.io.FilePermission "${catalina.base}${file.separator}logs", "read, write"; permission java.io.FilePermission "${catalina.base}${file.separator}logs${file.separator}*", "read, write"; permission java.lang.RuntimePermission "getClassLoader"; // To enable per context logging configuration, permit read access to the appropriate file. // Be sure that the logging configuration is secure before enabling such access // eg for the examples web application: // permission java.io.FilePermission "${catalina.base}${file.separator}webapps${file.separator}examples${file.separator}WEB-INF${file.separator}classes${file.separator}logging.properties", "read"; }; // These permissions apply to the server startup code grant codeBase "file:${catalina.home}/bin/bootstrap.jar" { permission java.security.AllPermission; }; // These permissions apply to the servlet API classes // and those that are shared across all class loaders // located in the "lib" directory grant codeBase "file:${catalina.home}/lib/-" { permission java.security.AllPermission; }; // ========== WEB APPLICATION PERMISSIONS ===================================== // These permissions are granted by default to all web applications // In addition, a web application will be given a read FilePermission // and JndiPermission for all files and directories in its document root. grant { // Required for JNDI lookup of named JDBC DataSource's and // javamail named MimePart DataSource used to send mail permission java.util.PropertyPermission "java.home", "read"; permission java.util.PropertyPermission "java.naming.*", "read"; permission java.util.PropertyPermission "javax.sql.*", "read"; // OS Specific properties to allow read access permission java.util.PropertyPermission "os.name", "read"; permission java.util.PropertyPermission "os.version", "read"; permission java.util.PropertyPermission "os.arch", "read"; permission java.util.PropertyPermission "file.separator", "read"; permission java.util.PropertyPermission "path.separator", "read"; permission java.util.PropertyPermission "line.separator", "read"; // JVM properties to allow read access permission java.util.PropertyPermission "java.version", "read"; permission java.util.PropertyPermission "java.vendor", "read"; permission java.util.PropertyPermission "java.vendor.url", "read"; permission java.util.PropertyPermission "java.class.version", "read"; permission java.util.PropertyPermission "java.specification.version", "read"; permission java.util.PropertyPermission "java.specification.vendor", "read"; permission java.util.PropertyPermission "java.specification.name", "read"; permission java.util.PropertyPermission "java.vm.specification.version", "read"; permission java.util.PropertyPermission "java.vm.specification.vendor", "read"; permission java.util.PropertyPermission "java.vm.specification.name", "read"; permission java.util.PropertyPermission "java.vm.version", "read"; permission java.util.PropertyPermission "java.vm.vendor", "read"; permission java.util.PropertyPermission "java.vm.name", "read"; // Required for OpenJMX permission java.lang.RuntimePermission "getAttribute"; // Allow read of JAXP compliant XML parser debug permission java.util.PropertyPermission "jaxp.debug", "read"; // Precompiled JSPs need access to this package. permission java.lang.RuntimePermission "accessClassInPackage.org.apache.jasper.runtime"; permission java.lang.RuntimePermission "accessClassInPackage.org.apache.jasper.runtime.*"; // Precompiled JSPs need access to this system property. permission java.util.PropertyPermission "org.apache.jasper.runtime.BodyContentImpl.LIMIT_BUFFER", "read"; };

    Read the article

  • Node.js Adventure - When Node Flying in Wind

    - by Shaun
    In the first post of this series I mentioned some popular modules in the community, such as underscore, async, etc.. I also listed a module named “Wind (zh-CN)”, which is created by one of my friend, Jeff Zhao (zh-CN). Now I would like to use a separated post to introduce this module since I feel it brings a new async programming style in not only Node.js but JavaScript world. If you know or heard about the new feature in C# 5.0 called “async and await”, or you learnt F#, you will find the “Wind” brings the similar async programming experience in JavaScript. By using “Wind”, we can write async code that looks like the sync code. The callbacks, async stats and exceptions will be handled by “Wind” automatically and transparently.   What’s the Problem: Dense “Callback” Phobia Let’s firstly back to my second post in this series. As I mentioned in that post, when we wanted to read some records from SQL Server we need to open the database connection, and then execute the query. In Node.js all IO operation are designed as async callback pattern which means when the operation was done, it will invoke a function which was taken from the last parameter. For example the database connection opening code would be like this. 1: sql.open(connectionString, function(error, conn) { 2: if(error) { 3: // some error handling code 4: } 5: else { 6: // connection opened successfully 7: } 8: }); And then if we need to query the database the code would be like this. It nested in the previous function. 1: sql.open(connectionString, function(error, conn) { 2: if(error) { 3: // some error handling code 4: } 5: else { 6: // connection opened successfully 7: conn.queryRaw(command, function(error, results) { 8: if(error) { 9: // failed to execute this command 10: } 11: else { 12: // records retrieved successfully 13: } 14: }; 15: } 16: }); Assuming if we need to copy some data from this database to another then we need to open another connection and execute the command within the function under the query function. 1: sql.open(connectionString, function(error, conn) { 2: if(error) { 3: // some error handling code 4: } 5: else { 6: // connection opened successfully 7: conn.queryRaw(command, function(error, results) { 8: if(error) { 9: // failed to execute this command 10: } 11: else { 12: // records retrieved successfully 13: target.open(targetConnectionString, function(error, t_conn) { 14: if(error) { 15: // connect failed 16: } 17: else { 18: t_conn.queryRaw(copy_command, function(error, results) { 19: if(error) { 20: // copy failed 21: } 22: else { 23: // and then, what do you want to do now... 24: } 25: }; 26: } 27: }; 28: } 29: }; 30: } 31: }); This is just an example. In the real project the logic would be more complicated. This means our application might be messed up and the business process will be fragged by many callback functions. I would like call this “Dense Callback Phobia”. This might be a challenge how to make code straightforward and easy to read, something like below. 1: try 2: { 3: // open source connection 4: var s_conn = sqlConnect(s_connectionString); 5: // retrieve data 6: var results = sqlExecuteCommand(s_conn, s_command); 7: 8: // open target connection 9: var t_conn = sqlConnect(t_connectionString); 10: // prepare the copy command 11: var t_command = getCopyCommand(results); 12: // execute the copy command 13: sqlExecuteCommand(s_conn, t_command); 14: } 15: catch (ex) 16: { 17: // error handling 18: }   What’s the Problem: Sync-styled Async Programming Similar as the previous problem, the callback-styled async programming model makes the upcoming operation as a part of the current operation, and mixed with the error handling code. So it’s very hard to understand what on earth this code will do. And since Node.js utilizes non-blocking IO mode, we cannot invoke those operations one by one, as they will be executed concurrently. For example, in this post when I tried to copy the records from Windows Azure SQL Database (a.k.a. WASD) to Windows Azure Table Storage, if I just insert the data into table storage one by one and then print the “Finished” message, I will see the message shown before the data had been copied. This is because all operations were executed at the same time. In order to make the copy operation and print operation executed synchronously I introduced a module named “async” and the code was changed as below. 1: async.forEach(results.rows, 2: function (row, callback) { 3: var resource = { 4: "PartitionKey": row[1], 5: "RowKey": row[0], 6: "Value": row[2] 7: }; 8: client.insertEntity(tableName, resource, function (error) { 9: if (error) { 10: callback(error); 11: } 12: else { 13: console.log("entity inserted."); 14: callback(null); 15: } 16: }); 17: }, 18: function (error) { 19: if (error) { 20: error["target"] = "insertEntity"; 21: res.send(500, error); 22: } 23: else { 24: console.log("all done."); 25: res.send(200, "Done!"); 26: } 27: }); It ensured that the “Finished” message will be printed when all table entities had been inserted. But it cannot promise that the records will be inserted in sequence. It might be another challenge to make the code looks like in sync-style? 1: try 2: { 3: forEach(row in rows) { 4: var entity = { /* ... */ }; 5: tableClient.insert(tableName, entity); 6: } 7:  8: console.log("Finished"); 9: } 10: catch (ex) { 11: console.log(ex); 12: }   How “Wind” Helps “Wind” is a JavaScript library which provides the control flow with plain JavaScript for asynchronous programming (and more) without additional pre-compiling steps. It’s available in NPM so that we can install it through “npm install wind”. Now let’s create a very simple Node.js application as the example. This application will take some website URLs from the command arguments and tried to retrieve the body length and print them in console. Then at the end print “Finish”. I’m going to use “request” module to make the HTTP call simple so I also need to install by the command “npm install request”. The code would be like this. 1: var request = require("request"); 2:  3: // get the urls from arguments, the first two arguments are `node.exe` and `fetch.js` 4: var args = process.argv.splice(2); 5:  6: // main function 7: var main = function() { 8: for(var i = 0; i < args.length; i++) { 9: // get the url 10: var url = args[i]; 11: // send the http request and try to get the response and body 12: request(url, function(error, response, body) { 13: if(!error && response.statusCode == 200) { 14: // log the url and the body length 15: console.log( 16: "%s: %d.", 17: response.request.uri.href, 18: body.length); 19: } 20: else { 21: // log error 22: console.log(error); 23: } 24: }); 25: } 26: 27: // finished 28: console.log("Finished"); 29: }; 30:  31: // execute the main function 32: main(); Let’s execute this application. (I made them in multi-lines for better reading.) 1: node fetch.js 2: "http://www.igt.com/us-en.aspx" 3: "http://www.igt.com/us-en/games.aspx" 4: "http://www.igt.com/us-en/cabinets.aspx" 5: "http://www.igt.com/us-en/systems.aspx" 6: "http://www.igt.com/us-en/interactive.aspx" 7: "http://www.igt.com/us-en/social-gaming.aspx" 8: "http://www.igt.com/support.aspx" Below is the output. As you can see the finish message was printed at the beginning, and the pages’ length retrieved in a different order than we specified. This is because in this code the request command, console logging command are executed asynchronously and concurrently. Now let’s introduce “Wind” to make them executed in order, which means it will request the websites one by one, and print the message at the end.   First of all we need to import the “Wind” package and make sure the there’s only one global variant named “Wind”, and ensure it’s “Wind” instead of “wind”. 1: var Wind = require("wind");   Next, we need to tell “Wind” which code will be executed asynchronously so that “Wind” can control the execution process. In this case the “request” operation executed asynchronously so we will create a “Task” by using a build-in helps function in “Wind” named Wind.Async.Task.create. 1: var requestBodyLengthAsync = function(url) { 2: return Wind.Async.Task.create(function(t) { 3: request(url, function(error, response, body) { 4: if(error || response.statusCode != 200) { 5: t.complete("failure", error); 6: } 7: else { 8: var data = 9: { 10: uri: response.request.uri.href, 11: length: body.length 12: }; 13: t.complete("success", data); 14: } 15: }); 16: }); 17: }; The code above created a “Task” from the original request calling code. In “Wind” a “Task” means an operation will be finished in some time in the future. A “Task” can be started by invoke its start() method, but no one knows when it actually will be finished. The Wind.Async.Task.create helped us to create a task. The only parameter is a function where we can put the actual operation in, and then notify the task object it’s finished successfully or failed by using the complete() method. In the code above I invoked the request method. If it retrieved the response successfully I set the status of this task as “success” with the URL and body length. If it failed I set this task as “failure” and pass the error out.   Next, we will change the main() function. In “Wind” if we want a function can be controlled by Wind we need to mark it as “async”. This should be done by using the code below. 1: var main = eval(Wind.compile("async", function() { 2: })); When the application is running, Wind will detect “eval(Wind.compile(“async”, function” and generate an anonymous code from the body of this original function. Then the application will run the anonymous code instead of the original one. In our example the main function will be like this. 1: var main = eval(Wind.compile("async", function() { 2: for(var i = 0; i < args.length; i++) { 3: try 4: { 5: var result = $await(requestBodyLengthAsync(args[i])); 6: console.log( 7: "%s: %d.", 8: result.uri, 9: result.length); 10: } 11: catch (ex) { 12: console.log(ex); 13: } 14: } 15: 16: console.log("Finished"); 17: })); As you can see, when I tried to request the URL I use a new command named “$await”. It tells Wind, the operation next to $await will be executed asynchronously, and the main thread should be paused until it finished (or failed). So in this case, my application will be pause when the first response was received, and then print its body length, then try the next one. At the end, print the finish message.   Finally, execute the main function. The full code would be like this. 1: var request = require("request"); 2: var Wind = require("wind"); 3:  4: var args = process.argv.splice(2); 5:  6: var requestBodyLengthAsync = function(url) { 7: return Wind.Async.Task.create(function(t) { 8: request(url, function(error, response, body) { 9: if(error || response.statusCode != 200) { 10: t.complete("failure", error); 11: } 12: else { 13: var data = 14: { 15: uri: response.request.uri.href, 16: length: body.length 17: }; 18: t.complete("success", data); 19: } 20: }); 21: }); 22: }; 23:  24: var main = eval(Wind.compile("async", function() { 25: for(var i = 0; i < args.length; i++) { 26: try 27: { 28: var result = $await(requestBodyLengthAsync(args[i])); 29: console.log( 30: "%s: %d.", 31: result.uri, 32: result.length); 33: } 34: catch (ex) { 35: console.log(ex); 36: } 37: } 38: 39: console.log("Finished"); 40: })); 41:  42: main().start();   Run our new application. At the beginning we will see the compiled and generated code by Wind. Then we can see the pages were requested one by one, and at the end the finish message was printed. Below is the code Wind generated for us. As you can see the original code, the output code were shown. 1: // Original: 2: function () { 3: for(var i = 0; i < args.length; i++) { 4: try 5: { 6: var result = $await(requestBodyLengthAsync(args[i])); 7: console.log( 8: "%s: %d.", 9: result.uri, 10: result.length); 11: } 12: catch (ex) { 13: console.log(ex); 14: } 15: } 16: 17: console.log("Finished"); 18: } 19:  20: // Compiled: 21: /* async << function () { */ (function () { 22: var _builder_$0 = Wind.builders["async"]; 23: return _builder_$0.Start(this, 24: _builder_$0.Combine( 25: _builder_$0.Delay(function () { 26: /* var i = 0; */ var i = 0; 27: /* for ( */ return _builder_$0.For(function () { 28: /* ; i < args.length */ return i < args.length; 29: }, function () { 30: /* ; i ++) { */ i ++; 31: }, 32: /* try { */ _builder_$0.Try( 33: _builder_$0.Delay(function () { 34: /* var result = $await(requestBodyLengthAsync(args[i])); */ return _builder_$0.Bind(requestBodyLengthAsync(args[i]), function (result) { 35: /* console.log("%s: %d.", result.uri, result.length); */ console.log("%s: %d.", result.uri, result.length); 36: return _builder_$0.Normal(); 37: }); 38: }), 39: /* } catch (ex) { */ function (ex) { 40: /* console.log(ex); */ console.log(ex); 41: return _builder_$0.Normal(); 42: /* } */ }, 43: null 44: ) 45: /* } */ ); 46: }), 47: _builder_$0.Delay(function () { 48: /* console.log("Finished"); */ console.log("Finished"); 49: return _builder_$0.Normal(); 50: }) 51: ) 52: ); 53: /* } */ })   How Wind Works Someone may raise a big concern when you find I utilized “eval” in my code. Someone may assume that Wind utilizes “eval” to execute some code dynamically while “eval” is very low performance. But I would say, Wind does NOT use “eval” to run the code. It only use “eval” as a flag to know which code should be compiled at runtime. When the code was firstly been executed, Wind will check and find “eval(Wind.compile(“async”, function”. So that it knows this function should be compiled. Then it utilized parse-js to analyze the inner JavaScript and generated the anonymous code in memory. Then it rewrite the original code so that when the application was running it will use the anonymous one instead of the original one. Since the code generation was done at the beginning of the application was started, in the future no matter how long our application runs and how many times the async function was invoked, it will use the generated code, no need to generate again. So there’s no significant performance hurt when using Wind.   Wind in My Previous Demo Let’s adopt Wind into one of my previous demonstration and to see how it helps us to make our code simple, straightforward and easy to read and understand. In this post when I implemented the functionality that copied the records from my WASD to table storage, the logic would be like this. 1, Open database connection. 2, Execute a query to select all records from the table. 3, Recreate the table in Windows Azure table storage. 4, Create entities from each of the records retrieved previously, and then insert them into table storage. 5, Finally, show message as the HTTP response. But as the image below, since there are so many callbacks and async operations, it’s very hard to understand my logic from the code. Now let’s use Wind to rewrite our code. First of all, of course, we need the Wind package. Then we need to include the package files into project and mark them as “Copy always”. Add the Wind package into the source code. Pay attention to the variant name, you must use “Wind” instead of “wind”. 1: var express = require("express"); 2: var async = require("async"); 3: var sql = require("node-sqlserver"); 4: var azure = require("azure"); 5: var Wind = require("wind"); Now we need to create some async functions by using Wind. All async functions should be wrapped so that it can be controlled by Wind which are open database, retrieve records, recreate table (delete and create) and insert entity in table. Below are these new functions. All of them are created by using Wind.Async.Task.create. 1: sql.openAsync = function (connectionString) { 2: return Wind.Async.Task.create(function (t) { 3: sql.open(connectionString, function (error, conn) { 4: if (error) { 5: t.complete("failure", error); 6: } 7: else { 8: t.complete("success", conn); 9: } 10: }); 11: }); 12: }; 13:  14: sql.queryAsync = function (conn, query) { 15: return Wind.Async.Task.create(function (t) { 16: conn.queryRaw(query, function (error, results) { 17: if (error) { 18: t.complete("failure", error); 19: } 20: else { 21: t.complete("success", results); 22: } 23: }); 24: }); 25: }; 26:  27: azure.recreateTableAsync = function (tableName) { 28: return Wind.Async.Task.create(function (t) { 29: client.deleteTable(tableName, function (error, successful, response) { 30: console.log("delete table finished"); 31: client.createTableIfNotExists(tableName, function (error, successful, response) { 32: console.log("create table finished"); 33: if (error) { 34: t.complete("failure", error); 35: } 36: else { 37: t.complete("success", null); 38: } 39: }); 40: }); 41: }); 42: }; 43:  44: azure.insertEntityAsync = function (tableName, entity) { 45: return Wind.Async.Task.create(function (t) { 46: client.insertEntity(tableName, entity, function (error, entity, response) { 47: if (error) { 48: t.complete("failure", error); 49: } 50: else { 51: t.complete("success", null); 52: } 53: }); 54: }); 55: }; Then in order to use these functions we will create a new function which contains all steps for data copying. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: } 4: catch (ex) { 5: console.log(ex); 6: res.send(500, "Internal error."); 7: } 8: })); Let’s execute steps one by one with the “$await” keyword introduced by Wind so that it will be invoked in sequence. First is to open the database connection. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: } 7: catch (ex) { 8: console.log(ex); 9: res.send(500, "Internal error."); 10: } 11: })); Then retrieve all records from the database connection. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: // retrieve all records from database 7: var results = $await(sql.queryAsync(conn, "SELECT * FROM [Resource]")); 8: console.log("records selected. count = %d", results.rows.length); 9: } 10: catch (ex) { 11: console.log(ex); 12: res.send(500, "Internal error."); 13: } 14: })); After recreated the table, we need to create the entities and insert them into table storage. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: // retrieve all records from database 7: var results = $await(sql.queryAsync(conn, "SELECT * FROM [Resource]")); 8: console.log("records selected. count = %d", results.rows.length); 9: if (results.rows.length > 0) { 10: // recreate the table 11: $await(azure.recreateTableAsync(tableName)); 12: console.log("table created"); 13: // insert records in table storage one by one 14: for (var i = 0; i < results.rows.length; i++) { 15: var entity = { 16: "PartitionKey": results.rows[i][1], 17: "RowKey": results.rows[i][0], 18: "Value": results.rows[i][2] 19: }; 20: $await(azure.insertEntityAsync(tableName, entity)); 21: console.log("entity inserted"); 22: } 23: } 24: } 25: catch (ex) { 26: console.log(ex); 27: res.send(500, "Internal error."); 28: } 29: })); Finally, send response back to the browser. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: // retrieve all records from database 7: var results = $await(sql.queryAsync(conn, "SELECT * FROM [Resource]")); 8: console.log("records selected. count = %d", results.rows.length); 9: if (results.rows.length > 0) { 10: // recreate the table 11: $await(azure.recreateTableAsync(tableName)); 12: console.log("table created"); 13: // insert records in table storage one by one 14: for (var i = 0; i < results.rows.length; i++) { 15: var entity = { 16: "PartitionKey": results.rows[i][1], 17: "RowKey": results.rows[i][0], 18: "Value": results.rows[i][2] 19: }; 20: $await(azure.insertEntityAsync(tableName, entity)); 21: console.log("entity inserted"); 22: } 23: // send response 24: console.log("all done"); 25: res.send(200, "All done!"); 26: } 27: } 28: catch (ex) { 29: console.log(ex); 30: res.send(500, "Internal error."); 31: } 32: })); If we compared with the previous code we will find now it became more readable and much easy to understand. It’s very easy to know what this function does even though without any comments. When user go to URL “/was/copyRecords” we will execute the function above. The code would be like this. 1: app.get("/was/copyRecords", function (req, res) { 2: copyRecords(req, res).start(); 3: }); And below is the logs printed in local compute emulator console. As we can see the functions executed one by one and then finally the response back to me browser.   Scaffold Functions in Wind Wind provides not only the async flow control and compile functions, but many scaffold methods as well. We can build our async code more easily by using them. I’m going to introduce some basic scaffold functions here. In the code above I created some functions which wrapped from the original async function such as open database, create table, etc.. All of them are very similar, created a task by using Wind.Async.Task.create, return error or result object through Task.complete function. In fact, Wind provides some functions for us to create task object from the original async functions. If the original async function only has a callback parameter, we can use Wind.Async.Binding.fromCallback method to get the task object directly. For example the code below returned the task object which wrapped the file exist check function. 1: var Wind = require("wind"); 2: var fs = require("fs"); 3:  4: fs.existsAsync = Wind.Async.Binding.fromCallback(fs.exists); In Node.js a very popular async function pattern is that, the first parameter in the callback function represent the error object, and the other parameters is the return values. In this case we can use another build-in function in Wind named Wind.Async.Binding.fromStandard. For example, the open database function can be created from the code below. 1: sql.openAsync = Wind.Async.Binding.fromStandard(sql.open); 2:  3: /* 4: sql.openAsync = function (connectionString) { 5: return Wind.Async.Task.create(function (t) { 6: sql.open(connectionString, function (error, conn) { 7: if (error) { 8: t.complete("failure", error); 9: } 10: else { 11: t.complete("success", conn); 12: } 13: }); 14: }); 15: }; 16: */ When I was testing the scaffold functions under Wind.Async.Binding I found for some functions, such as the Azure SDK insert entity function, cannot be processed correctly. So I personally suggest writing the wrapped method manually.   Another scaffold method in Wind is the parallel tasks coordination. In this example, the steps of open database, retrieve records and recreated table should be invoked one by one, but it can be executed in parallel when copying data from database to table storage. In Wind there’s a scaffold function named Task.whenAll which can be used here. Task.whenAll accepts a list of tasks and creates a new task. It will be returned only when all tasks had been completed, or any errors occurred. For example in the code below I used the Task.whenAll to make all copy operation executed at the same time. 1: var copyRecordsInParallel = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: // retrieve all records from database 7: var results = $await(sql.queryAsync(conn, "SELECT * FROM [Resource]")); 8: console.log("records selected. count = %d", results.rows.length); 9: if (results.rows.length > 0) { 10: // recreate the table 11: $await(azure.recreateTableAsync(tableName)); 12: console.log("table created"); 13: // insert records in table storage in parallal 14: var tasks = new Array(results.rows.length); 15: for (var i = 0; i < results.rows.length; i++) { 16: var entity = { 17: "PartitionKey": results.rows[i][1], 18: "RowKey": results.rows[i][0], 19: "Value": results.rows[i][2] 20: }; 21: tasks[i] = azure.insertEntityAsync(tableName, entity); 22: } 23: $await(Wind.Async.Task.whenAll(tasks)); 24: // send response 25: console.log("all done"); 26: res.send(200, "All done!"); 27: } 28: } 29: catch (ex) { 30: console.log(ex); 31: res.send(500, "Internal error."); 32: } 33: })); 34:  35: app.get("/was/copyRecordsInParallel", function (req, res) { 36: copyRecordsInParallel(req, res).start(); 37: });   Besides the task creation and coordination, Wind supports the cancellation solution so that we can send the cancellation signal to the tasks. It also includes exception solution which means any exceptions will be reported to the caller function.   Summary In this post I introduced a Node.js module named Wind, which created by my friend Jeff Zhao. As you can see, different from other async library and framework, adopted the idea from F# and C#, Wind utilizes runtime code generation technology to make it more easily to write async, callback-based functions in a sync-style way. By using Wind there will be almost no callback, and the code will be very easy to understand. Currently Wind is still under developed and improved. There might be some problems but the author, Jeff, should be very happy and enthusiastic to learn your problems, feedback, suggestion and comments. You can contact Jeff by - Email: [email protected] - Group: https://groups.google.com/d/forum/windjs - GitHub: https://github.com/JeffreyZhao/wind/issues   Source code can be download here.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • New features of C# 4.0

    This article covers New features of C# 4.0. Article has been divided into below sections. Introduction. Dynamic Lookup. Named and Optional Arguments. Features for COM interop. Variance. Relationship with Visual Basic. Resources. Other interested readings… 22 New Features of Visual Studio 2008 for .NET Professionals 50 New Features of SQL Server 2008 IIS 7.0 New features Introduction It is now close to a year since Microsoft Visual C# 3.0 shipped as part of Visual Studio 2008. In the VS Managed Languages team we are hard at work on creating the next version of the language (with the unsurprising working title of C# 4.0), and this document is a first public description of the planned language features as we currently see them. Please be advised that all this is in early stages of production and is subject to change. Part of the reason for sharing our plans in public so early is precisely to get the kind of feedback that will cause us to improve the final product before it rolls out. Simultaneously with the publication of this whitepaper, a first public CTP (community technology preview) of Visual Studio 2010 is going out as a Virtual PC image for everyone to try. Please use it to play and experiment with the features, and let us know of any thoughts you have. We ask for your understanding and patience working with very early bits, where especially new or newly implemented features do not have the quality or stability of a final product. The aim of the CTP is not to give you a productive work environment but to give you the best possible impression of what we are working on for the next release. The CTP contains a number of walkthroughs, some of which highlight the new language features of C# 4.0. Those are excellent for getting a hands-on guided tour through the details of some common scenarios for the features. You may consider this whitepaper a companion document to these walkthroughs, complementing them with a focus on the overall language features and how they work, as opposed to the specifics of the concrete scenarios. C# 4.0 The major theme for C# 4.0 is dynamic programming. Increasingly, objects are “dynamic” in the sense that their structure and behavior is not captured by a static type, or at least not one that the compiler knows about when compiling your program. Some examples include a. objects from dynamic programming languages, such as Python or Ruby b. COM objects accessed through IDispatch c. ordinary .NET types accessed through reflection d. objects with changing structure, such as HTML DOM objects While C# remains a statically typed language, we aim to vastly improve the interaction with such objects. A secondary theme is co-evolution with Visual Basic. Going forward we will aim to maintain the individual character of each language, but at the same time important new features should be introduced in both languages at the same time. They should be differentiated more by style and feel than by feature set. The new features in C# 4.0 fall into four groups: Dynamic lookup Dynamic lookup allows you to write method, operator and indexer calls, property and field accesses, and even object invocations which bypass the C# static type checking and instead gets resolved at runtime. Named and optional parameters Parameters in C# can now be specified as optional by providing a default value for them in a member declaration. When the member is invoked, optional arguments can be omitted. Furthermore, any argument can be passed by parameter name instead of position. COM specific interop features Dynamic lookup as well as named and optional parameters both help making programming against COM less painful than today. On top of that, however, we are adding a number of other small features that further improve the interop experience. Variance It used to be that an IEnumerable<string> wasn’t an IEnumerable<object>. Now it is – C# embraces type safe “co-and contravariance” and common BCL types are updated to take advantage of that. Dynamic Lookup Dynamic lookup allows you a unified approach to invoking things dynamically. With dynamic lookup, when you have an object in your hand you do not need to worry about whether it comes from COM, IronPython, the HTML DOM or reflection; you just apply operations to it and leave it to the runtime to figure out what exactly those operations mean for that particular object. This affords you enormous flexibility, and can greatly simplify your code, but it does come with a significant drawback: Static typing is not maintained for these operations. A dynamic object is assumed at compile time to support any operation, and only at runtime will you get an error if it wasn’t so. Oftentimes this will be no loss, because the object wouldn’t have a static type anyway, in other cases it is a tradeoff between brevity and safety. In order to facilitate this tradeoff, it is a design goal of C# to allow you to opt in or opt out of dynamic behavior on every single call. The dynamic type C# 4.0 introduces a new static type called dynamic. When you have an object of type dynamic you can “do things to it” that are resolved only at runtime: dynamic d = GetDynamicObject(…); d.M(7); The C# compiler allows you to call a method with any name and any arguments on d because it is of type dynamic. At runtime the actual object that d refers to will be examined to determine what it means to “call M with an int” on it. The type dynamic can be thought of as a special version of the type object, which signals that the object can be used dynamically. It is easy to opt in or out of dynamic behavior: any object can be implicitly converted to dynamic, “suspending belief” until runtime. Conversely, there is an “assignment conversion” from dynamic to any other type, which allows implicit conversion in assignment-like constructs: dynamic d = 7; // implicit conversion int i = d; // assignment conversion Dynamic operations Not only method calls, but also field and property accesses, indexer and operator calls and even delegate invocations can be dispatched dynamically: dynamic d = GetDynamicObject(…); d.M(7); // calling methods d.f = d.P; // getting and settings fields and properties d[“one”] = d[“two”]; // getting and setting thorugh indexers int i = d + 3; // calling operators string s = d(5,7); // invoking as a delegate The role of the C# compiler here is simply to package up the necessary information about “what is being done to d”, so that the runtime can pick it up and determine what the exact meaning of it is given an actual object d. Think of it as deferring part of the compiler’s job to runtime. The result of any dynamic operation is itself of type dynamic. Runtime lookup At runtime a dynamic operation is dispatched according to the nature of its target object d: COM objects If d is a COM object, the operation is dispatched dynamically through COM IDispatch. This allows calling to COM types that don’t have a Primary Interop Assembly (PIA), and relying on COM features that don’t have a counterpart in C#, such as indexed properties and default properties. Dynamic objects If d implements the interface IDynamicObject d itself is asked to perform the operation. Thus by implementing IDynamicObject a type can completely redefine the meaning of dynamic operations. This is used intensively by dynamic languages such as IronPython and IronRuby to implement their own dynamic object models. It will also be used by APIs, e.g. by the HTML DOM to allow direct access to the object’s properties using property syntax. Plain objects Otherwise d is a standard .NET object, and the operation will be dispatched using reflection on its type and a C# “runtime binder” which implements C#’s lookup and overload resolution semantics at runtime. This is essentially a part of the C# compiler running as a runtime component to “finish the work” on dynamic operations that was deferred by the static compiler. Example Assume the following code: dynamic d1 = new Foo(); dynamic d2 = new Bar(); string s; d1.M(s, d2, 3, null); Because the receiver of the call to M is dynamic, the C# compiler does not try to resolve the meaning of the call. Instead it stashes away information for the runtime about the call. This information (often referred to as the “payload”) is essentially equivalent to: “Perform an instance method call of M with the following arguments: 1. a string 2. a dynamic 3. a literal int 3 4. a literal object null” At runtime, assume that the actual type Foo of d1 is not a COM type and does not implement IDynamicObject. In this case the C# runtime binder picks up to finish the overload resolution job based on runtime type information, proceeding as follows: 1. Reflection is used to obtain the actual runtime types of the two objects, d1 and d2, that did not have a static type (or rather had the static type dynamic). The result is Foo for d1 and Bar for d2. 2. Method lookup and overload resolution is performed on the type Foo with the call M(string,Bar,3,null) using ordinary C# semantics. 3. If the method is found it is invoked; otherwise a runtime exception is thrown. Overload resolution with dynamic arguments Even if the receiver of a method call is of a static type, overload resolution can still happen at runtime. This can happen if one or more of the arguments have the type dynamic: Foo foo = new Foo(); dynamic d = new Bar(); var result = foo.M(d); The C# runtime binder will choose between the statically known overloads of M on Foo, based on the runtime type of d, namely Bar. The result is again of type dynamic. The Dynamic Language Runtime An important component in the underlying implementation of dynamic lookup is the Dynamic Language Runtime (DLR), which is a new API in .NET 4.0. The DLR provides most of the infrastructure behind not only C# dynamic lookup but also the implementation of several dynamic programming languages on .NET, such as IronPython and IronRuby. Through this common infrastructure a high degree of interoperability is ensured, but just as importantly the DLR provides excellent caching mechanisms which serve to greatly enhance the efficiency of runtime dispatch. To the user of dynamic lookup in C#, the DLR is invisible except for the improved efficiency. However, if you want to implement your own dynamically dispatched objects, the IDynamicObject interface allows you to interoperate with the DLR and plug in your own behavior. This is a rather advanced task, which requires you to understand a good deal more about the inner workings of the DLR. For API writers, however, it can definitely be worth the trouble in order to vastly improve the usability of e.g. a library representing an inherently dynamic domain. Open issues There are a few limitations and things that might work differently than you would expect. · The DLR allows objects to be created from objects that represent classes. However, the current implementation of C# doesn’t have syntax to support this. · Dynamic lookup will not be able to find extension methods. Whether extension methods apply or not depends on the static context of the call (i.e. which using clauses occur), and this context information is not currently kept as part of the payload. · Anonymous functions (i.e. lambda expressions) cannot appear as arguments to a dynamic method call. The compiler cannot bind (i.e. “understand”) an anonymous function without knowing what type it is converted to. One consequence of these limitations is that you cannot easily use LINQ queries over dynamic objects: dynamic collection = …; var result = collection.Select(e => e + 5); If the Select method is an extension method, dynamic lookup will not find it. Even if it is an instance method, the above does not compile, because a lambda expression cannot be passed as an argument to a dynamic operation. There are no plans to address these limitations in C# 4.0. Named and Optional Arguments Named and optional parameters are really two distinct features, but are often useful together. Optional parameters allow you to omit arguments to member invocations, whereas named arguments is a way to provide an argument using the name of the corresponding parameter instead of relying on its position in the parameter list. Some APIs, most notably COM interfaces such as the Office automation APIs, are written specifically with named and optional parameters in mind. Up until now it has been very painful to call into these APIs from C#, with sometimes as many as thirty arguments having to be explicitly passed, most of which have reasonable default values and could be omitted. Even in APIs for .NET however you sometimes find yourself compelled to write many overloads of a method with different combinations of parameters, in order to provide maximum usability to the callers. Optional parameters are a useful alternative for these situations. Optional parameters A parameter is declared optional simply by providing a default value for it: public void M(int x, int y = 5, int z = 7); Here y and z are optional parameters and can be omitted in calls: M(1, 2, 3); // ordinary call of M M(1, 2); // omitting z – equivalent to M(1, 2, 7) M(1); // omitting both y and z – equivalent to M(1, 5, 7) Named and optional arguments C# 4.0 does not permit you to omit arguments between commas as in M(1,,3). This could lead to highly unreadable comma-counting code. Instead any argument can be passed by name. Thus if you want to omit only y from a call of M you can write: M(1, z: 3); // passing z by name or M(x: 1, z: 3); // passing both x and z by name or even M(z: 3, x: 1); // reversing the order of arguments All forms are equivalent, except that arguments are always evaluated in the order they appear, so in the last example the 3 is evaluated before the 1. Optional and named arguments can be used not only with methods but also with indexers and constructors. Overload resolution Named and optional arguments affect overload resolution, but the changes are relatively simple: A signature is applicable if all its parameters are either optional or have exactly one corresponding argument (by name or position) in the call which is convertible to the parameter type. Betterness rules on conversions are only applied for arguments that are explicitly given – omitted optional arguments are ignored for betterness purposes. If two signatures are equally good, one that does not omit optional parameters is preferred. M(string s, int i = 1); M(object o); M(int i, string s = “Hello”); M(int i); M(5); Given these overloads, we can see the working of the rules above. M(string,int) is not applicable because 5 doesn’t convert to string. M(int,string) is applicable because its second parameter is optional, and so, obviously are M(object) and M(int). M(int,string) and M(int) are both better than M(object) because the conversion from 5 to int is better than the conversion from 5 to object. Finally M(int) is better than M(int,string) because no optional arguments are omitted. Thus the method that gets called is M(int). Features for COM interop Dynamic lookup as well as named and optional parameters greatly improve the experience of interoperating with COM APIs such as the Office Automation APIs. In order to remove even more of the speed bumps, a couple of small COM-specific features are also added to C# 4.0. Dynamic import Many COM methods accept and return variant types, which are represented in the PIAs as object. In the vast majority of cases, a programmer calling these methods already knows the static type of a returned object from context, but explicitly has to perform a cast on the returned value to make use of that knowledge. These casts are so common that they constitute a major nuisance. In order to facilitate a smoother experience, you can now choose to import these COM APIs in such a way that variants are instead represented using the type dynamic. In other words, from your point of view, COM signatures now have occurrences of dynamic instead of object in them. This means that you can easily access members directly off a returned object, or you can assign it to a strongly typed local variable without having to cast. To illustrate, you can now say excel.Cells[1, 1].Value = "Hello"; instead of ((Excel.Range)excel.Cells[1, 1]).Value2 = "Hello"; and Excel.Range range = excel.Cells[1, 1]; instead of Excel.Range range = (Excel.Range)excel.Cells[1, 1]; Compiling without PIAs Primary Interop Assemblies are large .NET assemblies generated from COM interfaces to facilitate strongly typed interoperability. They provide great support at design time, where your experience of the interop is as good as if the types where really defined in .NET. However, at runtime these large assemblies can easily bloat your program, and also cause versioning issues because they are distributed independently of your application. The no-PIA feature allows you to continue to use PIAs at design time without having them around at runtime. Instead, the C# compiler will bake the small part of the PIA that a program actually uses directly into its assembly. At runtime the PIA does not have to be loaded. Omitting ref Because of a different programming model, many COM APIs contain a lot of reference parameters. Contrary to refs in C#, these are typically not meant to mutate a passed-in argument for the subsequent benefit of the caller, but are simply another way of passing value parameters. It therefore seems unreasonable that a C# programmer should have to create temporary variables for all such ref parameters and pass these by reference. Instead, specifically for COM methods, the C# compiler will allow you to pass arguments by value to such a method, and will automatically generate temporary variables to hold the passed-in values, subsequently discarding these when the call returns. In this way the caller sees value semantics, and will not experience any side effects, but the called method still gets a reference. Open issues A few COM interface features still are not surfaced in C#. Most notably these include indexed properties and default properties. As mentioned above these will be respected if you access COM dynamically, but statically typed C# code will still not recognize them. There are currently no plans to address these remaining speed bumps in C# 4.0. Variance An aspect of generics that often comes across as surprising is that the following is illegal: IList<string> strings = new List<string>(); IList<object> objects = strings; The second assignment is disallowed because strings does not have the same element type as objects. There is a perfectly good reason for this. If it were allowed you could write: objects[0] = 5; string s = strings[0]; Allowing an int to be inserted into a list of strings and subsequently extracted as a string. This would be a breach of type safety. However, there are certain interfaces where the above cannot occur, notably where there is no way to insert an object into the collection. Such an interface is IEnumerable<T>. If instead you say: IEnumerable<object> objects = strings; There is no way we can put the wrong kind of thing into strings through objects, because objects doesn’t have a method that takes an element in. Variance is about allowing assignments such as this in cases where it is safe. The result is that a lot of situations that were previously surprising now just work. Covariance In .NET 4.0 the IEnumerable<T> interface will be declared in the following way: public interface IEnumerable<out T> : IEnumerable { IEnumerator<T> GetEnumerator(); } public interface IEnumerator<out T> : IEnumerator { bool MoveNext(); T Current { get; } } The “out” in these declarations signifies that the T can only occur in output position in the interface – the compiler will complain otherwise. In return for this restriction, the interface becomes “covariant” in T, which means that an IEnumerable<A> is considered an IEnumerable<B> if A has a reference conversion to B. As a result, any sequence of strings is also e.g. a sequence of objects. This is useful e.g. in many LINQ methods. Using the declarations above: var result = strings.Union(objects); // succeeds with an IEnumerable<object> This would previously have been disallowed, and you would have had to to some cumbersome wrapping to get the two sequences to have the same element type. Contravariance Type parameters can also have an “in” modifier, restricting them to occur only in input positions. An example is IComparer<T>: public interface IComparer<in T> { public int Compare(T left, T right); } The somewhat baffling result is that an IComparer<object> can in fact be considered an IComparer<string>! It makes sense when you think about it: If a comparer can compare any two objects, it can certainly also compare two strings. This property is referred to as contravariance. A generic type can have both in and out modifiers on its type parameters, as is the case with the Func<…> delegate types: public delegate TResult Func<in TArg, out TResult>(TArg arg); Obviously the argument only ever comes in, and the result only ever comes out. Therefore a Func<object,string> can in fact be used as a Func<string,object>. Limitations Variant type parameters can only be declared on interfaces and delegate types, due to a restriction in the CLR. Variance only applies when there is a reference conversion between the type arguments. For instance, an IEnumerable<int> is not an IEnumerable<object> because the conversion from int to object is a boxing conversion, not a reference conversion. Also please note that the CTP does not contain the new versions of the .NET types mentioned above. In order to experiment with variance you have to declare your own variant interfaces and delegate types. COM Example Here is a larger Office automation example that shows many of the new C# features in action. using System; using System.Diagnostics; using System.Linq; using Excel = Microsoft.Office.Interop.Excel; using Word = Microsoft.Office.Interop.Word; class Program { static void Main(string[] args) { var excel = new Excel.Application(); excel.Visible = true; excel.Workbooks.Add(); // optional arguments omitted excel.Cells[1, 1].Value = "Process Name"; // no casts; Value dynamically excel.Cells[1, 2].Value = "Memory Usage"; // accessed var processes = Process.GetProcesses() .OrderByDescending(p =&gt; p.WorkingSet) .Take(10); int i = 2; foreach (var p in processes) { excel.Cells[i, 1].Value = p.ProcessName; // no casts excel.Cells[i, 2].Value = p.WorkingSet; // no casts i++; } Excel.Range range = excel.Cells[1, 1]; // no casts Excel.Chart chart = excel.ActiveWorkbook.Charts. Add(After: excel.ActiveSheet); // named and optional arguments chart.ChartWizard( Source: range.CurrentRegion, Title: "Memory Usage in " + Environment.MachineName); //named+optional chart.ChartStyle = 45; chart.CopyPicture(Excel.XlPictureAppearance.xlScreen, Excel.XlCopyPictureFormat.xlBitmap, Excel.XlPictureAppearance.xlScreen); var word = new Word.Application(); word.Visible = true; word.Documents.Add(); // optional arguments word.Selection.Paste(); } } The code is much more terse and readable than the C# 3.0 counterpart. Note especially how the Value property is accessed dynamically. This is actually an indexed property, i.e. a property that takes an argument; something which C# does not understand. However the argument is optional. Since the access is dynamic, it goes through the runtime COM binder which knows to substitute the default value and call the indexed property. Thus, dynamic COM allows you to avoid accesses to the puzzling Value2 property of Excel ranges. Relationship with Visual Basic A number of the features introduced to C# 4.0 already exist or will be introduced in some form or other in Visual Basic: · Late binding in VB is similar in many ways to dynamic lookup in C#, and can be expected to make more use of the DLR in the future, leading to further parity with C#. · Named and optional arguments have been part of Visual Basic for a long time, and the C# version of the feature is explicitly engineered with maximal VB interoperability in mind. · NoPIA and variance are both being introduced to VB and C# at the same time. VB in turn is adding a number of features that have hitherto been a mainstay of C#. As a result future versions of C# and VB will have much better feature parity, for the benefit of everyone. Resources All available resources concerning C# 4.0 can be accessed through the C# Dev Center. Specifically, this white paper and other resources can be found at the Code Gallery site. Enjoy! span.fullpost {display:none;}

    Read the article

  • LSI 9285-8e and Supermicro SC837E26-RJBOD1 duplicate enclosure ID and slot numbers

    - by Andy Shinn
    I am working with 2 x Supermicro SC837E26-RJBOD1 chassis connected to a single LSI 9285-8e card in a Supermicro 1U host. There are 28 drives in each chassis for a total of 56 drives in 28 RAID1 mirrors. The problem I am running in to is that there are duplicate slots for the 2 chassis (the slots list twice and only go from 0 to 27). All the drives also show the same enclosure ID (ID 36). However, MegaCLI -encinfo lists the 2 enclosures correctly (ID 36 and ID 65). My question is, why would this happen? Is there an option I am missing to use 2 enclosures effectively? This is blocking me rebuilding a drive that failed in slot 11 since I can only specify enclosure and slot as parameters to replace a drive. When I do this, it picks the wrong slot 11 (device ID 46 instead of device ID 19). Adapter #1 is the LSI 9285-8e, adapter #0 (which I removed due to space limitations) is the onboard LSI. Adapter information: Adapter #1 ============================================================================== Versions ================ Product Name : LSI MegaRAID SAS 9285-8e Serial No : SV12704804 FW Package Build: 23.1.1-0004 Mfg. Data ================ Mfg. Date : 06/30/11 Rework Date : 00/00/00 Revision No : 00A Battery FRU : N/A Image Versions in Flash: ================ BIOS Version : 5.25.00_4.11.05.00_0x05040000 WebBIOS Version : 6.1-20-e_20-Rel Preboot CLI Version: 05.01-04:#%00001 FW Version : 3.140.15-1320 NVDATA Version : 2.1106.03-0051 Boot Block Version : 2.04.00.00-0001 BOOT Version : 06.253.57.219 Pending Images in Flash ================ None PCI Info ================ Vendor Id : 1000 Device Id : 005b SubVendorId : 1000 SubDeviceId : 9285 Host Interface : PCIE ChipRevision : B0 Number of Frontend Port: 0 Device Interface : PCIE Number of Backend Port: 8 Port : Address 0 5003048000ee8e7f 1 5003048000ee8a7f 2 0000000000000000 3 0000000000000000 4 0000000000000000 5 0000000000000000 6 0000000000000000 7 0000000000000000 HW Configuration ================ SAS Address : 500605b0038f9210 BBU : Present Alarm : Present NVRAM : Present Serial Debugger : Present Memory : Present Flash : Present Memory Size : 1024MB TPM : Absent On board Expander: Absent Upgrade Key : Absent Temperature sensor for ROC : Present Temperature sensor for controller : Absent ROC temperature : 70 degree Celcius Settings ================ Current Time : 18:24:36 3/13, 2012 Predictive Fail Poll Interval : 300sec Interrupt Throttle Active Count : 16 Interrupt Throttle Completion : 50us Rebuild Rate : 30% PR Rate : 30% BGI Rate : 30% Check Consistency Rate : 30% Reconstruction Rate : 30% Cache Flush Interval : 4s Max Drives to Spinup at One Time : 2 Delay Among Spinup Groups : 12s Physical Drive Coercion Mode : Disabled Cluster Mode : Disabled Alarm : Enabled Auto Rebuild : Enabled Battery Warning : Enabled Ecc Bucket Size : 15 Ecc Bucket Leak Rate : 1440 Minutes Restore HotSpare on Insertion : Disabled Expose Enclosure Devices : Enabled Maintain PD Fail History : Enabled Host Request Reordering : Enabled Auto Detect BackPlane Enabled : SGPIO/i2c SEP Load Balance Mode : Auto Use FDE Only : No Security Key Assigned : No Security Key Failed : No Security Key Not Backedup : No Default LD PowerSave Policy : Controller Defined Maximum number of direct attached drives to spin up in 1 min : 10 Any Offline VD Cache Preserved : No Allow Boot with Preserved Cache : No Disable Online Controller Reset : No PFK in NVRAM : No Use disk activity for locate : No Capabilities ================ RAID Level Supported : RAID0, RAID1, RAID5, RAID6, RAID00, RAID10, RAID50, RAID60, PRL 11, PRL 11 with spanning, SRL 3 supported, PRL11-RLQ0 DDF layout with no span, PRL11-RLQ0 DDF layout with span Supported Drives : SAS, SATA Allowed Mixing: Mix in Enclosure Allowed Mix of SAS/SATA of HDD type in VD Allowed Status ================ ECC Bucket Count : 0 Limitations ================ Max Arms Per VD : 32 Max Spans Per VD : 8 Max Arrays : 128 Max Number of VDs : 64 Max Parallel Commands : 1008 Max SGE Count : 60 Max Data Transfer Size : 8192 sectors Max Strips PerIO : 42 Max LD per array : 16 Min Strip Size : 8 KB Max Strip Size : 1.0 MB Max Configurable CacheCade Size: 0 GB Current Size of CacheCade : 0 GB Current Size of FW Cache : 887 MB Device Present ================ Virtual Drives : 28 Degraded : 0 Offline : 0 Physical Devices : 59 Disks : 56 Critical Disks : 0 Failed Disks : 0 Supported Adapter Operations ================ Rebuild Rate : Yes CC Rate : Yes BGI Rate : Yes Reconstruct Rate : Yes Patrol Read Rate : Yes Alarm Control : Yes Cluster Support : No BBU : No Spanning : Yes Dedicated Hot Spare : Yes Revertible Hot Spares : Yes Foreign Config Import : Yes Self Diagnostic : Yes Allow Mixed Redundancy on Array : No Global Hot Spares : Yes Deny SCSI Passthrough : No Deny SMP Passthrough : No Deny STP Passthrough : No Support Security : No Snapshot Enabled : No Support the OCE without adding drives : Yes Support PFK : Yes Support PI : No Support Boot Time PFK Change : Yes Disable Online PFK Change : No PFK TrailTime Remaining : 0 days 0 hours Support Shield State : Yes Block SSD Write Disk Cache Change: Yes Supported VD Operations ================ Read Policy : Yes Write Policy : Yes IO Policy : Yes Access Policy : Yes Disk Cache Policy : Yes Reconstruction : Yes Deny Locate : No Deny CC : No Allow Ctrl Encryption: No Enable LDBBM : No Support Breakmirror : No Power Savings : Yes Supported PD Operations ================ Force Online : Yes Force Offline : Yes Force Rebuild : Yes Deny Force Failed : No Deny Force Good/Bad : No Deny Missing Replace : No Deny Clear : No Deny Locate : No Support Temperature : Yes Disable Copyback : No Enable JBOD : No Enable Copyback on SMART : No Enable Copyback to SSD on SMART Error : Yes Enable SSD Patrol Read : No PR Correct Unconfigured Areas : Yes Enable Spin Down of UnConfigured Drives : Yes Disable Spin Down of hot spares : No Spin Down time : 30 T10 Power State : Yes Error Counters ================ Memory Correctable Errors : 0 Memory Uncorrectable Errors : 0 Cluster Information ================ Cluster Permitted : No Cluster Active : No Default Settings ================ Phy Polarity : 0 Phy PolaritySplit : 0 Background Rate : 30 Strip Size : 64kB Flush Time : 4 seconds Write Policy : WB Read Policy : Adaptive Cache When BBU Bad : Disabled Cached IO : No SMART Mode : Mode 6 Alarm Disable : Yes Coercion Mode : None ZCR Config : Unknown Dirty LED Shows Drive Activity : No BIOS Continue on Error : No Spin Down Mode : None Allowed Device Type : SAS/SATA Mix Allow Mix in Enclosure : Yes Allow HDD SAS/SATA Mix in VD : Yes Allow SSD SAS/SATA Mix in VD : No Allow HDD/SSD Mix in VD : No Allow SATA in Cluster : No Max Chained Enclosures : 16 Disable Ctrl-R : Yes Enable Web BIOS : Yes Direct PD Mapping : No BIOS Enumerate VDs : Yes Restore Hot Spare on Insertion : No Expose Enclosure Devices : Yes Maintain PD Fail History : Yes Disable Puncturing : No Zero Based Enclosure Enumeration : No PreBoot CLI Enabled : Yes LED Show Drive Activity : Yes Cluster Disable : Yes SAS Disable : No Auto Detect BackPlane Enable : SGPIO/i2c SEP Use FDE Only : No Enable Led Header : No Delay during POST : 0 EnableCrashDump : No Disable Online Controller Reset : No EnableLDBBM : No Un-Certified Hard Disk Drives : Allow Treat Single span R1E as R10 : No Max LD per array : 16 Power Saving option : Don't Auto spin down Configured Drives Max power savings option is not allowed for LDs. Only T10 power conditions are to be used. Default spin down time in minutes: 30 Enable JBOD : No TTY Log In Flash : No Auto Enhanced Import : No BreakMirror RAID Support : No Disable Join Mirror : No Enable Shield State : Yes Time taken to detect CME : 60s Exit Code: 0x00 Enclosure information: # /opt/MegaRAID/MegaCli/MegaCli64 -encinfo -a1 Number of enclosures on adapter 1 -- 3 Enclosure 0: Device ID : 36 Number of Slots : 28 Number of Power Supplies : 2 Number of Fans : 3 Number of Temperature Sensors : 1 Number of Alarms : 1 Number of SIM Modules : 0 Number of Physical Drives : 28 Status : Normal Position : 1 Connector Name : Port B Enclosure type : SES VendorId is LSI CORP and Product Id is SAS2X36 VendorID and Product ID didnt match FRU Part Number : N/A Enclosure Serial Number : N/A ESM Serial Number : N/A Enclosure Zoning Mode : N/A Partner Device Id : 65 Inquiry data : Vendor Identification : LSI CORP Product Identification : SAS2X36 Product Revision Level : 0718 Vendor Specific : x36-55.7.24.1 Number of Voltage Sensors :2 Voltage Sensor :0 Voltage Sensor Status :OK Voltage Value :5020 milli volts Voltage Sensor :1 Voltage Sensor Status :OK Voltage Value :11820 milli volts Number of Power Supplies : 2 Power Supply : 0 Power Supply Status : OK Power Supply : 1 Power Supply Status : OK Number of Fans : 3 Fan : 0 Fan Speed :Low Speed Fan Status : OK Fan : 1 Fan Speed :Low Speed Fan Status : OK Fan : 2 Fan Speed :Low Speed Fan Status : OK Number of Temperature Sensors : 1 Temp Sensor : 0 Temperature : 48 Temperature Sensor Status : OK Number of Chassis : 1 Chassis : 0 Chassis Status : OK Enclosure 1: Device ID : 65 Number of Slots : 28 Number of Power Supplies : 2 Number of Fans : 3 Number of Temperature Sensors : 1 Number of Alarms : 1 Number of SIM Modules : 0 Number of Physical Drives : 28 Status : Normal Position : 1 Connector Name : Port A Enclosure type : SES VendorId is LSI CORP and Product Id is SAS2X36 VendorID and Product ID didnt match FRU Part Number : N/A Enclosure Serial Number : N/A ESM Serial Number : N/A Enclosure Zoning Mode : N/A Partner Device Id : 36 Inquiry data : Vendor Identification : LSI CORP Product Identification : SAS2X36 Product Revision Level : 0718 Vendor Specific : x36-55.7.24.1 Number of Voltage Sensors :2 Voltage Sensor :0 Voltage Sensor Status :OK Voltage Value :5020 milli volts Voltage Sensor :1 Voltage Sensor Status :OK Voltage Value :11760 milli volts Number of Power Supplies : 2 Power Supply : 0 Power Supply Status : OK Power Supply : 1 Power Supply Status : OK Number of Fans : 3 Fan : 0 Fan Speed :Low Speed Fan Status : OK Fan : 1 Fan Speed :Low Speed Fan Status : OK Fan : 2 Fan Speed :Low Speed Fan Status : OK Number of Temperature Sensors : 1 Temp Sensor : 0 Temperature : 47 Temperature Sensor Status : OK Number of Chassis : 1 Chassis : 0 Chassis Status : OK Enclosure 2: Device ID : 252 Number of Slots : 8 Number of Power Supplies : 0 Number of Fans : 0 Number of Temperature Sensors : 0 Number of Alarms : 0 Number of SIM Modules : 1 Number of Physical Drives : 0 Status : Normal Position : 1 Connector Name : Unavailable Enclosure type : SGPIO Failed in first Inquiry commnad FRU Part Number : N/A Enclosure Serial Number : N/A ESM Serial Number : N/A Enclosure Zoning Mode : N/A Partner Device Id : Unavailable Inquiry data : Vendor Identification : LSI Product Identification : SGPIO Product Revision Level : N/A Vendor Specific : Exit Code: 0x00 Now, notice that each slot 11 device shows an enclosure ID of 36, I think this is where the discrepancy happens. One should be 36. But the other should be on enclosure 65. Drives in slot 11: Enclosure Device ID: 36 Slot Number: 11 Drive's postion: DiskGroup: 5, Span: 0, Arm: 1 Enclosure position: 0 Device Id: 48 WWN: Sequence Number: 11 Media Error Count: 0 Other Error Count: 0 Predictive Failure Count: 0 Last Predictive Failure Event Seq Number: 0 PD Type: SATA Raw Size: 2.728 TB [0x15d50a3b0 Sectors] Non Coerced Size: 2.728 TB [0x15d40a3b0 Sectors] Coerced Size: 2.728 TB [0x15d400000 Sectors] Firmware state: Online, Spun Up Is Commissioned Spare : YES Device Firmware Level: A5C0 Shield Counter: 0 Successful diagnostics completion on : N/A SAS Address(0): 0x5003048000ee8a53 Connected Port Number: 1(path0) Inquiry Data: MJ1311YNG6YYXAHitachi HDS5C3030ALA630 MEAOA5C0 FDE Enable: Disable Secured: Unsecured Locked: Unlocked Needs EKM Attention: No Foreign State: None Device Speed: 6.0Gb/s Link Speed: 6.0Gb/s Media Type: Hard Disk Device Drive Temperature :30C (86.00 F) PI Eligibility: No Drive is formatted for PI information: No PI: No PI Drive's write cache : Disabled Drive's NCQ setting : Enabled Port-0 : Port status: Active Port's Linkspeed: 6.0Gb/s Drive has flagged a S.M.A.R.T alert : No Enclosure Device ID: 36 Slot Number: 11 Drive's postion: DiskGroup: 19, Span: 0, Arm: 1 Enclosure position: 0 Device Id: 19 WWN: Sequence Number: 4 Media Error Count: 0 Other Error Count: 0 Predictive Failure Count: 0 Last Predictive Failure Event Seq Number: 0 PD Type: SATA Raw Size: 2.728 TB [0x15d50a3b0 Sectors] Non Coerced Size: 2.728 TB [0x15d40a3b0 Sectors] Coerced Size: 2.728 TB [0x15d400000 Sectors] Firmware state: Online, Spun Up Is Commissioned Spare : NO Device Firmware Level: A580 Shield Counter: 0 Successful diagnostics completion on : N/A SAS Address(0): 0x5003048000ee8e53 Connected Port Number: 0(path0) Inquiry Data: MJ1313YNG1VA5CHitachi HDS5C3030ALA630 MEAOA580 FDE Enable: Disable Secured: Unsecured Locked: Unlocked Needs EKM Attention: No Foreign State: None Device Speed: 6.0Gb/s Link Speed: 6.0Gb/s Media Type: Hard Disk Device Drive Temperature :30C (86.00 F) PI Eligibility: No Drive is formatted for PI information: No PI: No PI Drive's write cache : Disabled Drive's NCQ setting : Enabled Port-0 : Port status: Active Port's Linkspeed: 6.0Gb/s Drive has flagged a S.M.A.R.T alert : No Update 06/28/12: I finally have some new information about (what we think) the root cause of this problem so I thought I would share. After getting in contact with a very knowledgeable Supermicro tech, they provided us with a tool called Xflash (doesn't appear to be readily available on their FTP). When we gathered some information using this utility, my colleague found something very strange: root@mogile2 test]# ./xflash.dat -i get avail Initializing Interface. Expander: SAS2X36 (SAS2x36) 1) SAS2X36 (SAS2x36) (50030480:00EE917F) (0.0.0.0) 2) SAS2X36 (SAS2x36) (50030480:00E9D67F) (0.0.0.0) 3) SAS2X36 (SAS2x36) (50030480:0112D97F) (0.0.0.0) This lists the connected enclosures. You see the 3 connected (we have since added a 3rd and a 4th which is not yet showing up) with their respective SAS address / WWN (50030480:00EE917F). Now we can use this address to get information on the individual enclosures: [root@mogile2 test]# ./xflash.dat -i 5003048000EE917F get exp Initializing Interface. Expander: SAS2X36 (SAS2x36) Reading the expander information.......... Expander: SAS2X36 (SAS2x36) B3 SAS Address: 50030480:00EE917F Enclosure Logical Id: 50030480:0000007F IP Address: 0.0.0.0 Component Identifier: 0x0223 Component Revision: 0x05 [root@mogile2 test]# ./xflash.dat -i 5003048000E9D67F get exp Initializing Interface. Expander: SAS2X36 (SAS2x36) Reading the expander information.......... Expander: SAS2X36 (SAS2x36) B3 SAS Address: 50030480:00E9D67F Enclosure Logical Id: 50030480:0000007F IP Address: 0.0.0.0 Component Identifier: 0x0223 Component Revision: 0x05 [root@mogile2 test]# ./xflash.dat -i 500304800112D97F get exp Initializing Interface. Expander: SAS2X36 (SAS2x36) Reading the expander information.......... Expander: SAS2X36 (SAS2x36) B3 SAS Address: 50030480:0112D97F Enclosure Logical Id: 50030480:0112D97F IP Address: 0.0.0.0 Component Identifier: 0x0223 Component Revision: 0x05 Did you catch it? The first 2 enclosures logical ID is partially masked out where the 3rd one (which has a correct unique enclosure ID) is not. We pointed this out to Supermicro and were able to confirm that this address is supposed to be set during manufacturing and there was a problem with a certain batch of these enclosures where the logical ID was not set. We believe that the RAID controller is determining the ID based on the logical ID and since our first 2 enclosures have the same logical ID, they get the same enclosure ID. We also confirmed that 0000007F is the default which comes from LSI as an ID. The next pointer that helps confirm this could be a manufacturing problem with a run of JBODs is the fact that all 6 of the enclosures that have this problem begin with 00E. I believe that between 00E8 and 00EE Supermicro forgot to program the logical IDs correctly and neglected to recall or fix the problem post production. Fortunately for us, there is a tool to manage the WWN and logical ID of the devices from Supermicro: ftp://ftp.supermicro.com/utility/ExpanderXtools_Lite/. Our next step is to schedule a shutdown of these JBODs (after data migration) and reprogram the logical ID and see if it solves the problem. Update 06/28/12 #2: I just discovered this FAQ at Supermicro while Google searching for "lsi 0000007f": http://www.supermicro.com/support/faqs/faq.cfm?faq=11805. I still don't understand why, in the last several times we contacted Supermicro, they would have never directed us to this article :\

    Read the article

  • Why is Java EE 6 better than Spring ?

    - by arungupta
    Java EE 6 was released over 2 years ago and now there are 14 compliant application servers. In all my talks around the world, a question that is frequently asked is Why should I use Java EE 6 instead of Spring ? There are already several blogs covering that topic: Java EE wins over Spring by Bill Burke Why will I use Java EE instead of Spring in new Enterprise Java projects in 2012 ? by Kai Waehner (more discussion on TSS) Spring to Java EE migration (Part 1 and 2, 3 and 4 coming as well) by David Heffelfinger Spring to Java EE - A Migration Experience by Lincoln Baxter Migrating Spring to Java EE 6 by Bert Ertman and Paul Bakker at NLJUG Moving from Spring to Java EE 6 - The Age of Frameworks is Over at TSS Java EE vs Spring Shootout by Rohit Kelapure and Reza Rehman at JavaOne 2011 Java EE 6 and the Ewoks by Murat Yener Definite excuse to avoid Spring forever - Bert Ertman and Arun Gupta I will try to share my perspective in this blog. First of all, I'd like to start with a note: Thank you Spring framework for filling the interim gap and providing functionality that is now included in the mainstream Java EE 6 application servers. The Java EE platform has evolved over the years learning from frameworks like Spring and provides all the functionality to build an enterprise application. Thank you very much Spring framework! While Spring was revolutionary in its time and is still very popular and quite main stream in the same way Struts was circa 2003, it really is last generation's framework - some people are even calling it legacy. However my theory is "code is king". So my approach is to build/take a simple Hello World CRUD application in Java EE 6 and Spring and compare the deployable artifacts. I started looking at the official tutorial Developing a Spring Framework MVC Application Step-by-Step but it is using the older version 2.5. I wasn't able to find any updated version in the current 3.1 release. Next, I downloaded Spring Tool Suite and thought that would provide some template samples to get started. A least a quick search did not show any handy tutorials - either video or text-based. So I searched and found a link to their SVN repository at src.springframework.org/svn/spring-samples/. I tried the "mvc-basic" sample and the generated WAR file was 4.43 MB. While it was named a "basic" sample it seemed to come with 19 different libraries bundled but it was what I could find: ./WEB-INF/lib/aopalliance-1.0.jar./WEB-INF/lib/hibernate-validator-4.1.0.Final.jar./WEB-INF/lib/jcl-over-slf4j-1.6.1.jar./WEB-INF/lib/joda-time-1.6.2.jar./WEB-INF/lib/joda-time-jsptags-1.0.2.jar./WEB-INF/lib/jstl-1.2.jar./WEB-INF/lib/log4j-1.2.16.jar./WEB-INF/lib/slf4j-api-1.6.1.jar./WEB-INF/lib/slf4j-log4j12-1.6.1.jar./WEB-INF/lib/spring-aop-3.0.5.RELEASE.jar./WEB-INF/lib/spring-asm-3.0.5.RELEASE.jar./WEB-INF/lib/spring-beans-3.0.5.RELEASE.jar./WEB-INF/lib/spring-context-3.0.5.RELEASE.jar./WEB-INF/lib/spring-context-support-3.0.5.RELEASE.jar./WEB-INF/lib/spring-core-3.0.5.RELEASE.jar./WEB-INF/lib/spring-expression-3.0.5.RELEASE.jar./WEB-INF/lib/spring-web-3.0.5.RELEASE.jar./WEB-INF/lib/spring-webmvc-3.0.5.RELEASE.jar./WEB-INF/lib/validation-api-1.0.0.GA.jar And it is not even using any database! The app deployed fine on GlassFish 3.1.2 but the "@Controller Example" link did not work as it was missing the context root. With a bit of tweaking I could deploy the application and assume that the account got created because no error was displayed in the browser or server log. Next I generated the WAR for "mvc-ajax" and the 5.1 MB WAR had 20 JARs (1 removed, 2 added): ./WEB-INF/lib/aopalliance-1.0.jar./WEB-INF/lib/hibernate-validator-4.1.0.Final.jar./WEB-INF/lib/jackson-core-asl-1.6.4.jar./WEB-INF/lib/jackson-mapper-asl-1.6.4.jar./WEB-INF/lib/jcl-over-slf4j-1.6.1.jar./WEB-INF/lib/joda-time-1.6.2.jar./WEB-INF/lib/jstl-1.2.jar./WEB-INF/lib/log4j-1.2.16.jar./WEB-INF/lib/slf4j-api-1.6.1.jar./WEB-INF/lib/slf4j-log4j12-1.6.1.jar./WEB-INF/lib/spring-aop-3.0.5.RELEASE.jar./WEB-INF/lib/spring-asm-3.0.5.RELEASE.jar./WEB-INF/lib/spring-beans-3.0.5.RELEASE.jar./WEB-INF/lib/spring-context-3.0.5.RELEASE.jar./WEB-INF/lib/spring-context-support-3.0.5.RELEASE.jar./WEB-INF/lib/spring-core-3.0.5.RELEASE.jar./WEB-INF/lib/spring-expression-3.0.5.RELEASE.jar./WEB-INF/lib/spring-web-3.0.5.RELEASE.jar./WEB-INF/lib/spring-webmvc-3.0.5.RELEASE.jar./WEB-INF/lib/validation-api-1.0.0.GA.jar 2 more JARs for just doing Ajax. Anyway, deploying this application gave the following error: Caused by: java.lang.NoSuchMethodError: org.codehaus.jackson.map.SerializationConfig.<init>(Lorg/codehaus/jackson/map/ClassIntrospector;Lorg/codehaus/jackson/map/AnnotationIntrospector;Lorg/codehaus/jackson/map/introspect/VisibilityChecker;Lorg/codehaus/jackson/map/jsontype/SubtypeResolver;)V    at org.springframework.samples.mvc.ajax.json.ConversionServiceAwareObjectMapper.<init>(ConversionServiceAwareObjectMapper.java:20)    at org.springframework.samples.mvc.ajax.json.JacksonConversionServiceConfigurer.postProcessAfterInitialization(JacksonConversionServiceConfigurer.java:40)    at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.applyBeanPostProcessorsAfterInitialization(AbstractAutowireCapableBeanFactory.java:407) Seems like some incorrect repos in the "pom.xml". Next one is "mvc-showcase" and the 6.49 MB WAR now has 28 JARs as shown below: ./WEB-INF/lib/aopalliance-1.0.jar./WEB-INF/lib/aspectjrt-1.6.10.jar./WEB-INF/lib/commons-fileupload-1.2.2.jar./WEB-INF/lib/commons-io-2.0.1.jar./WEB-INF/lib/el-api-2.2.jar./WEB-INF/lib/hibernate-validator-4.1.0.Final.jar./WEB-INF/lib/jackson-core-asl-1.8.1.jar./WEB-INF/lib/jackson-mapper-asl-1.8.1.jar./WEB-INF/lib/javax.inject-1.jar./WEB-INF/lib/jcl-over-slf4j-1.6.1.jar./WEB-INF/lib/jdom-1.0.jar./WEB-INF/lib/joda-time-1.6.2.jar./WEB-INF/lib/jstl-api-1.2.jar./WEB-INF/lib/jstl-impl-1.2.jar./WEB-INF/lib/log4j-1.2.16.jar./WEB-INF/lib/rome-1.0.0.jar./WEB-INF/lib/slf4j-api-1.6.1.jar./WEB-INF/lib/slf4j-log4j12-1.6.1.jar./WEB-INF/lib/spring-aop-3.1.0.RELEASE.jar./WEB-INF/lib/spring-asm-3.1.0.RELEASE.jar./WEB-INF/lib/spring-beans-3.1.0.RELEASE.jar./WEB-INF/lib/spring-context-3.1.0.RELEASE.jar./WEB-INF/lib/spring-context-support-3.1.0.RELEASE.jar./WEB-INF/lib/spring-core-3.1.0.RELEASE.jar./WEB-INF/lib/spring-expression-3.1.0.RELEASE.jar./WEB-INF/lib/spring-web-3.1.0.RELEASE.jar./WEB-INF/lib/spring-webmvc-3.1.0.RELEASE.jar./WEB-INF/lib/validation-api-1.0.0.GA.jar The app at least deployed and showed results this time. But still no database! Next I tried building "jpetstore" and got the error: [ERROR] Failed to execute goal on project org.springframework.samples.jpetstore:Could not resolve dependencies for project org.springframework.samples:org.springframework.samples.jpetstore:war:1.0.0-SNAPSHOT: Failed to collect dependencies for [commons-fileupload:commons-fileupload:jar:1.2.1 (compile), org.apache.struts:com.springsource.org.apache.struts:jar:1.2.9 (compile), javax.xml.rpc:com.springsource.javax.xml.rpc:jar:1.1.0 (compile), org.apache.commons:com.springsource.org.apache.commons.dbcp:jar:1.2.2.osgi (compile), commons-io:commons-io:jar:1.3.2 (compile), hsqldb:hsqldb:jar:1.8.0.7 (compile), org.apache.tiles:tiles-core:jar:2.2.0 (compile), org.apache.tiles:tiles-jsp:jar:2.2.0 (compile), org.tuckey:urlrewritefilter:jar:3.1.0 (compile), org.springframework:spring-webmvc:jar:3.0.0.BUILD-SNAPSHOT (compile), org.springframework:spring-orm:jar:3.0.0.BUILD-SNAPSHOT (compile), org.springframework:spring-context-support:jar:3.0.0.BUILD-SNAPSHOT (compile), org.springframework.webflow:spring-js:jar:2.0.7.RELEASE (compile), org.apache.ibatis:com.springsource.com.ibatis:jar:2.3.4.726 (runtime), com.caucho:com.springsource.com.caucho:jar:3.2.1 (compile), org.apache.axis:com.springsource.org.apache.axis:jar:1.4.0 (compile), javax.wsdl:com.springsource.javax.wsdl:jar:1.6.1 (compile), javax.servlet:jstl:jar:1.2 (runtime), org.aspectj:aspectjweaver:jar:1.6.5 (compile), javax.servlet:servlet-api:jar:2.5 (provided), javax.servlet.jsp:jsp-api:jar:2.1 (provided), junit:junit:jar:4.6 (test)]: Failed to read artifact descriptor for org.springframework:spring-webmvc:jar:3.0.0.BUILD-SNAPSHOT: Could not transfer artifact org.springframework:spring-webmvc:pom:3.0.0.BUILD-SNAPSHOT from/to JBoss repository (http://repository.jboss.com/maven2): Access denied to: http://repository.jboss.com/maven2/org/springframework/spring-webmvc/3.0.0.BUILD-SNAPSHOT/spring-webmvc-3.0.0.BUILD-SNAPSHOT.pom It appears the sample is broken - maybe I was pulling from the wrong repository - would be great if someone were to point me at a good target to use here. With a 50% hit on samples in this repository, I started searching through numerous blogs, most of which have either outdated information (using XML-heavy Spring 2.5), some piece of configuration (which is a typical "feature" of Spring) is missing, or too much complexity in the sample. I finally found this blog that worked like a charm. This blog creates a trivial Spring MVC 3 application using Hibernate and MySQL. This application performs CRUD operations on a single table in a database using typical Spring technologies.  I downloaded the sample code from the blog, deployed it on GlassFish 3.1.2 and could CRUD the "person" entity. The source code for this application can be downloaded here. More details on the application statistics below. And then I built a similar CRUD application in Java EE 6 using NetBeans wizards in a couple of minutes. The source code for the application can be downloaded here and the WAR here. The Spring Source Tool Suite may also offer similar wizard-driven capabilities but this blog focus primarily on comparing the runtimes. The lack of STS tutorials was slightly disappointing as well. NetBeans however has tons of text-based and video tutorials and tons of material even by the community. One more bit on the download size of tools bundle ... NetBeans 7.1.1 "All" is 211 MB (which includes GlassFish and Tomcat) Spring Tool Suite  2.9.0 is 347 MB (~ 65% bigger) This blog is not about the tooling comparison so back to the Java EE 6 version of the application .... In order to run the Java EE version on GlassFish, copy the MySQL Connector/J to glassfish3/glassfish/domains/domain1/lib/ext directory and create a JDBC connection pool and JDBC resource as: ./bin/asadmin create-jdbc-connection-pool --datasourceclassname \\ com.mysql.jdbc.jdbc2.optional.MysqlDataSource --restype \\ javax.sql.DataSource --property \\ portNumber=3306:user=mysql:password=mysql:databaseName=mydatabase \\ myConnectionPool ./bin/asadmin create-jdbc-resource --connectionpoolid myConnectionPool jdbc/myDataSource I generated WARs for the two projects and the table below highlights some differences between them: Java EE 6 Spring WAR File Size 0.021030 MB 10.87 MB (~516x) Number of files 20 53 (> 2.5x) Bundled libraries 0 36 Total size of libraries 0 12.1 MB XML files 3 5 LoC in XML files 50 (11 + 15 + 24) 129 (27 + 46 + 16 + 11 + 19) (~ 2.5x) Total .properties files 1 Bundle.properties 2 spring.properties, log4j.properties Cold Deploy 5,339 ms 11,724 ms Second Deploy 481 ms 6,261 ms Third Deploy 528 ms 5,484 ms Fourth Deploy 484 ms 5,576 ms Runtime memory ~73 MB ~101 MB Some points worth highlighting from the table ... 516x WAR file, 10x deployment time - With 12.1 MB of libraries (for a very basic application) bundled in your application, the WAR file size and the deployment time will naturally go higher. The WAR file for Spring-based application is 516x bigger and the deployment time is double during the first deployment and ~ 10x during subsequent deployments. The Java EE 6 application is fully portable and will run on any Java EE 6 compliant application server. 36 libraries in the WAR - There are 14 Java EE 6 compliant application servers today. Each of those servers provide all the functionality like transactions, dependency injection, security, persistence, etc typically required of an enterprise or web application. There is no need to bundle 36 libraries worth 12.1 MB for a trivial CRUD application. These 14 compliant application servers provide all the functionality baked in. Now you can also deploy these libraries in the container but then you don't get the "portability" offered by Spring in that case. Does your typical Spring deployment actually do that ? 3x LoC in XML - The number of XML files is about 1.6x and the LoC is ~ 2.5x. So much XML seems circa 2003 when the Java language had no annotations. The XML files can be further reduced, e.g. faces-config.xml can be replaced without providing i18n, but I just want to compare stock applications. Memory usage - Both the applications were deployed on default GlassFish 3.1.2 installation and any additional memory consumed as part of deployment/access was attributed to the application. This is by no means scientific but at least provides an initial ballpark. This area definitely needs more investigation. Another table that compares typical Java EE 6 compliant application servers and the custom-stack created for a Spring application ... Java EE 6 Spring Web Container ? 53 MB (tcServer 2.6.3 Developer Edition) Security ? 12 MB (Spring Security 3.1.0) Persistence ? 6.3 MB (Hibernate 4.1.0, required) Dependency Injection ? 5.3 MB (Framework) Web Services ? 796 KB (Spring WS 2.0.4) Messaging ? 3.4 MB (RabbitMQ Server 2.7.1) 936 KB (Java client 936) OSGi ? 1.3 MB (Spring OSGi 1.2.1) GlassFish and WebLogic (starting at 33 MB) 83.3 MB There are differentiating factors on both the stacks. But most of the functionality like security, persistence, and dependency injection is baked in a Java EE 6 compliant application server but needs to be individually managed and patched for a Spring application. This very quickly leads to a "stack explosion". The Java EE 6 servers are tested extensively on a variety of platforms in different combinations whereas a Spring application developer is responsible for testing with different JDKs, Operating Systems, Versions, Patches, etc. Oracle has both the leading OSS lightweight server with GlassFish and the leading enterprise Java server with WebLogic Server, both Java EE 6 and both with lightweight deployment options. The Web Container offered as part of a Java EE 6 application server not only deploys your enterprise Java applications but also provide operational management, diagnostics, and mission-critical capabilities required by your applications. The Java EE 6 platform also introduced the Web Profile which is a subset of the specifications from the entire platform. It is targeted at developers of modern web applications offering a reasonably complete stack, composed of standard APIs, and is capable out-of-the-box of addressing the needs of a large class of Web applications. As your applications grow, the stack can grow to the full Java EE 6 platform. The GlassFish Server Web Profile starting at 33MB (smaller than just the non-standard tcServer) provides most of the functionality typically required by a web application. WebLogic provides battle-tested functionality for a high throughput, low latency, and enterprise grade web application. No individual managing or patching, all tested and commercially supported for you! Note that VMWare does have a server, tcServer, but it is non-standard and not even certified to the level of the standard Web Profile most customers expect these days. Customers who choose this risk proprietary lock-in since VMWare does not seem to want to formally certify with either Java EE 6 Enterprise Platform or with Java EE 6 Web Profile but of course it would be great if they were to join the community and help their customers reduce the risk of deploying on VMWare software. Some more points to help you decide choose between Java EE 6 and Spring ... Freedom to choose container - There are 14 Java EE 6 compliant application servers today, with a variety of open source and commercial offerings. A Java EE 6 application can be deployed on any of those containers. So if you deployed your application on GlassFish today and would like to scale up with your demands then you can deploy the same application to WebLogic. And because of the portability of a Java EE 6 application, you can even take it a different vendor altogether. Spring requires a runtime which could be any of these app servers as well. But why use Spring when all the required functionality is already baked into the application server itself ? Spring also has a different definition of portability where they claim to bundle all the libraries in the WAR file and move to any application server. But we saw earlier how bloated that archive could be. The equivalent features in Spring runtime offerings (mainly tcServer) are not all open source, not as mature, and often require manual assembly.  Vendor choice - The Java EE 6 platform is created using the Java Community Process where all the big players like Oracle, IBM, RedHat, and Apache are conritbuting to make the platform successful. Each application server provides the basic Java EE 6 platform compliance and has its own competitive offerings. This allows you to choose an application server for deploying your Java EE 6 applications. If you are not happy with the support or feature of one vendor then you can move your application to a different vendor because of the portability promise offered by the platform. Spring is a set of products from a single company, one price book, one support organization, one sustaining organization, one sales organization, etc. If any of those cause a customer headache, where do you go ? Java EE, backed by multiple vendors, is a safer bet for those that are risk averse. Production support - With Spring, typically you need to get support from two vendors - VMWare and the container provider. With Java EE 6, all of this is typically provided by one vendor. For example, Oracle offers commercial support from systems, operating systems, JDK, application server, and applications on top of them. VMWare certainly offers complete production support but do you really want to put all your eggs in one basket ? Do you really use tcServer ? ;-) Maintainability - With Spring, you are likely building your own distribution with multiple JAR files, integrating, patching, versioning, etc of all those components. Spring's claim is that multiple JAR files allow you to go à la carte and pick the latest versions of different components. But who is responsible for testing whether all these versions work together ? Yep, you got it, its YOU! If something does not work, who patches and maintains the JARs ? Of course, you! Commercial support for such a configuration ? On your own! The Java EE application servers manage all of this for you and provide a well-tested and commercially supported bundle. While it is always good to realize that there is something new and improved that updates and replaces older frameworks like Spring, the good news is not only does a Java EE 6 container offer what is described here, most also will let you deploy and run your Spring applications on them while you go through an upgrade to a more modern architecture. End result, you get the best of both worlds - keeping your legacy investment but moving to a more agile, lightweight world of Java EE 6. A message to the Spring lovers ... The complexity in J2EE 1.2, 1.3, and 1.4 led to the genesis of Spring but that was in 2004. This is 2012 and the name has changed to "Java EE 6" :-) There are tons of improvements in the Java EE platform to make it easy-to-use and powerful. Some examples: Adding @Stateless on a POJO makes it an EJB EJBs can be packaged in a WAR with no special packaging or deployment descriptors "web.xml" and "faces-config.xml" are optional in most of the common cases Typesafe dependency injection is now part of the Java EE platform Add @Path on a POJO allows you to publish it as a RESTful resource EJBs can be used as backing beans for Facelets-driven JSF pages providing full MVC Java EE 6 WARs are known to be kilobytes in size and deployed in milliseconds Tons of other simplifications in the platform and application servers So if you moved away from J2EE to Spring many years ago and have not looked at Java EE 6 (which has been out since Dec 2009) then you should definitely try it out. Just be at least aware of what other alternatives are available instead of restricting yourself to one stack. Here are some workshops and screencasts worth trying: screencast #37 shows how to build an end-to-end application using NetBeans screencast #36 builds the same application using Eclipse javaee-lab-feb2012.pdf is a 3-4 hours self-paced hands-on workshop that guides you to build a comprehensive Java EE 6 application using NetBeans Each city generally has a "spring cleanup" program every year. It allows you to clean up the mess from your house. For your software projects, you don't need to wait for an annual event, just get started and reduce the technical debt now! Move away from your legacy Spring-based applications to a lighter and more modern approach of building enterprise Java applications using Java EE 6. Watch this beautiful presentation that explains how to migrate from Spring -> Java EE 6: List of files in the Java EE 6 project: ./index.xhtml./META-INF./person./person/Create.xhtml./person/Edit.xhtml./person/List.xhtml./person/View.xhtml./resources./resources/css./resources/css/jsfcrud.css./template.xhtml./WEB-INF./WEB-INF/classes./WEB-INF/classes/Bundle.properties./WEB-INF/classes/META-INF./WEB-INF/classes/META-INF/persistence.xml./WEB-INF/classes/org./WEB-INF/classes/org/javaee./WEB-INF/classes/org/javaee/javaeemysql./WEB-INF/classes/org/javaee/javaeemysql/AbstractFacade.class./WEB-INF/classes/org/javaee/javaeemysql/Person.class./WEB-INF/classes/org/javaee/javaeemysql/Person_.class./WEB-INF/classes/org/javaee/javaeemysql/PersonController$1.class./WEB-INF/classes/org/javaee/javaeemysql/PersonController$PersonControllerConverter.class./WEB-INF/classes/org/javaee/javaeemysql/PersonController.class./WEB-INF/classes/org/javaee/javaeemysql/PersonFacade.class./WEB-INF/classes/org/javaee/javaeemysql/util./WEB-INF/classes/org/javaee/javaeemysql/util/JsfUtil.class./WEB-INF/classes/org/javaee/javaeemysql/util/PaginationHelper.class./WEB-INF/faces-config.xml./WEB-INF/web.xml List of files in the Spring 3.x project: ./META-INF ./META-INF/MANIFEST.MF./WEB-INF./WEB-INF/applicationContext.xml./WEB-INF/classes./WEB-INF/classes/log4j.properties./WEB-INF/classes/org./WEB-INF/classes/org/krams ./WEB-INF/classes/org/krams/tutorial ./WEB-INF/classes/org/krams/tutorial/controller ./WEB-INF/classes/org/krams/tutorial/controller/MainController.class ./WEB-INF/classes/org/krams/tutorial/domain ./WEB-INF/classes/org/krams/tutorial/domain/Person.class ./WEB-INF/classes/org/krams/tutorial/service ./WEB-INF/classes/org/krams/tutorial/service/PersonService.class ./WEB-INF/hibernate-context.xml ./WEB-INF/hibernate.cfg.xml ./WEB-INF/jsp ./WEB-INF/jsp/addedpage.jsp ./WEB-INF/jsp/addpage.jsp ./WEB-INF/jsp/deletedpage.jsp ./WEB-INF/jsp/editedpage.jsp ./WEB-INF/jsp/editpage.jsp ./WEB-INF/jsp/personspage.jsp ./WEB-INF/lib ./WEB-INF/lib/antlr-2.7.6.jar ./WEB-INF/lib/aopalliance-1.0.jar ./WEB-INF/lib/c3p0-0.9.1.2.jar ./WEB-INF/lib/cglib-nodep-2.2.jar ./WEB-INF/lib/commons-beanutils-1.8.3.jar ./WEB-INF/lib/commons-collections-3.2.1.jar ./WEB-INF/lib/commons-digester-2.1.jar ./WEB-INF/lib/commons-logging-1.1.1.jar ./WEB-INF/lib/dom4j-1.6.1.jar ./WEB-INF/lib/ejb3-persistence-1.0.2.GA.jar ./WEB-INF/lib/hibernate-annotations-3.4.0.GA.jar ./WEB-INF/lib/hibernate-commons-annotations-3.1.0.GA.jar ./WEB-INF/lib/hibernate-core-3.3.2.GA.jar ./WEB-INF/lib/javassist-3.7.ga.jar ./WEB-INF/lib/jstl-1.1.2.jar ./WEB-INF/lib/jta-1.1.jar ./WEB-INF/lib/junit-4.8.1.jar ./WEB-INF/lib/log4j-1.2.14.jar ./WEB-INF/lib/mysql-connector-java-5.1.14.jar ./WEB-INF/lib/persistence-api-1.0.jar ./WEB-INF/lib/slf4j-api-1.6.1.jar ./WEB-INF/lib/slf4j-log4j12-1.6.1.jar ./WEB-INF/lib/spring-aop-3.0.5.RELEASE.jar ./WEB-INF/lib/spring-asm-3.0.5.RELEASE.jar ./WEB-INF/lib/spring-beans-3.0.5.RELEASE.jar ./WEB-INF/lib/spring-context-3.0.5.RELEASE.jar ./WEB-INF/lib/spring-context-support-3.0.5.RELEASE.jar ./WEB-INF/lib/spring-core-3.0.5.RELEASE.jar ./WEB-INF/lib/spring-expression-3.0.5.RELEASE.jar ./WEB-INF/lib/spring-jdbc-3.0.5.RELEASE.jar ./WEB-INF/lib/spring-orm-3.0.5.RELEASE.jar ./WEB-INF/lib/spring-tx-3.0.5.RELEASE.jar ./WEB-INF/lib/spring-web-3.0.5.RELEASE.jar ./WEB-INF/lib/spring-webmvc-3.0.5.RELEASE.jar ./WEB-INF/lib/standard-1.1.2.jar ./WEB-INF/lib/xml-apis-1.0.b2.jar ./WEB-INF/spring-servlet.xml ./WEB-INF/spring.properties ./WEB-INF/web.xml So, are you excited about Java EE 6 ? Want to get started now ? Here are some resources: Java EE 6 SDK (including runtime, samples, tutorials etc) GlassFish Server Open Source Edition 3.1.2 (Community) Oracle GlassFish Server 3.1.2 (Commercial) Java EE 6 using WebLogic 12c and NetBeans (Video) Java EE 6 with NetBeans and GlassFish (Video) Java EE with Eclipse and GlassFish (Video)

    Read the article

  • How to implement multi-source XSLT mapping in 11g BPEL

    - by [email protected]
    In SOA 11g, you can create a XSLT mapper that uses multiple sources as the input. To implement a multi-source mapper, just follow the instructions below, Drag and drop a Transform Activity to a BPEL process Double-click on the Transform Activity, the Transform dialog window appears. Add source variables by clicking the Add icon and selecting the variable and part of the variable as needed. You can select multiple input variables. The first variable represents the main XML input to the XSL mapping, while additional variables that are added here are defined in the XSL mapping as input parameters. Select the target variable and its part if available. Specify the mapper file name, the default file name is xsl/Transformation_%SEQ%.xsl, where %SEQ% represents the sequence number of the mapper. Click OK, the xls file will be opened in the graphical mode. You can map the sources to the target as usual. Open the mapper source code, you will notice the variable representing the additional source payload, is defined as the input parameter in the map source spec and body<mapSources>    <source type="XSD">      <schema location="../xsd/po.xsd"/>      <rootElement name="PurchaseOrder" namespace="http://www.oracle.com/pcbpel/po"/>    </source>    <source type="XSD">      <schema location="../xsd/customer.xsd"/>      <rootElement name="Customer" namespace="http://www.oracle.com/pcbpel/Customer"/>      <param name="v_customer" />    </source>  </mapSources>...<xsl:param name="v_customer"/> Let's take a look at the BPEL source code used to execute xslt mapper. <assign name="Transform_1">            <bpelx:annotation>                <bpelx:pattern>transformation</bpelx:pattern>            </bpelx:annotation>            <copy>                <from expression="ora:doXSLTransformForDoc('xsl/Transformation_1.xsl',bpws:getVariableData('v_po'),'v_customer',bpws:getVariableData('v_customer'))"/>                <to variable="v_invoice"/>            </copy>        </assign> You will see BPEL uses ora:doXSLTransformForDoc XPath function to execute the XSLT mapper.This function returns the result of  XSLT transformation when the xslt template matching the document. The signature of this function is  ora:doXSLTransformForDoc(template,input, [paramQName, paramValue]*).Wheretemplate is the XSLT mapper nameinput is the string representation of xml input, paramQName is the parameter defined in the xslt mapper as the additional sourceparameterValue is the additional source payload. You can add more sources to the mapper at the later stage, but you have to modify the ora:doXSLTransformForDoc in the BPEL source code and make sure it passes correct parameter and its value pair that reflects the changes in the XSLT mapper.So the best practices are : create the variables before creating the mapping file, therefore you can add multiple sources when you define the transformation in the first place, which is more straightforward than adding them later on. Review ora:doXSLTransformForDoc code in the BPEL source and make sure it passes the correct parameters to the mapper.

    Read the article

  • SOA 10g Developing a Simple Hello World Process

    - by [email protected]
    Softwares & Hardware Needed Intel Pentium D CPU 3 GHz, 2 GB RAM, Windows XP System ( Thats what i am using ) You could as well use Linux , but please choose High End RAM 10G SOA Suite from Oracle(TM) , Read Installation documents at www.Oracle.com J Developer 10.1.3.3 Official Documents at http://www.oracle.com/technology/products/ias/bpel/index.html java -version Java HotSpot(TM) Client VM (build 1.5.0_06-b05, mixed mode)BPEL Introduction - Developing a Simple Hello World Process  Synchronous BPEL Process      This Exercise focuses on developing a Synchronous Process, which mean you give input to the BPEL Process you get output immediately no waiting at all. The Objective of this exercise is to give input as name and it greets with Hello Appended by that name example, if I give input as "James" the BPEL process returns "Hello James". 1. Open the Oracle JDeveloper click on File -> New Application give the name "JamesApp" you can give your own name if it pleases you. Select the folder where you want to place the application. Click "OK" 2. Right Click on the "JamesApp" in the Application Navigator, Select New Menu. 3. Select "Projects" under "General" and "BPEL Process Project", click "OK" these steps remain same for all BPEL Projects 4. Project Setting Wizard Appears, Give the "Process Name" as "MyBPELProc" and Namespace as http://xmlns.james.com/ MyBPELProc, Select Template as "Synchronous BPEL Process click "Next" 5. Accept the input and output schema names as it is, click "Finish" 6. You would see the BPEL Process Designer, some of the folders such as Integration content and Resources are created and few more files 7. Assign Activity : Allows Assigning values to variables or copying values of one variable to another and also do some string manipulation or mathematical operations In the component palette at extreme right, select Process Activities from the drop down, and drag and drop "Assign" between "receive Input" and "replyOutput" 8. You can right click and edit the Assign activity and give any suitable name "AssignHello", 9. Select "Copy Operation" Tab create "Copy Operation" 10. In the From variables click on expression builder, select input under "input variable", Click on insert into expression bar, complete the concat syntax, Note to use "Ctrl+space bar" inside expression window to Auto Populate the expression as shown in the figure below. What we are actually doing here is concatenating the String "Hello ", with the variable value received through the variable named "input" 11. Observe that once an expression is completed the "To Variable" is assigned to a variable by name "result" 12. Finally the copy variable looks as below 13. It's the time to deploy, start the SOA Suite 14. Establish connection to the Server from JDeveloper, this can be done adding a New Application Server under Connection, give the server name, username and password and test connection. 15. Deploy the "MyBPELProc" to the "default domain" 16. http://localhost:8080/ allows connecting to SOA Suite web portal, click on "BPEL Control" , login with the username "oc4jadmin" password what ever you gave during installation 17. "MyBPELProc" is visisble under "Deployed BPEL Processes" in the "Dashboard" Tab, click on the it 18. Initiate tab open to accept input, enter data such as input is "James" click on "Post XML Button" 19. Click on Visual Flow 20. Click on receive Input , it shows "James" as input received 21. Click on reply Output, it shows "Hello James" so the BPEL process is successfully executed. 22. It may be worth seeing all the instance created everytime a BPEL process is executed by giving some inputs. Purge All button allows to delete all the unwanted previous instances of BPEL process, dont worry it wont delete the BPEL process itself :-) 23. It may also be some importance to understand the XSD File which holds input & output variable names & data types. 24. You could drag n drop variables as elements over sequence at the designer or directly edit the XML Source file. 

    Read the article

  • SQL SERVER – Fix : Error : 3117 : The log or differential backup cannot be restored because no files

    - by pinaldave
    I received the following email from one of my readers. Dear Pinal, I am new to SQL Server and our regular DBA is on vacation. Our production database had some problem and I have just restored full database backup to production server. When I try to apply log back I am getting following error. I am sure, this is valid log backup file. Screenshot is attached. [Few other details regarding server/ip address removed] Msg 3117, Level 16, State 1, Line 1 The log or differential backup cannot be restored because no files are ready to roll forward. Msg 3013, Level 16, State 1, Line 1 RESTORE LOG is terminating abnormally. Screenshot attached. [Removed as it contained live IP address] Please help immediately. Well I have answered this question in my earlier post, 2 years ago, over here SQL SERVER – Fix : Error : Msg 3117, Level 16, State 4 The log or differential backup cannot be restored because no files are ready to rollforward. However, I will try to explain it a little more this time. For SQL Server database to be used it should in online state. There are multiple states of SQL Server Database. ONLINE (Available – online for data) OFFLINE RESTORING RECOVERING RECOVERY PENDING SUSPECT EMERGENCY (Limited Availability) If the database is online, it means it is active and in operational mode. It will not make sense to apply further log from backup if the operations have continued on this database. The common practice during the backup restore process is to specify the keyword RECOVERY when the database is restored. When RECOVERY keyword is specified, the SQL Server brings back the database online and will not accept any further log backups. However, if you want to restore more than one backup files, i.e. after restoring the full back up if you want to apply further differential or log backup you cannot do that when database is online and already active. You need to have your database in the state where it can further accept the backup data and not the online data request. If the SQL Server is online and also accepts database backup file, then there can be data inconsistency. This is the reason that when there are more than one database backup files to be restored, one has to restore the database with NO RECOVERY keyword in the RESTORE operation. I suggest you all to read one more post written by me earlier. In this post, I explained the time line with image and graphic SQL SERVER – Backup Timeline and Understanding of Database Restore Process in Full Recovery Model. Sample Code for reference: RESTORE DATABASE AdventureWorks FROM DISK = 'C:\AdventureWorksFull.bak' WITH NORECOVERY; RESTORE DATABASE AdventureWorks FROM DISK = 'C:\AdventureWorksDiff.bak' WITH RECOVERY; In this post, I am not trying to cover complete backup and recovery. I am just attempting to address one type of error and its resolution. Please test these scenarios on the development server. Playing with live database backup and recovery is always very crucial and needs to be properly planned. Leave a comment here if you need help with this subject. Similar Post: SQL SERVER – Restore Sequence and Understanding NORECOVERY and RECOVERY Note: We will cover Standby Server maintenance and Recovery in another blog post and it is intentionally, not covered this post. Reference : Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, Readers Question, SQL, SQL Authority, SQL Backup and Restore, SQL Error Messages, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Serious about Embedded: Java Embedded @ JavaOne 2012

    - by terrencebarr
    It bears repeating: More than ever, the Java platform is the best technology for many embedded use cases. Java’s platform independence, high level of functionality, security, and developer productivity address the key pain points in building embedded solutions. Transitioning from 16 to 32 bit or even 64 bit? Need to support multiple architectures and operating systems with a single code base? Want to scale on multi-core systems? Require a proven security model? Dynamically deploy and manage software on your devices? Cut time to market by leveraging code, expertise, and tools from a large developer ecosystem? Looking for back-end services, integration, and management? The Java platform has got you covered. Java already powers around 10 billion devices worldwide, with traditional desktops and servers being only a small portion of that. And the ‘Internet of Things‘ is just really starting to explode … it is estimated that within five years, intelligent and connected embedded devices will outnumber desktops and mobile phones combined, and will generate the majority of the traffic on the Internet. Is your platform and services strategy ready for the coming disruptions and opportunities? It should come as no surprise that Oracle is keenly focused on Java for Embedded. At JavaOne 2012 San Francisco the dedicated track for Java ME, Java Card, and Embedded keeps growing, with 52 sessions, tutorials, Hands-on-Labs, and BOFs scheduled for this track alone, plus keynotes, demos, booths, and a variety of other embedded content. To further prove Oracle’s commitment, in 2012 for the first time there will be a dedicated sub-conference focused on the business aspects of embedded Java: Java Embedded @ JavaOne. This conference will run for two days in parallel to JavaOne in San Francisco, will have its own business-oriented track and content, and targets C-level executives, architects, business leaders, and decision makers. Registration and Call For Papers for Java Embedded @ JavaOne are now live. We expect a lot of interest in this new event and space is limited, so be sure to submit your paper and register soon. Hope to see you there! Cheers, – Terrence Filed under: Mobile & Embedded Tagged: ARM, Call for Papers, Embedded Java, Java Embedded, Java Embedded @ JavaOne, Java ME, Java SE Embedded, Java SE for Embedded, JavaOne San Francisco, PowerPC

    Read the article

  • C#/.NET Little Wonders: The Concurrent Collections (1 of 3)

    - by James Michael Hare
    Once again we consider some of the lesser known classes and keywords of C#.  In the next few weeks, we will discuss the concurrent collections and how they have changed the face of concurrent programming. This week’s post will begin with a general introduction and discuss the ConcurrentStack<T> and ConcurrentQueue<T>.  Then in the following post we’ll discuss the ConcurrentDictionary<T> and ConcurrentBag<T>.  Finally, we shall close on the third post with a discussion of the BlockingCollection<T>. For more of the "Little Wonders" posts, see the index here. A brief history of collections In the beginning was the .NET 1.0 Framework.  And out of this framework emerged the System.Collections namespace, and it was good.  It contained all the basic things a growing programming language needs like the ArrayList and Hashtable collections.  The main problem, of course, with these original collections is that they held items of type object which means you had to be disciplined enough to use them correctly or you could end up with runtime errors if you got an object of a type you weren't expecting. Then came .NET 2.0 and generics and our world changed forever!  With generics the C# language finally got an equivalent of the very powerful C++ templates.  As such, the System.Collections.Generic was born and we got type-safe versions of all are favorite collections.  The List<T> succeeded the ArrayList and the Dictionary<TKey,TValue> succeeded the Hashtable and so on.  The new versions of the library were not only safer because they checked types at compile-time, in many cases they were more performant as well.  So much so that it's Microsoft's recommendation that the System.Collections original collections only be used for backwards compatibility. So we as developers came to know and love the generic collections and took them into our hearts and embraced them.  The problem is, thread safety in both the original collections and the generic collections can be problematic, for very different reasons. Now, if you are only doing single-threaded development you may not care – after all, no locking is required.  Even if you do have multiple threads, if a collection is “load-once, read-many” you don’t need to do anything to protect that container from multi-threaded access, as illustrated below: 1: public static class OrderTypeTranslator 2: { 3: // because this dictionary is loaded once before it is ever accessed, we don't need to synchronize 4: // multi-threaded read access 5: private static readonly Dictionary<string, char> _translator = new Dictionary<string, char> 6: { 7: {"New", 'N'}, 8: {"Update", 'U'}, 9: {"Cancel", 'X'} 10: }; 11:  12: // the only public interface into the dictionary is for reading, so inherently thread-safe 13: public static char? Translate(string orderType) 14: { 15: char charValue; 16: if (_translator.TryGetValue(orderType, out charValue)) 17: { 18: return charValue; 19: } 20:  21: return null; 22: } 23: } Unfortunately, most of our computer science problems cannot get by with just single-threaded applications or with multi-threading in a load-once manner.  Looking at  today's trends, it's clear to see that computers are not so much getting faster because of faster processor speeds -- we've nearly reached the limits we can push through with today's technologies -- but more because we're adding more cores to the boxes.  With this new hardware paradigm, it is even more important to use multi-threaded applications to take full advantage of parallel processing to achieve higher application speeds. So let's look at how to use collections in a thread-safe manner. Using historical collections in a concurrent fashion The early .NET collections (System.Collections) had a Synchronized() static method that could be used to wrap the early collections to make them completely thread-safe.  This paradigm was dropped in the generic collections (System.Collections.Generic) because having a synchronized wrapper resulted in atomic locks for all operations, which could prove overkill in many multithreading situations.  Thus the paradigm shifted to having the user of the collection specify their own locking, usually with an external object: 1: public class OrderAggregator 2: { 3: private static readonly Dictionary<string, List<Order>> _orders = new Dictionary<string, List<Order>>(); 4: private static readonly _orderLock = new object(); 5:  6: public void Add(string accountNumber, Order newOrder) 7: { 8: List<Order> ordersForAccount; 9:  10: // a complex operation like this should all be protected 11: lock (_orderLock) 12: { 13: if (!_orders.TryGetValue(accountNumber, out ordersForAccount)) 14: { 15: _orders.Add(accountNumber, ordersForAccount = new List<Order>()); 16: } 17:  18: ordersForAccount.Add(newOrder); 19: } 20: } 21: } Notice how we’re performing several operations on the dictionary under one lock.  With the Synchronized() static methods of the early collections, you wouldn’t be able to specify this level of locking (a more macro-level).  So in the generic collections, it was decided that if a user needed synchronization, they could implement their own locking scheme instead so that they could provide synchronization as needed. The need for better concurrent access to collections Here’s the problem: it’s relatively easy to write a collection that locks itself down completely for access, but anything more complex than that can be difficult and error-prone to write, and much less to make it perform efficiently!  For example, what if you have a Dictionary that has frequent reads but in-frequent updates?  Do you want to lock down the entire Dictionary for every access?  This would be overkill and would prevent concurrent reads.  In such cases you could use something like a ReaderWriterLockSlim which allows for multiple readers in a lock, and then once a writer grabs the lock it blocks all further readers until the writer is done (in a nutshell).  This is all very complex stuff to consider. Fortunately, this is where the Concurrent Collections come in.  The Parallel Computing Platform team at Microsoft went through great pains to determine how to make a set of concurrent collections that would have the best performance characteristics for general case multi-threaded use. Now, as in all things involving threading, you should always make sure you evaluate all your container options based on the particular usage scenario and the degree of parallelism you wish to acheive. This article should not be taken to understand that these collections are always supperior to the generic collections. Each fills a particular need for a particular situation. Understanding what each container is optimized for is key to the success of your application whether it be single-threaded or multi-threaded. General points to consider with the concurrent collections The MSDN points out that the concurrent collections all support the ICollection interface. However, since the collections are already synchronized, the IsSynchronized property always returns false, and SyncRoot always returns null.  Thus you should not attempt to use these properties for synchronization purposes. Note that since the concurrent collections also may have different operations than the traditional data structures you may be used to.  Now you may ask why they did this, but it was done out of necessity to keep operations safe and atomic.  For example, in order to do a Pop() on a stack you have to know the stack is non-empty, but between the time you check the stack’s IsEmpty property and then do the Pop() another thread may have come in and made the stack empty!  This is why some of the traditional operations have been changed to make them safe for concurrent use. In addition, some properties and methods in the concurrent collections achieve concurrency by creating a snapshot of the collection, which means that some operations that were traditionally O(1) may now be O(n) in the concurrent models.  I’ll try to point these out as we talk about each collection so you can be aware of any potential performance impacts.  Finally, all the concurrent containers are safe for enumeration even while being modified, but some of the containers support this in different ways (snapshot vs. dirty iteration).  Once again I’ll highlight how thread-safe enumeration works for each collection. ConcurrentStack<T>: The thread-safe LIFO container The ConcurrentStack<T> is the thread-safe counterpart to the System.Collections.Generic.Stack<T>, which as you may remember is your standard last-in-first-out container.  If you think of algorithms that favor stack usage (for example, depth-first searches of graphs and trees) then you can see how using a thread-safe stack would be of benefit. The ConcurrentStack<T> achieves thread-safe access by using System.Threading.Interlocked operations.  This means that the multi-threaded access to the stack requires no traditional locking and is very, very fast! For the most part, the ConcurrentStack<T> behaves like it’s Stack<T> counterpart with a few differences: Pop() was removed in favor of TryPop() Returns true if an item existed and was popped and false if empty. PushRange() and TryPopRange() were added Allows you to push multiple items and pop multiple items atomically. Count takes a snapshot of the stack and then counts the items. This means it is a O(n) operation, if you just want to check for an empty stack, call IsEmpty instead which is O(1). ToArray() and GetEnumerator() both also take snapshots. This means that iteration over a stack will give you a static view at the time of the call and will not reflect updates. Pushing on a ConcurrentStack<T> works just like you’d expect except for the aforementioned PushRange() method that was added to allow you to push a range of items concurrently. 1: var stack = new ConcurrentStack<string>(); 2:  3: // adding to stack is much the same as before 4: stack.Push("First"); 5:  6: // but you can also push multiple items in one atomic operation (no interleaves) 7: stack.PushRange(new [] { "Second", "Third", "Fourth" }); For looking at the top item of the stack (without removing it) the Peek() method has been removed in favor of a TryPeek().  This is because in order to do a peek the stack must be non-empty, but between the time you check for empty and the time you execute the peek the stack contents may have changed.  Thus the TryPeek() was created to be an atomic check for empty, and then peek if not empty: 1: // to look at top item of stack without removing it, can use TryPeek. 2: // Note that there is no Peek(), this is because you need to check for empty first. TryPeek does. 3: string item; 4: if (stack.TryPeek(out item)) 5: { 6: Console.WriteLine("Top item was " + item); 7: } 8: else 9: { 10: Console.WriteLine("Stack was empty."); 11: } Finally, to remove items from the stack, we have the TryPop() for single, and TryPopRange() for multiple items.  Just like the TryPeek(), these operations replace Pop() since we need to ensure atomically that the stack is non-empty before we pop from it: 1: // to remove items, use TryPop or TryPopRange to get multiple items atomically (no interleaves) 2: if (stack.TryPop(out item)) 3: { 4: Console.WriteLine("Popped " + item); 5: } 6:  7: // TryPopRange will only pop up to the number of spaces in the array, the actual number popped is returned. 8: var poppedItems = new string[2]; 9: int numPopped = stack.TryPopRange(poppedItems); 10:  11: foreach (var theItem in poppedItems.Take(numPopped)) 12: { 13: Console.WriteLine("Popped " + theItem); 14: } Finally, note that as stated before, GetEnumerator() and ToArray() gets a snapshot of the data at the time of the call.  That means if you are enumerating the stack you will get a snapshot of the stack at the time of the call.  This is illustrated below: 1: var stack = new ConcurrentStack<string>(); 2:  3: // adding to stack is much the same as before 4: stack.Push("First"); 5:  6: var results = stack.GetEnumerator(); 7:  8: // but you can also push multiple items in one atomic operation (no interleaves) 9: stack.PushRange(new [] { "Second", "Third", "Fourth" }); 10:  11: while(results.MoveNext()) 12: { 13: Console.WriteLine("Stack only has: " + results.Current); 14: } The only item that will be printed out in the above code is "First" because the snapshot was taken before the other items were added. This may sound like an issue, but it’s really for safety and is more correct.  You don’t want to enumerate a stack and have half a view of the stack before an update and half a view of the stack after an update, after all.  In addition, note that this is still thread-safe, whereas iterating through a non-concurrent collection while updating it in the old collections would cause an exception. ConcurrentQueue<T>: The thread-safe FIFO container The ConcurrentQueue<T> is the thread-safe counterpart of the System.Collections.Generic.Queue<T> class.  The concurrent queue uses an underlying list of small arrays and lock-free System.Threading.Interlocked operations on the head and tail arrays.  Once again, this allows us to do thread-safe operations without the need for heavy locks! The ConcurrentQueue<T> (like the ConcurrentStack<T>) has some departures from the non-concurrent counterpart.  Most notably: Dequeue() was removed in favor of TryDequeue(). Returns true if an item existed and was dequeued and false if empty. Count does not take a snapshot It subtracts the head and tail index to get the count.  This results overall in a O(1) complexity which is quite good.  It’s still recommended, however, that for empty checks you call IsEmpty instead of comparing Count to zero. ToArray() and GetEnumerator() both take snapshots. This means that iteration over a queue will give you a static view at the time of the call and will not reflect updates. The Enqueue() method on the ConcurrentQueue<T> works much the same as the generic Queue<T>: 1: var queue = new ConcurrentQueue<string>(); 2:  3: // adding to queue is much the same as before 4: queue.Enqueue("First"); 5: queue.Enqueue("Second"); 6: queue.Enqueue("Third"); For front item access, the TryPeek() method must be used to attempt to see the first item if the queue.  There is no Peek() method since, as you’ll remember, we can only peek on a non-empty queue, so we must have an atomic TryPeek() that checks for empty and then returns the first item if the queue is non-empty. 1: // to look at first item in queue without removing it, can use TryPeek. 2: // Note that there is no Peek(), this is because you need to check for empty first. TryPeek does. 3: string item; 4: if (queue.TryPeek(out item)) 5: { 6: Console.WriteLine("First item was " + item); 7: } 8: else 9: { 10: Console.WriteLine("Queue was empty."); 11: } Then, to remove items you use TryDequeue().  Once again this is for the same reason we have TryPeek() and not Peek(): 1: // to remove items, use TryDequeue. If queue is empty returns false. 2: if (queue.TryDequeue(out item)) 3: { 4: Console.WriteLine("Dequeued first item " + item); 5: } Just like the concurrent stack, the ConcurrentQueue<T> takes a snapshot when you call ToArray() or GetEnumerator() which means that subsequent updates to the queue will not be seen when you iterate over the results.  Thus once again the code below will only show the first item, since the other items were added after the snapshot. 1: var queue = new ConcurrentQueue<string>(); 2:  3: // adding to queue is much the same as before 4: queue.Enqueue("First"); 5:  6: var iterator = queue.GetEnumerator(); 7:  8: queue.Enqueue("Second"); 9: queue.Enqueue("Third"); 10:  11: // only shows First 12: while (iterator.MoveNext()) 13: { 14: Console.WriteLine("Dequeued item " + iterator.Current); 15: } Using collections concurrently You’ll notice in the examples above I stuck to using single-threaded examples so as to make them deterministic and the results obvious.  Of course, if we used these collections in a truly multi-threaded way the results would be less deterministic, but would still be thread-safe and with no locking on your part required! For example, say you have an order processor that takes an IEnumerable<Order> and handles each other in a multi-threaded fashion, then groups the responses together in a concurrent collection for aggregation.  This can be done easily with the TPL’s Parallel.ForEach(): 1: public static IEnumerable<OrderResult> ProcessOrders(IEnumerable<Order> orderList) 2: { 3: var proxy = new OrderProxy(); 4: var results = new ConcurrentQueue<OrderResult>(); 5:  6: // notice that we can process all these in parallel and put the results 7: // into our concurrent collection without needing any external locking! 8: Parallel.ForEach(orderList, 9: order => 10: { 11: var result = proxy.PlaceOrder(order); 12:  13: results.Enqueue(result); 14: }); 15:  16: return results; 17: } Summary Obviously, if you do not need multi-threaded safety, you don’t need to use these collections, but when you do need multi-threaded collections these are just the ticket! The plethora of features (I always think of the movie The Three Amigos when I say plethora) built into these containers and the amazing way they acheive thread-safe access in an efficient manner is wonderful to behold. Stay tuned next week where we’ll continue our discussion with the ConcurrentBag<T> and the ConcurrentDictionary<TKey,TValue>. For some excellent information on the performance of the concurrent collections and how they perform compared to a traditional brute-force locking strategy, see this wonderful whitepaper by the Microsoft Parallel Computing Platform team here.   Tweet Technorati Tags: C#,.NET,Concurrent Collections,Collections,Multi-Threading,Little Wonders,BlackRabbitCoder,James Michael Hare

    Read the article

< Previous Page | 225 226 227 228 229 230 231 232 233 234 235 236  | Next Page >