Search Results

Search found 25952 results on 1039 pages for 'development lifecycle'.

Page 408/1039 | < Previous Page | 404 405 406 407 408 409 410 411 412 413 414 415  | Next Page >

  • How to use batch rendering with an entity component system?

    - by Kiril
    I have an entity component system and a 2D rendering engine. Because I have a lot of repeating sprites (the entities are non-animated, the background is tile based) I would really like to use batch rendering to reduce calls to the drawing routine. What would be the best way to integrate this with an engtity system? I thought about creating and populating the sprite batche every frame update, but that will probably be very slow. A better way would be to add a reference to an entity's quad to the sprite batch at initialization, but that would mean that the entity factory has to be aware of the Rendering System or that the sprite batch has to be a component of some Cache entity. One case violates encapsulation pretty heavily, while the other forces a non-game object entity in the entity system, which I am not sure I like a lot. As for engine, I am using Love2D (Love2D website) and FEZ ( FEZ website) as entity system(so everything is in Lua). I am more interested in a generic pattern of how to properly implement that rather than a language/library specific solution. Thanks in advance!

    Read the article

  • Component-wise GLSL vector branching

    - by Gustavo Maciel
    I'm aware that it usually is a BAD idea to operate separately on GLSL vec's components separately. For example: //use instrinsic functions, they do the calculation on 4 components at a time. float dot = v1.x*v2.x + v1.y * v2.y + v1.z * v2.z; //NEVER float dot = dot(v1, v2); //YES //Multiply one by one is not good too, since the ALU can do the 4 components at a time too. vec3 mul = vec3(v1.x * v2.x, v1.y * v2.y, v1.z * v2.z); //NEVER vec3 mul = v1 * v2; I've been struggling thinking, are there equivalent operations for branching? For example: vec4 Overlay(vec4 v1, vec4 v2, vec4 opacity) { bvec4 less = lessThan(v1, vec4(0.5)); vec4 blend; for(int i = 0; i < 4; ++i) { if(less[i]) blend[i] = 2.0 * v1[i]*v2[i]; else blend[i] = 1.0 - 2.0 * (1.0 - v1[i])*(1.0 - v2[i]); } return v1 + (blend-v1)*opacity; } This is a Overlay operator that works component wise. I'm not sure if this is the best way to do it, since I'm afraid these for and if can be a bottleneck later. Tl;dr, Can I branch component wise? If yes, how can I optimize that Overlay function with it?

    Read the article

  • Finding Z given X & Y coordinates on terrain?

    - by mrky
    I need to know what the most efficient way of finding Z given X & Y coordinates on terrain. My terrain is set up as a grid, each grid block consisting of two triangles, which may be flipped in any direction. I want to move game objects smoothly along the floor of the terrain without "stepping." I'm currently using the following method with unexpected results: double mapClass::getZ(double x, double y) { int vertexIndex = ((floor(y))*width*2)+((floor(x))*2); vec3ray ray = {glm::vec3(x, y, 2), glm::vec3(x, y, 0)}; vec3triangle tri1 = { glmFrom(vertices[vertexIndex].v1), glmFrom(vertices[vertexIndex].v2), glmFrom(vertices[vertexIndex].v3) }; vec3triangle tri2 = { glmFrom(vertices[vertexIndex+1].v1), glmFrom(vertices[vertexIndex+1].v2), glmFrom(vertices[vertexIndex+1].v3) }; glm::vec3 intersect; if (!intersectRayTriangle(tri1, ray, intersect)) { intersectRayTriangle(tri2, ray, intersect); } return intersect.z; } intersectRayTriangle() and glmFrom() are as follows: bool intersectRayTriangle(vec3triangle tri, vec3ray ray, glm::vec3 &worldIntersect) { glm::vec3 barycentricIntersect; if (glm::intersectLineTriangle(ray.origin, ray.direction, tri.p0, tri.p1, tri.p2, barycentricIntersect)) { // Convert barycentric to world coordinates double u, v, w; u = barycentricIntersect.x; v = barycentricIntersect.y; w = 1 - (u+v); worldIntersect.x = (u * tri.p0.x + v * tri.p1.x + w * tri.p2.x); worldIntersect.y = (u * tri.p0.y + v * tri.p1.y + w * tri.p2.y); worldIntersect.z = (u * tri.p0.z + v * tri.p1.z + w * tri.p2.z); return true; } else { return false; } } glm::vec3 glmFrom(s_point3f point) { return glm::vec3(point.x, point.y, point.z); } My convenience structures are defined as: struct s_point3f { GLfloat x, y, z; }; struct s_triangle3f { s_point3f v1, v2, v3; }; struct vec3ray { glm::vec3 origin, direction; }; struct vec3triangle { glm::vec3 p0, p1, p2; }; vertices is defined as: std::vector<s_triangle3f> vertices; Basically, I'm trying to get the intersect of a ray (which is positioned at the x, and y coordinates specified facing pointing downwards toward the terrain) and one of the two triangles on the grid. getZ() rarely returns anything but 0. Other times, the numbers it generates seem to be completely off. Am I taking the wrong approach? Can anyone see a problem with my code? Any help or critique is appreciated!

    Read the article

  • Updating physics for animated models

    - by Mathias Hölzl
    For a new game we have do set up a scene with a minimum of 30 bone animated models.(shooter) The problem is that the update process for the animated models takes too long. Thats what I do: Each character has ~30 bones and for every update tick the animation gets calculated and every bone fires a event with the new matrix. The physics receives the event with the new matrix and updates the collision shape for that bone. The time that it takes to build the animation isn't that bad (0.2ms for 30 Bones - 6ms for 30 models). But the main problem is that the physic engine (Bullet) uses a diffrent matrix for transformation and so its necessary to convert it. Code for matrix conversion: (~0.005ms) btTransform CLEAR_PHYSICS_API Mat_to_btTransform( Mat mat ) { btMatrix3x3 bulletRotation; btVector3 bulletPosition; XMFLOAT4X4 matData = mat.GetStorage(); // copy rotation matrix for ( int row=0; row<3; ++row ) for ( int column=0; column<3; ++column ) bulletRotation[row][column] = matData.m[column][row]; for ( int column=0; column<3; ++column ) bulletPosition[column] = matData.m[3][column]; return btTransform( bulletRotation, bulletPosition ); } The function for updating the transform(Physic): void CLEAR_PHYSICS_API BulletPhysics::VKinematicMove(Mat mat, ActorId aid) { if ( btRigidBody * const body = FindActorBody( aid ) ) { btTransform tmp = Mat_to_btTransform( mat ); body->setWorldTransform( tmp ); } } The real problem is the function FindActorBody(id): ActorIDToBulletActorMap::const_iterator found = m_actorBodies.find( id ); if ( found != m_actorBodies.end() ) return found->second; All physic actors are stored in m_actorBodies and thats why the updating process takes to long. But I have no idea how I could avoid this. Friendly greedings, Mathias

    Read the article

  • Camera closes in on the fixed point

    - by V1ncam
    I've been trying to create a camera that is controlled by the mouse and rotates around a fixed point (read: (0,0,0)), both vertical and horizontal. This is what I've come up with: camera.Eye = Vector3.Transform(camera.Eye, Matrix.CreateRotationY(camRotYFloat)); Vector3 customAxis = new Vector3(-camera.Eye.Z, 0, camera.Eye.X); camera.Eye = Vector3.Transform(camera.Eye, Matrix.CreateFromAxisAngle(customAxis, camRotXFloat * 0.0001f)); This works quit well, except from the fact that when I 'use' the second transformation (go up and down with the mouse) the camera not only goes up and down, it also closes in on the point. It zooms in. How do I prevent this? Thanks in advance.

    Read the article

  • How can I do Mouse Selection In OpenGL 3.0?

    - by NoobScratcher
    Hello I'm pretty good programmer I've made my own 2D games in SDL and made a gui in 3D using Old OpenGL and Modern OpenGL but.. I'm having problems with trying to click 3D models with opengl I have no idea what to do too be honest. Do I read the area that I've clicked? or what do I do? 100% shore this has been asked before but I just don't know what to do...?? using : OpenGL 3.0 WIN32 API C++

    Read the article

  • Using 2D sprites and 3D models together

    - by Sweta Dwivedi
    I have gone through a few posts that talks about changing the GraphicsDevice.BlendState and GraphicsDevice.DepthStencilState (SpriteBatch & Render states). . however even after changing the states .. i cant see my 3D model on the screen.. I see the model for a second before i draw my video in the background. . Here is the code: case GameState.InGame: GraphicsDevice.Clear(Color.AliceBlue); spriteBatch.Begin(); if (player.State != MediaState.Stopped) { videoTexture = player.GetTexture(); } Rectangle screen = new Rectangle(GraphicsDevice.Viewport.X, GraphicsDevice.Viewport.Y, GraphicsDevice.Viewport.Width, GraphicsDevice.Viewport.Height); // Draw the video, if we have a texture to draw. if (videoTexture != null) { spriteBatch.Draw(videoTexture, screen, Color.White); if (Selected_underwater == true) { spriteBatch.DrawString(font, "MaxX , MaxY" + maxWidth + "," + maxHeight, new Vector2(400, 10), Color.Red); spriteBatch.Draw(kinectRGBVideo, new Rectangle(0, 0, 100, 100), Color.White); spriteBatch.Draw(butterfly, handPosition, Color.White); foreach (AnimatedSprite a in aSprites) { a.Draw(spriteBatch); } } if(Selected_planet == true) { spriteBatch.Draw(kinectRGBVideo, new Rectangle(0, 0, 100, 100), Color.White); spriteBatch.Draw(butterfly, handPosition, Color.White); spriteBatch.Draw(videoTexture,screen,Color.White); GraphicsDevice.BlendState = BlendState.Opaque; GraphicsDevice.DepthStencilState = DepthStencilState.Default; GraphicsDevice.SamplerStates[0] = SamplerState.LinearWrap; foreach (_3DModel m in Solar) { m.DrawModel(); } } spriteBatch.End(); break;

    Read the article

  • How to use Pixel Bender (pbj) in ActionScript3 on large Vectors to make fast calculations?

    - by Arthur Wulf White
    Remember my old question: 2d game view camera zoom, rotation & offset using 'Filter' / 'Shader' processing? I figured I could use a Pixel Bender Shader to do the computation for any large group of elements in a game to save on processing time. At least it's a theory worth checking. I also read this question: Pass large array to pixel shader Which I'm guessing is about accomplishing the same thing in a different language. I read this tutorial: http://unitzeroone.com/blog/2009/03/18/flash-10-massive-amounts-of-3d-particles-with-alchemy-source-included/ I am attempting to do some tests. Here is some of the code: private const SIZE : int = Math.pow(10, 5); private var testVectorNum : Vector.<Number>; private function testShader():void { shader.data.ab.value = [1.0, 8.0]; shader.data.src.input = testVectorNum; shader.data.src.width = SIZE/400; shader.data.src.height = 100; shaderJob = new ShaderJob(shader, testVectorNum, SIZE / 4, 1); var time : int = getTimer(), i : int = 0; shaderJob.start(true); trace("TEST1 : ", getTimer() - time); } The problem is that I keep getting a error saying: [Fault] exception, information=Error: Error #1000: The system is out of memory. Update: I managed to partially workaround the problem by converting the vector into bitmapData: (Using this technique I still get a speed boost of 3x using Pixel Bender) private function testShader():void { shader.data.ab.value = [1.0, 8.0]; var time : int = getTimer(), i : int = 0; testBitmapData.setVector(testBitmapData.rect, testVectorInt); shader.data.src.input = testBitmapData; shaderJob = new ShaderJob(shader, testBitmapData); shaderJob.start(true); testVectorInt = testBitmapData.getVector(testBitmapData.rect); trace("TEST1 : ", getTimer() - time); }

    Read the article

  • 2D object-aligned bounding-box intersection test

    - by AshleysBrain
    Hi all, I have two object-aligned bounding boxes (i.e. not axis aligned, they rotate with the object). I'd like to know if two object-aligned boxes overlap. (Edit: note - I'm using an axis-aligned bounding box test to quickly discard distant objects, so it doesn't matter if the quad routine is a little slower.) My boxes are stored as four x,y points. I've searched around for answers, but I can't make sense of the variable names and algorithms in examples to apply them to my particular case. Can someone help show me how this would be done, in a clear and simple way? Thanks. (The particular language isn't important, C-style pseudo code is OK.)

    Read the article

  • How to determine where on a path my object will be at a given point in time?

    - by Dave
    I have map and an obj that is meant to move from start to end in X amount of time. The movements are all straight lines, as curves are beyond my ability at the moment. So I am trying to get the object to move from these points, but along the way there are way points which keep it on a given path. The speed of the object is determined by how long it will take to get from start to end (based on X). This is what i have so far: //get_now() returns seconds since epoch var timepassed = get_now() - myObj[id].start; //seconds since epoch for departure var timeleft = myObj[id].end - get_now(); //seconds since epoch for arrival var journey_time = 60; //this means 60 minutes total journey time var array = [[650,250]]; //way points along the straight paths if(step == 0 || step =< array.length){ var destinationx = array[step][0]; var destinationy = array[step][1]; }else if( step == array.length){ var destinationx = 250; var destinationy = 100; } else { var destinationx = myObj[id].startx; var destinationy = myObj[id].starty; } step++; When the user logs in at any given time, the object needs to be drawn in the correct place of the path, almost as if its been travelling along the path whilst the user has not been at the PC with the available information i have above. How do I do this? Note: The camera angle in the game is a birds eye view so its a straight forward X:Y rather than isometric angles.

    Read the article

  • OpenGL Tessellation makes point

    - by urza57
    A little problem with my tessellation shader. I try to implement a simple tessellation shader but it only makes points. Here's my vertex shader : out vec4 ecPosition; out vec3 ecNormal; void main( void ) { vec4 position = gl_Vertex; gl_Position = gl_ModelViewProjectionMatrix * position; ecPosition = gl_ModelViewMatrix * position; ecNormal = normalize(gl_NormalMatrix * gl_Normal); } My tessellation control shader : layout(vertices = 3) out; out vec4 ecPosition3[]; in vec3 ecNormal[]; in vec4 ecPosition[]; out vec3 myNormal[]; void main() { gl_out[gl_InvocationID].gl_Position = gl_in[gl_InvocationID].gl_Position; myNormal[gl_InvocationID] = ecNormal[gl_InvocationID]; ecPosition3[gl_InvocationID] = ecPosition[gl_InvocationID]; gl_TessLevelOuter[0] = float(4.0); gl_TessLevelOuter[1] = float(4.0); gl_TessLevelOuter[2] = float(4.0); gl_TessLevelInner[0] = float(4.0); } And my Tessellation Evaluation shader: layout(triangles, equal_spacing, ccw) in; in vec3 myNormal[]; in vec4 ecPosition3[]; out vec3 ecNormal; out vec4 ecPosition; void main() { float u = gl_TessCoord.x; float v = gl_TessCoord.y; float w = gl_TessCoord.z; vec3 position = vec4(gl_in[0].gl_Position.xyz * u + gl_in[1].gl_Position.xyz * v + gl_in[2].gl_Position.xyz * w ); vec3 position2 = vec4(ecPosition3[0].xyz * u + ecPosition3[1].xyz * v + ecPosition3[2].xyz * w ); vec3 normal = myNormal[0] * u + myNormal[1] * v + myNormal[2] * w ); ecNormal = normal; gl_Position = vec4(position, 1.0); ecPosition = vec4(position2, 1.0); } Thank you !

    Read the article

  • problem adding bumpmap to textured gluSphere in JOGL

    - by ChocoMan
    I currently have one texture on a gluSphere that represents the Earth being displayed perfectly, but having trouble figuring out how to implement a bumpmap as well. The bumpmap resides in "res/planet/earth/earthbump1k.jpg".Here is the code I have for the regular texture: gl.glTranslatef(xPath, 0, yPath + zPos); gl.glColor3f(1.0f, 1.0f, 1.0f); // base color for earth earthGluSphere = glu.gluNewQuadric(); colorTexture.enable(); // enable texture colorTexture.bind(); // bind texture // draw sphere... glu.gluDeleteQuadric(earthGluSphere); colorTexture.disable(); // texturing public void loadPlanetTexture(GL2 gl) { InputStream colorMap = null; try { colorMap = new FileInputStream("res/planet/earth/earthmap1k.jpg"); TextureData data = TextureIO.newTextureData(colorMap, false, null); colorTexture = TextureIO.newTexture(data); colorTexture.getImageTexCoords(); colorTexture.setTexParameteri(GL2.GL_TEXTURE_MAG_FILTER, GL2.GL_LINEAR); colorTexture.setTexParameteri(GL2.GL_TEXTURE_MIN_FILTER, GL2.GL_NEAREST); colorMap.close(); } catch(IOException e) { e.printStackTrace(); System.exit(1); } // Set material properties gl.glTexParameteri(GL2.GL_TEXTURE_2D, GL2.GL_TEXTURE_MAG_FILTER, GL2.GL_LINEAR); gl.glTexParameteri(GL2.GL_TEXTURE_2D, GL2.GL_TEXTURE_MIN_FILTER, GL2.GL_NEAREST); colorTexture.setTexParameteri(GL2.GL_TEXTURE_2D, GL2.GL_TEXTURE_WRAP_S); colorTexture.setTexParameteri(GL2.GL_TEXTURE_2D, GL2.GL_TEXTURE_WRAP_T); } How would I add the bumpmap as well to the same gluSphere?

    Read the article

  • how to define a field of view for the entire map for shadow?

    - by Mehdi Bugnard
    I recently added "Shadow Mapping" in my XNA games to include shadows. I followed the nice and famous tutorial from "Riemers" : http://www.riemers.net/eng/Tutorials/XNA/Csharp/Series3/Shadow_map.php . This code work nice and I can see my source of light and shadow. But the problem is that my light source does not match the field of view that I created. I want the light covers the entire map of my game. I don't know why , but the light only affect 2-3 cubes of my map. ScreenShot: (the emission of light illuminates only 2-3 blocks and not the full map) Here is my code i create the fieldOfView for LightviewProjection Matrix: Vector3 lightDir = new Vector3(10, 52, 10); lightPos = new Vector3(10, 52, 10); Matrix lightsView = Matrix.CreateLookAt(lightPos, new Vector3(105, 50, 105), new Vector3(0, 1, 0)); Matrix lightsProjection = Matrix.CreatePerspectiveFieldOfView(MathHelper.PiOver2, 1f, 20f, 1000f); lightsViewProjectionMatrix = lightsView * lightsProjection; As you can see , my nearPlane and FarPlane are set to 20f and 100f . So i don't know why the light stop after 2 cubes. it's should be bigger Here is set the value to my custom effect HLSL in the shader file /* SHADOW VALUE */ effectWorld.Parameters["LightDirection"].SetValue(lightDir); effectWorld.Parameters["xLightsWorldViewProjection"].SetValue(Matrix.Identity * .lightsViewProjectionMatrix); effectWorld.Parameters["xWorldViewProjection"].SetValue(Matrix.Identity * arcadia.camera.View * arcadia.camera.Projection); effectWorld.Parameters["xLightPower"].SetValue(1f); effectWorld.Parameters["xAmbient"].SetValue(0.3f); Here is my custom HLSL shader effect file "*.fx" // This sample uses a simple Lambert lighting model. float3 LightDirection = normalize(float3(-1, -1, -1)); float3 DiffuseLight = 1.25; float3 AmbientLight = 0.25; uniform const float3 DiffuseColor = 1; uniform const float Alpha = 1; uniform const float3 EmissiveColor = 0; uniform const float3 SpecularColor = 1; uniform const float SpecularPower = 16; uniform const float3 EyePosition; // FOG attribut uniform const float FogEnabled ; uniform const float FogStart ; uniform const float FogEnd ; uniform const float3 FogColor ; float3 cameraPos : CAMERAPOS; texture Texture; sampler Sampler = sampler_state { Texture = (Texture); magfilter = LINEAR; minfilter = LINEAR; mipfilter = LINEAR; AddressU = mirror; AddressV = mirror; }; texture xShadowMap; sampler ShadowMapSampler = sampler_state { Texture = <xShadowMap>; magfilter = LINEAR; minfilter = LINEAR; mipfilter = LINEAR; AddressU = clamp; AddressV = clamp; }; /* *************** */ /* SHADOW MAP CODE */ /* *************** */ struct SMapVertexToPixel { float4 Position : POSITION; float4 Position2D : TEXCOORD0; }; struct SMapPixelToFrame { float4 Color : COLOR0; }; struct SSceneVertexToPixel { float4 Position : POSITION; float4 Pos2DAsSeenByLight : TEXCOORD0; float2 TexCoords : TEXCOORD1; float3 Normal : TEXCOORD2; float4 Position3D : TEXCOORD3; }; struct SScenePixelToFrame { float4 Color : COLOR0; }; float DotProduct(float3 lightPos, float3 pos3D, float3 normal) { float3 lightDir = normalize(pos3D - lightPos); return dot(-lightDir, normal); } SSceneVertexToPixel ShadowedSceneVertexShader(float4 inPos : POSITION, float2 inTexCoords : TEXCOORD0, float3 inNormal : NORMAL) { SSceneVertexToPixel Output = (SSceneVertexToPixel)0; Output.Position = mul(inPos, xWorldViewProjection); Output.Pos2DAsSeenByLight = mul(inPos, xLightsWorldViewProjection); Output.Normal = normalize(mul(inNormal, (float3x3)World)); Output.Position3D = mul(inPos, World); Output.TexCoords = inTexCoords; return Output; } SScenePixelToFrame ShadowedScenePixelShader(SSceneVertexToPixel PSIn) { SScenePixelToFrame Output = (SScenePixelToFrame)0; float2 ProjectedTexCoords; ProjectedTexCoords[0] = PSIn.Pos2DAsSeenByLight.x / PSIn.Pos2DAsSeenByLight.w / 2.0f + 0.5f; ProjectedTexCoords[1] = -PSIn.Pos2DAsSeenByLight.y / PSIn.Pos2DAsSeenByLight.w / 2.0f + 0.5f; float diffuseLightingFactor = 0; if ((saturate(ProjectedTexCoords).x == ProjectedTexCoords.x) && (saturate(ProjectedTexCoords).y == ProjectedTexCoords.y)) { float depthStoredInShadowMap = tex2D(ShadowMapSampler, ProjectedTexCoords).r; float realDistance = PSIn.Pos2DAsSeenByLight.z / PSIn.Pos2DAsSeenByLight.w; if ((realDistance - 1.0f / 100.0f) <= depthStoredInShadowMap) { diffuseLightingFactor = DotProduct(xLightPos, PSIn.Position3D, PSIn.Normal); diffuseLightingFactor = saturate(diffuseLightingFactor); diffuseLightingFactor *= xLightPower; } } float4 baseColor = tex2D(Sampler, PSIn.TexCoords); Output.Color = baseColor*(diffuseLightingFactor + xAmbient); return Output; } SMapVertexToPixel ShadowMapVertexShader(float4 inPos : POSITION) { SMapVertexToPixel Output = (SMapVertexToPixel)0; Output.Position = mul(inPos, xLightsWorldViewProjection); Output.Position2D = Output.Position; return Output; } SMapPixelToFrame ShadowMapPixelShader(SMapVertexToPixel PSIn) { SMapPixelToFrame Output = (SMapPixelToFrame)0; Output.Color = PSIn.Position2D.z / PSIn.Position2D.w; return Output; } /* ******************* */ /* END SHADOW MAP CODE */ /* ******************* */ / For rendering without instancing. technique ShadowMap { pass Pass0 { VertexShader = compile vs_2_0 ShadowMapVertexShader(); PixelShader = compile ps_2_0 ShadowMapPixelShader(); } } technique ShadowedScene { /* pass Pass0 { VertexShader = compile vs_2_0 VSBasicTx(); PixelShader = compile ps_2_0 PSBasicTx(); } */ pass Pass1 { VertexShader = compile vs_2_0 ShadowedSceneVertexShader(); PixelShader = compile ps_2_0 ShadowedScenePixelShader(); } } technique SimpleFog { pass Pass0 { VertexShader = compile vs_2_0 VSBasicTx(); PixelShader = compile ps_2_0 PSBasicTx(); } } I edited my fx file , for show you only information and functions about the shadow ;-)

    Read the article

  • Playing repeated sound in Java

    - by Diogo Schneider
    I'm trying to play sounds in a Java game with the following code: AudioStream audioStream = new AudioStream(stream); AudioPlayer.player.start(audioStream); The stream variable is just an InputStream to the resource. By the first time this code is called, the sound is played as expected, but by the second time the program just hangs, not even an exception is thrown. I don't know what's going on or how to prevent this. If I try closing either stream or audioStream after the above code, the program doesn't hang, but no sound is ever played at all. Any tips are welcome, thanks.

    Read the article

  • How is this lighting effect done?

    - by Mike
    This is the most beautiful 2d lighting I have ever seen. Does anyone know how he went about doing it? http://www.youtube.com/watch?v=BIQRhOFkvQY http://www.youtube.com/watch?v=tnTYXPuecMs http://www.youtube.com/watch?v=rhC_jVM8IYU http://www.youtube.com/watch?v=_Aw5BdjWqqU Or download it here: http://grantkot.com/PollutedPlanet/publish.htm edit: I am not asking how the particles are simulated; I don't care about the physics.

    Read the article

  • Android threads trouble wrapping my head around design

    - by semajhan
    I am having trouble wrapping my head around game design. On the android platform, I have an activity and set its content view with a custom surface view. The custom surface view acts as my panel and I create instances of all classes and do all the drawing and calculation in there. Question: Should I instead create the instances of other classes in my activity? Now I create a custom thread class that handles the game loop. Question: How do I use this one class in all my activities? Or do I have to create a separate thread each time? In my previous game, I had multiple levels that had to create an instance of the thread class and in the thread class I had to set constructor methods for each separate level and in the loop use a switch statement to check which level it needs to render and update. Sorry if that sounds confusing. I just want to know if the method I am using is inefficient (which it probably is) and how to go about designing it the correct way. I have read many tutorials out there and I am still having lots of trouble with this particular topic. Maybe a link to a some tutorials that explain this? Thanks.

    Read the article

  • LibGdx drawing weird behaviour

    - by Ryckes
    I am finding strange behaviour while rendering TextureRegions in my game, only when pausing it. I am making a game for Android, in Java with LibGdx. When I comment out the line "drawLevelPaused()" everything seems to work fine, both running and paused. When it's not commented, everything works fine until I pause the screen, then it draws those two rectangles, but maybe ships are not shown, and if I comment out drawShips() and drawTarget() (just trying) maybe one of the planets disappears, or if I change the order, other things disappear and those that disappeared before now are rendered again. I can't find the way to fix this behaviour I beg your help, and I hope it's my mistake and not a LibGdx issue. I use OpenGL ES 2.0, stated in AndroidManifest.xml, if it is of any help. Thank you in advance. My Screen render method(game loop) is as follows: @Override public void render(float delta) { Gdx.gl.glClearColor(0.1f, 0.1f, 0.1f, 1); Gdx.gl.glClear(GL10.GL_COLOR_BUFFER_BIT); controller.update(delta); renderer.render(); } When world state is PAUSED controller.update does nothing at all, there is a switch in it. And renderer.render() is as follows: public void render() { int worldState=this.world.getWorldState(); updateCamera(); spriteBatch.begin(); drawPlanets(); drawTarget(); drawShips(); if(worldState==World.PAUSED) { drawLevelPaused(); } else if(worldState==World.LEVEL_WON) { drawLevelWin(); } spriteBatch.end(); } And those methods are: private void updateCamera() { this.offset=world.getCameraOffset(); } private void drawPlanets() { for(Planet planet : this.world.getPlanets()) { this.spriteBatch.draw(this.textures.getTexture(planet.getTexture()), (planet.getPosition().x - this.offset[0]) * ppuX, (planet.getPosition().y - this.offset[1]) * ppuY); } } private void drawTarget() { Target target=this.world.getTarget(); this.spriteBatch.draw(this.textures.getTexture(target.getTexture()), (target.getPosition().x - this.offset[0]) * ppuX, (target.getPosition().y - this.offset[1]) * ppuY); } private void drawShips() { for(Ship ship : this.world.getShips()) { this.spriteBatch.draw(this.textures.getTexture(ship.getTexture()), (ship.getPosition().x - this.offset[0]) * ppuX, (ship.getPosition().y - this.offset[1]) * ppuY, ship.getBounds().width*ppuX/2, ship.getBounds().height*ppuY/2, ship.getBounds().width*ppuX, ship.getBounds().height*ppuY, 1.0f, 1.0f, ship.getAngle()-90.0f); } if(this.world.getStillShipVisibility()) { Ship ship=this.world.getStillShip(); Arrow arrow=this.world.getArrow(); this.spriteBatch.draw(this.textures.getTexture(ship.getTexture()), (ship.getPosition().x - this.offset[0]) * ppuX, (ship.getPosition().y - this.offset[1]) * ppuY, ship.getBounds().width*ppuX/2, ship.getBounds().height*ppuY/2, ship.getBounds().width*ppuX, ship.getBounds().height*ppuY, 1f, 1f, ship.getAngle() - 90f); this.spriteBatch.draw(this.textures.getTexture(arrow.getTexture()), (ship.getCenter().x - this.offset[0] - arrow.getBounds().width/2) * ppuX, (ship.getCenter().y - this.offset[1]) * ppuY, arrow.getBounds().width*ppuX/2, 0, arrow.getBounds().width*ppuX, arrow.getBounds().height*ppuY, 1f, arrow.getRate(), ship.getAngle() - 90f); } } private void drawLevelPaused() { this.shapeRenderer.begin(ShapeType.FilledRectangle); this.shapeRenderer.setColor(0f, 0f, 0f, 0.8f); this.shapeRenderer.filledRect(0, 0, this.width/this.ppuX, PAUSE_MARGIN_HEIGHT/this.ppuY); this.shapeRenderer.filledRect(0, (this.height-PAUSE_MARGIN_HEIGHT)/this.ppuY, this.width/this.ppuX, PAUSE_MARGIN_HEIGHT/this.ppuY); this.shapeRenderer.end(); for(Button button : this.world.getPauseButtons()) { this.spriteBatch.draw(this.textures.getTexture(button.getTexture()), (button.getPosition().x - this.offset[0]) * this.ppuX, (button.getPosition().y - this.offset[1]) * this.ppuY); } }

    Read the article

  • Should NPC dialog be stored in XML or in a script?

    - by Andrea Tucci
    I'm developing an action RPG with some friends. I would like to know the differences and pros/cons of making NPC's dialogue using a file in XMLformat instead of using a script. I see that script method is often used by game developers for NPC text, but is it better then a XML file? We've thought that a XML file with tags like <FirstText>[text1]<SecondText>[text2] et cetera is perfect for NPC text and also for possible quests to give the player. So what are the differences between this two methods? Is a script suitable for this aim?

    Read the article

  • Pathfinding in multi goal, multi agent environment

    - by Rohan Agrawal
    I have an environment in which I have multiple agents (a), multiple goals (g) and obstacles (o). . . . a o . . . . . . . o . g . . a . . . . . . . . . . o . . . . o o o o . g . . o . . . . . . . o . . . . o . . . . o o o o a What would an appropriate algorithm for pathfinding in this environment? The only thing I can think of right now, is to Run a separate version of A* for each goal separately, but i don't think that's very efficient.

    Read the article

  • 3D Camera Problem

    - by Chris
    I allow the user to look around the scene by holding down the left mouse button and moving the mouse. The problem that I have is I can be facing one direction, I move the mouse up and the view tilts up, I move down and the view titles down. If I spin around 180 my left and right still works fine, but when I move the mouse up the view tilts down, and when I move the mouse down the view titles up. This is the code I am using, can anyone see what the problem with the logic is? var viewDir = g_math.subVector(target, g_eye); var rotatedViewDir = []; rotatedViewDir[0] = (Math.cos(g_mouseXDelta * g_rotationDelta) * viewDir[0]) - (Math.sin(g_mouseXDelta * g_rotationDelta) * viewDir[2]); rotatedViewDir[1] = viewDir[1]; rotatedViewDir[2] = (Math.cos(g_mouseXDelta * g_rotationDelta) * viewDir[2]) + (Math.sin(g_mouseXDelta * g_rotationDelta) * viewDir[0]); viewDir = rotatedViewDir; rotatedViewDir[0] = viewDir[0]; rotatedViewDir[1] = (Math.cos(g_mouseYDelta * g_rotationDelta * -1) * viewDir[1]) - (Math.sin(g_mouseYDelta * g_rotationDelta * -1) * viewDir[2]); rotatedViewDir[2] = (Math.cos(g_mouseYDelta * g_rotationDelta * -1) * viewDir[2]) + (Math.sin(g_mouseYDelta * g_rotationDelta * -1) * viewDir[1]); g_lookingDir = rotatedViewDir; var newtarget = g_math.addVector(rotatedViewDir, g_eye);

    Read the article

  • Server-side Architecture for Online Game

    - by Draiken
    Hi, basically I have a game client that has communicate with a server for almost every action it takes, the game is in Java (using LWJGL) and right now I will start making the server. The base of the game is normally one client communicating with the server alone, but I will require later on for several clients to work together for some functionalities. I've already read how authentication server should be sepparated and I intend on doing it. The problem is I am completely inexperienced in this kind of server-side programming, all I've ever programmed were JSF web applications. I imagine I'll do socket connections for pretty much every game communication since HTML is very slow, but I still don't really know where to start on my server. I would appreciate reading material or guidelines on where to start, what architecture should the game server have and maybe some suggestions on frameworks that could help me getting the client-server communication. I've looked into JNAG but I have no experience with this kind of thing, so I can't really tell if it is a solid and good messaging layer. Any help is appreciated... Thanks !

    Read the article

  • Ideas for attack damage algorithm (language irrelevant)

    - by Dillon
    I am working on a game and I need ideas for the damage that will be done to the enemy when your player attacks. The total amount of health that the enemy has is called enemyHealth, and has a value of 1000. You start off with a weapon that does 40 points of damage (may be changed.) The player has an attack stat that you can increase, called playerAttack. This value starts off at 1, and has a possible max value of 100 after you level it up many times and make it farther into the game. The amount of damage that the weapon does is cut and dry, and subtracts 40 points from the total 1000 points of health every time the enemy is hit. But what the playerAttack does is add to that value with a percentage. Here is the algorithm I have now. (I've taken out all of the gui, classes, etc. and given the variables very forward names) double totalDamage = weaponDamage + (weaponDamage*(playerAttack*.05)) enemyHealth -= (int)totalDamage; This seemed to work great for the most part. So I statrted testing some values... //enemyHealth ALWAYS starts at 1000 weaponDamage = 50; playerAttack = 30; If I set these values, the amount of damage done on the enemy is 125. Seemed like a good number, so I wanted to see what would happen if the players attack was maxed out, but with the weakest starting weapon. weaponDamage = 50; playerAttack = 100; the totalDamage ends up being 300, which would kill an enemy in just a few hits. Even with your attack that high, I wouldn't want the weakest weapon to be able to kill the enemy that fast. I thought about adding defense, but I feel the game will lose consistency and become unbalanced in the long run. Possibly a well designed algorithm for a weapon decrease modifier would work for lower level weapons or something like that. Just need a break from trying to figure out the best way to go about this, and maybe someone that has experience with games and keeping the leveling consistent could give me some ideas/pointers.

    Read the article

  • Example of DOD design (on a generic Zombie game)

    - by Jeffrey
    I can't seem to find a nice explanation of the Data Oriented Design for a generic zombie game (it's just an example, pretty common example). Could you make an example of the Data Oriented Design on creating a generic zombie class? Is the following good? Zombie list class: class ZombieList { GLuint vbo; // generic zombie vertex model std::vector<color>; // object default color std::vector<texture>; // objects textures std::vector<vector3D>; // objects positions public: unsigned int create(); // return object id void move(unsigned int objId, vector3D offset); void rotate(unsigned int objId, float angle); void setColor(unsigned int objId, color c); void setPosition(unsigned int objId, color c); void setTexture(unsigned int, unsigned int); ... void update(Player*); // move towards player, attack if near } Example: Player p; Zombielist zl; unsigned int first = zl.create(); zl.setPosition(first, vector3D(50, 50)); zl.setTexture(first, texture("zombie1.png")); ... while (running) { // main loop ... zl.update(&p); zl.draw(); // draw every zombie } Or would creating a generic World container that contains every action from bite(zombieId, playerId) to moveTo(playerId, vector) to createPlayer() to shoot(playerId, vector) to face(radians)/face(vector); and contains: std::vector<zombie> std::vector<player> ... std::vector<mapchunk> ... std::vector<vbobufferid> player_run_animation; ... be a good example? Whats the proper way to organize a game with DOD?

    Read the article

  • Camera doesnt move on opengl qt

    - by hugo
    Here is my code, as my subject indicates i have implemented a camera but i couldnt make it move,Thanks in advance. #define PI_OVER_180 0.0174532925f define GL_CLAMP_TO_EDGE 0x812F include "metinalifeyyaz.h" include include include include include include include metinalifeyyaz::metinalifeyyaz(QWidget *parent) : QGLWidget(parent) { this->setFocusPolicy(Qt:: StrongFocus); time = QTime::currentTime(); timer = new QTimer(this); timer->setSingleShot(true); connect(timer, SIGNAL(timeout()), this, SLOT(updateGL())); xpos = yrot = zpos = 0; walkbias = walkbiasangle = lookupdown = 0.0f; keyUp = keyDown = keyLeft = keyRight = keyPageUp = keyPageDown = false; } void metinalifeyyaz::drawBall() { //glTranslatef(6,0,4); glutSolidSphere(0.10005,300,30); } metinalifeyyaz:: ~metinalifeyyaz(){ glDeleteTextures(1,texture); } void metinalifeyyaz::initializeGL(){ glShadeModel(GL_SMOOTH); glClearColor(1.0,1.0,1.0,0.5); glClearDepth(1.0f); glEnable(GL_DEPTH_TEST); glEnable(GL_TEXTURE_2D); glDepthFunc(GL_LEQUAL); glClearColor(1.0,1.0,1.0,1.0); glShadeModel(GL_SMOOTH); GLfloat mat_specular[]={1.0,1.0,1.0,1.0}; GLfloat mat_shininess []={30.0}; GLfloat light_position[]={1.0,1.0,1.0}; glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular); glMaterialfv(GL_FRONT,GL_SHININESS,mat_shininess); glLightfv(GL_LIGHT0, GL_POSITION, light_position); glEnable(GL_LIGHT0); glEnable(GL_LIGHTING); QImage img1 = convertToGLFormat(QImage(":/new/prefix1/halisaha2.bmp")); QImage img2 = convertToGLFormat(QImage(":/new/prefix1/white.bmp")); glGenTextures(2,texture); glBindTexture(GL_TEXTURE_2D, texture[0]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, img1.width(), img1.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE, img1.bits()); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glBindTexture(GL_TEXTURE_2D, texture[1]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, img2.width(), img2.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE, img2.bits()); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); // Really nice perspective calculations } void metinalifeyyaz::resizeGL(int w, int h){ if(h==0) h=1; glViewport(0,0,w,h); glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluPerspective(45.0f, static_cast<GLfloat>(w)/h,0.1f,100.0f); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); } void metinalifeyyaz::paintGL(){ movePlayer(); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glLoadIdentity(); GLfloat xtrans = -xpos; GLfloat ytrans = -walkbias - 0.50f; GLfloat ztrans = -zpos; GLfloat sceneroty = 360.0f - yrot; glLoadIdentity(); glRotatef(lookupdown, 1.0f, 0.0f, 0.0f); glRotatef(sceneroty, 0.0f, 1.0f, 0.0f); glTranslatef(xtrans, ytrans+50, ztrans-130); glLoadIdentity(); glTranslatef(1.0f,0.0f,-18.0f); glRotatef(45,1,0,0); drawScene(); int delay = time.msecsTo(QTime::currentTime()); if (delay == 0) delay = 1; time = QTime::currentTime(); timer->start(qMax(0,10 - delay)); } void metinalifeyyaz::movePlayer() { if (keyUp) { xpos -= sin(yrot * PI_OVER_180) * 0.5f; zpos -= cos(yrot * PI_OVER_180) * 0.5f; if (walkbiasangle >= 360.0f) walkbiasangle = 0.0f; else walkbiasangle += 7.0f; walkbias = sin(walkbiasangle * PI_OVER_180) / 10.0f; } else if (keyDown) { xpos += sin(yrot * PI_OVER_180)*0.5f; zpos += cos(yrot * PI_OVER_180)*0.5f ; if (walkbiasangle <= 7.0f) walkbiasangle = 360.0f; else walkbiasangle -= 7.0f; walkbias = sin(walkbiasangle * PI_OVER_180) / 10.0f; } if (keyLeft) yrot += 0.5f; else if (keyRight) yrot -= 0.5f; if (keyPageUp) lookupdown -= 0.5; else if (keyPageDown) lookupdown += 0.5; } void metinalifeyyaz::keyPressEvent(QKeyEvent *event) { switch (event->key()) { case Qt::Key_Escape: close(); break; case Qt::Key_F1: setWindowState(windowState() ^ Qt::WindowFullScreen); break; default: QGLWidget::keyPressEvent(event); case Qt::Key_PageUp: keyPageUp = true; break; case Qt::Key_PageDown: keyPageDown = true; break; case Qt::Key_Left: keyLeft = true; break; case Qt::Key_Right: keyRight = true; break; case Qt::Key_Up: keyUp = true; break; case Qt::Key_Down: keyDown = true; break; } } void metinalifeyyaz::changeEvent(QEvent *event) { switch (event->type()) { case QEvent::WindowStateChange: if (windowState() == Qt::WindowFullScreen) setCursor(Qt::BlankCursor); else unsetCursor(); break; default: break; } } void metinalifeyyaz::keyReleaseEvent(QKeyEvent *event) { switch (event->key()) { case Qt::Key_PageUp: keyPageUp = false; break; case Qt::Key_PageDown: keyPageDown = false; break; case Qt::Key_Left: keyLeft = false; break; case Qt::Key_Right: keyRight = false; break; case Qt::Key_Up: keyUp = false; break; case Qt::Key_Down: keyDown = false; break; default: QGLWidget::keyReleaseEvent(event); } } void metinalifeyyaz::drawScene(){ glBegin(GL_QUADS); glNormal3f(0.0f,0.0f,1.0f); // glColor3f(0,0,1); //back glVertex3f(-6,0,-4); glVertex3f(-6,-0.5,-4); glVertex3f(6,-0.5,-4); glVertex3f(6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(0.0f,0.0f,-1.0f); //front glVertex3f(6,0,4); glVertex3f(6,-0.5,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,0,4); glEnd(); glBegin(GL_QUADS); glNormal3f(-1.0f,0.0f,0.0f); // glColor3f(0,0,1); //left glVertex3f(-6,0,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,-0.5,-4); glVertex3f(-6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(1.0f,0.0f,0.0f); // glColor3f(0,0,1); //right glVertex3f(6,0,-4); glVertex3f(6,-0.5,-4); glVertex3f(6,-0.5,4); glVertex3f(6,0,4); glEnd(); glBindTexture(GL_TEXTURE_2D, texture[0]); glBegin(GL_QUADS); glNormal3f(0.0f,1.0f,0.0f);//top glTexCoord2f(1.0f,0.0f); glVertex3f(6,0,-4); glTexCoord2f(1.0f,1.0f); glVertex3f(6,0,4); glTexCoord2f(0.0f,1.0f); glVertex3f(-6,0,4); glTexCoord2f(0.0f,0.0f); glVertex3f(-6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(0.0f,-1.0f,0.0f); //glColor3f(0,0,1); //bottom glVertex3f(6,-0.5,-4); glVertex3f(6,-0.5,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,-0.5,-4); glEnd(); // glPushMatrix(); glBindTexture(GL_TEXTURE_2D, texture[1]); glBegin(GL_QUADS); glNormal3f(1.0f,0.0f,0.0f); glTexCoord2f(1.0f,0.0f); //right far goal post front face glVertex3f(5,0.5,-0.95); glTexCoord2f(1.0f,1.0f); glVertex3f(5,0,-0.95); glTexCoord2f(0.0f,1.0f); glVertex3f(5,0,-1); glTexCoord2f(0.0f,0.0f); glVertex3f(5, 0.5, -1); glColor3f(1,1,1); //right far goal post back face glVertex3f(5.05,0.5,-0.95); glVertex3f(5.05,0,-0.95); glVertex3f(5.05,0,-1); glVertex3f(5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post left face glVertex3f(5,0.5,-1); glVertex3f(5,0,-1); glVertex3f(5.05,0,-1); glVertex3f(5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post right face glVertex3f(5.05,0.5,-0.95); glVertex3f(5.05,0,-0.95); glVertex3f(5,0,-0.95); glVertex3f(5, 0.5, -0.95); glColor3f(1,1,1); //right near goal post front face glVertex3f(5,0.5,0.95); glVertex3f(5,0,0.95); glVertex3f(5,0,1); glVertex3f(5,0.5, 1); glColor3f(1,1,1); //right near goal post back face glVertex3f(5.05,0.5,0.95); glVertex3f(5.05,0,0.95); glVertex3f(5.05,0,1); glVertex3f(5.05,0.5, 1); glColor3f(1,1,1); //right near goal post left face glVertex3f(5,0.5,1); glVertex3f(5,0,1); glVertex3f(5.05,0,1); glVertex3f(5.05,0.5, 1); glColor3f(1,1,1); //right near goal post right face glVertex3f(5.05,0.5,0.95); glVertex3f(5.05,0,0.95); glVertex3f(5,0,0.95); glVertex3f(5,0.5, 0.95); glColor3f(1,1,1); //right crossbar front face glVertex3f(5,0.55,-1); glVertex3f(5,0.55,1); glVertex3f(5,0.5,1); glVertex3f(5,0.5,-1); glColor3f(1,1,1); //right crossbar back face glVertex3f(5.05,0.55,-1); glVertex3f(5.05,0.55,1); glVertex3f(5.05,0.5,1); glVertex3f(5.05,0.5,-1); glColor3f(1,1,1); //right crossbar bottom face glVertex3f(5.05,0.5,-1); glVertex3f(5.05,0.5,1); glVertex3f(5,0.5,1); glVertex3f(5,0.5,-1); glColor3f(1,1,1); //right crossbar top face glVertex3f(5.05,0.55,-1); glVertex3f(5.05,0.55,1); glVertex3f(5,0.55,1); glVertex3f(5,0.55,-1); glColor3f(1,1,1); //left far goal post front face glVertex3f(-5,0.5,-0.95); glVertex3f(-5,0,-0.95); glVertex3f(-5,0,-1); glVertex3f(-5, 0.5, -1); glColor3f(1,1,1); //right far goal post back face glVertex3f(-5.05,0.5,-0.95); glVertex3f(-5.05,0,-0.95); glVertex3f(-5.05,0,-1); glVertex3f(-5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post left face glVertex3f(-5,0.5,-1); glVertex3f(-5,0,-1); glVertex3f(-5.05,0,-1); glVertex3f(-5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post right face glVertex3f(-5.05,0.5,-0.95); glVertex3f(-5.05,0,-0.95); glVertex3f(-5,0,-0.95); glVertex3f(-5, 0.5, -0.95); glColor3f(1,1,1); //left near goal post front face glVertex3f(-5,0.5,0.95); glVertex3f(-5,0,0.95); glVertex3f(-5,0,1); glVertex3f(-5,0.5, 1); glColor3f(1,1,1); //right near goal post back face glVertex3f(-5.05,0.5,0.95); glVertex3f(-5.05,0,0.95); glVertex3f(-5.05,0,1); glVertex3f(-5.05,0.5, 1); glColor3f(1,1,1); //right near goal post left face glVertex3f(-5,0.5,1); glVertex3f(-5,0,1); glVertex3f(-5.05,0,1); glVertex3f(-5.05,0.5, 1); glColor3f(1,1,1); //right near goal post right face glVertex3f(-5.05,0.5,0.95); glVertex3f(-5.05,0,0.95); glVertex3f(-5,0,0.95); glVertex3f(-5,0.5, 0.95); glColor3f(1,1,1); //left crossbar front face glVertex3f(-5,0.55,-1); glVertex3f(-5,0.55,1); glVertex3f(-5,0.5,1); glVertex3f(-5,0.5,-1); glColor3f(1,1,1); //right crossbar back face glVertex3f(-5.05,0.55,-1); glVertex3f(-5.05,0.55,1); glVertex3f(-5.05,0.5,1); glVertex3f(-5.05,0.5,-1); glColor3f(1,1,1); //right crossbar bottom face glVertex3f(-5.05,0.5,-1); glVertex3f(-5.05,0.5,1); glVertex3f(-5,0.5,1); glVertex3f(-5,0.5,-1); glColor3f(1,1,1); //right crossbar top face glVertex3f(-5.05,0.55,-1); glVertex3f(-5.05,0.55,1); glVertex3f(-5,0.55,1); glVertex3f(-5,0.55,-1); glEnd(); // glPopMatrix(); // glPushMatrix(); // glTranslatef(0,0,0); // glutSolidSphere(0.10005,500,30); // glPopMatrix(); }

    Read the article

  • Efficient mapping layout in 2D side-scroller, and collisions between character and the world

    - by Jack
    I haven't touched Visual Studio for a couple months now, but I was playing a game from the '90s toady and had an epiphany: I was looking for something what i didn't need, and I wasn't using what I knew correctly. One of those realizations was collision, so let me tell you a bit about my project that I was working on. The project's graphics looks like Mario or Dangerous Dave, etc., you get the idea - old-school pixels. So anyway I remember trying to think of something else than AABB for character form, but I couldn't think of anything. Perhaps I could get a suggestion for this? Another thing is the world - I don't want it to be just linear world, I want mountains, etc.. My idea is to use triangles, and no idea yet what to do if I want just part of the cube, say 3/4 or 2/4 or whatever. Hard-coding such things seems inefficient. P.S. I am not looking at the precision level offered by Box2D. Actually I remember trying to implement it at first, but I failed as my understanding of C++ wasn't advanced enough, as it'll be mentioned below. P.P.S. I am programming in C++, and I haven't done it for a couple months now. I have no means of testing it either, as my PC is broken down, and this one can barely run games from late '90s, not to speak about a compiler or a program with inefficient resource management... I am also not an expert (obviously), I don't even know if I can consider myself an average programmer. In short, I am simply curious about my thoughts and my past experience when programming the game. I may come back to it when my PC is fixed, I'm already filling a note about these things.

    Read the article

< Previous Page | 404 405 406 407 408 409 410 411 412 413 414 415  | Next Page >