Search Results

Search found 52871 results on 2115 pages for 'jscript net'.

Page 541/2115 | < Previous Page | 537 538 539 540 541 542 543 544 545 546 547 548  | Next Page >

  • jQuery Masonry – the answer to vertical flow layout

    - by joelvarty
    “Masonry is a layout plugin for jQuery. Think of it as the flip side of CSS floats. Whereas floating arranges elements horizontally then vertically, Masonry arranges elements vertically then horizontally according to a grid. The result minimizes vertical gaps between elements of varying height, just like a mason fitting stones in a wall.” I love this concept, and until it shows up in css (if ever…), I plan on using it. from jQuery Masonary via Daring Fireball   More later - joel

    Read the article

  • Web Deployment Made Awesome: If You're Using XCopy, You're Doing It Wrong

    - by The Official Microsoft IIS Site
    I did three talks at Mix 10 this year, and I'm going to do blog posts for each one, sharing what I talked about and some code if it's useful. I did a talk on Deployment called " Web Deployment Made Awesome: If You're Using XCopy, You're Doing It Wrong ." You can download the talk here, or watch it online : VIDEO Download: MP4 Video , Windows Media Video , Windows Media Video (High) I always try to sneak cooler titles into conferences if I can. It's better than "...(read more)

    Read the article

  • Application Lifecycle Management with Visual Studio 2010 – Wrox Book

    - by Guy Harwood
    After running with a somewhat disconnected set of tools (vs 2008, Ontime, sharepoint 2007) for managing our projects we decided to make the move to Team Foundation Server 2010.  With limited coverage of the product available online i went in search of a book and found this… View this book on the Wrox website I must point out that i have only read 10 of the 26 chapters so far, mainly the ones that cover source code control, work item tracking and database projects.  This enables our dev team to get familiar with it before switching project management over at a future date. Needless to say i am very impressed with the detail it provides, answering pretty much every question i had about TFS so far.  I'm looking forward to digging into the sections on testing, code analysis and architecture. Highly recommended.

    Read the article

  • A Communication System for XAML Applications

    - by psheriff
    In any application, you want to keep the coupling between any two or more objects as loose as possible. Coupling happens when one class contains a property that is used in another class, or uses another class in one of its methods. If you have this situation, then this is called strong or tight coupling. One popular design pattern to help with keeping objects loosely coupled is called the Mediator design pattern. The basics of this pattern are very simple; avoid one object directly talking to another object, and instead use another class to mediate between the two. As with most of my blog posts, the purpose is to introduce you to a simple approach to using a message broker, not all of the fine details. IPDSAMessageBroker Interface As with most implementations of a design pattern, you typically start with an interface or an abstract base class. In this particular instance, an Interface will work just fine. The interface for our Message Broker class just contains a single method “SendMessage” and one event “MessageReceived”. public delegate void MessageReceivedEventHandler( object sender, PDSAMessageBrokerEventArgs e); public interface IPDSAMessageBroker{  void SendMessage(PDSAMessageBrokerMessage msg);   event MessageReceivedEventHandler MessageReceived;} PDSAMessageBrokerMessage Class As you can see in the interface, the SendMessage method requires a type of PDSAMessageBrokerMessage to be passed to it. This class simply has a MessageName which is a ‘string’ type and a MessageBody property which is of the type ‘object’ so you can pass whatever you want in the body. You might pass a string in the body, or a complete Customer object. The MessageName property will help the receiver of the message know what is in the MessageBody property. public class PDSAMessageBrokerMessage{  public PDSAMessageBrokerMessage()  {  }   public PDSAMessageBrokerMessage(string name, object body)  {    MessageName = name;    MessageBody = body;  }   public string MessageName { get; set; }   public object MessageBody { get; set; }} PDSAMessageBrokerEventArgs Class As our message broker class will be raising an event that others can respond to, it is a good idea to create your own event argument class. This class will inherit from the System.EventArgs class and add a couple of additional properties. The properties are the MessageName and Message. The MessageName property is simply a string value. The Message property is a type of a PDSAMessageBrokerMessage class. public class PDSAMessageBrokerEventArgs : EventArgs{  public PDSAMessageBrokerEventArgs()  {  }   public PDSAMessageBrokerEventArgs(string name,     PDSAMessageBrokerMessage msg)  {    MessageName = name;    Message = msg;  }   public string MessageName { get; set; }   public PDSAMessageBrokerMessage Message { get; set; }} PDSAMessageBroker Class Now that you have an interface class and a class to pass a message through an event, it is time to create your actual PDSAMessageBroker class. This class implements the SendMessage method and will also create the event handler for the delegate created in your Interface. public class PDSAMessageBroker : IPDSAMessageBroker{  public void SendMessage(PDSAMessageBrokerMessage msg)  {    PDSAMessageBrokerEventArgs args;     args = new PDSAMessageBrokerEventArgs(      msg.MessageName, msg);     RaiseMessageReceived(args);  }   public event MessageReceivedEventHandler MessageReceived;   protected void RaiseMessageReceived(    PDSAMessageBrokerEventArgs e)  {    if (null != MessageReceived)      MessageReceived(this, e);  }} The SendMessage method will take a PDSAMessageBrokerMessage object as an argument. It then creates an instance of a PDSAMessageBrokerEventArgs class, passing to the constructor two items: the MessageName from the PDSAMessageBrokerMessage object and also the object itself. It may seem a little redundant to pass in the message name when that same message name is part of the message, but it does make consuming the event and checking for the message name a little cleaner – as you will see in the next section. Create a Global Message Broker In your WPF application, create an instance of this message broker class in the App class located in the App.xaml file. Create a public property in the App class and create a new instance of that class in the OnStartUp event procedure as shown in the following code: public partial class App : Application{  public PDSAMessageBroker MessageBroker { get; set; }   protected override void OnStartup(StartupEventArgs e)  {    base.OnStartup(e);     MessageBroker = new PDSAMessageBroker();  }} Sending and Receiving Messages Let’s assume you have a user control that you load into a control on your main window and you want to send a message from that user control to the main window. You might have the main window display a message box, or put a string into a status bar as shown in Figure 1. Figure 1: The main window can receive and send messages The first thing you do in the main window is to hook up an event procedure to the MessageReceived event of the global message broker. This is done in the constructor of the main window: public MainWindow(){  InitializeComponent();   (Application.Current as App).MessageBroker.     MessageReceived += new MessageReceivedEventHandler(       MessageBroker_MessageReceived);} One piece of code you might not be familiar with is accessing a property defined in the App class of your XAML application. Within the App.Xaml file is a class named App that inherits from the Application object. You access the global instance of this App class by using Application.Current. You cast Application.Current to ‘App’ prior to accessing any of the public properties or methods you defined in the App class. Thus, the code (Application.Current as App).MessageBroker, allows you to get at the MessageBroker property defined in the App class. In the MessageReceived event procedure in the main window (shown below) you can now check to see if the MessageName property of the PDSAMessageBrokerEventArgs is equal to “StatusBar” and if it is, then display the message body into the status bar text block control. void MessageBroker_MessageReceived(object sender,   PDSAMessageBrokerEventArgs e){  switch (e.MessageName)  {    case "StatusBar":      tbStatus.Text = e.Message.MessageBody.ToString();      break;  }} In the Page 1 user control’s Loaded event procedure you will send the message “StatusBar” through the global message broker to any listener using the following code: private void UserControl_Loaded(object sender,  RoutedEventArgs e){  // Send Status Message  (Application.Current as App).MessageBroker.    SendMessage(new PDSAMessageBrokerMessage("StatusBar",      "This is Page 1"));} Since the main window is listening for the message ‘StatusBar’, it will display the value “This is Page 1” in the status bar at the bottom of the main window. Sending a Message to a User Control The previous example sent a message from the user control to the main window. You can also send messages from the main window to any listener as well. Remember that the global message broker is really just a broadcaster to anyone who has hooked into the MessageReceived event. In the constructor of the user control named ucPage1 you can hook into the global message broker’s MessageReceived event. You can then listen for any messages that are sent to this control by using a similar switch-case structure like that in the main window. public ucPage1(){  InitializeComponent();   // Hook to the Global Message Broker  (Application.Current as App).MessageBroker.    MessageReceived += new MessageReceivedEventHandler(      MessageBroker_MessageReceived);} void MessageBroker_MessageReceived(object sender,  PDSAMessageBrokerEventArgs e){  // Look for messages intended for Page 1  switch (e.MessageName)  {    case "ForPage1":      MessageBox.Show(e.Message.MessageBody.ToString());      break;  }} Once the ucPage1 user control has been loaded into the main window you can then send a message using the following code: private void btnSendToPage1_Click(object sender,  RoutedEventArgs e){  PDSAMessageBrokerMessage arg =     new PDSAMessageBrokerMessage();   arg.MessageName = "ForPage1";  arg.MessageBody = "Message For Page 1";   // Send a message to Page 1  (Application.Current as App).MessageBroker.SendMessage(arg);} Since the MessageName matches what is in the ucPage1 MessageReceived event procedure, ucPage1 can do anything in response to that event. It is important to note that when the message gets sent it is sent to all MessageReceived event procedures, not just the one that is looking for a message called “ForPage1”. If the user control ucPage1 is not loaded and this message is broadcast, but no other code is listening for it, then it is simply ignored. Remove Event Handler In each class where you add an event handler to the MessageReceived event you need to make sure to remove those event handlers when you are done. Failure to do so can cause a strong reference to the class and thus not allow that object to be garbage collected. In each of your user control’s make sure in the Unloaded event to remove the event handler. private void UserControl_Unloaded(object sender, RoutedEventArgs e){  if (_MessageBroker != null)    _MessageBroker.MessageReceived -=         _MessageBroker_MessageReceived;} Problems with Message Brokering As with most “global” classes or classes that hook up events to other classes, garbage collection is something you need to consider. Just the simple act of hooking up an event procedure to a global event handler creates a reference between your user control and the message broker in the App class. This means that even when your user control is removed from your UI, the class will still be in memory because of the reference to the message broker. This can cause messages to still being handled even though the UI is not being displayed. It is up to you to make sure you remove those event handlers as discussed in the previous section. If you don’t, then the garbage collector cannot release those objects. Instead of using events to send messages from one object to another you might consider registering your objects with a central message broker. This message broker now becomes a collection class into which you pass an object and what messages that object wishes to receive. You do end up with the same problem however. You have to un-register your objects; otherwise they still stay in memory. To alleviate this problem you can look into using the WeakReference class as a method to store your objects so they can be garbage collected if need be. Discussing Weak References is beyond the scope of this post, but you can look this up on the web. Summary In this blog post you learned how to create a simple message broker system that will allow you to send messages from one object to another without having to reference objects directly. This does reduce the coupling between objects in your application. You do need to remember to get rid of any event handlers prior to your objects going out of scope or you run the risk of having memory leaks and events being called even though you can no longer access the object that is responding to that event. NOTE: You can download the sample code for this article by visiting my website at http://www.pdsa.com/downloads. Select “Tips & Tricks”, then select “A Communication System for XAML Applications” from the drop down list.

    Read the article

  • Tip of the day: Don’t misuse the Link button control

    - by anas
    Misuse ? Yes it is ! I have seen a lot of developers who are using the LinkButton to do redirection only ! They are handling it’s click event to just write Response.Redirect ("url”) like this: protected void LinkButton1_Click( object sender, EventArgs e) { Response.Redirect( "~/ForgotPassword.aspx" ); } Ok so to understand why it’s not a good practice let’s discuss the redirection steps involved when using the mentioned method: User submits the page by clicking on the LinkButton control...(read more)

    Read the article

  • NHibernate Conventions

    - by Ricardo Peres
    Introduction It seems that nowadays everyone loves conventions! Not the ones that you go to, but the ones that you use, that is! It just happens that NHibernate also supports conventions, and we’ll see exactly how. Conventions in NHibernate are supported in two ways: Naming of tables and columns when not explicitly indicated in the mappings; Full domain mapping. Naming of Tables and Columns Since always NHibernate has supported the concept of a naming strategy. A naming strategy in NHibernate converts class and property names to table and column names and vice-versa, when a name is not explicitly supplied. In concrete, it must be a realization of the NHibernate.Cfg.INamingStrategy interface, of which NHibernate includes two implementations: DefaultNamingStrategy: the default implementation, where each column and table are mapped to identically named properties and classes, for example, “MyEntity” will translate to “MyEntity”; ImprovedNamingStrategy: underscores (_) are used to separate Pascal-cased fragments, for example, entity “MyEntity” will be mapped to a “my_entity” table. The naming strategy can be defined at configuration level (the Configuration instance) by calling the SetNamingStrategy method: 1: cfg.SetNamingStrategy(ImprovedNamingStrategy.Instance); Both the DefaultNamingStrategy and the ImprovedNamingStrategy classes offer singleton instances in the form of Instance static fields. DefaultNamingStrategy is the one NHibernate uses, if you don’t specify one. Domain Mapping In mapping by code, we have the choice of relying on conventions to do the mapping automatically. This means a class will inspect our classes and decide how they will relate to the database objects. The class that handles conventions is NHibernate.Mapping.ByCode.ConventionModelMapper, a specialization of the base by code mapper, NHibernate.Mapping.ByCode.ModelMapper. The ModelMapper relies on an internal SimpleModelInspector to help it decide what and how to map, but the mapper lets you override its decisions.  You apply code conventions like this: 1: //pick the types that you want to map 2: IEnumerable<Type> types = Assembly.GetExecutingAssembly().GetExportedTypes(); 3:  4: //conventions based mapper 5: ConventionModelMapper mapper = new ConventionModelMapper(); 6:  7: HbmMapping mapping = mapper.CompileMappingFor(types); 8:  9: //the one and only configuration instance 10: Configuration cfg = ...; 11: cfg.AddMapping(mapping); This is a very simple example, it lacks, at least, the id generation strategy, which you can add by adding an event handler like this: 1: mapper.BeforeMapClass += (IModelInspector modelInspector, Type type, IClassAttributesMapper classCustomizer) => 2: { 3: classCustomizer.Id(x => 4: { 5: //set the hilo generator 6: x.Generator(Generators.HighLow); 7: }); 8: }; The mapper will fire events like this whenever it needs to get information about what to do. And basically this is all it takes to automatically map your domain! It will correctly configure many-to-one and one-to-many relations, choosing bags or sets depending on your collections, will get the table and column names from the naming strategy we saw earlier and will apply the usual defaults to all properties, such as laziness and fetch mode. However, there is at least one thing missing: many-to-many relations. The conventional mapper doesn’t know how to find and configure them, which is a pity, but, alas, not difficult to overcome. To start, for my projects, I have this rule: each entity exposes a public property of type ISet<T> where T is, of course, the type of the other endpoint entity. Extensible as it is, NHibernate lets me implement this very easily: 1: mapper.IsOneToMany((MemberInfo member, Boolean isLikely) => 2: { 3: Type sourceType = member.DeclaringType; 4: Type destinationType = member.GetMemberFromDeclaringType().GetPropertyOrFieldType(); 5:  6: //check if the property is of a generic collection type 7: if ((destinationType.IsGenericCollection() == true) && (destinationType.GetGenericArguments().Length == 1)) 8: { 9: Type destinationEntityType = destinationType.GetGenericArguments().Single(); 10:  11: //check if the type of the generic collection property is an entity 12: if (mapper.ModelInspector.IsEntity(destinationEntityType) == true) 13: { 14: //check if there is an equivalent property on the target type that is also a generic collection and points to this entity 15: PropertyInfo collectionInDestinationType = destinationEntityType.GetProperties().Where(x => (x.PropertyType.IsGenericCollection() == true) && (x.PropertyType.GetGenericArguments().Length == 1) && (x.PropertyType.GetGenericArguments().Single() == sourceType)).SingleOrDefault(); 16:  17: if (collectionInDestinationType != null) 18: { 19: return (false); 20: } 21: } 22: } 23:  24: return (true); 25: }); 26:  27: mapper.IsManyToMany((MemberInfo member, Boolean isLikely) => 28: { 29: //a relation is many to many if it isn't one to many 30: Boolean isOneToMany = mapper.ModelInspector.IsOneToMany(member); 31: return (!isOneToMany); 32: }); 33:  34: mapper.BeforeMapManyToMany += (IModelInspector modelInspector, PropertyPath member, IManyToManyMapper collectionRelationManyToManyCustomizer) => 35: { 36: Type destinationEntityType = member.LocalMember.GetPropertyOrFieldType().GetGenericArguments().First(); 37: //set the mapping table column names from each source entity name plus the _Id sufix 38: collectionRelationManyToManyCustomizer.Column(destinationEntityType.Name + "_Id"); 39: }; 40:  41: mapper.BeforeMapSet += (IModelInspector modelInspector, PropertyPath member, ISetPropertiesMapper propertyCustomizer) => 42: { 43: if (modelInspector.IsManyToMany(member.LocalMember) == true) 44: { 45: propertyCustomizer.Key(x => x.Column(member.LocalMember.DeclaringType.Name + "_Id")); 46:  47: Type sourceType = member.LocalMember.DeclaringType; 48: Type destinationType = member.LocalMember.GetPropertyOrFieldType().GetGenericArguments().First(); 49: IEnumerable<String> names = new Type[] { sourceType, destinationType }.Select(x => x.Name).OrderBy(x => x); 50:  51: //set inverse on the relation of the alphabetically first entity name 52: propertyCustomizer.Inverse(sourceType.Name == names.First()); 53: //set mapping table name from the entity names in alphabetical order 54: propertyCustomizer.Table(String.Join("_", names)); 55: } 56: }; We have to understand how the conventions mapper thinks: For each collection of entities found, it will ask the mapper if it is a one-to-many; in our case, if the collection is a generic one that has an entity as its generic parameter, and the generic parameter type has a similar collection, then it is not a one-to-many; Next, the mapper will ask if the collection that it now knows is not a one-to-many is a many-to-many; Before a set is mapped, if it corresponds to a many-to-many, we set its mapping table. Now, this is tricky: because we have no way to maintain state, we sort the names of the two endpoint entities and we combine them with a “_”; for the first alphabetical entity, we set its relation to inverse – remember, on a many-to-many relation, only one endpoint must be marked as inverse; finally, we set the column name as the name of the entity with an “_Id” suffix; Before the many-to-many relation is processed, we set the column name as the name of the other endpoint entity with the “_Id” suffix, as we did for the set. And that’s it. With these rules, NHibernate will now happily find and configure many-to-many relations, as well as all the others. You can wrap this in a new conventions mapper class, so that it is more easily reusable: 1: public class ManyToManyConventionModelMapper : ConventionModelMapper 2: { 3: public ManyToManyConventionModelMapper() 4: { 5: base.IsOneToMany((MemberInfo member, Boolean isLikely) => 6: { 7: return (this.IsOneToMany(member, isLikely)); 8: }); 9:  10: base.IsManyToMany((MemberInfo member, Boolean isLikely) => 11: { 12: return (this.IsManyToMany(member, isLikely)); 13: }); 14:  15: base.BeforeMapManyToMany += this.BeforeMapManyToMany; 16: base.BeforeMapSet += this.BeforeMapSet; 17: } 18:  19: protected virtual Boolean IsManyToMany(MemberInfo member, Boolean isLikely) 20: { 21: //a relation is many to many if it isn't one to many 22: Boolean isOneToMany = this.ModelInspector.IsOneToMany(member); 23: return (!isOneToMany); 24: } 25:  26: protected virtual Boolean IsOneToMany(MemberInfo member, Boolean isLikely) 27: { 28: Type sourceType = member.DeclaringType; 29: Type destinationType = member.GetMemberFromDeclaringType().GetPropertyOrFieldType(); 30:  31: //check if the property is of a generic collection type 32: if ((destinationType.IsGenericCollection() == true) && (destinationType.GetGenericArguments().Length == 1)) 33: { 34: Type destinationEntityType = destinationType.GetGenericArguments().Single(); 35:  36: //check if the type of the generic collection property is an entity 37: if (this.ModelInspector.IsEntity(destinationEntityType) == true) 38: { 39: //check if there is an equivalent property on the target type that is also a generic collection and points to this entity 40: PropertyInfo collectionInDestinationType = destinationEntityType.GetProperties().Where(x => (x.PropertyType.IsGenericCollection() == true) && (x.PropertyType.GetGenericArguments().Length == 1) && (x.PropertyType.GetGenericArguments().Single() == sourceType)).SingleOrDefault(); 41:  42: if (collectionInDestinationType != null) 43: { 44: return (false); 45: } 46: } 47: } 48:  49: return (true); 50: } 51:  52: protected virtual new void BeforeMapManyToMany(IModelInspector modelInspector, PropertyPath member, IManyToManyMapper collectionRelationManyToManyCustomizer) 53: { 54: Type destinationEntityType = member.LocalMember.GetPropertyOrFieldType().GetGenericArguments().First(); 55: //set the mapping table column names from each source entity name plus the _Id sufix 56: collectionRelationManyToManyCustomizer.Column(destinationEntityType.Name + "_Id"); 57: } 58:  59: protected virtual new void BeforeMapSet(IModelInspector modelInspector, PropertyPath member, ISetPropertiesMapper propertyCustomizer) 60: { 61: if (modelInspector.IsManyToMany(member.LocalMember) == true) 62: { 63: propertyCustomizer.Key(x => x.Column(member.LocalMember.DeclaringType.Name + "_Id")); 64:  65: Type sourceType = member.LocalMember.DeclaringType; 66: Type destinationType = member.LocalMember.GetPropertyOrFieldType().GetGenericArguments().First(); 67: IEnumerable<String> names = new Type[] { sourceType, destinationType }.Select(x => x.Name).OrderBy(x => x); 68:  69: //set inverse on the relation of the alphabetically first entity name 70: propertyCustomizer.Inverse(sourceType.Name == names.First()); 71: //set mapping table name from the entity names in alphabetical order 72: propertyCustomizer.Table(String.Join("_", names)); 73: } 74: } 75: } Conclusion Of course, there is much more to mapping than this, I suggest you look at all the events and functions offered by the ModelMapper to see where you can hook for making it behave the way you want. If you need any help, just let me know!

    Read the article

  • SonicFileFinder 2.2 Released

    - by WeigeltRo
    My colleague Jens Schaller has released a new version of his free Visual Studio add-in SonicFileFinder, adding support for Visual Studio 2010. Announcement on his blog Download on the SonicFileFinder website As far as I can tell, there are no new features compared to version 2.1, but good to know that this add-in is now available for VS2010. For those who a wondering what SonicFileFinder is about: SonicFileFinder implements a command for searching and opening files in a Visual Studio solution, which is very nice especially in large projects. This may sound familiar to users of JetBrain’s ReSharper, which has a “Go To File” feature. But in my opinion SonicFileFinder does a better job overall: While ReSharper (4.5) does a prefix search by default, SonicFileFinder searches for any occurrence of the entered text inside a file name. In a long list of file names (e.g. all starting with “Page…”), this allows me to focus on the part that makes the difference (e.g. “Render” in PageRenderBuffer.cs). In ReSharper I would have to type “*Render*”, which can be shortened to “*Render” (which isn’t even correct). Note that SonicFileFinder does support wildcards, of course.   SonicFileFinder remembers the last input (and thus the last result list) without a noticeable delay of the popup. If I want to search for something different, I can type right away, so this behavior doesn’t slow me down. But where it really shines is when I’m not even sure what file exactly I was looking for – I open one file, notice that it’s not the one I want, re-open the pop-up dialog and now I can choose another one from the result list without re-entering the search text. SonicFileFinder allows me to open multiple files at one (nice for service interfaces and implementations). SonicFileFinder lets me open either a Windows Explorer or Command Line window in the directory containing a specific file.

    Read the article

  • MS SQL Server 2008 Developer Training Kit Released

    - by Aamir Hasan
    The SQL Server 2008 Developer Training Kit will help you understand how to build web applications which deeply exploit the rich data types, programming models and new development paradigms in SQL Server 2008.  http://www.microsoft.com/downloads/details.aspx?FamilyID=E9C68E1B-1E0E-4299-B498-6AB3CA72A6D7&displaylang=en

    Read the article

  • How to merge your referenced assemblies into the output assembly for improved usability

    - by Daniel Cazzulino
    Something we've been doing in moq since the very beginning is to have a single assembly as output: Moq.dll. This reduces the clutter for users and lets them focus on what they need from our library, rather than getting the noise of whatever third-party (or internal) libraries we use to implement it. This is good from the deployment point of view too, and if all your libraries are actually internal infrastructure assemblies, you can even make them all internal types of your output assembly....Read full article

    Read the article

  • Gallio and VS2010

    - by andrewstopford
    With the launch of VS2010 this week it seems like a good time to talk about some of the work that has been going on with Gallio to integrate with VS2010. This work will be a feature of the next release, no beta yet but you are welcome to try the nightly builds (all normal risks apply etc). Just like VS08 you can use the VS Test Runner to run Gallio tests (such as MbUnit) in the same way you can MSTest. With Gallio installed the Test View window shows a Gallio (in this case MbUnit) test loaded (note the icon). If I go ahead and run this test I can see it working in the Test Results window. In VS2010 you can collect additonal data that a test can include (system data, intellitrace data etc). If I set VS to collect system data and run the test I can click the 'Test run completed' link and see that it is included. If I also right click in the Test Results window I can select "View Test Results Details" and a Gallio test results window will load up. Note that Gallio treats the collector data as attachments so you can go ahead and view the attachment data right from the report.

    Read the article

  • Using the Parallel class to make multithreading easy

    - by thycotic
    Kevin has posted about the Parallel class and how to use it to easily do multiple operations at once without radically changing the structure of your code.  Very neat stuff.   Jonathan Cogley is the CEO of Thycotic Software, an agile software services and product development company based in Washington DC.  Secret Server is our flagship enterprise password vault.

    Read the article

  • [Windows 8] Application bar buttons symbols

    - by Benjamin Roux
    During the development of my current Windows 8 application, I wanted to add custom application bar buttons with symbols that were not available in the StandardStyle.xaml file created with the template project. First I tried to Bing some new symbols and I found this blog post by Tim Heuer with the list of all symbols available (supposedly) but the one I wanted was not there (a heart). In this blog post I’m going the show you how to retrieve all the symbols available without creating a custom path. First you have to start the “Character map” tool and select “Segoe UI Symbol” then go at the end of the grid to see all the symbols available. When you want one just select it and copy it’s code inside the content of your Button. In my case I wanted a heart and its code is “E0A5”, so my button (or style in this case) became <Style x:Key="LoveAppBarButtonStyle" TargetType="Button" BasedOn="{StaticResource AppBarButtonStyle}"> <Setter Property="AutomationProperties.AutomationId" Value="LoveAppBarButtonStyle"/> <Setter Property="AutomationProperties.Name" Value="Love"/> <Setter Property="Content" Value="&#xE0A5;"/> </Style> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Et voila. Hope this will help you (there is A LOT of symbols")!

    Read the article

  • Windows 8 UX Guidelines in one PDF

    - by nmarun
    There are quite a few things you need do to differently in order to write a great Windows 8 App. Although MSDN has it documented completely in their site , the sheer volume of other related information might overwhelm you. In order to make it easy, they have a single pdf with all the relevant information. The file will also serve as a ‘quick ref’ document whether you are developing using C#-XAML or HTML5-JS-CSS or C++-DirectX style. And yes, this has been updated for the RTM version....(read more)

    Read the article

  • Workarounds for supporting MVVM in the Silverlight TreeView Control

    - by cibrax
    MVVM (Model-View-ViewModel) is the pattern that you will typically choose for building testable user interfaces either in WPF or Silverlight. This pattern basically relies on the data binding support in those two technologies for mapping an existing model class (the view model) to the different parts of the UI or view. Unfortunately, MVVM was not threated as first citizen for some of controls released out of the box in the Silverlight runtime or the Silverlight toolkit. That means that using data binding for implementing MVVM is not always something trivial and usually requires some customization in the existing controls. In ran into different problems myself trying to fully support data binding in controls like the tree view or the context menu or things like drag & drop.  For that reason, I decided to write this post to show how the tree view control or the tree view items can be customized to support data binding in many of its properties. In first place, you will typically use a tree view for showing hierarchical data so the view model somehow must reflect that hierarchy. An easy way to implement hierarchy in a model is to use a base item element like this one, public abstract class TreeItemModel { public abstract IEnumerable<TreeItemModel> Children; } You can later derive your concrete model classes from that base class. For example, public class CustomerModel { public string FullName { get; set; } public string Address { get; set; } public IEnumerable<OrderModel> Orders { get; set; } }   public class CustomerTreeItemModel : TreeItemModel { public CustomerTreeItemModel(CustomerModel customer) { }   public override IEnumerable<TreeItemModel> Children { get { // Return orders } } } The Children property in the CustomerTreeItem model implementation can return for instance an ObservableCollection<TreeItemModel> with the orders, so the tree view will automatically subscribe to all the changes in the collection. You can bind this model to the tree view control in the UI by using a Hierarchical data template. <e:TreeView x:Name="TreeView" ItemsSource="{Binding Customers}"> <e:TreeView.ItemTemplate> <sdk:HierarchicalDataTemplate ItemsSource="{Binding Children}"> <!-- TEMPLATE --> </sdk:HierarchicalDataTemplate> </e:TreeView.ItemTemplate> </e:TreeView> An interesting behavior with the Children property and the Hierarchical data template is that the Children property is only invoked before the expansion, so you can use lazy load at this point (The tree view control will not expand the whole tree in the first expansion). The problem with using MVVM in this control is that you can not bind properties in model with specific properties of the TreeView item such as IsSelected or IsExpanded. Here is where you need to customize the existing tree view control to support data binding in tree items. public class CustomTreeView : TreeView { public CustomTreeView() { }   protected override DependencyObject GetContainerForItemOverride() { CustomTreeViewItem tvi = new CustomTreeViewItem(); Binding expandedBinding = new Binding("IsExpanded"); expandedBinding.Mode = BindingMode.TwoWay; tvi.SetBinding(CustomTreeViewItem.IsExpandedProperty, expandedBinding); Binding selectedBinding = new Binding("IsSelected"); selectedBinding.Mode = BindingMode.TwoWay; tvi.SetBinding(CustomTreeViewItem.IsSelectedProperty, selectedBinding); return tvi; } }   public class CustomTreeViewItem : TreeViewItem { public CustomTreeViewItem() { }   protected override DependencyObject GetContainerForItemOverride() { CustomTreeViewItem tvi = new CustomTreeViewItem(); Binding expandedBinding = new Binding("IsExpanded"); expandedBinding.Mode = BindingMode.TwoWay; tvi.SetBinding(CustomTreeViewItem.IsExpandedProperty, expandedBinding); Binding selectedBinding = new Binding("IsSelected"); selectedBinding.Mode = BindingMode.TwoWay; tvi.SetBinding(CustomTreeViewItem.IsSelectedProperty, selectedBinding); return tvi; } } You basically need to derive the TreeView and TreeViewItem controls to manually add a binding for the properties you need. In the example above, I am adding a binding for the “IsExpanded” and “IsSelected” properties in the items. The model for the tree items now needs to be extended to support those properties as well, public abstract class TreeItemModel : INotifyPropertyChanged { bool isExpanded = false; bool isSelected = false;   public abstract IEnumerable<TreeItemModel> Children { get; }   public bool IsExpanded { get { return isExpanded; } set { isExpanded = value; if (PropertyChanged != null) PropertyChanged(this, new PropertyChangedEventArgs("IsExpanded")); } }   public bool IsSelected { get { return isSelected; } set { isSelected = value; if (PropertyChanged != null) PropertyChanged(this, new PropertyChangedEventArgs("IsSelected")); } }   public event PropertyChangedEventHandler PropertyChanged; } However, as soon as you use this custom tree view control, you lose all the automatic styles from the built-in toolkit themes because they are tied to the control type (TreeView in this case).  The only ugly workaround I found so far for this problem is to copy the styles from the Toolkit source code and reuse them in the application.

    Read the article

  • Windows Azure Platform Training Kit - June Update

    - by guybarrette
    Microsoft released an update to its Azure training kit. Here is what is new in the kit: Introduction to Windows Azure - VS2010 version Introduction To SQL Azure - VS2010 version Introduction to the Windows Azure Platform AppFabric Service Bus - VS2010 version Introduction to Dallas - VS2010 version Introduction to the Windows Azure Platform AppFabric Access Control Service - VS2010 version Web Services and Identity in the Cloud Exploring Windows Azure Storage VS2010 version + new Exercise: “Working with Drives” Windows Azure Deployment VS2010 version + new Exercise: “Securing Windows Azure with SSL” Minor fixes to presentations – mainly timelines, pricing, new features etc. Download it here var addthis_pub="guybarrette";

    Read the article

  • How To Temporarily Disable The Touch Screen In X1 Carbon

    - by Daniel Cazzulino
    I know, why would anyone want to do that? Scott properly predicted: Don't knock a touchscreen until you've used one. Every laptop should (and will) have a touch screen in a year. Mark my words. And surely, less than a year later, the X1 Carbon (an amazing ultrabook for sure) has a touch model. And as of today, the price difference for the touch screen is a ridiculous $30 (actually $24 with a “back to school” coupon right now ;)): So why would you NOT get it? I know for some it works great. Now, let’s get real about touch *for a developer* for a minute. About 99.9% of my time in front of my laptop I’m either using Visual Studio or Chrome. I have my hands on the keyboard ALL THE TIME. I use the trackpoint ALL THE TIME. If I want to scroll, I only have to slightly move my fingers. I don’t click around much on pages: I READ them. So, in a few months of using the X1, I think I touched the screen like 10 times, and it was mostly to clear dust, which drives whatever app is in focus crazy. Plus, at home I have this simple setup:...Read full article

    Read the article

  • Enhanced Dynamic Filtering

    - by Ricardo Peres
    Remember my last post on dynamic filtering? Well, this time I'm extending the code in order to allow two levels of querying: Match type, represented by the following options: public enum MatchType { StartsWith = 0, Contains = 1 } And word match: public enum WordMatch { AnyWord = 0, AllWords = 1, ExactPhrase = 2 } You can combine the two levels in order to achieve the following combinations: MatchType.StartsWith + WordMatch.AnyWord Matches any record that starts with any of the words specified MatchType.StartsWith + WordMatch.AllWords Not available: does not make sense, throws an exception MatchType.StartsWith + WordMatch.ExactPhrase Matches any record that starts with the exact specified phrase MatchType.Contains + WordMatch.AnyWord Matches any record that contains any of the specified words MatchType.Contains + WordMatch.AllWords Matches any record that contains all of the specified words MatchType.Contains + WordMatch.ExactPhrase Matches any record that contains the exact specified phrase Here is the code: public static IList Search(IQueryable query, Type entityType, String dataTextField, String phrase, MatchType matchType, WordMatch wordMatch, Int32 maxCount) { String [] terms = phrase.Split(' ').Distinct().ToArray(); StringBuilder result = new StringBuilder(); PropertyInfo displayProperty = entityType.GetProperty(dataTextField); IList searchList = null; MethodInfo orderByMethod = typeof(Queryable).GetMethods(BindingFlags.Public | BindingFlags.Static).Where(m = m.Name == "OrderBy").ToArray() [ 0 ].MakeGenericMethod(entityType, displayProperty.PropertyType); MethodInfo takeMethod = typeof(Queryable).GetMethod("Take", BindingFlags.Public | BindingFlags.Static).MakeGenericMethod(entityType); MethodInfo whereMethod = typeof(Queryable).GetMethods(BindingFlags.Public | BindingFlags.Static).Where(m = m.Name == "Where").ToArray() [ 0 ].MakeGenericMethod(entityType); MethodInfo distinctMethod = typeof(Queryable).GetMethods(BindingFlags.Public | BindingFlags.Static).Where(m = m.Name == "Distinct" && m.GetParameters().Length == 1).Single().MakeGenericMethod(entityType); MethodInfo toListMethod = typeof(Enumerable).GetMethod("ToList", BindingFlags.Static | BindingFlags.Public).MakeGenericMethod(entityType); MethodInfo matchMethod = typeof(String).GetMethod ( (matchType == MatchType.StartsWith) ? "StartsWith" : "Contains", new Type [] { typeof(String) } ); MemberExpression member = Expression.MakeMemberAccess ( Expression.Parameter(entityType, "n"), displayProperty ); MethodCallExpression call = null; LambdaExpression where = null; LambdaExpression orderBy = Expression.Lambda ( member, member.Expression as ParameterExpression ); switch (matchType) { case MatchType.StartsWith: switch (wordMatch) { case WordMatch.AnyWord: call = Expression.Call ( member, matchMethod, Expression.Constant(terms [ 0 ]) ); where = Expression.Lambda ( call, member.Expression as ParameterExpression ); for (Int32 i = 1; i ()); where = Expression.Lambda ( Expression.Or ( where.Body, exp ), where.Parameters.ToArray() ); } break; case WordMatch.ExactPhrase: call = Expression.Call ( member, matchMethod, Expression.Constant(phrase) ); where = Expression.Lambda ( call, member.Expression as ParameterExpression ); break; case WordMatch.AllWords: throw (new Exception("The match type StartsWith is not supported with word match AllWords")); } break; case MatchType.Contains: switch (wordMatch) { case WordMatch.AnyWord: call = Expression.Call ( member, matchMethod, Expression.Constant(terms [ 0 ]) ); where = Expression.Lambda ( call, member.Expression as ParameterExpression ); for (Int32 i = 1; i ()); where = Expression.Lambda ( Expression.Or ( where.Body, exp ), where.Parameters.ToArray() ); } break; case WordMatch.ExactPhrase: call = Expression.Call ( member, matchMethod, Expression.Constant(phrase) ); where = Expression.Lambda ( call, member.Expression as ParameterExpression ); break; case WordMatch.AllWords: call = Expression.Call ( member, matchMethod, Expression.Constant(terms [ 0 ]) ); where = Expression.Lambda ( call, member.Expression as ParameterExpression ); for (Int32 i = 1; i ()); where = Expression.Lambda ( Expression.AndAlso ( where.Body, exp ), where.Parameters.ToArray() ); } break; } break; } query = orderByMethod.Invoke(null, new Object [] { query, orderBy }) as IQueryable; query = whereMethod.Invoke(null, new Object [] { query, where }) as IQueryable; if (maxCount != 0) { query = takeMethod.Invoke(null, new Object [] { query, maxCount }) as IQueryable; } searchList = toListMethod.Invoke(null, new Object [] { query }) as IList; return (searchList); } And this is how you'd use it: IQueryable query = ctx.MyEntities; IList list = Search(query, typeof(MyEntity), "Name", "Ricardo Peres", MatchType.Contains, WordMatch.ExactPhrase, 10 /*0 for all*/); SyntaxHighlighter.config.clipboardSwf = 'http://alexgorbatchev.com/pub/sh/2.0.320/scripts/clipboard.swf'; SyntaxHighlighter.brushes.CSharp.aliases = ['c#', 'c-sharp', 'csharp']; SyntaxHighlighter.all();

    Read the article

  • Interesting links week #5

    - by erwin21
    Below a list of interesting links that I found this week: Frontend: Useful jQuery Tutorials - January 2011 50 Useful CSS3 Tutorials Development: 5 Helpful DateTime Extension Methods Helpful DateTime extension methods for dealing with Time Zones SEO: 30 (New) SEO Terms You Have to Know in 2011 URL Design 6 Must Have Google Chrome SEO Extensions Interested in more interesting links follow me at twitter http://twitter.com/erwingriekspoor

    Read the article

  • TechDays Canada 2010

    - by guybarrette
    John Oxley announced that TechDays is returning to Canada in more cities then ever in 2010. Vancouver – September 14/15 at the Vancouver Convention Centre Edmonton – October 5/6 at the Shaw Conference Centre Toronto – October 27/28 at the Metro Toronto Convention Centre Halifax – November 2/3 at the World Trade & Convention Centre Ottawa – November 9/10 at the Hampton Inn & Conference Centre Montreal – November 23/24 at the Palais de Congres Winnipeg – December 7/8 at the Winnipeg Convention Centre Calgary – December 14/15 at the Calgary Stampede Get all the info here var addthis_pub="guybarrette";

    Read the article

  • Implementing an Interceptor Using NHibernate’s Built In Dynamic Proxy Generator

    - by Ricardo Peres
    NHibernate 3.2 came with an included proxy generator, which means there is no longer the need – or the possibility, for that matter – to choose Castle DynamicProxy, LinFu or Spring. This is actually a good thing, because it means one less assembly to deploy. Apparently, this generator was based, at least partially, on LinFu. As there are not many tutorials out there demonstrating it’s usage, here’s one, for demonstrating one of the most requested features: implementing INotifyPropertyChanged. This interceptor, of course, will still feature all of NHibernate’s functionalities that you are used to, such as lazy loading, and such. We will start by implementing an NHibernate interceptor, by inheriting from the base class NHibernate.EmptyInterceptor. This class does not do anything by itself, but it allows us to plug in behavior by overriding some of its methods, in this case, Instantiate: 1: public class NotifyPropertyChangedInterceptor : EmptyInterceptor 2: { 3: private ISession session = null; 4:  5: private static readonly ProxyFactory factory = new ProxyFactory(); 6:  7: public override void SetSession(ISession session) 8: { 9: this.session = session; 10: base.SetSession(session); 11: } 12:  13: public override Object Instantiate(String clazz, EntityMode entityMode, Object id) 14: { 15: Type entityType = Type.GetType(clazz); 16: IProxy proxy = factory.CreateProxy(entityType, new _NotifyPropertyChangedInterceptor(), typeof(INotifyPropertyChanged)) as IProxy; 17: 18: _NotifyPropertyChangedInterceptor interceptor = proxy.Interceptor as _NotifyPropertyChangedInterceptor; 19: interceptor.Proxy = this.session.SessionFactory.GetClassMetadata(entityType).Instantiate(id, entityMode); 20:  21: this.session.SessionFactory.GetClassMetadata(entityType).SetIdentifier(proxy, id, entityMode); 22:  23: return (proxy); 24: } 25: } Then we need a class that implements the NHibernate dynamic proxy behavior, let’s place it inside our interceptor, because it will only need to be used there: 1: class _NotifyPropertyChangedInterceptor : NHibernate.Proxy.DynamicProxy.IInterceptor 2: { 3: private PropertyChangedEventHandler changed = delegate { }; 4:  5: public Object Proxy 6: { 7: get; 8: set;} 9:  10: #region IInterceptor Members 11:  12: public Object Intercept(InvocationInfo info) 13: { 14: Boolean isSetter = info.TargetMethod.Name.StartsWith("set_") == true; 15: Object result = null; 16:  17: if (info.TargetMethod.Name == "add_PropertyChanged") 18: { 19: PropertyChangedEventHandler propertyChangedEventHandler = info.Arguments[0] as PropertyChangedEventHandler; 20: this.changed += propertyChangedEventHandler; 21: } 22: else if (info.TargetMethod.Name == "remove_PropertyChanged") 23: { 24: PropertyChangedEventHandler propertyChangedEventHandler = info.Arguments[0] as PropertyChangedEventHandler; 25: this.changed -= propertyChangedEventHandler; 26: } 27: else 28: { 29: result = info.TargetMethod.Invoke(this.Proxy, info.Arguments); 30: } 31:  32: if (isSetter == true) 33: { 34: String propertyName = info.TargetMethod.Name.Substring("set_".Length); 35: this.changed(this.Proxy, new PropertyChangedEventArgs(propertyName)); 36: } 37:  38: return (result); 39: } 40:  41: #endregion 42: } What this does for every interceptable method (those who are either virtual or from the INotifyPropertyChanged) is: For methods that came from the INotifyPropertyChanged interface, add_PropertyChanged and remove_PropertyChanged (yes, events are methods ), we add an implementation that adds or removes the event handlers to the delegate which we declared as changed; For all the others, we direct them to the place where they are actually implemented, which is the Proxy field; If the call is setting a property, it fires afterwards the PropertyChanged event. In order to use this, we need to add the interceptor to the Configuration before building the ISessionFactory: 1: using (ISessionFactory factory = cfg.SetInterceptor(new NotifyPropertyChangedInterceptor()).BuildSessionFactory()) 2: { 3: using (ISession session = factory.OpenSession()) 4: using (ITransaction tx = session.BeginTransaction()) 5: { 6: Customer customer = session.Get<Customer>(100); //some id 7: INotifyPropertyChanged inpc = customer as INotifyPropertyChanged; 8: inpc.PropertyChanged += delegate(Object sender, PropertyChangedEventArgs e) 9: { 10: //fired when a property changes 11: }; 12: customer.Address = "some other address"; //will raise PropertyChanged 13: customer.RecentOrders.ToList(); //will trigger the lazy loading 14: } 15: } Any problems, questions, do drop me a line!

    Read the article

  • Code is not the best way to draw

    - by Bertrand Le Roy
    It should be quite obvious: drawing requires constant visual feedback. Why is it then that we still draw with code in so many situations? Of course it’s because the low-level APIs always come first, and design tools are built after and on top of those. Existing design tools also don’t typically include complex UI elements such as buttons. When we launched our Touch Display module for Netduino Go!, we naturally built APIs that made it easy to draw on the screen from code, but very soon, we felt the limitations and tedium of drawing in code. In particular, any modification requires a modification of the code, followed by compilation and deployment. When trying to set-up buttons at pixel precision, the process is not optimal. On the other hand, code is irreplaceable as a way to automate repetitive tasks. While tools like Illustrator have ways to repeat graphical elements, they do so in a way that is a little alien and counter-intuitive to my developer mind. From these reflections, I knew that I wanted a design tool that would be structurally code-centric but that would still enable immediate feedback and mouse adjustments. While thinking about the best way to achieve this goal, I saw this fantastic video by Bret Victor: The key to the magic in all these demos is permanent execution of the code being edited. Whenever a parameter is being modified, everything is re-executed immediately so that the impact of the modification is instantaneously visible. If you do this all the time, the code and the result of its execution fuse in the mind of the user into dual representations of a single object. All mental barriers disappear. It’s like magic. The tool I built, Nutshell, is just another implementation of this principle. It manipulates a list of graphical operations on the screen. Each operation has a nice editor, and translates into a bit of code. Any modification to the parameters of the operation will modify the bit of generated code and trigger a re-execution of the whole program. This happens so fast that it feels like the drawing reacts instantaneously to all changes. The order of the operations is also the order in which the code gets executed. So if you want to bring objects to the front, move them down in the list, and up if you want to move them to the back: But where it gets really fun is when you start applying code constructs such as loops to the design tool. The elements that you put inside of a loop can use the loop counter in expressions, enabling crazy scenarios while retaining the real-time edition features. When you’re done building, you can just deploy the code to the device and see it run in its native environment: This works thanks to two code generators. The first code generator is building JavaScript that is executed in the browser to build the canvas view in the web page hosting the tool. The second code generator is building the C# code that will run on the Netduino Go! microcontroller and that will drive the display module. The possibilities are fascinating, even if you don’t care about driving small touch screens from microcontrollers: it is now possible, within a reasonable budget, to build specialized design tools for very vertical applications. Direct feedback is a powerful ally in many domains. Code generation driven by visual designers has become more approachable than ever thanks to extraordinary JavaScript libraries and to the powerful development platform that modern browsers provide. I encourage you to tinker with Nutshell and let it open your eyes to new possibilities that you may not have considered before. It’s open source. And of course, my company, Nwazet, can help you develop your own custom browser-based direct feedback design tools. This is real visual programming…

    Read the article

  • Passing values between Activities using MonoDroid

    - by Wallym
    Been doing some work in MonoDroid and found that I needed to pass a user entered value from on Activity to another Activity in MonoDroid.  Here's how I did it. In my sending Activity, I need to take some user user entered data and send it to my second activity.  Here is the code:             string UserId = Convert.ToString(et.Text);            if (!String.IsNullOrEmpty(UserId))            {                Intent i = new Intent();                i.SetClass(this, typeof(CustomList));                i.AddFlags(ActivityFlags.NewTask);                i.PutExtra("TwitterId", UserId);                StartActivity(i);            }  In this code, I have called .PutExtra and  passed it with a key.  In this case, I am passing a Twitter id.  In the code that is receiving the data, the code to retrieve the Twitter id is: string twitterId = Intent.GetStringExtra("TwitterId"); The call to GetStringExtra() returns the value passed on the key.

    Read the article

  • Visual Studio 2008 Solution Setup

    - by Ben Griswold
    In this screencast, Noah and I demonstrate preferred practices around .NET solution setup, naming conventions and version control.  I consider this an introductory video.  If you’ve been around the block, you might want to skip this episode but if you’re a .NET/Visual Studio newbie, it may be worth a look.    YouTube - Visual Studio 2008 Solution Setup   This is one of our first screencasts.  Actually it is the very first.  If you have feedback, I’d love to hear it.

    Read the article

< Previous Page | 537 538 539 540 541 542 543 544 545 546 547 548  | Next Page >