Search Results

Search found 13372 results on 535 pages for 'anonymous objects'.

Page 495/535 | < Previous Page | 491 492 493 494 495 496 497 498 499 500 501 502  | Next Page >

  • Create Advanced Panoramas with Microsoft Image Composite Editor

    - by Matthew Guay
    Do you enjoy making panoramas with your pictures, but want more features than tools like Live Photo Gallery offer?  Here’s how you can create amazing panoramas for free with the Microsoft Image Composite Editor. Yesterday we took a look at creating panoramic photos in Windows Live Photo Gallery. Today we take a look at a free tool from Microsoft that will give you more advanced features to create your own masterpiece. Getting Started Download Microsoft Image Composite Editor from Microsoft Research (link below), and install as normal.  Note that there are separate version for 32 & 64-bit editions of Windows, so make sure to download the correct one for your computer. Once it’s installed, you can proceed to create awesome panoramas and extremely large image combinations with it.  Microsoft Image Composite Editor integrates with Live Photo Gallery, so you can create more advanced panoramic pictures directly.  Select the pictures you want to combine, click Extras in the menu bar, and select Create Image Composite. You can also create a photo stitch directly from Explorer.  Select the pictures you want to combine, right-click, and select Stitch Images… Or, simply launch the Image Composite Editor itself and drag your pictures into its editor.  Either way you start a image composition, the program will automatically analyze and combine your images.  This application is optimized for multiple cores, and we found it much faster than other panorama tools such as Live Photo Gallery. Within seconds, you’ll see your panorama in the top preview pane. From the bottom of the window, you can choose a different camera motion which will change how the program stitches the pictures together.  You can also quickly crop the picture to the size you want, or use Automatic Crop to have the program select the maximum area with a continuous picture.   Here’s how our panorama looked when we switched the Camera Motion to Planar Motion 2. But, the real tweaking comes in when you adjust the panorama’s projection and orientation.  Click the box button at the top to change these settings. The panorama is now overlaid with a grid, and you can drag the corners and edges of the panorama to change its shape. Or, from the Projection button at the top, you can choose different projection modes. Here we’ve chosen Cylinder (Vertical), which entirely removed the warp on the walls in the image.  You can pan around the image, and get the part you find most important in the center.  Click the Apply button on the top when you’re finished making changes, or click Revert if you want to switch to the default view settings. Once you’ve finished your masterpiece, you can export it easily to common photo formats from the Export panel on the bottom.  You can choose to scale the image or set it to a maximum width and height as well.  Click Export to disk to save the photo to your computer, or select Publish to Photosynth to post your panorama online. Alternately, from the File menu you can choose to save the panorama as .spj file.  This preserves all of your settings in the Image Composite Editor so you can edit it more in the future if you wish.   Conclusion Whether you’re trying to capture the inside of a building or a tall tree, the extra tools in Microsoft Image Composite Editor let you make nicer panoramas than you ever thought possible.  We found the final results surprisingly accurate to the real buildings and objects, especially after tweaking the projection modes.  This tool can be both fun and useful, so give it a try and let us know what you’ve found it useful for. Works with 32 & 64-bit versions of XP, Vista, and Windows 7 Link Download Microsoft Image Composite Editor Similar Articles Productive Geek Tips Change or Set the Greasemonkey Script Editor in FirefoxNew Vista Syntax for Opening Control Panel Items from the Command-lineTune Your ClearType Font Settings in Windows VistaChange the Default Editor From Nano on Ubuntu LinuxMake MSE Create a Restore Point Before Cleaning Malware TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips Xobni Plus for Outlook All My Movies 5.9 CloudBerry Online Backup 1.5 for Windows Home Server Snagit 10 Get a free copy of WinUtilities Pro 2010 World Cup Schedule Boot Snooze – Reboot and then Standby or Hibernate Customize Everything Related to Dates, Times, Currency and Measurement in Windows 7 Google Earth replacement Icon (Icons we like) Build Great Charts in Excel with Chart Advisor

    Read the article

  • Common usecases and techniques when integrating a 3rd party application with Oracle Sales Cloud

    - by asantaga
    Over the last year or so I've see a lot of partners migrating and integrate their applications with Oracle Sales Cloud. Interestingly I'd say 60% of the partners use the same set of design patterns over and over again. Most of the time I see that they want to embed their application into Oracle Sales Cloud, within a tab usually, perhaps click on a link to their application (passing some piece of data + credentials) and then within their application update sales cloud again using webservices. Here are some examples of the different use-cases I've seen , and how partners are embedding their applications into Sales Cloud, NB : The following examples use the "Desktop" User Interface rather than the Newer "Simplified User Interface", I'll update the sample application soon but the integration patterns are precisely the same Use Case 1 :  Navigator "Link out" to third party application This is an example of where the developer has added a link to the global navigator and this links out to the 3rd Party Application. Typically one doesn't pass any contextual data with the exception of perhaps user credentials, or better still JWT Token. Techniques Used   Adding Link to Menu Item Using JWT Token in Sales Cloud Use Case 2 : Application Embedded within the Sales Cloud Dashboard Within the Oracle Sales Cloud application there is a tab called "Sales", within this tab its possible to embed a SubTab and embed a iFrame pointing to your application. To do this the developer simply needs to edit the page in customization mode, add the tab and then add the iFrame, simples! The developer can pass credentials/JWT Token and some other pieces of data but not object data (ie the current OpportunityID etc)  Techniques Used Adding a page to the dashboard  Using JWT Token in Sales Cloud  Use Case 3 : Embedding a Tab and Context Linking out from a Sales Cloud object to the 3rd party application In this usecase the developer embeds two components into Oracle Sales Cloud. The first is a SubTab showing summary data to the user (a quote in our case) and then secondly a hyperlink, (although it could be a button) which when clicked navigates the user to the 3rd party application. In this case the developer almost always passes context specific data (i.e. the opportunityId) and a security token (username password combo or JWT Token). The third party application usually takes the data, perhaps queries more data using the Sales Cloud SOAP/WebService interface and then displays the resulting mashup to the user for further processing. When the user has finished their work in the 3rd party application they normally navigate back to Oracle Sales Cloud using what's called a "DeepLink", ie taking them back to the object [opportunity in our case] they came from. This image visually shows a "Happy Path" a user may follow, and combines linking out to an application , webservice calls and deep linking back to Sales Cloud. Techniques Used Extending a SalesCloud application with a custom button Using JWT Token in Sales Cloud Extending Oracle Sales Cloud [Opportnity] with a custom tab exposing External Content Retrieving Data from Oracle Sales cloud using WebServices Coding some groovy script to generate the URLs required (Doc 1571200.1 on MyOracle Support) DeepLinking to specific Oracle Sales Cloud Pages (Doc 1516151.1 on My Oracle Support) Use-Case 4 :  Server Side processing/synchronization This usecase focuses on the Server Side processing of data, in this case synchronizing data. Here the 3rd party application is running on a "timer", e.g. cron or similar, and when triggered it queries data from Oracle Sales Cloud, then it queries data from the 3rd party application, determines the deltas and then inserts the data where required. Specifically here we are calling Oracle Sales Cloud using SOAP/WebServices and the 3rd party application is being communicated to using the REST API, for Oracle Sales Cloud one would use standard JAX-WS WebService calls and for REST one would use the JAX-RS api and perhap the Jackson api for managing JSON objects.. This is a very common use case and one which specifically lends itself to using the Oracle Java Cloud Service as the ideal application server where to host the mediator between the two applications.  Techniques Used Using JWT Token in Sales Cloud Integrating with the Oracle Java Cloud Service Retrieving Data from Oracle Sales cloud using WebServices General Resources The above is just a small set of techniques and use-cases which are used today. There are plenty of other sources of documentation and resources available on the internet but to get you started here are a few of my favourite places  Sales Cloud General Documentation Sales Cloud Customize Tab is useful for general customization of Sales Cloud Sales Cloud Integration Tab focuses on the 3rd party integration techniques  Official Oracle Fusion Developer Relations Blog Official Oracle Fusion Developer Relations YouTube Channel Enjoy integrating! 

    Read the article

  • C# async and actors

    - by Alex.Davies
    If you read my last post about async, you might be wondering what drove me to write such odd code in the first place. The short answer is that .NET Demon is written using NAct Actors. Actors are an old idea, which I believe deserve a renaissance under C# 5. The idea is to isolate each stateful object so that only one thread has access to its state at any point in time. That much should be familiar, it's equivalent to traditional lock-based synchronization. The different part is that actors pass "messages" to each other rather than calling a method and waiting for it to return. By doing that, each thread can only ever be holding one lock. This completely eliminates deadlocks, my least favourite concurrency problem. Most people who use actors take this quite literally, and there are plenty of frameworks which help you to create message classes and loops which can receive the messages, inspect what type of message they are, and process them accordingly. But I write C# for a reason. Do I really have to choose between using actors and everything I love about object orientation in C#? Type safety Interfaces Inheritance Generics As it turns out, no. You don't need to choose between messages and method calls. A method call makes a perfectly good message, as long as you don't wait for it to return. This is where asynchonous methods come in. I have used NAct for a while to wrap my objects in a proxy layer. As long as I followed the rule that methods must always return void, NAct queued up the call for later, and immediately released my thread. When I needed to get information out of other actors, I could use EventHandlers and callbacks (continuation passing style, for any CS geeks reading), and NAct would call me back in my isolated thread without blocking the actor that raised the event. Using callbacks looks horrible though. To remind you: m_BuildControl.FilterEnabledForBuilding(    projects,    enabledProjects = m_OutOfDateProjectFinder.FilterNeedsBuilding(        enabledProjects,             newDirtyProjects =             {                 ....... Which is why I'm really happy that NAct now supports async methods. Now, methods are allowed to return Task rather than just void. I can await those methods, and C# 5 will turn the rest of my method into a continuation for me. NAct will run the other method in the other actor's context, but will make sure that when my method resumes, we're back in my context. Neither actor was ever blocked waiting for the other one. Apart from when they were actually busy doing something, they were responsive to concurrent messages from other sources. To be fair, you could use async methods with lock statements to achieve exactly the same thing, but it's ugly. Here's a realistic example of an object that has a queue of data that gets passed to another object to be processed: class QueueProcessor {    private readonly ItemProcessor m_ItemProcessor = ...     private readonly object m_Sync = new object();    private Queue<object> m_DataQueue = ...    private List<object> m_Results = ...     public async Task ProcessOne() {         object data = null;         lock (m_Sync)         {             data = m_DataQueue.Dequeue();         }         var processedData = await m_ItemProcessor.ProcessData(data); lock (m_Sync)         {             m_Results.Add(processedData);         }     } } We needed to write two lock blocks, one to get the data to process, one to store the result. The worrying part is how easily we could have forgotten one of the locks. Compare that to the version using NAct: class QueueProcessorActor : IActor { private readonly ItemProcessor m_ItemProcessor = ... private Queue<object> m_DataQueue = ... private List<object> m_Results = ... public async Task ProcessOne()     {         // We are an actor, it's always thread-safe to access our private fields         var data = m_DataQueue.Dequeue();         var processedData = await m_ItemProcessor.ProcessData(data);         m_Results.Add(processedData);     } } You don't have to explicitly lock anywhere, NAct ensures that your code will only ever run on one thread, because it's an actor. Either way, async is definitely better than traditional synchronous code. Here's a diagram of what a typical synchronous implementation might do: The left side shows what is running on the thread that has the lock required to access the QueueProcessor's data. The red section is where that lock is held, but doesn't need to be. Contrast that with the async version we wrote above: Here, the lock is released in the middle. The QueueProcessor is free to do something else. Most importantly, even if the ItemProcessor sometimes calls the QueueProcessor, they can never deadlock waiting for each other. So I thoroughly recommend you use async for all code that has to wait a while for things. And if you find yourself writing lots of lock statements, think about using actors as well. Using actors and async together really takes the misery out of concurrent programming.

    Read the article

  • Package Manager Console For More Than Managing Packages

    - by Steve Michelotti
    Like most developers, I prefer to not have to pick up the mouse if I don’t have to. I use the Executor launcher for almost everything so it’s extremely rare for me to ever click the “Start” button in Windows. I also use shortcuts keys when I can so I don’t have to pick up the mouse. By now most people know that the Package Manager Console that comes with NuGet is PowerShell embedded inside of Visual Studio. It is based on its PowerConsole predecessor which was the first (that I’m aware of) to embed PowerShell inside of Visual Studio and give access to the Visual Studio automation DTE object. It does this through an inherent $dte variable that is automatically available and ready for use. This variable is also available inside of the NuGet Package Manager console. Adding a new class file to a Visual Studio project is one of those mundane tasks that should be easier. First I have to pick up the mouse. Then I have to right-click where I want it file to go and select “Add –> New Item…” or “Add –> Class…”   If you know the Ctrl+Shift+A shortcut, then you can avoid the mouse for adding a new item but you have to manually assign a shortcut for adding a new class. At this point it pops up a dialog just so I can enter the name of the class I want. Since this is one of the most common tasks developers do, I figure there has to be an easier way and a way that avoids picking up the mouse and popping up dialogs. This is where your embedded PowerShell prompt in Visual Studio comes in. The first thing you should do is to assign a keyboard shortcut so that you can get a PowerShell prompt (i.e., the Package Manager console) quickly without ever picking up the mouse. I assign “Ctrl+P, Ctrl+M” because “P + M” stands for “Package Manager” so it is easy to remember:   At this point I can type this command to add a new class: PM> $dte.ItemOperations.AddNewItem("Code\Class", "Foo.cs") which will result in the class being added: At this point I’ve satisfied my original goal of not having to pick up a mouse and not having the “Add New Item” dialog pop up. However, having to remember that $dte method call is not very user-friendly at all. The best thing to do is to make this a re-usable function that always loads when Visual Studio starts up. There is a $profile variable that you can use to figure out where that location is for your machine: PM> $profile C:\Users\steve.michelotti\Documents\WindowsPowerShell\NuGet_profile.ps1 If the NuGet_profile.ps1 file does not already exist, you can just create it yourself and place it in the directory. Now you can put a function inside like this: 1: function addClass($className) 2: { 3: if ($className.EndsWith(".cs") -eq $false) { 4: $className = $className + ".cs" 5: } 6: 7: $dte.ItemOperations.AddNewItem("Code\Class", $className) 8: } Since it’s in the NuGet_profile.ps1 file, this function will automatically always be available for me after starting Visual Studio. Now I can simply do this: PM> addClass Foo At this point, we have a *very* nice developer experience. All I did to add a new class was: “Ctrl-P, Ctrl-M”, then “addClass Foo”. No mouse, no pop up dialogs, no complex commands to remember. In fact, PowerShell gives you auto-completion as well. If I type “addc” followed by [TAB], then intellisense pops up: You can see my custom function appear in intellisense above. Now I can type the next letter “c” and [TAB] to auto-complete the command. And if that’s still too many key strokes for you, then you can create your own PowerShell custom alias for your function like this: PM> Set-Alias addc addClass PM> addc Foo While all this is very useful, I did run into some issues which prompted me to make even further customization. This command will add the new class file to the current active directory. Depending on your context, this may not be what you want. For example, by convention all view model objects go in the “Models” folder in an MVC project. So if the current document is in the Controllers folder, it will add your class to that folder which is not what you want. You want it to always add it to the “Models” folder if you are adding a new model in an MVC project. For this situation, I added a new function called “addModel” which looks like this: 1: function addModel($className) 2: { 3: if ($className.EndsWith(".cs") -eq $false) { 4: $className = $className + ".cs" 5: } 6: 7: $modelsDir = $dte.ActiveSolutionProjects[0].UniqueName.Replace(".csproj", "") + "\Models" 8: $dte.Windows.Item([EnvDTE.Constants]::vsWindowKindSolutionExplorer).Activate() 9: $dte.ActiveWindow.Object.GetItem($modelsDir).Select([EnvDTE.vsUISelectionType]::vsUISelectionTypeSelect) 10: $dte.ItemOperations.AddNewItem("Code\Class", $className) 11: } First I figure out the path to the Models directory on line #7. Then I activate the Solution Explorer window on line #8. Then I make sure the Models directory is selected so that my context is correct when I add the new class and it will be added to the Models directory as desired. These are just a couple of examples for things you can do with the PowerShell prompt that you have available in the Package Manager console. As developers we spend so much time in Visual Studio, why would you not customize it so that you can work in whatever way you want to work?! The next time you’re not happy about the way Visual Studio makes you do a particular task – automate it! The sky is the limit.

    Read the article

  • SQLAuthority News – Great Time Spent at Great Indian Developers Summit 2014

    - by Pinal Dave
    The Great Indian Developer Conference (GIDS) is one of the most popular annual event held in Bangalore. This year GIDS is scheduled on April 22, 25. I will be presented total four sessions at this event and each session is very different from each other. Here are the details of four of my sessions, which I presented there. Pluralsight Shades This event was a great event and I had fantastic fun presenting a technology over here. I was indeed very excited that along with me, I had many of my friends presenting at the event as well. I want to thank all of you to attend my session and having standing room every single time. I have already sent resources in my newsletter. You can sign up for the newsletter over here. Indexing is an Art I was amazed with the crowd present in the sessions at GIDS. There was a great interest in the subject of SQL Server and Performance Tuning. Audience at GIDS I believe event like such provides a great platform to meet and share knowledge. Pinal at Pluralsight Booth Here are the abstract of the sessions which I had presented. They were recorded so at some point in time they will be available, but if you want the content of all the courses immediately, I suggest you check out my video courses on the same subject on Pluralsight. Indexes, the Unsung Hero Relevant Pluralsight Course Slow Running Queries are the most common problem that developers face while working with SQL Server. While it is easy to blame SQL Server for unsatisfactory performance, the issue often persists with the way queries have been written, and how Indexes has been set up. The session will focus on the ways of identifying problems that slow down SQL Server, and Indexing tricks to fix them. Developers will walk out with scripts and knowledge that can be applied to their servers, immediately post the session. Indexes are the most crucial objects of the database. They are the first stop for any DBA and Developer when it is about performance tuning. There is a good side as well evil side to indexes. To master the art of performance tuning one has to understand the fundamentals of indexes and the best practices associated with the same. We will cover various aspects of Indexing such as Duplicate Index, Redundant Index, Missing Index as well as best practices around Indexes. SQL Server Performance Troubleshooting: Ancient Problems and Modern Solutions Relevant Pluralsight Course Many believe Performance Tuning and Troubleshooting is an art which has been lost in time. However, truth is that art has evolved with time and there are more tools and techniques to overcome ancient troublesome scenarios. There are three major resources that when bottlenecked creates performance problems: CPU, IO, and Memory. In this session we will focus on High CPU scenarios detection and their resolutions. If time permits we will cover other performance related tips and tricks. At the end of this session, attendees will have a clear idea as well as action items regarding what to do when facing any of the above resource intensive scenarios. Developers will walk out with scripts and knowledge that can be applied to their servers, immediately post the session. To master the art of performance tuning one has to understand the fundamentals of performance, tuning and the best practices associated with the same. We will discuss about performance tuning in this session with the help of Demos. Pinal Dave at GIDS MySQL Performance Tuning – Unexplored Territory Relevant Pluralsight Course Performance is one of the most essential aspects of any application. Everyone wants their server to perform optimally and at the best efficiency. However, not many people talk about MySQL and Performance Tuning as it is an extremely unexplored territory. In this session, we will talk about how we can tune MySQL Performance. We will also try and cover other performance related tips and tricks. At the end of this session, attendees will not only have a clear idea, but also carry home action items regarding what to do when facing any of the above resource intensive scenarios. Developers will walk out with scripts and knowledge that can be applied to their servers, immediately post the session. To master the art of performance tuning one has to understand the fundamentals of performance, tuning and the best practices associated with the same. You will also witness some impressive performance tuning demos in this session. Hidden Secrets and Gems of SQL Server We Bet You Never Knew Relevant Pluralsight Course SQL Trio Session! It really amazes us every time when someone says SQL Server is an easy tool to handle and work with. Microsoft has done an amazing work in making working with complex relational database a breeze for developers and administrators alike. Though it looks like child’s play for some, the realities are far away from this notion. The basics and fundamentals though are simple and uniform across databases, the behavior and understanding the nuts and bolts of SQL Server is something we need to master over a period of time. With a collective experience of more than 30+ years amongst the speakers on databases, we will try to take a unique tour of various aspects of SQL Server and bring to you life lessons learnt from working with SQL Server. We will share some of the trade secrets of performance, configuration, new features, tuning, behaviors, T-SQL practices, common pitfalls, productivity tips on tools and more. This is a highly demo filled session for practical use if you are a SQL Server developer or an Administrator. The speakers will be able to stump you and give you answers on almost everything inside the Relational database called SQL Server. I personally attended the session of Vinod Kumar, Balmukund Lakhani, Abhishek Kumar and my favorite Govind Kanshi. Summary If you have missed this event here are two action items 1) Sign up for Resource Newsletter 2) Watch my video courses on Pluralsight Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: MySQL, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, SQLAuthority Author Visit, SQLAuthority News, T SQL Tagged: GIDS

    Read the article

  • How to Customize Fonts and Colors for Gnome Panels in Ubuntu Linux

    - by The Geek
    Earlier this week we showed you how to make the Gnome Panels totally transparent, but you really need some customized fonts and colors to make the effect work better. Here’s how to do it. This article is the first part of a multi-part series on how to customize the Ubuntu desktop, written by How-To Geek reader and ubergeek, Omar Hafiz. Changing the Gnome Colors the Easy Way You’ll first need to install Gnome Color Chooser which is available in the default repositories (the package name is gnome-color-chooser). Then go to System > Preferences > Gnome Color Chooser to launch the program. When you see all these tabs you immediately know that Gnome Color Chooser does not only change the font color of the panel, but also the color of the fonts all over Ubuntu, desktop icons, and many other things as well. Now switch to the panel tab, here you can control every thing about your panels. You can change font, font color, background and background color of the panels and start menus. Tick the “Normal” option and choose the color you want for the panel font. If you want you can change the hover color of the buttons on the panel by too. A little below the color option is the font options, this includes the font, font size, and the X and Y positioning of the font. The first two options are pretty straight forward, they change the typeface and the size. The X-Padding and Y-Padding may confuse you but they are interesting, they may give a nice look for your panels by increasing the space between items on your panel like this: X-Padding:   Y-Padding:   The bottom half of the window controls the look of your start menus which is the Applications, Places, and Systems menus. You can customize them just the way you did with the panel.   Alright, this was the easy way to change the font of your panels. Changing the Gnome Theme Colors the Command-Line Way The other hard (not so hard really) way will be changing the configuration files that tell your panel how it should look like. In your Home Folder, press Ctrl+H to show the hidden files, now find the file “.gtkrc-2.0”, open it and insert this line in it. If there are any other lines in the file leave them intact. include “/home/<username>/.gnome2/panel-fontrc” Don’t forget to replace the <user_name> with you user account name. When done close and save the file. Now navigate the folder “.gnome2” from your Home Folder and create a new file and name it “panel-fontrc”. Open the file you just created with a text editor and paste the following in it: style “my_color”{fg[NORMAL] = “#FF0000”}widget “*PanelWidget*” style “my_color”widget “*PanelApplet*” style “my_color” This text will make the font red. If you want other colors you’ll need to replace the Hex value/HTML Notation (in this case #FF0000) with the value of the color you want. To get the hex value you can use GIMP, Gcolor2 witch is available in the default repositories or you can right-click on your panel > Properties > Background tab then click to choose the color you want and copy the Hex value. Don’t change any other thing in the text. When done, save and close. Now press Alt+F2 and enter “killall gnome-panel” to force it to restart or you can log out and login again. Most of you will prefer the first way of changing the font and color for it’s ease of applying and because it gives you much more options but, some may not have the ability/will to download and install a new program on their machine or have reasons of their own for not to using it, that’s why we provided the two way. Latest Features How-To Geek ETC How to Enable User-Specific Wireless Networks in Windows 7 How to Use Google Chrome as Your Default PDF Reader (the Easy Way) How To Remove People and Objects From Photographs In Photoshop Ask How-To Geek: How Can I Monitor My Bandwidth Usage? Internet Explorer 9 RC Now Available: Here’s the Most Interesting New Stuff Here’s a Super Simple Trick to Defeating Fake Anti-Virus Malware The Splendiferous Array of Culinary Tools [Infographic] Add a Real-Time Earth Wallpaper App to Ubuntu with xplanetFX The Citroen GT – An Awesome Video Game Car Brought to Life [Video] Final Man vs. Machine Round of Jeopardy Unfolds; Watson Dominates Give Chromium-Based Browser Desktop Notifications a Native System Look in Ubuntu Chrome Time Track Is a Simple Task Time Tracker

    Read the article

  • .NET 4: &ldquo;Slim&rdquo;-style performance boost!

    - by Vitus
    RTM version of .NET 4 and Visual Studio 2010 is available, and now we can do some test with it. Parallel Extensions is one of the most valuable part of .NET 4.0. It’s a set of good tools for easily consuming multicore hardware power. And it also contains some “upgraded” sync primitives – Slim-version. For example, it include updated variant of widely known ManualResetEvent. For people, who don’t know about it: you can sync concurrency execution of some pieces of code with this sync primitive. Instance of ManualResetEvent can be in 2 states: signaled and non-signaled. Transition between it possible by Set() and Reset() methods call. Some shortly explanation: Thread 1 Thread 2 Time mre.Reset(); mre.WaitOne(); //code execution 0 //wating //code execution 1 //wating //code execution 2 //wating //code execution 3 //wating mre.Set(); 4 //code execution //… 5 Upgraded version of this primitive is ManualResetEventSlim. The idea in decreasing performance cost in case, when only 1 thread use it. Main concept in the “hybrid sync schema”, which can be done as following:   internal sealed class SimpleHybridLock : IDisposable { private Int32 m_waiters = 0; private AutoResetEvent m_waiterLock = new AutoResetEvent(false);   public void Enter() { if (Interlocked.Increment(ref m_waiters) == 1) return; m_waiterLock.WaitOne(); }   public void Leave() { if (Interlocked.Decrement(ref m_waiters) == 0) return; m_waiterLock.Set(); }   public void Dispose() { m_waiterLock.Dispose(); } } It’s a sample from Jeffry Richter’s book “CLR via C#”, 3rd edition. Primitive SimpleHybridLock have two public methods: Enter() and Leave(). You can put your concurrency-critical code between calls of these methods, and it would executed in only one thread at the moment. Code is really simple: first thread, called Enter(), increase counter. Second thread also increase counter, and suspend while m_waiterLock is not signaled. So, if we don’t have concurrent access to our lock, “heavy” methods WaitOne() and Set() will not called. It’s can give some performance bonus. ManualResetEvent use the similar idea. Of course, it have more “smart” technics inside, like a checking of recursive calls, and so on. I want to know a real difference between classic ManualResetEvent realization, and new –Slim. I wrote a simple “benchmark”: class Program { static void Main(string[] args) { ManualResetEventSlim mres = new ManualResetEventSlim(false); ManualResetEventSlim mres2 = new ManualResetEventSlim(false);   ManualResetEvent mre = new ManualResetEvent(false);   long total = 0; int COUNT = 50;   for (int i = 0; i < COUNT; i++) { mres2.Reset(); Stopwatch sw = Stopwatch.StartNew();   ThreadPool.QueueUserWorkItem((obj) => { //Method(mres, true); Method2(mre, true); mres2.Set(); }); //Method(mres, false); Method2(mre, false);   mres2.Wait(); sw.Stop();   Console.WriteLine("Pass {0}: {1} ms", i, sw.ElapsedMilliseconds); total += sw.ElapsedMilliseconds; }   Console.WriteLine(); Console.WriteLine("==============================="); Console.WriteLine("Done in average=" + total / (double)COUNT); Console.ReadLine(); }   private static void Method(ManualResetEventSlim mre, bool value) { for (int i = 0; i < 9000000; i++) { if (value) { mre.Set(); } else { mre.Reset(); } } }   private static void Method2(ManualResetEvent mre, bool value) { for (int i = 0; i < 9000000; i++) { if (value) { mre.Set(); } else { mre.Reset(); } } } } I use 2 concurrent thread (the main thread and one from thread pool) for setting and resetting ManualResetEvents, and try to run test COUNT times, and calculate average execution time. Here is the results (I get it on my dual core notebook with T7250 CPU and Windows 7 x64): ManualResetEvent ManualResetEventSlim Difference is obvious and serious – in 10 times! So, I think preferable way is using ManualResetEventSlim, because not always on calling Set() and Reset() will be called “heavy” methods for working with Windows kernel-mode objects. It’s a small and nice improvement! ;)

    Read the article

  • Great event : Microsoft Visual Studio 2010 Launch @ Microsoft TechEd Blore

    - by sathya
    Great event : Microsoft Visual Studio 2010 Launch @ Microsoft TechEd Blore   I was really excited on attending the day 1 of Microsoft TechEd 2010 in Bangalore. This is the first Teched that am attending. The event was really fun filled with lot of knowledge sharing sessions and lots of goodies and gifts by the partners Initially the Event Started by Murthy's Session. He explained about the Developers relating to the 5 elements of nature (Pancha Boothaas) 1. Fire - Passion 2. Wave (Water) - Catch the right wave which we need to apply. 3. Earth - Connections and lots of opportunities around the world 4. Air -  Its whatever we breathe. Developers.. Without them nothing is possible. they are like the air 5. Sky - Cloud based applications   Next the Keynote and the announcement of Visual Studio by SomaSegar. List of things that he delivered his speech on : 1. Announcement of Visual Studio 2010 2. Announcement of .NET 4.0 3. Announcement of Silverlight later this week 4. What is the current Trend? Microsoft has done a research with many developers across the globe and have got the following feedback from the users. Get Lost (interrupted) - When we do some work and somebody is calling or interrepting by someother way we lose track of what we were doing and we need to do from the start Falling Behind- Technology gets updated  phenomenally over a period of time and developers always have a scenario like they are not in the state of the art technology and they always have a doubt whether they are staying updated. Lack of Collobaration - When a Manager asks a person what the team members have done and some might be done and some might not be and finally all are into a state like we dont know where we are. So they have addressed these 3 points in the VS 2010 by the following features : Get Lost - Some cool features which could overcome this. We have some Graphical interface. which could show what we have done and where we are. Some Zoom features in the code level. Falling Behind - Everything is based on .NET language base. 2010 has been built in such a way that if developers know the native language that's enough for building good applications. Lack of Collobaration - Some Dashboard Features which would show where exactly the project is. And a graphical user interface is shown on clicking which it directly drills down even to the code level. 5. An overview on all new features in VS 2010. 6. Some good demos of new features in VS 2010 by Polita and one more girl. Some of the new features included : 1. Team Explorer 2. Zoom in Code 3. Ribbon Development 4. Development in Single Platform for Windows Phone, XBox, Zune, Azure, Web Based and Windows based applications 5. Sequence Diagram Generation directly from code 6. Dashboards to show project status 7. Javascript and JQuery intellisense 8. Native support for JQuery 9. Packaging feature while deploying. 10. Generation of different versions of web.config like Web.Config.Production, Web.Config.Staging, etc. 11. IntelliTrace - Eliminating the "Not Reproducible" statement. 12. Automated User Interface Testing. At last in the closing of the day we had a great event called Demo Extravaganza, where lot of cool projects that were launched by Microsoft and also the projects that are under research were also shown. I got a lot of info about Bing today. BING really rocks!!! It has the following : 1. Visual Search 2. Product based search. For each product different menu filters were provided to make an advanced search 3. BING Maps was awesome!! It zoomed in to the street level and we can assume that we are the persons who are walking or running on the road and we can see the real objects like buildings moving by our side. 4. PhotoSynth was used in BING to show up all the images taken around the globe in a 3D format. 5. Formula - If we give some formula it automatically gives the value for the variable or derivation of expression Also some info about some kool touch apps which does an authentication and computation of Teched Attendee's Points that they have scored and the sessions attended. One guy won an XBOX in lucky draw as a gift. There were lot of Partner Stalls like Accenture,Intel,Citrix,MicroFocus,Telerik,infragistics,Sapient etc. Some Offers were provided for us like 50% off on Certifications, 1 free Elearning Course, etc. Stay tuned!! Wil update you on other events too..

    Read the article

  • Introducing sp_ssiscatalog (v1.0.0.0)

    - by jamiet
    Regular readers of my blog may know that over the last year I have made available a suite of SQL Server Reporting Services (SSRS) reports that provide visualisations of the data in the SQL Server Integration Services (SSIS) 2012 Catalog. Those reports are available at http://ssisreportingpack.codeplex.com. As I have built these reports and used them myself on a real life project a couple of things have dawned on me: As soon as your SSIS Catalog gets a significant amount of data in it the performance of the reports degrades rapidly. This is hampered by the fact that there are limitations as to the SQL statements that I can embed within a SSRS report. SSIS professionals are data guys at heart and those types of people feel more comfortable in a query environment rather than having to go through the rigmarole of standing up a reporting server (well, I know I do anyway) Hence I have decided to take a different tack with the reporting pack. Taking my lead from Adam Machanic’s sp_whoisactive and Brent Ozar’s sp_blitz I have produced sp_ssiscatalog, a stored procedure that makes it easy to get at the crucial data in the SSIS Catalog. I will spend the rest of this blog explaining exactly what sp_ssiscatalog does and how to use it but if you would rather just download the bits yourself and start to play you can download v1.0.0.0 from DB v1.0.0.0. Usage Scenarios Most Recent Execution I find that the most frequent information that one needs to get from the SSIS Catalog is information pertaining to the most recent execution. Hence if you execute sp_ssiscatalog with no parameters, that is exactly what you will get. EXEC [dbo].[sp_ssiscatalog] This will return up to 5 resultsets: EXECUTION - Summary information about the execution including status, start time & end time EVENTS - All events that occurred during the execution OnError,OnTaskFailed - All events where event_name is either OnError or OnTaskFailed OnWarning - All events where event_name is OnWarning EXECUTABLE_STATS - Duration and execution result of every executable in the execution All 5 resultsets will be displayed if there is any data satisfying that resultset. In other words, if there are no (for example) OnWarning events then the OnWarning resultset will not be displayed. The display of these 5 resultsets can be toggled respectively by these 5 optional parameters (all of which are of type BIT): @exec_execution @exec_events @exec_errors @exec_warnings @exec_executable_stats Any Execution As just explained the default behaviour is to supply data for the most recent execution. If you wish to specify which execution the data should return data for simply supply the execution_id as a parameter: EXEC [dbo].[sp_ssiscatalog] 6 All Executions sp_ssiscatalog can also return information about all executions: EXEC [dbo].[sp_ssiscatalog] @operation_type='execs' The most recent execution will appear at the top. sp_ssiscatalog provides a number of parameters that enable you to filter the resultset: @execs_folder_name @execs_project_name @execs_package_name @execs_executed_as_name @execs_status_desc Some typical usages might be: //Return all failed executions EXEC [dbo].[sp_ssiscatalog] @operation_type='execs',@execs_status_desc='failed' //Return all executions for a specified folder EXEC [dbo].[sp_ssiscatalog] @operation_type='execs',@execs_folder_name='My folder' //Return all executions of a specified package in a specified project EXEC [dbo].[sp_ssiscatalog] @operation_type='execs',@execs_project_name='My project', @execs_package_name='Pkg.dtsx' Installing sp_ssicatalog Under the covers sp_ssiscatalog actually calls many other stored procedures and functions hence creating it on your server is not simply a case of running a CREATE PROCEDURE script. I maintain the code in an SQL Server Data Tools (SSDT) database project which means that you have two ways of obtaining it. Download the source code You can download the latest (at the time of writing) source code from http://ssisreportingpack.codeplex.com/SourceControl/changeset/view/70192. Hit the download button to download all the source code in a zip file. The contents of that zip file will include an SSDT database project which you can open up in SSDT and publish just like any other SSDT database project. You can publish to a new database or any existing database, even [SSISDB] if you prefer. Download a dacpac Maintaining the code in an SSDT database project means that it can all get packaged up into a dacpac that you can then publish to your SQL Server. That dacpac is available from DB v1.0.0.0: Ordinarily a dacpac can be deployed to a SQL Server from SSMS using the Deploy Dacpac wizard however in this case there is a limitation. Due to sp_ssiscatalog referring to objects in the SSIS Catalog (which it has to do of course) the dacpac contains a SqlCmd variable to store the name of the database that underpins the SSIS Catalog; unfortunately the Deploy Dacpac wizard in SSMS has a rather gaping limitation in that it cannot deploy dacpacs containing SqlCmd variables. Hence, we can use the command-line tool, sqlpackage.exe, instead. Don’t worry if reverting to the command-line sounds a little daunting, I assure you it is not. Simply open a Visual Studio command-prompt and cd to the folder containing the downloaded dacpac: Type: "%PROGRAMFILES(x86)%\Microsoft SQL Server\110\DAC\bin\sqlpackage.exe" /action:Publish /TargetDatabaseName:SsisReportingPack /SourceFile:SSISReportingPack.dacpac /Variables:SSISDB=SSISDB /TargetServerName:(local) or the shortened form: "%PROGRAMFILES(x86)%\Microsoft SQL Server\110\DAC\bin\sqlpackage.exe" /a:Publish /tdn:SsisReportingPack /sf:SSISReportingPack.dacpac /v:SSISDB=SSISDB /tsn:(local) remembering to set your server name appropriately (here mine is set to “(local)” ). If everything works successfully you will see this: And you’re done! You’ll have a new database called [SsisReportingPack] which contains sp_ssiscatalog:   Good luck with sp_ssiscatalog. I have been using it extensively on my own projects recently and it has proved to be very useful indeed. Rest-assured however, I will be adding many new capabilities in the future. Feedback is welcome. @Jamiet

    Read the article

  • C#/.NET Little Wonders: The Generic Func Delegates

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. Back in one of my three original “Little Wonders” Trilogy of posts, I had listed generic delegates as one of the Little Wonders of .NET.  Later, someone posted a comment saying said that they would love more detail on the generic delegates and their uses, since my original entry just scratched the surface of them. Last week, I began our look at some of the handy generic delegates built into .NET with a description of delegates in general, and the Action family of delegates.  For this week, I’ll launch into a look at the Func family of generic delegates and how they can be used to support generic, reusable algorithms and classes. Quick Delegate Recap Delegates are similar to function pointers in C++ in that they allow you to store a reference to a method.  They can store references to either static or instance methods, and can actually be used to chain several methods together in one delegate. Delegates are very type-safe and can be satisfied with any standard method, anonymous method, or a lambda expression.  They can also be null as well (refers to no method), so care should be taken to make sure that the delegate is not null before you invoke it. Delegates are defined using the keyword delegate, where the delegate’s type name is placed where you would typically place the method name: 1: // This delegate matches any method that takes string, returns nothing 2: public delegate void Log(string message); This delegate defines a delegate type named Log that can be used to store references to any method(s) that satisfies its signature (whether instance, static, lambda expression, etc.). Delegate instances then can be assigned zero (null) or more methods using the operator = which replaces the existing delegate chain, or by using the operator += which adds a method to the end of a delegate chain: 1: // creates a delegate instance named currentLogger defaulted to Console.WriteLine (static method) 2: Log currentLogger = Console.Out.WriteLine; 3:  4: // invokes the delegate, which writes to the console out 5: currentLogger("Hi Standard Out!"); 6:  7: // append a delegate to Console.Error.WriteLine to go to std error 8: currentLogger += Console.Error.WriteLine; 9:  10: // invokes the delegate chain and writes message to std out and std err 11: currentLogger("Hi Standard Out and Error!"); While delegates give us a lot of power, it can be cumbersome to re-create fairly standard delegate definitions repeatedly, for this purpose the generic delegates were introduced in various stages in .NET.  These support various method types with particular signatures. Note: a caveat with generic delegates is that while they can support multiple parameters, they do not match methods that contains ref or out parameters. If you want to a delegate to represent methods that takes ref or out parameters, you will need to create a custom delegate. We’ve got the Func… delegates Just like it’s cousin, the Action delegate family, the Func delegate family gives us a lot of power to use generic delegates to make classes and algorithms more generic.  Using them keeps us from having to define a new delegate type when need to make a class or algorithm generic. Remember that the point of the Action delegate family was to be able to perform an “action” on an item, with no return results.  Thus Action delegates can be used to represent most methods that take 0 to 16 arguments but return void.  You can assign a method The Func delegate family was introduced in .NET 3.5 with the advent of LINQ, and gives us the power to define a function that can be called on 0 to 16 arguments and returns a result.  Thus, the main difference between Action and Func, from a delegate perspective, is that Actions return nothing, but Funcs return a result. The Func family of delegates have signatures as follows: Func<TResult> – matches a method that takes no arguments, and returns value of type TResult. Func<T, TResult> – matches a method that takes an argument of type T, and returns value of type TResult. Func<T1, T2, TResult> – matches a method that takes arguments of type T1 and T2, and returns value of type TResult. Func<T1, T2, …, TResult> – and so on up to 16 arguments, and returns value of type TResult. These are handy because they quickly allow you to be able to specify that a method or class you design will perform a function to produce a result as long as the method you specify meets the signature. For example, let’s say you were designing a generic aggregator, and you wanted to allow the user to define how the values will be aggregated into the result (i.e. Sum, Min, Max, etc…).  To do this, we would ask the user of our class to pass in a method that would take the current total, the next value, and produce a new total.  A class like this could look like: 1: public sealed class Aggregator<TValue, TResult> 2: { 3: // holds method that takes previous result, combines with next value, creates new result 4: private Func<TResult, TValue, TResult> _aggregationMethod; 5:  6: // gets or sets the current result of aggregation 7: public TResult Result { get; private set; } 8:  9: // construct the aggregator given the method to use to aggregate values 10: public Aggregator(Func<TResult, TValue, TResult> aggregationMethod = null) 11: { 12: if (aggregationMethod == null) throw new ArgumentNullException("aggregationMethod"); 13:  14: _aggregationMethod = aggregationMethod; 15: } 16:  17: // method to add next value 18: public void Aggregate(TValue nextValue) 19: { 20: // performs the aggregation method function on the current result and next and sets to current result 21: Result = _aggregationMethod(Result, nextValue); 22: } 23: } Of course, LINQ already has an Aggregate extension method, but that works on a sequence of IEnumerable<T>, whereas this is designed to work more with aggregating single results over time (such as keeping track of a max response time for a service). We could then use this generic aggregator to find the sum of a series of values over time, or the max of a series of values over time (among other things): 1: // creates an aggregator that adds the next to the total to sum the values 2: var sumAggregator = new Aggregator<int, int>((total, next) => total + next); 3:  4: // creates an aggregator (using static method) that returns the max of previous result and next 5: var maxAggregator = new Aggregator<int, int>(Math.Max); So, if we were timing the response time of a web method every time it was called, we could pass that response time to both of these aggregators to get an idea of the total time spent in that web method, and the max time spent in any one call to the web method: 1: // total will be 13 and max 13 2: int responseTime = 13; 3: sumAggregator.Aggregate(responseTime); 4: maxAggregator.Aggregate(responseTime); 5:  6: // total will be 20 and max still 13 7: responseTime = 7; 8: sumAggregator.Aggregate(responseTime); 9: maxAggregator.Aggregate(responseTime); 10:  11: // total will be 40 and max now 20 12: responseTime = 20; 13: sumAggregator.Aggregate(responseTime); 14: maxAggregator.Aggregate(responseTime); The Func delegate family is useful for making generic algorithms and classes, and in particular allows the caller of the method or user of the class to specify a function to be performed in order to generate a result. What is the result of a Func delegate chain? If you remember, we said earlier that you can assign multiple methods to a delegate by using the += operator to chain them.  So how does this affect delegates such as Func that return a value, when applied to something like the code below? 1: Func<int, int, int> combo = null; 2:  3: // What if we wanted to aggregate the sum and max together? 4: combo += (total, next) => total + next; 5: combo += Math.Max; 6:  7: // what is the result? 8: var comboAggregator = new Aggregator<int, int>(combo); Well, in .NET if you chain multiple methods in a delegate, they will all get invoked, but the result of the delegate is the result of the last method invoked in the chain.  Thus, this aggregator would always result in the Math.Max() result.  The other chained method (the sum) gets executed first, but it’s result is thrown away: 1: // result is 13 2: int responseTime = 13; 3: comboAggregator.Aggregate(responseTime); 4:  5: // result is still 13 6: responseTime = 7; 7: comboAggregator.Aggregate(responseTime); 8:  9: // result is now 20 10: responseTime = 20; 11: comboAggregator.Aggregate(responseTime); So remember, you can chain multiple Func (or other delegates that return values) together, but if you do so you will only get the last executed result. Func delegates and co-variance/contra-variance in .NET 4.0 Just like the Action delegate, as of .NET 4.0, the Func delegate family is contra-variant on its arguments.  In addition, it is co-variant on its return type.  To support this, in .NET 4.0 the signatures of the Func delegates changed to: Func<out TResult> – matches a method that takes no arguments, and returns value of type TResult (or a more derived type). Func<in T, out TResult> – matches a method that takes an argument of type T (or a less derived type), and returns value of type TResult(or a more derived type). Func<in T1, in T2, out TResult> – matches a method that takes arguments of type T1 and T2 (or less derived types), and returns value of type TResult (or a more derived type). Func<in T1, in T2, …, out TResult> – and so on up to 16 arguments, and returns value of type TResult (or a more derived type). Notice the addition of the in and out keywords before each of the generic type placeholders.  As we saw last week, the in keyword is used to specify that a generic type can be contra-variant -- it can match the given type or a type that is less derived.  However, the out keyword, is used to specify that a generic type can be co-variant -- it can match the given type or a type that is more derived. On contra-variance, if you are saying you need an function that will accept a string, you can just as easily give it an function that accepts an object.  In other words, if you say “give me an function that will process dogs”, I could pass you a method that will process any animal, because all dogs are animals.  On the co-variance side, if you are saying you need a function that returns an object, you can just as easily pass it a function that returns a string because any string returned from the given method can be accepted by a delegate expecting an object result, since string is more derived.  Once again, in other words, if you say “give me a method that creates an animal”, I can pass you a method that will create a dog, because all dogs are animals. It really all makes sense, you can pass a more specific thing to a less specific parameter, and you can return a more specific thing as a less specific result.  In other words, pay attention to the direction the item travels (parameters go in, results come out).  Keeping that in mind, you can always pass more specific things in and return more specific things out. For example, in the code below, we have a method that takes a Func<object> to generate an object, but we can pass it a Func<string> because the return type of object can obviously accept a return value of string as well: 1: // since Func<object> is co-variant, this will access Func<string>, etc... 2: public static string Sequence(int count, Func<object> generator) 3: { 4: var builder = new StringBuilder(); 5:  6: for (int i=0; i<count; i++) 7: { 8: object value = generator(); 9: builder.Append(value); 10: } 11:  12: return builder.ToString(); 13: } Even though the method above takes a Func<object>, we can pass a Func<string> because the TResult type placeholder is co-variant and accepts types that are more derived as well: 1: // delegate that's typed to return string. 2: Func<string> stringGenerator = () => DateTime.Now.ToString(); 3:  4: // This will work in .NET 4.0, but not in previous versions 5: Sequence(100, stringGenerator); Previous versions of .NET implemented some forms of co-variance and contra-variance before, but .NET 4.0 goes one step further and allows you to pass or assign an Func<A, BResult> to a Func<Y, ZResult> as long as A is less derived (or same) as Y, and BResult is more derived (or same) as ZResult. Sidebar: The Func and the Predicate A method that takes one argument and returns a bool is generally thought of as a predicate.  Predicates are used to examine an item and determine whether that item satisfies a particular condition.  Predicates are typically unary, but you may also have binary and other predicates as well. Predicates are often used to filter results, such as in the LINQ Where() extension method: 1: var numbers = new[] { 1, 2, 4, 13, 8, 10, 27 }; 2:  3: // call Where() using a predicate which determines if the number is even 4: var evens = numbers.Where(num => num % 2 == 0); As of .NET 3.5, predicates are typically represented as Func<T, bool> where T is the type of the item to examine.  Previous to .NET 3.5, there was a Predicate<T> type that tended to be used (which we’ll discuss next week) and is still supported, but most developers recommend using Func<T, bool> now, as it prevents confusion with overloads that accept unary predicates and binary predicates, etc.: 1: // this seems more confusing as an overload set, because of Predicate vs Func 2: public static SomeMethod(Predicate<int> unaryPredicate) { } 3: public static SomeMethod(Func<int, int, bool> binaryPredicate) { } 4:  5: // this seems more consistent as an overload set, since just uses Func 6: public static SomeMethod(Func<int, bool> unaryPredicate) { } 7: public static SomeMethod(Func<int, int, bool> binaryPredicate) { } Also, even though Predicate<T> and Func<T, bool> match the same signatures, they are separate types!  Thus you cannot assign a Predicate<T> instance to a Func<T, bool> instance and vice versa: 1: // the same method, lambda expression, etc can be assigned to both 2: Predicate<int> isEven = i => (i % 2) == 0; 3: Func<int, bool> alsoIsEven = i => (i % 2) == 0; 4:  5: // but the delegate instances cannot be directly assigned, strongly typed! 6: // ERROR: cannot convert type... 7: isEven = alsoIsEven; 8:  9: // however, you can assign by wrapping in a new instance: 10: isEven = new Predicate<int>(alsoIsEven); 11: alsoIsEven = new Func<int, bool>(isEven); So, the general advice that seems to come from most developers is that Predicate<T> is still supported, but we should use Func<T, bool> for consistency in .NET 3.5 and above. Sidebar: Func as a Generator for Unit Testing One area of difficulty in unit testing can be unit testing code that is based on time of day.  We’d still want to unit test our code to make sure the logic is accurate, but we don’t want the results of our unit tests to be dependent on the time they are run. One way (of many) around this is to create an internal generator that will produce the “current” time of day.  This would default to returning result from DateTime.Now (or some other method), but we could inject specific times for our unit testing.  Generators are typically methods that return (generate) a value for use in a class/method. For example, say we are creating a CacheItem<T> class that represents an item in the cache, and we want to make sure the item shows as expired if the age is more than 30 seconds.  Such a class could look like: 1: // responsible for maintaining an item of type T in the cache 2: public sealed class CacheItem<T> 3: { 4: // helper method that returns the current time 5: private static Func<DateTime> _timeGenerator = () => DateTime.Now; 6:  7: // allows internal access to the time generator 8: internal static Func<DateTime> TimeGenerator 9: { 10: get { return _timeGenerator; } 11: set { _timeGenerator = value; } 12: } 13:  14: // time the item was cached 15: public DateTime CachedTime { get; private set; } 16:  17: // the item cached 18: public T Value { get; private set; } 19:  20: // item is expired if older than 30 seconds 21: public bool IsExpired 22: { 23: get { return _timeGenerator() - CachedTime > TimeSpan.FromSeconds(30.0); } 24: } 25:  26: // creates the new cached item, setting cached time to "current" time 27: public CacheItem(T value) 28: { 29: Value = value; 30: CachedTime = _timeGenerator(); 31: } 32: } Then, we can use this construct to unit test our CacheItem<T> without any time dependencies: 1: var baseTime = DateTime.Now; 2:  3: // start with current time stored above (so doesn't drift) 4: CacheItem<int>.TimeGenerator = () => baseTime; 5:  6: var target = new CacheItem<int>(13); 7:  8: // now add 15 seconds, should still be non-expired 9: CacheItem<int>.TimeGenerator = () => baseTime.AddSeconds(15); 10:  11: Assert.IsFalse(target.IsExpired); 12:  13: // now add 31 seconds, should now be expired 14: CacheItem<int>.TimeGenerator = () => baseTime.AddSeconds(31); 15:  16: Assert.IsTrue(target.IsExpired); Now we can unit test for 1 second before, 1 second after, 1 millisecond before, 1 day after, etc.  Func delegates can be a handy tool for this type of value generation to support more testable code.  Summary Generic delegates give us a lot of power to make truly generic algorithms and classes.  The Func family of delegates is a great way to be able to specify functions to calculate a result based on 0-16 arguments.  Stay tuned in the weeks that follow for other generic delegates in the .NET Framework!   Tweet Technorati Tags: .NET, C#, CSharp, Little Wonders, Generics, Func, Delegates

    Read the article

  • Introducing jLight &ndash; Talking to the DOM using Silverlight and jQuery.

    - by Timmy Kokke
    Introduction With the recent news about Silverlight on the Windows Phone and all the great Out-Of-Browser features in the upcoming Silverlight 4 you almost forget Silverlight is a browser plugin. It most often runs in a web browser and often as a control. In many cases you need to communicate with the browser to get information about textboxes, events or details about the browser itself. To do this you can use JavaScript from Silverlight. Although Silverlight works the same on every browser, JavaScript does not and it won’t be long before problems arise. To overcome differences in browser I like to use jQuery. The only downside of doing this is that there’s a lot more code needed that you would normally use when you write jQuery in JavaScript. Lately, I had to catch changes is the browser scrollbar and act to the new position. I also had to move the scrollbar when the user dragged around in the Silverlight application. With jQuery it was peanuts to get and set the right attributes, but I found that I had to write a lot of code on Silverlight side.  With a few refactoring I had a separated out the plumbing into a new class and could call only a few methods on that to get the same thing done. The idea for jLight was born. jLight vs. jQuery The main purpose of jLight is to take the ease of use of jQuery and bring it into Silverlight for handling DOM interaction. For example, to change the text color of a DIV to red, in jQuery you would write: jQuery("div").css("color","red"); In jLight the same thing looks like so: jQuery.Select("div").Css("color","red");   Another example. To change the offset in of the last SPAN you could write this in jQuery : jQuery("span:last").offset({left : 10, top : 100});   In jLight this would do the same: jQuery.Select("span:last").Offset(new {left = 10, top = 100 });   Callbacks Nothing too special so far. To get the same thing done using the “normal” HtmlPage.Window.Eval, it wouldn’t require too much effort. But to wire up a handler for events from the browser it’s a whole different story. Normally you need to register ScriptMembers, ScriptableTypes or write some code in JavaScript. jLight takes care of the plumbing and provide you with an simple interface in the same way jQuery would. If you would like to handle the scroll event of the BODY of your html page, you’ll have to bind the event using jQuery and have a function call back to a registered function in Silverlight. In the example below I assume there’s a method “SomeMethod” and it is registered as a ScriptableObject as “RegisteredFromSilverlight” from Silverlight.   jQuery("body:first").scroll(function() { var sl = document.getElementbyId("SilverlightControl"); sl.content.RegisteredFromSilverlight.SomeMethod($(this)); });       Using jLight  in Silverlight the code would be even simpler. The registration of RegisteredFromSilverlight  as ScriptableObject can be omitted.  Besides that, you don’t have to write any JavaScript or evaluate strings with JavaScript.   jQuery.Select("body:first").scroll(SomeMethod);   Lambdas Using a lambda in Silverlight can make it even simpler.  Each is the jQuery equivalent of foreach in C#. It calls a function for every element found by jQuery. In this example all INPUT elements of the text type are selected. The FromObject method is used to create a jQueryObject from an object containing a ScriptObject. The Val method from jQuery is used to get the value of the INPUT elements.   jQuery.Select("input:text").Each((element, index) => { textBox1.Text += jQueryObject.FromObject(element).Val(); return null; });   Ajax One thing jQuery is often used for is making Ajax calls. Making calls to services to external services can be done from Silverlight, but as easy as using jQuery. As an example I would like to show how jLight does this. Below is the entire code behind. It searches my name on twitter and shows the result. This example can be found in the source of the project. The GetJson method passes a Silverlight JsonValue to a callback. This callback instantiates Twit objects and adds them to a ListBox called TwitList.   public partial class DemoPage2 : UserControl { public DemoPage2() { InitializeComponent(); jQuery.Load(); }   private void CallButton_Click(object sender, RoutedEventArgs e) { jQuery.GetJson("http://search.twitter.com/search.json?lang=en&q=sorskoot", Done); }   private void Done(JsonValue arg) { var tweets = new List<Twit>(); foreach (JsonObject result in arg["results"]) { tweets.Add(new Twit() { Text = (string)result["text"], Image = (string)result["profile_image_url"], User = (string)result["from_user"] } ); } TwitList.ItemsSource = tweets; } }   public class Twit { public string User { get; set; } public string Image { get; set; } public string Text { get; set; } }   Conclusion Although jLight is still in development it can be used already.There isn’t much documentation yet, but if you know jQuery jLight isn’t very hard to use.  If you would like to try it, please let me know what you think and report any problems you run in to. jLight can be found at:   http://jlight.codeplex.com

    Read the article

  • Design Pattern for Complex Data Modeling

    - by Aaron Hayman
    I'm developing a program that has a SQL database as a backing store. As a very broad description, the program itself allows a user to generate records in any number of user-defined tables and make connections between them. As for specs: Any record generated must be able to be connected to any other record in any other user table (excluding itself...the record, not the table). These "connections" are directional, and the list of connections a record has is user ordered. Moreover, a record must "know" of connections made from it to others as well as connections made to it from others. The connections are kind of the point of this program, so there is a strong possibility that the number of connections made is very high, especially if the user is using the software as intended. A record's field can also include aggregate information from it's connections (like obtaining average, sum, etc) that must be updated on change from another record it's connected to. To conserve memory, only relevant information must be loaded at any one time (can't load the entire database in memory at load and go from there). I cannot assume the backing store is local. Right now it is, but eventually this program will include syncing to a remote db. Neither the user tables, connections or records are known at design time as they are user generated. I've spent a lot of time trying to figure out how to design the backing store and the object model to best fit these specs. In my first design attempt on this, I had one object managing all a table's records and connections. I attempted this first because it kept the memory footprint smaller (records and connections were simple dicts), but maintaining aggregate and link information between tables became....onerous (ie...a huge spaghettified mess). Tracing dependencies using this method almost became impossible. Instead, I've settled on a distributed graph model where each record and connection is 'aware' of what's around it by managing it own data and connections to other records. Doing this increases my memory footprint but also let me create a faulting system so connections/records aren't loaded into memory until they're needed. It's also much easier to code: trace dependencies, eliminate cycling recursive updates, etc. My biggest problem is storing/loading the connections. I'm not happy with any of my current solutions/ideas so I wanted to ask and see if anybody else has any ideas of how this should be structured. Connections are fairly simple. They contain: fromRecordID, fromTableID, fromRecordOrder, toRecordID, toTableID, toRecordOrder. Here's what I've come up with so far: Store all the connections in one big table. If I do this, either I load all connections at once (one big db call) or make a call every time a user table is loaded. The big issue here: the size of the connections table has the potential to be huge, and I'm afraid it would slow things down. Store in separate tables all the outgoing connections for each user table. This is probably the worst idea I've had. Now my connections are 'spread out' over multiple tables (one for each user table), which means I have to make a separate DB called to each table (or make a huge join) just to find all the incoming connections for a particular user table. I've avoided making "one big ass table", but I'm not sure the cost is worth it. Store in separate tables all outgoing AND incoming connections for each user table (using a flag to distinguish between incoming vs outgoing). This is the idea I'm leaning towards, but it will essentially double the total DB storage for all the connections (as each connection will be stored in two tables). It also means I have to make sure connection information is kept in sync in both places. This is obviously not ideal but it does mean that when I load a user table, I only need to load one 'connection' table and have all the information I need. This also presents a separate problem, that of connection object creation. Since each user table has a list of all connections, there are two opportunities for a connection object to be made. However, connections objects (designed to facilitate communication between records) should only be created once. This means I'll have to devise a common caching/factory object to make sure only one connection object is made per connection. Does anybody have any ideas of a better way to do this? Once I've committed to a particular design pattern I'm pretty much stuck with it, so I want to make sure I've come up with the best one possible.

    Read the article

  • Using Windows Previous Versions to access ZFS Snapshots (July 14, 2009)

    - by user12612012
    The Previous Versions tab on the Windows desktop provides a straightforward, intuitive way for users to view or recover files from ZFS snapshots.  ZFS snapshots are read-only, point-in-time instances of a ZFS dataset, based on the same copy-on-write transactional model used throughout ZFS.  ZFS snapshots can be used to recover deleted files or previous versions of files and they are space efficient because unchanged data is shared between the file system and its snapshots.  Snapshots are available locally via the .zfs/snapshot directory and remotely via Previous Versions on the Windows desktop. Shadow Copies for Shared Folders was introduced with Windows Server 2003 but subsequently renamed to Previous Versions with the release of Windows Vista and Windows Server 2008.  Windows shadow copies, or snapshots, are based on the Volume Snapshot Service (VSS) and, as the [Shared Folders part of the] name implies, are accessible to clients via SMB shares, which is good news when using the Solaris CIFS Service.  And the nice thing is that no additional configuration is required - it "just works". On Windows clients, snapshots are accessible via the Previous Versions tab in Windows Explorer using the Shadow Copy client, which is available by default on Windows XP SP2 and later.  For Windows 2000 and pre-SP2 Windows XP, the client software is available for download from Microsoft: Shadow Copies for Shared Folders Client. Assuming that we already have a shared ZFS dataset, we can create ZFS snapshots and view them from a Windows client. zfs snapshot tank/home/administrator@snap101zfs snapshot tank/home/administrator@snap102 To view the snapshots on Windows, map the dataset on the client then right click on a folder or file and select Previous Versions.  Note that Windows will only display previous versions of objects that differ from the originals.  So you may have to modify files after creating a snapshot in order to see previous versions of those files. The screenshot above shows various snapshots in the Previous Versions window, created at different times.  On the left panel, the .zfs folder is visible, illustrating that this is a ZFS share.  The .zfs setting can be toggled as desired, it makes no difference when using previous versions.  To make the .zfs folder visible: zfs set snapdir=visible tank/home/administrator To hide the .zfs folder: zfs set snapdir=hidden tank/home/administrator The following screenshot shows the Previous Versions panel when a file has been selected.  In this case the user is prompted to view, copy or restore the file from one of the available snapshots. As can be seen from the screenshots above, the Previous Versions window doesn't display snapshot names: snapshots are listed by snapshot creation time, sorted in time order from most recent to oldest.  There's nothing we can do about this, it's the way that the interface works.  Perhaps one point of note, to avoid confusion, is that the ZFS snapshot creation time isnot the same as the root directory creation timestamp. In ZFS, all object attributes in the original dataset are preserved when a snapshot is taken, including the creation time of the root directory.  Thus the root directory creation timestamp is the time that the directory was created in the original dataset. # ls -d% all /home/administrator         timestamp: atime         Mar 19 15:40:23 2009         timestamp: ctime         Mar 19 15:40:58 2009         timestamp: mtime         Mar 19 15:40:58 2009         timestamp: crtime         Mar 19 15:18:34 2009 # ls -d% all /home/administrator/.zfs/snapshot/snap101         timestamp: atime         Mar 19 15:40:23 2009         timestamp: ctime         Mar 19 15:40:58 2009         timestamp: mtime         Mar 19 15:40:58 2009         timestamp: crtime         Mar 19 15:18:34 2009 The snapshot creation time can be obtained using the zfs command as shown below. # zfs get all tank/home/administrator@snap101NAME                             PROPERTY  VALUEtank/home/administrator@snap101  type      snapshottank/home/administrator@snap101  creation  Mon Mar 23 18:21 2009 In this example, the dataset was created on March 19th and the snapshot was created on March 23rd. In conclusion, Shadow Copies for Shared Folders provides a straightforward way for users to view or recover files from ZFS snapshots.  The Windows desktop provides an easy to use, intuitive GUI and no configuration is required to use or access previous versions of files or folders. REFERENCES FOR MORE INFORMATION ZFS ZFS Learning Center Introduction to Shadow Copies of Shared Folders Shadow Copies for Shared Folders Client

    Read the article

  • A deadlock was detected while trying to lock variables in SSIS

    Error: 0xC001405C at SQL Log Status: A deadlock was detected while trying to lock variables "User::RowCount" for read/write access. A lock cannot be acquired after 16 attempts. The locks timed out. Have you ever considered variable locking when building your SSIS packages? I expect many people haven’t just because most of the time you never see an error like the one above. I’ll try and explain a few key concepts about variable locking and hopefully you never will see that error. First of all, what is all this variable locking all about? Put simply SSIS variables have to be locked before they can be accessed, and then of course unlocked once you have finished with them. This is baked into SSIS, presumably to reduce the risk of race conditions, but with that comes some additional overhead in that you need to be careful to avoid lock conflicts in some scenarios. The most obvious place you will come across any hint of locking (no pun intended) is the Script Task or Script Component with their ReadOnlyVariables and ReadWriteVariables properties. These two properties allow you to enter lists of variables to be used within the task, or to put it another way, these lists of variables to be locked, so that they are available within the task. During the task pre-execute phase the variables and locked, you then use them during the execute phase when you code is run, and then unlocked for you during the post-execute phase. So by entering the variable names in one of the two list, the locking is taken care of for you, and you just read and write to the Dts.Variables collection that is exposed in the task for the purpose. As you can see in the image above, the variable PackageInt is specified, which means when I write the code inside that task I don’t have to worry about locking at all, as shown below. public void Main() { // Set the variable value to something new Dts.Variables["PackageInt"].Value = 199; // Raise an event so we can play in the event handler bool fireAgain = true; Dts.Events.FireInformation(0, "Script Task Code", "This is the script task raising an event.", null, 0, ref fireAgain); Dts.TaskResult = (int)ScriptResults.Success; } As you can see as well as accessing the variable, hassle free, I also raise an event. Now consider a scenario where I have an event hander as well as shown below. Now what if my event handler uses tries to use the same variable as well? Well obviously for the point of this post, it fails with the error quoted previously. The reason why is clearly illustrated if you consider the following sequence of events. Package execution starts Script Task in Control Flow starts Script Task in Control Flow locks the PackageInt variable as specified in the ReadWriteVariables property Script Task in Control Flow executes script, and the On Information event is raised The On Information event handler starts Script Task in On Information event handler starts Script Task in On Information event handler attempts to lock the PackageInt variable (for either read or write it doesn’t matter), but will fail because the variable is already locked. The problem is caused by the event handler task trying to use a variable that is already locked by the task in Control Flow. Events are always raised synchronously, therefore the task in Control Flow that is raising the event will not regain control until the event handler has completed, so we really do have un-resolvable locking conflict, better known as a deadlock. In this scenario we can easily resolve the problem by managing the variable locking explicitly in code, so no need to specify anything for the ReadOnlyVariables and ReadWriteVariables properties. public void Main() { // Set the variable value to something new, with explicit lock control Variables lockedVariables = null; Dts.VariableDispenser.LockOneForWrite("PackageInt", ref lockedVariables); lockedVariables["PackageInt"].Value = 199; lockedVariables.Unlock(); // Raise an event so we can play in the event handler bool fireAgain = true; Dts.Events.FireInformation(0, "Script Task Code", "This is the script task raising an event.", null, 0, ref fireAgain); Dts.TaskResult = (int)ScriptResults.Success; } Now the package will execute successfully because the variable lock has already been released by the time the event is raised, so no conflict occurs. For those of you with a SQL Engine background this should all sound strangely familiar, and boils down to getting in and out as fast as you can to reduce the risk of lock contention, be that SQL pages or SSIS variables. Unfortunately we cannot always manage the locking ourselves. The Execute SQL Task is very often used in conjunction with variables, either to pass in parameter values or get results out. Either way the task will manage the locking for you, and will fail when it cannot lock the variables it requires. The scenario outlined above is clear cut deadlock scenario, both parties are waiting on each other, so it is un-resolvable. The mechanism used within SSIS isn’t actually that clever, and whilst the message says it is a deadlock, it really just means it tried a few times, and then gave up. The last part of the error message is actually the most accurate in terms of the failure, A lock cannot be acquired after 16 attempts. The locks timed out.  Now this may come across as a recommendation to always manage locking manually in the Script Task or Script Component yourself, but I think that would be an overreaction. It is more of a reminder to be aware that in high concurrency scenarios, especially when sharing variables across multiple objects, locking is important design consideration. Update – Make sure you don’t try and use explicit locking as well as leaving the variable names in the ReadOnlyVariables and ReadWriteVariables lock lists otherwise you’ll get the deadlock error, you cannot lock a variable twice!

    Read the article

  • Scripting custom drawing in Delphi application with IF/THEN/ELSE statements?

    - by Jerry Dodge
    I'm building a Delphi application which displays a blueprint of a building, including doors, windows, wiring, lighting, outlets, switches, etc. I have implemented a very lightweight script of my own to call drawing commands to the canvas, which is loaded from a database. For example, one command is ELP 1110,1110,1290,1290,3,8388608 which draws an ellipse, parameters are 1110x1110 to 1290x1290 with pen width of 3 and the color 8388608 converted from an integer to a TColor. What I'm now doing is implementing objects with common drawing routines, and I'd like to use my scripting engine, but this calls for IF/THEN/ELSE statements and such. For example, when I'm drawing a light, if the light is turned on, I'd like to draw it yellow, but if it's off, I'd like to draw it gray. My current scripting engine has no recognition of such statements. It just accepts simple drawing commands which correspond with TCanvas methods. Here's the procedure I've developed (incomplete) for executing a drawing command on a canvas: function DrawCommand(const Cmd: String; var Canvas: TCanvas): Boolean; type TSingleArray = array of Single; var Br: TBrush; Pn: TPen; X: Integer; P: Integer; L: String; Inst: String; T: String; Nums: TSingleArray; begin Result:= False; Br:= Canvas.Brush; Pn:= Canvas.Pen; if Assigned(Canvas) then begin if Length(Cmd) > 5 then begin L:= UpperCase(Cmd); if Pos(' ', L)> 0 then begin Inst:= Copy(L, 1, Pos(' ', L) - 1); Delete(L, 1, Pos(' ', L)); L:= L + ','; SetLength(Nums, 0); X:= 0; while Pos(',', L) > 0 do begin P:= Pos(',', L); T:= Copy(L, 1, P - 1); Delete(L, 1, P); SetLength(Nums, X + 1); Nums[X]:= StrToFloatDef(T, 0); Inc(X); end; Br.Style:= bsClear; Pn.Style:= psSolid; Pn.Color:= clBlack; if Inst = 'LIN' then begin Pn.Width:= Trunc(Nums[4]); if Length(Nums) > 5 then begin Br.Style:= bsSolid; Br.Color:= Trunc(Nums[5]); end; Canvas.MoveTo(Trunc(Nums[0]), Trunc(Nums[1])); Canvas.LineTo(Trunc(Nums[2]), Trunc(Nums[3])); Result:= True; end else if Inst = 'ELP' then begin Pn.Width:= Trunc(Nums[4]); if Length(Nums) > 5 then begin Br.Style:= bsSolid; Br.Color:= Trunc(Nums[5]); end; Canvas.Ellipse(Trunc(Nums[0]),Trunc(Nums[1]),Trunc(Nums[2]),Trunc(Nums[3])); Result:= True; end else if Inst = 'ARC' then begin Pn.Width:= Trunc(Nums[8]); Canvas.Arc(Trunc(Nums[0]),Trunc(Nums[1]),Trunc(Nums[2]),Trunc(Nums[3]), Trunc(Nums[4]),Trunc(Nums[5]),Trunc(Nums[6]),Trunc(Nums[7])); Result:= True; end else if Inst = 'TXT' then begin Canvas.Font.Size:= Trunc(Nums[2]); Br.Style:= bsClear; Pn.Style:= psSolid; T:= Cmd; Delete(T, 1, Pos(' ', T)); Delete(T, 1, Pos(',', T)); Delete(T, 1, Pos(',', T)); Delete(T, 1, Pos(',', T)); Canvas.TextOut(Trunc(Nums[0]), Trunc(Nums[1]), T); Result:= True; end; end else begin //No space found, not a valid command end; end; end; end; What I'd like to know is what's a good lightweight third-party scripting engine I could use to accomplish this? I would hate to implement parsing of IF, THEN, ELSE, END, IFELSE, IFEND, and all those necessary commands. I need simply the ability to tell the scripting engine if certain properties meet certain conditions, it needs to draw the object a certain way. The light example above is only one scenario, but the same solution needs to also be applicable to other scenarios, such as a door being open or closed, locked or unlocked, and draw it a different way accordingly. This needs to be implemented in the object script drawing level. I can't hard-code any of these scripting/drawing rules, the drawing needs to be controlled based on the current state of the object, and I may also wish to draw a light a certain shade or darkness depending on how dimmed the light is.

    Read the article

  • GameplayScreen does not contain a definition for GraphicsDevice

    - by Dave Voyles
    Long story short: I'm trying to intergrate my game with Microsoft's Game State Management. In doing so I've run into some errors, and the latest one is in the title. I'm not able to display my HUD for the reasons listed above. Previously, I had much of my code in my Game.cs class, but the GSM has a bit of it in Game1, and most of what you have drawn for the main screen in your GameplayScreen class, and that is what is causing confusion on my part. I've created an instance of the GameplayScreen class to be used in the HUD class (as you can see below). Before integrating with the GSM however, I created an instance of my Game class, and all worked fine. It seems that I need to define my graphics device somewhere, but I am not sure of where exactly. I've left some code below to help you understand. public class GameStateManagementGame : Microsoft.Xna.Framework.Game { #region Fields GraphicsDeviceManager graphics; ScreenManager screenManager; // Creates a new intance, which is used in the HUD class public static Game Instance; // By preloading any assets used by UI rendering, we avoid framerate glitches // when they suddenly need to be loaded in the middle of a menu transition. static readonly string[] preloadAssets = { "gradient", }; #endregion #region Initialization /// <summary> /// The main game constructor. /// </summary> public GameStateManagementGame() { Content.RootDirectory = "Content"; graphics = new GraphicsDeviceManager(this); graphics.PreferredBackBufferWidth = 1280; graphics.PreferredBackBufferHeight = 720; graphics.IsFullScreen = false; graphics.ApplyChanges(); // Create the screen manager component. screenManager = new ScreenManager(this); Components.Add(screenManager); // Activate the first screens. screenManager.AddScreen(new BackgroundScreen(), null); //screenManager.AddScreen(new MainMenuScreen(), null); screenManager.AddScreen(new PressStartScreen(), null); } namespace Pong { public class HUD { public void Update(GameTime gameTime) { // Used in the Draw method titleSafeRectangle = new Rectangle (GameplayScreen.Instance.GraphicsDevice.Viewport.TitleSafeArea.X, GameplayScreen.Instance.GraphicsDevice.Viewport.TitleSafeArea.Y, GameplayScreen.Instance.GraphicsDevice.Viewport.TitleSafeArea.Width, GameplayScreen.Instance.GraphicsDevice.Viewport.TitleSafeArea.Height); } } } class GameplayScreen : GameScreen { #region Fields ContentManager content; public static GameStates gamestate; private GraphicsDeviceManager graphics; public int screenWidth; public int screenHeight; private Texture2D backgroundTexture; private SpriteBatch spriteBatch; private Menu menu; private SpriteFont arial; private HUD hud; Animation player; // Creates a new intance, which is used in the HUD class public static GameplayScreen Instance; public GameplayScreen() { TransitionOnTime = TimeSpan.FromSeconds(1.5); TransitionOffTime = TimeSpan.FromSeconds(0.5); } protected void Initialize() { lastScored = false; menu = new Menu(); resetTimer = 0; resetTimerInUse = true; ball = new Ball(content, new Vector2(screenWidth, screenHeight)); SetUpMulti(); input = new Input(); hud = new HUD(); // Places the powerup animation inside of the surrounding box // Needs to be cleaned up, instead of using hard pixel values player = new Animation(content.Load<Texture2D>(@"gfx/powerupSpriteSheet"), new Vector2(103, 44), 64, 64, 4, 5); // Used by for the Powerups random = new Random(); vec = new Vector2(100, 50); vec2 = new Vector2(100, 100); promptVec = new Vector2(50, 25); timer = 10000.0f; // Starting value for the cooldown for the powerup timer timerVector = new Vector2(10, 10); //JEP - one time creation of powerup objects playerOnePowerup = new Powerup(); playerOnePowerup.Activated += PowerupActivated; playerOnePowerup.Deactivated += PowerupDeactivated; playerTwoPowerup = new Powerup(); playerTwoPowerup.Activated += PowerupActivated; playerTwoPowerup.Deactivated += PowerupDeactivated; //JEP - moved from events since these only need set once activatedVec = new Vector2(100, 125); deactivatedVec = new Vector2(100, 150); powerupReady = false; }

    Read the article

  • WPF Databinding- Part 2 of 3

    - by Shervin Shakibi
    This is a follow up to my previous post WPF Databinding- Not your fathers databinding Part 1-3 you can download the source code here  http://ssccinc.com/wpfdatabinding.zip Example 04   In this example we demonstrate  the use of default properties and also binding to an instant of an object which is part of a collection bound to its container. this is actually not as complicated as it sounds. First of all, lets take a look at our Employee class notice we have overridden the ToString method, which will return employees First name , last name and employee number in parentheses, public override string ToString()        {            return String.Format("{0} {1} ({2})", FirstName, LastName, EmployeeNumber);        }   in our XAML we have set the itemsource of the list box to just  “Binding” and the Grid that contains it, has its DataContext set to a collection of our Employee objects. DataContext="{StaticResource myEmployeeList}"> ….. <ListBox Name="employeeListBox"  ItemsSource="{Binding }" Grid.Row="0" /> the ToString in the method for each instance will get executed and the following is a result of it. if we did not have a ToString the list box would look  like this: now lets take a look at the grid that will display the details when someone clicks on an Item, the Grid has the following DataContext DataContext="{Binding ElementName=employeeListBox,            Path=SelectedItem}"> Which means its bound to a specific instance of the Employee object. and within the gird we have textboxes that are bound to different Properties of our class. <TextBox Grid.Row="0" Grid.Column="1" Text="{Binding Path=FirstName}" /> <TextBox Grid.Row="1" Grid.Column="1" Text="{Binding Path=LastName}" /> <TextBox Grid.Row="2" Grid.Column="1" Text="{Binding Path=Title}" /> <TextBox Grid.Row="3" Grid.Column="1" Text="{Binding Path=Department}" />   Example 05   This project demonstrates use of the ObservableCollection and INotifyPropertyChanged interface. Lets take a look at Employee.cs first, notice it implements the INotifyPropertyChanged interface now scroll down and notice for each setter there is a call to the OnPropertyChanged method, which basically will will fire up the event notifying to the value of that specific property has been changed. Next EmployeeList.cs notice it is an ObservableCollection . Go ahead and set the start up project to example 05 and then run. Click on Add a new employee and the new employee should appear in the list box.   Example 06   This is a great example of IValueConverter its actuall a two for one deal, like most of my presentation demos I found this by “Binging” ( formerly known as g---ing) unfortunately now I can’t find the original author to give him  the credit he/she deserves. Before we look at the code lets run the app and look at the finished product, put in 0 in Celsius  and you should see Fahrenheit textbox displaying to 32 degrees, I know this is calculating correctly from my elementary school science class , also note the color changed to blue, now put in 100 in Celsius which should give us 212 Fahrenheit but now the color is red indicating it is hot, and finally put in 75 Fahrenheit and you should see 23.88 for Celsius and the color now should be black. Basically IValueConverter allows us different types to be bound, I’m sure you have had problems in the past trying to bind to Date values . First look at FahrenheitToCelciusConverter.cs first notice it implements IValueConverter. IValueConverter has two methods Convert and ConvertBack. In each method we have the code for converting Fahrenheit to Celsius and vice Versa. In our XAML, after we set a reference in our Windows.Resources section. and for txtCelsius we set the path to TxtFahrenheit and the converter to an instance our FahrenheitToCelciusConverter converter. no need to repeat this for TxtFahrenheit since we have a convert and ConvertBack. Text="{Binding  UpdateSourceTrigger=PropertyChanged,            Path=Text,ElementName=txtFahrenheit,            Converter={StaticResource myTemperatureConverter}}" As mentioned earlier this is a twofer Demo, in the second demo, we basically are converting a double datatype to a brush. Lets take a look at TemperatureToColorConverter, notice we in our Covert Method, if the value is less than our cold temperature threshold we return a blue brush and if it is higher than our hot temperature threshold we return a redbrush. since we don’t have to convert a brush to double value in our example the convert back is not being implemented. Take time and go through these three examples and I hope you have a better understanding   of databinding, ObservableCollection  and IValueConverter . Next blog posting we will talk about ValidationRule, DataTemplates and DataTemplate triggers.

    Read the article

  • Basic WCF Unit Testing

    - by Brian
    Coming from someone who loves the KISS method, I was surprised to find that I was making something entirely too complicated. I know, shocker right? Now I'm no unit testing ninja, and not really a WCF ninja either, but had a desire to test service calls without a) going to a database, or b) making sure that the entire WCF infrastructure was tip top. Who does? It's not the environment I want to test, just the logic I’ve written to ensure there aren't any side effects. So, for the K.I.S.S. method: Assuming that you're using a WCF service library (you are using service libraries correct?), it's really as easy as referencing the service library, then building out some stubs for bunking up data. The service contract We’ll use a very basic service contract, just for getting and updating an entity. I’ve used the default “CompositeType” that is in the template, handy only for examples like this. I’ve added an Id property and overridden ToString and Equals. [ServiceContract] public interface IMyService { [OperationContract] CompositeType GetCompositeType(int id); [OperationContract] CompositeType SaveCompositeType(CompositeType item); [OperationContract] CompositeTypeCollection GetAllCompositeTypes(); } The implementation When I implement the service, I want to be able to send known data into it so I don’t have to fuss around with database access or the like. To do this, I first have to create an interface for my data access: public interface IMyServiceDataManager { CompositeType GetCompositeType(int id); CompositeType SaveCompositeType(CompositeType item); CompositeTypeCollection GetAllCompositeTypes(); } For the purposes of this we can ignore our implementation of the IMyServiceDataManager interface inside of the service. Pretend it uses LINQ to Entities to map its data, or maybe it goes old school and uses EntLib to talk to SQL. Maybe it talks to a tape spool on a mainframe on the third floor. It really doesn’t matter. That’s the point. So here’s what our service looks like in its most basic form: public CompositeType GetCompositeType(int id) { //sanity checks if (id == 0) throw new ArgumentException("id cannot be zero."); return _dataManager.GetCompositeType(id); } public CompositeType SaveCompositeType(CompositeType item) { return _dataManager.SaveCompositeType(item); } public CompositeTypeCollection GetAllCompositeTypes() { return _dataManager.GetAllCompositeTypes(); } But what about the datamanager? The constructor takes care of that. I don’t want to expose any testing ability in release (or the ability for someone to swap out my datamanager) so this is what we get: IMyServiceDataManager _dataManager; public MyService() { _dataManager = new MyServiceDataManager(); } #if DEBUG public MyService(IMyServiceDataManager dataManager) { _dataManager = dataManager; } #endif The Stub Now it’s time for the rubber to meet the road… Like most guys that ever talk about unit testing here’s a sample that is painting in *very* broad strokes. The important part however is that within the test project, I’ve created a bunk (unit testing purists would say stub I believe) object that implements my IMyServiceDataManager so that I can deal with known data. Here it is: internal class FakeMyServiceDataManager : IMyServiceDataManager { internal FakeMyServiceDataManager() { Collection = new CompositeTypeCollection(); Collection.AddRange(new CompositeTypeCollection { new CompositeType { Id = 1, BoolValue = true, StringValue = "foo 1", }, new CompositeType { Id = 2, BoolValue = false, StringValue = "foo 2", }, new CompositeType { Id = 3, BoolValue = true, StringValue = "foo 3", }, }); } CompositeTypeCollection Collection { get; set; } #region IMyServiceDataManager Members public CompositeType GetCompositeType(int id) { if (id <= 0) return null; return Collection.SingleOrDefault(m => m.Id == id); } public CompositeType SaveCompositeType(CompositeType item) { var existing = Collection.SingleOrDefault(m => m.Id == item.Id); if (null != existing) { Collection.Remove(existing); } if (item.Id == 0) { item.Id = Collection.Count > 0 ? Collection.Max(m => m.Id) + 1 : 1; } Collection.Add(item); return item; } public CompositeTypeCollection GetAllCompositeTypes() { return Collection; } #endregion } So it’s tough to see in this example why any of this is necessary, but in a real world application you would/should/could be applying much more logic within your service implementation. This all serves to ensure that between refactorings etc, that it doesn’t send sparking cogs all about or let the blue smoke out. Here’s a simple test that brings it all home, remember, broad strokes: [TestMethod] public void MyService_GetCompositeType_ExpectedValues() { FakeMyServiceDataManager fake = new FakeMyServiceDataManager(); MyService service = new MyService(fake); CompositeType expected = fake.GetCompositeType(1); CompositeType actual = service.GetCompositeType(2); Assert.AreEqual<CompositeType>(expected, actual, "Objects are not equal. Expected: {0}; Actual: {1};", expected, actual); } Summary That’s really all there is to it. You could use software x or framework y to do the exact same thing, but in my case I just didn’t really feel like it. This speaks volumes to my not yet ninja unit testing prowess.

    Read the article

  • Source Control and SQL Development &ndash; Part 3

    - by Ajarn Mark Caldwell
    In parts one and two of this series, I have been specifically focusing on the latest version of SQL Source Control by Red Gate Software.  But I have been doing source-controlled SQL development for years, long before this product was available, and well before Microsoft came out with Database Projects for Visual Studio.  “So, how does that work?” you may wonder.  Well, let me share some of the details of how we do it where I work… The key to this approach is that everything is done via Transact-SQL script files; either natively written T-SQL, or generated.  My preference is to write all my code by hand, which forces you to become better at your SQL syntax.  But if you really prefer to use the Management Studio GUI to make database changes, you can still do that, and then you use the Generate Scripts feature of the GUI to produce T-SQL scripts afterwards, and store those in your source control system.  You can generate scripts for things like stored procedures and views by right-clicking on the database in the Object Explorer, and Choosing Tasks, Generate Scripts (see figure 1 to the left).  You can also do that for the CREATE scripts for tables, but that does not work when you have a table that is already in production, and you need to make just a simple change, such as adding a new column or index.  In this case, you can use the GUI to make the table changes, and then instead of clicking the Save button, click the Generate Change Script button (). Then, once you have saved the change script, go ahead and execute it on your development database to actually make the change.  I believe that it is important to actually execute the script rather than just click the Save button because this is your first test that your change script is working and you didn’t somehow lose a portion of the change. As you can imagine, all this generating of scripts can get tedious and tempting to skip entirely, so again, I would encourage you to just get in the habit of writing your own Transact-SQL code, and then it is just a matter of remembering to save your work, just like you are in the habit of saving changes to a Word or Excel document before you exit the program. So, now that you have all of these script files, what do you do with them?  Well, we organize ours into folders labeled ChangeScripts, Functions, Views, and StoredProcedures, and those folders are loaded into our source control system.  ChangeScripts contains all of the table and index changes, and anything else that is basically a one-time-only execution.  Of course you want to write your scripts with qualifying logic so that if a script were accidentally run more than once in a database, it would not crash nor corrupt anything; but these scripts are really intended to be run only once in a database. Once you have your initial set of scripts loaded into source control, then making changes, such as altering a stored procedure becomes a simple matter of checking out your CREATE PROCEDURE* script, editing it in SSMS, saving the change, executing the script in order to effect the change in your database, and then checking the script back in to source control.  Of course, this is where the lack of integration for source control systems within SSMS becomes an irritation, because this means that in addition to SSMS, I also have my source control client application running to do the check-out and check-in.  And when you have 800+ procedures like we do, that can be quite tedious to locate the procedure I want to change in source control, check it out, then locate the script file in my working folder, open it in SSMS, do the change, save it, and the go back to source control to check in.  Granted, it is not nearly as burdensome as, say, losing your source code and having to rebuild it from memory, or losing the audit trail that good source control systems provide.  It is worth the effort, and this is how I have been doing development for the last several years. Remember that everything that the SQL Server Management Studio does in modifying your database can also be done in plain Transact-SQL code, and this is what you are storing.  And now I have shown you how you can do it all without spending any extra money.  You already have source control, or can get free, open-source source control systems (almost seems like an oxymoron, doesn’t it) and of course Management Studio is free with your SQL Server database engine software. So, whether you spend the money on tools to make it easier, or not, you now have no excuse for not using source control with your SQL development. * In our current model, the scripts for stored procedures and similar database objects are written with an IF EXISTS…DROP… at the top, followed by the CREATE PROCEDURE… section, and that followed by a section that assigns permissions.  This allows me to run the same script regardless of whether the procedure previously existed in the database.  If the script was only an ALTER PROCEDURE, then it would fail the first time that procedure was deployed to a database, unless you wrote other code to stub it if it did not exist.  There are a few different ways you could organize your scripts for deployment, each with its own trade-offs, but I think it is absolutely critical that whichever way you organize things, you ensure that the same script is run throughout the deployment cycle, and do not allow customizations to creep in between TEST and PROD.  If you do, then you have broken the integrity of your deployment process because what you deployed to PROD was not exactly the same as what was tested in TEST, so you effectively have now released untested code into PROD.

    Read the article

  • Disaster Recovery Discovery

    - by Rodney Landrum
    Last weekend I joined several of my IT staff on a mission to perform a DR test in our remote CoLo center in a large South East city of the US. Can I be more obtuse? The goal was simple for me as the sole DBA in a throng of Windows, Storage, Network and SAN admins – restore the databases and make them work. There were 4 applications that back ended to 7 SQL Server databases on 4 different SQL Server instances. We would maintain the original server names, but beyond that it was fair game. We had time to prepare so I was able to script out or otherwise automate the recovery process. I used sp_help_revlogin for three of the servers, a bit of a cheat actually because restoring the Master database on the target DR servers was the specified course of action according to the DR procedures ( the caveat “IF REQUIRED” left it open to interpretation. I really wanted to avoid the step of restoring Master for a number of reasons but mainly because I did not want to deal with issues starting SQL Services afterward. Having to account for the location of TempDB and the version conflicts of the resource DBs were just two of the battles I chose not to fight. Not to mention other system database location problems that might arise and prevent SQL from starting.  I was going to have to restore all of the user databases anyway, so I would not really gain any benefit, outside of logins, for taking the time to restore the source Master database over the newly installed one on the fresh server. What I wanted was the ability to restore the Master database as a user database, call it Master_Mine, from a backup on the source system and then use that restored database to script the SQL Logins and passwords on the DR systems. While I did not attempt this on the trip, the thought stuck in my mind and this past week I succeeded at scripting user accounts and passwords using only a restored copy of the Master database. Granted there were several challenges to overcome.  Also, as is usual for any work like this the usual disclaimers apply:  This is not something that I would imagine Microsoft would condone or support and this was really only an experiment for me to learn if it was even possible. While I have tested the process with success, I do not know that I would use this technique in a documented procedure because future updates for SQL Server will render this technique non-functional. I thought at first, incorrectly of course, that I could use sp_help_revlogin on a restored copy of the master database I named Master_Mine.   Since sp_help_revlogin uses system schema objects, sys.syslogins and sys.server_principals, this was not going to work because all results would come from the main Master database. To test this I added a SQL login via SSMS, backed up Master, restored  it as Master_Mine, and then deleted the login.  Even though the test account I created should presumably still be in the Master_Mine database, I should be able to get to it and script out its creation with its password hash so that I would not need to know the password, but any applications that stored that password would not have to be altered in the DR scenario. They would just work as expected. Once I realized that would not work I began looking deeper.  Knowing that sys.syslogins and sys.server_principals are system views, their underlying code should be available with sp_helptext, right? They were. And this led me to discover the two tables sys.sysxlgns and sys.sysprivs, where the data I needed was stored. These tables existed in both the real Master and the restored copy, Master_Mine.  I used this information to tweak the sp_help_revlogin stored procedure to use these tables instead to create the logins cursor used in sp_help_revlogin. For the password hash,  sp_help_revlogin uses the function LoginProperty() which takes a user name and option ‘passwordhash’ to return the hash for the user. Unfortunately, it requires the login to exist in the Master database. This would not work. So another slight modification I had to make was to pull the password hash itself (pwdhash from sys.sysxlgns) into the logins cursor and comment out the section of sp_help_revlogin that uses LoginProperty. Instead, I pass the pwdhash value as the variable @PWD_varbinary to the sp_hexadecimal stored procedure which is also created by and used within the code provided by Microsoft in the link above for sp_help_revlogin. The final challenge: sys.sysxlgns and sys.server_principals are visible only within a Dedicated Administrator Connection (DAC) query window in SSMS or within SQLCDMD.  To open a DAC connection you have to be logged in on the SQL Server itself, via RDP in my case,  and you preface the server name in the query connection with ADMIN:, so that the server connection looks like ADMIN:ServerName. From there you can create the modified stored procedure in the restored copy of a Master database from a source system as whatever name you like, and then run the modified stored procedure. I named my new stored procedure usp_help_revlogin_MyMaster. Upon execution I was happy to see the logins and password hashes that I needed to apply from the source Master database without having to restore over the new Master system database and without the need to access the original server (assuming it was down due to whatever disaster put it in that state). You will note that I am not providing full code samples here of the modifications. I will say that it was a slight bit of work and anyone who needed to do this for whatever reason, could fairly easily roll their own solution with the information provided herein.  My goal, as I said was to prove that this could be done and provide another option if required to ease the burden of getting SQL Servers up and available in an emergency situation where alternatives may be more challenging or otherwise unavailable.  

    Read the article

  • Physics System ignores collision in some rare cases

    - by Gajoo
    I've been developing a simple physics engine for my game. since the game physics is very simple I've decided to increase accuracy a little bit. Instead of formal integration methods like fourier or RK4, I'm directly computing the results after delta time "dt". based on the very first laws of physics : dx = 0.5 * a * dt^2 + v0 * dt dv = a * dt where a is acceleration and v0 is object's previous velocity. Also to handle collisions I've used a method which is somehow different from those I've seen so far. I'm detecting all the collision in the given time frame, stepping the world forward to the nearest collision, resolving it and again check for possible collisions. As I said the world consist of very simple objects, so I'm not loosing any performance due to multiple collision checking. First I'm checking if the ball collides with any walls around it (which is working perfectly) and then I'm checking if it collides with the edges of the walls (yellow points in the picture). the algorithm seems to work without any problem except some rare cases, in which the collision with points are ignored. I've tested everything and all the variables seem to be what they should but after leaving the system work for a minute or two the system the ball passes through one of those points. Here is collision portion of my code, hopefully one of you guys can give me a hint where to look for a potential bug! void PhysicalWorld::checkForPointCollision(Vec2 acceleration, PhysicsComponent& ball, Vec2& collisionNormal, float& collisionTime, Vec2 target) { // this function checks if there will be any collision between a circle and a point // ball contains informations about the circle (it's current velocity, position and radius) // collisionNormal is an output variable // collisionTime is also an output varialbe // target is the point I want to check for collisions Vec2 V = ball.mVelocity; Vec2 A = acceleration; Vec2 P = ball.mPosition - target; float wallWidth = mMap->getWallWidth() / (mMap->getWallWidth() + mMap->getHallWidth()) / 2; float r = ball.mRadius / (mMap->getWallWidth() + mMap->getHallWidth()); // r is ball radius scaled to match actual rendered object. if (A.any()) // todo : I need to first correctly solve the collisions in case there is no acceleration return; if (V.any()) // if object is not moving there will be no collisions! { float D = P.x * V.y - P.y * V.x; float Delta = r*r*V.length2() - D*D; if(Delta < eps) return; Delta = sqrt(Delta); float sgnvy = V.y > 0 ? 1: (V.y < 0?-1:0); Vec2 c1(( D*V.y+sgnvy*V.x*Delta) / V.length2(), (-D*V.x+fabs(V.y)*Delta) / V.length2()); Vec2 c2(( D*V.y-sgnvy*V.x*Delta) / V.length2(), (-D*V.x-fabs(V.y)*Delta) / V.length2()); float t1 = (c1.x - P.x) / V.x; float t2 = (c2.x - P.x) / V.x; if(t1 > eps && t1 <= collisionTime) { collisionTime = t1; collisionNormal = c1; } if(t2 > eps && t2 <= collisionTime) { collisionTime = t2; collisionNormal = c2; } } } // this function should step the world forward by dt. it doesn't check for collision of any two balls (components) // it just checks if there is a collision between the current component and 4 points forming a rectangle around it. void PhysicalWorld::step(float dt) { for (unsigned i=0;i<mObjects.size();i++) { PhysicsComponent &current = *mObjects[i]; Vec2 acceleration = current.mForces * current.mInvMass; float rt=dt; // stores how much more the world should advance while(rt > eps) { float collisionTime = rt; Vec2 collisionNormal = Vec2(0,0); float halfWallWidth = mMap->getWallWidth() / (mMap->getWallWidth() + mMap->getHallWidth()) / 2; // we check if there is any collision with any of those 4 points around the ball // if there is a collision both collisionNormal and collisionTime variables will change // after these functions collisionTime will be exactly the value of nearest collision (if any) // and if there was, collisionNormal will report in which direction the ball should return. checkForPointCollision(acceleration,current,collisionNormal,collisionTime,Vec2(floor(current.mPosition.x) + halfWallWidth,floor(current.mPosition.y) + halfWallWidth)); checkForPointCollision(acceleration,current,collisionNormal,collisionTime,Vec2(floor(current.mPosition.x) + halfWallWidth, ceil(current.mPosition.y) - halfWallWidth)); checkForPointCollision(acceleration,current,collisionNormal,collisionTime,Vec2( ceil(current.mPosition.x) - halfWallWidth,floor(current.mPosition.y) + halfWallWidth)); checkForPointCollision(acceleration,current,collisionNormal,collisionTime,Vec2( ceil(current.mPosition.x) - halfWallWidth, ceil(current.mPosition.y) - halfWallWidth)); // either if there is a collision or if there is not we step the forward since we are sure there will be no collision before collisionTime current.mPosition += collisionTime * (collisionTime * acceleration * 0.5 + current.mVelocity); current.mVelocity += collisionTime * acceleration; // if the ball collided with anything collisionNormal should be at least none zero in one of it's axis if (collisionNormal.any()) { collisionNormal *= Dot(collisionNormal, current.mVelocity) / collisionNormal.length2(); current.mVelocity -= 2 * collisionNormal; // simply reverse velocity along collision normal direction } rt -= collisionTime; } // reset all forces for current object so it'll be ready for later game event current.mForces.zero(); } }

    Read the article

  • Telerik Releases a new Visual Entity Designer

    Love LINQ to SQL but are concerned that it is a second class citizen? Need to connect to more databases other than SQL Server? Think that the Entity Framework is too complex? Want a domain model designer for data access that is easy, yet powerful? Then the Telerik Visual Entity Designer is for you. Built on top of Telerik OpenAccess ORM, a very mature and robust product, Teleriks Visual Entity Designer is a new way to build your domain model that is very powerful and also real easy to use. How easy? Ill show you here. First Look: Using the Telerik Visual Entity Designer To get started, you need to install the Telerik OpenAccess ORM Q1 release for Visual Studio 2008 or 2010. You dont need to use any of the Telerik OpenAccess wizards, designers, or using statements. Just right click on your project and select Add|New Item from the context menu. Choose Telerik OpenAccess Domain Model from the Visual Studio project templates. (Note to existing OpenAccess users, dont run the Enable ORM wizard or any other OpenAccess menu unless you are building OpenAccess Entities.) You will then have to specify the database backend (SQL Server, SQL Azure, Oracle, MySQL, etc) and connection. After you establish your connection, select the database objects you want to add to your domain model. You can also name your model, by default it will be NameofyourdatabaseEntityDiagrams. You can click finish here if you are comfortable, or tweak some advanced settings. Many users of domain models like to add prefixes and suffixes to classes, fields, and properties as well as handle pluralization. I personally accept the defaults, however, I hate how DBAs force underscores on me, so I click on the option to remove them. You can also tweak your namespace, mapping options, and define your own code generation template to gain further control over the outputted code. This is a very powerful feature, but for now, I will just accept the defaults.   When we click finish, you can see your domain model as a file with the .rlinq extension in the Solution Explorer. You can also bring up the visual designer to view or further tweak your model by double clicking on the model in the Solution Explorer.  Time to use the model! Writing a LINQ Query Programming against the domain model is very simple using LINQ. Just set a reference to the model (line 12 of the code below) and write a standard LINQ statement (lines 14-16).  (OpenAccess users: notice the you dont need any using statements for OpenAccess or an IObjectScope, just raw LINQ against your model.) 1: using System; 2: using System.Linq; 3: //no need for anOpenAccess using statement 4:   5: namespace ConsoleApplication3 6: { 7: class Program 8: { 9: static void Main(string[] args) 10: { 11: //a reference tothe data context 12: NorthwindEntityDiagrams dat = new NorthwindEntityDiagrams(); 13: //LINQ Statement 14: var result = from c in dat.Customers 15: where c.Country == "Germany" 16: select c; 17:   18: //Print out the company name 19: foreach (var cust in result) 20: { 21: Console.WriteLine("CompanyName: " + cust.CompanyName); 22: } 23: //keep the consolewindow open 24: Console.Read(); 25: } 26: } 27: } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Lines 19-24 loop through the result of our LINQ query and displays the results. Thats it! All of the super powerful features of OpenAccess are available to you to further enhance your experience, however, in most cases this is all you need. In future posts I will show how to use the Visual Designer with some other scenarios. Stay tuned. Enjoy! Technorati Tags: Telerik,OpenAccess,LINQ Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • creating a pre-menu level select screen

    - by Ephiras
    Hi I am working on creating a tower Defence java applet game and have come to a road block about implementing a title screen that i can select the level and difficulty of the rest of the game. my title screen class is called Menu. from this menu class i need to pass in many different variables into my Main class. i have used different classes before and know how to run them and such. but if both classes extend applet and each has its individual graphics method how can i run things from Main even though it was created in Menu. what i essentially want to do is run the Menu class withits action listeners and graphics until a Difficulty button has been selected, run the main class (which 100% works without having to have the Menu class) and pretty much terminate Menu so that i cannot go back to it, do not see its buttons or graphics menus. can i run one applet annd when i choose a button close that one and launch the other one? IF you would like to download the full project you can find it here, i had to comment out all the code that wasn't working my Menu class import java.awt.*; import java.awt.event.*; import java.applet.*; public class Menu extends Applet implements ActionListener{ Button bEasy,bMed,bHard; Main m; public void init(){ bEasy= new Button("Easy"); bEasy.setBounds(140,200,100,50); add(bEasy); bMed = new Button("Medium");bMed.setBounds(280,200,100,50); add(bMed); bHard= new Button("Hard");bHard.setBounds(420,200,100,50); add(bHard); setLayout(null); } public void actionPerformed(ActionEvent e){ Main m = new Main(20,10,3000,mapMed);//break; switch (e.getSource()){ case bEasy: Main m = new Main(6000,20,"levels/levelEasy.png");break;//enimies tower money world case bMed: Main m = new Main(4000,15,"levels/levelMed.png");break; case bHard: Main m = new Main(2000,10,"levels/levelEasy.png");break; default: break; } } public void paint(){ //m.draw(g) } } and here is my main class initialising code. import java.awt.*; import java.awt.event.*; import java.applet.*; import java.io.IOException; public class Main extends Applet implements Runnable, MouseListener, MouseMotionListener, ActionListener{ Button startButton, UpgRange, UpgDamage; //set up the buttons Color roadCol,startCol,finCol,selGrass,selRoad; //set up the colors Enemy e[][]; Tower t[]; Image towerpic,backpic,roadpic,levelPic; private Image i; private Graphics doubleG; //here is the world 0=grass 1=road 2=start 3=end int world[][],eStartX,eStartY; boolean drawMouse,gameEnd; static boolean start=false; static int gridLength=15; static int round=0; int Mx,My,timer=1500; static int sqrSize=31; int towers=0,towerSelected=-10; static int castleHealth=2000; String levelPath; //choose the level Easy Med or Hard int maxEnemy[] = {5,7,12,20,30,15,50,30,40,60};//number of enimies per round int maxTowers=15;//maximum number of towers allowed static int money =2000,damPrice=600,ranPrice=350,towerPrice=700; //money = the intial ammount of money you start of with //damPrice is the price to increase the damage of a tower //ranPrice is the price to increase the range of a tower public void main(int cH,int mT,int mo,int dP,int rP,int tP,String path,int[] mE)//constructor 1 castleHealth=cH; maxTowers=mT; money=mo; damPrice=dP; ranPrice=rP; towerPrice=tP; String levelPath=path; maxEnemy = mE; buildLevel(); } public void main(int cH,int mT,String path)//basic constructor castleHealth=cH; maxTowers=mT; String levelPath=path; maxEnemy = mE; buildLevel(); } public void init(){ setSize(sqrSize*15+200,sqrSize*15);//set the size of the screen roadCol = new Color(255,216,0);//set the colors for the different objects startCol = new Color(0,38,255); finCol = new Color(255,0,0); selRoad = new Color(242,204,155);//selColor is the color of something when your mouse hovers over it selGrass = new Color(0,190,0); roadpic = getImage(getDocumentBase(),"images/road.jpg"); towerpic = getImage(getDocumentBase(),"images/tower.png"); backpic = getImage(getDocumentBase(),"images/grass.jpg"); levelPic = getImage(getDocumentBase(),"images/level.jpg"); e= new Enemy[maxEnemy.length][];//activates all of the enimies for (int r=0;r<e.length;r++) e[r] = new Enemy[maxEnemy[r]]; t= new Tower[maxTowers]; for (int i=0;i<t.length;i++) t[i]= new Tower();//activates all the towers for (int i=0;i<e.length; i++)//sets all of the enimies starting co ordinates for (int j=0;j<e[i].length;j++) e[i][j] = new Enemy(eStartX,eStartY,world); initButtons();//initialise all the buttons addMouseMotionListener(this); addMouseListener(this); }

    Read the article

  • ROracle support for TimesTen In-Memory Database

    - by Sam Drake
    Today's guest post comes from Jason Feldhaus, a Consulting Member of Technical Staff in the TimesTen Database organization at Oracle.  He shares with us a sample session using ROracle with the TimesTen In-Memory database.  Beginning in version 1.1-4, ROracle includes support for the Oracle Times Ten In-Memory Database, version 11.2.2. TimesTen is a relational database providing very fast and high throughput through its memory-centric architecture.  TimesTen is designed for low latency, high-volume data, and event and transaction management. A TimesTen database resides entirely in memory, so no disk I/O is required for transactions and query operations. TimesTen is used in applications requiring very fast and predictable response time, such as real-time financial services trading applications and large web applications. TimesTen can be used as the database of record or as a relational cache database to Oracle Database. ROracle provides an interface between R and the database, providing the rich functionality of the R statistical programming environment using the SQL query language. ROracle uses the OCI libraries to handle database connections, providing much better performance than standard ODBC.The latest ROracle enhancements include: Support for Oracle TimesTen In-Memory Database Support for Date-Time using R's POSIXct/POSIXlt data types RAW, BLOB and BFILE data type support Option to specify number of rows per fetch operation Option to prefetch LOB data Break support using Ctrl-C Statement caching support Times Ten 11.2.2 contains enhanced support for analytics workloads and complex queries: Analytic functions: AVG, SUM, COUNT, MAX, MIN, DENSE_RANK, RANK, ROW_NUMBER, FIRST_VALUE and LAST_VALUE Analytic clauses: OVER PARTITION BY and OVER ORDER BY Multidimensional grouping operators: Grouping clauses: GROUP BY CUBE, GROUP BY ROLLUP, GROUP BY GROUPING SETS Grouping functions: GROUP, GROUPING_ID, GROUP_ID WITH clause, which allows repeated references to a named subquery block Aggregate expressions over DISTINCT expressions General expressions that return a character string in the source or a pattern within the LIKE predicate Ability to order nulls first or last in a sort result (NULLS FIRST or NULLS LAST in the ORDER BY clause) Note: Some functionality is only available with Oracle Exalytics, refer to the TimesTen product licensing document for details. Connecting to TimesTen is easy with ROracle. Simply install and load the ROracle package and load the driver. > install.packages("ROracle") > library(ROracle) Loading required package: DBI > drv <- dbDriver("Oracle") Once the ROracle package is installed, create a database connection object and connect to a TimesTen direct driver DSN as the OS user. > conn <- dbConnect(drv, username ="", password="", dbname = "localhost/SampleDb_1122:timesten_direct") You have the option to report the server type - Oracle or TimesTen? > print (paste ("Server type =", dbGetInfo (conn)$serverType)) [1] "Server type = TimesTen IMDB" To create tables in the database using R data frame objects, use the function dbWriteTable. In the following example we write the built-in iris data frame to TimesTen. The iris data set is a small example data set containing 150 rows and 5 columns. We include it here not to highlight performance, but so users can easily run this example in their R session. > dbWriteTable (conn, "IRIS", iris, overwrite=TRUE, ora.number=FALSE) [1] TRUE Verify that the newly created IRIS table is available in the database. To list the available tables and table columns in the database, use dbListTables and dbListFields, respectively. > dbListTables (conn) [1] "IRIS" > dbListFields (conn, "IRIS") [1] "SEPAL.LENGTH" "SEPAL.WIDTH" "PETAL.LENGTH" "PETAL.WIDTH" "SPECIES" To retrieve a summary of the data from the database we need to save the results to a local object. The following call saves the results of the query as a local R object, iris.summary. The ROracle function dbGetQuery is used to execute an arbitrary SQL statement against the database. When connected to TimesTen, the SQL statement is processed completely within main memory for the fastest response time. > iris.summary <- dbGetQuery(conn, 'SELECT SPECIES, AVG ("SEPAL.LENGTH") AS AVG_SLENGTH, AVG ("SEPAL.WIDTH") AS AVG_SWIDTH, AVG ("PETAL.LENGTH") AS AVG_PLENGTH, AVG ("PETAL.WIDTH") AS AVG_PWIDTH FROM IRIS GROUP BY ROLLUP (SPECIES)') > iris.summary SPECIES AVG_SLENGTH AVG_SWIDTH AVG_PLENGTH AVG_PWIDTH 1 setosa 5.006000 3.428000 1.462 0.246000 2 versicolor 5.936000 2.770000 4.260 1.326000 3 virginica 6.588000 2.974000 5.552 2.026000 4 <NA> 5.843333 3.057333 3.758 1.199333 Finally, disconnect from the TimesTen Database. > dbCommit (conn) [1] TRUE > dbDisconnect (conn) [1] TRUE We encourage you download Oracle software for evaluation from the Oracle Technology Network. See these links for our software: Times Ten In-Memory Database,  ROracle.  As always, we welcome comments and questions on the TimesTen and  Oracle R technical forums.

    Read the article

  • How do I cleanly design a central render/animation loop?

    - by mtoast
    I'm learning some graphics programming, and am in the midst of my first such project of any substance. But, I am really struggling at the moment with how to architect it cleanly. Let me explain. To display complicated graphics in my current language of choice (JavaScript -- have you heard of it?), you have to draw graphical content onto a <canvas> element. And to do animation, you must clear the <canvas> after every frame (unless you want previous graphics to remain). Thus, most canvas-related JavaScript demos I've seen have a function like this: function render() { clearCanvas(); // draw stuff here requestAnimationFrame(render); } render, as you may surmise, encapsulates the drawing of a single frame. What a single frame contains at a specific point in time, well... that is determined by the program state. So, in order for my program to do its thing, I just need to look at the state, and decide what to render. Right? Right. But that is more complicated than it seems. My program is called "Critter Clicker". In my program, you see several cute critters bouncing around the screen. Clicking on one of them agitates it, making it bounce around even more. There is also a start screen, which says "Click to start!" prior to the critters being displayed. Here are a few of the objects I'm working with in my program: StartScreenView // represents the start screen CritterTubView // represents the area in which the critters live CritterList // a collection of all the critters Critter // a single critter model CritterView // view of a single critter Nothing too egregious with this, I think. Yet, when I set out to flesh out my render function, I get stuck, because everything I write seems utterly ugly and reminiscent of a certain popular Italian dish. Here are a couple of approaches I've attempted, with my internal thought process included, and unrelated bits excluded for clarity. Approach 1: "It's conditions all the way down" // "I'll just write the program as I think it, one frame at a time." if (assetsLoaded) { if (userClickedToStart) { if (critterTubDisplayed) { if (crittersDisplayed) { forEach(crittersList, function(c) { if (c.wasClickedRecently) { c.getAgitated(); } }); } else { displayCritters(); } } else { displayCritterTub(); } } else { displayStartScreen(); } } That's a very much simplified example. Yet even with only a fraction of all the rendering conditions visible, render is already starting to get out of hand. So, I dispense with that and try another idea: Approach 2: Under the Rug // "Each view object shall be responsible for its own rendering. // "I'll pass each object the program state, and each can render itself." startScreen.render(state); critterTub.render(state); critterList.render(state); In this setup, I've essentially just pushed those crazy nested conditions to a deeper level in the code, hiding them from view. In other words, startScreen.render would check state to see if it needed actually to be drawn or not, and take the correct action. But this seems more like it only solves a code-aesthetic problem. The third and final approach I'm considering that I'll share is the idea that I could invent my own "wheel" to take care of this. I'm envisioning a function that takes a data structure that defines what should happen at any given point in the render call -- revealing the conditions and dependencies as a kind of tree. Approach 3: Mad Scientist renderTree({ phases: ['startScreen', 'critterTub', 'endCredits'], dependencies: { startScreen: ['assetsLoaded'], critterTub: ['startScreenClicked'], critterList ['critterTubDisplayed'] // etc. }, exclusions: { startScreen: ['startScreenClicked'], // etc. } }); That seems kind of cool. I'm not exactly sure how it would actually work, but I can see it being a rather nifty way to express things, especially if I flex some of JavaScript's events. In any case, I'm a little bit stumped because I don't see an obvious way to do this. If you couldn't tell, I'm coming to this from the web development world, and finding that doing animation is a bit more exotic than arranging an MVC application for handling simple requests - responses. What is the clean, established solution to this common-I-would-think problem?

    Read the article

< Previous Page | 491 492 493 494 495 496 497 498 499 500 501 502  | Next Page >