Search Results

Search found 27181 results on 1088 pages for 'oracle desktop virtualization'.

Page 407/1088 | < Previous Page | 403 404 405 406 407 408 409 410 411 412 413 414  | Next Page >

  • Why aren't RemoteApp icons showing up

    - by Andy Schneider
    I have a Windows 2008 R2 server running RDS. I have installed and configured RemoteApp to publish applications with RDS Web Access. When I browse to https://servernname.domain.local/RDWeb I can log in and get to the RemoteApp Programs tab, but there are no icons or apps to click on. I have added a bunch of apps in Remote App manager and they are all enabled for RD Web Access. Also, I am an administrator on the server.

    Read the article

  • A Letter for Your CEO About Social Marketing’s Future

    - by Mike Stiles
    We’ll leave it to you to decide if or how to sneak this in front of them. Dear Chief: This social marketing thing looks serious. It’s gone beyond having a Facebook page and putting our info and a few promotions on it. It’s seriously disrupting how we’ve always done marketing. And its implications reach well beyond marketing. My concern is that we stay positioned ahead of these changes and are prepared to embrace, adapt and capitalize on these new capabilities as opposed to spending valuable time and money trying to shoehorn social into “the way we’ve always done things.” I’m also concerned about what happens if our competition executes on this before we do. The days of being able to impose our ad messaging on the masses to great effect are numbered. The public now has the tech tools and ability to filter out things that are irrelevant to them. And frankly, spending ad dollars to reach unlikely prospects isn’t the most efficient path for us either. Today, our customers have to genuinely love what we do. That starts with a renewed, customer-centric focus on the quality and usability of our product. If their experience with it is bad, they now have very connected, loud voices that will testify against us. We can’t afford that. Next, their customer service experience, before and after the sale, has to be a pleasant surprise. That requires truly knowing our customers and listening to them. Lip service won’t cut it. We have to get and use as much data on the customer as possible, interact with them wherever they want to interact with us, and commit to impressing them. If we do, they’ll get out there and advertise for us. Since peer-to-peer recommendation is the most effective marketing, that’s money in the bank. Social marketing is about forming relationships, same as how individuals use social. We want them to know us, trust us, and get real value from knowing us. That requires honesty and transparency that before now might have been uncomfortable. I propose that if we clearly make everything we do about our customers’ wants and needs, we’ll have nothing to hide. It will solidify customer loyalty, retention, and thus, revenue. These things can’t happen without certain tools and structural changes in the organization. There are social cloud platforms that integrate social management into all of the necessary areas: CRM, customer service, sales, marketing automation, content marketing, ecommerce, etc. This is will give us a real-time, complete view of the customer so their every interaction with us is attentive, personalized, accurate, relevant, and satisfying. Without it, we’re just a collage of disjointed systems, each gathering data that informs only its own departmental silo. The customer is voluntarily giving us everything we need to know about them to win them over, but we have to start listening and putting the pieces together. There’s still time. Brands are coming to terms with this transition to the socially enabled enterprise, but so far they aren’t moving very fast. Like us, they’re dealing with long-entrenched technologies and processes. CMO’s and CIO’s have to form new partnerships. Content operations have to be initiated and properly staffed and funded. Various departments must be able to utilize interconnected big data. What will separate the winners from the losers? Well chief, that’s why I’m writing you. It’s in your hands. These initiatives won’t get the kind of priority and seriousness that inspire actual deadlines & action unless they come from your desk. You have to be the champion of customer centricity. You have to be our change agent. You have to be our innovator. Otherwise, it’s going to be business as usual, and that puts us in a very vulnerable place. Sincerely, Your Team @mikestilesPhoto: Gary Scott, stock.xchng

    Read the article

  • Can't Remote into Windows Server

    - by Brian
    Hello, I have a Dell server wired into the router. I was able to connect to it with my laptop (laptop is wireless) before my router died. My verizon router went kaput, and I got everything else back up and running on the wireless network other than the remoting in feature, even though I can access the server through windows explorer just fine. Any ideas why? What do I need to check? UPDATE: Interesting scenario, Network Discovery is off; I turn it on and save, but for some reason, even after that, network discovery is turning itself off... no idea why that is happening? Thanks.

    Read the article

  • Nighthacking with James Gosling

    - by Yolande Poirier
    Java Evangelist Stephen Chin is back on the road for a new NightHacking Tour. He is meeting with James Gosling at Kona, Hawaii, the launch base of the Wave Glider. The Glider is an aquatic robot which communicates real-time data from the surface of the ocean. It runs on an ARM chip using Java SE Embedded.  "During this broadcast we will show some of the footage of his aquatic robots, talk through the technologies he is hacking on daily, and do Q&A with folks on the live chat" explains Stephen Chin.  Sign up for the live stream on Wednesday, October 23rd at:  8AM Hawaii Time 11AM PST 2PM EST 20:00 CET Follow @nighthackingtv for the next Nighthacking events

    Read the article

  • ZFS - zpool ARC cache plus L2ARC benchmarking

    - by jemmille
    I have been doing lots of I/O testing on a ZFS system I will eventually use to serve virtual machines. I thought I would try adding SSD's for use as cache to see how much faster I can get the read speed. I also have 24GB of RAM in the machine that acts as ARC. vol0 is 6.4TB and the cache disks are 60GB SSD's. The zvol is as follows: pool: vol0 state: ONLINE scrub: none requested config: NAME STATE READ WRITE CKSUM vol0 ONLINE 0 0 0 c1t8d0 ONLINE 0 0 0 cache c3t5001517958D80533d0 ONLINE 0 0 0 c3t5001517959092566d0 ONLINE 0 0 0 The issue is I'm not seeing any difference with the SSD's installed. I've tried bonnie++ benchmarks and some simple dd commands to write a file then read the file. I have run benchmarks before and after adding the SSD's. I've ensured the file sizes are at least double my RAM so there is no way it can all get cached locally. Am I missing something here? When am I going to see benefits of having all that cache? Am I simply not under these circumstances? Are the benchmark programs not good for testing the effect of cache because of the the way (and what) it writes and reads?

    Read the article

  • Thinking of Adopting the PRINCE2™ Project Management Methodology? Consider Using PeopleSoft Projects to Help

    - by Megan Boundey
    Ever wondered what the PRINCE2™ project management methodology is? Ever wondered if you could use PeopleSoft Projects (ESA) to manage your projects using PRINCE2™?  Published by the Office of Government Commerce in the UK, PRINCE2™ is a scalable, business case and product description-driven Project Management methodology based upon managing by exception. Project activities are organized around fulfilling and meeting the product description. Quality assurance, configuration control and risk management are all based upon ensuring that the product delivered accurately meets the product description. PRINCE2™ is built upon seven principles and seven themes, each underpinning the PRINCE2™project management processes. Important for today’s business environment, the focus throughout PRINCE2™ is on the Business Case, which describes the rationale and business justification for a project. The Business Case drives all the project management processes from initial project setup to successful finish. PRINCE2™, as a method and a certification, is adopted in many countries worldwide, including the UK, Western Europe and Australia. We’ve just released a new white paper, which provides you with an overview of the principles, themes and project management processes associated with PRINCE2™. It also shows how these map to the functionality available within PeopleSoft Projects (ESA). In the time it takes to drink a coffee, you can learn about PRINCE2™ and determine whether it might help you deliver better project results. We encourage you to take a look.

    Read the article

  • Difference between Xen PV, Xen KVM and HVM?

    - by JP19
    Hi, I know that Xen is usually better than OpenVZ as the provider cannot oversell in Xen. However, what is the difference between Xen PV, Xen KVM and HVM (I was going through this provider's specs? Which one is better for what purposes and why? Edit: For an end-user who will just be hosting websites, which is better? From efficiency or other point of view, is there any advantage of one over the other?

    Read the article

  • Don’t miss the Procurement AME New Features and Setup for Purchase Orders Webcast on December 6th and Follow up Live Chat

    - by MargaretW
    Webcast This one-hour session on December 6th is recommended for technical and functional users who are interested to know more about the new 12.1.3 features for Procurement with Approval Management Engine (AME). TOPICS WILL INCLUDE: Scope and limitations of AME functionality for purchase orders Setup and use of AME for purchase orders PO Review and PO E-Sign new features Demonstrations will be included See DocID 1456150.1 to sign up now! Live Chat There will be a live chat in the Procurement Community on December 13th for follow up questions and answers.  Join us to share and gain knowledge!

    Read the article

  • Dedicate a NIC to a Virtualbox VM

    - by John Gardeniers
    On a machine with multiple NICs, running either Windows or Linux, is it possible to dedicate a NIC to a VM such that the host won't even try to use it for itself? I suspect it isn't even possible but if it is, which OS and version and just how would I set it up? The reason for this, apart from academic curiosity, is that I'm trying to set up a network lab for testing purposes. I currently have only a single spare machine, otherwise this wouldn't be an issue. One of the VMs will be the firewall for this lab network, so will need a dedicated NIC for the WAN interface. Neither ESXi nor Xen server will run on the machine, so I have to use a host OS.

    Read the article

  • Thomas Kurian's COLLABORATE Keynote: Process not Product

    - by Aaron Lazenby
    Right off the bat, Oracle's Senior Vice President, Server Technologies Development made his purpose very clear: demonstrate how the elements of the Oracle product stack are evolving (and integrating) together. There are some great details about the new functionality of each Oracle application line and how the different products sync and interact. The lifecycle charts in Kurian's presentation illustrate how data can flow from an Oracle Demantra into Oracle E-Business Suite and back out to an Oracle Agile system to support value chain planning. With so many products at play in the enterprise, Kurian shows that if you trust that your systems can work together, IT strategy becoming much more about managing business process than managing software product.

    Read the article

  • Terminal Services - what does this message mean ?

    - by southof40
    Hi - I'm responsible for a W2003 server. I'm trying to switch on terminal services. When I do so I get a message that includes the text : "If you continue with this installation, programs that are already installed on your server will no longer work and will have to be reinstalled" Surely that doesn't mean what it appears to mean ? I just want one extra person to be able to access the machine in the same way that currently two administrators do (via "Remote Administration") only I want all three to be able to do simultaneously. When I bought the extra TS license I thought I was just buying the right to have one extra user. Is doing this really going to trash everything on the machine ?

    Read the article

  • Silent Partner

    - by [email protected]
    The Team Behind the Man Behind the Mask As a continuing sponsor of the blockbuster Iron Man franchise, Oracle has been quietly preparing for the explosive sequel blasting its way into theaters this May. Through a series of advertising campaigns, immersive online experiences, and contests, Oracle plans to highlight its backstage efforts to help Marvel Entertainment hone its newfound superpowers. By driving the performance of critical systems, Oracle technologies are helping Marvel transform itself from mild-mannered comic book publisher to film industry power broker. You can learn more about this dynamic duo, and get free movie memorabilia, by visiting our Iron Man 2 showcase site.

    Read the article

  • When I restart my virtual enviorment it does not re-bind to the IP address

    - by RoboTamer
    The IP does no longer respond to a remote ping With restart I mean: lxc-stop -n vm3 lxc-start -n vm3 -f /etc/lxc/vm3.conf -d -- /etc/network/interfaces auto lo iface lo inet loopback up route add -net 127.0.0.0 netmask 255.0.0.0 dev lo down route add -net 127.0.0.0 netmask 255.0.0.0 dev lo # device: eth0 auto eth0 iface eth0 inet manual auto br0 iface br0 inet static address 192.22.189.58 netmask 255.255.255.248 gateway 192.22.189.57 broadcast 192.22.189.63 bridge_ports eth0 bridge_fd 0 bridge_hello 2 bridge_maxage 12 bridge_stp off post-up ip route add 192.22.189.59 dev br0 post-up ip route add 192.22.189.60 dev br0 post-up ip route add 192.22.189.61 dev br0 post-up ip route add 192.22.189.62 dev br0 -- /etc/lxc/vm3.conf lxc.utsname = vm3 lxc.rootfs = /var/lib/lxc/vm3/rootfs lxc.tty = 4 #lxc.pts = 1024 # pseudo tty instance for strict isolation lxc.network.type = veth lxc.network.flags = up lxc.network.link = br0 lxc.network.name = eth0 lxc.network.mtu = 1500 #lxc.cgroup.cpuset.cpus = 0 # security parameter lxc.cgroup.devices.deny = a # Deny all access to devices lxc.cgroup.devices.allow = c 1:3 rwm # dev/null lxc.cgroup.devices.allow = c 1:5 rwm # dev/zero lxc.cgroup.devices.allow = c 5:1 rwm # dev/console lxc.cgroup.devices.allow = c 5:0 rwm # dev/tty lxc.cgroup.devices.allow = c 4:0 rwm # dev/tty0 lxc.cgroup.devices.allow = c 4:1 rwm # dev/tty1 lxc.cgroup.devices.allow = c 4:2 rwm # dev/tty2 lxc.cgroup.devices.allow = c 1:9 rwm # dev/urandon lxc.cgroup.devices.allow = c 1:8 rwm # dev/random lxc.cgroup.devices.allow = c 136:* rwm # dev/pts/* lxc.cgroup.devices.allow = c 5:2 rwm # dev/pts/ptmx lxc.cgroup.devices.allow = c 254:0 rwm # rtc # mounts point lxc.mount.entry=proc /var/lib/lxc/vm3/rootfs/proc proc nodev,noexec,nosuid 0 0 lxc.mount.entry=devpts /var/lib/lxc/vm3/rootfs/dev/pts devpts defaults 0 0 lxc.mount.entry=sysfs /var/lib/lxc/vm3/rootfs/sys sysfs defaults 0 0

    Read the article

  • Virtual Sound Card for Windows Server?

    - by Ian Boyd
    i have some software running on a server which requires a sound card to be installed. i'm trying to find a virtual, or emulated, sound card driver for Windows 2000 Server. It doesn't have to play anything, send streams anywhere, or do anything. It just has to be there. Note: This is a physical machine, but i want the solution that will port to a Microsoft Virtual Server machine running Windows 2000 Server. (in other words, buying a sound card will not work) i've already tried the REaudio driver from MixW; it does not work (no sound card virtually appears in the system). Update: 1k views? Obviously people are finding it an interesting question to keep stumbling across it. Up-vote it!

    Read the article

  • How does it hurt to use Linux (Ubuntu) as a guest OS for all my tasks?

    - by sauparna
    I have a machine running Windows, where the disk has two partitions C (50 GB) and D (250GB). I do research in Information Retrieval and need to work with a large corpus (more than 50 GB) and in Linux. So if I want to install Linux on the existing system, keeping the Windows installation intact, will it be fine to run it in a virtual box? (say, QEMU, VMWare, etc.) An alternative is using Wubi. In that case the Linux installation has to be on drive C. Then, if I keep a small Linux installation (say 5GB) on C, and my corpus on D (mounted in Linux), how will it affect the performance of my programs which would be accessing the mounted Windows drive D. Is it feasible to use Linux this way? Which of the above is better if at all they are a way out? Note : Since my post in July 2010, I have been using and have tried several ways of maintaining a disk-image that I can mount in Linux. I had a 100GB qcow2 disk and a 100GB raw disk, both formatted to an EXT3 file system. I was mounting and connecting to the qcow2 disk using qemu-nbd. The problem was that every now and then, the connection to the disk would get lost and the running programs would throw disk I/O errors. The raw disk would mount and work fine as a loop mounted device, but when writing data to it, the mount.ntfs program would hog the CPU and the process would take an enormous amount of time. I was in fact running make on a piece of software located on this raw disk, and after a point of time make was waiting while mount.ntfs would show 100% CPU usage.

    Read the article

  • VirtualBox guest network lost after host disconnects

    - by webjunk
    I am running VirtualBox both on a Snow Leopard OSX host machine and on a Windows Vista host machine. Whenever my host machines lose internet connection the guest machines seem to lose internet connectivity permanently even after the host connection to the Internet is reestablished. Resetting guest networking on the guest os, disconnecting cable via host virtualbox settings, and even restarting the guest OS do not help at all. The guest no longer can access the Internet. The only solution is restarting VirtualBox itself while the host is connected to the Internet. This really gets to be a pain when the host goes into sleep mode or I disconnect my laptop at work and then reconnect at home. Guests are setup with NAT networking. It affects guest machines with both Ubuntu and Windows XP OS'es. Is this expected behavior? Does anyone know of a fix? Or am I setup incorrectly?

    Read the article

  • RAID 0 performance gains?

    - by NickAldwin
    I'm building a new computer over the summer. I'm fairly competent in computer hardware, and am thus building the computer from scratch. I have everything planned out, but I was wondering about RAID. I asked which RAID I should use earlier, but now that it's pretty clear that RAID 1 isn't really that great, I think I'll go with cloud-backup instead of disk-redundancy. However, I still face a choice: use two 1TB drives as two 1TB drives, or combine them into a RAID 0 striped array. Is there any performance gain at all? I know that if one drive dies, everything is gone, so is the performance gain worth it? I'm building a pretty advanced computer, with SLI video cards and a fast CPU, so I'm thinking RAID 0 would give me some good hard drive performance. From your experience, is RAID 0 viable?

    Read the article

  • CRMIT’s HIGH VALUE CRM++ PLUGINS FOR CRM On DEMAND

    - by Soumo Das
    Customer satisfaction and experience being the two most considerable factors, these days businesses are on the lookout for automation tools that are world class, agile and keep quality at its core. CRMIT has developed such tools using cutting edge technologies and abstracting industry best practices and R&D.  Self Service Portal  With customers being so meticulous about regular updates and reliable access to their data, administrators just cannot think of walking a thin line. Surviving without a resource that provides a track of customer requirements for services available 24 x 7 can severely affect the productivity. In such a scenario, CRMIT’s Self Service Portal (SSP) is the best solution. This not only tracks the required customer data, but also allows companies to stay in tune with their employees, vendors and stakeholders.   One can directly sign up to become a CRMOD contact and SSP user. One need not use the database, as operations and interactions are d at run time. This is a fully configurable solution that tracks results periodically, thus making it easy for end users. It also offers better security and data visibility that enables users to progress smoothly. Quote and Order Management   When dealing with quotes, contracts and orders becomes complicated, only Quote & Order Management can work as a one-stop solution. CRMIT offers this great tool for managing all this information and for taking care of customer orders and service requirements.  This CRM On Demand plug-in allows one to create a new quote or copy the existing one. Products can be directly added from the product list of CRMOD and the pricing is calculated automatically. Quote can be generated and mailed to the external users in PDF, HTML and XLS formats. This not only allows management of quotes in an enhanced manner, but also supports various billing and tax calculation features that make work effortless.    Report Scheduler  When it comes to analyzing and providing statistics of various business processes currently running in an organization, one cannot depend on manual updates, which sometimes may be inaccurate or even delayed. CRMIT provides a SaaS based powerful solution - Report Scheduler - that allows CRM users to schedule reports as per the frequencies and then receive them as email attachments at the scheduled time.   With this powerful tool, administrators can control the report scheduler for assigning specific reports to specific users. After that, users can login and schedule any assigned report for viewing at particular intervals on monthly, weekly or daily basis. Additionally, users can also copy the mail to external users and can choose the preferred format. The best part is that sharing business data with third party become easy with this and for viewing reports, users need not log into their CRMOD account.  CRM On Demand Offline Solution CRM On-Demand Offline is another great CRM++ extension that allows one to work in both online and offline modes. Synchronizing both the modes is absolutely easy and offers ease while working. CRM OD offline works as an automation tool that not only improves efficiency, but also works as a backup in most cases. It is readily available as a windows application installer and requires users to be online only while validating and synchronizing. The best part is that working in the offline mode also works as a backup. 

    Read the article

  • Following the Thread in OSB

    - by Antony Reynolds
    Threading in OSB The Scenario I recently led an OSB POC where we needed to get high throughput from an OSB pipeline that had the following logic: 1. Receive Request 2. Send Request to External System 3. If Response has a particular value   3.1 Modify Request   3.2 Resend Request to External System 4. Send Response back to Requestor All looks very straightforward and no nasty wrinkles along the way.  The flow was implemented in OSB as follows (see diagram for more details): Proxy Service to Receive Request and Send Response Request Pipeline   Copies Original Request for use in step 3 Route Node   Sends Request to External System exposed as a Business Service Response Pipeline   Checks Response to Check If Request Needs to Be Resubmitted Modify Request Callout to External System (same Business Service as Route Node) The Proxy and the Business Service were each assigned their own Work Manager, effectively giving each of them their own thread pool. The Surprise Imagine our surprise when, on stressing the system we saw it lock up, with large numbers of blocked threads.  The reason for the lock up is due to some subtleties in the OSB thread model which is the topic of this post.   Basic Thread Model OSB goes to great lengths to avoid holding on to threads.  Lets start by looking at how how OSB deals with a simple request/response routing to a business service in a route node. Most Business Services are implemented by OSB in two parts.  The first part uses the request thread to send the request to the target.  In the diagram this is represented by the thread T1.  After sending the request to the target (the Business Service in our diagram) the request thread is released back to whatever pool it came from.  A multiplexor (muxer) is used to wait for the response.  When the response is received the muxer hands off the response to a new thread that is used to execute the response pipeline, this is represented in the diagram by T2. OSB allows you to assign different Work Managers and hence different thread pools to each Proxy Service and Business Service.  In out example we have the “Proxy Service Work Manager” assigned to the Proxy Service and the “Business Service Work Manager” assigned to the Business Service.  Note that the Business Service Work Manager is only used to assign the thread to process the response, it is never used to process the request. This architecture means that while waiting for a response from a business service there are no threads in use, which makes for better scalability in terms of thread usage. First Wrinkle Note that if the Proxy and the Business Service both use the same Work Manager then there is potential for starvation.  For example: Request Pipeline makes a blocking callout, say to perform a database read. Business Service response tries to allocate a thread from thread pool but all threads are blocked in the database read. New requests arrive and contend with responses arriving for the available threads. Similar problems can occur if the response pipeline blocks for some reason, maybe a database update for example. Solution The solution to this is to make sure that the Proxy and Business Service use different Work Managers so that they do not contend with each other for threads. Do Nothing Route Thread Model So what happens if there is no route node?  In this case OSB just echoes the Request message as a Response message, but what happens to the threads?  OSB still uses a separate thread for the response, but in this case the Work Manager used is the Default Work Manager. So this is really a special case of the Basic Thread Model discussed above, except that the response pipeline will always execute on the Default Work Manager.   Proxy Chaining Thread Model So what happens when the route node is actually calling a Proxy Service rather than a Business Service, does the second Proxy Service use its own Thread or does it re-use the thread of the original Request Pipeline? Well as you can see from the diagram when a route node calls another proxy service then the original Work Manager is used for both request pipelines.  Similarly the response pipeline uses the Work Manager associated with the ultimate Business Service invoked via a Route Node.  This actually fits in with the earlier description I gave about Business Services and by extension Route Nodes they “… uses the request thread to send the request to the target”. Call Out Threading Model So what happens when you make a Service Callout to a Business Service from within a pipeline.  The documentation says that “The pipeline processor will block the thread until the response arrives asynchronously” when using a Service Callout.  What this means is that the target Business Service is called using the pipeline thread but the response is also handled by the pipeline thread.  This implies that the pipeline thread blocks waiting for a response.  It is the handling of this response that behaves in an unexpected way. When a Business Service is called via a Service Callout, the calling thread is suspended after sending the request, but unlike the Route Node case the thread is not released, it waits for the response.  The muxer uses the Business Service Work Manager to allocate a thread to process the response, but in this case processing the response means getting the response and notifying the blocked pipeline thread that the response is available.  The original pipeline thread can then continue to process the response. Second Wrinkle This leads to an unfortunate wrinkle.  If the Business Service is using the same Work Manager as the Pipeline then it is possible for starvation or a deadlock to occur.  The scenario is as follows: Pipeline makes a Callout and the thread is suspended but still allocated Multiple Pipeline instances using the same Work Manager are in this state (common for a system under load) Response comes back but all Work Manager threads are allocated to blocked pipelines. Response cannot be processed and so pipeline threads never unblock – deadlock! Solution The solution to this is to make sure that any Business Services used by a Callout in a pipeline use a different Work Manager to the pipeline itself. The Solution to My Problem Looking back at my original workflow we see that the same Business Service is called twice, once in a Routing Node and once in a Response Pipeline Callout.  This was what was causing my problem because the response pipeline was using the Business Service Work Manager, but the Service Callout wanted to use the same Work Manager to handle the responses and so eventually my Response Pipeline hogged all the available threads so no responses could be processed. The solution was to create a second Business Service pointing to the same location as the original Business Service, the only difference was to assign a different Work Manager to this Business Service.  This ensured that when the Service Callout completed there were always threads available to process the response because the response processing from the Service Callout had its own dedicated Work Manager. Summary Request Pipeline Executes on Proxy Work Manager (WM) Thread so limited by setting of that WM.  If no WM specified then uses WLS default WM. Route Node Request sent using Proxy WM Thread Proxy WM Thread is released before getting response Muxer is used to handle response Muxer hands off response to Business Service (BS) WM Response Pipeline Executes on Routed Business Service WM Thread so limited by setting of that WM.  If no WM specified then uses WLS default WM. No Route Node (Echo functionality) Proxy WM thread released New thread from the default WM used for response pipeline Service Callout Request sent using proxy pipeline thread Proxy thread is suspended (not released) until the response comes back Notification of response handled by BS WM thread so limited by setting of that WM.  If no WM specified then uses WLS default WM. Note this is a very short lived use of the thread After notification by callout BS WM thread that thread is released and execution continues on the original pipeline thread. Route/Callout to Proxy Service Request Pipeline of callee executes on requestor thread Response Pipeline of caller executes on response thread of requested proxy Throttling Request message may be queued if limit reached. Requesting thread is released (route node) or suspended (callout) So what this means is that you may get deadlocks caused by thread starvation if you use the same thread pool for the business service in a route node and the business service in a callout from the response pipeline because the callout will need a notification thread from the same thread pool as the response pipeline.  This was the problem we were having. You get a similar problem if you use the same work manager for the proxy request pipeline and a business service callout from that request pipeline. It also means you may want to have different work managers for the proxy and business service in the route node. Basically you need to think carefully about how threading impacts your proxy services. References Thanks to Jay Kasi, Gerald Nunn and Deb Ayers for helping to explain this to me.  Any errors are my own and not theirs.  Also thanks to my colleagues Milind Pandit and Prasad Bopardikar who travelled this road with me. OSB Thread Model Great Blog Post on Thread Usage in OSB

    Read the article

  • Why Haven’t NFC Payments Taken Off?

    - by David Dorf
    With the EMV 2015 milestone approaching rapidly, there’s been renewed interest in smartcards, those credit cards with an embedded computer chip.  Back in 1996 I was working for a vendor helping Visa introduce a stored-value smartcard to the US.  Visa Cash was debuted at the 1996 Olympics in Atlanta, and I firmly believed it was the beginning of a cashless society.  (I later worked on MasterCard’s system called Mondex, from the UK, which debuted the following year in Manhattan). But since you don’t have a Visa Cash card in your wallet, it’s obvious the project never took off.  It was convenient for consumers, faster for merchants, and more cost-effective for banks, so why did it fail?  All emerging payment systems suffer from the chicken-and-egg dilemma.  Consumers won’t carry the cards if few merchants accept them, and merchants won’t install the terminals if few consumers have cards. Today’s emerging payment providers are in a similar pickle.  There has to be enough value for all three constituents – consumers, merchants, banks – to change the status quo.  And it’s not enough to exceed the value, it’s got to be a leap in value, because people generally resist change.  ATMs and transit cards are great examples of this, and airline kiosks and self-checkout systems are to a lesser extent. Although Google Wallet and ISIS, the two leading NFC payment platforms in the US, have shown strong commitment, there’s been very little traction.  Yes, I can load my credit card number into my phone then tap to pay, but what was the incremental value over swiping my old card?  For it to be a leap in value, it has to offer more than just payment, which I can do very easily today.  The other two ingredients are thought to be loyalty programs and digital coupons, but neither Google nor ISIS really did them well. Of course a large portion of the mobile phone market doesn’t even support NFC thanks to Apple, and since it’s not in their best interest that situation is unlikely to change.  Another issue is getting access to the “secure element,” the chip inside the phone where accounts numbers can be held securely.  Telco providers and handset manufacturers own that area, and they’re not willing to share with banks.  (Host Card Emulation, which has been endorsed by MasterCard and Visa, might be a solution.) Square recently gave up on its wallet, and MCX (the group of retailers trying to create a mobile payment platform) is very slow out of the gate.  That leaves PayPal and a slew of smaller companies trying to introduce easier ways to pay. But is it really so cumbersome to carry and swipe (soon to insert) a credit card?  Aren’t there more important problems to solve in the retail customer experience?  Maybe Apple will come up with some novel way to use iBeacons and fingerprint identification to make payments, but for now I think we need to focus on upgrading to Chip-and-PIN and tightening security.  In the meantime, NFC payments will continue to struggle.

    Read the article

  • Who should ‘own’ the Enterprise Architecture?

    - by Michael Glas
    I recently had a discussion around who should own an organization’s Enterprise Architecture. It was spawned by an article titled “Busting CIO Myths” in CIO magazine1 where the author interviewed Jeanne Ross, director of MIT's Center for Information Systems Research and co-author of books on enterprise architecture, governance and IT value.In the article Jeanne states that companies need to acknowledge that "architecture says everything about how the company is going to function, operate, and grow; the only person who can own that is the CEO". "If the CEO doesn't accept that role, there really can be no architecture."The first question that came up when talking about ownership was whether you are talking about a person, role, or organization (there are pros and cons to each, but in general, I like to assign accountability to as few people as possible). After much thought and discussion, I came to the conclusion that we were answering the wrong question. Instead of talking about ownership we were talking about responsibility and accountability, and the answer varies depending on the particular role of the organization’s Enterprise Architecture and the activities of the enterprise architect(s).Instead of looking at just who owns the architecture, think about what the person/role/organization should do. This is one possible scenario (thanks to Bob Covington): The CEO should own the Enterprise Strategy which guides the business architecture. The Business units should own the business processes and information which guide the business, application and information architectures. The CIO should own the technology, IT Governance and the management of the application and information architectures/implementations. The EA Governance Team owns the EA process.  If EA is done well, the governance team consists of both IT and the business. While there are many more roles and responsibilities than listed here, it starts to provide a clearer understanding of ‘ownership’. Now back to Jeanne’s statement that the CEO should own the architecture. If you agree with the statement about what the architecture is (and I do agree), then ultimately the CEO does need to own it. However, what we ended up with was not really ownership, but more statements around roles and responsibilities tied to aspects of the enterprise architecture. You can debate the semantics of ownership vs. responsibility and accountability, but in the end the important thing is to come to a clearer understanding that is easily communicated (and hopefully measured) around the question “Who owns the Enterprise Architecture”.The next logical step . . . create a RACI matrix that details the findings . . . but that is a step that each organization needs to do on their own as it will vary based on current EA maturity, company culture, and a variety of other factors. Who ‘owns’ the Enterprise Architecture in your organization? 1 CIO Magazine Article (Busting CIO Myths): http://www.cio.com/article/704943/Busting_CIO_Myths Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

    Read the article

  • Understanding G1 GC Logs

    - by poonam
    The purpose of this post is to explain the meaning of GC logs generated with some tracing and diagnostic options for G1 GC. We will take a look at the output generated with PrintGCDetails which is a product flag and provides the most detailed level of information. Along with that, we will also look at the output of two diagnostic flags that get enabled with -XX:+UnlockDiagnosticVMOptions option - G1PrintRegionLivenessInfo that prints the occupancy and the amount of space used by live objects in each region at the end of the marking cycle and G1PrintHeapRegions that provides detailed information on the heap regions being allocated and reclaimed. We will be looking at the logs generated with JDK 1.7.0_04 using these options. Option -XX:+PrintGCDetails Here's a sample log of G1 collection generated with PrintGCDetails. 0.522: [GC pause (young), 0.15877971 secs] [Parallel Time: 157.1 ms] [GC Worker Start (ms): 522.1 522.2 522.2 522.2 Avg: 522.2, Min: 522.1, Max: 522.2, Diff: 0.1] [Ext Root Scanning (ms): 1.6 1.5 1.6 1.9 Avg: 1.7, Min: 1.5, Max: 1.9, Diff: 0.4] [Update RS (ms): 38.7 38.8 50.6 37.3 Avg: 41.3, Min: 37.3, Max: 50.6, Diff: 13.3] [Processed Buffers : 2 2 3 2 Sum: 9, Avg: 2, Min: 2, Max: 3, Diff: 1] [Scan RS (ms): 9.9 9.7 0.0 9.7 Avg: 7.3, Min: 0.0, Max: 9.9, Diff: 9.9] [Object Copy (ms): 106.7 106.8 104.6 107.9 Avg: 106.5, Min: 104.6, Max: 107.9, Diff: 3.3] [Termination (ms): 0.0 0.0 0.0 0.0 Avg: 0.0, Min: 0.0, Max: 0.0, Diff: 0.0] [Termination Attempts : 1 4 4 6 Sum: 15, Avg: 3, Min: 1, Max: 6, Diff: 5] [GC Worker End (ms): 679.1 679.1 679.1 679.1 Avg: 679.1, Min: 679.1, Max: 679.1, Diff: 0.1] [GC Worker (ms): 156.9 157.0 156.9 156.9 Avg: 156.9, Min: 156.9, Max: 157.0, Diff: 0.1] [GC Worker Other (ms): 0.3 0.3 0.3 0.3 Avg: 0.3, Min: 0.3, Max: 0.3, Diff: 0.0] [Clear CT: 0.1 ms] [Other: 1.5 ms] [Choose CSet: 0.0 ms] [Ref Proc: 0.3 ms] [Ref Enq: 0.0 ms] [Free CSet: 0.3 ms] [Eden: 12M(12M)->0B(10M) Survivors: 0B->2048K Heap: 13M(64M)->9739K(64M)] [Times: user=0.59 sys=0.02, real=0.16 secs] This is the typical log of an Evacuation Pause (G1 collection) in which live objects are copied from one set of regions (young OR young+old) to another set. It is a stop-the-world activity and all the application threads are stopped at a safepoint during this time. This pause is made up of several sub-tasks indicated by the indentation in the log entries. Here's is the top most line that gets printed for the Evacuation Pause. 0.522: [GC pause (young), 0.15877971 secs] This is the highest level information telling us that it is an Evacuation Pause that started at 0.522 secs from the start of the process, in which all the regions being evacuated are Young i.e. Eden and Survivor regions. This collection took 0.15877971 secs to finish. Evacuation Pauses can be mixed as well. In which case the set of regions selected include all of the young regions as well as some old regions. 1.730: [GC pause (mixed), 0.32714353 secs] Let's take a look at all the sub-tasks performed in this Evacuation Pause. [Parallel Time: 157.1 ms] Parallel Time is the total elapsed time spent by all the parallel GC worker threads. The following lines correspond to the parallel tasks performed by these worker threads in this total parallel time, which in this case is 157.1 ms. [GC Worker Start (ms): 522.1 522.2 522.2 522.2Avg: 522.2, Min: 522.1, Max: 522.2, Diff: 0.1] The first line tells us the start time of each of the worker thread in milliseconds. The start times are ordered with respect to the worker thread ids – thread 0 started at 522.1ms and thread 1 started at 522.2ms from the start of the process. The second line tells the Avg, Min, Max and Diff of the start times of all of the worker threads. [Ext Root Scanning (ms): 1.6 1.5 1.6 1.9 Avg: 1.7, Min: 1.5, Max: 1.9, Diff: 0.4] This gives us the time spent by each worker thread scanning the roots (globals, registers, thread stacks and VM data structures). Here, thread 0 took 1.6ms to perform the root scanning task and thread 1 took 1.5 ms. The second line clearly shows the Avg, Min, Max and Diff of the times spent by all the worker threads. [Update RS (ms): 38.7 38.8 50.6 37.3 Avg: 41.3, Min: 37.3, Max: 50.6, Diff: 13.3] Update RS gives us the time each thread spent in updating the Remembered Sets. Remembered Sets are the data structures that keep track of the references that point into a heap region. Mutator threads keep changing the object graph and thus the references that point into a particular region. We keep track of these changes in buffers called Update Buffers. The Update RS sub-task processes the update buffers that were not able to be processed concurrently, and updates the corresponding remembered sets of all regions. [Processed Buffers : 2 2 3 2Sum: 9, Avg: 2, Min: 2, Max: 3, Diff: 1] This tells us the number of Update Buffers (mentioned above) processed by each worker thread. [Scan RS (ms): 9.9 9.7 0.0 9.7 Avg: 7.3, Min: 0.0, Max: 9.9, Diff: 9.9] These are the times each worker thread had spent in scanning the Remembered Sets. Remembered Set of a region contains cards that correspond to the references pointing into that region. This phase scans those cards looking for the references pointing into all the regions of the collection set. [Object Copy (ms): 106.7 106.8 104.6 107.9 Avg: 106.5, Min: 104.6, Max: 107.9, Diff: 3.3] These are the times spent by each worker thread copying live objects from the regions in the Collection Set to the other regions. [Termination (ms): 0.0 0.0 0.0 0.0 Avg: 0.0, Min: 0.0, Max: 0.0, Diff: 0.0] Termination time is the time spent by the worker thread offering to terminate. But before terminating, it checks the work queues of other threads and if there are still object references in other work queues, it tries to steal object references, and if it succeeds in stealing a reference, it processes that and offers to terminate again. [Termination Attempts : 1 4 4 6 Sum: 15, Avg: 3, Min: 1, Max: 6, Diff: 5] This gives the number of times each thread has offered to terminate. [GC Worker End (ms): 679.1 679.1 679.1 679.1 Avg: 679.1, Min: 679.1, Max: 679.1, Diff: 0.1] These are the times in milliseconds at which each worker thread stopped. [GC Worker (ms): 156.9 157.0 156.9 156.9 Avg: 156.9, Min: 156.9, Max: 157.0, Diff: 0.1] These are the total lifetimes of each worker thread. [GC Worker Other (ms): 0.3 0.3 0.3 0.3Avg: 0.3, Min: 0.3, Max: 0.3, Diff: 0.0] These are the times that each worker thread spent in performing some other tasks that we have not accounted above for the total Parallel Time. [Clear CT: 0.1 ms] This is the time spent in clearing the Card Table. This task is performed in serial mode. [Other: 1.5 ms] Time spent in the some other tasks listed below. The following sub-tasks (which individually may be parallelized) are performed serially. [Choose CSet: 0.0 ms] Time spent in selecting the regions for the Collection Set. [Ref Proc: 0.3 ms] Total time spent in processing Reference objects. [Ref Enq: 0.0 ms] Time spent in enqueuing references to the ReferenceQueues. [Free CSet: 0.3 ms] Time spent in freeing the collection set data structure. [Eden: 12M(12M)->0B(13M) Survivors: 0B->2048K Heap: 14M(64M)->9739K(64M)] This line gives the details on the heap size changes with the Evacuation Pause. This shows that Eden had the occupancy of 12M and its capacity was also 12M before the collection. After the collection, its occupancy got reduced to 0 since everything is evacuated/promoted from Eden during a collection, and its target size grew to 13M. The new Eden capacity of 13M is not reserved at this point. This value is the target size of the Eden. Regions are added to Eden as the demand is made and when the added regions reach to the target size, we start the next collection. Similarly, Survivors had the occupancy of 0 bytes and it grew to 2048K after the collection. The total heap occupancy and capacity was 14M and 64M receptively before the collection and it became 9739K and 64M after the collection. Apart from the evacuation pauses, G1 also performs concurrent-marking to build the live data information of regions. 1.416: [GC pause (young) (initial-mark), 0.62417980 secs] ….... 2.042: [GC concurrent-root-region-scan-start] 2.067: [GC concurrent-root-region-scan-end, 0.0251507] 2.068: [GC concurrent-mark-start] 3.198: [GC concurrent-mark-reset-for-overflow] 4.053: [GC concurrent-mark-end, 1.9849672 sec] 4.055: [GC remark 4.055: [GC ref-proc, 0.0000254 secs], 0.0030184 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.088: [GC cleanup 117M->106M(138M), 0.0015198 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.090: [GC concurrent-cleanup-start] 4.091: [GC concurrent-cleanup-end, 0.0002721] The first phase of a marking cycle is Initial Marking where all the objects directly reachable from the roots are marked and this phase is piggy-backed on a fully young Evacuation Pause. 2.042: [GC concurrent-root-region-scan-start] This marks the start of a concurrent phase that scans the set of root-regions which are directly reachable from the survivors of the initial marking phase. 2.067: [GC concurrent-root-region-scan-end, 0.0251507] End of the concurrent root region scan phase and it lasted for 0.0251507 seconds. 2.068: [GC concurrent-mark-start] Start of the concurrent marking at 2.068 secs from the start of the process. 3.198: [GC concurrent-mark-reset-for-overflow] This indicates that the global marking stack had became full and there was an overflow of the stack. Concurrent marking detected this overflow and had to reset the data structures to start the marking again. 4.053: [GC concurrent-mark-end, 1.9849672 sec] End of the concurrent marking phase and it lasted for 1.9849672 seconds. 4.055: [GC remark 4.055: [GC ref-proc, 0.0000254 secs], 0.0030184 secs] This corresponds to the remark phase which is a stop-the-world phase. It completes the left over marking work (SATB buffers processing) from the previous phase. In this case, this phase took 0.0030184 secs and out of which 0.0000254 secs were spent on Reference processing. 4.088: [GC cleanup 117M->106M(138M), 0.0015198 secs] Cleanup phase which is again a stop-the-world phase. It goes through the marking information of all the regions, computes the live data information of each region, resets the marking data structures and sorts the regions according to their gc-efficiency. In this example, the total heap size is 138M and after the live data counting it was found that the total live data size dropped down from 117M to 106M. 4.090: [GC concurrent-cleanup-start] This concurrent cleanup phase frees up the regions that were found to be empty (didn't contain any live data) during the previous stop-the-world phase. 4.091: [GC concurrent-cleanup-end, 0.0002721] Concurrent cleanup phase took 0.0002721 secs to free up the empty regions. Option -XX:G1PrintRegionLivenessInfo Now, let's look at the output generated with the flag G1PrintRegionLivenessInfo. This is a diagnostic option and gets enabled with -XX:+UnlockDiagnosticVMOptions. G1PrintRegionLivenessInfo prints the live data information of each region during the Cleanup phase of the concurrent-marking cycle. 26.896: [GC cleanup ### PHASE Post-Marking @ 26.896### HEAP committed: 0x02e00000-0x0fe00000 reserved: 0x02e00000-0x12e00000 region-size: 1048576 Cleanup phase of the concurrent-marking cycle started at 26.896 secs from the start of the process and this live data information is being printed after the marking phase. Committed G1 heap ranges from 0x02e00000 to 0x0fe00000 and the total G1 heap reserved by JVM is from 0x02e00000 to 0x12e00000. Each region in the G1 heap is of size 1048576 bytes. ### type address-range used prev-live next-live gc-eff### (bytes) (bytes) (bytes) (bytes/ms) This is the header of the output that tells us about the type of the region, address-range of the region, used space in the region, live bytes in the region with respect to the previous marking cycle, live bytes in the region with respect to the current marking cycle and the GC efficiency of that region. ### FREE 0x02e00000-0x02f00000 0 0 0 0.0 This is a Free region. ### OLD 0x02f00000-0x03000000 1048576 1038592 1038592 0.0 Old region with address-range from 0x02f00000 to 0x03000000. Total used space in the region is 1048576 bytes, live bytes as per the previous marking cycle are 1038592 and live bytes with respect to the current marking cycle are also 1038592. The GC efficiency has been computed as 0. ### EDEN 0x03400000-0x03500000 20992 20992 20992 0.0 This is an Eden region. ### HUMS 0x0ae00000-0x0af00000 1048576 1048576 1048576 0.0### HUMC 0x0af00000-0x0b000000 1048576 1048576 1048576 0.0### HUMC 0x0b000000-0x0b100000 1048576 1048576 1048576 0.0### HUMC 0x0b100000-0x0b200000 1048576 1048576 1048576 0.0### HUMC 0x0b200000-0x0b300000 1048576 1048576 1048576 0.0### HUMC 0x0b300000-0x0b400000 1048576 1048576 1048576 0.0### HUMC 0x0b400000-0x0b500000 1001480 1001480 1001480 0.0 These are the continuous set of regions called Humongous regions for storing a large object. HUMS (Humongous starts) marks the start of the set of humongous regions and HUMC (Humongous continues) tags the subsequent regions of the humongous regions set. ### SURV 0x09300000-0x09400000 16384 16384 16384 0.0 This is a Survivor region. ### SUMMARY capacity: 208.00 MB used: 150.16 MB / 72.19 % prev-live: 149.78 MB / 72.01 % next-live: 142.82 MB / 68.66 % At the end, a summary is printed listing the capacity, the used space and the change in the liveness after the completion of concurrent marking. In this case, G1 heap capacity is 208MB, total used space is 150.16MB which is 72.19% of the total heap size, live data in the previous marking was 149.78MB which was 72.01% of the total heap size and the live data as per the current marking is 142.82MB which is 68.66% of the total heap size. Option -XX:+G1PrintHeapRegions G1PrintHeapRegions option logs the regions related events when regions are committed, allocated into or are reclaimed. COMMIT/UNCOMMIT events G1HR COMMIT [0x6e900000,0x6ea00000]G1HR COMMIT [0x6ea00000,0x6eb00000] Here, the heap is being initialized or expanded and the region (with bottom: 0x6eb00000 and end: 0x6ec00000) is being freshly committed. COMMIT events are always generated in order i.e. the next COMMIT event will always be for the uncommitted region with the lowest address. G1HR UNCOMMIT [0x72700000,0x72800000]G1HR UNCOMMIT [0x72600000,0x72700000] Opposite to COMMIT. The heap got shrunk at the end of a Full GC and the regions are being uncommitted. Like COMMIT, UNCOMMIT events are also generated in order i.e. the next UNCOMMIT event will always be for the committed region with the highest address. GC Cycle events G1HR #StartGC 7G1HR CSET 0x6e900000G1HR REUSE 0x70500000G1HR ALLOC(Old) 0x6f800000G1HR RETIRE 0x6f800000 0x6f821b20G1HR #EndGC 7 This shows start and end of an Evacuation pause. This event is followed by a GC counter tracking both evacuation pauses and Full GCs. Here, this is the 7th GC since the start of the process. G1HR #StartFullGC 17G1HR UNCOMMIT [0x6ed00000,0x6ee00000]G1HR POST-COMPACTION(Old) 0x6e800000 0x6e854f58G1HR #EndFullGC 17 Shows start and end of a Full GC. This event is also followed by the same GC counter as above. This is the 17th GC since the start of the process. ALLOC events G1HR ALLOC(Eden) 0x6e800000 The region with bottom 0x6e800000 just started being used for allocation. In this case it is an Eden region and allocated into by a mutator thread. G1HR ALLOC(StartsH) 0x6ec00000 0x6ed00000G1HR ALLOC(ContinuesH) 0x6ed00000 0x6e000000 Regions being used for the allocation of Humongous object. The object spans over two regions. G1HR ALLOC(SingleH) 0x6f900000 0x6f9eb010 Single region being used for the allocation of Humongous object. G1HR COMMIT [0x6ee00000,0x6ef00000]G1HR COMMIT [0x6ef00000,0x6f000000]G1HR COMMIT [0x6f000000,0x6f100000]G1HR COMMIT [0x6f100000,0x6f200000]G1HR ALLOC(StartsH) 0x6ee00000 0x6ef00000G1HR ALLOC(ContinuesH) 0x6ef00000 0x6f000000G1HR ALLOC(ContinuesH) 0x6f000000 0x6f100000G1HR ALLOC(ContinuesH) 0x6f100000 0x6f102010 Here, Humongous object allocation request could not be satisfied by the free committed regions that existed in the heap, so the heap needed to be expanded. Thus new regions are committed and then allocated into for the Humongous object. G1HR ALLOC(Old) 0x6f800000 Old region started being used for allocation during GC. G1HR ALLOC(Survivor) 0x6fa00000 Region being used for copying old objects into during a GC. Note that Eden and Humongous ALLOC events are generated outside the GC boundaries and Old and Survivor ALLOC events are generated inside the GC boundaries. Other Events G1HR RETIRE 0x6e800000 0x6e87bd98 Retire and stop using the region having bottom 0x6e800000 and top 0x6e87bd98 for allocation. Note that most regions are full when they are retired and we omit those events to reduce the output volume. A region is retired when another region of the same type is allocated or we reach the start or end of a GC(depending on the region). So for Eden regions: For example: 1. ALLOC(Eden) Foo2. ALLOC(Eden) Bar3. StartGC At point 2, Foo has just been retired and it was full. At point 3, Bar was retired and it was full. If they were not full when they were retired, we will have a RETIRE event: 1. ALLOC(Eden) Foo2. RETIRE Foo top3. ALLOC(Eden) Bar4. StartGC G1HR CSET 0x6e900000 Region (bottom: 0x6e900000) is selected for the Collection Set. The region might have been selected for the collection set earlier (i.e. when it was allocated). However, we generate the CSET events for all regions in the CSet at the start of a GC to make sure there's no confusion about which regions are part of the CSet. G1HR POST-COMPACTION(Old) 0x6e800000 0x6e839858 POST-COMPACTION event is generated for each non-empty region in the heap after a full compaction. A full compaction moves objects around, so we don't know what the resulting shape of the heap is (which regions were written to, which were emptied, etc.). To deal with this, we generate a POST-COMPACTION event for each non-empty region with its type (old/humongous) and the heap boundaries. At this point we should only have Old and Humongous regions, as we have collapsed the young generation, so we should not have eden and survivors. POST-COMPACTION events are generated within the Full GC boundary. G1HR CLEANUP 0x6f400000G1HR CLEANUP 0x6f300000G1HR CLEANUP 0x6f200000 These regions were found empty after remark phase of Concurrent Marking and are reclaimed shortly afterwards. G1HR #StartGC 5G1HR CSET 0x6f400000G1HR CSET 0x6e900000G1HR REUSE 0x6f800000 At the end of a GC we retire the old region we are allocating into. Given that its not full, we will carry on allocating into it during the next GC. This is what REUSE means. In the above case 0x6f800000 should have been the last region with an ALLOC(Old) event during the previous GC and should have been retired before the end of the previous GC. G1HR ALLOC-FORCE(Eden) 0x6f800000 A specialization of ALLOC which indicates that we have reached the max desired number of the particular region type (in this case: Eden), but we decided to allocate one more. Currently it's only used for Eden regions when we extend the young generation because we cannot do a GC as the GC-Locker is active. G1HR EVAC-FAILURE 0x6f800000 During a GC, we have failed to evacuate an object from the given region as the heap is full and there is no space left to copy the object. This event is generated within GC boundaries and exactly once for each region from which we failed to evacuate objects. When Heap Regions are reclaimed ? It is also worth mentioning when the heap regions in the G1 heap are reclaimed. All regions that are in the CSet (the ones that appear in CSET events) are reclaimed at the end of a GC. The exception to that are regions with EVAC-FAILURE events. All regions with CLEANUP events are reclaimed. After a Full GC some regions get reclaimed (the ones from which we moved the objects out). But that is not shown explicitly, instead the non-empty regions that are left in the heap are printed out with the POST-COMPACTION events.

    Read the article

  • Don’t miss the Receiving Webcast on November 20th

    - by user793553
    This one-hour session is recommended for technical and functional users who are interested to know about the Receiving transactions and its debugging techniques. TOPICS WILL INCLUDE: Using generic diagnostic scripts. How to read debug logs in receiving. Data flow for various document types (PO, RMA, ISO, IOT) to help debug issues Receiving Transaction processor Generic datafixes.  See DocID 1456150.1 to sign up now!

    Read the article

  • VSFTPD does not allow upload with virtual users

    - by Mr. Squig
    I am attempting to setup VSFTPD with virtual users on a server running Ubuntu 12.04. I have configured the server to allow for virtual users to login, but I am having trouble getting it to allow uploads. My vsftpd.conf is as follows: listen=YES anonymous_enable=NO local_enable=YES write_enable=YES local_umask=022 anon_upload_enable=YES dirmessage_enable=YES use_localtime=YES xferlog_enable=YES connect_from_port_20=YES chroot_local_user=YES virtual_use_local_privs=YES guest_enable=YES guest_username=virtual user_sub_token=$USER local_root=/var/www/$USER hide_ids=YES secure_chroot_dir=/var/run/vsftpd/empty pam_service_name=vsftpd rsa_cert_file=/etc/ssl/private/vsftpd.pem /etc/pam.d/vsftpd contains: auth required pam_pwdfile.so pwdfile /etc/vsftpd.passwd crypt=hash account required pam_permit.so crypt=hash I have two virtual users set up, one of which has the same name as a local user. They each have a directory in /var/www/ owned by 'virtual'. As I understand it, when a virtual user logs in this way they will appear to the system as the user virtual. Using this configuration user can log on, but cannot upload files. The error given in /var/log/vsftpd.log is: Tue Nov 20 19:49:00 2012 [pid 2] CONNECT: Client "96.233.116.53" Tue Nov 20 19:49:07 2012 [pid 1] [zac] OK LOGIN: Client "96.233.116.53" Tue Nov 20 19:49:11 2012 [pid 2] CONNECT: Client "96.233.116.53" Tue Nov 20 19:49:11 2012 [pid 1] [zac] OK LOGIN: Client "96.233.116.53" Tue Nov 20 19:49:11 2012 [pid 3] [zac] FAIL CHMOD: Client "96.233.116.53", "/test.ppm 644" I have tried changing the permissions of these directories in all sorts of ways, but nothing seem to work. I have a feeling that it is something simple related to permissions. Any ideas?

    Read the article

< Previous Page | 403 404 405 406 407 408 409 410 411 412 413 414  | Next Page >