Search Results

Search found 37616 results on 1505 pages for 'model driven development'.

Page 462/1505 | < Previous Page | 458 459 460 461 462 463 464 465 466 467 468 469  | Next Page >

  • My 2D collision code does not work as expected. How do I fix it?

    - by farmdve
    I have a simple 2D game with a tile-based map. I am new to game development, I followed the LazyFoo tutorials on SDL. The tiles are in a bmp file, but each tile inside it corresponds to an internal number of the type of tile(color, or wall). The game is simple, but the code is a lot so I can only post snippets. // Player moved out of the map if((player.box.x < 0)) player.box.x += GetVelocity(player, 0); if((player.box.y < 0)) player.box.y += GetVelocity(player, 1); if((player.box.x > (LEVEL_WIDTH - DOT_WIDTH))) player.box.x -= GetVelocity(player, 0); if((player.box.y > (LEVEL_HEIGHT - DOT_HEIGHT))) player.box.y -= GetVelocity(player, 1); // Now that we are here, we check for collisions if(touches_wall(player.box)) { if(player.box.x < player.prev_x) { player.box.x += GetVelocity(player, 0); } if(player.box.x > player.prev_x) { player.box.x -= GetVelocity(player, 0); } if(player.box.y < player.prev_y) { player.box.y += GetVelocity(player, 1); } if(player.box.y > player.prev_y) { player.box.y -= GetVelocity(player, 1); } } player.prev_x = player.box.x; player.prev_y = player.box.y; Let me explain, player is a structure with the following contents typedef struct { Rectangle box; //Player position on a map(tile or whatever). int prev_x, prev_y; // Previous positions int key_press[3]; // Stores which key was pressed/released. Limited to three keys. E.g Left,right and perhaps jump if possible in 2D int velX, velY; // Velocity for X and Y coordinate. //Health int health; bool main_character; uint32_t jump_ticks; } Player; And Rectangle is just a typedef of SDL_Rect. GetVelocity is a function that according to the second argument, returns the velocity for the X or Y axis. This code I have basically works, however inside the if(touches_wall(player.box)) if statement, I have 4 more. These 4 if statements are responsible for detecting collision on all 4 sides(up,down,left,right). However, they also act as a block for any other movement. Example: I move down the object and collide with the wall, as I continue to move down and still collide with the wall, I wish to move left or right, which is indeed possible(not to mention in 3D games), but remember the 4 if statements? They are preventing me from moving anywhere. The original code on the LazyFoo Productions website has no problems, but it was written in C++, so I had to rewrite most of it to work, which is probably where the problem comes from. I also use a different method of moving, than the one in the examples. Of course, that was just an example. I wish to be able to move no matter at which wall I collide. Before this bit of code, I had another one that had more logic in there, but it was flawed.

    Read the article

  • Best approach to depth streaming via existing codec

    - by Kevin
    I'm working on a development system (and game) intended for games set mostly in static third-person views. We produce our scenery by CG and photographic techniques. Our background art is rendered off-line by a production-grade renderer. To allow the runtime imagery to properly interact with the background art, I wrote a program to convert from depth output by Mental Ray into a texture, and a pixel shader to draw a quad such that the Z data comes from the texture. This technique is working out very well, but now we've decided that some of the camera angle changes between scenes should be animated. The animation itself is straightforward to produce from our CG models. We intend to encode it to some HD video codec such as H.264. The problem is that in order to maintain our runtime imagery on the screen, the depth buffer will need to be loaded for each video frame. Due to the bandwidth, the video's depth data will need to be compressed efficiently. I've looked into methods for performing temporal compression of depth info and found an interesting research paper here: http://web4.cs.ucl.ac.uk/staff/j.kautz/publications/depth-streaming.pdf The method establishes a mapping between 16-bit depth values and YCbCr values. The mapping is tuned to the properties of existing video codecs in order to maximize precision of the decoded depths after the YCbCr has undergone video compression. It allows an existing, unmodified video codec to be used on the backend. I'm looking at how to pull this off with the least possible work. (This design change was unplanned.) Our game engine itself is native C++, presently for Win32 and DirectX, although we've worked hard to keep platform dependence segregated because we intend other ports. We don't have motion video facilities in the engine yet but will ultimately need that anyway for cinematics. I was planning on using some off-the-shelf motion video solution we can plug into our engine, and haven't chosen one yet. This new added requirement makes selecting one harder since, among other things, we'll now need to bypass colourspace conversion on one of the streams, and also will need to be playing two streams simultaneously in lockstep, on top of in some cases audio on one of them (for the cinematics). I'm also wondering if it's possible (or even useful) to do the conversion from YCbCr to depth in a pixel shader, or if it's better to just do it in CPU and separately load the resulting depth values into a locked tex. The conversion unfortunately does involve branching logic per-pixel. (There are more naive mappings that don't need branching, but they produce inferior results.) It could be reduced to a table lookup but the table would be 32MB. Programming is second-nature to me but I'm not that experienced with pix shaders and have zero knowledge of off-the-shelf video solutions. I'd therefore be interested in advice from others who may have dealt more with depth streaming, pixel shaders, and/or off-the-shelf codecs, regarding how feasible the proposed application is and what off-the-shelf video systems out there would best get along with this usage case.

    Read the article

  • Are you cashing in on the MVP complimentary subscriptions ?

    - by Tarun Arora
    The two most asked questions in the Microsoft technology communities around the Microsoft MVP program are, 1. How do I become a Microsoft MVP? 2. What benefits do I get as an MVP? The answer to the first question has been well answered here. In this blog post, I’ll try and answer the second question.           Please find a comprehensive list of Not for Resale personal subscriptions of various products that Microsoft MVP’s are eligible for Product Description Details JetBrains Resharper, dotTrace, dotCover & WebStorm  https://www.jetbrains.com/resharper/buy/mvp.html RedGate Sql server development, database administration, .net development, azure development (merged with Cerebrata), mySQL development, Oracle development http://www.red-gate.com/community/mvp-program Pluralsight Pluralsight on demand training http://blog.pluralsight.com/2011/02/28/pluralsight-for-mvp/ Cerebrata Cloud storage studio and Azure Diagnostic Manager (part of redgate now) https://www.cerebrata.com/Offers/mvp.aspx Telerik Telerik Ultimate collection & Telerik TeamPulse http://blogs.telerik.com/blogs/posts/11-03-01/telerik-gift-for-microsoft-mvps.aspx Developer Express DevEx controls http://www.devexpress.com/Home/Community/mvp.xml InnerWorking 600 hours of .net training catalogue http://www.innerworkings.com/mvp Typemock Typemock Isolator, Typemock Isolator for Sharepoint developers, Typemock Isolator for web developers, TestDriven.NET http://www.typemock.com/mvp SpeakFlow A suite of tools for creating, managing, and delivering non-linear presentations http://www.speakflow.com/ TechSmith Camtasia Studio, SnagIt, screen cast http://www.techsmith.com/camtasia.html Altova Altova XML spy http://www.altova.com/xml-editor/ Visual SVN VisualSVN Subversion integration plug-in for Visual Studio http://www.visualsvn.com/visualsvn/purchase/mvp/ PreEmptive Solution Professional PreEmptive Analytics, Dotfuscator http://www.preemptive.com/landing/mvp Armadillo Armadillo Adaptive Bug Prevention http://www.armadilloverdrive.com/ IS Decisions NFR license to Userlock, RemoteExec, FileAudit & WinReporter http://www.isdecisions.com/download/mvp-mct-program.htm Idera SQL tools http://www.idera.com/Content/Home.aspx West Wind Help Builder Help builder solution http://www.west-wind.com/weblog/posts/2005/Mar/09/Are-you-a-Microsoft-MVP-Get-a-FREE-copy-of-West-Wind-Html-Help-Builder Bamboo Sharepoint tools http://community.bamboosolutions.com/blogs/partner-advantage-program/archive/2008/08/01/partner-advantage-program-mvp.aspx Nitriq Nitriq code analysis http://blog.nitriq.com/FreeLicensesForMicrosoftMVPs.aspx ByteScout Components, Libraries and Developer Tools http://bytescout.com/buy/purchase_nfr_for_mvp.html YourKit Java and .net Profiler http://yourkit.com/.net/profiler/index.jsp Aspose .NET components http://www.aspose.com/corporate/community/2012_05_08_nfr-licenses-for-community-leaders.aspx Apart from google bing fu; stackoverflow and breathtech were a great help in compiling the above list. If you know of any other benefits, offers or complimentary subscriptions on offer for MVPs not cover in the list above, please add to the comment thread and I’ll have it updated in the list. Enjoy

    Read the article

  • Scrum for Team Foundation Server 2010

    - by Martin Hinshelwood
    I will be presenting a session on “Scrum for TFS2010” not once, but twice! If you are going to be at the Aberdeen Partner Group meeting on 27th April, or DDD Scotland on 8th May then you may be able to catch my session. Credit: I want to give special thanks to Aaron Bjork from Microsoft who provided me with most of my material He is a Scrum and Power Point genius. Scrum for Team Foundation Server 2010 Synopsis Visual Studio ALM (formerly Visual Studio Team System (VSTS)) and Team Foundation Server (TFS) are the cornerstones of development on the Microsoft .NET platform. These are the best tools for a team to have successful projects and for the developers to have a focused and smooth software development process. For TFS 2010 Microsoft is heavily investing in Scrum and has already started moving some teams across to using it. Martin will not be going in depth with Scrum but you can find out more about Scrum by reading the Scrum Guide and you can even asses your Scrum knowledge by having a go at the Scrum Open Assessment. Come and see Martin Hinshelwood, Visual Studio ALM MVP and Solution Architect from SSW show you: How to successfully gather requirements with User stories How to plan a project using TFS 2010 and Scrum How to work with a product backlog in TFS 2010 The right way to plan a sprint with TFS 2010 Tracking your progress The right way to use work items What you can use from the built in reporting as well as the Project portals available on from the SharePoint dashboard The important reports to give your Product Owner / Project Manager Walk away knowing how to see the project health and progress. Visual Studio ALM is designed to help address many of these traditional problems faced by teams. It does so by providing a set of integrated tools to help teams improve their software development activities and to help managers better support the software development processes. During this session we will cover the lifecycle of creating work items and how this fits into Scrum using Visual Studio ALM and Team Foundation Server. If you want to know more about how to do Scrum with TFS then there is a new course that has been created in collaboration with Microsoft and Scrum.org that is going to be the official course for working with TFS 2010. SSW has Professional Scrum Developer Trainers who specialise in training your developers in implementing Scrum with Microsoft's Visual Studio ALM tools. Ken Schwaber and and Sam Guckenheimer: Professional Scrum Development Technorati Tags: Scrum,VS ALM,VS 2010,TFS 2010

    Read the article

  • Scrum for Team Foundation Server 2010

    - by Martin Hinshelwood
    I will be presenting a session on “Scrum for TFS2010” not once, but twice! If you are going to be at the Aberdeen Partner Group meeting on 27th April, or DDD Scotland on 8th May then you may be able to catch my session. Credit: I want to give special thanks to Aaron Bjork from Microsoft who provided me with most of my material He is a Scrum and Power Point genius. Updated 9th May 2010 – I have now presented at both of these sessions  and posted about it. Scrum for Team Foundation Server 2010 Synopsis Visual Studio ALM (formerly Visual Studio Team System (VSTS)) and Team Foundation Server (TFS) are the cornerstones of development on the Microsoft .NET platform. These are the best tools for a team to have successful projects and for the developers to have a focused and smooth software development process. For TFS 2010 Microsoft is heavily investing in Scrum and has already started moving some teams across to using it. Martin will not be going in depth with Scrum but you can find out more about Scrum by reading the Scrum Guide and you can even asses your Scrum knowledge by having a go at the Scrum Open Assessment. You can also read SSW’s Rules to Better Scrum using TFS which have been developed during our own Scrum implementations. Come and see Martin Hinshelwood, Visual Studio ALM MVP and Solution Architect from SSW show you: How to successfully gather requirements with User stories How to plan a project using TFS 2010 and Scrum How to work with a product backlog in TFS 2010 The right way to plan a sprint with TFS 2010 Tracking your progress The right way to use work items What you can use from the built in reporting as well as the Project portals available on from the SharePoint dashboard The important reports to give your Product Owner / Project Manager Walk away knowing how to see the project health and progress. Visual Studio ALM is designed to help address many of these traditional problems faced by teams. It does so by providing a set of integrated tools to help teams improve their software development activities and to help managers better support the software development processes. During this session we will cover the lifecycle of creating work items and how this fits into Scrum using Visual Studio ALM and Team Foundation Server. If you want to know more about how to do Scrum with TFS then there is a new course that has been created in collaboration with Microsoft and Scrum.org that is going to be the official course for working with TFS 2010. SSW has Professional Scrum Developer Trainers who specialise in training your developers in implementing Scrum with Microsoft's Visual Studio ALM tools. Ken Schwaber and and Sam Guckenheimer: Professional Scrum Development Technorati Tags: Scrum,VS ALM,VS 2010,TFS 2010

    Read the article

  • The Incremental Architect&acute;s Napkin &ndash; #3 &ndash; Make Evolvability inevitable

    - by Ralf Westphal
    Originally posted on: http://geekswithblogs.net/theArchitectsNapkin/archive/2014/06/04/the-incremental-architectacutes-napkin-ndash-3-ndash-make-evolvability-inevitable.aspxThe easier something to measure the more likely it will be produced. Deviations between what is and what should be can be readily detected. That´s what automated acceptance tests are for. That´s what sprint reviews in Scrum are for. It´s no small wonder our software looks like it looks. It has all the traits whose conformance with requirements can easily be measured. And it´s lacking traits which cannot easily be measured. Evolvability (or Changeability) is such a trait. If an operation is correct, if an operation if fast enough, that can be checked very easily. But whether Evolvability is high or low, that cannot be checked by taking a measure or two. Evolvability might correlate with certain traits, e.g. number of lines of code (LOC) per function or Cyclomatic Complexity or test coverage. But there is no threshold value signalling “evolvability too low”; also Evolvability is hardly tangible for the customer. Nevertheless Evolvability is of great importance - at least in the long run. You can get away without much of it for a short time. Eventually, though, it´s needed like any other requirement. Or even more. Because without Evolvability no other requirement can be implemented. Evolvability is the foundation on which all else is build. Such fundamental importance is in stark contrast with its immeasurability. To compensate this, Evolvability must be put at the very center of software development. It must become the hub around everything else revolves. Since we cannot measure Evolvability, though, we cannot start watching it more. Instead we need to establish practices to keep it high (enough) at all times. Chefs have known that for long. That´s why everybody in a restaurant kitchen is constantly seeing after cleanliness. Hygiene is important as is to have clean tools at standardized locations. Only then the health of the patrons can be guaranteed and production efficiency is constantly high. Still a kitchen´s level of cleanliness is easier to measure than software Evolvability. That´s why important practices like reviews, pair programming, or TDD are not enough, I guess. What we need to keep Evolvability in focus and high is… to continually evolve. Change must not be something to avoid but too embrace. To me that means the whole change cycle from requirement analysis to delivery needs to be gone through more often. Scrum´s sprints of 4, 2 even 1 week are too long. Kanban´s flow of user stories across is too unreliable; it takes as long as it takes. Instead we should fix the cycle time at 2 days max. I call that Spinning. No increment must take longer than from this morning until tomorrow evening to finish. Then it should be acceptance checked by the customer (or his/her representative, e.g. a Product Owner). For me there are several resasons for such a fixed and short cycle time for each increment: Clear expectations Absolute estimates (“This will take X days to complete.”) are near impossible in software development as explained previously. Too much unplanned research and engineering work lurk in every feature. And then pervasive interruptions of work by peers and management. However, the smaller the scope the better our absolute estimates become. That´s because we understand better what really are the requirements and what the solution should look like. But maybe more importantly the shorter the timespan the more we can control how we use our time. So much can happen over the course of a week and longer timespans. But if push comes to shove I can block out all distractions and interruptions for a day or possibly two. That´s why I believe we can give rough absolute estimates on 3 levels: Noon Tonight Tomorrow Think of a meeting with a Product Owner at 8:30 in the morning. If she asks you, how long it will take you to implement a user story or bug fix, you can say, “It´ll be fixed by noon.”, or you can say, “I can manage to implement it until tonight before I leave.”, or you can say, “You´ll get it by tomorrow night at latest.” Yes, I believe all else would be naive. If you´re not confident to get something done by tomorrow night (some 34h from now) you just cannot reliably commit to any timeframe. That means you should not promise anything, you should not even start working on the issue. So when estimating use these four categories: Noon, Tonight, Tomorrow, NoClue - with NoClue meaning the requirement needs to be broken down further so each aspect can be assigned to one of the first three categories. If you like absolute estimates, here you go. But don´t do deep estimates. Don´t estimate dozens of issues; don´t think ahead (“Issue A is a Tonight, then B will be a Tomorrow, after that it´s C as a Noon, finally D is a Tonight - that´s what I´ll do this week.”). Just estimate so Work-in-Progress (WIP) is 1 for everybody - plus a small number of buffer issues. To be blunt: Yes, this makes promises impossible as to what a team will deliver in terms of scope at a certain date in the future. But it will give a Product Owner a clear picture of what to pull for acceptance feedback tonight and tomorrow. Trust through reliability Our trade is lacking trust. Customers don´t trust software companies/departments much. Managers don´t trust developers much. I find that perfectly understandable in the light of what we´re trying to accomplish: delivering software in the face of uncertainty by means of material good production. Customers as well as managers still expect software development to be close to production of houses or cars. But that´s a fundamental misunderstanding. Software development ist development. It´s basically research. As software developers we´re constantly executing experiments to find out what really provides value to users. We don´t know what they need, we just have mediated hypothesises. That´s why we cannot reliably deliver on preposterous demands. So trust is out of the window in no time. If we switch to delivering in short cycles, though, we can regain trust. Because estimates - explicit or implicit - up to 32 hours at most can be satisfied. I´d say: reliability over scope. It´s more important to reliably deliver what was promised then to cover a lot of requirement area. So when in doubt promise less - but deliver without delay. Deliver on scope (Functionality and Quality); but also deliver on Evolvability, i.e. on inner quality according to accepted principles. Always. Trust will be the reward. Less complexity of communication will follow. More goodwill buffer will follow. So don´t wait for some Kanban board to show you, that flow can be improved by scheduling smaller stories. You don´t need to learn that the hard way. Just start with small batch sizes of three different sizes. Fast feedback What has been finished can be checked for acceptance. Why wait for a sprint of several weeks to end? Why let the mental model of the issue and its solution dissipate? If you get final feedback after one or two weeks, you hardly remember what you did and why you did it. Resoning becomes hard. But more importantly youo probably are not in the mood anymore to go back to something you deemed done a long time ago. It´s boring, it´s frustrating to open up that mental box again. Learning is harder the longer it takes from event to feedback. Effort can be wasted between event (finishing an issue) and feedback, because other work might go in the wrong direction based on false premises. Checking finished issues for acceptance is the most important task of a Product Owner. It´s even more important than planning new issues. Because as long as work started is not released (accepted) it´s potential waste. So before starting new work better make sure work already done has value. By putting the emphasis on acceptance rather than planning true pull is established. As long as planning and starting work is more important, it´s a push process. Accept a Noon issue on the same day before leaving. Accept a Tonight issue before leaving today or first thing tomorrow morning. Accept a Tomorrow issue tomorrow night before leaving or early the day after tomorrow. After acceptance the developer(s) can start working on the next issue. Flexibility As if reliability/trust and fast feedback for less waste weren´t enough economic incentive, there is flexibility. After each issue the Product Owner can change course. If on Monday morning feature slices A, B, C, D, E were important and A, B, C were scheduled for acceptance by Monday evening and Tuesday evening, the Product Owner can change her mind at any time. Maybe after A got accepted she asks for continuation with D. But maybe, just maybe, she has gotten a completely different idea by then. Maybe she wants work to continue on F. And after B it´s neither D nor E, but G. And after G it´s D. With Spinning every 32 hours at latest priorities can be changed. And nothing is lost. Because what got accepted is of value. It provides an incremental value to the customer/user. Or it provides internal value to the Product Owner as increased knowledge/decreased uncertainty. I find such reactivity over commitment economically very benefical. Why commit a team to some workload for several weeks? It´s unnecessary at beast, and inflexible and wasteful at worst. If we cannot promise delivery of a certain scope on a certain date - which is what customers/management usually want -, we can at least provide them with unpredecented flexibility in the face of high uncertainty. Where the path is not clear, cannot be clear, make small steps so you´re able to change your course at any time. Premature completion Customers/management are used to premeditating budgets. They want to know exactly how much to pay for a certain amount of requirements. That´s understandable. But it does not match with the nature of software development. We should know that by now. Maybe there´s somewhere in the world some team who can consistently deliver on scope, quality, and time, and budget. Great! Congratulations! I, however, haven´t seen such a team yet. Which does not mean it´s impossible, but I think it´s nothing I can recommend to strive for. Rather I´d say: Don´t try this at home. It might hurt you one way or the other. However, what we can do, is allow customers/management stop work on features at any moment. With spinning every 32 hours a feature can be declared as finished - even though it might not be completed according to initial definition. I think, progress over completion is an important offer software development can make. Why think in terms of completion beyond a promise for the next 32 hours? Isn´t it more important to constantly move forward? Step by step. We´re not running sprints, we´re not running marathons, not even ultra-marathons. We´re in the sport of running forever. That makes it futile to stare at the finishing line. The very concept of a burn-down chart is misleading (in most cases). Whoever can only think in terms of completed requirements shuts out the chance for saving money. The requirements for a features mostly are uncertain. So how does a Product Owner know in the first place, how much is needed. Maybe more than specified is needed - which gets uncovered step by step with each finished increment. Maybe less than specified is needed. After each 4–32 hour increment the Product Owner can do an experient (or invite users to an experiment) if a particular trait of the software system is already good enough. And if so, she can switch the attention to a different aspect. In the end, requirements A, B, C then could be finished just 70%, 80%, and 50%. What the heck? It´s good enough - for now. 33% money saved. Wouldn´t that be splendid? Isn´t that a stunning argument for any budget-sensitive customer? You can save money and still get what you need? Pull on practices So far, in addition to more trust, more flexibility, less money spent, Spinning led to “doing less” which also means less code which of course means higher Evolvability per se. Last but not least, though, I think Spinning´s short acceptance cycles have one more effect. They excert pull-power on all sorts of practices known for increasing Evolvability. If, for example, you believe high automated test coverage helps Evolvability by lowering the fear of inadverted damage to a code base, why isn´t 90% of the developer community practicing automated tests consistently? I think, the answer is simple: Because they can do without. Somehow they manage to do enough manual checks before their rare releases/acceptance checks to ensure good enough correctness - at least in the short term. The same goes for other practices like component orientation, continuous build/integration, code reviews etc. None of that is compelling, urgent, imperative. Something else always seems more important. So Evolvability principles and practices fall through the cracks most of the time - until a project hits a wall. Then everybody becomes desperate; but by then (re)gaining Evolvability has become as very, very difficult and tedious undertaking. Sometimes up to the point where the existence of a project/company is in danger. With Spinning that´s different. If you´re practicing Spinning you cannot avoid all those practices. With Spinning you very quickly realize you cannot deliver reliably even on your 32 hour promises. Spinning thus is pulling on developers to adopt principles and practices for Evolvability. They will start actively looking for ways to keep their delivery rate high. And if not, management will soon tell them to do that. Because first the Product Owner then management will notice an increasing difficulty to deliver value within 32 hours. There, finally there emerges a way to measure Evolvability: The more frequent developers tell the Product Owner there is no way to deliver anything worth of feedback until tomorrow night, the poorer Evolvability is. Don´t count the “WTF!”, count the “No way!” utterances. In closing For sustainable software development we need to put Evolvability first. Functionality and Quality must not rule software development but be implemented within a framework ensuring (enough) Evolvability. Since Evolvability cannot be measured easily, I think we need to put software development “under pressure”. Software needs to be changed more often, in smaller increments. Each increment being relevant to the customer/user in some way. That does not mean each increment is worthy of shipment. It´s sufficient to gain further insight from it. Increments primarily serve the reduction of uncertainty, not sales. Sales even needs to be decoupled from this incremental progress. No more promises to sales. No more delivery au point. Rather sales should look at a stream of accepted increments (or incremental releases) and scoup from that whatever they find valuable. Sales and marketing need to realize they should work on what´s there, not what might be possible in the future. But I digress… In my view a Spinning cycle - which is not easy to reach, which requires practice - is the core practice to compensate the immeasurability of Evolvability. From start to finish of each issue in 32 hours max - that´s the challenge we need to accept if we´re serious increasing Evolvability. Fortunately higher Evolvability is not the only outcome of Spinning. Customer/management will like the increased flexibility and “getting more bang for the buck”.

    Read the article

  • Inside Red Gate - Divisions

    - by Simon Cooper
    When I joined Red Gate back in 2007, there were around 80 people in the company. Now, around 3 years later, it's grown to more than 200. It's a constant battle against Dunbar's number; the maximum number of people you can keep track of in a social group, to try and maintain that 'small company' feel that attracted myself and so many others to apply in the first place. There are several strategies the company's developed over the years to try and mitigate the effects of Dunbar's number. One of the main ones has been divisionalisation. Divisions The first division, .NET, appeared around the same time that I started in 2007. This combined the development, sales, marketing and management of the .NET tools (then, ANTS Profiler v3) into a separate section of the office. The idea was to increase the cohesion and communication between the different people involved in the entire lifecycle of the tools; from initial product development, through to marketing, then to customer support, who would feed back to the development team. This was such a success that the other development teams were re-worked around this model in 2009. Nowadays there are 4 divisions - SQL Tools, DBA, .NET, and New Business. Along the way there have been various tweaks to the details - the sales teams have been merged into the divisions, marketing and product support have been (mostly) centralised - but the same basic model remains. So, how has this helped? As Red Gate has continued to grow over the years, divisionalisation has turned Red Gate from a monolithic software company into what one person described as a 'federation of small businesses'. Each division is free to structure itself as it sees fit, it's free to decide what to concentrate development work on, organise its own newsletters and webinars, decide its own release schedule. Each division is its own small business. In terms of numbers, the size of each division varies from 20 people (.NET) to 52 (SQL Tools); well below Dunbar's number. From a developer's perspective, this means organisational structure is very flat & wide - there's only 2 layers between myself and the CEOs (not that it matters much; everyone can go and have a chat to Neil or Simon, or anyone else inbetween, whenever they want. Provided you can catch them at their desk!). As Red Gate grows, and expands into new areas, new divisions will be created as needed, old ones merged or disbanded, but the division structure will help to maintain that small-company feel that keeps Red Gate working as it does.

    Read the article

  • JavaFX 2.0 at Devoxx 2011

    - by Janice J. Heiss
    JavaFX Sessions Abound JavaFX had a big presence at Devoxx 2011 as witnessed by the number of sessions this year given by leading JavaFX movers and shakers.     “JavaFX 2.0 -- A Java Developer's Guide” by Java Champions Stephen Chin and Peter Pilgrim     “JavaFX 2.0 Hands On” by Jasper Potts and Richard Bair     “Animation Bringing your User Interfaces to Life” by Michael Heinrichs and John Yoong (JavaFX development team)     “Complete Guide to Writing Custom Bindings in JavaFX 2.0” by Michael Heinrichs (JavaFX development team)     “Java Rich Clients with JavaFX 2.0” by Jasper Potts and Richard Bair     “JavaFX Properties & Bindings for Experts” (and those who want to become experts) by Michael Heinrichs (JavaFX development team)     “JavaFX Under the Hood” by Richard Bair     “JavaFX Open Mic” with Jasper Potts and Richard Bair With the release of JavaFX 2.0 and Oracle’s move towards an open development model with an open bug database already created, it’s a great time for developers to take the JavaFX plunge. One Devoxx attendee, Mark Stephens, a developer at IDRsolutions blogged about a problem he was having setting up JavaFX on NetBeans to work on his Mac. He wrote: “I’ve tried desperate measures (I even read and reread the instructions) but it did not help. Luckily, I am at Devoxx at the moment and there seem to be a lot of JavaFX gurus here (and it is running on all their Macs). So I asked them… It turns out that sometimes the software does not automatically pickup the settings like it should do if you give it the JavaFX SDK path. The solution is actually really simple (isn’t it always once you know). Enter these values manually and it will work.” He simply entered certain values and his problem was solved. He thanked Java Champion Stephen Chin, “for a great talk at Devoxx and putting me out of my misery.” JavaFX in Java Magazine Over in the November/December 2011 issue of Java Magazine, Oracle’s Simon Ritter, well known for his creative Java inventions at JavaOne, has an article up titled “JavaFX and Swing Integration” in which he shows developers how to use the power of JavaFX to migrate Swing interfaces to JavaFX. The consensus among JavaFX experts is that JavaFX is the next step in the evolution of Java as a rich client platform. In the same issue Java Champion and JavaFX maven James Weaver has an article, “Using Transitions for Animation in JavaFX 2.0”. In addition, Oracle’s Vice President of Java Client Development, Nandini Ramani, provides the keys to unlock the mysteries of JavaFX 2.0 in her Java Magazine interview. Look for the JavaFX community to grow and flourish in coming years.

    Read the article

  • Build Mobile App for E-Business Suite Using SOA Suite and ADF Mobile

    - by Michelle Kimihira
    With the upcoming release of Oracle ADF Mobile, I caught up with Srikant Subramaniam, Senior Principal Product Manager, Oracle Fusion Middleware post OpenWorld to learn about the cool hands-on lab at OpenWorld.  For those of you who missed it, you will want to keep reading... Author: Srikant Subramaniam, Senior Principal Product Manager,Oracle Fusion Middleware Oracle ADF Mobile enables rapid and declarative development of native on-device mobile applications. These native applications provide a richer experience for smart devices users running Apple iOS or other mobile platforms. Oracle ADF Mobile protects Oracle customers from technology shifts by adopting a metadata-based development framework that enables developer to develop one app (using Oracle JDeveloper), and deploy to multiple device platforms (starting with iOS and Android).  Oracle ADF Mobile also enables IT organizations to leverage existing expertise in web-based and Java development by adopting a hybrid application architecture that brings together HTML5, Java, and device native container: HTML5 allows developer to deliver device-native user experiences while maintaining portability across different platforms Java allows developers to create modules to support business logic and data services Native container provides integration into device services such as camera, contacts, etc All these technologies are packaged into a development framework that supports declarative application development through Oracle JDeveloper. ADF Mobile also provides out of box integratoin with key Fusion Middleware components, such as SOA Suite and Business Process Management (BPM). Oracle Fusion Middleware provides the necessary infrastructure to extend business processes and services to the mobile device -- enabling the mobile user to participate in human tasks – without the additional “mobile middleware” layer. When coupled with Oracle SOA Suite, this combination can execute business transactions on Oracle E-Business Suite (or any Oracle Application). Demo Use Case: Mobile E-Business Suite (iExpense) Approvals Using an employee expense approval scenario, we illustrate how to use Oracle Fusion Middleware and Oracle ADF Mobile to build application extensions that integrate intelligently with Oracle Applications (For example, E-Business Suite). Building these extensions using Oracle Fusion middleware and ADF makes modifications simple, quick to implement, and easy to maintain/upgrade. As described earlier, this approach also extends Fusion Middleware to mobile users without the additional "Mobile Middleware" layer. The approver is presented with a list of expense reports that have been submitted for approval. These expense reports are retrieved from the backend E-Business Suite and displayed on the mobile device. Approval (or rejection) of the expense report kicks off the workflow in E-Business Suite and takes it to completion. The demo also shows how to integrate with native device services such as email, contacts, BI dashboards as well as a prebuilt PDF viewer (this is especially useful in the expense approval scenario, as there is often a need for the approver to access the submitted receipts). Summary Oracle recommends Fusion Middleware as the application integration platform to deliver critical enterprise data and processes to mobile applications.  Pre-built connectors between Fusion Middleware and Applications greatly accelerates the integration process.  Instead of building individual integration points between mobile applications and individual enterprise applications, Oracle Fusion Middleware enables IT organizations to leverage a common platform to support both desktop and mobile application.  Additional Information Product Information on Oracle.com: Oracle Fusion Middleware Follow us on Twitter and Facebook Subscribe to our regular Fusion Middleware Newsletter

    Read the article

  • Deferred rendering with VSM - Scaling light depth loses moments

    - by user1423893
    I'm calculating my shadow term using a VSM method. This works correctly when using forward rendered lights but fails with deferred lights. // Shadow term (1 = no shadow) float shadow = 1; // [Light Space -> Shadow Map Space] // Transform the surface into light space and project // NB: Could be done in the vertex shader, but doing it here keeps the // "light shader" abstraction and doesn't limit the number of shadowed lights float4x4 LightViewProjection = mul(LightView, LightProjection); float4 surf_tex = mul(position, LightViewProjection); // Re-homogenize // 'w' component is not used in later calculations so no need to homogenize (it will equal '1' if homogenized) surf_tex.xyz /= surf_tex.w; // Rescale viewport to be [0,1] (texture coordinate system) float2 shadow_tex; shadow_tex.x = surf_tex.x * 0.5f + 0.5f; shadow_tex.y = -surf_tex.y * 0.5f + 0.5f; // Half texel offset //shadow_tex += (0.5 / 512); // Scaled distance to light (instead of 'surf_tex.z') float rescaled_dist_to_light = dist_to_light / LightAttenuation.y; //float rescaled_dist_to_light = surf_tex.z; // [Variance Shadow Map Depth Calculation] // No filtering float2 moments = tex2D(ShadowSampler, shadow_tex).xy; // Flip the moments values to bring them back to their original values moments.x = 1.0 - moments.x; moments.y = 1.0 - moments.y; // Compute variance float E_x2 = moments.y; float Ex_2 = moments.x * moments.x; float variance = E_x2 - Ex_2; variance = max(variance, Bias.y); // Surface is fully lit if the current pixel is before the light occluder (lit_factor == 1) // One-tailed inequality valid if float lit_factor = (rescaled_dist_to_light <= moments.x - Bias.x); // Compute probabilistic upper bound (mean distance) float m_d = moments.x - rescaled_dist_to_light; // Chebychev's inequality float p = variance / (variance + m_d * m_d); p = ReduceLightBleeding(p, Bias.z); // Adjust the light color based on the shadow attenuation shadow *= max(lit_factor, p); This is what I know for certain so far: The lighting is correct if I do not try and calculate the shadow term. (No shadows) The shadow term is correct when calculated using forward rendered lighting. (VSM works with forward rendered lights) With the current rescaled light distance (lightAttenuation.y is the far plane value): float rescaled_dist_to_light = dist_to_light / LightAttenuation.y; The light is correct and the shadow appears to be zoomed in and misses the blurring: When I do not rescale the light and use the homogenized 'surf_tex': float rescaled_dist_to_light = surf_tex.z; the shadows are blurred correctly but the lighting is incorrect and the cube model is no longer lit Why is scaling by the far plane value (LightAttenuation.y) zooming in too far? The only other factor involved is my world pixel position, which is calculated as follows: // [Position] float4 position; // [Screen Position] position.xy = input.PositionClone.xy; // Use 'x' and 'y' components already homogenized for uv coordinates above position.z = tex2D(DepthSampler, texCoord).r; // No need to homogenize 'z' component position.z = 1.0 - position.z; position.w = 1.0; // 1.0 = position.w / position.w // [World Position] position = mul(position, CameraViewProjectionInverse); // Re-homogenize position (xyz AND w, otherwise shadows will bend when camera is close) position.xyz /= position.w; position.w = 1.0; Using the inverse matrix of the camera's view x projection matrix does work for lighting but maybe it is incorrect for shadow calculation? EDIT: Light calculations for shadow including 'dist_to_light' // Work out the light position and direction in world space float3 light_position = float3(LightViewInverse._41, LightViewInverse._42, LightViewInverse._43); // Direction might need to be negated float3 light_direction = float3(-LightViewInverse._31, -LightViewInverse._32, -LightViewInverse._33); // Unnormalized light vector float3 dir_to_light = light_position - position; // Direction from vertex float dist_to_light = length(dir_to_light); // Normalise 'toLight' vector for lighting calculations dir_to_light = normalize(dir_to_light); EDIT2: These are the calculations for the moments (depth) //============================================= //---[Vertex Shaders]-------------------------- //============================================= DepthVSOutput depth_VS( float4 Position : POSITION, uniform float4x4 shadow_view, uniform float4x4 shadow_view_projection) { DepthVSOutput output = (DepthVSOutput)0; // First transform position into world space float4 position_world = mul(Position, World); output.position_screen = mul(position_world, shadow_view_projection); output.light_vec = mul(position_world, shadow_view).xyz; return output; } //============================================= //---[Pixel Shaders]--------------------------- //============================================= DepthPSOutput depth_PS(DepthVSOutput input) { DepthPSOutput output = (DepthPSOutput)0; // Work out the depth of this fragment from the light, normalized to [0, 1] float2 depth; depth.x = length(input.light_vec) / FarPlane; depth.y = depth.x * depth.x; // Flip depth values to avoid floating point inaccuracies depth.x = 1.0f - depth.x; depth.y = 1.0f - depth.y; output.depth = depth.xyxy; return output; } EDIT 3: I have tried the folloiwng: float4 pp; pp.xy = input.PositionClone.xy; // Use 'x' and 'y' components already homogenized for uv coordinates above pp.z = tex2D(DepthSampler, texCoord).r; // No need to homogenize 'z' component pp.z = 1.0 - pp.z; pp.w = 1.0; // 1.0 = position.w / position.w // Determine the depth of the pixel with respect to the light float4x4 LightViewProjection = mul(LightView, LightProjection); float4x4 matViewToLightViewProj = mul(CameraViewProjectionInverse, LightViewProjection); float4 vPositionLightCS = mul(pp, matViewToLightViewProj); float fLightDepth = vPositionLightCS.z / vPositionLightCS.w; // Transform from light space to shadow map texture space. float2 vShadowTexCoord = 0.5 * vPositionLightCS.xy / vPositionLightCS.w + float2(0.5f, 0.5f); vShadowTexCoord.y = 1.0f - vShadowTexCoord.y; // Offset the coordinate by half a texel so we sample it correctly vShadowTexCoord += (0.5f / 512); //g_vShadowMapSize This suffers the same problem as the second picture. I have tried storing the depth based on the view x projection matrix: output.position_screen = mul(position_world, shadow_view_projection); //output.light_vec = mul(position_world, shadow_view); output.light_vec = output.position_screen; depth.x = input.light_vec.z / input.light_vec.w; This gives a shadow that has lots surface acne due to horrible floating point precision errors. Everything is lit correctly though. EDIT 4: Found an OpenGL based tutorial here I have followed it to the letter and it would seem that the uv coordinates for looking up the shadow map are incorrect. The source uses a scaled matrix to get the uv coordinates for the shadow map sampler /// <summary> /// The scale matrix is used to push the projected vertex into the 0.0 - 1.0 region. /// Similar in role to a * 0.5 + 0.5, where -1.0 < a < 1.0. /// <summary> const float4x4 ScaleMatrix = float4x4 ( 0.5, 0.0, 0.0, 0.0, 0.0, -0.5, 0.0, 0.0, 0.0, 0.0, 0.5, 0.0, 0.5, 0.5, 0.5, 1.0 ); I had to negate the 0.5 for the y scaling (M22) in order for it to work but the shadowing is still not correct. Is this really the correct way to scale? float2 shadow_tex; shadow_tex.x = surf_tex.x * 0.5f + 0.5f; shadow_tex.y = surf_tex.y * -0.5f + 0.5f; The depth calculations are exactly the same as the source code yet they still do not work, which makes me believe something about the uv calculation above is incorrect.

    Read the article

  • Building applications with WCF - Intro

    - by skjagini
    I am going to write series of articles using Windows Communication Framework (WCF) to develop client and server applications and this is the first part of that series. What is WCF As Juwal puts in his Programming WCF book, WCF provides an SDK for developing and deploying services on Windows, provides runtime environment to expose CLR types as services and consume services as CLR types. Building services with WCF is incredibly easy and it’s implementation provides a set of industry standards and off the shelf plumbing including service hosting, instance management, reliability, transaction management, security etc such that it greatly increases productivity Scenario: Lets consider a typical bank customer trying to create an account, deposit amount and transfer funds between accounts, i.e. checking and savings. To make it interesting, we are going to divide the functionality into multiple services and each of them working with database directly. We will run test cases with and without transactional support across services. In this post we will build contracts, services, data access layer, unit tests to verify end to end communication etc, nothing big stuff here and we dig into other features of the WCF in subsequent posts with incremental changes. In any distributed architecture we have two pieces i.e. services and clients. Services as the name implies provide functionality to execute various pieces of business logic on the server, and clients providing interaction to the end user. Services can be built with Web Services or with WCF. Service built on WCF have the advantage of binding independent, i.e. can run against TCP and HTTP protocol without any significant changes to the code. Solution Services Profile: For creating a new bank customer, getting details about existing customer ProfileContract ProfileService Checking Account: To get checking account balance, deposit or withdraw amount CheckingAccountContract CheckingAccountService Savings Account: To get savings account balance, deposit or withdraw amount SavingsAccountContract SavingsAccountService ServiceHost: To host services, i.e. running the services at particular address, binding and contract where client can connect to Client: Helps end user to use services like creating account and amount transfer between the accounts BankDAL: Data access layer to work with database     BankDAL It’s no brainer not to use an ORM as many matured products are available currently in market including Linq2Sql, Entity Framework (EF), LLblGenPro etc. For this exercise I am going to use Entity Framework 4.0, CTP 5 with code first approach. There are two approaches when working with data, data driven and code driven. In data driven we start by designing tables and their constrains in database and generate entities in code while in code driven (code first) approach entities are defined in code and the metadata generated from the entities is used by the EF to create tables and table constrains. In previous versions the entity classes had  to derive from EF specific base classes. In EF 4 it  is not required to derive from any EF classes, the entities are not only persistence ignorant but also enable full test driven development using mock frameworks.  Application consists of 3 entities, Customer entity which contains Customer details; CheckingAccount and SavingsAccount to hold the respective account balance. We could have introduced an Account base class for CheckingAccount and SavingsAccount which is certainly possible with EF mappings but to keep it simple we are just going to follow 1 –1 mapping between entity and table mappings. Lets start out by defining a class called Customer which will be mapped to Customer table, observe that the class is simply a plain old clr object (POCO) and has no reference to EF at all. using System;   namespace BankDAL.Model { public class Customer { public int Id { get; set; } public string FullName { get; set; } public string Address { get; set; } public DateTime DateOfBirth { get; set; } } }   In order to inform EF about the Customer entity we have to define a database context with properties of type DbSet<> for every POCO which needs to be mapped to a table in database. EF uses convention over configuration to generate the metadata resulting in much less configuration. using System.Data.Entity;   namespace BankDAL.Model { public class BankDbContext: DbContext { public DbSet<Customer> Customers { get; set; } } }   Entity constrains can be defined through attributes on Customer class or using fluent syntax (no need to muscle with xml files), CustomerConfiguration class. By defining constrains in a separate class we can maintain clean POCOs without corrupting entity classes with database specific information.   using System; using System.Data.Entity.ModelConfiguration;   namespace BankDAL.Model { public class CustomerConfiguration: EntityTypeConfiguration<Customer> { public CustomerConfiguration() { Initialize(); }   private void Initialize() { //Setting the Primary Key this.HasKey(e => e.Id);   //Setting required fields this.HasRequired(e => e.FullName); this.HasRequired(e => e.Address); //Todo: Can't create required constraint as DateOfBirth is not reference type, research it //this.HasRequired(e => e.DateOfBirth); } } }   Any queries executed against Customers property in BankDbContext are executed against Cusomers table. By convention EF looks for connection string with key of BankDbContext when working with the context.   We are going to define a helper class to work with Customer entity with methods for querying, adding new entity etc and these are known as repository classes, i.e., CustomerRepository   using System; using System.Data.Entity; using System.Linq; using BankDAL.Model;   namespace BankDAL.Repositories { public class CustomerRepository { private readonly IDbSet<Customer> _customers;   public CustomerRepository(BankDbContext bankDbContext) { if (bankDbContext == null) throw new ArgumentNullException(); _customers = bankDbContext.Customers; }   public IQueryable<Customer> Query() { return _customers; }   public void Add(Customer customer) { _customers.Add(customer); } } }   From the above code it is observable that the Query methods returns customers as IQueryable i.e. customers are retrieved only when actually used i.e. iterated. Returning as IQueryable also allows to execute filtering and joining statements from business logic using lamba expressions without cluttering the data access layer with tens of methods.   Our CheckingAccountRepository and SavingsAccountRepository look very similar to each other using System; using System.Data.Entity; using System.Linq; using BankDAL.Model;   namespace BankDAL.Repositories { public class CheckingAccountRepository { private readonly IDbSet<CheckingAccount> _checkingAccounts;   public CheckingAccountRepository(BankDbContext bankDbContext) { if (bankDbContext == null) throw new ArgumentNullException(); _checkingAccounts = bankDbContext.CheckingAccounts; }   public IQueryable<CheckingAccount> Query() { return _checkingAccounts; }   public void Add(CheckingAccount account) { _checkingAccounts.Add(account); }   public IQueryable<CheckingAccount> GetAccount(int customerId) { return (from act in _checkingAccounts where act.CustomerId == customerId select act); }   } } The repository classes look very similar to each other for Query and Add methods, with the help of C# generics and implementing repository pattern (Martin Fowler) we can reduce the repeated code. Jarod from ElegantCode has posted an article on how to use repository pattern with EF which we will implement in the subsequent articles along with WCF Unity life time managers by Drew Contracts It is very easy to follow contract first approach with WCF, define the interface and append ServiceContract, OperationContract attributes. IProfile contract exposes functionality for creating customer and getting customer details.   using System; using System.ServiceModel; using BankDAL.Model;   namespace ProfileContract { [ServiceContract] public interface IProfile { [OperationContract] Customer CreateCustomer(string customerName, string address, DateTime dateOfBirth);   [OperationContract] Customer GetCustomer(int id);   } }   ICheckingAccount contract exposes functionality for working with checking account, i.e., getting balance, deposit and withdraw of amount. ISavingsAccount contract looks the same as checking account.   using System.ServiceModel;   namespace CheckingAccountContract { [ServiceContract] public interface ICheckingAccount { [OperationContract] decimal? GetCheckingAccountBalance(int customerId);   [OperationContract] void DepositAmount(int customerId,decimal amount);   [OperationContract] void WithdrawAmount(int customerId, decimal amount);   } }   Services   Having covered the data access layer and contracts so far and here comes the core of the business logic, i.e. services.   .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } ProfileService implements the IProfile contract for creating customer and getting customer detail using CustomerRepository. using System; using System.Linq; using System.ServiceModel; using BankDAL; using BankDAL.Model; using BankDAL.Repositories; using ProfileContract;   namespace ProfileService { [ServiceBehavior(IncludeExceptionDetailInFaults = true)] public class Profile: IProfile { public Customer CreateAccount( string customerName, string address, DateTime dateOfBirth) { Customer cust = new Customer { FullName = customerName, Address = address, DateOfBirth = dateOfBirth };   using (var bankDbContext = new BankDbContext()) { new CustomerRepository(bankDbContext).Add(cust); bankDbContext.SaveChanges(); } return cust; }   public Customer CreateCustomer(string customerName, string address, DateTime dateOfBirth) { return CreateAccount(customerName, address, dateOfBirth); } public Customer GetCustomer(int id) { return new CustomerRepository(new BankDbContext()).Query() .Where(i => i.Id == id).FirstOrDefault(); }   } } From the above code you shall observe that we are calling bankDBContext’s SaveChanges method and there is no save method specific to customer entity because EF manages all the changes centralized at the context level and all the pending changes so far are submitted in a batch and it is represented as Unit of Work. Similarly Checking service implements ICheckingAccount contract using CheckingAccountRepository, notice that we are throwing overdraft exception if the balance falls by zero. WCF has it’s own way of raising exceptions using fault contracts which will be explained in the subsequent articles. SavingsAccountService is similar to CheckingAccountService. using System; using System.Linq; using System.ServiceModel; using BankDAL.Model; using BankDAL.Repositories; using CheckingAccountContract;   namespace CheckingAccountService { [ServiceBehavior(IncludeExceptionDetailInFaults = true)] public class Checking:ICheckingAccount { public decimal? GetCheckingAccountBalance(int customerId) { using (var bankDbContext = new BankDbContext()) { CheckingAccount account = (new CheckingAccountRepository(bankDbContext) .GetAccount(customerId)).FirstOrDefault();   if (account != null) return account.Balance;   return null; } }   public void DepositAmount(int customerId, decimal amount) { using(var bankDbContext = new BankDbContext()) { var checkingAccountRepository = new CheckingAccountRepository(bankDbContext); CheckingAccount account = (checkingAccountRepository.GetAccount(customerId)) .FirstOrDefault();   if (account == null) { account = new CheckingAccount() { CustomerId = customerId }; checkingAccountRepository.Add(account); }   account.Balance = account.Balance + amount; if (account.Balance < 0) throw new ApplicationException("Overdraft not accepted");   bankDbContext.SaveChanges(); } } public void WithdrawAmount(int customerId, decimal amount) { DepositAmount(customerId, -1*amount); } } }   BankServiceHost The host acts as a glue binding contracts with it’s services, exposing the endpoints. The services can be exposed either through the code or configuration file, configuration file is preferred as it allows run time changes to service behavior even after deployment. We have 3 services and for each of the service you need to define name (the class that implements the service with fully qualified namespace) and endpoint known as ABC, i.e. address, binding and contract. We are using netTcpBinding and have defined the base address with for each of the contracts .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } <system.serviceModel> <services> <service name="ProfileService.Profile"> <endpoint binding="netTcpBinding" contract="ProfileContract.IProfile"/> <host> <baseAddresses> <add baseAddress="net.tcp://localhost:1000/Profile"/> </baseAddresses> </host> </service> <service name="CheckingAccountService.Checking"> <endpoint binding="netTcpBinding" contract="CheckingAccountContract.ICheckingAccount"/> <host> <baseAddresses> <add baseAddress="net.tcp://localhost:1000/Checking"/> </baseAddresses> </host> </service> <service name="SavingsAccountService.Savings"> <endpoint binding="netTcpBinding" contract="SavingsAccountContract.ISavingsAccount"/> <host> <baseAddresses> <add baseAddress="net.tcp://localhost:1000/Savings"/> </baseAddresses> </host> </service> </services> </system.serviceModel> Have to open the services by creating service host which will handle the incoming requests from clients.   using System;   namespace ServiceHost { class Program { static void Main(string[] args) { CreateHosts(); Console.ReadLine(); }   private static void CreateHosts() { CreateHost(typeof(ProfileService.Profile),"Profile Service"); CreateHost(typeof(SavingsAccountService.Savings), "Savings Account Service"); CreateHost(typeof(CheckingAccountService.Checking), "Checking Account Service"); }   private static void CreateHost(Type type, string hostDescription) { System.ServiceModel.ServiceHost host = new System.ServiceModel.ServiceHost(type); host.Open();   if (host.ChannelDispatchers != null && host.ChannelDispatchers.Count != 0 && host.ChannelDispatchers[0].Listener != null) Console.WriteLine("Started: " + host.ChannelDispatchers[0].Listener.Uri); else Console.WriteLine("Failed to start:" + hostDescription); } } } BankClient    The client has no knowledge about service business logic other than the functionality it exposes through the contract, end points and a proxy to work against. The endpoint data and server proxy can be generated by right clicking on the project reference and choosing ‘Add Service Reference’ and entering the service end point address. Or if you have access to source, you can manually reference contract dlls and update clients configuration file to point to the service end point if the server and client happens to be being built using .Net framework. One of the pros with the manual approach is you don’t have to work against messy code generated files.   <system.serviceModel> <client> <endpoint name="tcpProfile" address="net.tcp://localhost:1000/Profile" binding="netTcpBinding" contract="ProfileContract.IProfile"/> <endpoint name="tcpCheckingAccount" address="net.tcp://localhost:1000/Checking" binding="netTcpBinding" contract="CheckingAccountContract.ICheckingAccount"/> <endpoint name="tcpSavingsAccount" address="net.tcp://localhost:1000/Savings" binding="netTcpBinding" contract="SavingsAccountContract.ISavingsAccount"/>   </client> </system.serviceModel> The client uses a façade to connect to the services   using System.ServiceModel; using CheckingAccountContract; using ProfileContract; using SavingsAccountContract;   namespace Client { public class ProxyFacade { public static IProfile ProfileProxy() { return (new ChannelFactory<IProfile>("tcpProfile")).CreateChannel(); }   public static ICheckingAccount CheckingAccountProxy() { return (new ChannelFactory<ICheckingAccount>("tcpCheckingAccount")) .CreateChannel(); }   public static ISavingsAccount SavingsAccountProxy() { return (new ChannelFactory<ISavingsAccount>("tcpSavingsAccount")) .CreateChannel(); }   } }   With that in place, lets get our unit tests going   using System; using System.Diagnostics; using BankDAL.Model; using NUnit.Framework; using ProfileContract;   namespace Client { [TestFixture] public class Tests { private void TransferFundsFromSavingsToCheckingAccount(int customerId, decimal amount) { ProxyFacade.CheckingAccountProxy().DepositAmount(customerId, amount); ProxyFacade.SavingsAccountProxy().WithdrawAmount(customerId, amount); }   private void TransferFundsFromCheckingToSavingsAccount(int customerId, decimal amount) { ProxyFacade.SavingsAccountProxy().DepositAmount(customerId, amount); ProxyFacade.CheckingAccountProxy().WithdrawAmount(customerId, amount); }     [Test] public void CreateAndGetProfileTest() { IProfile profile = ProxyFacade.ProfileProxy(); const string customerName = "Tom"; int customerId = profile.CreateCustomer(customerName, "NJ", new DateTime(1982, 1, 1)).Id; Customer customer = profile.GetCustomer(customerId); Assert.AreEqual(customerName,customer.FullName); }   [Test] public void DepositWithDrawAndTransferAmountTest() { IProfile profile = ProxyFacade.ProfileProxy(); string customerName = "Smith" + DateTime.Now.ToString("HH:mm:ss"); var customer = profile.CreateCustomer(customerName, "NJ", new DateTime(1982, 1, 1)); // Deposit to Savings ProxyFacade.SavingsAccountProxy().DepositAmount(customer.Id, 100); ProxyFacade.SavingsAccountProxy().DepositAmount(customer.Id, 25); Assert.AreEqual(125, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id)); // Withdraw ProxyFacade.SavingsAccountProxy().WithdrawAmount(customer.Id, 30); Assert.AreEqual(95, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id));   // Deposit to Checking ProxyFacade.CheckingAccountProxy().DepositAmount(customer.Id, 60); ProxyFacade.CheckingAccountProxy().DepositAmount(customer.Id, 40); Assert.AreEqual(100, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id)); // Withdraw ProxyFacade.CheckingAccountProxy().WithdrawAmount(customer.Id, 30); Assert.AreEqual(70, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id));   // Transfer from Savings to Checking TransferFundsFromSavingsToCheckingAccount(customer.Id,10); Assert.AreEqual(85, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id)); Assert.AreEqual(80, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id));   // Transfer from Checking to Savings TransferFundsFromCheckingToSavingsAccount(customer.Id, 50); Assert.AreEqual(135, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id)); Assert.AreEqual(30, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id)); }   [Test] public void FundTransfersWithOverDraftTest() { IProfile profile = ProxyFacade.ProfileProxy(); string customerName = "Angelina" + DateTime.Now.ToString("HH:mm:ss");   var customerId = profile.CreateCustomer(customerName, "NJ", new DateTime(1972, 1, 1)).Id;   ProxyFacade.SavingsAccountProxy().DepositAmount(customerId, 100); TransferFundsFromSavingsToCheckingAccount(customerId,80); Assert.AreEqual(20, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customerId)); Assert.AreEqual(80, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customerId));   try { TransferFundsFromSavingsToCheckingAccount(customerId,30); } catch (Exception e) { Debug.WriteLine(e.Message); }   Assert.AreEqual(110, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customerId)); Assert.AreEqual(20, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customerId)); } } }   We are creating a new instance of the channel for every operation, we will look into instance management and how creating a new instance of channel affects it in subsequent articles. The first two test cases deals with creation of Customer, deposit and withdraw of month between accounts. The last case, FundTransferWithOverDraftTest() is interesting. Customer starts with depositing $100 in SavingsAccount followed by transfer of $80 in to checking account resulting in $20 in savings account.  Customer then initiates $30 transfer from Savings to Checking resulting in overdraft exception on Savings with $30 being deposited to Checking. As we are not running both the requests in transactions the customer ends up with more amount than what he started with $100. In subsequent posts we will look into transactions handling.  Make sure the ServiceHost project is set as start up project and start the solution. Run the test cases either from NUnit client or TestDriven.Net/Resharper which ever is your favorite tool. Make sure you have updated the data base connection string in the ServiceHost config file to point to your local database

    Read the article

  • Basic shadow mapping fails on NVIDIA card?

    - by James
    Recently I switched from an AMD Radeon HD 6870 card to an (MSI) NVIDIA GTX 670 for performance reasons. I found however that my implementation of shadow mapping in all my applications failed. In a very simple shadow POC project the problem appears to be that the scene being drawn never results in a draw to the depth map and as a result the entire depth map is just infinity, 1.0 (Reading directly from the depth component after draw (glReadPixels) shows every pixel is infinity (1.0), replacing the depth comparison in the shader with a comparison of the depth from the shadow map with 1.0 shadows the entire scene, and writing random values to the depth map and then not calling glClear(GL_DEPTH_BUFFER_BIT) results in a random noisy pattern on the scene elements - from which we can infer that the uploading of the depth texture and comparison within the shader are functioning perfectly.) Since the problem appears almost certainly to be in the depth render, this is the code for that: const int s_res = 1024; GLuint shadowMap_tex; GLuint shadowMap_prog; GLint sm_attr_coord3d; GLint sm_uniform_mvp; GLuint fbo_handle; GLuint renderBuffer; bool isMappingShad = false; //The scene consists of a plane with box above it GLfloat scene[] = { -10.0, 0.0, -10.0, 0.5, 0.0, 10.0, 0.0, -10.0, 1.0, 0.0, 10.0, 0.0, 10.0, 1.0, 0.5, -10.0, 0.0, -10.0, 0.5, 0.0, -10.0, 0.0, 10.0, 0.5, 0.5, 10.0, 0.0, 10.0, 1.0, 0.5, ... }; //Initialize the stuff used by the shadow map generator int initShadowMap() { //Initialize the shadowMap shader program if (create_program("shadow.v.glsl", "shadow.f.glsl", shadowMap_prog) != 1) return -1; const char* attribute_name = "coord3d"; sm_attr_coord3d = glGetAttribLocation(shadowMap_prog, attribute_name); if (sm_attr_coord3d == -1) { fprintf(stderr, "Could not bind attribute %s\n", attribute_name); return 0; } const char* uniform_name = "mvp"; sm_uniform_mvp = glGetUniformLocation(shadowMap_prog, uniform_name); if (sm_uniform_mvp == -1) { fprintf(stderr, "Could not bind uniform %s\n", uniform_name); return 0; } //Create a framebuffer glGenFramebuffers(1, &fbo_handle); glBindFramebuffer(GL_FRAMEBUFFER, fbo_handle); //Create render buffer glGenRenderbuffers(1, &renderBuffer); glBindRenderbuffer(GL_RENDERBUFFER, renderBuffer); //Setup the shadow texture glGenTextures(1, &shadowMap_tex); glBindTexture(GL_TEXTURE_2D, shadowMap_tex); glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, s_res, s_res, 0, GL_DEPTH_COMPONENT, GL_FLOAT, NULL); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); return 0; } //Delete stuff void dnitShadowMap() { //Delete everything glDeleteFramebuffers(1, &fbo_handle); glDeleteRenderbuffers(1, &renderBuffer); glDeleteTextures(1, &shadowMap_tex); glDeleteProgram(shadowMap_prog); } int loadSMap() { //Bind MVP stuff glm::mat4 view = glm::lookAt(glm::vec3(10.0, 10.0, 5.0), glm::vec3(0.0, 0.0, 0.0), glm::vec3(0.0, 1.0, 0.0)); glm::mat4 projection = glm::ortho<float>(-10,10,-8,8,-10,40); glm::mat4 mvp = projection * view; glm::mat4 biasMatrix( 0.5, 0.0, 0.0, 0.0, 0.0, 0.5, 0.0, 0.0, 0.0, 0.0, 0.5, 0.0, 0.5, 0.5, 0.5, 1.0 ); glm::mat4 lsMVP = biasMatrix * mvp; //Upload light source matrix to the main shader programs glUniformMatrix4fv(uniform_ls_mvp, 1, GL_FALSE, glm::value_ptr(lsMVP)); glUseProgram(shadowMap_prog); glUniformMatrix4fv(sm_uniform_mvp, 1, GL_FALSE, glm::value_ptr(mvp)); //Draw to the framebuffer (with depth buffer only draw) glBindFramebuffer(GL_FRAMEBUFFER, fbo_handle); glBindRenderbuffer(GL_RENDERBUFFER, renderBuffer); glBindTexture(GL_TEXTURE_2D, shadowMap_tex); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, shadowMap_tex, 0); glDrawBuffer(GL_NONE); glReadBuffer(GL_NONE); GLenum result = glCheckFramebufferStatus(GL_FRAMEBUFFER); if (GL_FRAMEBUFFER_COMPLETE != result) { printf("ERROR: Framebuffer is not complete.\n"); return -1; } //Draw shadow scene printf("Creating shadow buffers..\n"); int ticks = SDL_GetTicks(); glClear(GL_DEPTH_BUFFER_BIT); //Wipe the depth buffer glViewport(0, 0, s_res, s_res); isMappingShad = true; //DRAW glEnableVertexAttribArray(sm_attr_coord3d); glVertexAttribPointer(sm_attr_coord3d, 3, GL_FLOAT, GL_FALSE, 5*4, scene); glDrawArrays(GL_TRIANGLES, 0, 14*3); glDisableVertexAttribArray(sm_attr_coord3d); isMappingShad = false; glBindFramebuffer(GL_FRAMEBUFFER, 0); printf("Render Sbuf in %dms (GLerr: %d)\n", SDL_GetTicks() - ticks, glGetError()); return 0; } This is the full code for the POC shadow mapping project (C++) (Requires SDL 1.2, SDL-image 1.2, GLEW (1.5) and GLM development headers.) initShadowMap is called, followed by loadSMap, the scene is drawn from the camera POV and then dnitShadowMap is called. I followed this tutorial originally (Along with another more comprehensive tutorial which has disappeared as this guy re-configured his site but used to be here (404).) I've ensured that the scene is visible (as can be seen within the full project) to the light source (which uses an orthogonal projection matrix.) Shader utilities function fine in non-shadow-mapped projects. I should also note that at no point is the GL error state set. What am I doing wrong here and why did this not cause problems on my AMD card? (System: Ubuntu 12.04, Linux 3.2.0-49-generic, 64 bit, with the nvidia-experimental-310 driver package. All other games are functioning fine so it's most likely not a card/driver issue.)

    Read the article

  • What is Database Continuous Integration?

    - by David Atkinson
    Although not everyone is practicing continuous integration, many have at least heard of the concept. A recent poll on www.simple-talk.com indicates that 40% of respondents are employing the technique. It is widely accepted that the earlier issues are identified in the development process, the lower the cost to the development process. The worst case scenario, of course, is for the bug to be found by the customer following the product release. A number of Agile development best practices have evolved to combat this problem early in the development process, including pair programming, code inspections and unit testing. Continuous integration is one such Agile concept that tackles the problem at the point of committing a change to source control. This can alternatively be run on a regular schedule. This triggers a sequence of events that compiles the code and performs a variety of tests. Often the continuous integration process is regarded as a build validation test, and if issues were to be identified at this stage, the testers would simply not 'waste their time ' and touch the build at all. Such a ‘broken build’ will trigger an alert and the development team’s number one priority should be to resolve the issue. How application code is compiled and tested as part of continuous integration is well understood. However, this isn’t so clear for databases. Indeed, before I cover the mechanics of implementation, we need to decide what we mean by database continuous integration. For me, database continuous integration can be implemented as one or more of the following: 1)      Your application code is being compiled and tested. You therefore need a database to be maintained at the corresponding version. 2)      Just as a valid application should compile, so should the database. It should therefore be possible to build a new database from scratch. 3)     Likewise, it should be possible to generate an upgrade script to take your already deployed databases to the latest version. I will be covering these in further detail in future blogs. In the meantime, more information can be found in the whitepaper linked off www.red-gate.com/ci If you have any questions, feel free to contact me directly or post a comment to this blog post.

    Read the article

  • What is Database Continuous Integration?

    - by SQLDev
    Although not everyone is practicing continuous integration, many have at least heard of the concept. A recent poll on www.simple-talk.com indicates that 40% of respondents are employing the technique. It is widely accepted that the earlier issues are identified in the development process, the lower the cost to the development process. The worst case scenario, of course, is for the bug to be found by the customer following the product release. A number of Agile development best practices have evolved to combat this problem early in the development process, including pair programming, code inspections and unit testing. Continuous integration is one such Agile concept that tackles the problem at the point of committing a change to source control. This can alternatively be run on a regular schedule. This triggers a sequence of events that compiles the code and performs a variety of tests. Often the continuous integration process is regarded as a build validation test, and if issues were to be identified at this stage, the testers would simply not 'waste their time ' and touch the build at all. Such a ‘broken build’ will trigger an alert and the development team’s number one priority should be to resolve the issue. How application code is compiled and tested as part of continuous integration is well understood. However, this isn’t so clear for databases. Indeed, before I cover the mechanics of implementation, we need to decide what we mean by database continuous integration. For me, database continuous integration can be implemented as one or more of the following: 1)      Your application code is being compiled and tested. You therefore need a database to be maintained at the corresponding version. 2)      Just as a valid application should compile, so should the database. It should therefore be possible to build a new database from scratch. 3)     Likewise, it should be possible to generate an upgrade script to take your already deployed databases to the latest version. I will be covering these in further detail in future blogs. In the meantime, more information can be found in the whitepaper linked off www.red-gate.com/ci If you have any questions, feel free to contact me directly or post a comment to this blog post.

    Read the article

  • Kauffman Foundation Selects Stackify to Present at Startup@Kauffman Demo Day

    - by Matt Watson
    Stackify will join fellow Kansas City startups to kick off Global Entrepreneurship WeekOn Monday, November 12, Stackify, a provider of tools that improve developers’ ability to support, manage and monitor their enterprise applications, will pitch its technology at the Startup@Kauffman Demo Day in Kansas City, Mo. Hosted by the Ewing Marion Kauffman Foundation, the event will mark the start of Global Entrepreneurship Week, the world’s largest celebration of innovators and job creators who launch startups.Stackify was selected through a competitive process for a six-minute opportunity to pitch its new technology to investors at Demo Day. In his pitch, Stackify’s founder, Matt Watson, will discuss the current challenges DevOps teams face and reveal how Stackify is reinventing the way software developers provide application support.In October, Stackify had successful appearances at two similar startup events. At Tech Cocktail’s Kansas City Mixer, the company was named “Hottest Kansas City Startup,” and it won free hosting service after pitching its solution at St. Louis, Mo.’s Startup Connection.“With less than a month until our public launch, events like Demo Day are giving Stackify the support and positioning we need to change the development community,” said Watson. “As a serial technology entrepreneur, I appreciate the Kauffman Foundation’s support of startup companies like Stackify. We’re thrilled to participate in Demo Day and Global Entrepreneurship Week activities.”Scheduled to publicly launch in early December 2012, Stackify’s platform gives developers insights into their production applications, servers and databases. Stackify finally provides agile developers safe and secure remote access to look at log files, config files, server health and databases. This solution removes the bottleneck from managers and system administrators who, until now, are the only team members with access. Essentially, Stackify enables development teams to spend less time fixing bugs and more time creating products.Currently in beta, Stackify has already been named a “Company to Watch” by Software Development Times, which called the startup “the next big thing.” Developers can register for a free Stackify account on Stackify.com.###Stackify Founded in 2012, Stackify is a Kansas City-based software service provider that helps development teams troubleshoot application problems. Currently in beta, Stackify will be publicly available in December 2012, when agile developers will finally be able to provide agile support. The startup has already been recognized by Tech Cocktail as “Hottest Kansas City Startup” and was named a “Company to Watch” by Software Development Times. To learn more, visit http://www.stackify.com and follow @stackify on Twitter.

    Read the article

  • WebCenter Customer Spotlight: spectrumK Holding GmbH

    - by me
    Author: Peter Reiser - Social Business Evangelist Oracle WebCenter Solution Summary spectrumK Holding GmbH was founded in 2007 by various German health insurance funds and national insurance associations and is a service provider for the healthcare market, covering patient care management, financial management, and information management, as well as payment services and legal counseling. spectrumK Holding GmbH business objectives was to implement innovative new Web-based services and solution systems for health insurance funds by integrating a multitude of isolated solutions from different organizations. Using Oracle WebCenter Portal, Oracle WebCenter Content, and Site Studio, the customer created a multiple-portal environment and deployed the 1st three applications for patient receipt, a medication navigator, and disability information. spectrumK Holding GmbH accelerated time-to-market for new features by reducing the development time, achieved 40% development and cost savings using standard modules and realized 80% overall savings using the Oracle multiple portal environment, as compared to individual installations. Company Overview spectrumK Holding GmbH was founded in 2007 by various company health insurance funds and national insurance associations. A service provider for the healthcare market, spectrumK consists of one holding company and four operative subsidiaries. Its broad product portfolio of compulsory health funds covers patient care management, financial management, and information management, as well as payment services and legal counseling. Business ChallengesspectrumK Holding GmbH business objectives were to implement innovative new Web-based services and solution systems for the health insurance funds by integrating a multitude of isolated solutions from different organizations. Specifically, spectrumK was looking to: Establish a portal-based environment to provide health coverage information services to the insured, with the option to integrate a multitude of isolated solutions from different organizations Implement innovative new Web-based spectrumK service products and solutions systems for health insurance funds Lower costs while improving services for the health fund’s clients Find an infrastructure that supports the small development team in efficient implementation and operation of the solution Reuse standard modules while enabling easy, inexpensive adaptations to customer-specific corporate requirements Solution Deployed spectrumK Holding GmbH created a multiple-portal environment, called “KundenCenter+“ which is based on the integration of Oracle WebCenter Portal, Oracle WebCenter Content, and Site Studio. They initiated and launched the first three of the company’s KundenCenter+, Oracle-based modules for patient receipt, a medication navigator, and disability information, with numerous successful deployments and individual customer environment adaptations. Business ResultsspectrumK Holding GmbH accelerated time-to-market for new features by reducing the development time, achieved 40% development and cost savings using standard modules and realized 80% overall savings using the Oracle multiple portal environment, as compared to individual installations Additional Information  spectrumK Holding GmbH Snapshot Oracle WebCenter Suite Oracle Customer Support Oracle Consulting Oracle WebCenter Content

    Read the article

  • Dawn of the Enterprise Social Developer

    - by Mike Stiles
    Social is not just for poking friends, posting videos of cats playing pianos, or even just for brand marketing anymore. It has become a key form of communication internally and externally across every area of the enterprise. As a Java developer, are you positioning yourself for the integration of social into enterprise business systems that’s on the near horizon? Because it’s the work you do and the applications you build that will influence what the social-enabled enterprise is going to look like and how it’s going to operate. But as a social developer, step one is wrapping your arms around all the things that are possible. Traditionally, the best exploration, brainstorming and innovation come from collaborating with other developers. That’s how the big questions can be hashed (or hacked) out. Is Java the best social development environment? If not, what is? What’s already being done in terms of application integration? The JavaOne Social Developer Program will offer up a series of talks and events on those very issues Tuesday, October 2 at the San Francisco Hilton. If you’re interested in embarking on this newest frontier of enterprise social development, you can connect with others who are thinking the same thing and get moving on your first project.Talks will include: Emergence Of The Social EnterpriseExtending Social into Enterprise Applications and Business ProcessesIntro to Open Graph and Facebook's APIs Building the Next Wave of Social Commerce Platforms Social Data and the Enterprise LinkedIn: A Professional Network Built with Java Technologies and Agile Practice Social Developer Hackathon In addition to these learning and discussion opportunities, you might consider joining the new Oracle Social Developer Community (OSDC), where the interaction and collaboration can continue indefinitely. It doesn’t take a lot of tea leaf reading to know that the cloud will house the enterprise technology of the future, and social (as well as the rich data it brings) is going to be a major part of that as social integrates across every business function as there’s proven value for consumer facing initiatives. The next phase of social development is going to involve combining enterprise data from multiple sources, new and existing, social and traditional, in order to tell compelling and usable stories. And social is coming to the enterprise quickly, meaning you as a development leader should seek to understand not just what's worked on the consumer side, but what aspects of those successes can be applied inside the organization. Get educated, get connected, and consider registering for this forward-looking event now to get started with enterprise social development.

    Read the article

  • how to define a field of view for the entire map for shadow?

    - by Mehdi Bugnard
    I recently added "Shadow Mapping" in my XNA games to include shadows. I followed the nice and famous tutorial from "Riemers" : http://www.riemers.net/eng/Tutorials/XNA/Csharp/Series3/Shadow_map.php . This code work nice and I can see my source of light and shadow. But the problem is that my light source does not match the field of view that I created. I want the light covers the entire map of my game. I don't know why , but the light only affect 2-3 cubes of my map. ScreenShot: (the emission of light illuminates only 2-3 blocks and not the full map) Here is my code i create the fieldOfView for LightviewProjection Matrix: Vector3 lightDir = new Vector3(10, 52, 10); lightPos = new Vector3(10, 52, 10); Matrix lightsView = Matrix.CreateLookAt(lightPos, new Vector3(105, 50, 105), new Vector3(0, 1, 0)); Matrix lightsProjection = Matrix.CreatePerspectiveFieldOfView(MathHelper.PiOver2, 1f, 20f, 1000f); lightsViewProjectionMatrix = lightsView * lightsProjection; As you can see , my nearPlane and FarPlane are set to 20f and 100f . So i don't know why the light stop after 2 cubes. it's should be bigger Here is set the value to my custom effect HLSL in the shader file /* SHADOW VALUE */ effectWorld.Parameters["LightDirection"].SetValue(lightDir); effectWorld.Parameters["xLightsWorldViewProjection"].SetValue(Matrix.Identity * .lightsViewProjectionMatrix); effectWorld.Parameters["xWorldViewProjection"].SetValue(Matrix.Identity * arcadia.camera.View * arcadia.camera.Projection); effectWorld.Parameters["xLightPower"].SetValue(1f); effectWorld.Parameters["xAmbient"].SetValue(0.3f); Here is my custom HLSL shader effect file "*.fx" // This sample uses a simple Lambert lighting model. float3 LightDirection = normalize(float3(-1, -1, -1)); float3 DiffuseLight = 1.25; float3 AmbientLight = 0.25; uniform const float3 DiffuseColor = 1; uniform const float Alpha = 1; uniform const float3 EmissiveColor = 0; uniform const float3 SpecularColor = 1; uniform const float SpecularPower = 16; uniform const float3 EyePosition; // FOG attribut uniform const float FogEnabled ; uniform const float FogStart ; uniform const float FogEnd ; uniform const float3 FogColor ; float3 cameraPos : CAMERAPOS; texture Texture; sampler Sampler = sampler_state { Texture = (Texture); magfilter = LINEAR; minfilter = LINEAR; mipfilter = LINEAR; AddressU = mirror; AddressV = mirror; }; texture xShadowMap; sampler ShadowMapSampler = sampler_state { Texture = <xShadowMap>; magfilter = LINEAR; minfilter = LINEAR; mipfilter = LINEAR; AddressU = clamp; AddressV = clamp; }; /* *************** */ /* SHADOW MAP CODE */ /* *************** */ struct SMapVertexToPixel { float4 Position : POSITION; float4 Position2D : TEXCOORD0; }; struct SMapPixelToFrame { float4 Color : COLOR0; }; struct SSceneVertexToPixel { float4 Position : POSITION; float4 Pos2DAsSeenByLight : TEXCOORD0; float2 TexCoords : TEXCOORD1; float3 Normal : TEXCOORD2; float4 Position3D : TEXCOORD3; }; struct SScenePixelToFrame { float4 Color : COLOR0; }; float DotProduct(float3 lightPos, float3 pos3D, float3 normal) { float3 lightDir = normalize(pos3D - lightPos); return dot(-lightDir, normal); } SSceneVertexToPixel ShadowedSceneVertexShader(float4 inPos : POSITION, float2 inTexCoords : TEXCOORD0, float3 inNormal : NORMAL) { SSceneVertexToPixel Output = (SSceneVertexToPixel)0; Output.Position = mul(inPos, xWorldViewProjection); Output.Pos2DAsSeenByLight = mul(inPos, xLightsWorldViewProjection); Output.Normal = normalize(mul(inNormal, (float3x3)World)); Output.Position3D = mul(inPos, World); Output.TexCoords = inTexCoords; return Output; } SScenePixelToFrame ShadowedScenePixelShader(SSceneVertexToPixel PSIn) { SScenePixelToFrame Output = (SScenePixelToFrame)0; float2 ProjectedTexCoords; ProjectedTexCoords[0] = PSIn.Pos2DAsSeenByLight.x / PSIn.Pos2DAsSeenByLight.w / 2.0f + 0.5f; ProjectedTexCoords[1] = -PSIn.Pos2DAsSeenByLight.y / PSIn.Pos2DAsSeenByLight.w / 2.0f + 0.5f; float diffuseLightingFactor = 0; if ((saturate(ProjectedTexCoords).x == ProjectedTexCoords.x) && (saturate(ProjectedTexCoords).y == ProjectedTexCoords.y)) { float depthStoredInShadowMap = tex2D(ShadowMapSampler, ProjectedTexCoords).r; float realDistance = PSIn.Pos2DAsSeenByLight.z / PSIn.Pos2DAsSeenByLight.w; if ((realDistance - 1.0f / 100.0f) <= depthStoredInShadowMap) { diffuseLightingFactor = DotProduct(xLightPos, PSIn.Position3D, PSIn.Normal); diffuseLightingFactor = saturate(diffuseLightingFactor); diffuseLightingFactor *= xLightPower; } } float4 baseColor = tex2D(Sampler, PSIn.TexCoords); Output.Color = baseColor*(diffuseLightingFactor + xAmbient); return Output; } SMapVertexToPixel ShadowMapVertexShader(float4 inPos : POSITION) { SMapVertexToPixel Output = (SMapVertexToPixel)0; Output.Position = mul(inPos, xLightsWorldViewProjection); Output.Position2D = Output.Position; return Output; } SMapPixelToFrame ShadowMapPixelShader(SMapVertexToPixel PSIn) { SMapPixelToFrame Output = (SMapPixelToFrame)0; Output.Color = PSIn.Position2D.z / PSIn.Position2D.w; return Output; } /* ******************* */ /* END SHADOW MAP CODE */ /* ******************* */ / For rendering without instancing. technique ShadowMap { pass Pass0 { VertexShader = compile vs_2_0 ShadowMapVertexShader(); PixelShader = compile ps_2_0 ShadowMapPixelShader(); } } technique ShadowedScene { /* pass Pass0 { VertexShader = compile vs_2_0 VSBasicTx(); PixelShader = compile ps_2_0 PSBasicTx(); } */ pass Pass1 { VertexShader = compile vs_2_0 ShadowedSceneVertexShader(); PixelShader = compile ps_2_0 ShadowedScenePixelShader(); } } technique SimpleFog { pass Pass0 { VertexShader = compile vs_2_0 VSBasicTx(); PixelShader = compile ps_2_0 PSBasicTx(); } } I edited my fx file , for show you only information and functions about the shadow ;-)

    Read the article

  • TomEE Integration in NetBeans Next

    - by Geertjan
    At JavaOne 2013, there was a lot of buzz around the TomEE server, e.g., many Tweets, nice party, and a new TomEE consulting company. For those tracking TomEE developments, it is interesting to note that recently the NetBeans IDE development builds have had added to them... TomEE support. Note: The TomEE support described here is not in NetBeans IDE 7.4, but in development builds for the next release of NetBeans IDE.For example, with NetBeans IDE development builds you're able to: register TomEE as a server in the Services window (TomEE has several distributions, e.g., one can use the "with JAX-RS" one, for example) create a Java EE 6 web project (e.g., Maven based) against this server create JPA entities from database create JAX-RS classes from JPA entities create JSF pages from JPA entities the IDE lets you create a new data source for TomEE and deploy it to the server the IDE figures out the components that are already packaged in TomEE, and the fact that (unlike with regular Tomcat), it does not need to package any components such as JSF implementation, persistence provider, or JAX-RS runtime, so that the resulting WAR file is very small the IDE can also do "deploy on save" with TomEE, so that your development cycle is very fast Adam Bien blogged about how he set up TomEE sometime ago, here. The official support in NetBeans IDE will be much more tightly integrated, simplifying the steps Adam describes. For example, the IDE does step 2 from Adam's blog for you, i.e., it sets up TomEE deployment roles. Moreover, it knows about all the technologies included in TomEE so that it can optimize the packaging; it knows about TomEE's persistence setup; it can work with TomEE data sources, etc. Below you see a Maven-based Java EE 6 PrimeFaces application (all entities and JSF pages generated from a database) deployed to TomEE in NetBeans IDE: And here's the management console for configuring and finetuning TomEE in NetBeans IDE: When I tried out the NetBeans IDE development build and TomEE, to see how everything fits together, I was surprised at how fast TomEE started up. Not sure what they did to it, but seems like a server on steroids. And setting it up in NetBeans IDE was trivial. Add the simple set up of TomEE in NetBeans IDE to the many benefits that the widely praised out of the box NetBeans Maven tools make possible, together with the fact that not one single plugin had to be installed to get everything you see described here up and running... and you have a really powerful combination of dev tools, all for free.

    Read the article

  • GLSL: Strange light reflections [Solved]

    - by Tom
    According to this tutorial I'm trying to make a normal mapping using GLSL, but something is wrong and I can't find the solution. The output render is in this image: Image1 in this image is a plane with two triangles and each of it is different illuminated (that is bad). The plane has 6 vertices. In the upper left side of this plane are 2 identical vertices (same in the lower right). Here are some vectors same for each vertice: normal vector = 0, 1, 0 (red lines on image) tangent vector = 0, 0,-1 (green lines on image) bitangent vector = -1, 0, 0 (blue lines on image) here I have one question: The two identical vertices does need to have the same tangent and bitangent? I have tried to make other values to the tangents but the effect was still similar. Here are my shaders Vertex shader: #version 130 // Input vertex data, different for all executions of this shader. in vec3 vertexPosition_modelspace; in vec2 vertexUV; in vec3 vertexNormal_modelspace; in vec3 vertexTangent_modelspace; in vec3 vertexBitangent_modelspace; // Output data ; will be interpolated for each fragment. out vec2 UV; out vec3 Position_worldspace; out vec3 EyeDirection_cameraspace; out vec3 LightDirection_cameraspace; out vec3 LightDirection_tangentspace; out vec3 EyeDirection_tangentspace; // Values that stay constant for the whole mesh. uniform mat4 MVP; uniform mat4 V; uniform mat4 M; uniform mat3 MV3x3; uniform vec3 LightPosition_worldspace; void main(){ // Output position of the vertex, in clip space : MVP * position gl_Position = MVP * vec4(vertexPosition_modelspace,1); // Position of the vertex, in worldspace : M * position Position_worldspace = (M * vec4(vertexPosition_modelspace,1)).xyz; // Vector that goes from the vertex to the camera, in camera space. // In camera space, the camera is at the origin (0,0,0). vec3 vertexPosition_cameraspace = ( V * M * vec4(vertexPosition_modelspace,1)).xyz; EyeDirection_cameraspace = vec3(0,0,0) - vertexPosition_cameraspace; // Vector that goes from the vertex to the light, in camera space. M is ommited because it's identity. vec3 LightPosition_cameraspace = ( V * vec4(LightPosition_worldspace,1)).xyz; LightDirection_cameraspace = LightPosition_cameraspace + EyeDirection_cameraspace; // UV of the vertex. No special space for this one. UV = vertexUV; // model to camera = ModelView vec3 vertexTangent_cameraspace = MV3x3 * vertexTangent_modelspace; vec3 vertexBitangent_cameraspace = MV3x3 * vertexBitangent_modelspace; vec3 vertexNormal_cameraspace = MV3x3 * vertexNormal_modelspace; mat3 TBN = transpose(mat3( vertexTangent_cameraspace, vertexBitangent_cameraspace, vertexNormal_cameraspace )); // You can use dot products instead of building this matrix and transposing it. See References for details. LightDirection_tangentspace = TBN * LightDirection_cameraspace; EyeDirection_tangentspace = TBN * EyeDirection_cameraspace; } Fragment shader: #version 130 // Interpolated values from the vertex shaders in vec2 UV; in vec3 Position_worldspace; in vec3 EyeDirection_cameraspace; in vec3 LightDirection_cameraspace; in vec3 LightDirection_tangentspace; in vec3 EyeDirection_tangentspace; // Ouput data out vec3 color; // Values that stay constant for the whole mesh. uniform sampler2D DiffuseTextureSampler; uniform sampler2D NormalTextureSampler; uniform sampler2D SpecularTextureSampler; uniform mat4 V; uniform mat4 M; uniform mat3 MV3x3; uniform vec3 LightPosition_worldspace; void main(){ // Light emission properties // You probably want to put them as uniforms vec3 LightColor = vec3(1,1,1); float LightPower = 40.0; // Material properties vec3 MaterialDiffuseColor = texture2D( DiffuseTextureSampler, vec2(UV.x,-UV.y) ).rgb; vec3 MaterialAmbientColor = vec3(0.1,0.1,0.1) * MaterialDiffuseColor; //vec3 MaterialSpecularColor = texture2D( SpecularTextureSampler, UV ).rgb * 0.3; vec3 MaterialSpecularColor = vec3(0.5,0.5,0.5); // Local normal, in tangent space. V tex coordinate is inverted because normal map is in TGA (not in DDS) for better quality vec3 TextureNormal_tangentspace = normalize(texture2D( NormalTextureSampler, vec2(UV.x,-UV.y) ).rgb*2.0 - 1.0); // Distance to the light float distance = length( LightPosition_worldspace - Position_worldspace ); // Normal of the computed fragment, in camera space vec3 n = TextureNormal_tangentspace; // Direction of the light (from the fragment to the light) vec3 l = normalize(LightDirection_tangentspace); // Cosine of the angle between the normal and the light direction, // clamped above 0 // - light is at the vertical of the triangle -> 1 // - light is perpendicular to the triangle -> 0 // - light is behind the triangle -> 0 float cosTheta = clamp( dot( n,l ), 0,1 ); // Eye vector (towards the camera) vec3 E = normalize(EyeDirection_tangentspace); // Direction in which the triangle reflects the light vec3 R = reflect(-l,n); // Cosine of the angle between the Eye vector and the Reflect vector, // clamped to 0 // - Looking into the reflection -> 1 // - Looking elsewhere -> < 1 float cosAlpha = clamp( dot( E,R ), 0,1 ); color = // Ambient : simulates indirect lighting MaterialAmbientColor + // Diffuse : "color" of the object MaterialDiffuseColor * LightColor * LightPower * cosTheta / (distance*distance) + // Specular : reflective highlight, like a mirror MaterialSpecularColor * LightColor * LightPower * pow(cosAlpha,5) / (distance*distance); //color.xyz = E; //color.xyz = LightDirection_tangentspace; //color.xyz = EyeDirection_tangentspace; } I have replaced the original color value by EyeDirection_tangentspace vector and then I got other strange effect but I can not link the image (not eunogh reputation) Is it possible that with this shaders is something wrong, or maybe in other place in my code e.g with my matrices?

    Read the article

  • Easiest, most fun way to program 2D games? Flash? XNA? Some other engine?

    - by Maxi
    Hi, this is a post detailing my search for the most enjoyable way for a hobbyist game programmer to sweeten his free time with making a game. My requirements: I looked at Flash first, I made a couple of small games but I'm doubtful of the performance. I would like to make a fairly large strategy game, with several hundred units fighting simultaneously, explosions and animations included. Also zoomable maps. I saw that Adobe has a new 3D API for Flash, but I don't know if that improves 2D performance aswell, I couldn't find anything related to that question on their MAX10 sessions. Would you say that Flash is a good technology for making large 2D games easily? I really like Actionscript, and I love how easy everything is in Flash. There are several engines available which make it even easier. I just do this for fun, and it would be even better if there were proper animation/particle editors available and if the engine I were to use, would be available for multiple platforms. (so more people can play my game once finished). I'd like to have it available on many mobile platforms aswell. (because I love touch input for some reason) I do know the XNA framework pretty well, but there are no good engines available for it, and it will only run on Windows, which is a huge turn off. Even bigger is, that you need to install the XNA redistributable each time you want to give the game to someone. If I use XNA, I would have to make all the tools myself, and I'd probably have to make them with WPF. (I'd love to make tools with Adobe AIR, but unfortunately the API's for image manipulation etc. are far worse in Flash, than they are in XNA/WPF.) Now, I'm aware that I could make my own engine that supports each of those platforms, but quite frankly, that would be too much work plowing through APIs. After all, I want to make a game, not an engine. So the question becomes: Is there maybe a cross platform (free or free to develop?) engine available that I could use for 2D development? I prefer: C#, Actionscript. I don't mind using c++ if the toolset is above average, but I highly doubt that there is something out there like that. Please prove me wrong :) So summary: I'd like to use Flash, but I don't know if it scales well enough. I'm not a scripter, I want some real APIs that I can work with inside a proper IDE. Just for information, I looked at several alternatives, I'm actually looking for a long time already. You'd help me a lot to make a decision finally. Feature-wise the Flatredball engine would be ideal. But I tried their tools, and quite frankly, they are horrible. Absolutely unusable, I'd need to make my own for sure. I didn't look at their API, but if their tools are so bad, I'm not inclined to look further. Unity3D. This one is quite nice, but I really don't need 3D, and it is quite ...a lot of work to learn. I also don't like that it is so expensive to use for different platforms and that I can only code for it through scripting. You have to buy each platform separately. The editor usability is average, the product overall is good enough for most purposes, but learning it myself would be overkill. Shiva 3D. It looks good enough, but again: I don't really need 3D. The editor usability is a little worse than Unity3D in my opinion and it wasn't clear to me how to start programming. I think it requires C++ for coding, so that's a negative too. I want to have fun, and c# is fun ;) SDL. Quite frankly, I'd still need to port to all those different SDL implementations. And I don't like OpenGL style programming, it's just plain ugly. And it needs c++, I know that there might be some wrappers available, but I don't like to use wrappers, because... Irrlicht. A lot of features, but support seems to be low and it is aimed at enthusiasts. C# bindings get dropped repeatedly. I'm not an engine enthusiast, I just want to make a game. I don't see this happening with Irrlicht. Ogre3D. Way too much work, it's just a graphics engine. Also no multiple platform support and c++. Torque2D. Costs something to use, and I didn't hear a lot of good things about support and documentation. Also costs extra for each platform.

    Read the article

  • GLSL: Strange light reflections

    - by Tom
    According to this tutorial I'm trying to make a normal mapping using GLSL, but something is wrong and I can't find the solution. The output render is in this image: Image1 in this image is a plane with two triangles and each of it is different illuminated (that is bad). The plane has 6 vertices. In the upper left side of this plane are 2 identical vertices (same in the lower right). Here are some vectors same for each vertice: normal vector = 0, 1, 0 (red lines on image) tangent vector = 0, 0,-1 (green lines on image) bitangent vector = -1, 0, 0 (blue lines on image) here I have one question: The two identical vertices does need to have the same tangent and bitangent? I have tried to make other values to the tangents but the effect was still similar. Here are my shaders Vertex shader: #version 130 // Input vertex data, different for all executions of this shader. in vec3 vertexPosition_modelspace; in vec2 vertexUV; in vec3 vertexNormal_modelspace; in vec3 vertexTangent_modelspace; in vec3 vertexBitangent_modelspace; // Output data ; will be interpolated for each fragment. out vec2 UV; out vec3 Position_worldspace; out vec3 EyeDirection_cameraspace; out vec3 LightDirection_cameraspace; out vec3 LightDirection_tangentspace; out vec3 EyeDirection_tangentspace; // Values that stay constant for the whole mesh. uniform mat4 MVP; uniform mat4 V; uniform mat4 M; uniform mat3 MV3x3; uniform vec3 LightPosition_worldspace; void main(){ // Output position of the vertex, in clip space : MVP * position gl_Position = MVP * vec4(vertexPosition_modelspace,1); // Position of the vertex, in worldspace : M * position Position_worldspace = (M * vec4(vertexPosition_modelspace,1)).xyz; // Vector that goes from the vertex to the camera, in camera space. // In camera space, the camera is at the origin (0,0,0). vec3 vertexPosition_cameraspace = ( V * M * vec4(vertexPosition_modelspace,1)).xyz; EyeDirection_cameraspace = vec3(0,0,0) - vertexPosition_cameraspace; // Vector that goes from the vertex to the light, in camera space. M is ommited because it's identity. vec3 LightPosition_cameraspace = ( V * vec4(LightPosition_worldspace,1)).xyz; LightDirection_cameraspace = LightPosition_cameraspace + EyeDirection_cameraspace; // UV of the vertex. No special space for this one. UV = vertexUV; // model to camera = ModelView vec3 vertexTangent_cameraspace = MV3x3 * vertexTangent_modelspace; vec3 vertexBitangent_cameraspace = MV3x3 * vertexBitangent_modelspace; vec3 vertexNormal_cameraspace = MV3x3 * vertexNormal_modelspace; mat3 TBN = transpose(mat3( vertexTangent_cameraspace, vertexBitangent_cameraspace, vertexNormal_cameraspace )); // You can use dot products instead of building this matrix and transposing it. See References for details. LightDirection_tangentspace = TBN * LightDirection_cameraspace; EyeDirection_tangentspace = TBN * EyeDirection_cameraspace; } Fragment shader: #version 130 // Interpolated values from the vertex shaders in vec2 UV; in vec3 Position_worldspace; in vec3 EyeDirection_cameraspace; in vec3 LightDirection_cameraspace; in vec3 LightDirection_tangentspace; in vec3 EyeDirection_tangentspace; // Ouput data out vec3 color; // Values that stay constant for the whole mesh. uniform sampler2D DiffuseTextureSampler; uniform sampler2D NormalTextureSampler; uniform sampler2D SpecularTextureSampler; uniform mat4 V; uniform mat4 M; uniform mat3 MV3x3; uniform vec3 LightPosition_worldspace; void main(){ // Light emission properties // You probably want to put them as uniforms vec3 LightColor = vec3(1,1,1); float LightPower = 40.0; // Material properties vec3 MaterialDiffuseColor = texture2D( DiffuseTextureSampler, vec2(UV.x,-UV.y) ).rgb; vec3 MaterialAmbientColor = vec3(0.1,0.1,0.1) * MaterialDiffuseColor; //vec3 MaterialSpecularColor = texture2D( SpecularTextureSampler, UV ).rgb * 0.3; vec3 MaterialSpecularColor = vec3(0.5,0.5,0.5); // Local normal, in tangent space. V tex coordinate is inverted because normal map is in TGA (not in DDS) for better quality vec3 TextureNormal_tangentspace = normalize(texture2D( NormalTextureSampler, vec2(UV.x,-UV.y) ).rgb*2.0 - 1.0); // Distance to the light float distance = length( LightPosition_worldspace - Position_worldspace ); // Normal of the computed fragment, in camera space vec3 n = TextureNormal_tangentspace; // Direction of the light (from the fragment to the light) vec3 l = normalize(LightDirection_tangentspace); // Cosine of the angle between the normal and the light direction, // clamped above 0 // - light is at the vertical of the triangle -> 1 // - light is perpendicular to the triangle -> 0 // - light is behind the triangle -> 0 float cosTheta = clamp( dot( n,l ), 0,1 ); // Eye vector (towards the camera) vec3 E = normalize(EyeDirection_tangentspace); // Direction in which the triangle reflects the light vec3 R = reflect(-l,n); // Cosine of the angle between the Eye vector and the Reflect vector, // clamped to 0 // - Looking into the reflection -> 1 // - Looking elsewhere -> < 1 float cosAlpha = clamp( dot( E,R ), 0,1 ); color = // Ambient : simulates indirect lighting MaterialAmbientColor + // Diffuse : "color" of the object MaterialDiffuseColor * LightColor * LightPower * cosTheta / (distance*distance) + // Specular : reflective highlight, like a mirror MaterialSpecularColor * LightColor * LightPower * pow(cosAlpha,5) / (distance*distance); //color.xyz = E; //color.xyz = LightDirection_tangentspace; //color.xyz = EyeDirection_tangentspace; } I have replaced the original color value by EyeDirection_tangentspace vector and then I got other strange effect but I can not link the image (not eunogh reputation) Is it possible that with this shaders is something wrong, or maybe in other place in my code e.g with my matrices? SOLVED Solved... 3 days needed for changing one letter from this: glBindBuffer(GL_ARRAY_BUFFER, vbo); glVertexAttribPointer ( 4, // attribute 3, // size GL_FLOAT, // type GL_FALSE, // normalized? sizeof(VboVertex), // stride (void*)(12*sizeof(float)) // array buffer offset ); to this: glBindBuffer(GL_ARRAY_BUFFER, vbo); glVertexAttribPointer ( 4, // attribute 3, // size GL_FLOAT, // type GL_FALSE, // normalized? sizeof(VboVertex), // stride (void*)(11*sizeof(float)) // array buffer offset ); see difference? :)

    Read the article

  • Adjusting server-side tickrate dynamically

    - by Stuart Blackler
    I know nothing of game development/this site, so I apologise if this is completely foobar. Today I experimented with building a small game loop for a network game (think MW3, CSGO etc). I was wondering why they do not build in automatic rate adjustment based on server performance? Would it affect the client that much if the client knew this frame is based on this tickrate? Has anyone attempted this before? Here is what my noobish C++ brain came up with earlier. It will improve the tickrate if it has been stable for x ticks. If it "lags", the tickrate will be reduced down by y amount: // GameEngine.cpp : Defines the entry point for the console application. // #ifdef WIN32 #include <Windows.h> #else #include <sys/time.h> #include <ctime> #endif #include<iostream> #include <dos.h> #include "stdafx.h" using namespace std; UINT64 GetTimeInMs() { #ifdef WIN32 /* Windows */ FILETIME ft; LARGE_INTEGER li; /* Get the amount of 100 nano seconds intervals elapsed since January 1, 1601 (UTC) and copy it * to a LARGE_INTEGER structure. */ GetSystemTimeAsFileTime(&ft); li.LowPart = ft.dwLowDateTime; li.HighPart = ft.dwHighDateTime; UINT64 ret = li.QuadPart; ret -= 116444736000000000LL; /* Convert from file time to UNIX epoch time. */ ret /= 10000; /* From 100 nano seconds (10^-7) to 1 millisecond (10^-3) intervals */ return ret; #else /* Linux */ struct timeval tv; gettimeofday(&tv, NULL); uint64 ret = tv.tv_usec; /* Convert from micro seconds (10^-6) to milliseconds (10^-3) */ ret /= 1000; /* Adds the seconds (10^0) after converting them to milliseconds (10^-3) */ ret += (tv.tv_sec * 1000); return ret; #endif } int _tmain(int argc, _TCHAR* argv[]) { int sv_tickrate_max = 1000; // The maximum amount of ticks per second int sv_tickrate_min = 100; // The minimum amount of ticks per second int sv_tickrate_adjust = 10; // How much to de/increment the tickrate by int sv_tickrate_stable_before_increment = 1000; // How many stable ticks before we increase the tickrate again int sys_tickrate_current = sv_tickrate_max; // Always start at the highest possible tickrate for the best performance int counter_stable_ticks = 0; // How many ticks we have not lagged for UINT64 __startTime = GetTimeInMs(); int ticks = 100000; while(ticks > 0) { int maxTimeInMs = 1000 / sys_tickrate_current; UINT64 _startTime = GetTimeInMs(); // Long code here... cout << "."; UINT64 _timeTaken = GetTimeInMs() - _startTime; if(_timeTaken < maxTimeInMs) { Sleep(maxTimeInMs - _timeTaken); counter_stable_ticks++; if(counter_stable_ticks >= sv_tickrate_stable_before_increment) { // reset the stable # ticks counter counter_stable_ticks = 0; // make sure that we don't go over the maximum tickrate if(sys_tickrate_current + sv_tickrate_adjust <= sv_tickrate_max) { sys_tickrate_current += sv_tickrate_adjust; // let me know in console #DEBUG cout << endl << "Improving tickrate. New tickrate: " << sys_tickrate_current << endl; } } } else if(_timeTaken > maxTimeInMs) { cout << endl; if((sys_tickrate_current - sv_tickrate_adjust) > sv_tickrate_min) { sys_tickrate_current -= sv_tickrate_adjust; } else { if(sys_tickrate_current == sv_tickrate_min) { cout << "Please reduce sv_tickrate_min..." << endl; } else{ sys_tickrate_current = sv_tickrate_min; } } // let me know in console #DEBUG cout << "The server has lag. Reduced tickrate to: " << sys_tickrate_current << endl; } ticks--; } UINT64 __timeTaken = GetTimeInMs() - __startTime; cout << endl << endl << "Total time in ms: " << __timeTaken; cout << endl << "Ending tickrate: " << sys_tickrate_current; char test; cin >> test; return 0; }

    Read the article

  • WebCenter Customer Spotlight: Alberta Agriculture and Rural Developmen

    - by me
    Author: Peter Reiser - Social Business Evangelist, Oracle WebCenter  Solution SummaryAlberta Agriculture and Rural Development is a government ministry that works with producers and consumers to create a strong, competitive, and sustainable agriculture and food industry in the province of Alberta, Canada The primary business challenge faced by the Alberta Ministry of Agriculture was that of managing the rapid growth of their information.  They needed to incorporate a system that would work across 22 different divisions within the ministry and deliver an improved and more efficient experience for Desktop, Web and Mobile users, while addressing their regulatory compliance needs as part of the Canadian government. The customer implemented a centralized Enterprise Content Management solution based on Oracle WebCenter Content and developed a strong and repeatable information life cycle management methodology across all their 22 divisions and agencies. With the implemented solution, Alberta Agriculture and Rural Development  centrally manages over 20 million documents for 22 divisions and agencies and they have improved time required to find records,  reliability of information, improved speed and accuracy of reporting and data security. Company OverviewAlberta Agriculture and Rural Development is a government ministry that works with producers and consumers to create a strong, competitive, and sustainable agriculture and food industry in the province of Alberta, Canada.  Business ChallengesThe business users were overwhelmed by growth in documents (over 20 million files across 22 divisions and agencies) and it was difficult to find and manage documents and versions. There was a strong need for a personalized easy-to-use, secure and dependable method of managing and consuming content via desktop, Web, and mobile, while improving efficiency and maintaining regulatory compliance by removing the risk of non-uniform approaches to retention and disposition. Solution DeployedAs a first step Alberta Agriculture and Rural Development developed a business case with clear defined business drivers: Reduce time required to find records Locate “lost” records Capture knowledge lost through attrition Increase the ease of retrieval Reduce personal copies Increase reliability of information Improve speed and accuracy of reporting Improve data security The customer implemented a centralized Enterprise Content Management solution based on Oracle WebCenter Content. They used an incremental implementation approach aligned with their divisional and agency structure which allowed continuous process improvement. This led to a very strong and repeatable information life cycle management methodology across all their 22 divisions and agencies. Business ResultsAlberta Agriculture and Rural Development achieved impressive business results: Centrally managing over 20 million files for 22 divisions and agencies Federated model to manage documents in SharePoint and other applications Doing records management for both paper and electronic records Reduced time required to find records Increased the ease of retrieval Increased reliability of information Improved speed and accuracy of reporting Improved data security Additional Information Oracle Open World 2012 Presentation Oracle WebCenter Content

    Read the article

  • Loose Coupling and UX Patterns for Applications Integrations

    - by ultan o'broin
    I love that software architecture phrase loose coupling. There’s even a whole book about it. And, if you’re involved in enterprise methodology you’ll know just know important loose coupling is to the smart development of applications integrations too. Whether you are integrating offerings from the Oracle partner ecosystem with Fusion apps or applications coexistence scenarios, loose coupling enables the development of scalable, reliable, flexible solutions, with no second-guessing of technology. Another great book Enterprise Integration Patterns: Designing, Building, and Deploying Messaging Solutions tells us about loose coupling benefits of reducing the assumptions that integration parties (components, applications, services, programs, users) make about each other when they exchange information. Eliminating assumptions applies to UI development too. The days of assuming it’s enough to hard code a UI with linking libraries called code on a desktop PC for an office worker are over. The book predates PaaS development and SaaS deployments, and was written when web services and APIs were emerging. Yet it calls out how using middleware as an assumptions-dissolving technology “glue" is central to applications integration. Realizing integration design through a set of middleware messaging patterns (messaging in the sense of asynchronously communicating data) that enable developers to meet the typical business requirements of enterprises requiring integrated functionality is very Fusion-like. User experience developers can benefit from the loose coupling approach too. User expectations and work styles change all the time, and development is now about integrating SaaS through PaaS. Cloud computing offers a virtual pivot where a single source of truth (customer or employee data, for example) can be experienced through different UIs (desktop, simplified, or mobile), each optimized for the context of the user’s world of work and task completion. Smart enterprise applications developers, partners, and customers use design patterns for user experience integration benefits too. The Oracle Applications UX design patterns (and supporting guidelines) enable loose coupling of the optimized UI requirements from code. Developers can get on with the job of creating integrations through web services, APIs and SOA without having to figure out design problems about how UIs should work. Adding the already user proven UX design patterns (and supporting guidelines to your toolkit means ADF and other developers can easily offer much more than just functionality and be super productive too. Great looking application integration touchpoints can be built with our design patterns and guidelines too for a seamless applications UX. One of Oracle’s partners, Innowave Technologies used loose coupling architecture and our UX design patterns to create an integration for a customer that was scalable, cost effective, fast to develop and kept users productive while paving a roadmap for customers to keep pace with the latest UX designs over time. Innowave CEO Basheer Khan, a Fusion User Experience Advocate explains how to do it on the Usable Apps blog.

    Read the article

< Previous Page | 458 459 460 461 462 463 464 465 466 467 468 469  | Next Page >