Search Results

Search found 19281 results on 772 pages for 'blender game engine'.

Page 437/772 | < Previous Page | 433 434 435 436 437 438 439 440 441 442 443 444  | Next Page >

  • How should I determine direction from a phone's orientation & accelerometer?

    - by Manoj Kumar
    I have an Android application which moves a ball based on the orientation of the phone. I've been using the following code to extract the data - but how do I use it to determine what direction the ball should actually travel in? public void onSensorChanged(int sensor, float[] values) { // TODO Auto-generated method stub synchronized (this) { Log.d("HIIIII :- ", "onSensorChanged: " + sensor + ", x: " + values[0] + ", y: " + values[1] + ", z: " + values[2]); if (sensor == SensorManager.SENSOR_ORIENTATION) { System.out.println("Orientation X: " + values[0]); System.out.println("Orientation Y: " + values[1]); System.out.println("Orientation Z: " + values[2]); } if (sensor == SensorManager.SENSOR_ACCELEROMETER) { System.out.println("Accel X: " + values[0]); System.out.println("Accel Y: " + values[1]); System.out.println("Accel Z: " + values[2]); } } }

    Read the article

  • How to set orthgraphic matrix for a 2d camera with zooming?

    - by MahanGM
    I'm using ID3DXSprite to draw my sprites and haven't set any kind of camera projection matrix. How to setup an orthographic projection matrix for camera in DirectX which it would be able to support zoom functionality? D3DXMATRIX orthographicMatrix; D3DXMATRIX identityMatrix; D3DXMatrixOrthoLH(&orthographicMatrix, nScreenWidth, nScreenHeight, 0.0f, 1.0f); D3DXMatrixIdentity(&identityMatrix); device->SetTransform(D3DTS_PROJECTION, &orthographicMatrix); device->SetTransform(D3DTS_WORLD, &identityMatrix); device->SetTransform(D3DTS_VIEW, &identityMatrix); This code is for initial setup. Then, for zooming I multiply zoom factor in nScreenWidth and nScreenHeight.

    Read the article

  • OpenGL directional light creating black spots

    - by AnonymousDeveloper
    I probably ought to start by saying that I suspect the problem is that one of my vectors is not in the correct "space", but I don't know for sure. I am having a strange problem with a directional light. When I move the camera away from (0.0, 0.0, 0.0) it creates tiny black spots that grow larger as the distance increases. I apologize ahead of time for the length of the code. Vertex shader: #version 410 core in vec3 vf_normal; in vec3 vf_bitangent; in vec3 vf_tangent; in vec2 vf_textureCoordinates; in vec3 vf_vertex; out vec3 tc_normal; out vec3 tc_bitangent; out vec3 tc_tangent; out vec2 tc_textureCoordinates; out vec3 tc_vertex; uniform mat3 vf_m_normal; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform float vf_te_inner; uniform float vf_te_outer; void main() { tc_normal = vf_normal; tc_bitangent = vf_bitangent; tc_tangent = vf_tangent; tc_textureCoordinates = vf_textureCoordinates; tc_vertex = vf_vertex; gl_Position = vf_m_mvp * vec4(vf_vertex, 1.0); } Tessellation Control shader: #version 410 core layout (vertices = 3) out; in vec3 tc_normal[]; in vec3 tc_bitangent[]; in vec3 tc_tangent[]; in vec2 tc_textureCoordinates[]; in vec3 tc_vertex[]; out vec3 te_normal[]; out vec3 te_bitangent[]; out vec3 te_tangent[]; out vec2 te_textureCoordinates[]; out vec3 te_vertex[]; uniform float vf_te_inner; uniform float vf_te_outer; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; #define ID gl_InvocationID float getTessLevelInner(float distance0, float distance1) { float avgDistance = (distance0 + distance1) / 2.0; return clamp((vf_te_inner - avgDistance), 1.0, vf_te_inner); } float getTessLevelOuter(float distance0, float distance1) { float avgDistance = (distance0 + distance1) / 2.0; return clamp((vf_te_outer - avgDistance), 1.0, vf_te_outer); } void main() { te_normal[gl_InvocationID] = tc_normal[gl_InvocationID]; te_bitangent[gl_InvocationID] = tc_bitangent[gl_InvocationID]; te_tangent[gl_InvocationID] = tc_tangent[gl_InvocationID]; te_textureCoordinates[gl_InvocationID] = tc_textureCoordinates[gl_InvocationID]; te_vertex[gl_InvocationID] = tc_vertex[gl_InvocationID]; float eyeToVertexDistance0 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[0], 1.0)).xyz); float eyeToVertexDistance1 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[1], 1.0)).xyz); float eyeToVertexDistance2 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[2], 1.0)).xyz); gl_TessLevelOuter[0] = getTessLevelOuter(eyeToVertexDistance1, eyeToVertexDistance2); gl_TessLevelOuter[1] = getTessLevelOuter(eyeToVertexDistance2, eyeToVertexDistance0); gl_TessLevelOuter[2] = getTessLevelOuter(eyeToVertexDistance0, eyeToVertexDistance1); gl_TessLevelInner[0] = getTessLevelInner(eyeToVertexDistance2, eyeToVertexDistance0); } Tessellation Evaluation shader: #version 410 core layout (triangles, equal_spacing, cw) in; in vec3 te_normal[]; in vec3 te_bitangent[]; in vec3 te_tangent[]; in vec2 te_textureCoordinates[]; in vec3 te_vertex[]; out vec3 g_normal; out vec3 g_bitangent; out vec4 g_patchDistance; out vec3 g_tangent; out vec2 g_textureCoordinates; out vec3 g_vertex; uniform float vf_te_inner; uniform float vf_te_outer; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat3 vf_m_normal; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_displace; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; vec2 interpolate2D(vec2 v0, vec2 v1, vec2 v2) { return vec2(gl_TessCoord.x) * v0 + vec2(gl_TessCoord.y) * v1 + vec2(gl_TessCoord.z) * v2; } vec3 interpolate3D(vec3 v0, vec3 v1, vec3 v2) { return vec3(gl_TessCoord.x) * v0 + vec3(gl_TessCoord.y) * v1 + vec3(gl_TessCoord.z) * v2; } float amplify(float d, float scale, float offset) { d = scale * d + offset; d = clamp(d, 0, 1); d = 1 - exp2(-2*d*d); return d; } float getDisplacement(vec2 t0, vec2 t1, vec2 t2) { float displacement = 0.0; vec2 textureCoordinates = interpolate2D(t0, t1, t2); vec2 vector = ((t0 + t1 + t2) / 3.0); float sampleDistance = sqrt((vector.x * vector.x) + (vector.y * vector.y)); sampleDistance /= ((vf_te_inner + vf_te_outer) / 2.0); displacement += texture(vf_t_displace, textureCoordinates).x; displacement += texture(vf_t_displace, textureCoordinates + vec2(-sampleDistance, -sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2(-sampleDistance, sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2( sampleDistance, sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2( sampleDistance, -sampleDistance)).x; return (displacement / 5.0); } void main() { g_normal = normalize(interpolate3D(te_normal[0], te_normal[1], te_normal[2])); g_bitangent = normalize(interpolate3D(te_bitangent[0], te_bitangent[1], te_bitangent[2])); g_patchDistance = vec4(gl_TessCoord, (1.0 - gl_TessCoord.y)); g_tangent = normalize(interpolate3D(te_tangent[0], te_tangent[1], te_tangent[2])); g_textureCoordinates = interpolate2D(te_textureCoordinates[0], te_textureCoordinates[1], te_textureCoordinates[2]); g_vertex = interpolate3D(te_vertex[0], te_vertex[1], te_vertex[2]); float displacement = getDisplacement(te_textureCoordinates[0], te_textureCoordinates[1], te_textureCoordinates[2]); float d2 = min(min(min(g_patchDistance.x, g_patchDistance.y), g_patchDistance.z), g_patchDistance.w); d2 = amplify(d2, 50, -0.5); g_vertex += g_normal * displacement * 0.1 * d2; gl_Position = vf_m_mvp * vec4(g_vertex, 1.0); } Geometry shader: #version 410 core layout (triangles) in; layout (triangle_strip, max_vertices = 3) out; in vec3 g_normal[3]; in vec3 g_bitangent[3]; in vec4 g_patchDistance[3]; in vec3 g_tangent[3]; in vec2 g_textureCoordinates[3]; in vec3 g_vertex[3]; out vec3 f_tangent; out vec3 f_bitangent; out vec3 f_eyeDirection; out vec3 f_lightDirection; out vec3 f_normal; out vec4 f_patchDistance; out vec4 f_shadowCoordinates; out vec2 f_textureCoordinates; out vec3 f_vertex; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat3 vf_m_normal; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; void main() { int index = 0; while (index < 3) { vec3 vertexNormal_cameraspace = vf_m_normal * normalize(g_normal[index]); vec3 vertexTangent_cameraspace = vf_m_normal * normalize(f_tangent); vec3 vertexBitangent_cameraspace = vf_m_normal * normalize(f_bitangent); mat3 TBN = transpose(mat3( vertexTangent_cameraspace, vertexBitangent_cameraspace, vertexNormal_cameraspace )); vec3 eyeDirection = -(vf_m_view * vf_m_model * vec4(g_vertex[index], 1.0)).xyz; vec3 lightDirection = normalize(-(vf_m_view * vec4(vf_l_position, 1.0)).xyz); f_eyeDirection = TBN * eyeDirection; f_lightDirection = TBN * lightDirection; f_normal = normalize(g_normal[index]); f_patchDistance = g_patchDistance[index]; f_shadowCoordinates = vf_m_depthBias * vec4(g_vertex[index], 1.0); f_textureCoordinates = g_textureCoordinates[index]; f_vertex = (vf_m_model * vec4(g_vertex[index], 1.0)).xyz; gl_Position = gl_in[index].gl_Position; EmitVertex(); index ++; } EndPrimitive(); } Fragment shader: #version 410 core in vec3 f_bitangent; in vec3 f_eyeDirection; in vec3 f_lightDirection; in vec3 f_normal; in vec4 f_patchDistance; in vec4 f_shadowCoordinates; in vec3 f_tangent; in vec2 f_textureCoordinates; in vec3 f_vertex; out vec4 fragColor; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; vec2 poissonDisk[16] = vec2[]( vec2(-0.94201624, -0.39906216), vec2( 0.94558609, -0.76890725), vec2(-0.09418410, -0.92938870), vec2( 0.34495938, 0.29387760), vec2(-0.91588581, 0.45771432), vec2(-0.81544232, -0.87912464), vec2(-0.38277543, 0.27676845), vec2( 0.97484398, 0.75648379), vec2( 0.44323325, -0.97511554), vec2( 0.53742981, -0.47373420), vec2(-0.26496911, -0.41893023), vec2( 0.79197514, 0.19090188), vec2(-0.24188840, 0.99706507), vec2(-0.81409955, 0.91437590), vec2( 0.19984126, 0.78641367), vec2( 0.14383161, -0.14100790) ); float random(vec3 seed, int i) { vec4 seed4 = vec4(seed,i); float dot_product = dot(seed4, vec4(12.9898, 78.233, 45.164, 94.673)); return fract(sin(dot_product) * 43758.5453); } float amplify(float d, float scale, float offset) { d = scale * d + offset; d = clamp(d, 0, 1); d = 1 - exp2(-2.0 * d * d); return d; } void main() { vec3 lightColor = vf_l_color.xyz; float lightPower = vf_l_color.w; vec3 materialDiffuseColor = texture(vf_t_diffuse, f_textureCoordinates).xyz; vec3 materialAmbientColor = vec3(0.1, 0.1, 0.1) * materialDiffuseColor; vec3 materialSpecularColor = texture(vf_t_specular, f_textureCoordinates).xyz; vec3 n = normalize(texture(vf_t_normal, f_textureCoordinates).rgb * 2.0 - 1.0); vec3 l = normalize(f_lightDirection); float cosTheta = clamp(dot(n, l), 0.0, 1.0); vec3 E = normalize(f_eyeDirection); vec3 R = reflect(-l, n); float cosAlpha = clamp(dot(E, R), 0.0, 1.0); float visibility = 1.0; float bias = 0.005 * tan(acos(cosTheta)); bias = clamp(bias, 0.0, 0.01); for (int i = 0; i < 4; i ++) { float shading = (0.5 / 4.0); int index = i; visibility -= shading * (1.0 - texture(vf_t_shadow, vec3(f_shadowCoordinates.xy + poissonDisk[index] / 3000.0, (f_shadowCoordinates.z - bias) / f_shadowCoordinates.w))); }\n" fragColor.xyz = materialAmbientColor + visibility * materialDiffuseColor * lightColor * lightPower * cosTheta + visibility * materialSpecularColor * lightColor * lightPower * pow(cosAlpha, 5); fragColor.w = texture(vf_t_diffuse, f_textureCoordinates).w; } The following images should be enough to give you an idea of the problem. Before moving the camera: Moving the camera just a little. Moving it to the center of the scene.

    Read the article

  • How do I get the point coords of a rotated SFML shaperect?

    - by user15498
    I am trying to get collisions of bullets working, and am using SFML. I am using code to get the position of the points of the rectangle for collisions, however I think there's a way to do this without having to get points but by simply getting the points from SFML, since the shape is a rectangle and the points are stored in that way. Is there a way to do that? Through a combination of getPoint() and getGlobalBounds() maybe? While on this topic, is it better to use shapeRects or sprites? I used to only use sprites, however with the addition of textures and more low level stuff I think it would be best to switch to using rectangles and setting their size.

    Read the article

  • Drag camera/view in a 3D world

    - by Dono
    I'm trying to make a Draggable view in a 3D world. Currently, I've made it using mouse position on the screen, but, when I move the distance traveled by my mouse is not equal to the distance traveled in the 3D world. So, I've tried to do that : Compute a ray from mouse position to 3D world. Calculate intersection with the ground. Check intersection difference old position <- new position. Translate camera with the difference. I've got a problem with this method: The ray is computed with the current camera's position I move the camera I compute the new ray with new camera position. The difference between old ray and new ray is now invalid. So, graphically my camera don't stop to move to previous/new position everytime. How can I do a draggable camera with another solution ? Thanks!

    Read the article

  • How can I simulate a rigid body bounced from a wall in 3D world?

    - by HyperGroups
    How can I simulate a rigid sword bounced from a wall and hit the ground (like in physical world)? I want to use this for a simple animation. I can detect the figure and the size of the sword (maybe needed in doing bounce). Rotation can be controlled by quaternions/matrix/euler angles. It should turn the head and do rotations and fly to the ground. How can I simulate this physical process? Maybe what I need is an equation and some parameters? I need these data, and would combine them into my movie file, I use Mathematica to do the thing that generate the movie file(If I have the data, I can also export it into a 3DSMax script for example).

    Read the article

  • How to control an actor movement in UDK

    - by Mikalichov
    This might be very basic, but I couldn't find something relevant to what I need (see below). I am working on a very basic thing: a 3D environment with some buildings, and actors walking inside it. It looks like following: I mainly want to manage to have one actor standing around, idling, and another walking around the area. Right now, this is done through matinee + skeletal mesh groups, and forcing a looped animation on the actors: But I realize this is super caveman-level. So I've build an AnimTree, linking the idling and directional animations to the corresponding nodes. But then, I'm stuck. I added the AnimTree in the actors properties, but nothing happens. I've tried MoveToActor, but no success - is there a thing to set to allow an actor to move? Also, I place the actors on the map manually (they are supposed to be unique), should I spawn them instead? Every tutorial I find explains how to use an AnimTree for the player character, which is not what I want. I need a way to move the actors. I tried to look for AI tutorials, but only found UT3 bots-modifications, which is not what I need either. Since I have so much trouble finding how to do this through Kismet, I'm starting to suspect this has to be done through scripting/coding, but I would like to be sure there is no way to do it through Kismet before going that route. Every bit of answer about how to tell an actor something along the lines of "go in that direction as much as you can, then when you hit a wall turn 45° and continue" would be awesome. I'll be happy to move/edit the question if there is any problem with it

    Read the article

  • Interaction using Kinect in XNA

    - by Sweta Dwivedi
    So i have written a program to play a sound file when ever my RightHand.Joint touches the 3D model . . It goes like this . . even though the code works somehow but not very accurate . . for example it will play the sound when my hand is slightly under my 3D object not exactly on my 3D object . How do i make it more accurate? here is the code . . (HandX & HandY is the values coming from the Skeleton data RightHand.Joint.X etc) and also this calculation doesnt work with Animated Sprites..which i need to do foreach (_3DModel s in Solar) { float x = (float)Math.Floor(((handX * 0.5f) + 0.5f) * (resolution.X)); float y = (float)Math.Floor(((handY * -0.5f) + 0.5f) * (resolution.Y)); float z = (float)Math.Floor((handZ) / 4 * 20000); if (Math.Sqrt(Math.Pow(x - s.modelPosition.X, 2) + Math.Pow(y - s.modelPosition.Y, 2)) < 15) { //Exit(); PlaySound("hyperspace_activate"); Console.WriteLine("1" + "handx:" + x + "," + " " + "modelPos.X:" + s.modelPosition.X + "," + " " + "handY:" + y + "modelPos.Y:" + s.modelPosition.Y); } else { Console.WriteLine("2" + "handx:" + x + "," + " " + "modelPos.X:" + s.modelPosition.X + "," + " " + "handY:" + y + "modelPos.Y:" + s.modelPosition.Y); } }

    Read the article

  • How to display image in second layer in Cocos2d

    - by PeterK
    I am very new at Cocos2d and is testing to displaying an image over the "Hello World" text on a second layer and need help to get it work. I guess it is some basic stuff here and appreciate any tips etc. with this. I know that if i put the display-code (myLayer1) in the "init" it work or do the call [self goHere] from the "init" in myLayer1 it works but i want to call the "goHere" directly. I have the following code: HelloWorld.m: #import "HelloWorldLayer.h" #import "myLayer1.h" // HelloWorldLayer implementation @implementation HelloWorldLayer +(CCScene *) scene { // 'scene' is an autorelease object. CCScene *scene = [CCScene node]; // 'layer' is an autorelease object. HelloWorldLayer *layer = [HelloWorldLayer node]; myLayer1 *layer1 = [myLayer1 node]; // add layer as a child to scene [scene addChild: layer]; [scene addChild: layer1]; // return the scene return scene; } // on "init" you need to initialize your instance -(id) init { // always call "super" init // Apple recommends to re-assign "self" with the "super" return value if( (self=[super init])) { // create and initialize a Label CCLabelTTF *label = [CCLabelTTF labelWithString:@"Hello World" fontName:@"Marker Felt" fontSize:64]; // ask director the the window size CGSize size = [[CCDirector sharedDirector] winSize]; // position the label on the center of the screen label.position = ccp( size.width /2 , size.height/2 ); // add the label as a child to this Layer [self addChild: label]; myLayer1 *a1 = [myLayer1 new]; [a1 goHere]; [myLayer1 release]; } return self; } myLayer1.m: #import "myLayer1.h" @implementation myLayer1 -(void)goHere { NSLog(@">>>>goHere<<<<"); CGSize size = [[CCDirector sharedDirector] winSize]; CCSprite *vv = [CCSprite spriteWithFile:@"hand.png"]; vv.position = ccp( size.width /2 , size.height/2 ); [self addChild:vv z:3]; } -(id) init { // always call "super" init // Apple recommends to re-assign "self" with the "super" return value if( (self=[super init])) { } return self; } @end

    Read the article

  • Deferred contexts and inheriting state from the immediate context

    - by dreijer
    I took my first stab at using deferred contexts in DirectX 11 today. Basically, I created my deferred context using CreateDeferredContext() and then drew a simple triangle strip with it. Early on in my test application, I call OMSetRenderTargets() on the immediate context in order to render to the swap chain's back buffer. Now, after having read the documentation on MSDN about deferred contexts, I assumed that calling ExecuteCommandList() on the immediate context would execute all of the deferred commands as "an extension" to the commands that had already been executed on the immediate context, i.e. the triangle strip I rendered in the deferred context would be rendered to the swap chain's back buffer. That didn't seem to be the case, however. Instead, I had to manually pull out the immediate context's render target (using OMGetRenderTargets()) and then set it on the deferred context with OMSetRenderTargets(). Am I doing something wrong or is that the way deferred contexts work?

    Read the article

  • Circle vs Edge collision detection / resolution

    - by topheman
    I made a javascript class Ball.js that handles physics interactions betweens balls as well as painting. In the v1.0, the ball vs ball collision detection and resolution is well handled. In the next version (v2), I'm trying to add edgeCollision handling. I'm having some problems, maybe you will be able to help me. All the v2 branch source code is on github repository : https://github.com/topheman/Ball.js/tree/v2 The v2 demos (where you can see the bug I will be talking about) : http://labs.topheman.com/Ball-v2/#help As you will see on the demo, I have two major problems that I'm having a really hard time to solve on Ball.js : method resolveEdgeCollision : bounce angle is inconsistent method checkEdgeCollision : if the ball's velocity (the length that it runs each frame) is higher than its diameter, eventually, it will pass through an edge, without triggering any collision Any Ideas ?...

    Read the article

  • How do I pass vertex and color positions to OpenGL shaders?

    - by smoth190
    I've been trying to get this to work for the past two days, telling myself I wouldn't ask for help. I think you can see where that got me... I thought I'd try my hand at a little OpenGL, because DirectX is complex and depressing. I picked OpenGL 3.x, because even with my OpenGL 4 graphics card, all my friends don't have that, and I like to let them use my programs. There aren't really any great tutorials for OpenGL 3, most are just "type this and this will happen--the end". I'm trying to just draw a simple triangle, and so far, all I have is a blank screen with my clear color (when I set the draw type to GL_POINTS I just get a black dot). I have no idea what the problem is, so I'll just slap down the code: Here is the function that creates the triangle: void CEntityRenderable::CreateBuffers() { m_vertices = new Vertex3D[3]; m_vertexCount = 3; m_vertices[0].x = -1.0f; m_vertices[0].y = -1.0f; m_vertices[0].z = -5.0f; m_vertices[0].r = 1.0f; m_vertices[0].g = 0.0f; m_vertices[0].b = 0.0f; m_vertices[0].a = 1.0f; m_vertices[1].x = 1.0f; m_vertices[1].y = -1.0f; m_vertices[1].z = -5.0f; m_vertices[1].r = 1.0f; m_vertices[1].g = 0.0f; m_vertices[1].b = 0.0f; m_vertices[1].a = 1.0f; m_vertices[2].x = 0.0f; m_vertices[2].y = 1.0f; m_vertices[2].z = -5.0f; m_vertices[2].r = 1.0f; m_vertices[2].g = 0.0f; m_vertices[2].b = 0.0f; m_vertices[2].a = 1.0f; //Create the VAO glGenVertexArrays(1, &m_vaoID); //Bind the VAO glBindVertexArray(m_vaoID); //Create a vertex buffer glGenBuffers(1, &m_vboID); //Bind the buffer glBindBuffer(GL_ARRAY_BUFFER, m_vboID); //Set the buffers data glBufferData(GL_ARRAY_BUFFER, sizeof(m_vertices), m_vertices, GL_STATIC_DRAW); //Set its usage glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex3D), 0); glVertexAttribPointer(1, 4, GL_FLOAT, GL_TRUE, sizeof(Vertex3D), (void*)(3*sizeof(float))); //Enable glEnableVertexAttribArray(0); glEnableVertexAttribArray(1); //Check for errors if(glGetError() != GL_NO_ERROR) { Error("Failed to create VBO: %s", gluErrorString(glGetError())); } //Unbind... glBindVertexArray(0); } The Vertex3D struct is as such... struct Vertex3D { Vertex3D() : x(0), y(0), z(0), r(0), g(0), b(0), a(1) {} float x, y, z; float r, g, b, a; }; And finally the render function: void CEntityRenderable::RenderEntity() { //Render... glBindVertexArray(m_vaoID); //Use our attribs glDrawArrays(GL_POINTS, 0, m_vertexCount); glBindVertexArray(0); //unbind OnRender(); } (And yes, I am binding and unbinding the shader. That is just in a different place) I think my problem is that I haven't fully wrapped my mind around this whole VertexAttribArray thing (the only thing I like better in DirectX was input layouts D:). This is my vertex shader: #version 330 //Matrices uniform mat4 projectionMatrix; uniform mat4 viewMatrix; uniform mat4 modelMatrix; //In values layout(location = 0) in vec3 position; layout(location = 1) in vec3 color; //Out values out vec3 frag_color; //Main shader void main(void) { //Position in world gl_Position = vec4(position, 1.0); //gl_Position = projectionMatrix * viewMatrix * modelMatrix * vec4(in_Position, 1.0); //No color changes frag_color = color; } As you can see, I've disable the matrices, because that just makes debugging this thing so much harder. I tried to debug using glslDevil, but my program just crashes right before the shaders are created... so I gave up with that. This is my first shot at OpenGL since the good old days of LWJGL, but that was when I didn't even know what a shader was. Thanks for your help :)

    Read the article

  • Locomotion-system with irregular IK

    - by htaunay
    Im having some trouble with locomtions (Unity3D asset) IK feet placement. I wouldn't call it "very bad", but it definitely isn't as smooth as the Locomotion System Examples. The strangest behavior (that is probably linked to the problem) are the rendered foot markers that "guess" where the characters next step will be. In the demo, they are smooth and stable. However, in my project, they keep flickering, as if Locomotion changed its "guess" every frame, and sometimes, the automatic defined step is too close to the previous step, or sometimes, too distant, creating a very irregular pattern. The configuration is (apparently)Identical to the human example in the demo, so I guessing the problem is my model and/or animation. Problem is, I can't figure out was it is =S Has anyone experienced the same problem? I uploaded a video of the bug to help interpreting the issue (excuse the HORRIBLE quality, I was in a hurry).

    Read the article

  • Repairing back-facing triangles without user input

    - by LTR
    My 3D application works with user-imported 3D models. Frequently, those models have a few vertices facing into the wrong direction. (For example, there is a 3D roof and a few triangles of that roof are facing inside the building). I want to repair those automatically. We can make several assumptions about these 3D models: they are completely closed without holes, and the camera is always on the outside. My idea: Shoot 500 rays from every triangle outwards into all directions. From the back side of the triangle, all rays will hit another part of the model. From the front side, at least one ray will hit nothing. Is there a better algorithm? Are there any papers about something like this?

    Read the article

  • How to have operations with character/items on binary with concrete operations on C++?

    - by Piperoman
    I have the next problem. A item can have a lot of states: NORMAL = 0000000 DRY = 0000001 HOT = 0000010 BURNING = 0000100 WET = 0001000 COLD = 0010000 FROZEN = 0100000 POISONED= 1000000 A item can have some states at same time but not all of them Is impossible to be dry and wet at same time. If you COLD a WET item, it turns into FROZEN. If you HOT a WET item, it turns into NORMAL A item can be BURNING and POISON Etc. I have tried to set binary flags to states, and use AND to combine different states, checking before if it is possible or not to do it, or change to another status. Does there exist a concrete approach to solve this problem efficiently without having an interminable switch that checks every state with every new state? It is relatively easy to check 2 different states, but if there exists a third state it is not trivial to do.

    Read the article

  • Optimal way to learn DirectX?

    - by BluePhase
    I am finding it very difficult to learn DirectX 11. The MSDN website is just full of unorganized information that doesn't seem to help at all. I am particularly looking for something that explains many if not all aspects of developing with DirectX 11. I have been searching for weeks and still come up empty. I have found some books but they don't really explain the fundamentals of the language at all. Thanks in advanced.

    Read the article

  • Bridge made out of blocks at an angle

    - by Pozzuh
    I'm having a bit of trouble with the math behind my project. I want the player to be able to select 2 points (vectors). With these 2 points a floor should be created. When these points are parallel to the x-axis it's easy, just calculate the amount of blocks needed by a simple division, loop through that amount (in x and y) and keep increasing the coordinate by the size of that block. The trouble starts when the 2 vectors aren't parallel to an axis, for example at an angle of 45 degrees. How do I handle the math behind this? If I wasn't completely clear, I made this awesome drawing in paint to demonstrate what I want to achieve. The 2 red dots would be the player selected locations. (The blocks indeed aren't square.) http://i.imgur.com/pzhFMEs.png.

    Read the article

  • How to pass one float as four unsigned chars to shader by glVertexPointAttrib?

    - by Kog
    For each vertex I use two floats as position and four unsigned bytes as color. I want to store all of them in one table, so I tried casting those four unsigned bytes to one float, but I am unable to do that correctly... All in all, my tests came to one point: GLfloat vertices[] = { 1.0f, 0.5f, 0, 1.0f, 0, 0 }; glEnableVertexAttribArray(0); glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, 2 * sizeof(float), vertices); // VER1 - draws red triangle // unsigned char colors[] = { 0xff, 0, 0, 0xff, 0xff, 0, 0, 0xff, 0xff, 0, 0, // 0xff }; // glEnableVertexAttribArray(1); // glVertexAttribPointer(1, 4, GL_UNSIGNED_BYTE, GL_TRUE, 4 * sizeof(GLubyte), // colors); // VER2 - draws greenish triangle (not "pure" green) // float f = 255 << 24 | 255; //Hex:0xff0000ff // float colors2[] = { f, f, f }; // glEnableVertexAttribArray(1); // glVertexAttribPointer(1, 4, GL_UNSIGNED_BYTE, GL_TRUE, 4 * sizeof(GLubyte), // colors2); // VER3 - draws red triangle int i = 255 << 24 | 255; //Hex:0xff0000ff int colors3[] = { i, i, i }; glEnableVertexAttribArray(1); glVertexAttribPointer(1, 4, GL_UNSIGNED_BYTE, GL_TRUE, 4 * sizeof(GLubyte), colors3); glDrawArrays(GL_TRIANGLES, 0, 3); Above code is used to draw one simple red triangle. My question is - why do versions 1 and 3 work correctly, while version 2 draws some greenish triangle? Hex values are one I read by marking variable during debug. They are equal for version 2 and 3 - so what causes the difference?

    Read the article

  • Random Position between ranges.

    - by blakey87
    Does anyone have a good algorithm for generating a random y position for spawning a block, which takes into account a minimum and maximum height, allowing player to to jump on the block. Blocks will continually be spawned, so the player must always be able to jump onto the next block, bearing in mind the minimum position which would be the ground, and the maximum which would the players jump height bearing in mind the ceiling

    Read the article

  • How are trajectories calculated and transmitted to other players in Multi-Player ?

    - by giulio
    I play alot of COD4. And can see tracers for gunfire, missles, care packages fall from helicopters etc. There is alot of activity. I am curious to know the algorithm (at a high level) that manages all this action when you have 20 people on a map shooting each other to death ? This question touches on the subject but doesn't ask for a more in-depth answer as to how you the developers go about calculating and transmitting movement and collision detection for projectiles, be it missles/bullets or any other object that is flying through the air in real-time.

    Read the article

  • OpenGL Vertex Attributes - Normalisation

    - by Daniel
    Alas, I have searched, and have found no definitive answer. When would you normalize the vertex data in OpenGL using the following command: glVertexAttribPointer(index, size, type, normalize, stride, pointer); I.e when would normalize == GL_TRUE; what situations, and why would you choose to let the GPU do the calculations instead of preprocessing it? All examples I have ever seen, have this set to GL_FALSE; and I cannot personally see a use for it. But Khronos aren't stupid, so it must be there for something useful (and probably common).

    Read the article

  • Best practices in managing character states

    - by TheBroodian
    While in development of a character, I feel like I'm digging myself deeper into a hole every time I add more functionality to him, creating more bugs and it seems like my code is tripping over itself all over the place. What are the best practices when managing character states for a character that has a large selection of abilities and actions that they can perform, without their abilities interrupting each other and creating a mess overall?

    Read the article

  • Understanding dot notation

    - by Starkers
    Here's my interpretation of dot notation: a = [2,6] b = [1,4] c = [0,8] a . b . c = (2*6)+(1*4)+(0*8) = 12 + 4 + 0 = 16 What is the significance of 16? Apparently it's a scalar. Am I right in thinking that a scalar is the number we times a unit vector by to get a vector that has a scaled up magnitude but the same direction as the unit vector? So again, what is the relevance of 16? When is it used? It's not the magnitude of all the vectors added up. The magnitude of all of them is calculated as follows: sqrt( ax * ax + ay * ay ) + sqrt( bx * bx + by * by ) + sqrt( cx * cx + cy * cy) sqrt( 2 * 2 + 6 * 6 ) + sqrt( 1 * 1 + 4 * 4 ) + sqrt( 0 * 0 + 8 * 8) sqrt( 4 + 36 ) + sqrt( 1 + 16 ) + sqrt( 0 + 64) sqrt( 40 ) + sqrt( 17 ) + sqrt( 64) 6.3 + 4.1 + 8 10.4 + 8 18.4 So I don't really get this diagram: Attempting with sensible numbers: a = [1,0] b = [4,3] a . b = (1*0) + (4*3) = 0 + 12 = 12 So what exactly is a . b describing here? The magnitude of that vector? Because that isn't right: the 'a.b' vector = [4,0] sqrt( x*x + y*y ) sqrt( 4*4 + 0*0 ) sqrt( 16 + 0 ) 4 So what is 12 describing?

    Read the article

  • GestureListener's fling method doesn't get called

    - by nosferat
    I'm using SimpleGestureDetector from the libgdx-users Wiki as my InputProcessor. I set it in the created() method: Gdx.input.setInputProcess(new SimpleDirectionGestureDetector(charController)); charController is my class which implements the DirectionListener interface defined in the SimpleDirectionGestureDetector class and it is responsible for moving the player character. However the character doesn't change direction when I'm performing a fling action in any direction. I've checked and the fling() method in the SimpleDirectionGesture class doesn't get called and I have no idea why, since everything seems good. What am I doing wrong?

    Read the article

  • most efficient AABB vs Ray collision algorithms

    - by Asher Einhorn
    Is there a known 'most efficient' algorithm for AABB vs Ray collision detection? I recently stumbled accross Arvo's AABB vs Sphere collision algorithm, and I am wondering if there is a similarly noteworthy algorithm for this. One must have condition for this algorithm is that I need to have the option of querying the result for the distance from the ray's origin to the point of collision. having said this, if there is another, faster algorithm which does not return distance, then in addition to posting one that does, also posting that algorithm would be very helpful indeed. Please also state what the function's return argument is, and how you use it to return distance or a 'no-collision' case. For example, does it have an out parameter for the distance as well as a bool return value? or does it simply return a float with the distance, vs a value of -1 for no collision? (For those that don't know: AABB = Axis Aligned Bounding Box)

    Read the article

< Previous Page | 433 434 435 436 437 438 439 440 441 442 443 444  | Next Page >