Search Results

Search found 19338 results on 774 pages for 'game loop'.

Page 375/774 | < Previous Page | 371 372 373 374 375 376 377 378 379 380 381 382  | Next Page >

  • Line Intersection from parametric equation

    - by Sidar
    I'm sure this question has been asked before. However, I'm trying to connect the dots by translating an equation on paper into an actual function. I thought It would be interesting to ask here instead on the Math sites (since it's going to be used for games anyway ). Let's say we have our vector equation : x = s + Lr; where x is the resulting vector, s our starting point/vector. L our parameter and r our direction vector. The ( not sure it's called like this, please correct me ) normal equation is : x.n = c; If we substitute our vector equation we get: (s+Lr).n = c. We now need to isolate L which results in L = (c - s.n) / (r.n); L needs to be 0 < L < 1. Meaning it needs to be between 0 and 1. My question: I want to know what L is so if I were to substitute L for both vector equation (or two lines) they should give me the same intersection coordinates. That is if they intersect. But I can't wrap my head around on how to use this for two lines and find the parameter that fits the intersection point. Could someone with a simple example show how I could translate this to a function/method?

    Read the article

  • How does this snippet of code create a ray direction vector?

    - by Isaac Waller
    In the Minecraft source code, this code is used to create a direction vector for a ray from pitch and yaw:' float f1 = MathHelper.cos(-rotationYaw * 0.01745329F - 3.141593F); float f3 = MathHelper.sin(-rotationYaw * 0.01745329F - 3.141593F); float f5 = -MathHelper.cos(-rotationPitch * 0.01745329F); float f7 = MathHelper.sin(-rotationPitch * 0.01745329F); return Vec3D.createVector(f3 * f5, f7, f1 * f5); I was wondering how it worked, and what is the constant 0.01745329F?

    Read the article

  • How can I replicate the look and limitations of the Super NES?

    - by Mikalichov
    I am looking to produce graphics with the same limitations / look that in the Super Nes era. I am specifically looking for graphics similar to Chrono Trigger / FF6. It would be a lot easier to do if I had an idea of the resolution / dpi I am supposed to use. I found that the technical specs for the SNES are: Progressive: 256 × 224, 512 × 224, 256 × 239, 512 × 239 Interlaced: 512 × 448, 512 × 478 But even by using these resolutions, it is pointless if I set it at 72dpi, as I will still have possibly very detailed graphics (that is the main thing, I don't want detailed graphics, I want to go pixelated). I figured it might be related to the sprite size limit, i.e.: Sprites can be 8 × 8, 16 × 16, 32 × 32, or 64 × 64 pixels, each using one of eight 16-color palettes and tiles from one of two blocks of 256 in VRAM. Up to 32 sprites and 34 8 × 8 sprite tiles may appear on any one line. This would work for sprites (characters, objects), but what about maps? Are they built entirely from 8x8 tiles? And then, at what resolution is the end result displayed? It might seem like I am giving the question and answers at the same time, but all of these are suppositions I am making, so could someone confirm or correct them?

    Read the article

  • OpenGL + Allegro. Moving from software drawing X Y to openGL is confusing

    - by Aaron
    Having a fair bit of trouble. I'm used to Allegro and drawing sprites on a bitmap buffer at X Y coords. Now I've started a test project with OpenGL and its weird. Basically, as far as I know, theirs many ways to draw stuff in OpenGL. At the moment, I think I'm creating a Quad? Whatever that is, and I think Ive given it a texture of a bitmap and them im drawing that: GLuint gl_image; bitmap = load_bitmap("cat.bmp", NULL); gl_image = allegro_gl_make_texture_ex(AGL_TEXTURE_MASKED, bitmap, GL_RGBA); glBindTexture(GL_TEXTURE_2D, gl_image); glBegin(GL_QUADS); glColor4ub(255, 255, 255, 255); glTexCoord2f(0, 0); glVertex3f(-0.5, 0.5, 0); glTexCoord2f(1, 0); glVertex3f(0.5, 0.5, 0); glTexCoord2f(1, 1); glVertex3f(0.5, -0.5, 0); glTexCoord2f(0, 1); glVertex3f(-0.5, -0.5, 0); glEnd(); So yeah. So I got a few questions: Is this the best way of drawing a sprite? Is it suitable? The big question: Can anyone help / Does anyone know any tutorials on this weird coordinate thing? If it even is that. It's vastly different from XY, but I want to learn it. I was thinking maybe I could learn how this weird positioning stuff works, and then write a function to try and translate it to X and Y coords. Thats about it. I'm still trying to figure it all out on my own but any contributions you guys can make would be greatly appreciated =D Thanks!

    Read the article

  • Infinite terrain shadows

    - by user35399
    I'm creating an infinite terrain engine, which generates the terrain either with fractals or noise. How can I make dynamic shadows for the sun on this terrain, if I don't know in advance what will be rendered in front of the sun. My terrain: The sun is the only light, it is directional, my terrain is generated on a plane which is positioned before the camera, frustum culled and fits the size of the viewing frustum. It is height mapped with generated noise texture, and using tessellation shaders on it. Video:http://www.youtube.com/watch?v=tk6yFwYusOs Dynamic shadows with the infinite terrain.

    Read the article

  • Is there a library that handles hexagon tiled 2D maps?

    - by Pete Mancini
    It would represent a map that is semi-square of arbitrary size. It would have a simple system for representation of the map coordinates such as 0101 (first column, 1st hex). I'd want the map to be able to tell me the distance between two points, and what other hexes lay between those two points as a list or array. I don't care as much about the language but c# or python would be ideal. Does one exist?

    Read the article

  • Working out of a vertex array for destrucible objects

    - by bobobobo
    I have diamond-shaped polygonal bullets. There are lots of them on the screen. I did not want to create a vertex array for each, so I packed them into a single vertex array and they're all drawn at once. | bullet1.xyz | bullet1.rgb | bullet2.xyz | bullet2.rgb This is great for performance.. there is struct Bullet { vector<Vector3f*> verts ; // pointers into the vertex buffer } ; This works fine, the bullets can move and do collision detection, all while having their data in one place. Except when a bullet "dies" Then you have to clear a slot, and pack all the bullets towards the beginning of the array. Is this a good approach to handling lots of low poly objects? How else would you do it?

    Read the article

  • OpenGL directional light creating black spots

    - by AnonymousDeveloper
    I probably ought to start by saying that I suspect the problem is that one of my vectors is not in the correct "space", but I don't know for sure. I am having a strange problem with a directional light. When I move the camera away from (0.0, 0.0, 0.0) it creates tiny black spots that grow larger as the distance increases. I apologize ahead of time for the length of the code. Vertex shader: #version 410 core in vec3 vf_normal; in vec3 vf_bitangent; in vec3 vf_tangent; in vec2 vf_textureCoordinates; in vec3 vf_vertex; out vec3 tc_normal; out vec3 tc_bitangent; out vec3 tc_tangent; out vec2 tc_textureCoordinates; out vec3 tc_vertex; uniform mat3 vf_m_normal; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform float vf_te_inner; uniform float vf_te_outer; void main() { tc_normal = vf_normal; tc_bitangent = vf_bitangent; tc_tangent = vf_tangent; tc_textureCoordinates = vf_textureCoordinates; tc_vertex = vf_vertex; gl_Position = vf_m_mvp * vec4(vf_vertex, 1.0); } Tessellation Control shader: #version 410 core layout (vertices = 3) out; in vec3 tc_normal[]; in vec3 tc_bitangent[]; in vec3 tc_tangent[]; in vec2 tc_textureCoordinates[]; in vec3 tc_vertex[]; out vec3 te_normal[]; out vec3 te_bitangent[]; out vec3 te_tangent[]; out vec2 te_textureCoordinates[]; out vec3 te_vertex[]; uniform float vf_te_inner; uniform float vf_te_outer; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; #define ID gl_InvocationID float getTessLevelInner(float distance0, float distance1) { float avgDistance = (distance0 + distance1) / 2.0; return clamp((vf_te_inner - avgDistance), 1.0, vf_te_inner); } float getTessLevelOuter(float distance0, float distance1) { float avgDistance = (distance0 + distance1) / 2.0; return clamp((vf_te_outer - avgDistance), 1.0, vf_te_outer); } void main() { te_normal[gl_InvocationID] = tc_normal[gl_InvocationID]; te_bitangent[gl_InvocationID] = tc_bitangent[gl_InvocationID]; te_tangent[gl_InvocationID] = tc_tangent[gl_InvocationID]; te_textureCoordinates[gl_InvocationID] = tc_textureCoordinates[gl_InvocationID]; te_vertex[gl_InvocationID] = tc_vertex[gl_InvocationID]; float eyeToVertexDistance0 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[0], 1.0)).xyz); float eyeToVertexDistance1 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[1], 1.0)).xyz); float eyeToVertexDistance2 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[2], 1.0)).xyz); gl_TessLevelOuter[0] = getTessLevelOuter(eyeToVertexDistance1, eyeToVertexDistance2); gl_TessLevelOuter[1] = getTessLevelOuter(eyeToVertexDistance2, eyeToVertexDistance0); gl_TessLevelOuter[2] = getTessLevelOuter(eyeToVertexDistance0, eyeToVertexDistance1); gl_TessLevelInner[0] = getTessLevelInner(eyeToVertexDistance2, eyeToVertexDistance0); } Tessellation Evaluation shader: #version 410 core layout (triangles, equal_spacing, cw) in; in vec3 te_normal[]; in vec3 te_bitangent[]; in vec3 te_tangent[]; in vec2 te_textureCoordinates[]; in vec3 te_vertex[]; out vec3 g_normal; out vec3 g_bitangent; out vec4 g_patchDistance; out vec3 g_tangent; out vec2 g_textureCoordinates; out vec3 g_vertex; uniform float vf_te_inner; uniform float vf_te_outer; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat3 vf_m_normal; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_displace; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; vec2 interpolate2D(vec2 v0, vec2 v1, vec2 v2) { return vec2(gl_TessCoord.x) * v0 + vec2(gl_TessCoord.y) * v1 + vec2(gl_TessCoord.z) * v2; } vec3 interpolate3D(vec3 v0, vec3 v1, vec3 v2) { return vec3(gl_TessCoord.x) * v0 + vec3(gl_TessCoord.y) * v1 + vec3(gl_TessCoord.z) * v2; } float amplify(float d, float scale, float offset) { d = scale * d + offset; d = clamp(d, 0, 1); d = 1 - exp2(-2*d*d); return d; } float getDisplacement(vec2 t0, vec2 t1, vec2 t2) { float displacement = 0.0; vec2 textureCoordinates = interpolate2D(t0, t1, t2); vec2 vector = ((t0 + t1 + t2) / 3.0); float sampleDistance = sqrt((vector.x * vector.x) + (vector.y * vector.y)); sampleDistance /= ((vf_te_inner + vf_te_outer) / 2.0); displacement += texture(vf_t_displace, textureCoordinates).x; displacement += texture(vf_t_displace, textureCoordinates + vec2(-sampleDistance, -sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2(-sampleDistance, sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2( sampleDistance, sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2( sampleDistance, -sampleDistance)).x; return (displacement / 5.0); } void main() { g_normal = normalize(interpolate3D(te_normal[0], te_normal[1], te_normal[2])); g_bitangent = normalize(interpolate3D(te_bitangent[0], te_bitangent[1], te_bitangent[2])); g_patchDistance = vec4(gl_TessCoord, (1.0 - gl_TessCoord.y)); g_tangent = normalize(interpolate3D(te_tangent[0], te_tangent[1], te_tangent[2])); g_textureCoordinates = interpolate2D(te_textureCoordinates[0], te_textureCoordinates[1], te_textureCoordinates[2]); g_vertex = interpolate3D(te_vertex[0], te_vertex[1], te_vertex[2]); float displacement = getDisplacement(te_textureCoordinates[0], te_textureCoordinates[1], te_textureCoordinates[2]); float d2 = min(min(min(g_patchDistance.x, g_patchDistance.y), g_patchDistance.z), g_patchDistance.w); d2 = amplify(d2, 50, -0.5); g_vertex += g_normal * displacement * 0.1 * d2; gl_Position = vf_m_mvp * vec4(g_vertex, 1.0); } Geometry shader: #version 410 core layout (triangles) in; layout (triangle_strip, max_vertices = 3) out; in vec3 g_normal[3]; in vec3 g_bitangent[3]; in vec4 g_patchDistance[3]; in vec3 g_tangent[3]; in vec2 g_textureCoordinates[3]; in vec3 g_vertex[3]; out vec3 f_tangent; out vec3 f_bitangent; out vec3 f_eyeDirection; out vec3 f_lightDirection; out vec3 f_normal; out vec4 f_patchDistance; out vec4 f_shadowCoordinates; out vec2 f_textureCoordinates; out vec3 f_vertex; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat3 vf_m_normal; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; void main() { int index = 0; while (index < 3) { vec3 vertexNormal_cameraspace = vf_m_normal * normalize(g_normal[index]); vec3 vertexTangent_cameraspace = vf_m_normal * normalize(f_tangent); vec3 vertexBitangent_cameraspace = vf_m_normal * normalize(f_bitangent); mat3 TBN = transpose(mat3( vertexTangent_cameraspace, vertexBitangent_cameraspace, vertexNormal_cameraspace )); vec3 eyeDirection = -(vf_m_view * vf_m_model * vec4(g_vertex[index], 1.0)).xyz; vec3 lightDirection = normalize(-(vf_m_view * vec4(vf_l_position, 1.0)).xyz); f_eyeDirection = TBN * eyeDirection; f_lightDirection = TBN * lightDirection; f_normal = normalize(g_normal[index]); f_patchDistance = g_patchDistance[index]; f_shadowCoordinates = vf_m_depthBias * vec4(g_vertex[index], 1.0); f_textureCoordinates = g_textureCoordinates[index]; f_vertex = (vf_m_model * vec4(g_vertex[index], 1.0)).xyz; gl_Position = gl_in[index].gl_Position; EmitVertex(); index ++; } EndPrimitive(); } Fragment shader: #version 410 core in vec3 f_bitangent; in vec3 f_eyeDirection; in vec3 f_lightDirection; in vec3 f_normal; in vec4 f_patchDistance; in vec4 f_shadowCoordinates; in vec3 f_tangent; in vec2 f_textureCoordinates; in vec3 f_vertex; out vec4 fragColor; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; vec2 poissonDisk[16] = vec2[]( vec2(-0.94201624, -0.39906216), vec2( 0.94558609, -0.76890725), vec2(-0.09418410, -0.92938870), vec2( 0.34495938, 0.29387760), vec2(-0.91588581, 0.45771432), vec2(-0.81544232, -0.87912464), vec2(-0.38277543, 0.27676845), vec2( 0.97484398, 0.75648379), vec2( 0.44323325, -0.97511554), vec2( 0.53742981, -0.47373420), vec2(-0.26496911, -0.41893023), vec2( 0.79197514, 0.19090188), vec2(-0.24188840, 0.99706507), vec2(-0.81409955, 0.91437590), vec2( 0.19984126, 0.78641367), vec2( 0.14383161, -0.14100790) ); float random(vec3 seed, int i) { vec4 seed4 = vec4(seed,i); float dot_product = dot(seed4, vec4(12.9898, 78.233, 45.164, 94.673)); return fract(sin(dot_product) * 43758.5453); } float amplify(float d, float scale, float offset) { d = scale * d + offset; d = clamp(d, 0, 1); d = 1 - exp2(-2.0 * d * d); return d; } void main() { vec3 lightColor = vf_l_color.xyz; float lightPower = vf_l_color.w; vec3 materialDiffuseColor = texture(vf_t_diffuse, f_textureCoordinates).xyz; vec3 materialAmbientColor = vec3(0.1, 0.1, 0.1) * materialDiffuseColor; vec3 materialSpecularColor = texture(vf_t_specular, f_textureCoordinates).xyz; vec3 n = normalize(texture(vf_t_normal, f_textureCoordinates).rgb * 2.0 - 1.0); vec3 l = normalize(f_lightDirection); float cosTheta = clamp(dot(n, l), 0.0, 1.0); vec3 E = normalize(f_eyeDirection); vec3 R = reflect(-l, n); float cosAlpha = clamp(dot(E, R), 0.0, 1.0); float visibility = 1.0; float bias = 0.005 * tan(acos(cosTheta)); bias = clamp(bias, 0.0, 0.01); for (int i = 0; i < 4; i ++) { float shading = (0.5 / 4.0); int index = i; visibility -= shading * (1.0 - texture(vf_t_shadow, vec3(f_shadowCoordinates.xy + poissonDisk[index] / 3000.0, (f_shadowCoordinates.z - bias) / f_shadowCoordinates.w))); }\n" fragColor.xyz = materialAmbientColor + visibility * materialDiffuseColor * lightColor * lightPower * cosTheta + visibility * materialSpecularColor * lightColor * lightPower * pow(cosAlpha, 5); fragColor.w = texture(vf_t_diffuse, f_textureCoordinates).w; } The following images should be enough to give you an idea of the problem. Before moving the camera: Moving the camera just a little. Moving it to the center of the scene.

    Read the article

  • Best practices in managing character states

    - by TheBroodian
    While in development of a character, I feel like I'm digging myself deeper into a hole every time I add more functionality to him, creating more bugs and it seems like my code is tripping over itself all over the place. What are the best practices when managing character states for a character that has a large selection of abilities and actions that they can perform, without their abilities interrupting each other and creating a mess overall?

    Read the article

  • Strange Flash AS3 xml Socket behavior

    - by Rnd_d
    I have a problem which I can't understand. To understand it I wrote a socket client on AS3 and a server on python/twisted, you can see the code of both applications below. Let's launch two clients at the same time, arrange them so that you can see both windows and press connection button in both windows. Then press and hold any button. What I'm expecting: Client with pressed button sends a message "some data" to the server, then the server sends this message to all the clients(including the original sender) . Then each client moves right the button 'connectButton' and prints a message to the log with time in the following format: "min:secs:milliseconds". What is going wrong: The motion is smooth in the client that sends the message, but in all other clients the motion is jerky. This happens because messages to those clients arrive later than to the original sending client. And if we have three clients (let's name them A,B,C) and we send a message from A, the sending time log of B and C will be the same. Why other clients recieve this messages later than the original sender? By the way, on ubuntu 10.04/chrome all the motion is smooth. Two clients are launched in separated chromes. windows screenshot Can't post linux screenshot, need more than 10 reputation to post more hyperlinks. Listing of log, four clients simultaneously: [16:29:33.280858] 62.140.224.1 >> some data [16:29:33.280912] 87.249.9.98 << some data [16:29:33.280970] 87.249.9.98 << some data [16:29:33.281025] 87.249.9.98 << some data [16:29:33.281079] 62.140.224.1 << some data [16:29:33.323267] 62.140.224.1 >> some data [16:29:33.323326] 87.249.9.98 << some data [16:29:33.323386] 87.249.9.98 << some data [16:29:33.323440] 87.249.9.98 << some data [16:29:33.323493] 62.140.224.1 << some data [16:29:34.123435] 62.140.224.1 >> some data [16:29:34.123525] 87.249.9.98 << some data [16:29:34.123593] 87.249.9.98 << some data [16:29:34.123648] 87.249.9.98 << some data [16:29:34.123702] 62.140.224.1 << some data AS3 client code package { import adobe.utils.CustomActions; import flash.display.Sprite; import flash.events.DataEvent; import flash.events.Event; import flash.events.IOErrorEvent; import flash.events.KeyboardEvent; import flash.events.MouseEvent; import flash.events.SecurityErrorEvent; import flash.net.XMLSocket; import flash.system.Security; import flash.text.TextField; public class Main extends Sprite { private var socket :XMLSocket; private var textField :TextField = new TextField; private var connectButton :TextField = new TextField; public function Main():void { if (stage) init(); else addEventListener(Event.ADDED_TO_STAGE, init); } private function init(event:Event = null):void { socket = new XMLSocket(); socket.addEventListener(Event.CONNECT, connectHandler); socket.addEventListener(DataEvent.DATA, dataHandler); stage.addEventListener(KeyboardEvent.KEY_DOWN, keyDownHandler); addChild(textField); textField.y = 50; textField.width = 780; textField.height = 500; textField.border = true; connectButton.selectable = false; connectButton.border = true; connectButton.addEventListener(MouseEvent.MOUSE_DOWN, connectMouseDownHandler); connectButton.width = 105; connectButton.height = 20; connectButton.text = "click here to connect"; addChild(connectButton); } private function connectHandler(event:Event):void { textField.appendText("Connect\n"); textField.appendText("Press and hold any key\n"); } private function dataHandler(event:DataEvent):void { var now:Date = new Date(); textField.appendText(event.data + " time = " + now.getMinutes() + ":" + now.getSeconds() + ":" + now.getMilliseconds() + "\n"); connectButton.x += 2; } private function keyDownHandler(event:KeyboardEvent):void { socket.send("some data"); } private function connectMouseDownHandler(event:MouseEvent):void { var connectAddress:String = "ep1c.org"; var connectPort:Number = 13250; Security.loadPolicyFile("xmlsocket://" + connectAddress + ":" + String(connectPort)); socket.connect(connectAddress, connectPort); } } } Python server code from twisted.internet import reactor from twisted.internet.protocol import ServerFactory from twisted.protocols.basic import LineOnlyReceiver import datetime class EchoProtocol(LineOnlyReceiver): ##### name = "" id = 0 delimiter = chr(0) ##### def getName(self): return self.transport.getPeer().host def connectionMade(self): self.id = self.factory.getNextId() print "New connection from %s - id:%s" % (self.getName(), self.id) self.factory.clientProtocols[self.id] = self def connectionLost(self, reason): print "Lost connection from "+ self.getName() del self.factory.clientProtocols[self.id] self.factory.sendMessageToAllClients(self.getName() + " has disconnected.") def lineReceived(self, line): print "[%s] %s >> %s" % (datetime.datetime.now().time(), self, line) if line=="<policy-file-request/>": data = """<?xml version="1.0"?> <!DOCTYPE cross-domain-policy SYSTEM "http://www.adobe.com/xml/dtds/cross-domain-policy.dtd"> <!-- Policy file for xmlsocket://ep1c.org --> <cross-domain-policy> <allow-access-from domain="*" to-ports="%s" /> </cross-domain-policy>""" % PORT self.send(data) else: self.factory.sendMessageToAllClients( line ) def send(self, line): print "[%s] %s << %s" % (datetime.datetime.now().time(), self, line) if line: self.transport.write( str(line) + chr(0)) else: print "Nothing to send" def __str__(self): return self.getName() class ChatProtocolFactory(ServerFactory): protocol = EchoProtocol def __init__(self): self.clientProtocols = {} self.nextId = 0 def getNextId(self): id = self.nextId self.nextId += 1 return id def sendMessageToAllClients(self, msg): for client in self.clientProtocols: self.clientProtocols[client].send(msg) def sendMessageToClient(self, id, msg): self.clientProtocols[id].send(msg) PORT = 13250 print "Starting Server" factory = ChatProtocolFactory() reactor.listenTCP(PORT, factory) reactor.run()

    Read the article

  • Getting a texture from a renderbuffer in OpenGL?

    - by Rushyo
    I've got a renderbuffer (DepthStencil) in an FBO and I need to get a texture from it. I can't have both a DepthComponent texture and a DepthStencil renderbuffer in the FBO, it seems, so I need some way to convert the renderbuffer to a DepthComponent texture after I'm done with it for use later down the pipeline. I've tried plenty of techniques to grab the depth component from the renderbuffer for weeks but I always come out with junk. All I want at the end is the same texture I'd get from an FBO if I wasn't using a renderbuffer. Can anyone post some comprehensive instructions or code that covers this seemingly simple operation? EDIT: Linky to an extract version of the code http://dl.dropbox.com/u/9279501/fbo.cs Screeny of the Depth of Field effect + FBO - without depth(!) http://i.stack.imgur.com/Hj9Oe.jpg Screeny without Depth of Field effect + FBO - depth working fine http://i.stack.imgur.com/boOm1.jpg

    Read the article

  • Set vertex position

    - by user1806687
    Can anyone tell me how to set the positions of model vertices? I want to be able to change the position of some of the vertices of a Model. Is there any way to make that happen? And make the changed visible at that moment. EDIT: Well, the thing is,I have a model, a cube, that is made up of four "thin" cubes(top,bottom,left side, right side), so I get this cube with "hole" in the middle. And I want to scale it on Y axis. If I do Scale(0,2,0) it will scale the whole object meaning, it will double the Y size of left and right side, but also double the size of the top and bottom cube, which I do not want. Same for X axis I want to double the size of top and bottom cubes but not the left and right one. Hope you can help

    Read the article

  • Geometry Shader : points + Triangles

    - by CmasterG
    I have different Shaders and for each Shader a instance of the ShaderClass class, which initializes the Shaders, Renders the Shaders, etc. I use most of the Shaderclasses without Geometry Shader, but in one Shader Class i also use a Geometry Shader. The problem is, that when I render one object with the Shaderclass that uses the Geometry shader, all other object are rendered with the same geometry that I create in the Geometry Shader. Can you help me? Is it possible that I have to use a Geometry Shader for each object, when I use one for one object? I use DirectX 11 with C++.

    Read the article

  • Better solution for boolean mixing?

    - by Ruben Nunez
    Sorry if this question has been asked in the past, but searching Google and here didn't yield relevant results, so here goes. I'm working on a fragment shader that implements both conditional/boolean diffuse and bump mapping (that is to say, you don't need a diffuse texture or a normals texture, and if they're not present, they're simply changed to default values). My current solution is to use a uniform float to say "mix amount". For example, computing the diffuse texel works as: // Compute diffuse amount scaled by vCol // If no texture is present (mDif = 0.0), then DiffuseTexel = vCol // kT[0] is the diffuse texture // vTex is the texture co-ordinates // mDif is the uniform float containing the mix amount (either 0.0 or 1.0) vec4 DiffuseTexel = vCol*mix(vec4(1.0), texture2D(kT[0], vTex), mDif); While that works great and all, I was wondering if there's a better way of doing this, as I will never have any use for in-between values for funky effects. I know that perhaps the best solution is to simply write separate shaders for mDif=0.0 and mDif=1.0, but I'd like a more elegant solution than splicing shaders before compiling or writing multiple shader files and keeping each one updated. Any ideas are greatly appreciated. =)

    Read the article

  • Optimizing hierarchical transform

    - by Geotarget
    I'm transforming objects in 3D space by transforming each vector with the object's 4x4 transform matrix. In order to achieve hierarchical transform, I transform the child by its own matrix, and then the child by the parent matrix. This becomes costly because objects deeper in the display tree have to be transformed by all the parent objects. This is what's happening, in summary: Root -- transform its verts by Root matrix Parent -- transform its verts by Parent, Root matrix Child -- transform its verts by Child, Parent, Root matrix Is there a faster way to transform vertices to achieve hierarchical transform? What If I first concatenated each transform matrix with the parent matrices, and then transform verts by that final resulting matrix, would that work and wouldn't that be faster? Root -- transform its verts by Root matrix Parent -- concat Parent, Root matrices, transform its verts by Concated matrix Child -- concat Child, Parent, Root matrices, transform its verts by Concated matrix

    Read the article

  • Random Position between ranges.

    - by blakey87
    Does anyone have a good algorithm for generating a random y position for spawning a block, which takes into account a minimum and maximum height, allowing player to to jump on the block. Blocks will continually be spawned, so the player must always be able to jump onto the next block, bearing in mind the minimum position which would be the ground, and the maximum which would the players jump height bearing in mind the ceiling

    Read the article

  • Terrain square loading

    - by AndroidXTr3meN
    Games like Skyrim, Morrowind, and more are using quads or square to divide the terrain if im correct. The player is always at #5 1 | 2 | 3 4 | 5 | 6 7 | 8 | 9 So whenever you cross the border you unload and load the new "areas" But if the user goes just over the edge and then the second after goes back previous area a lot of unnecessary loading and unloading is done. Is there a general approach to this because I dont think games like skyrim have this issue? Cheers!

    Read the article

  • How to store bitmaps in memory?

    - by Geotarget
    I'm working with general purpose image rendering, and high-performance image processing, and so I need to know how to store bitmaps in-memory. (24bpp/32bpp, compressed/raw, etc) I'm not working with 3D graphics or DirectX / OpenGL rendering and so I don't need to use graphics card compatible bitmap formats. My questions: What is the "usual" or "normal" way to store bitmaps in memory? (in C++ engines/projects?) How to store bitmaps for high-performance algorithms, such that read/write times are the fastest? (fixed array? with/without padding? 24-bpp or 32-bpp?) How to store bitmaps for applications handling a lot of bitmap data, to minimize memory usage? (JPEG? or a faster [de]compression algorithm?) Some possible methods: Use a fixed packed 24-bpp or 32-bpp int[] array and simply access pixels using pointer access, all pixels are allocated in one continuous memory chunk (could be 1-10 MB) Use a form of "sparse" data storage so each line of the bitmap is allocated separately, reusing more memory and requiring smaller contiguous memory segments Store bitmaps in its compressed form (PNG, JPG, GIF, etc) and unpack only when its needed, reducing the amount of memory used. Delete the unpacked data if its not used for 10 secs.

    Read the article

  • What platform is best for Android and iPhone development?

    - by Toy Yoda
    I've been developing non-mobile apps for linux; mainly stuff like interpreters, compilers, database engines and business apps. I've been told that if I wanted to learn how to develop iPhone/iPad applications, I should buy a Mac since Apple has all it's development tools for iPhone/iPad on Mac. Now, what about Android phones / tablets? Are the development tools better on Mac or PC? I need to buy a new laptop, and I would like to factor in mobile development in my choice of PC or Mac.

    Read the article

  • Rendering transparent textures in directX

    - by Vibhore Tanwer
    I am working with a directX application with WPF, I am facing a problem with videos and images that contains transparent pixels, I have to draw a color in background an then a video/image over it. What I expect is background color should be visible while playing video only non transparent pixels should be visible but what I get is a black background behind the video. I am using following settings on device to achieve alpha blending : device.RenderState.SourceBlend = Blend.SourceAlpha; device.RenderState.DestinationBlend = Blend.InvSourceAlpha; device.RenderState.AlphaBlendEnable = true; What am I missing here? What is the best approach to handle transparent videos? Any help will be of great value to me.

    Read the article

  • Box 2D Collision Question

    - by Farooq Arshed
    I am very new to Box 2D Physics world. I wanted to know how to collide 2 bodies when one is Dynamic and other is Kinematic. The whole Scenario is explained below: I have 3 balls in total. I want to balls to remain in their places and the third ball to be able to move. When the third ball hits the other two balls then they should move according to the speed and direction from which they were hit. My gravity of the world is 0 because I only want z-axis gravity. I would also like some one to point me towards some good tutorials regarding Box 2D basics which is language independent. I hope I have explained my scenario well. Thanks for the help in advance.

    Read the article

  • Deferred contexts and inheriting state from the immediate context

    - by dreijer
    I took my first stab at using deferred contexts in DirectX 11 today. Basically, I created my deferred context using CreateDeferredContext() and then drew a simple triangle strip with it. Early on in my test application, I call OMSetRenderTargets() on the immediate context in order to render to the swap chain's back buffer. Now, after having read the documentation on MSDN about deferred contexts, I assumed that calling ExecuteCommandList() on the immediate context would execute all of the deferred commands as "an extension" to the commands that had already been executed on the immediate context, i.e. the triangle strip I rendered in the deferred context would be rendered to the swap chain's back buffer. That didn't seem to be the case, however. Instead, I had to manually pull out the immediate context's render target (using OMGetRenderTargets()) and then set it on the deferred context with OMSetRenderTargets(). Am I doing something wrong or is that the way deferred contexts work?

    Read the article

  • Need to make animation whereby the character shatters into a bunch of pieces

    - by theprojectabot
    I would like to take a 3d character model, cut out a bunch of shapes (or a bunch of triangles in the shape of the pieces I want) and then have the pieces separate from each other at the beginning of the animation and fall apart with gravity so it looks like the model is falling apart in shattered pieces. Is there a way to run a script on a mesh, cut out these pieces, instantiate all of them as separate models and then run gravity on them during the simulation?

    Read the article

  • A simple example of movement prediction

    - by Daniel
    I've seen lots of examples of theory about the reason for client-side prediction, but I'm having a hard time converting it into code. I was wondering if someone knows of some specific examples that share some of the code, or can share their knowledge to shed some light into my situation. I'm trying to run some tests to get a the movement going (smoothly) between multiple clients. I'm using mouse input to initiate movement. I'm using AS3 and C# on a local Player.IO server. Right now I'm trying to get the Client side working, as I'm only forwarding position info with the client. I have 2 timers, one is an onEnterFrame and the other is a 100ms Timer, and one on mouseClick listener. When I click anywhere with a mouse, I update my player class to give it a destination point On every enterFrame Event for the player, it moves towards the destination point At every 100ms it sends a message to the server with the position of where it should be in a 100ms. The distance traveled is calculated by taking the distance (in Pixels) that the player can travel in one second, and dividing it by the framerate for the onEnterFrame handler, and by the update frequency (1/0.100s) for the server update. For the other Players, the location is interpolated and animated on every frame based on the new location. Is this the right way of doing it?

    Read the article

  • CCSpriteHole in cocos2d 2.0?

    - by rakkarage
    i was using this cocos2d class CCSpriteHole in cocos2d 1.0 fine... http://jpsarda.tumblr.com/post/15779708304/new-cocos2d-iphone-extensions-a-progress-bar-and-a i am trying to convert it to cocos2d 2.0... i got it to compile by changing glVertexPointer to glVertexAttribPointer like in the 2.0 version of CCSpriteScale9 here http://jpsarda.tumblr.com/post/9162433577/scale9grid-for-cocos2d and changing contentSizeInPixels_ to contentSize_... -(id) init { if( (self=[super init]) ) { opacityModifyRGB_ = YES; opacity_ = 255; color_ = colorUnmodified_ = ccWHITE; capSize=capSizeInPixels=CGSizeZero; //Not used blendFunc_.src = CC_BLEND_SRC; blendFunc_.dst = CC_BLEND_DST; // update texture (calls updateBlendFunc) [self setTexture:nil]; // default transform anchor anchorPoint_ = ccp(0.5f, 0.5f); vertexDataCount=24; vertexData = (ccV2F_C4F_T2F*) malloc(vertexDataCount * sizeof(ccV2F_C4F_T2F)); [self setTextureRectInPixels:CGRectZero untrimmedSize:CGSizeZero]; } return self; } -(id) initWithTexture:(CCTexture2D*)texture rect:(CGRect)rect { NSAssert(texture!=nil, @"Invalid texture for sprite"); // IMPORTANT: [self init] and not [super init]; if( (self = [self init]) ) { [self setTexture:texture]; [self setTextureRect:rect]; } return self; } -(id) initWithTexture:(CCTexture2D*)texture { NSAssert(texture!=nil, @"Invalid texture for sprite"); CGRect rect = CGRectZero; rect.size = texture.contentSize; return [self initWithTexture:texture rect:rect]; } -(id) initWithFile:(NSString*)filename { NSAssert(filename!=nil, @"Invalid filename for sprite"); CCTexture2D *texture = [[CCTextureCache sharedTextureCache] addImage: filename]; if( texture ) return [self initWithTexture:texture]; return nil; } +(id)spriteWithFile:(NSString*)f { return [[self alloc] initWithFile:f]; } - (void) dealloc { if (vertexData) free(vertexData); } -(void) updateColor { ccColor4F color4; color4.r=(float)color_.r/255.0f; color4.g=(float)color_.g/255.0f; color4.b=(float)color_.b/255.0f; color4.a=(float)opacity_/255.0f; for (int i=0; i<vertexDataCount; i++) { vertexData[i].colors=color4; } } -(void)updateTextureCoords:(CGRect)rect { CCTexture2D *tex = texture_; if(!tex) return; float atlasWidth = (float)tex.pixelsWide; float atlasHeight = (float)tex.pixelsHigh; float left,right,top,bottom; left = rect.origin.x/atlasWidth; right = left + rect.size.width/atlasWidth; top = rect.origin.y/atlasHeight; bottom = top + rect.size.height/atlasHeight; // // |/|/|/| // CGSize capTexCoordsSize=CGSizeMake(capSizeInPixels.width/atlasWidth, capSizeInPixels.height/atlasHeight); // From left to right //Top band // Left vertexData[0].texCoords=(ccTex2F){left,top}; vertexData[1].texCoords=(ccTex2F){left,top+capTexCoordsSize.height}; vertexData[2].texCoords=(ccTex2F){left+capTexCoordsSize.width,top}; vertexData[3].texCoords=(ccTex2F){left+capTexCoordsSize.width,top+capTexCoordsSize.height}; // Center vertexData[4].texCoords=(ccTex2F){right-capTexCoordsSize.width,top}; vertexData[5].texCoords=(ccTex2F){right-capTexCoordsSize.width,top+capTexCoordsSize.height}; // Right vertexData[6].texCoords=(ccTex2F){right,top}; vertexData[7].texCoords=(ccTex2F){right,top+capTexCoordsSize.height}; //Center band // Left vertexData[8].texCoords=(ccTex2F){left,bottom-capTexCoordsSize.height}; vertexData[9].texCoords=(ccTex2F){left,top+capTexCoordsSize.height}; vertexData[10].texCoords=(ccTex2F){left+capTexCoordsSize.width,bottom-capTexCoordsSize.height}; vertexData[11].texCoords=(ccTex2F){left+capTexCoordsSize.width,top+capTexCoordsSize.height}; // Center vertexData[12].texCoords=(ccTex2F){right-capTexCoordsSize.width,bottom-capTexCoordsSize.height}; vertexData[13].texCoords=(ccTex2F){right-capTexCoordsSize.width,top+capTexCoordsSize.height}; // Right vertexData[14].texCoords=(ccTex2F){right,bottom-capTexCoordsSize.height}; vertexData[15].texCoords=(ccTex2F){right,top+capTexCoordsSize.height}; //Bottom band //Left vertexData[16].texCoords=(ccTex2F){left,bottom}; vertexData[17].texCoords=(ccTex2F){left,bottom-capTexCoordsSize.height}; vertexData[18].texCoords=(ccTex2F){left+capTexCoordsSize.width,bottom}; vertexData[19].texCoords=(ccTex2F){left+capTexCoordsSize.width,bottom-capTexCoordsSize.height}; // Center vertexData[20].texCoords=(ccTex2F){right-capTexCoordsSize.width,bottom}; vertexData[21].texCoords=(ccTex2F){right-capTexCoordsSize.width,bottom-capTexCoordsSize.height}; // Right vertexData[22].texCoords=(ccTex2F){right,bottom}; vertexData[23].texCoords=(ccTex2F){right,bottom-capTexCoordsSize.height}; } -(void) updateVertices { float left=0; //-spriteSizeInPixels.width*0.5f; float right=left+contentSize_.width; float bottom=0; //-spriteSizeInPixels.height*0.5f; float top=bottom+contentSize_.height; float holeLeft=holeRect.origin.x*CC_CONTENT_SCALE_FACTOR(); float holeRight=holeLeft+holeRect.size.width*CC_CONTENT_SCALE_FACTOR(); float holeBottom=holeRect.origin.y*CC_CONTENT_SCALE_FACTOR(); float holeTop=holeBottom+holeRect.size.height*CC_CONTENT_SCALE_FACTOR(); // // |/|/|/| // // From left to right //Top band // Left vertexData[0].vertices=(ccVertex2F){left,top}; vertexData[1].vertices=(ccVertex2F){left,holeTop}; vertexData[2].vertices=(ccVertex2F){holeLeft,top}; vertexData[3].vertices=(ccVertex2F){holeLeft,holeTop}; // Center vertexData[4].vertices=(ccVertex2F){holeRight,top}; vertexData[5].vertices=(ccVertex2F){holeRight,holeTop}; // Right vertexData[6].vertices=(ccVertex2F){right,top}; vertexData[7].vertices=(ccVertex2F){right,holeTop}; //Center band // Left vertexData[8].vertices=(ccVertex2F){left,holeBottom}; vertexData[9].vertices=(ccVertex2F){left,holeTop}; vertexData[10].vertices=(ccVertex2F){holeLeft,holeBottom}; vertexData[11].vertices=(ccVertex2F){holeLeft,holeTop}; // Center vertexData[12].vertices=(ccVertex2F){holeRight,holeBottom}; vertexData[13].vertices=(ccVertex2F){holeRight,holeTop}; // Right vertexData[14].vertices=(ccVertex2F){right,holeBottom}; vertexData[15].vertices=(ccVertex2F){right,holeTop}; //Bottom band //Left vertexData[16].vertices=(ccVertex2F){left,bottom}; vertexData[17].vertices=(ccVertex2F){left,holeBottom}; vertexData[18].vertices=(ccVertex2F){holeLeft,bottom}; vertexData[19].vertices=(ccVertex2F){holeLeft,holeBottom}; // Center vertexData[20].vertices=(ccVertex2F){holeRight,bottom}; vertexData[21].vertices=(ccVertex2F){holeRight,holeBottom}; // Right vertexData[22].vertices=(ccVertex2F){right,bottom}; vertexData[23].vertices=(ccVertex2F){right,holeBottom}; } -(void) setHole:(CGRect)r inRect:(CGRect)totalSurface { holeRect=r; self.contentSize=totalSurface.size; holeRect.origin=ccpSub(holeRect.origin,totalSurface.origin); CGPoint holeCenter=ccp(holeRect.origin.x+holeRect.size.width*0.5f,holeRect.origin.y+holeRect.size.height*0.5f); self.anchorPoint=ccp(holeCenter.x/contentSize_.width,holeCenter.y/contentSize_.height); //[self updateTextureCoords:rectInPixels_]; [self updateVertices]; [self updateColor]; } -(void) draw { BOOL newBlend = NO; if( blendFunc_.src != CC_BLEND_SRC || blendFunc_.dst != CC_BLEND_DST ) { newBlend = YES; glBlendFunc( blendFunc_.src, blendFunc_.dst ); } glBindTexture(GL_TEXTURE_2D, [texture_ name]); glVertexAttribPointer(kCCVertexAttrib_Position, 2, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[0].vertices); glVertexAttribPointer(kCCVertexAttrib_TexCoords, 2, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[0].texCoords); glVertexAttribPointer(kCCVertexAttrib_Color, 4, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[0].colors); glDrawArrays(GL_TRIANGLE_STRIP, 0, 8); glVertexAttribPointer(kCCVertexAttrib_Position, 2, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[8].vertices); glVertexAttribPointer(kCCVertexAttrib_TexCoords, 2, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[8].texCoords); glVertexAttribPointer(kCCVertexAttrib_Color, 4, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[8].colors); glDrawArrays(GL_TRIANGLE_STRIP, 0, 8); glVertexAttribPointer(kCCVertexAttrib_Position, 2, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[16].vertices); glVertexAttribPointer(kCCVertexAttrib_TexCoords, 2, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[16].texCoords); glVertexAttribPointer(kCCVertexAttrib_Color, 4, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[16].colors); glDrawArrays(GL_TRIANGLE_STRIP, 0, 8); if( newBlend ) glBlendFunc(CC_BLEND_SRC, CC_BLEND_DST); } -(void)setTextureRectInPixels:(CGRect)rect untrimmedSize:(CGSize)untrimmedSize { rectInPixels_ = rect; rect_ = CC_RECT_PIXELS_TO_POINTS( rect ); //[self setContentSizeInPixels:untrimmedSize]; [self updateTextureCoords:rectInPixels_]; } -(void)setTextureRect:(CGRect)rect { CGRect rectInPixels = CC_RECT_POINTS_TO_PIXELS( rect ); [self setTextureRectInPixels:rectInPixels untrimmedSize:rectInPixels.size]; } // // RGBA protocol // #pragma mark CCSpriteHole - RGBA protocol -(GLubyte) opacity { return opacity_; } -(void) setOpacity:(GLubyte) anOpacity { opacity_ = anOpacity; // special opacity for premultiplied textures if( opacityModifyRGB_ ) [self setColor: (opacityModifyRGB_ ? colorUnmodified_ : color_ )]; [self updateColor]; } - (ccColor3B) color { if(opacityModifyRGB_){ return colorUnmodified_; } return color_; } -(void) setColor:(ccColor3B)color3 { color_ = colorUnmodified_ = color3; if( opacityModifyRGB_ ){ color_.r = color3.r * opacity_/255; color_.g = color3.g * opacity_/255; color_.b = color3.b * opacity_/255; } [self updateColor]; } -(void) setOpacityModifyRGB:(BOOL)modify { ccColor3B oldColor = self.color; opacityModifyRGB_ = modify; self.color = oldColor; } -(BOOL) doesOpacityModifyRGB { return opacityModifyRGB_; } #pragma mark CCSpriteHole - CocosNodeTexture protocol -(void) updateBlendFunc { if( !texture_ || ! [texture_ hasPremultipliedAlpha] ) { blendFunc_.src = GL_SRC_ALPHA; blendFunc_.dst = GL_ONE_MINUS_SRC_ALPHA; [self setOpacityModifyRGB:NO]; } else { blendFunc_.src = CC_BLEND_SRC; blendFunc_.dst = CC_BLEND_DST; [self setOpacityModifyRGB:YES]; } } -(void) setTexture:(CCTexture2D*)texture { // accept texture==nil as argument NSAssert( !texture || [texture isKindOfClass:[CCTexture2D class]], @"setTexture expects a CCTexture2D. Invalid argument"); texture_ = texture; [self updateBlendFunc]; } -(CCTexture2D*) texture { return texture_; } @end but now positioning and scaling seem to not work? and it starts in the wrong position... but changing the opacity still works. so i was wondering if anyone can see why my 2.0 version is not working? or if maybe there is a better way to do a sprite hole with cocos2d/opengl 2.0? shaders? thanks

    Read the article

< Previous Page | 371 372 373 374 375 376 377 378 379 380 381 382  | Next Page >