Search Results

Search found 19603 results on 785 pages for 'variable length'.

Page 262/785 | < Previous Page | 258 259 260 261 262 263 264 265 266 267 268 269  | Next Page >

  • how to send trackback and pingback using c# script

    - by anirudha
    This is a very interesting topic because if you want to search about them. you find much useless stuff even you use c# as prefix. 1. how trackback works ? Every blog who have support to trackback that in their every post they have some text comment like <rdf:/rdf></rdf:rdf>  inside this tag the attribute “trackback:ping” have a url where we can send trackback. 2. you need some information about your blog to post where you want to trackback like 1. URL where you want to send the trackback 2. your post title [may be page title] 3. your post URL [may be page url] 4.  Excerpt : information you want to send. 5. you blogname [may be sitename if you use site not blog] make the information like querystring just we use in asp.net ex: title=”pingpost&url=pingurl&excerpt=it’s me&blog=myblog” ; the information look like asp.net Querystring if you unsure that you can HTMLencode the information who you use in parameters. you need to be sure that your post have URL of post where you want to send trackback. make  a request to pingurl set the following property request.Method = “POST”; //because they support only POST request.ContentLength = param.length // choose the length of parameters we create for sending ping. request.ContentType = "application/x-www-form-urlencoded"; // required to set. now when you send the request then server respond you something about your request check that the request.statuscode is verify that’s work or not if (response.StatusCode < HttpStatusCode.OK && response.StatusCode >= HttpStatusCode.Ambiguous)                     throw new Exception(string.Format(response.StatusCode.ToString())); because you have the response in XML format you can parse the response that’s have Error tag inside them or not. i put here information not code the reason is that “i see some other blog from a week on the topic but i found that they[blogger] post code not the method and all their code are useless and not worked”. because i thing to be more declarative i post here the definition not code.

    Read the article

  • Eliminate delay between looping XNA songs?

    - by Stephane Beniak
    I'm making a game with XNA and trying to get some background music to loop correctly. Because the file is an MP3 of about 30 seconds in length, I instantiated it as a Song. I want it to loop perfectly, but even when I set the MediaPlayer.IsRepeating property to true, there is always a delay of about one second before the song starts up again. Is there any way to eliminate this delay such that the song loops instantly, so it can play more fluently?

    Read the article

  • Use of Business Parameters in BPM12c

    - by Abhishek Mittal-Oracle
    With the release of BPM12c, a new feature to use Business Parameters is introduced through which we can define a business parameter which will behave as a global variable which can be used within BPM project. Business Administrator can be the one responsible to modify the business parameters value dynamically at run-time which may bring change in BPM process flow where it is used.This feature was a part of BPM10g product and was extensively used. In BPM11g, this feature is not present currently.Business Parameters can be defined in 2 ways:1. Using Jdev to define business parameters, and 2. Using BPM workspace to define business parameters.It is important to note that business parameters need to be mapped with a valid organisation unit defined in a BPM project. If the same is not handled, exceptions like 'BPM-70702' will be thrown by BPM Engine. This is because business parameters work along with organisation defined in a BPM project.At the same time, we can use same business parameter across different organisation units with different values. Business Parameters in BPM12c has this capability to handle multiple values with different organisation units defined in a single BPM project. This enables business to re-use same business parameters defined in a BPM project across different organisations.Business parameters can be defined using the below data types:1. int2. string 3. boolean4. double While defining an business parameter, it is mandatory to provide a default value. Below are the steps to define a business parameter in Jdev: Step 1:  Open 'Organization' and click on 'Business Parameters' tab.Step 2:  Click on '+' button.Step 3: Add business parameter name, type and provide default value(mandatory).Step 4: Click on 'OK' button.Step 5: Business parameter is defined. Below are the steps to define a business parameter in BPM workspace: Step 1: Login to BPM workspace using admin-username and password.Step 2: Click on 'Administration' on the right top side of workspace.Step 3: Click on 'Business Parameters' in the left navigation panel under 'Organization'. Step 4:  Click on '+' button.Step 5: Add business parameter name, type and provide default value(mandatory).Step 6: Click on 'OK' button.Step 7: Business parameter is defined. Note: As told earlier in the blog, it is necessary to define and map a valid organization ID with predefined variable 'organizationalUnit' under data associations in an BPM process before the business parameter is used. I have created one sample PoC demonstrating the use of Business Parameters in BPM12c and it can be found here.

    Read the article

  • Getting Dynamic in SSIS Queries

    - by ejohnson2010
    When you start working with SQL Server and SSIS, it isn’t long before you find yourself wishing you could change bits of SQL queries dynamically. Most commonly, I see people that want to change the date portion of a query so that you can limit your query to the last 30 days, for example. This can be done using a combination of expressions and variables. I will do this in two parts, first I will build a variable that will always contain the 1 st day of the previous month and then I will dynamically...(read more)

    Read the article

  • Anatomy of a .NET Assembly - Custom attribute encoding

    - by Simon Cooper
    In my previous post, I covered how field, method, and other types of signatures are encoded in a .NET assembly. Custom attribute signatures differ quite a bit from these, which consequently affects attribute specifications in C#. Custom attribute specifications In C#, you can apply a custom attribute to a type or type member, specifying a constructor as well as the values of fields or properties on the attribute type: public class ExampleAttribute : Attribute { public ExampleAttribute(int ctorArg1, string ctorArg2) { ... } public Type ExampleType { get; set; } } [Example(5, "6", ExampleType = typeof(string))] public class C { ... } How does this specification actually get encoded and stored in an assembly? Specification blob values Custom attribute specification signatures use the same building blocks as other types of signatures; the ELEMENT_TYPE structure. However, they significantly differ from other types of signatures, in that the actual parameter values need to be stored along with type information. There are two types of specification arguments in a signature blob; fixed args and named args. Fixed args are the arguments to the attribute type constructor, named arguments are specified after the constructor arguments to provide a value to a field or property on the constructed attribute type (PropertyName = propValue) Values in an attribute blob are limited to one of the basic types (one of the number types, character, or boolean), a reference to a type, an enum (which, in .NET, has to use one of the integer types as a base representation), or arrays of any of those. Enums and the basic types are easy to store in a blob - you simply store the binary representation. Strings are stored starting with a compressed integer indicating the length of the string, followed by the UTF8 characters. Array values start with an integer indicating the number of elements in the array, then the item values concatentated together. Rather than using a coded token, Type values are stored using a string representing the type name and fully qualified assembly name (for example, MyNs.MyType, MyAssembly, Version=1.0.0.0, Culture=neutral, PublicKeyToken=0123456789abcdef). If the type is in the current assembly or mscorlib then just the type name can be used. This is probably done to prevent direct references between assemblies solely because of attribute specification arguments; assemblies can be loaded in the reflection-only context and attribute arguments still processed, without loading the entire assembly. Fixed and named arguments Each entry in the CustomAttribute metadata table contains a reference to the object the attribute is applied to, the attribute constructor, and the specification blob. The number and type of arguments to the constructor (the fixed args) can be worked out by the method signature referenced by the attribute constructor, and so the fixed args can simply be concatenated together in the blob without any extra type information. Named args are different. These specify the value to assign to a field or property once the attribute type has been constructed. In the CLR, fields and properties can be overloaded just on their type; different fields and properties can have the same name. Therefore, to uniquely identify a field or property you need: Whether it's a field or property (indicated using byte values 0x53 and 0x54, respectively) The field or property type The field or property name After the fixed arg values is a 2-byte number specifying the number of named args in the blob. Each named argument has the above information concatenated together, mostly using the basic ELEMENT_TYPE values, in the same way as a method or field signature. A Type argument is represented using the byte 0x50, and an enum argument is represented using the byte 0x55 followed by a string specifying the name and assembly of the enum type. The named argument property information is followed by the argument value, using the same encoding as fixed args. Boxed objects This would be all very well, were it not for object and object[]. Arguments and properties of type object allow a value of any allowed argument type to be specified. As a result, more information needs to be specified in the blob to interpret the argument bytes as the correct type. So, the argument value is simple prepended with the type of the value by specifying the ELEMENT_TYPE or name of the enum the value represents. For named arguments, a field or property of type object is represented using the byte 0x51, with the actual type specified in the argument value. Some examples... All property signatures start with the 2-byte value 0x0001. Similar to my previous post in the series, names in capitals correspond to a particular byte value in the ELEMENT_TYPE structure. For strings, I'll simply give the string value, rather than the length and UTF8 encoding in the actual blob. I'll be using the following enum and attribute types to demonstrate specification encodings: class AttrAttribute : Attribute { public AttrAttribute() {} public AttrAttribute(Type[] tArray) {} public AttrAttribute(object o) {} public AttrAttribute(MyEnum e) {} public AttrAttribute(ushort x, int y) {} public AttrAttribute(string str, Type type1, Type type2) {} public int Prop1 { get; set; } public object Prop2 { get; set; } public object[] ObjectArray; } enum MyEnum : int { Val1 = 1, Val2 = 2 } Now, some examples: Here, the the specification binds to the (ushort, int) attribute constructor, with fixed args only. The specification blob starts off with a prolog, followed by the two constructor arguments, then the number of named arguments (zero): [Attr(42, 84)] 0x0001 0x002a 0x00000054 0x0000 An example of string and type encoding: [Attr("MyString", typeof(Array), typeof(System.Windows.Forms.Form))] 0x0001 "MyString" "System.Array" "System.Windows.Forms.Form, System.Windows.Forms, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" 0x0000 As you can see, the full assembly specification of a type is only needed if the type isn't in the current assembly or mscorlib. Note, however, that the C# compiler currently chooses to fully-qualify mscorlib types anyway. An object argument (this binds to the object attribute constructor), and two named arguments (a null string is represented by 0xff and the empty string by 0x00) [Attr((ushort)40, Prop1 = 12, Prop2 = "")] 0x0001 U2 0x0028 0x0002 0x54 I4 "Prop1" 0x0000000c 0x54 0x51 "Prop2" STRING 0x00 Right, more complicated now. A type array as a fixed argument: [Attr(new[] { typeof(string), typeof(object) })] 0x0001 0x00000002 // the number of elements "System.String" "System.Object" 0x0000 An enum value, which is simply represented using the underlying value. The CLR works out that it's an enum using information in the attribute constructor signature: [Attr(MyEnum.Val1)] 0x0001 0x00000001 0x0000 And finally, a null array, and an object array as a named argument: [Attr((Type[])null, ObjectArray = new object[] { (byte)2, typeof(decimal), null, MyEnum.Val2 })] 0x0001 0xffffffff 0x0001 0x53 SZARRAY 0x51 "ObjectArray" 0x00000004 U1 0x02 0x50 "System.Decimal" STRING 0xff 0x55 "MyEnum" 0x00000002 As you'll notice, a null object is encoded as a null string value, and a null array is represented using a length of -1 (0xffffffff). How does this affect C#? So, we can now explain why the limits on attribute arguments are so strict in C#. Attribute specification blobs are limited to basic numbers, enums, types, and arrays. As you can see, this is because the raw CLR encoding can only accommodate those types. Special byte patterns have to be used to indicate object, string, Type, or enum values in named arguments; you can't specify an arbitary object type, as there isn't a generalised way of encoding the resulting value in the specification blob. In particular, decimal values can't be encoded, as it isn't a 'built-in' CLR type that has a native representation (you'll notice that decimal constants in C# programs are compiled as several integer arguments to DecimalConstantAttribute). Jagged arrays also aren't natively supported, although you can get around it by using an array as a value to an object argument: [Attr(new object[] { new object[] { new Type[] { typeof(string) } }, 42 })] Finally... Phew! That was a bit longer than I thought it would be. Custom attribute encodings are complicated! Hopefully this series has been an informative look at what exactly goes on inside a .NET assembly. In the next blog posts, I'll be carrying on with the 'Inside Red Gate' series.

    Read the article

  • S#arp Architecture 1.5.1 released

    - by AlecWhittington
    So far we have had some great success with the 1.5 release of S#arp Architecture, but there were a few issues that made it into the release that needed to be corrected. These issues were: Unnecessary assemblies in the root /bin and SolutionItemsContainer folders Nant folder removed from root /bin - this was causing issues with the build scripts that come with the project if the user did not have Nant installed and available via a path variable VS 2010 template - the CrudScaffoldingForEnterpriseApp...(read more)

    Read the article

  • Bash Printing, how to

    - by Uncle Leo
    Wrote a script in bash. Now im need to bring information into a text file,for example in PostScript, but there is one problem. I need to have a certain length of string in characters, and stretch or shrink the string on the entire width of the page layout. I have tried a2ps and enscript, but there is no such option. Please tell me the solution to this problem, maybe in Ghostscript. Thanks in advance!

    Read the article

  • Finding the XPath with the node name

    - by julien.schneider(at)oracle.com
    A function that i find missing is to get the Xpath expression of a node. For example, suppose i only know the node name <theNode>, i'd like to get its complete path /Where/is/theNode.   Using this rather simple Xquery you can easily get the path to your node. declare namespace orcl = "http://www.oracle.com/weblogic_soa_and_more"; declare function orcl:findXpath($path as element()*) as xs:string { if(local-name($path/..)='') then local-name($path) else concat(orcl:findXpath($path/..),'/',local-name($path)) }; declare function orcl:PathFinder($inputRecord as element(), $path as element()) as element(*) { { for $index in $inputRecord//*[local-name()=$path/text()] return orcl:findXpath($index) } }; declare variable $inputRecord as element() external; declare variable $path as element() external; orcl:PathFinder($inputRecord, $path)   With a path         <myNode>nodeName</myNode>  and a message         <node1><node2><nodeName>test</nodeName></node2></node1>  the result will be         node1/node2/nodeName   This is particularly useful when you use the Validate action of OSB because Validate only returns the xml node which is in error and not the full location itself. The following OSB project reuses this Xquery to reformat the result of the Validate Action. Just send an invalid xml like <myElem http://blogs.oracle.com/weblogic_soa_and_more"http://blogs.oracle.com/weblogic_soa_and_more">      <mySubElem>      </mySubElem></myElem>   you'll get as nice <MessageIsNotValid> <ErrorDetail  nbr="1"> <dataElementhPath>Body/myElem/mySubElem</dataElementhPath> <message> Expected element 'Subelem1@http://blogs.oracle.com/weblogic_soa_and_more' before the end of the content in element mySubElem@http://blogs.oracle.com/weblogic_soa_and_more </message> </ErrorDetail> </MessageIsNotValid>   Download the OSB project : sbconfig_xpath.jar   Enjoy.            

    Read the article

  • Collision detection - Smooth wall sliding, no bounce effect

    - by Joey
    I'm working on a basic collision detection system that provides point - OBB collision detection. I have around 200 cubes in my environment and I check (for now) each of them in turn and see if it collides. If it does I return the colliding face's normal, save the old player position and do some trigonometry to return a new player position for my wall sliding. edit I'll define my meaning of wall sliding: If a player walks in a vertical slope and has a slight horizontal rotation to the left or the right and keeps walking forward in the wall the player should slide a little to the right/left while continually walking towards the wall till he left the wall. Thus, sliding along the wall. Everything works fine and with multiple objects as well but I still have one problem I can't seem to figure out: smooth wall sliding. In my current implementation sliding along the walls make my player bounce like a mad man (especially noticable with gravity on and moving forward). I have a velocity/direction vector, a normal vector from the collided plane and an old and new player position. First I negate the normal vector and get my new velocity vector by substracting the inverted normal from my direction vector (which is the vector to slide along the wall) and I add this vector to my new Player position and recalculate the direction vector (in case I have multiple collisions). I know I am missing some step but I can't seem to figure it out. Here is my code for the collision detection (run every frame): Vector direction; Vector newPos(camera.GetOriginX(), camera.GetOriginY(), camera.GetOriginZ()); direction = newPos - oldPos; // Direction vector // Check for collision with new position for(int i = 0; i < NUM_OBJECTS; i++) { Vector normal = objects[i].CheckCollision(newPos.x, newPos.y, newPos.z, direction.x, direction.y, direction.z); if(normal != Vector::NullVector()) { // Get inverse normal (direction STRAIGHT INTO wall) Vector invNormal = normal.Negative(); Vector wallDir = direction - invNormal; // We know INTO wall, and DIRECTION to wall. Substract these and you got slide WALL direction newPos = oldPos + wallDir; direction = newPos - oldPos; } } Any help would be greatly appreciated! FIX I eventually got things up and running how they should thanks to Krazy, I'll post the updated code listing in case someone else comes upon this problem! for(int i = 0; i < NUM_OBJECTS; i++) { Vector normal = objects[i].CheckCollision(newPos.x, newPos.y, newPos.z, direction.x, direction.y, direction.z); if(normal != Vector::NullVector()) { Vector invNormal = normal.Negative(); invNormal = invNormal * (direction * normal).Length(); // Change normal to direction's length and normal's axis Vector wallDir = direction - invNormal; newPos = oldPos + wallDir; direction = newPos - oldPos; } }

    Read the article

  • XNA 2D line-of-sight check

    - by bionicOnion
    I'm working on a top-down shooter in XNA, and I need to implement line-of-sight checking. I've come up with a solution that seems to work, but I get the nagging feeling that it won't be efficient enough to do every frame for multiple calls (the game already hiccups slightly at about 10 calls per frame). The code is below, but my general plan was to create a series of rectangles with a width and height of zero to act as points along the sight line, and then check to see if any of these rectangles intersects a ClutterObject (an interface I defined for things like walls or other obstacles) after first screening for any that can't possibly be in the line of sight (i.e. behind the viewer) or are too far away (a concession I made for efficiency). public static bool LOSCheck(Vector2 pos1, Vector2 pos2) { Vector2 currentPos = pos1; Vector2 perMove = (pos2 - pos1); perMove.Normalize(); HashSet<ClutterObject> clutter = new HashSet<ClutterObject>(); foreach (Room r in map.GetRooms()) { if (r != null) { foreach (ClutterObject c in r.GetClutter()) { if (c != null &&!(c.GetRectangle().X * perMove.X < 0) && !(c.GetRectangle().Y * perMove.Y < 0)) { Vector2 cVector = new Vector2(c.GetRectangle().X, c.GetRectangle().Y); if ((cVector - pos1).Length() < 1500) clutter.Add(c); } } } } while (currentPos != pos2 && ((currentPos - pos1).Length() < 1500)) { Rectangle position = new Rectangle((int)currentPos.X, (int)currentPos.Y, 0, 0); foreach (ClutterObject c in clutter) { if (position.Intersects(c.GetRectangle())) return false; } currentPos += perMove; } return true; } I'm sure that there's a better way to do this (or at least a way to make this method more efficient), but I'm not too used to XNA yet, so I figured it couldn't hurt to bring it here. At the very least, is there an efficient to determine which objects may be in front of the viewer with greater precision than the rather broad 90 degree window I've given myself?

    Read the article

  • Determining distribution of NULL values

    - by AaronBertrand
    Today on the twitter hash tag #sqlhelp, @leenux_tux asked: How can I figure out the percentage of fields that don't have data ? After further clarification, it turns out he is after what proportion of columns are NULL. Some folks suggested using a data profiling task in SSIS . There may be some validity to that, but I'm still a fan of sticking to T-SQL when I can, so here is how I would approach it: Create a #temp table or @table variable to store the results. Create a cursor that loops through all...(read more)

    Read the article

  • Naming Convention for Dedicated Thread Locking objects

    - by Chris Sinclair
    A relatively minor question, but I haven't been able to find official documentation or even blog opinion/discussions on it. Simply put: when I have a private object whose sole purpose is to serve for private lock, what do I name that object? class MyClass { private object LockingObject = new object(); void DoSomething() { lock(LockingObject) { //do something } } } What should we name LockingObject here? Also consider not just the name of the variable but how it looks in-code when locking. I've seen various examples, but seemingly no solid go-to advice: Plenty of usages of SyncRoot (and variations such as _syncRoot). Code Sample: lock(SyncRoot), lock(_syncRoot) This appears to be influenced by VB's equivalent SyncLock statement, the SyncRoot property that exists on some of the ICollection classes and part of some kind of SyncRoot design pattern (which arguably is a bad idea) Being in a C# context, not sure if I'd want to have a VBish naming. Even worse, in VB naming the variable the same as the keyword. Not sure if this would be a source of confusion or not. thisLock and lockThis from the MSDN articles: C# lock Statement, VB SyncLock Statement Code Sample: lock(thisLock), lock(lockThis) Not sure if these were named minimally purely for the example or not Kind of weird if we're using this within a static class/method. Several usages of PadLock (of varying casing) Code Sample: lock(PadLock), lock(padlock) Not bad, but my only beef is it unsurprisingly invokes the image of a physical "padlock" which I tend to not associate with the abstract threading concept. Naming the lock based on what it's intending to lock Code Sample: lock(messagesLock), lock(DictionaryLock), lock(commandQueueLock) In the VB SyncRoot MSDN page example, it has a simpleMessageList example with a private messagesLock object I don't think it's a good idea to name the lock against the type you're locking around ("DictionaryLock") as that's an implementation detail that may change. I prefer naming around the concept/object you're locking ("messagesLock" or "commandQueueLock") Interestingly, I very rarely see this naming convention for locking objects in code samples online or on StackOverflow. Question: What's your opinion generally about naming private locking objects? Recently, I've started naming them ThreadLock (so kinda like option 3), but I'm finding myself questioning that name. I'm frequently using this locking pattern (in the code sample provided above) throughout my applications so I thought it might make sense to get a more professional opinion/discussion about a solid naming convention for them. Thanks!

    Read the article

  • C# Performance Pitfall – Interop Scenarios Change the Rules

    - by Reed
    C# and .NET, overall, really do have fantastic performance in my opinion.  That being said, the performance characteristics dramatically differ from native programming, and take some relearning if you’re used to doing performance optimization in most other languages, especially C, C++, and similar.  However, there are times when revisiting tricks learned in native code play a critical role in performance optimization in C#. I recently ran across a nasty scenario that illustrated to me how dangerous following any fixed rules for optimization can be… The rules in C# when optimizing code are very different than C or C++.  Often, they’re exactly backwards.  For example, in C and C++, lifting a variable out of loops in order to avoid memory allocations often can have huge advantages.  If some function within a call graph is allocating memory dynamically, and that gets called in a loop, it can dramatically slow down a routine. This can be a tricky bottleneck to track down, even with a profiler.  Looking at the memory allocation graph is usually the key for spotting this routine, as it’s often “hidden” deep in call graph.  For example, while optimizing some of my scientific routines, I ran into a situation where I had a loop similar to: for (i=0; i<numberToProcess; ++i) { // Do some work ProcessElement(element[i]); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This loop was at a fairly high level in the call graph, and often could take many hours to complete, depending on the input data.  As such, any performance optimization we could achieve would be greatly appreciated by our users. After a fair bit of profiling, I noticed that a couple of function calls down the call graph (inside of ProcessElement), there was some code that effectively was doing: // Allocate some data required DataStructure* data = new DataStructure(num); // Call into a subroutine that passed around and manipulated this data highly CallSubroutine(data); // Read and use some values from here double values = data->Foo; // Cleanup delete data; // ... return bar; Normally, if “DataStructure” was a simple data type, I could just allocate it on the stack.  However, it’s constructor, internally, allocated it’s own memory using new, so this wouldn’t eliminate the problem.  In this case, however, I could change the call signatures to allow the pointer to the data structure to be passed into ProcessElement and through the call graph, allowing the inner routine to reuse the same “data” memory instead of allocating.  At the highest level, my code effectively changed to something like: DataStructure* data = new DataStructure(numberToProcess); for (i=0; i<numberToProcess; ++i) { // Do some work ProcessElement(element[i], data); } delete data; Granted, this dramatically reduced the maintainability of the code, so it wasn’t something I wanted to do unless there was a significant benefit.  In this case, after profiling the new version, I found that it increased the overall performance dramatically – my main test case went from 35 minutes runtime down to 21 minutes.  This was such a significant improvement, I felt it was worth the reduction in maintainability. In C and C++, it’s generally a good idea (for performance) to: Reduce the number of memory allocations as much as possible, Use fewer, larger memory allocations instead of many smaller ones, and Allocate as high up the call stack as possible, and reuse memory I’ve seen many people try to make similar optimizations in C# code.  For good or bad, this is typically not a good idea.  The garbage collector in .NET completely changes the rules here. In C#, reallocating memory in a loop is not always a bad idea.  In this scenario, for example, I may have been much better off leaving the original code alone.  The reason for this is the garbage collector.  The GC in .NET is incredibly effective, and leaving the allocation deep inside the call stack has some huge advantages.  First and foremost, it tends to make the code more maintainable – passing around object references tends to couple the methods together more than necessary, and overall increase the complexity of the code.  This is something that should be avoided unless there is a significant reason.  Second, (unlike C and C++) memory allocation of a single object in C# is normally cheap and fast.  Finally, and most critically, there is a large advantage to having short lived objects.  If you lift a variable out of the loop and reuse the memory, its much more likely that object will get promoted to Gen1 (or worse, Gen2).  This can cause expensive compaction operations to be required, and also lead to (at least temporary) memory fragmentation as well as more costly collections later. As such, I’ve found that it’s often (though not always) faster to leave memory allocations where you’d naturally place them – deep inside of the call graph, inside of the loops.  This causes the objects to stay very short lived, which in turn increases the efficiency of the garbage collector, and can dramatically improve the overall performance of the routine as a whole. In C#, I tend to: Keep variable declarations in the tightest scope possible Declare and allocate objects at usage While this tends to cause some of the same goals (reducing unnecessary allocations, etc), the goal here is a bit different – it’s about keeping the objects rooted for as little time as possible in order to (attempt) to keep them completely in Gen0, or worst case, Gen1.  It also has the huge advantage of keeping the code very maintainable – objects are used and “released” as soon as possible, which keeps the code very clean.  It does, however, often have the side effect of causing more allocations to occur, but keeping the objects rooted for a much shorter time. Now – nowhere here am I suggesting that these rules are hard, fast rules that are always true.  That being said, my time spent optimizing over the years encourages me to naturally write code that follows the above guidelines, then profile and adjust as necessary.  In my current project, however, I ran across one of those nasty little pitfalls that’s something to keep in mind – interop changes the rules. In this case, I was dealing with an API that, internally, used some COM objects.  In this case, these COM objects were leading to native allocations (most likely C++) occurring in a loop deep in my call graph.  Even though I was writing nice, clean managed code, the normal managed code rules for performance no longer apply.  After profiling to find the bottleneck in my code, I realized that my inner loop, a innocuous looking block of C# code, was effectively causing a set of native memory allocations in every iteration.  This required going back to a “native programming” mindset for optimization.  Lifting these variables and reusing them took a 1:10 routine down to 0:20 – again, a very worthwhile improvement. Overall, the lessons here are: Always profile if you suspect a performance problem – don’t assume any rule is correct, or any code is efficient just because it looks like it should be Remember to check memory allocations when profiling, not just CPU cycles Interop scenarios often cause managed code to act very differently than “normal” managed code. Native code can be hidden very cleverly inside of managed wrappers

    Read the article

  • Beware of const members

    - by nmarun
    I happened to learn a new thing about const today and how one needs to be careful with its usage. Let’s say I have a third-party assembly ‘ConstVsReadonlyLib’ with a class named ConstSideEffect.cs: 1: public class ConstSideEffect 2: { 3: public static readonly int StartValue = 10; 4: public const int EndValue = 20; 5: } In my project, I reference the above assembly as follows: 1: static void Main(string[] args) 2: { 3: for (int i = ConstSideEffect.StartValue; i < ConstSideEffect.EndValue; i++) 4: { 5: Console.WriteLine(i); 6: } 7: Console.ReadLine(); 8: } You’ll see values 10 through 19 as expected. Now, let’s say I receive a new version of the ConstVsReadonlyLib. 1: public class ConstSideEffect 2: { 3: public static readonly int StartValue = 5; 4: public const int EndValue = 30; 5: } If I just drop this new assembly in the bin folder and run the application, without rebuilding my console application, my thinking was that the output would be from 5 to 29. Of course I was wrong… if not you’d not be reading this blog. The actual output is from 5 through 19. The reason is due to the behavior of const and readonly members. To begin with, const is the compile-time constant and readonly is a runtime constant. Next, when you compile the code, a compile-time constant member is replaced with the value of the constant in the code. But, the IL generated when you reference a read-only constant, references the readonly variable, not its value. So, the IL version of the Main method, after compilation actually looks something like: 1: static void Main(string[] args) 2: { 3: for (int i = ConstSideEffect.StartValue; i < 20; i++) 4: { 5: Console.WriteLine(i); 6: } 7: Console.ReadLine(); 8: } I’m no expert with this IL thingi, but when I look at the disassembled code of the exe file (using IL Disassembler), I see the following: I see our readonly member still being referenced by the variable name (ConstVsReadonlyLib.ConstSideEffect::StartValue) in line 0001. Then there’s the Console.WriteLine in line 000b and finally, see the value of 20 in line 0017. This, I’m pretty sure is our const member being replaced by its value which marks the upper bound of the ‘for’ loop. Now you know why the output was from 5 through 19. This definitely is a side-effect of having const members and one needs to be aware of it. While we’re here, I’d like to add a few other points about const and readonly members: const is slightly faster, but is less flexible readonly cannot be declared within a method scope const can be used only on primitive types (numbers and strings) Just wanted to share this before going to bed!

    Read the article

  • installing ntop in ubuntu 12.4

    - by George Ninan
    When i try to start the ntop i get the following error - Secure Connection Failed An error occurred during a connection to 192.168.166.229:3000. SSL received a record that exceeded the maximum permissible length. (Error code: ssl_error_rx_record_too_long) The page you are trying to view cannot be shown because the authenticity of the received data could not be verified. Please contact the website owners to inform them of this problem. Alternatively, use the command found in the help menu to report this broken site. Please advice

    Read the article

  • Hostapd - WLAN as AP

    - by BBK
    I'm trying to start hostapd but without success. I'm using Headless Ubuntu 11.10 oneiric 3.0.0-16-server x86_64. WLAN driver is rt2800usb and my wireless nic card TP-Link TL-WN727N supports AP mode as shows below: us0# ifconfig wlan0 wlan0 Link encap:Ethernet HWaddr 00:27:19:be:cd:b6 UP BROADCAST MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B) us0# lsusb Bus 003 Device 003: ID 148f:3070 Ralink Technology, Corp. RT2870/RT3070 Wireless Adapter us0# lshw -C network *-network:3 description: Wireless interface physical id: 4 bus info: usb@3:2 logical name: wlan0 serial: 00:27:19:be:cd:b6 capabilities: ethernet physical wireless configuration: broadcast=yes driver=rt2800usb driverversion=3.0.0-16-server firmware=0.29 link=no multicast=yes wireless=IEEE 802.11bgn us0# hostapd /etc/hostapd/hostapd.conf Configuration file: /etc/hostapd/hostapd.conf Could not read interface wlan0 # The int flags: No such device nl80211 driver initialization failed. ELOOP: remaining socket: sock=4 eloop_data=0xd3e4a0 user_data=0xd3ecc0 handler=0x433880 ELOOP: remaining socket: sock=6 eloop_data=0xd411f0 user_data=(nil) handler=0x43cc10 us0# cat /etc/hostapd/hostapd.conf ssid=Home interface=wlan0 # The interface name of the card #driver=rt2800usb driver=nl80211 macaddr_acl=0 ieee80211n=1 channel=1 hw_mode=g auth_algs=1 ignore_broadcast_ssid=0 wpa=2 wpa_passphrase=88888888 wpa_key_mgmt=WPA-PSK wpa_pairwise=TKIP rsn_pairwise=CCMP us0# iw list Wiphy phy0 Band 1: Capabilities: 0x172 HT20/HT40 Static SM Power Save RX Greenfield RX HT20 SGI RX HT40 SGI RX STBC 1-stream Max AMSDU length: 7935 bytes No DSSS/CCK HT40 Maximum RX AMPDU length 65535 bytes (exponent: 0x003) Minimum RX AMPDU time spacing: 2 usec (0x04) HT RX MCS rate indexes supported: 0-7, 32 TX unequal modulation not supported HT TX Max spatial streams: 1 HT TX MCS rate indexes supported may differ Frequencies: * 2412 MHz [1] (20.0 dBm) * 2417 MHz [2] (20.0 dBm) * 2422 MHz [3] (20.0 dBm) * 2427 MHz [4] (20.0 dBm) * 2432 MHz [5] (20.0 dBm) * 2437 MHz [6] (20.0 dBm) * 2442 MHz [7] (20.0 dBm) * 2447 MHz [8] (20.0 dBm) * 2452 MHz [9] (20.0 dBm) * 2457 MHz [10] (20.0 dBm) * 2462 MHz [11] (20.0 dBm) * 2467 MHz [12] (20.0 dBm) (passive scanning, no IBSS) * 2472 MHz [13] (20.0 dBm) (passive scanning, no IBSS) * 2484 MHz [14] (20.0 dBm) (passive scanning, no IBSS) Bitrates (non-HT): * 1.0 Mbps * 2.0 Mbps (short preamble supported) * 5.5 Mbps (short preamble supported) * 11.0 Mbps (short preamble supported) * 6.0 Mbps * 9.0 Mbps * 12.0 Mbps * 18.0 Mbps * 24.0 Mbps * 36.0 Mbps * 48.0 Mbps * 54.0 Mbps max # scan SSIDs: 4 Supported interface modes: * IBSS * managed * AP * AP/VLAN * WDS * monitor * mesh point Supported commands: * new_interface * set_interface * new_key * new_beacon * new_station * new_mpath * set_mesh_params * set_bss * authenticate * associate * deauthenticate * disassociate * join_ibss * Unknown command (68) * Unknown command (55) * Unknown command (57) * Unknown command (59) * Unknown command (67) * set_wiphy_netns * Unknown command (65) * Unknown command (66) * connect * disconnect The question is: Why the hostapd not starting?

    Read the article

  • Per-vertex position/normal and per-index texture coordinate

    - by Boreal
    In my game, I have a mesh with a vertex buffer and index buffer up and running. The vertex buffer stores a Vector3 for the position and a Vector2 for the UV coordinate for each vertex. The index buffer is a list of ushorts. It works well, but I want to be able to use 3 discrete texture coordinates per triangle. I assume I have to create another vertex buffer, but how do I even use it? Here is my vertex/index buffer creation code: // vertices is a Vertex[] // indices is a ushort[] // VertexDefs stores the vertex size (sizeof(float) * 5) // vertex data numVertices = vertices.Length; DataStream data = new DataStream(VertexDefs.size * numVertices, true, true); data.WriteRange<Vertex>(vertices); data.Position = 0; // vertex buffer parameters BufferDescription vbDesc = new BufferDescription() { BindFlags = BindFlags.VertexBuffer, CpuAccessFlags = CpuAccessFlags.None, OptionFlags = ResourceOptionFlags.None, SizeInBytes = VertexDefs.size * numVertices, StructureByteStride = VertexDefs.size, Usage = ResourceUsage.Default }; // create vertex buffer vertexBuffer = new Buffer(Graphics.device, data, vbDesc); vertexBufferBinding = new VertexBufferBinding(vertexBuffer, VertexDefs.size, 0); data.Dispose(); // index data numIndices = indices.Length; data = new DataStream(sizeof(ushort) * numIndices, true, true); data.WriteRange<ushort>(indices); data.Position = 0; // index buffer parameters BufferDescription ibDesc = new BufferDescription() { BindFlags = BindFlags.IndexBuffer, CpuAccessFlags = CpuAccessFlags.None, OptionFlags = ResourceOptionFlags.None, SizeInBytes = sizeof(ushort) * numIndices, StructureByteStride = sizeof(ushort), Usage = ResourceUsage.Default }; // create index buffer indexBuffer = new Buffer(Graphics.device, data, ibDesc); data.Dispose(); Engine.Log(MessageType.Success, string.Format("Mesh created with {0} vertices and {1} indices", numVertices, numIndices)); And my drawing code: // ShaderEffect, ShaderTechnique, and ShaderPass all store effect data // e is of type ShaderEffect // get the technique ShaderTechnique t; if(!e.techniques.TryGetValue(techniqueName, out t)) return; // effect variables e.SetMatrix("worldView", worldView); e.SetMatrix("projection", projection); e.SetResource("diffuseMap", texture); e.SetSampler("textureSampler", sampler); // set per-mesh/technique settings Graphics.context.InputAssembler.SetVertexBuffers(0, vertexBufferBinding); Graphics.context.InputAssembler.SetIndexBuffer(indexBuffer, SlimDX.DXGI.Format.R16_UInt, 0); Graphics.context.PixelShader.SetSampler(sampler, 0); // render for each pass foreach(ShaderPass p in t.passes) { Graphics.context.InputAssembler.InputLayout = p.layout; p.pass.Apply(Graphics.context); Graphics.context.DrawIndexed(numIndices, 0, 0); } How can I do this?

    Read the article

  • XNA: Networking gone totally out of sync

    - by MesserChups
    I'm creating a multiplayer interface for a game in 2D some of my friends made, and I'm stuck with a huge latency or sync problem. I started by adapting my game to the msdn xna network tutorial and right now when I join a SystemLink network session (1 host on PC and 1 client on Xbox) I can move two players, everything is ok, but few minutes later the two machines start being totally out of synchronization. When I move one player it takes 10 or 20 seconds (increasing with TIME) to take effect on the second machine. I've tried to : Create a thread which calls NetworkSession.Update() continuously as suggested on this forum, didn't worked. Call the Send() method one frame on 10, and the receive() method at each frame, didn't worked either. I've cleaned my code, flushed all buffers at each call and switched the host and client but the problem still remain... I hope you have a solution because I'm running out of ideas... Thanks SendPackets() code : protected override void SendPackets() { if ((NetworkSessionState)m_networkSession.SessionState == NetworkSessionState.Playing) //Only while playing { //Write in the packet manager m_packetWriter.Write(m_packetManager.PacketToSend.ToArray(), 0, (int)m_packetManager.PacketToSend.Position); m_packetManager.ResetPacket(); //flush //Sends the packets to all remote gamers foreach (NetworkGamer l_netGamer in m_networkSession.RemoteGamers) { if (m_packetWriter.Length != 0) { FirstLocalNetGamer.SendData(m_packetWriter, SendDataOptions.None, l_netGamer); } } m_packetWriter.Flush();//m m_packetWriter.Seek(0, 0); } } ReceivePackets() code : public override void ReceivePackets() { base.ReceivePackets(); if ((NetworkSessionState)m_networkSession.SessionState == NetworkSessionState.Playing) //Only while playing { if (m_networkSession.LocalGamers.Count > 0) //Verify that there's at least one local gamer { foreach (LocalNetworkGamer l_localGamer in m_networkSession.LocalGamers) { //every LocalNetworkGamer must read to flush their stream // Keep reading while packets are available. NetworkGamer l_oldSender = null; while (l_localGamer.IsDataAvailable) { // Read a single packet, even if we are the host, we must read to clear the queue NetworkGamer l_newSender; l_localGamer.ReceiveData(m_packetReader, out l_newSender); if (l_newSender != l_oldSender) { if ((!l_newSender.IsLocal) && (l_localGamer == FirstLocalNetGamer)) { //Parsing PacketReader to MemoryStream m_packetManager.Receive(new MemoryStream(m_packetReader.ReadBytes(m_packetReader.Length))); } } l_oldSender = l_newSender; m_packetReader.BaseStream.Flush(); m_packetReader.BaseStream.Seek(0, SeekOrigin.Begin); } } m_packetManager.ParsePackets(); } } }

    Read the article

  • What guidelines do you suggest for using Objective-C Properties?

    - by adarsha
    Objective-C 2.0 introduced properties. While I personally think properties are nice addition to the language, I have seen a trend of making every instance variable as a property. Apple sample codes are no exceptions to this. I believe this is against the spirit of OOP, and since it exposes a lot more implementation details of a class to the client than they need to know. What guidelines do you suggest for the proper usage properties in Objective C?

    Read the article

  • Deterministic/Consistent Unique Masking

    - by Dinesh Rajasekharan-Oracle
    One of the key requirements while masking data in large databases or multi database environment is to consistently mask some columns, i.e. for a given input the output should always be the same. At the same time the masked output should not be predictable. Deterministic masking also eliminates the need to spend enormous amount of time spent in identifying data relationships, i.e. parent and child relationships among columns defined in the application tables. In this blog post I will explain different ways of consistently masking the data across databases using Oracle Data Masking and Subsetting The readers of post should have minimal knowledge on Oracle Enterprise Manager 12c, Application Data Modeling, Data Masking concepts. For more information on these concepts, please refer to Oracle Data Masking and Subsetting document Oracle Data Masking and Subsetting 12c provides four methods using which users can consistently yet irreversibly mask their inputs. 1. Substitute 2. SQL Expression 3. Encrypt 4. User Defined Function SUBSTITUTE The substitute masking format replaces the original value with a value from a pre-created database table. As the method uses a hash based algorithm in the back end the mappings are consistent. For example consider DEPARTMENT_ID in EMPLOYEES table is replaced with FAKE_DEPARTMENT_ID from FAKE_TABLE. The substitute masking transformation that all occurrences of DEPARTMENT_ID say ‘101’ will be replaced with ‘502’ provided same substitution table and column is used , i.e. FAKE_TABLE.FAKE_DEPARTMENT_ID. The following screen shot shows the usage of the Substitute masking format with in a masking definition: Note that the uniqueness of the masked value depends on the number of columns being used in the substitution table i.e. if the original table contains 50000 unique values, then for the masked output to be unique and deterministic the substitution column should also contain 50000 unique values without which only consistency is maintained but not uniqueness. SQL EXPRESSION SQL Expression replaces an existing value with the output of a specified SQL Expression. For example while masking an EMPLOYEES table the EMAIL_ID of an employee has to be in the format EMPLOYEE’s [email protected] while FIRST_NAME and LAST_NAME are the actual column names of the EMPLOYEES table then the corresponding SQL Expression will look like %FIRST_NAME%||’.’||%LAST_NAME%||’@COMPANY.COM’. The advantage of this technique is that if you are masking FIRST_NAME and LAST_NAME of the EMPLOYEES table than the corresponding EMAIL ID will be replaced accordingly by the masking scripts. One of the interesting aspect’s of a SQL Expressions is that you can use sub SQL expressions, which means that you can write a nested SQL and use it as SQL Expression to address a complex masking business use cases. SQL Expression can also be used to consistently replace value with hashed value using Oracle’s PL/SQL function ORA_HASH. The following SQL Expression will help in the previous example for replacing the DEPARTMENT_IDs with a hashed number ORA_HASH (%DEPARTMENT_ID%, 1000) The following screen shot shows the usage of encrypt masking format with in the masking definition: ORA_HASH takes three arguments: 1. Expression which can be of any data type except LONG, LOB, User Defined Type [nested table type is allowed]. In the above example I used the Original value as expression. 2. Number of hash buckets which can be number between 0 and 4294967295. The default value is 4294967295. You can also co-relate the number of hash buckets to a range of numbers. In the above example above the bucket value is specified as 1000, so the end result will be a hashed number in between 0 and 1000. 3. Seed, can be any number which decides the consistency, i.e. for a given seed value the output will always be same. The default seed is 0. In the above SQL Expression a seed in not specified, so it to 0. If you have to use a non default seed then the function will look like. ORA_HASH (%DEPARTMENT_ID%, 1000, 1234 The uniqueness depends on the input and the number of hash buckets used. However as ORA_HASH uses a 32 bit algorithm, considering birthday paradox or pigeonhole principle there is a 0.5 probability of collision after 232-1 unique values. ENCRYPT Encrypt masking format uses a blend of 3DES encryption algorithm, hashing, and regular expression to produce a deterministic and unique masked output. The format of the masked output corresponds to the specified regular expression. As this technique uses a key [string] to encrypt the data, the same string can be used to decrypt the data. The key also acts as seed to maintain consistent outputs for a given input. The following screen shot shows the usage of encrypt masking format with in the masking definition: Regular Expressions may look complex for the first time users but you will soon realize that it’s a simple language. There are many resources in internet, oracle documentation, oracle learning library, my oracle support on writing a Regular Expressions, out of all the following My Oracle Support document helped me to get started with Regular Expressions: Oracle SQL Support for Regular Expressions[Video](Doc ID 1369668.1) USER DEFINED FUNCTION [UDF] User Defined Function or UDF provides flexibility for the users to code their own masking logic in PL/SQL, which can be called from masking Defintion. The standard format of an UDF in Oracle Data Masking and Subsetting is: Function udf_func (rowid varchar2, column_name varchar2, original_value varchar2) returns varchar2; Where • rowid is the row identifier of the column that needs to be masked • column_name is the name of the column that needs to be masked • original_value is the column value that needs to be masked You can achieve deterministic masking by using Oracle’s built in hash functions like, ORA_HASH, DBMS_CRYPTO.MD4, DBMS_CRYPTO.MD5, DBMS_UTILITY. GET_HASH_VALUE.Please refers to the Oracle Database Documentation for more information on the Oracle Hash functions. For example the following masking UDF generate deterministic unique hexadecimal values for a given string input: CREATE OR REPLACE FUNCTION RD_DUX (rid varchar2, column_name varchar2, orig_val VARCHAR2) RETURN VARCHAR2 DETERMINISTIC PARALLEL_ENABLE IS stext varchar2 (26); no_of_characters number(2); BEGIN no_of_characters:=6; stext:=substr(RAWTOHEX(DBMS_CRYPTO.HASH(UTL_RAW.CAST_TO_RAW(text),1)),0,no_of_characters); RETURN stext; END; The uniqueness depends on the input and length of the string and number of bits used by hash algorithm. In the above function MD4 hash is used [denoted by argument 1 in the DBMS_CRYPTO.HASH function which is a 128 bit algorithm which produces 2^128-1 unique hashed values , however this is limited by the length of the input string which is 6, so only 6^6 unique values will be generated. Also do not forget about the birthday paradox/pigeonhole principle mentioned earlier in this post. An another example is to consistently replace characters or numbers preserving the length and special characters as shown below: CREATE OR REPLACE FUNCTION RD_DUS(rid varchar2,column_name varchar2,orig_val VARCHAR2) RETURN VARCHAR2 DETERMINISTIC PARALLEL_ENABLE IS stext varchar2(26); BEGIN DBMS_RANDOM.SEED(orig_val); stext:=TRANSLATE(orig_val,'ABCDEFGHILKLMNOPQRSTUVWXYZ',DBMS_RANDOM.STRING('U',26)); stext:=TRANSLATE(stext,'abcdefghijklmnopqrstuvwxyz',DBMS_RANDOM.STRING('L',26)); stext:=TRANSLATE(stext,'0123456789',to_char(DBMS_RANDOM.VALUE(1,9))); stext:=REPLACE(stext,'.','0'); RETURN stext; END; The following screen shot shows the usage of an UDF with in a masking definition: To summarize, Oracle Data Masking and Subsetting helps you to consistently mask data across databases using one or all of the methods described in this post. It saves the hassle of identifying the parent-child relationships defined in the application table. Happy Masking

    Read the article

  • Stairway to XML: Level 2 - The XML Data Type

    Robert Sheldon describes SQL Server's XML Data Type, and shows that it is as easy to configure a variable, column, or parameter with the XML data type as configuring one of these objects with any other datatype Keep your database and application development in syncSQL Connect is a Visual Studio add-in that brings your databases into your solution. It then makes it easy to keep your database in sync, and commit to your existing source control system. Find out more.

    Read the article

  • Calling methods on Objects

    - by Mashael
    Let's say we have a class called 'Automobile' and we have an instance of that class called 'myCar'. I would like to ask why do we need to put the values that our methods return in a variable for the object? Why just don't we call the method? For example: Why should we write: string message = myCar.SpeedMessage(); Console.WriteLine(message); instead of: Console.WriteLine(myCar.SpeedMessage());

    Read the article

  • Package Installation Failure

    - by mahima
    Whenever I try to install any new package or upgrade a package, it fails with below mentioned error: Setting up install-info (4.13a.dfsg.1-5ubuntu1) ... /etc/environment: line 1: PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games: No such file or directory dpkg: error processing install-info (--configure): subprocess installed post-installation script returned error exit status 1 No apport report written because MaxReports is reached already Errors were encountered while processing: install-info E: Sub-process /usr/bin/dpkg returned an error code (1) I checked all the directories mentioned in PATH variable exists.

    Read the article

  • Oracle Tutor: *** CAUTION to Word .docx Users ***

    - by [email protected]
    Microsoft released a security update KB969604 for Office 2007 (around June 2009) This update causes document variables within Word docx files to be scrambled. This update might still be pushed out via Office 2007 updates DO NOT save files as docx using MS OFFICE 2007 until you apply the MS hotfix # 970942 available here If you are using Windows XP with Office 2003 or Office 2000 and have installed an older Office 2007 compatibility pack, documents saved as docx may also cause the scrambled document variables. Installing the 2007 compatibility pack published on 1/6/2010 (version 4) will prevent the document variables from becoming corrupt. Those on Windows 2000 may not be able to install the latest compatibility pack, or the compatibility pack may not function properly. This situation will hopefully be rectified in the coming months. What is a document variable? Document variables store data inside the document, invisible to the user. The Tutor software uses them when converting the document to HTML and when creating the flowchart, just to name a couple of uses. How will you know if a document's variables are scrambled? The difficulty in diagnosing the issue is that the symptoms can take myriad forms. There isn't a single error message or a single feature that one can point to and say, "test for the problem by doing this." The best clue about the error is seeing any kind of string in an error message that has garbage characters, question marks, xml code snippets, or just nonsense. Such as "Language ?????????????xlr;lwlerkjl could not be found." It is also possible to see the corrupted data in the footers of the Word docs. And, just because the footers look correct does not mean that the document variables are not corrupted. The corruption problem does not occur in every document variable in the document, just some of them. Often it is less than a quarter of them. What is the difference between docx files and doc files? Office 2007 uses Office Open XML formats with .docx and .docm filename extensions. - Docx is an Office Open XML word document. - Docm is a macro enabled Office Open XML document. This means the file structure behind the scenes is quite different from the binary file formats used prior to Office 2007 such as .doc, .dot, .xls, and .ppt. Solution Summary: For Windows XP and Word 2007: Install the hotfix, or save files as *.doc For Windows XP and Word 2000 and 2003: Install the latest compatibility pack or save files as *.doc For Windows 2000 with Word 2000 or 2003, do not use any compatibility pack, save files as *.doc Emily Chorba Principle Product Manager for Oracle Tutor

    Read the article

  • Low coupling and tight cohesion

    - by hidayat
    Of course it depends on the situation. But when a lower lever object or system communicate with an higher level system, should callbacks or events be preferred to keeping a pointer to higher level object? For example, we have a world class that has a member variable vector<monster> monsters. When the monster class is going to communicate with the world class, should I prefer using a callback function then or should I have a pointer to the world class inside the monster class?

    Read the article

< Previous Page | 258 259 260 261 262 263 264 265 266 267 268 269  | Next Page >