Search Results

Search found 41110 results on 1645 pages for 'oracle integration solution'.

Page 546/1645 | < Previous Page | 542 543 544 545 546 547 548 549 550 551 552 553  | Next Page >

  • JDK 7 Feature Complete Milestone Reached

    - by Henrik Ståhl
    The JDK 7 project has reached Feature Complete (FC). This means that development and QA have finished all planned feature and test development work in the release and are moving the focus to testing and bug fixing on all supported JDK 7 platforms. This is a major step towards JDK 7 General Availability (GA) and implies that we are tracking close to the plan published on openjdk.java.net. (The original plan was FC on 12/16. We hit this less than a week late, but verifying that everything was done in time took a couple of weeks due to the intervening holidays.) The definition of the FC milestone allows for exceptions to be integrated later. There are very few such exceptions in the project, the most prominent being updated JAXP/JAXB/JAX-WS and integration of the enhanced JMX agent from JRockit. Our project management does not expect the exceptions to have any negative impact on the release plan. The project may still be delayed if the Expert Groups for the JSRs included in Java SE 7 (203, 292, 334, 336) decide to introduce changes which cannot be accomodated within the existing schedule. Apart from that caveat, Oracle remains confident with the published plan.

    Read the article

  • Diving into OpenStack Network Architecture - Part 2 - Basic Use Cases

    - by Ronen Kofman
      rkofman Normal rkofman 4 138 2014-06-05T03:38:00Z 2014-06-05T05:04:00Z 3 2735 15596 Oracle Corporation 129 36 18295 12.00 Clean Clean false false false false EN-US X-NONE HE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi; mso-bidi-language:AR-SA;} In the previous post we reviewed several network components including Open vSwitch, Network Namespaces, Linux Bridges and veth pairs. In this post we will take three simple use cases and see how those basic components come together to create a complete SDN solution in OpenStack. With those three use cases we will review almost the entire network setup and see how all the pieces work together. The use cases we will use are: 1.       Create network – what happens when we create network and how can we create multiple isolated networks 2.       Launch a VM – once we have networks we can launch VMs and connect them to networks. 3.       DHCP request from a VM – OpenStack can automatically assign IP addresses to VMs. This is done through local DHCP service controlled by OpenStack Neutron. We will see how this service runs and how does a DHCP request and response look like. In this post we will show connectivity, we will see how packets get from point A to point B. We first focus on how a configured deployment looks like and only later we will discuss how and when the configuration is created. Personally I found it very valuable to see the actual interfaces and how they connect to each other through examples and hands on experiments. After the end game is clear and we know how the connectivity works, in a later post, we will take a step back and explain how Neutron configures the components to be able to provide such connectivity.  We are going to get pretty technical shortly and I recommend trying these examples on your own deployment or using the Oracle OpenStack Tech Preview. Understanding these three use cases thoroughly and how to look at them will be very helpful when trying to debug a deployment in case something does not work. Use case #1: Create Network Create network is a simple operation it can be performed from the GUI or command line. When we create a network in OpenStack the network is only available to the tenant who created it or it could be defined as “shared” and then it can be used by all tenants. A network can have multiple subnets but for this demonstration purpose and for simplicity we will assume that each network has exactly one subnet. Creating a network from the command line will look like this: # neutron net-create net1 Created a new network: +---------------------------+--------------------------------------+ | Field                     | Value                                | +---------------------------+--------------------------------------+ | admin_state_up            | True                                 | | id                        | 5f833617-6179-4797-b7c0-7d420d84040c | | name                      | net1                                 | | provider:network_type     | vlan                                 | | provider:physical_network | default                              | | provider:segmentation_id  | 1000                                 | | shared                    | False                                | | status                    | ACTIVE                               | | subnets                   |                                      | | tenant_id                 | 9796e5145ee546508939cd49ad59d51f     | +---------------------------+--------------------------------------+ Creating a subnet for this network will look like this: # neutron subnet-create net1 10.10.10.0/24 Created a new subnet: +------------------+------------------------------------------------+ | Field            | Value                                          | +------------------+------------------------------------------------+ | allocation_pools | {"start": "10.10.10.2", "end": "10.10.10.254"} | | cidr             | 10.10.10.0/24                                  | | dns_nameservers  |                                                | | enable_dhcp      | True                                           | | gateway_ip       | 10.10.10.1                                     | | host_routes      |                                                | | id               | 2d7a0a58-0674-439a-ad23-d6471aaae9bc           | | ip_version       | 4                                              | | name             |                                                | | network_id       | 5f833617-6179-4797-b7c0-7d420d84040c           | | tenant_id        | 9796e5145ee546508939cd49ad59d51f               | +------------------+------------------------------------------------+ We now have a network and a subnet, on the network topology view this looks like this: Now let’s dive in and see what happened under the hood. Looking at the control node we will discover that a new namespace was created: # ip netns list qdhcp-5f833617-6179-4797-b7c0-7d420d84040c   The name of the namespace is qdhcp-<network id> (see above), let’s look into the namespace and see what’s in it: # ip netns exec qdhcp-5f833617-6179-4797-b7c0-7d420d84040c ip addr 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN     link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00     inet 127.0.0.1/8 scope host lo     inet6 ::1/128 scope host        valid_lft forever preferred_lft forever 12: tap26c9b807-7c: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN     link/ether fa:16:3e:1d:5c:81 brd ff:ff:ff:ff:ff:ff     inet 10.10.10.3/24 brd 10.10.10.255 scope global tap26c9b807-7c     inet6 fe80::f816:3eff:fe1d:5c81/64 scope link        valid_lft forever preferred_lft forever   We see two interfaces in the namespace, one is the loopback and the other one is an interface called “tap26c9b807-7c”. This interface has the IP address of 10.10.10.3 and it will also serve dhcp requests in a way we will see later. Let’s trace the connectivity of the “tap26c9b807-7c” interface from the namespace.  First stop is OVS, we see that the interface connects to bridge  “br-int” on OVS: # ovs-vsctl show 8a069c7c-ea05-4375-93e2-b9fc9e4b3ca1     Bridge "br-eth2"         Port "br-eth2"             Interface "br-eth2"                 type: internal         Port "eth2"             Interface "eth2"         Port "phy-br-eth2"             Interface "phy-br-eth2"     Bridge br-ex         Port br-ex             Interface br-ex                 type: internal     Bridge br-int         Port "int-br-eth2"             Interface "int-br-eth2"         Port "tap26c9b807-7c"             tag: 1             Interface "tap26c9b807-7c"                 type: internal         Port br-int             Interface br-int                 type: internal     ovs_version: "1.11.0"   In the picture above we have a veth pair which has two ends called “int-br-eth2” and "phy-br-eth2", this veth pair is used to connect two bridge in OVS "br-eth2" and "br-int". In the previous post we explained how to check the veth connectivity using the ethtool command. It shows that the two are indeed a pair: # ethtool -S int-br-eth2 NIC statistics:      peer_ifindex: 10 . .   #ip link . . 10: phy-br-eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000 . . Note that “phy-br-eth2” is connected to a bridge called "br-eth2" and one of this bridge's interfaces is the physical link eth2. This means that the network which we have just created has created a namespace which is connected to the physical interface eth2. eth2 is the “VM network” the physical interface where all the virtual machines connect to where all the VMs are connected. About network isolation: OpenStack supports creation of multiple isolated networks and can use several mechanisms to isolate the networks from one another. The isolation mechanism can be VLANs, VxLANs or GRE tunnels, this is configured as part of the initial setup in our deployment we use VLANs. When using VLAN tagging as an isolation mechanism a VLAN tag is allocated by Neutron from a pre-defined VLAN tags pool and assigned to the newly created network. By provisioning VLAN tags to the networks Neutron allows creation of multiple isolated networks on the same physical link.  The big difference between this and other platforms is that the user does not have to deal with allocating and managing VLANs to networks. The VLAN allocation and provisioning is handled by Neutron which keeps track of the VLAN tags, and responsible for allocating and reclaiming VLAN tags. In the example above net1 has the VLAN tag 1000, this means that whenever a VM is created and connected to this network the packets from that VM will have to be tagged with VLAN tag 1000 to go on this particular network. This is true for namespace as well, if we would like to connect a namespace to a particular network we have to make sure that the packets to and from the namespace are correctly tagged when they reach the VM network. In the example above we see that the namespace interface “tap26c9b807-7c” has vlan tag 1 assigned to it, if we examine OVS we see that it has flows which modify VLAN tag 1 to VLAN tag 1000 when a packet goes to the VM network on eth2 and vice versa. We can see this using the dump-flows command on OVS for packets going to the VM network we see the modification done on br-eth2: #  ovs-ofctl dump-flows br-eth2 NXST_FLOW reply (xid=0x4):  cookie=0x0, duration=18669.401s, table=0, n_packets=857, n_bytes=163350, idle_age=25, priority=4,in_port=2,dl_vlan=1 actions=mod_vlan_vid:1000,NORMAL  cookie=0x0, duration=165108.226s, table=0, n_packets=14, n_bytes=1000, idle_age=5343, hard_age=65534, priority=2,in_port=2 actions=drop  cookie=0x0, duration=165109.813s, table=0, n_packets=1671, n_bytes=213304, idle_age=25, hard_age=65534, priority=1 actions=NORMAL   For packets coming from the interface to the namespace we see the following modification: #  ovs-ofctl dump-flows br-int NXST_FLOW reply (xid=0x4):  cookie=0x0, duration=18690.876s, table=0, n_packets=1610, n_bytes=210752, idle_age=1, priority=3,in_port=1,dl_vlan=1000 actions=mod_vlan_vid:1,NORMAL  cookie=0x0, duration=165130.01s, table=0, n_packets=75, n_bytes=3686, idle_age=4212, hard_age=65534, priority=2,in_port=1 actions=drop  cookie=0x0, duration=165131.96s, table=0, n_packets=863, n_bytes=160727, idle_age=1, hard_age=65534, priority=1 actions=NORMAL   To summarize we can see that when a user creates a network Neutron creates a namespace and this namespace is connected through OVS to the “VM network”. OVS also takes care of tagging the packets from the namespace to the VM network with the correct VLAN tag and knows to modify the VLAN for packets coming from VM network to the namespace. Now let’s see what happens when a VM is launched and how it is connected to the “VM network”. Use case #2: Launch a VM Launching a VM can be done from Horizon or from the command line this is how we do it from Horizon: Attach the network: And Launch Once the virtual machine is up and running we can see the associated IP using the nova list command : # nova list +--------------------------------------+--------------+--------+------------+-------------+-----------------+ | ID                                   | Name         | Status | Task State | Power State | Networks        | +--------------------------------------+--------------+--------+------------+-------------+-----------------+ | 3707ac87-4f5d-4349-b7ed-3a673f55e5e1 | Oracle Linux | ACTIVE | None       | Running     | net1=10.10.10.2 | +--------------------------------------+--------------+--------+------------+-------------+-----------------+ The nova list command shows us that the VM is running and that the IP 10.10.10.2 is assigned to this VM. Let’s trace the connectivity from the VM to VM network on eth2 starting with the VM definition file. The configuration files of the VM including the virtual disk(s), in case of ephemeral storage, are stored on the compute node at/var/lib/nova/instances/<instance-id>/. Looking into the VM definition file ,libvirt.xml,  we see that the VM is connected to an interface called “tap53903a95-82” which is connected to a Linux bridge called “qbr53903a95-82”: <interface type="bridge">       <mac address="fa:16:3e:fe:c7:87"/>       <source bridge="qbr53903a95-82"/>       <target dev="tap53903a95-82"/>     </interface>   Looking at the bridge using the brctl show command we see this: # brctl show bridge name     bridge id               STP enabled     interfaces qbr53903a95-82          8000.7e7f3282b836       no              qvb53903a95-82                                                         tap53903a95-82    The bridge has two interfaces, one connected to the VM (“tap53903a95-82 “) and another one ( “qvb53903a95-82”) connected to “br-int” bridge on OVS: # ovs-vsctl show 83c42f80-77e9-46c8-8560-7697d76de51c     Bridge "br-eth2"         Port "br-eth2"             Interface "br-eth2"                 type: internal         Port "eth2"             Interface "eth2"         Port "phy-br-eth2"             Interface "phy-br-eth2"     Bridge br-int         Port br-int             Interface br-int                 type: internal         Port "int-br-eth2"             Interface "int-br-eth2"         Port "qvo53903a95-82"             tag: 3             Interface "qvo53903a95-82"     ovs_version: "1.11.0"   As we showed earlier “br-int” is connected to “br-eth2” on OVS using the veth pair int-br-eth2,phy-br-eth2 and br-eth2 is connected to the physical interface eth2. The whole flow end to end looks like this: VM è tap53903a95-82 (virtual interface)è qbr53903a95-82 (Linux bridge) è qvb53903a95-82 (interface connected from Linux bridge to OVS bridge br-int) è int-br-eth2 (veth one end) è phy-br-eth2 (veth the other end) è eth2 physical interface. The purpose of the Linux Bridge connecting to the VM is to allow security group enforcement with iptables. Security groups are enforced at the edge point which are the interface of the VM, since iptables nnot be applied to OVS bridges we use Linux bridge to apply them. In the future we hope to see this Linux Bridge going away rules.  VLAN tags: As we discussed in the first use case net1 is using VLAN tag 1000, looking at OVS above we see that qvo41f1ebcf-7c is tagged with VLAN tag 3. The modification from VLAN tag 3 to 1000 as we go to the physical network is done by OVS  as part of the packet flow of br-eth2 in the same way we showed before. To summarize, when a VM is launched it is connected to the VM network through a chain of elements as described here. During the packet from VM to the network and back the VLAN tag is modified. Use case #3: Serving a DHCP request coming from the virtual machine In the previous use cases we have shown that both the namespace called dhcp-<some id> and the VM end up connecting to the physical interface eth2  on their respective nodes, both will tag their packets with VLAN tag 1000.We saw that the namespace has an interface with IP of 10.10.10.3. Since the VM and the namespace are connected to each other and have interfaces on the same subnet they can ping each other, in this picture we see a ping from the VM which was assigned 10.10.10.2 to the namespace: The fact that they are connected and can ping each other can become very handy when something doesn’t work right and we need to isolate the problem. In such case knowing that we should be able to ping from the VM to the namespace and back can be used to trace the disconnect using tcpdump or other monitoring tools. To serve DHCP requests coming from VMs on the network Neutron uses a Linux tool called “dnsmasq”,this is a lightweight DNS and DHCP service you can read more about it here. If we look at the dnsmasq on the control node with the ps command we see this: dnsmasq --no-hosts --no-resolv --strict-order --bind-interfaces --interface=tap26c9b807-7c --except-interface=lo --pid-file=/var/lib/neutron/dhcp/5f833617-6179-4797-b7c0-7d420d84040c/pid --dhcp-hostsfile=/var/lib/neutron/dhcp/5f833617-6179-4797-b7c0-7d420d84040c/host --dhcp-optsfile=/var/lib/neutron/dhcp/5f833617-6179-4797-b7c0-7d420d84040c/opts --leasefile-ro --dhcp-range=tag0,10.10.10.0,static,120s --dhcp-lease-max=256 --conf-file= --domain=openstacklocal The service connects to the tap interface in the namespace (“--interface=tap26c9b807-7c”), If we look at the hosts file we see this: # cat  /var/lib/neutron/dhcp/5f833617-6179-4797-b7c0-7d420d84040c/host fa:16:3e:fe:c7:87,host-10-10-10-2.openstacklocal,10.10.10.2   If you look at the console output above you can see the MAC address fa:16:3e:fe:c7:87 which is the VM MAC. This MAC address is mapped to IP 10.10.10.2 and so when a DHCP request comes with this MAC dnsmasq will return the 10.10.10.2.If we look into the namespace at the time we initiate a DHCP request from the VM (this can be done by simply restarting the network service in the VM) we see the following: # ip netns exec qdhcp-5f833617-6179-4797-b7c0-7d420d84040c tcpdump -n 19:27:12.191280 IP 0.0.0.0.bootpc > 255.255.255.255.bootps: BOOTP/DHCP, Request from fa:16:3e:fe:c7:87, length 310 19:27:12.191666 IP 10.10.10.3.bootps > 10.10.10.2.bootpc: BOOTP/DHCP, Reply, length 325   To summarize, the DHCP service is handled by dnsmasq which is configured by Neutron to listen to the interface in the DHCP namespace. Neutron also configures dnsmasq with the combination of MAC and IP so when a DHCP request comes along it will receive the assigned IP. Summary In this post we relied on the components described in the previous post and saw how network connectivity is achieved using three simple use cases. These use cases gave a good view of the entire network stack and helped understand how an end to end connection is being made between a VM on a compute node and the DHCP namespace on the control node. One conclusion we can draw from what we saw here is that if we launch a VM and it is able to perform a DHCP request and receive a correct IP then there is reason to believe that the network is working as expected. We saw that a packet has to travel through a long list of components before reaching its destination and if it has done so successfully this means that many components are functioning properly. In the next post we will look at some more sophisticated services Neutron supports and see how they work. We will see that while there are some more components involved for the most part the concepts are the same. @RonenKofman

    Read the article

  • Responding to the page unload in a managed bean

    - by frank.nimphius
    Though ADF Faces provides an uncommitted data warning functionality, developers may have the requirement to respond to the page unload event within custom application code, programmed in a managed bean. The af:clientListener tag that is used in ADF Faces to listen for JavaScript and ADF Faces client component events does not provide the option to listen for the unload event. So this often recommended way of implementing JavaScript in ADF Faces does not work for this use case. To send an event from JavaScript to the server, ADF Faces provides the af:serverListener tag that you use to queue a CustomEvent that invokes method in a managed bean. While this is part of the solution, during testing, it turns out, the browser native JavaScript unload event itself is not very helpful to send an event to the server using the af:serverListener tag. The reason for this is that when the unload event fires, the page already has been unloaded and the ADF Faces AdfPage object needed to queue the custom event already returns null. So the solution to the unload page event handling is the unbeforeunload event, which I am not sure if all browsers support them. I tested IE and FF and obviously they do though. To register the beforeunload event, you use an advanced JavaScript programming technique that dynamically adds listeners to page events. <af:document id="d1" onunload="performUnloadEvent"                      clientComponent="true"> <af:resource type="javascript">   window.addEventListener('beforeunload',                            function (){performUnloadEvent()},false)      function performUnloadEvent(){   //note that af:document must have clientComponent="true" set   //for JavaScript to access the component object   var eventSource = AdfPage.PAGE.findComponentByAbsoluteId('d1');   //var x and y are dummy variables obviously needed to keep the page   //alive for as long it takes to send the custom event to the server   var x = AdfCustomEvent.queue(eventSource,                                "handleOnUnload",                                {args:'noargs'},false);   //replace args:'noargs' with key:value pairs if your event needs to   //pass arguments and values to the server side managed bean.   var y = 0; } </af:resource> <af:serverListener type="handleOnUnload"                    method="#{UnloadHandler.onUnloadHandler}"/> // rest of the page goes here … </af:document> The managed bean method called by the custom event has the following signature:  public void onUnloadHandler(ClientEvent clientEvent) {  } I don't really have a good explanation for why the JavaSCript variables "x" and "y" are needed, but this is how I got it working. To me it ones again shows how fragile custom JavaScript development is and why you should stay away from using it whenever possible. Note: If the unload event is produced through navigation in JavaServer Faces, then there is no need to use JavaScript for this. If you know that navigation is performed from one page to the next, then the action you want to perform can be handled in JSF directly in the context of the lifecycle.

    Read the article

  • Jersey 2 Integrated in GlassFish 4

    - by arungupta
    JAX-RS 2.0 has released Early Draft 3 and Jersey 2 (the implementation of JAX-RS 2.0) released Milestone 5. Jakub reported that this milestone is now integrated in GlassFish 4 builds. The first integration has basic functionality working and leaves EJB, CDI, and Validation for the coming months. TOTD #182 explains how to get started with creating a simple Maven-based application, deploying on GlassFish 4, and using the newly introduced Client API to test the REST endpoint. GlassFish 4 contains Jersey 2 as the JAX-RS implementation. If you want to use Jersey 1.1 functionality, then Martin's blog provide more details on that. All JAX-RS 1.x functionality will be supported using standard APIs anyway. This workaround is only required if Jersey 1.x functionality needs to be accessed. Here are some pointers to follow JAX-RS 2 Specification Early Draft 3 Latest status on specification (jax-rs-spec.java.net) Latest JAX-RS 2.0 Javadocs Latest status on Jersey 2 (jersey.java.net) Latest Jersey API Javadocs Latest GlassFish 4.0 Promoted Build Follow @gf_jersey Provide feedback on Jersey 2 to [email protected] and JAX-RS specification to [email protected].

    Read the article

  • JDK bug migration: bugs.sun.com now backed by JIRA

    - by darcy
    The JDK bug migration from a Sun legacy system to JIRA has reached another planned milestone: the data displayed on bugs.sun.com is now backed by JIRA rather than by the legacy system. Besides maintaining the URLs to old bugs, bugs filed since the migration to JIRA are now visible too. The basic information presented about a bug is the same as before, but reformatted and using JIRA terminology: Instead of a "category", a bug now has a "component / subcomponent" classification. As outlined previously, part of the migration effort was reclassifying bugs according to a new classification scheme; I'll write more about the new scheme in a subsequent blog post. Instead of a list of JDK versions a bug is "reported against," there is a list of "affected versions." The names of the JDK versions have largely been regularized; code names like "tiger" and "mantis" have been replaced by the release numbers like "5.0" and "1.4.2". Instead of "release fixed," there are now "Fixed Versions." The legacy system had many fields that could hold a sequence of text entries, including "Description," "Workaround", and "Evaluation." JIRA instead only has two analogous fields labeled as "Description" and a unified stream of "Comments." Nearly coincident with switching to JIRA, we also enabled an agent which automatically updates a JIRA issue in response to pushes into JDK-related Hg repositories. These comments include the changeset URL, the user making the push, and a time stamp. These comments are first added when a fix is pushed to a team integration repository and then added again when the fix is pushed into the master repository for a release. We're still in early days of production usage of JIRA for JDK bug tracking, but the transition to production went smoothly and over 1,000 new issues have already been filed. Many other facets of the migration are still in the works, including hosting new incidents filed at bugs.sun.com in a tailored incidents project in JIRA.

    Read the article

  • Jersey 1.8 is released

    - by Jakub Podlesak
    On the last Friday, we have released the 1.8 version of Jersey, the open source, production quality, reference implementation of JAX-RS. The JAX-RS 1.1 specification is available at the JCP web site and also available in non-normative HTML here. For an overview of JAX-RS features read the Jersey user guide. To get started with Jersey read the getting started section of that guide. To understand more about what Jersey depends on read the dependencies section of that guide. See change log here. This, 1.8, version of Jersey is going to be integrated into GlassFish 3.1.1 and contains bug fixes mainly. The most important fix from this perspective is included in the JAX-RS/EJB integration layer. It is now possible to implement JAX-RS resources as EJB Session beans, which implement local and/or remote interfaces. This functionality was broken in previous releases. Another great addition should come into the client space, where Pavel has already done some preparation in the client API (including some breaking changes there) for the non-blocking asynchronous client feature. The implementation is already part of the experimental Jersey space and should be included as part of the stable Jersey bits in some of the coming releases. For feedback send email to: [email protected] (archived here) or log bugs/features here.

    Read the article

  • TFS 2008 warning when trying to add set-up project

    - by pm_2
    I have a similar problem to that mentioned here. However, mine is in TFS 2008. I get the following warning when trying to add a set-up project to an existing solution (either just create the set-up project or “add to source control”). The project that you are attempting to add to source control may cause other source control users to have difficulty opening this solution or getting newer versions of it. To avoid this problem, add the project from a location below the binding root of the other source controlled projects in the solution Continue / Cancel As with the question above, I think my folder structure is at fault. However, the current folder structure is as follows: Solution Main Project My guess is that, for some reason it’s trying to add the set-up project directly into the solution folder. So, is there a way to validate where it’s trying to add this without selecting “Continue” above? Alternatively, is there a way to force the set-up project to create in its own folder?

    Read the article

  • Groovy Refactoring in NetBeans

    - by Martin Janicek
    Hi guys, during the NetBeans 7.3 feature development, I spend quite a lot of time trying to get some basic Groovy refactoring to the game. I've implemented find usages and rename refactoring for some basic constructs (class types, fields, properties, variables and methods). It's certainly not perfect and it will definitely need a lot fixes and improvements to get it hundred percent reliable, but I need to start somehow :) I would like to ask all of you to test it as much as possible and file a new tickets to the cases where it doesn't work as expected (e.g. some occurrences which should be in usages isn't there etc.) ..it's really important for me because I don't have real Groovy project and thus I can test only some simple cases. I can promise, that with your help we can make it really useful for the next release. Also please be aware that the current version is focusing only on the .groovy files. That means it won't find any usages from the .java files (and the same applies for finding usages from java files - it won't find any groovy usages). I know it's not ideal, but as I said.. we have to start somehow and it wasn't possible to make it all-in-one, so only other option was to wait for the NetBeans 7.4. I'll focus on better Java-Groovy integration in the next release (not only in refactoring, but also in navigation, code completion etc.) BTW: I've created a new component with surprising name "Refactoring" in our bugzilla[1], so please put the reported issues into this category. [1] http://netbeans.org/bugzilla/buglist.cgi?product=groovy;component=Refactoring

    Read the article

  • How to test my application on older version of IE?

    - by Rakesh Juyal
    I have installed IE8 on my system. I usually test my application on this browser, but the problem arises when i got to know that the client is using IE7. Now how can i test my application on IE7? One possible solution is to have dual booting on my system. So on version of Windows i can have IE7 and on another i can have IE8. But i really don't want to use this solution. Another possible solution is to use PC Emulator [ Don't know what is this, just heard about these ]. Using which i can have multiple IE version simultaneously. Have you ever tried this solution? Please name any good FREE emulator. Please let me know if there is any other better solution.

    Read the article

  • Visual Studio creating bin/ folder in wrong location.

    - by Joviee
    In Visual Studio 2008, I have a solution with a number of projects. Each project has the same build output path of "..\bin\Debug\" for debug, and "..\bin\Release\" for release. So the directory structure looks like this: solution\ bin\ project1\ project2\ project3\ This all works fine, all the assemblies go to the correct location when I build the project, etc. Howevever, when I first open the solution in Visual Studio, an empty bin folder is created one level up from where it should. So I am getting: bin\ solution\ bin\ project1\ project2\ project3\ This folder is only created when I first open the solution. Never when I build. I have looked through the .sln and every .csproj file, and I cannot work out why this folder is being created. So, my questions are: a) Why is this bin folder being created? b) How do I stop Visual Studio from creating this bin folder?

    Read the article

  • Basic Puppet installation with Solaris 11.2 beta

    - by user13366125
    At the recent announcement we talked a lot about the Puppet integration. But how do you set it up? I want to show this in this blog entry. However this example i'm using is even useful in practice. Due to the extremely low overhead of zones i'm frequently seeing really large numbers of zones on a single system. Changing /etc/hosts or changing an SMF service property on 3 systems is not that hard. Doing it on a system with 500 zones is ... let say it diplomatic ... a job you give to someone you want to punish. Puppet can help in this case making of managing the configuration and to ease the distribution. You describe the changes you want to make in a file or set of file called manifest in the Puppet world and then roll them out to your servers, no matter if they are virtual or physical. A warning at first: Puppet is a really,really vast topic. This article is really basic and it doesn't goes more than just even toe's deep into the possibilities and capabilities of Puppet. It doesn't try to explain Puppet ... just how you get it up and running and do basic tests. There are many good books on Puppet. Please read one of them, and the concepts and the example will get much clearer immediately. (more)

    Read the article

  • At the Java DEMOgrounds - ZeroTurnaround and its LiveRebel 2.5

    - by Janice J. Heiss
    At the ZeroTurnaround demo, I spoke with Krishnan Badrinarayanan, their Product Marketing Manager. ZeroTurnaround, the creator of JRebel and LiveRebel, describes itself on their site as a company “dedicated to changing the way the world develops, tests and runs Java applications."“We just launched LiveRebel 2.5 today,” stated Badrinarayanan, “which enables companies to embrace the concept and practice of continuous delivery, which means having a pipeline that takes products right from the developers to an end-user, faster, more frequently -- all the while ensuring that it’s a quality product that does not break in production. So customers don’t feel the discontinuity that something has changed under them and that they can’t deal with the change. And all this happens while there is zero down time.”He pointed out that Salesforce.com is not useable from 3 a.m. to 5 a.m. on Saturday because they are engaged in maintenance. “With LiveRebel 2.5, you can unify the whole delivery chain without having any downtime at all,” he said. “There are many products that tell customers to take their tools and change how they work as an organization so that you they have to conform to the way the tool prescribes them to work as an application team. We take a more pragmatic approach. A lot of companies might use Jenkins or Bamboo to do continuous integration. We extend that. We say, take our product, take LiveRebel okay, and integrate it with Jenkins – you can do that quickly, so that, in half a day, you will be up and running. And let LiveRebel automate your deployment processes and all the automated tasks that go with it. Right from tests to the staging environment to production -- all with zero downtime and with no impact on users currently using the system.” “So if you were to make the update right now and you had 100 users on your system, they would not even know this was happening. It would maintain their sessions and transfer them over to the new version, all in the background.”

    Read the article

  • GeoTools Demo Embedded in an Application Framework via Maven

    - by Geertjan
    GeoTools 8.4 was very recently released, according to its active blog, and to celebrate here's a starting point for working with GeoTools on the NetBeans Platform: The sources of the above are below, as a Maven project, so this project can be used in any IDE or command line: http://java.net/projects/nb-api-samples/sources/api-samples/show/versions/7.3/tutorials/geospatial/geotools/MyGeospatialSystem Though quite dated, the GeoTools NetBeans Quick Start is very helpful, especially since it used Maven too, but not the NetBeans Platform, unlike the above sample. From the point of view of NetBeans Platform developers, the GeoTools JMapPane class is very useful, providing the integration point between GeoTools and the rest of the NetBeans Platform application. Being integrated into the NetBeans Platform means that a host of standard features are now available to the GeoTools features, e.g., print functionality, which only requires a runtime dependency on the NetBeans Print API, together with the "print.printable" client property put into constructor of the TopComponent: By the way, I've spent some time now and again being confused about the difference between GeoTools and GeoToolkit. Here's an interesting starting point to beginning to understand the differences and history between them. Soon I'd like to have an example similar for the above for GeoToolkit.

    Read the article

  • python - returns incorrect positive #

    - by tekknolagi
    what i'm trying to do is write a quadratic equation solver but when the solution should be -1, as in quadratic(2, 4, 2) it returns 1 what am i doing wrong? #!/usr/bin/python import math def quadratic(a, b, c): #a = raw_input("What\'s your `a` value?\t") #b = raw_input("What\'s your `b` value?\t") #c = raw_input("What\'s your `c` value?\t") a, b, c = float(a), float(b), float(c) disc = (b*b)-(4*a*c) print "Discriminant is:\n" + str(disc) if disc = 0: root = math.sqrt(disc) top1 = b + root top2 = b - root sol1 = top1/(2*a) sol2 = top2/(2*a) if sol1 != sol2: print "Solution 1:\n" + str(sol1) + "\nSolution 2:\n" + str(sol2) if sol1 == sol2: print "One solution:\n" + str(sol1) else: print "No solution!" EDIT: it returns the following... import mathmodules mathmodules.quadratic(2, 4, 2) Discriminant is: 0.0 One solution: 1.0

    Read the article

  • Update 3 for "NetBeans Platform for Beginners"

    - by Geertjan
    The latest monthly update of NetBeans Platform for Beginners was released during the last few days. Without any question at all, this book is awesome. I love how it is a 'living book' and that on a monthly basis new updates are made available. In this particular update, as before, reader comments and questions have led to changes and enhancements in the book. In addition, there's now a tighter integration between the long list of samples on GitHub and the book, since wherever a sample relates to a text in the book, the book has a handy icon, so that you know when to hop over to GitHub to get a related sample. Do you have comments or questions about the book? That's what the feedback link is for: https://leanpub.com/nbp4beginners/feedback And there's also a free sample, just in case you'd like to get a feel for the book prior to buying it: http://samples.leanpub.com/nbp4beginners-sample.pdf If you're from a company where you're all sharing a single copy of the book, it would be great if you'd go back and support this great project (and hopefully encourage future books being written) by buying additional copies, ideally one for each developer. Let's show the authors that writing books on the NetBeans Platform is a really profitable thing to do (and I'm hoping they'll write one on Maven and the NetBeans Platform, as well)!

    Read the article

  • Android show driving direction route between two geopoints

    - by kendrelaxman
    I have googled for 2-3 days now, but I am not able to get the perfect solution for my problem. I need to show the route between two geo points (Not a straight line but need to show driving direction kind of route) but I am not able to find any solution to this. I had come across the solution in this question. But I guess the solution also not working. If you can help me out that will be great. I found the solution Look for answer bellow...

    Read the article

  • "Exception has been thrown by the target of an invocation" Running Tests - VS2008 SP1

    - by omatrot
    I'm using Visual Studio 2008 Team Suite and I'm unable to run tests and display the Test/Windows/Test Result Window. The result is a dialog box with the following content : "Exception has been thrown by the target of an invocation". Team Explorer has been installed after Visual Studio 2008 SP1. So I have re-apllied the service pack. Searching the web I found that this error is pretty common but unfortunately, the proposed solutions does not work for me. The problem was never analysed so I decided to give it a try : I reproduced the problem on a computer, attached the process with windbg and start with the basic investigations. Following are the first results : 0:000>!dumpstack OS Thread Id: 0xdb0 (0) Current frame: USER32!NtUserWaitMessage+0x15 ChildEBP RetAddr Caller,Callee 003fec94 75a32674 USER32!DialogBox2+0x222, calling USER32!NtUserWaitMessage 003fecd0 75a3288a USER32!InternalDialogBox+0xe5, calling USER32!DialogBox2 003fecfc 75a6f8d0 USER32!SoftModalMessageBox+0x757, calling USER32!InternalDialogBox 003fed3c 6eb61996 mscorwks!Thread::ReverseLeaveRuntime+0x95, calling mscorwks!_EH_epilog3 003fedb0 75a6fbac USER32!MessageBoxWorker+0x269, calling USER32!SoftModalMessageBox 003fede0 6ea559c3 mscorwks!SetupThreadNoThrow+0x19a, calling mscorwks!_EH_epilog3_catch_GS 003fee24 6eb61d8a mscorwks!HasIllegalReentrancy+0xac, calling mscorwks!_EH_epilog3 003fee30 6ea89796 mscorwks!SimpleComCallWrapper::Release+0x2e, calling mscorwks!CompareExchangeMP 003fee38 6ea0da05 mscorwks!CLRException::HandlerState::CleanupTry+0x16, calling mscorwks!GetCurrentSEHRecord 003fee44 6ea0c9c0 mscorwks!Thread::EnablePreemptiveGC+0xf, calling mscorwks!Thread::CatchAtSafePoint 003fee4c 6ea8a241 mscorwks!Unknown_Release_Internal+0x24d, calling mscorwks!GCHolder<1,0,0>::Pop 003fee50 6ea0c86c mscorwks!_EH_epilog3_catch_GS+0xa, calling mscorwks!__security_check_cookie 003fee54 6ea8a24c mscorwks!Unknown_Release_Internal+0x258, calling mscorwks!_EH_epilog3_catch_GS 003fee7c 75a16941 USER32!UserCallWinProcCheckWow+0x13d, calling ntdll!RtlDeactivateActivationContextUnsafeFast 003feed8 7082119e msenv!ATL::CComCritSecLock<ATL::CComCriticalSection>::Lock+0xd, calling ntdll!RtlEnterCriticalSection 003fef08 75a6fe5b USER32!MessageBoxIndirectW+0x2e, calling USER32!MessageBoxWorker 003fef7c 70a1e367 msenv!MessageBoxPVoidW+0xda 003fefd4 70a1db60 msenv!VBDialogCover2+0x11b 003ff01c 70a1e4c0 msenv!VBMessageBox2W+0xf0, calling msenv!VBDialogCover2 003ff044 7087246b msenv!main_GetAppNameW+0xa, calling msenv!GetAppNameInternal 003ff04c 70a1e4f2 msenv!VBMessageBox3W+0x1c, calling msenv!VBMessageBox2W 003ff064 70a1d6d7 msenv!_IdMsgShow+0x362, calling msenv!VBMessageBox3W 003ff0cc 70951841 msenv!TaskDialogCallback+0x7e0, calling msenv!_IdMsgShow 003ff118 6eb20da4 mscorwks!Unknown_QueryInterface+0x230, calling mscorwks!_EH_epilog3_catch_GS 003ff14c 6eb20c43 mscorwks!Unknown_QueryInterface_Internal+0x3d8, calling mscorwks!_EH_epilog3_catch_GS 003ff168 02006ec4 02006ec4, calling 0247a1e8 003ff16c 6ea0c86c mscorwks!_EH_epilog3_catch_GS+0xa, calling mscorwks!__security_check_cookie 003ff198 6eb20562 mscorwks!COMToCLRWorker+0xb34, calling mscorwks!_EH_epilog3_catch_GS 003ff19c 0247a235 0247a235, calling mscorwks!COMToCLRWorker 003ff1c4 7083249f msenv!CVSCommandTarget::ExecCmd+0x937 003ff1e4 7086d5c8 msenv!VsReportErrorInfo+0x11, calling msenv!TaskDialogCallback+0xd8 003ff1f8 7093e65b msenv!CVSCommandTarget::ExecCmd+0x945, calling msenv!VsReportErrorInfo 003ff25c 7081f53a msenv!ATL::CComPtr<IVsLanguageInfo>::~CComPtr<IVsLanguageInfo>+0x24, calling msenv!_EH_epilog3 003ff260 70b18d72 msenv!LogCommand+0x4c, calling msenv!ATL::CComPtr<IVsCodePageSelection>::~CComPtr<IVsCodePageSelection> 003ff264 70b18d77 msenv!LogCommand+0x51, calling msenv!_EH_epilog3 003ff280 70a4fd0e msenv!CMsoButtonUser::FClick+0x1d1, calling msenv!CVSCommandTarget::ExecCmd 003ff2f4 70823a87 msenv!CTLSITE::QueryInterface+0x16 003ff31c 70cb7d4d msenv!TBCB::FNotifyFocus+0x204 003ff35c 70ce5fda msenv!TB::NotifyControl+0x101 003ff3bc 709910f6 msenv!TB::FRequestFocus+0x4ed, calling msenv!TB::NotifyControl 003ff414 708254ba msenv!CMsoButtonUser::FEnabled+0x3d, calling msenv!GetQueryStatusFlags 003ff428 7086222a msenv!TBC::FAutoEnabled+0x24 003ff43c 7098e1eb msenv!TB::LProcessInputMsg+0xdb4 003ff458 6bec1c49 (MethodDesc 0x6bcd7f54 +0x89 System.Windows.Forms.Form.DefWndProc(System.Windows.Forms.Message ByRef)), calling 6be3b738 003ff50c 70823ab0 msenv!FPtbFromSite+0x16 003ff520 70991c43 msenv!TB::PtbParent+0x25, calling msenv!FPtbFromSite 003ff52c 708dda49 msenv!TBWndProc+0x2da 003ff588 0203d770 0203d770, calling 0247a1e8 003ff598 70822a70 msenv!CPaneFrame::Release+0x118, calling msenv!_EH_epilog3 003ff5b0 75a16238 USER32!InternalCallWinProc+0x23 003ff5dc 75a168ea USER32!UserCallWinProcCheckWow+0x109, calling USER32!InternalCallWinProc 003ff620 75a16899 USER32!UserCallWinProcCheckWow+0x6a, calling ntdll!RtlActivateActivationContextUnsafeFast 003ff654 75a17d31 USER32!DispatchMessageWorker+0x3bc, calling USER32!UserCallWinProcCheckWow 003ff688 70847f2b msenv!CMsoComponent::FPreTranslateMessage+0x72, calling msenv!MainFTranslateMessage 003ff6b4 75a17dfa USER32!DispatchMessageW+0xf, calling USER32!DispatchMessageWorker 003ff6c4 70831553 msenv!EnvironmentMsgLoop+0x1ea, calling USER32!DispatchMessageW 003ff6f8 708eb9bd msenv!CMsoCMHandler::FPushMessageLoop+0x86, calling msenv!EnvironmentMsgLoop 003ff724 708eb94d msenv!SCM::FPushMessageLoop+0xb7 003ff74c 708eb8e9 msenv!SCM_MsoCompMgr::FPushMessageLoop+0x28, calling msenv!SCM::FPushMessageLoop 003ff768 708eb8b8 msenv!CMsoComponent::PushMsgLoop+0x28 003ff788 708ebe4e msenv!VStudioMainLogged+0x482, calling msenv!CMsoComponent::PushMsgLoop 003ff7ac 70882afe msenv!CVsActivityLogSingleton::Instance+0xdf, calling msenv!_EH_epilog3 003ff7d8 70882afe msenv!CVsActivityLogSingleton::Instance+0xdf, calling msenv!_EH_epilog3 003ff7dc 707e4e31 msenv!VActivityLogStartupEntries+0x42 003ff7f4 7081f63b msenv!ATL::CComPtr<IClassFactory>::~CComPtr<IClassFactory>+0x24, calling msenv!_EH_epilog3 003ff7f8 708b250f msenv!ATL::CComQIPtr<IUnknown,&IID_IUnknown>::~CComQIPtr<IUnknown,&IID_IUnknown>+0x1d, calling msenv!_EH_epilog3 003ff820 708e7561 msenv!VStudioMain+0xc1, calling msenv!VStudioMainLogged 003ff84c 2f32aabc devenv!util_CallVsMain+0xff 003ff878 2f3278f2 devenv!CDevEnvAppId::Run+0x11fd, calling devenv!util_CallVsMain 003ff97c 77533b23 ntdll!RtlpAllocateHeap+0xe73, calling ntdll!_SEH_epilog4 003ff9f0 77536cd7 ntdll!RtlpLowFragHeapAllocFromContext+0x882, calling ntdll!RtlpSubSegmentInitialize 003ffa10 7753609f ntdll!RtlNtStatusToDosError+0x3b, calling ntdll!RtlNtStatusToDosErrorNoTeb 003ffa14 775360a4 ntdll!RtlNtStatusToDosError+0x40, calling ntdll!_SEH_epilog4 003ffa40 775360a4 ntdll!RtlNtStatusToDosError+0x40, calling ntdll!_SEH_epilog4 003ffa44 75bd2736 kernel32!LocalBaseRegOpenKey+0x159, calling ntdll!RtlNtStatusToDosError 003ffa48 75bd2762 kernel32!LocalBaseRegOpenKey+0x22a, calling kernel32!_SEH_epilog4 003ffac4 75bd2762 kernel32!LocalBaseRegOpenKey+0x22a, calling kernel32!_SEH_epilog4 003ffac8 75bd28c9 kernel32!RegOpenKeyExInternalW+0x130, calling kernel32!LocalBaseRegOpenKey 003ffad8 75bd28de kernel32!RegOpenKeyExInternalW+0x211 003ffae0 75bd28e5 kernel32!RegOpenKeyExInternalW+0x21d, calling kernel32!_SEH_epilog4 003ffb04 6f282e2b MSVCR90!_unlock+0x15, calling ntdll!RtlLeaveCriticalSection 003ffb14 75bd2642 kernel32!BaseRegCloseKeyInternal+0x41, calling ntdll!NtClose 003ffb28 75bd25d0 kernel32!RegCloseKey+0xd4, calling kernel32!_SEH_epilog4 003ffb5c 75bd25d0 kernel32!RegCloseKey+0xd4, calling kernel32!_SEH_epilog4 003ffb60 2f321ea4 devenv!DwInitSyncObjects+0x340 003ffb90 2f327bf4 devenv!WinMain+0x74, calling devenv!CDevEnvAppId::Run 003ffbac 2f327c68 devenv!License::GetPID+0x258, calling devenv!WinMain 003ffc3c 75bd3677 kernel32!BaseThreadInitThunk+0xe 003ffc48 77539d72 ntdll!__RtlUserThreadStart+0x70 003ffc88 77539d45 ntdll!_RtlUserThreadStart+0x1b, calling ntdll!__RtlUserThreadStart 0:000> !pe -nested Exception object: 050aae9c Exception type: System.Reflection.TargetInvocationException Message: Exception has been thrown by the target of an invocation. InnerException: System.NullReferenceException, use !PrintException 050aac64 to see more StackTrace (generated): SP IP Function 003FEC2C 6D2700F7 mscorlib_ni!System.RuntimeType.CreateInstanceSlow(Boolean, Boolean)+0x57 003FEC5C 6D270067 mscorlib_ni!System.RuntimeType.CreateInstanceImpl(Boolean, Boolean, Boolean)+0xe7 003FEC94 6D270264 mscorlib_ni!System.Activator.CreateInstance(System.Type, Boolean)+0x44 003FECA4 6AD02DAF Microsoft_VisualStudio_Shell_9_0_ni!Microsoft.VisualStudio.Shell.Package.CreateToolWindow(System.Type, Int32, Microsoft.VisualStudio.Shell.ProvideToolWindowAttribute)+0x67 003FED30 6AD0311B Microsoft_VisualStudio_Shell_9_0_ni!Microsoft.VisualStudio.Shell.Package.CreateToolWindow(System.Type, Int32)+0xb7 003FED58 6AD02D12 Microsoft_VisualStudio_Shell_9_0_ni!Microsoft.VisualStudio.Shell.Package.FindToolWindow(System.Type, Int32, Boolean, Microsoft.VisualStudio.Shell.ProvideToolWindowAttribute)+0x7a 003FED88 6AD02D39 Microsoft_VisualStudio_Shell_9_0_ni!Microsoft.VisualStudio.Shell.Package.FindToolWindow(System.Type, Int32, Boolean)+0x11 003FED94 02585E30 Microsoft_VisualStudio_QualityTools_TestCaseManagement!Microsoft.VisualStudio.TestTools.TestCaseManagement.QualityToolsPackage.InitToolWindowVariable[[System.__Canon, mscorlib]](System.__Canon ByRef, System.String, Boolean)+0x58 003FEDD0 02585DBE Microsoft_VisualStudio_QualityTools_TestCaseManagement!Microsoft.VisualStudio.TestTools.TestCaseManagement.QualityToolsPackage.InitToolWindowVariable[[System.__Canon, mscorlib]](System.__Canon ByRef, System.String)+0x36 003FEDE4 02585D32 Microsoft_VisualStudio_QualityTools_TestCaseManagement!Microsoft.VisualStudio.TestTools.TestCaseManagement.QualityToolsPackage.ShowToolWindow[[System.__Canon, mscorlib]](System.__Canon ByRef, System.String, Boolean)+0x3a 003FEE00 02585AB4 Microsoft_VisualStudio_QualityTools_TestCaseManagement!Microsoft.VisualStudio.TestTools.TestCaseManagement.QualityToolsPackage.OpenTestResultsToolWindow()+0x2c 003FEE10 02585A6E Microsoft_VisualStudio_QualityTools_TestCaseManagement!Microsoft.VisualStudio.TestTools.TestCaseManagement.QualityToolsPackage.OnMenuViewTestResults(System.Object, System.EventArgs)+0x6 003FEE18 6CD4F993 System_ni!System.ComponentModel.Design.MenuCommand.Invoke()+0x43 003FEE40 6CD4F9D4 System_ni!System.ComponentModel.Design.MenuCommand.Invoke(System.Object)+0x8 003FEE48 6AD000FA Microsoft_VisualStudio_Shell_9_0_ni!Microsoft.VisualStudio.Shell.OleMenuCommandService.Microsoft.VisualStudio.OLE.Interop.IOleCommandTarget.Exec(System.Guid ByRef, UInt32, UInt32, IntPtr, IntPtr)+0x11a 003FEEA0 6AD03FB8 Microsoft_VisualStudio_Shell_9_0_ni!Microsoft.VisualStudio.Shell.Package.Microsoft.VisualStudio.OLE.Interop.IOleCommandTarget.Exec(System.Guid ByRef, UInt32, UInt32, IntPtr, IntPtr)+0x44 StackTraceString: <none> HResult: 80131604 0:000> !PrintException 050aac64 Exception object: 050aac64 Exception type: System.NullReferenceException Message: Object reference not set to an instance of an object. InnerException: <none> StackTrace (generated): SP IP Function 003FE660 078E60BE Microsoft_VisualStudio_TeamSystem_Integration!Microsoft.VisualStudio.TeamSystem.Integration.TcmResultsPublishManager..ctor(Microsoft.VisualStudio.TeamSystem.Integration.ResultsPublishManager)+0xc6 003FE674 078E5C91 Microsoft_VisualStudio_TeamSystem_Integration!Microsoft.VisualStudio.TeamSystem.Integration.ResultsPublishManager..ctor(Microsoft.VisualStudio.TeamSystem.Integration.TeamFoundationHostHelper)+0x59 003FE684 078E2FA0 Microsoft_VisualStudio_TeamSystem_Integration!Microsoft.VisualStudio.TeamSystem.Integration.VsetServerHelper..ctor(System.IServiceProvider)+0x50 003FE6A4 078E2E90 Microsoft_VisualStudio_TeamSystem_Common!Microsoft.VisualStudio.TeamSystem.Integration.Client.VsetHelper.InitializeThrow(System.IServiceProvider)+0x20 003FE6B8 078E2E2A Microsoft_VisualStudio_TeamSystem_Common!Microsoft.VisualStudio.TeamSystem.Integration.Client.VsetHelper.InitializeHelper(System.IServiceProvider)+0x22 003FE6E0 078E2DEC Microsoft_VisualStudio_TeamSystem_Common!Microsoft.VisualStudio.TeamSystem.Integration.Client.VsetHelper.CreateVsetHelper(System.IServiceProvider)+0x1c 003FE6F0 078E2DAC Microsoft_VisualStudio_QualityTools_TestCaseManagement!Microsoft.VisualStudio.TestTools.TestCaseManagement.QualityToolsPackage.get_VsetHelper()+0x14 003FE6F8 02586BBE Microsoft_VisualStudio_QualityTools_TestCaseManagement!Microsoft.VisualStudio.TestTools.TestCaseManagement.ResultsToolWindow..ctor()+0x9f6 003FE798 02585F8A Microsoft_VisualStudio_QualityTools_TestCaseManagement!Microsoft.VisualStudio.TestTools.TestCaseManagement.ResultToolWindowHost..ctor()+0x1a StackTraceString: <none> HResult: 80004003 In order to be able to continue the analysis, we need to get the parameters to see what is going on. I also tried to run devenv.exe with the /log switch. No error in the log after reproducing the problem. Finally, If Team Explorer is removed from the system, the problem goes away. Any help appreciated. TIA. Olivier.

    Read the article

  • At the Java DEMOgrounds - JavaFX

    - by Janice J. Heiss
    JavaFX has made rapid progress in the last year, as is evidenced by the wealth of demos on display. A few questions appear to be prominent in the minds of JavaFX enthusiasts. Here are some questions with answers provided by Oracle’s JavaFX team.When will the rest of the JavaFX code be available in open source?Oracle has started to open source JavaFX. The existing platform code will finish being committed to OpenJFX by the end of the year.Why should I use JavaFX instead of HTML5?We see JavaFX as complementary to HTML5, and most companies we talk to react positively once they understand how they can benefit from a hybrid solution. As most HTML5 developers will tell you, the biggest obstacle to deploying HTML5 applications is fragmentation. JavaFX offers a convenient way to render HTML and JavaScript within its WebView component, which provides the same level of quality and features across Windows, Mac, and Linux. Additionally, JavaScript in WebView can make calls into the Java code, and vice versa, allowing developers to tap into the best of both worlds.What is the market penetration of JavaFX? It is currently limited, as we've just made available JavaFX on Mac and Linux in August, but we expect JavaFX to be present on millions of desktop-type systems now that JavaFX is included as part of the JRE. We have also significantly lowered the level of effort required to deploy an application bundling the JRE and JavaFX runtime libraries. Finally, we are seeing a lot of interest by companies operating in the embedded market, who have found it hard to develop compelling UIs with existing technologies.Below are summaries of JavaFX Demos on display at JavaOne 2012:JavaFX EnsembleEnsemble is a collection of over 100 JavaFX samples packaged as a JavaFX application. This demo is especially useful to those new to JavaFX, or those not familiar with its latest features (e.g. canvas, color picker). Ensemble is the reference for getting familiar with JavaFX functionality. Each sample can be run from within Ensemble, and the API for each sample, as well as the source code are available alongside the sample.The samples source code can be saved as a NetBeans project for convenience purposes, or can be copied as is in any other Java IDE. The version of Ensemble shown is packaged as a native Windows application, including the JRE and JavaFX libraries. It was created with the JavaFX packager, which provides multiple packaging options, and frees developers from the cumbersome and error-prone process of packaging a Java application.FX Experience ToolsFX Experience Tools is a JavaFX application that provides different utilities to create new skins for your JavaFX applications. One of the most powerful features of JavaFX is the ability to skin applications via CSS. Since not all Java developers are familiar with CSS, these utilities are a great starting point to create custom skins. JavaFX allows developers to easily customize the look and feel of their applications through CSS. FX Experience Tools makes it easy to create new themes for JavaFX applications, even if you are not familiar with CSS. FX Experience Tools is a JavaFX application packaged as a native application including the JRE and JavaFX runtime libraries. FX Experience tools shows how this type of deployment simplifies the packaging of Java applications without requiring developers to master the intricacies of Java application packaging. The download site for FX Experience Tools is http://fxexperience.com/2012/03/announcing-fx-experience-tools/ JavaFX Scene BuilderJavaFX Scene Builder is a visual layout tool that lets users quickly design the UI of your JavaFX application, without coding. Users can drag and drop UI components, modify their properties, apply style sheets, and the FXML code they create for the layout is automatically generated in the background. The result is an FXML file that can then be combined with a Java project by binding the UI to the application’s logic. Developers can easily create user interfaces for their application, as well as separate the application’s UI from the application logic for easier maintenance. Attendees can get this app by going to javafx.com and checking the link at top of the “Overview” page.Scene Builder allows developers to easily layout JavaFX UI controls, charts, shapes, and containers, so that you can quickly prototype user interfaces. It generates FXML, an XML-based markup language that enables users to define an application’s user interface, separately from the application logic. Scene Builder can be used in combination with any Java IDE, but is more tightly integrated with NetBeans IDE. It is written as a JavaFX application, with native desktop integration on Windows and Mac OS X. It’s a perfect example of a JavaFX application packages as a native application.Scene Builder is available for your preferred development platform. Besides the GA release on Windows and Mac, a Developer Preview of Scene Builder for Linux has just been made available.Scenic ViewScenic View is a tool that can be used to understand the current state of your application UI, and to also easily manipulate properties of the scenegraph without having to keep editing your code. Creating UIs is a complex process, and it can be hard and tedious detecting these issues, editing the code, and then compiling it to test the app again. Scenic View is a great diagnostics tool that helps developers identify these issues and correct them at runtime.Attendees can get Scenic View by going to javafx.com, selecting the “Community” tab, and clicking the link under the “Third Party Tools and Utilities” section.Scenic View allows developers to easily examine the state of a JavaFX application scenegraph while the application is running. Some of the latest features added to Scenic View include event monitoring, javadoc browsing, and contextual menus. The download site for Scenic View is available here: http://fxexperience.com/scenic-view/ Conference TourConference Tour is an application that lets users discover some of the major Java conferences throughout the world. The Conference Tour application shows how simple it is to mix JavaFX and HTML5 into a single, interactive application. Attendees get Conference Tour here.JavaFX includes a Web engine based on Webkit that provides a consistent web interface to render HTML5 across operating systems, within a JavaFX application. JavaFX features a bi-directional bridge that allows Java APIs to call JavaScript within WebView, or allows JavaScript to make calls to Java APIs. This allows developers to leverage the best of both worlds.Java EE developers can take advantage of WebView and the JavaScript-Java bridge to allow their HTML clients to seamlessly bypass Web browser’s sandbox to access native system resources, providing a richer user experience.FXMediaPlayerFXMediaPlayer is an application that lets developers check different media functionality in JavaFX, such as synthesizer or support for HTTP Live Streaming (HLS). This demo shows how developers can embed video content in their Java applications. JavaFX leverages the underlying video (e.g., H.264) and audio (e.g., AAC) codecs on the user’s computer. JavaFX APIs allow developers to interact with the video content (e.g. play/pause, or programmable markers). Some of the latest media features introduced in JavaFX 2.2 include HTTP Live Streaming (HLS). Obviously there is a lot for JavaFX enthusiasts to chew on!

    Read the article

  • What's up with LDoms: Part 4 - Virtual Networking Explained

    - by Stefan Hinker
    I'm back from my summer break (and some pressing business that kept me away from this), ready to continue with Oracle VM Server for SPARC ;-) In this article, we'll have a closer look at virtual networking.  Basic connectivity as we've seen it in the first, simple example, is easy enough.  But there are numerous options for the virtual switches and virtual network ports, which we will discuss in more detail now.   In this section, we will concentrate on virtual networking - the capabilities of virtual switches and virtual network ports - only.  Other options involving hardware assignment or redundancy will be covered in separate sections later on. There are two basic components involved in virtual networking for LDoms: Virtual switches and virtual network devices.  The virtual switch should be seen just like a real ethernet switch.  It "runs" in the service domain and moves ethernet packets back and forth.  A virtual network device is plumbed in the guest domain.  It corresponds to a physical network device in the real world.  There, you'd be plugging a cable into the network port, and plug the other end of that cable into a switch.  In the virtual world, you do the same:  You create a virtual network device for your guest and connect it to a virtual switch in a service domain.  The result works just like in the physical world, the network device sends and receives ethernet packets, and the switch does all those things ethernet switches tend to do. If you look at the reference manual of Oracle VM Server for SPARC, there are numerous options for virtual switches and network devices.  Don't be confused, it's rather straight forward, really.  Let's start with the simple case, and work our way to some more sophisticated options later on.  In many cases, you'll want to have several guests that communicate with the outside world on the same ethernet segment.  In the real world, you'd connect each of these systems to the same ethernet switch.  So, let's do the same thing in the virtual world: root@sun # ldm add-vsw net-dev=nxge2 admin-vsw primary root@sun # ldm add-vnet admin-net admin-vsw mars root@sun # ldm add-vnet admin-net admin-vsw venus We've just created a virtual switch called "admin-vsw" and connected it to the physical device nxge2.  In the physical world, we'd have powered up our ethernet switch and installed a cable between it and our big enterprise datacenter switch.  We then created a virtual network interface for each one of the two guest systems "mars" and "venus" and connected both to that virtual switch.  They can now communicate with each other and with any system reachable via nxge2.  If primary were running Solaris 10, communication with the guests would not be possible.  This is different with Solaris 11, please see the Admin Guide for details.  Note that I've given both the vswitch and the vnet devices some sensible names, something I always recommend. Unless told otherwise, the LDoms Manager software will automatically assign MAC addresses to all network elements that need one.  It will also make sure that these MAC addresses are unique and reuse MAC addresses to play nice with all those friendly DHCP servers out there.  However, if we want to do this manually, we can also do that.  (One reason might be firewall rules that work on MAC addresses.)  So let's give mars a manually assigned MAC address: root@sun # ldm set-vnet mac-addr=0:14:4f:f9:c4:13 admin-net mars Within the guest, these virtual network devices have their own device driver.  In Solaris 10, they'd appear as "vnet0".  Solaris 11 would apply it's usual vanity naming scheme.  We can configure these interfaces just like any normal interface, give it an IP-address and configure sophisticated routing rules, just like on bare metal.  In many cases, using Jumbo Frames helps increase throughput performance.  By default, these interfaces will run with the standard ethernet MTU of 1500 bytes.  To change this,  it is usually sufficient to set the desired MTU for the virtual switch.  This will automatically set the same MTU for all vnet devices attached to that switch.  Let's change the MTU size of our admin-vsw from the example above: root@sun # ldm set-vsw mtu=9000 admin-vsw primary Note that that you can set the MTU to any value between 1500 and 16000.  Of course, whatever you set needs to be supported by the physical network, too. Another very common area of network configuration is VLAN tagging. This can be a little confusing - my advise here is to be very clear on what you want, and perhaps draw a little diagram the first few times.  As always, keeping a configuration simple will help avoid errors of all kind.  Nevertheless, VLAN tagging is very usefull to consolidate different networks onto one physical cable.  And as such, this concept needs to be carried over into the virtual world.  Enough of the introduction, here's a little diagram to help in explaining how VLANs work in LDoms: Let's remember that any VLANs not explicitly tagged have the default VLAN ID of 1. In this example, we have a vswitch connected to a physical network that carries untagged traffic (VLAN ID 1) as well as VLANs 11, 22, 33 and 44.  There might also be other VLANs on the wire, but the vswitch will ignore all those packets.  We also have two vnet devices, one for mars and one for venus.  Venus will see traffic from VLANs 33 and 44 only.  For VLAN 44, venus will need to configure a tagged interface "vnet44000".  For VLAN 33, the vswitch will untag all incoming traffic for venus, so that venus will see this as "normal" or untagged ethernet traffic.  This is very useful to simplify guest configuration and also allows venus to perform Jumpstart or AI installations over this network even if the Jumpstart or AI server is connected via VLAN 33.  Mars, on the other hand, has full access to untagged traffic from the outside world, and also to VLANs 11,22 and 33, but not 44.  On the command line, we'd do this like this: root@sun # ldm add-vsw net-dev=nxge2 pvid=1 vid=11,22,33,44 admin-vsw primary root@sun # ldm add-vnet admin-net pvid=1 vid=11,22,33 admin-vsw mars root@sun # ldm add-vnet admin-net pvid=33 vid=44 admin-vsw venus Finally, I'd like to point to a neat little option that will make your live easier in all those cases where configurations tend to change over the live of a guest system.  It's the "id=<somenumber>" option available for both vswitches and vnet devices.  Normally, Solaris in the guest would enumerate network devices sequentially.  However, it has ways of remembering this initial numbering.  This is good in the physical world.  In the virtual world, whenever you unbind (aka power off and disassemble) a guest system, remove and/or add network devices and bind the system again, chances are this numbering will change.  Configuration confusion will follow suit.  To avoid this, nail down the initial numbering by assigning each vnet device it's device-id explicitly: root@sun # ldm add-vnet admin-net id=1 admin-vsw venus Please consult the Admin Guide for details on this, and how to decipher these network ids from Solaris running in the guest. Thanks for reading this far.  Links for further reading are essentially only the Admin Guide and Reference Manual and can be found above.  I hope this is useful and, as always, I welcome any comments.

    Read the article

  • Complex type support in process flow &ndash; XMLTYPE

    - by shawn
        Before OWB 11.2 release, there are only 5 simple data types supported in process flow: DATE, BOOLEAN, INTEGER, FLOAT and STRING. A new complex data type – XMLTYPE is added in 11.2, in order to support complex data being passed between the process flow activities. In this article we will give a simple example to illustrate the usage of the new type and some related editors.     Suppose there is a bookstore that uses XML format orders as shown below (we use the simplest form for the illustration purpose), then we can create a process flow to handle the order, take the order as the input, then extract necessary information, and generate a confirmation email to the customer automatically. <order id=’0001’>     <customer>         <name>Tom</name>         <email>[email protected]</email>     </customer>     <book id=’Java_001’>         <quantity>3</quantity>     </book> </order>     Considering a simple user case here: we use an input parameter/variable with XMLTYPE to hold the XML content of the order; then we can use an Assign activity to retrieve the email info from the order; after that, we can create an email activity to send the email (Other activities might be added in practical case, but will not be described here). 1) Set XML content value     For testing purpose, we will create a variable to hold the sample order, and then this will be used among the process flow activities. When the variable is of XMLTYPE and the “Literal” value is set the true, the advance editor will be enabled.     Click the “Advance Editor” shown as above, a simple xml editor will popup. The editor has basic features like syntax highlight and check as shown below:     We can also do the basic validation or validation against schema with the editor by selecting the normalized schema. With this, it will be easier to provide the value for XMLTYPE variables. 2) Extract information from XML content     After setting the value, we need to extract the email information with the Assign activity. In process flow, an enhanced expression builder is used to help users construct the XPath for extracting values from XML content. When the variable’s literal value is set the false, the advance editor is enabled.     Click the button, the advance editor will popup, as shown below:     The editor is based on the expression builder (which is often used in mapping etc), an XPath lib panel is appended which provides some help information on how to write the XPath. The expression used here is: “XMLTYPE.EXTRACT(XML_ORDER,'/order/customer/email/text()').getStringVal()”, which uses ‘/order/customer/email/text()’ as the XPath to extract the email info from the XML document.     A variable called “EMAIL_ADDR” is created with String data type to hold the value extracted.     Then we bind the “VARIABLE” parameter of Assign activity to “EMAIL_ADDR” variable, which means the value of the “EMAIL_ADDR” activity will be set to the result of the “VALUE” parameter of Assign activity. 3) Use the extracted information in Email activity     We bind the “TO_ADDRESS” parameter of the email activity to the “EMAIL_ADDR” variable created in above step.     We can also extract other information from the xml order directly through the expression, for example, we can set the “MESSAGE_BODY” with value “'Dear '||XMLTYPE.EXTRACT(XML_ORDER,'/order/customer/name/text()').getStringVal()||chr(13)||chr(10)||'   You have ordered '||XMLTYPE.EXTRACT(XML_ORDER,'/order/book/quantity/text()').getStringVal()||' '||XMLTYPE.EXTRACT(XML_ORDER,'/order/book/@id').getStringVal()”. This expression will extract the customer name, the quantity and the book id from the order to compose the message body.     To make the email activity work, we need provide some other necessary information, Such as “SMTP_SERVER” (which is the SMTP server used to send the emails, like “mail.bookstore.com”. The default PORT number is set to 25. You need to change the value accordingly), “FROM_ADDRESS” and “SUBJECT”. Then the process flow is ready to go.     After deploying the process flow package, we can simply run the process flow to check if the result is as expected (An email will be sent to the specified email address with proper subject and message body).     Note: In oracle 11g, there is an enhanced security feature - ACL (Access Control List), which restrict the network access within db, so we need to edit the list to allow UTL_SMTP work if you are using oracle 11g. Refer to chapter “Access Control Lists for UTL_TCP/HTTP/SMTP” and “Managing Fine-Grained Access to External Network Services” for more details.       In previous releases, XMLTYPE already exists in other OWB objects, like mapping/transformation etc. When the mapping/transformation is dragged into a process flow, the parameters with XMLTYPE are mapped to STRING. Now with the XMLTYPE support in process flow, the XMLTYPE will map to XMLTYPE in a more natural way, and we can leverage the new data type for the design.

    Read the article

  • DTracing a PHPUnit Test: Looking at Functional Programming

    - by cj
    Here's a quick example of using DTrace Dynamic Tracing to work out what a PHP code base does. I was reading the article Functional Programming in PHP by Patkos Csaba and wondering how efficient this stype of programming is. I thought this would be a good time to fire up DTrace and see what is going on. Since DTrace is "always available" even in production machines (once PHP is compiled with --enable-dtrace), this was easy to do. I have Oracle Linux with the UEK3 kernel and PHP 5.5 with DTrace static probes enabled, as described in DTrace PHP Using Oracle Linux 'playground' Pre-Built Packages I installed the Functional Programming sample code and Sebastian Bergmann's PHPUnit. Although PHPUnit is included in the Functional Programming example, I found it easier to separately download and use its phar file: cd ~/Desktop wget -O master.zip https://github.com/tutsplus/functional-programming-in-php/archive/master.zip wget https://phar.phpunit.de/phpunit.phar unzip master.zip I created a DTrace D script functree.d: #pragma D option quiet self int indent; BEGIN { topfunc = $1; } php$target:::function-entry /copyinstr(arg0) == topfunc/ { self->follow = 1; } php$target:::function-entry /self->follow/ { self->indent += 2; printf("%*s %s%s%s\n", self->indent, "->", arg3?copyinstr(arg3):"", arg4?copyinstr(arg4):"", copyinstr(arg0)); } php$target:::function-return /self->follow/ { printf("%*s %s%s%s\n", self->indent, "<-", arg3?copyinstr(arg3):"", arg4?copyinstr(arg4):"", copyinstr(arg0)); self->indent -= 2; } php$target:::function-return /copyinstr(arg0) == topfunc/ { self->follow = 0; } This prints a PHP script function call tree starting from a given PHP function name. This name is passed as a parameter to DTrace, and assigned to the variable topfunc when the DTrace script starts. With this D script, choose a PHP function that isn't recursive, or modify the script to set self->follow = 0 only when all calls to that function have unwound. From looking at the sample FunSets.php code and its PHPUnit test driver FunSetsTest.php, I settled on one test function to trace: function testUnionContainsAllElements() { ... } I invoked DTrace to trace function calls invoked by this test with # dtrace -s ./functree.d -c 'php phpunit.phar \ /home/cjones/Desktop/functional-programming-in-php-master/FunSets/Tests/FunSetsTest.php' \ '"testUnionContainsAllElements"' The core of this command is a call to PHP to run PHPUnit on the FunSetsTest.php script. Outside that, DTrace is called and the PID of PHP is passed to the D script $target variable so the probes fire just for this invocation of PHP. Note the quoting around the PHP function name passed to DTrace. The parameter must have double quotes included so DTrace knows it is a string. The output is: PHPUnit 3.7.28 by Sebastian Bergmann. ......-> FunSetsTest::testUnionContainsAllElements -> FunSets::singletonSet <- FunSets::singletonSet -> FunSets::singletonSet <- FunSets::singletonSet -> FunSets::union <- FunSets::union -> FunSets::contains -> FunSets::{closure} -> FunSets::contains -> FunSets::{closure} <- FunSets::{closure} <- FunSets::contains <- FunSets::{closure} <- FunSets::contains -> PHPUnit_Framework_Assert::assertTrue -> PHPUnit_Framework_Assert::isTrue <- PHPUnit_Framework_Assert::isTrue -> PHPUnit_Framework_Assert::assertThat -> PHPUnit_Framework_Constraint::count <- PHPUnit_Framework_Constraint::count -> PHPUnit_Framework_Constraint::evaluate -> PHPUnit_Framework_Constraint_IsTrue::matches <- PHPUnit_Framework_Constraint_IsTrue::matches <- PHPUnit_Framework_Constraint::evaluate <- PHPUnit_Framework_Assert::assertThat <- PHPUnit_Framework_Assert::assertTrue -> FunSets::contains -> FunSets::{closure} -> FunSets::contains -> FunSets::{closure} <- FunSets::{closure} <- FunSets::contains -> FunSets::contains -> FunSets::{closure} <- FunSets::{closure} <- FunSets::contains <- FunSets::{closure} <- FunSets::contains -> PHPUnit_Framework_Assert::assertTrue -> PHPUnit_Framework_Assert::isTrue <- PHPUnit_Framework_Assert::isTrue -> PHPUnit_Framework_Assert::assertThat -> PHPUnit_Framework_Constraint::count <- PHPUnit_Framework_Constraint::count -> PHPUnit_Framework_Constraint::evaluate -> PHPUnit_Framework_Constraint_IsTrue::matches <- PHPUnit_Framework_Constraint_IsTrue::matches <- PHPUnit_Framework_Constraint::evaluate <- PHPUnit_Framework_Assert::assertThat <- PHPUnit_Framework_Assert::assertTrue -> FunSets::contains -> FunSets::{closure} -> FunSets::contains -> FunSets::{closure} <- FunSets::{closure} <- FunSets::contains -> FunSets::contains -> FunSets::{closure} <- FunSets::{closure} <- FunSets::contains <- FunSets::{closure} <- FunSets::contains -> PHPUnit_Framework_Assert::assertFalse -> PHPUnit_Framework_Assert::isFalse -> {closure} -> main <- main <- {closure} <- PHPUnit_Framework_Assert::isFalse -> PHPUnit_Framework_Assert::assertThat -> PHPUnit_Framework_Constraint::count <- PHPUnit_Framework_Constraint::count -> PHPUnit_Framework_Constraint::evaluate -> PHPUnit_Framework_Constraint_IsFalse::matches <- PHPUnit_Framework_Constraint_IsFalse::matches <- PHPUnit_Framework_Constraint::evaluate <- PHPUnit_Framework_Assert::assertThat <- PHPUnit_Framework_Assert::assertFalse <- FunSetsTest::testUnionContainsAllElements ... Time: 1.85 seconds, Memory: 3.75Mb OK (9 tests, 23 assertions) The periods correspond to the successful tests before and after (and from) the test I was tracing. You can see the function entry ("->") and return ("<-") points. Cross checking with the testUnionContainsAllElements() source code confirms the two singletonSet() calls, one union() call, two assertTrue() calls and finally an assertFalse() call. These assertions have a contains() call as a parameter, so contains() is called before the PHPUnit assertion functions are run. You can see contains() being called recursively, and how the closures are invoked. If you want to focus on the application logic and suppress the PHPUnit function trace, you could turn off tracing when assertions are being checked by adding D clauses checking the entry and exit of assertFalse() and assertTrue(). But if you want to see all of PHPUnit's code flow, you can modify the functree.d code that sets and unsets self-follow, and instead change it to toggle the variable in request-startup and request-shutdown probes: php$target:::request-startup { self->follow = 1 } php$target:::request-shutdown { self->follow = 0 } Be prepared for a large amount of output!

    Read the article

  • How to ensure custom serverListener events fires before action events

    - by frank.nimphius
    Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman","serif";} Using JavaScript in ADF Faces you can queue custom events defined by an af:serverListener tag. If the custom event however is queued from an af:clientListener on a command component, then the command component's action and action listener methods fire before the queued custom event. If you have a use case, for example in combination with client side integration of 3rd party technologies like HTML, Applets or similar, then you want to change the order of execution. The way to change the execution order is to invoke the command item action from the client event method that handles the custom event propagated by the af:serverListener tag. The following four steps ensure your successful doing this 1.       Call cancel() on the event object passed to the client JavaScript function invoked by the af:clientListener tag 2.       Call the custom event as an immediate action by setting the last argument in the custom event call to true function invokeCustomEvent(evt){   evt.cancel();          var custEvent = new AdfCustomEvent(                         evt.getSource(),                         "mycustomevent",                                                                                                                    {message:"Hello World"},                         true);    custEvent.queue(); } 3.       When handling the custom event on the server, lookup the command item, for example a button, to queue its action event. This way you simulate a user clicking the button. Use the following code ActionEvent event = new ActionEvent(component); event.setPhaseId(PhaseId.INVOKE_APPLICATION); event.queue(); The component reference needs to be changed with the handle to the command item which action method you want to execute. 4.       If the command component has behavior tags, like af:fileDownloadActionListener, or af:setPropertyListener, defined, then these are also executed when the action event is queued. However, behavior tags, like the file download action listener, may require a full page refresh to be issued to work, in which case the custom event cannot be issued as a partial refresh. File download action tag: http://download.oracle.com/docs/cd/E17904_01/apirefs.1111/e12419/tagdoc/af_fileDownloadActionListener.html " Since file downloads must be processed with an ordinary request - not XMLHttp AJAX requests - this tag forces partialSubmit to be false on the parent component, if it supports that attribute." To issue a custom event as a non-partial submit, the previously shown sample code would need to be changed as shown below function invokeCustomEvent(evt){   evt.cancel();          var custEvent = new AdfCustomEvent(                         evt.getSource(),                         "mycustomevent",                                                                                                                    {message:"Hello World"},                         true);    custEvent.queue(false); } To learn more about custom events and the af:serverListener, please refer to the tag documentation: http://download.oracle.com/docs/cd/E17904_01/apirefs.1111/e12419/tagdoc/af_serverListener.html

    Read the article

  • Benchmarking MySQL Replication with Multi-Threaded Slaves

    - by Mat Keep
    0 0 1 1145 6530 Homework 54 15 7660 14.0 Normal 0 false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:Cambria; mso-ascii-font-family:Cambria; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Cambria; mso-hansi-theme-font:minor-latin; mso-ansi-language:EN-US;} The objective of this benchmark is to measure the performance improvement achieved when enabling the Multi-Threaded Slave enhancement delivered as a part MySQL 5.6. As the results demonstrate, Multi-Threaded Slaves delivers 5x higher replication performance based on a configuration with 10 databases/schemas. For real-world deployments, higher replication performance directly translates to: · Improved consistency of reads from slaves (i.e. reduced risk of reading "stale" data) · Reduced risk of data loss should the master fail before replicating all events in its binary log (binlog) The multi-threaded slave splits processing between worker threads based on schema, allowing updates to be applied in parallel, rather than sequentially. This delivers benefits to those workloads that isolate application data using databases - e.g. multi-tenant systems deployed in cloud environments. Multi-Threaded Slaves are just one of many enhancements to replication previewed as part of the MySQL 5.6 Development Release, which include: · Global Transaction Identifiers coupled with MySQL utilities for automatic failover / switchover and slave promotion · Crash Safe Slaves and Binlog · Optimized Row Based Replication · Replication Event Checksums · Time Delayed Replication These and many more are discussed in the “MySQL 5.6 Replication: Enabling the Next Generation of Web & Cloud Services” Developer Zone article  Back to the benchmark - details are as follows. Environment The test environment consisted of two Linux servers: · one running the replication master · one running the replication slave. Only the slave was involved in the actual measurements, and was based on the following configuration: - Hardware: Oracle Sun Fire X4170 M2 Server - CPU: 2 sockets, 6 cores with hyper-threading, 2930 MHz. - OS: 64-bit Oracle Enterprise Linux 6.1 - Memory: 48 GB Test Procedure Initial Setup: Two MySQL servers were started on two different hosts, configured as replication master and slave. 10 sysbench schemas were created, each with a single table: CREATE TABLE `sbtest` (    `id` int(10) unsigned NOT NULL AUTO_INCREMENT,    `k` int(10) unsigned NOT NULL DEFAULT '0',    `c` char(120) NOT NULL DEFAULT '',    `pad` char(60) NOT NULL DEFAULT '',    PRIMARY KEY (`id`),    KEY `k` (`k`) ) ENGINE=InnoDB DEFAULT CHARSET=latin1 10,000 rows were inserted in each of the 10 tables, for a total of 100,000 rows. When the inserts had replicated to the slave, the slave threads were stopped. The slave data directory was copied to a backup location and the slave threads position in the master binlog noted. 10 sysbench clients, each configured with 10 threads, were spawned at the same time to generate a random schema load against each of the 10 schemas on the master. Each sysbench client executed 10,000 "update key" statements: UPDATE sbtest set k=k+1 WHERE id = <random row> In total, this generated 100,000 update statements to later replicate during the test itself. Test Methodology: The number of slave workers to test with was configured using: SET GLOBAL slave_parallel_workers=<workers> Then the slave IO thread was started and the test waited for all the update queries to be copied over to the relay log on the slave. The benchmark clock was started and then the slave SQL thread was started. The test waited for the slave SQL thread to finish executing the 100k update queries, doing "select master_pos_wait()". When master_pos_wait() returned, the benchmark clock was stopped and the duration calculated. The calculated duration from the benchmark clock should be close to the time it took for the SQL thread to execute the 100,000 update queries. The 100k queries divided by this duration gave the benchmark metric, reported as Queries Per Second (QPS). Test Reset: The test-reset cycle was implemented as follows: · the slave was stopped · the slave data directory replaced with the previous backup · the slave restarted with the slave threads replication pointer repositioned to the point before the update queries in the binlog. The test could then be repeated with identical set of queries but a different number of slave worker threads, enabling a fair comparison. The Test-Reset cycle was repeated 3 times for 0-24 number of workers and the QPS metric calculated and averaged for each worker count. MySQL Configuration The relevant configuration settings used for MySQL are as follows: binlog-format=STATEMENT relay-log-info-repository=TABLE master-info-repository=TABLE As described in the test procedure, the slave_parallel_workers setting was modified as part of the test logic. The consequence of changing this setting is: 0 worker threads:    - current (i.e. single threaded) sequential mode    - 1 x IO thread and 1 x SQL thread    - SQL thread both reads and executes the events 1 worker thread:    - sequential mode    - 1 x IO thread, 1 x Coordinator SQL thread and 1 x Worker thread    - coordinator reads the event and hands it to the worker who executes 2+ worker threads:    - parallel execution    - 1 x IO thread, 1 x Coordinator SQL thread and 2+ Worker threads    - coordinator reads events and hands them to the workers who execute them Results Figure 1 below shows that Multi-Threaded Slaves deliver ~5x higher replication performance when configured with 10 worker threads, with the load evenly distributed across our 10 x schemas. This result is compared to the current replication implementation which is based on a single SQL thread only (i.e. zero worker threads). Figure 1: 5x Higher Performance with Multi-Threaded Slaves The following figure shows more detailed results, with QPS sampled and reported as the worker threads are incremented. The raw numbers behind this graph are reported in the Appendix section of this post. Figure 2: Detailed Results As the results above show, the configuration does not scale noticably from 5 to 9 worker threads. When configured with 10 worker threads however, scalability increases significantly. The conclusion therefore is that it is desirable to configure the same number of worker threads as schemas. Other conclusions from the results: · Running with 1 worker compared to zero workers just introduces overhead without the benefit of parallel execution. · As expected, having more workers than schemas adds no visible benefit. Aside from what is shown in the results above, testing also demonstrated that the following settings had a very positive effect on slave performance: relay-log-info-repository=TABLE master-info-repository=TABLE For 5+ workers, it was up to 2.3 times as fast to run with TABLE compared to FILE. Conclusion As the results demonstrate, Multi-Threaded Slaves deliver significant performance increases to MySQL replication when handling multiple schemas. This, and the other replication enhancements introduced in MySQL 5.6 are fully available for you to download and evaluate now from the MySQL Developer site (select Development Release tab). You can learn more about MySQL 5.6 from the documentation  Please don’t hesitate to comment on this or other replication blogs with feedback and questions. Appendix – Detailed Results

    Read the article

  • Delivering the Integrated Portal Experience!

    - by Michael Snow
    v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VML);} .shape {behavior:url(#default#VML);} Guest post by Richard Maldonado, Principal Product Manager, Oracle WebCenter Portal Organizations are still struggling to standardize on a user interaction platform which can meet the needs of all their target audiences.  This has not only resulted in inefficient and inconsistent experiences for their users, but it also creates inefficiencies (productivity and costs) for the departments that manage the applications and information systems.  Portals have historically been the unifying platform that provide IT with a common interface which can securely surface the most relevant interactions for a given user and/or group of users.  However, organizations have found that the technologies available have either not provided the flexibility necessary to address all of their use cases, or they rely too much on IT resources to manage, maintain, and evolve.  Empowering  the Business Groups The core issue that IT departments face with delivering portal experiences is having enough resources to respond and address the influx of requirements which come in from the business.  Commonly, when a business group wants a new portal site established for their group, they will submit a request to the IT dept, the IT dept then assigns a resource to an administrator and/or developer to build.  Unfortunately, this approach is not scalable, it can be a time consuming activity which requires significant interaction between the business owner and the IT resource.  A modern user interaction platforms should empower the business groups by providing them tools which they can use to build and manage the portal experiences without the need for IT's involvement.  And because business groups rarely have technical resources (developers) on staff, the tools must be easy enough that virtually any business user could use.  In addition, the tool must be powerful enough to allow them to build the experience that they need, things such as creating a whole new portal, add/manage page and page hierarchy, manage user/group access, add/modify components within the page, etc.  This balance between ease-of-use and flexibility is key to the successful adoption of tools which will ultimately reduce the burden on IT, respond to the needs of the business, and deliver high-value experiences for the users.  Ready or Not, Here They Come: Smartphones and Tablets Recently, several studies have highlighted that smartphone and tablet-style devices have overtaken PC's in both sales and usage.  This shift is further driving organizations to revaluate how they're delivering data, information, and applications to their users.  Users are expecting to get the same level of access and interaction, but in a ways which are optimized for the capabilities of the device that they are using.  Expect More With the ever growing number of new IT projects and flat/shrinking budgets, organizations are looking for comprehensive solutions which can deliver integrated web experiences that are tailored for the users and optimized for mobile devices.  Piecing together a number of point solutions is no longer an option.  A modern portal technology should not only address the traditional needs of integrating and surfacing back-end applications/information, but it should enable the business through easy-to-use tools and accelerate the delivery of mobile optimized experiences.   v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VML);} .shape {behavior:url(#default#VML);} 12.00 Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-family:"Calibri","sans-serif"; mso-bidi-font-family:"Times New Roman";} 12.00 Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-family:"Calibri","sans-serif"; mso-ascii- mso-ascii-theme-font:minor-latin; mso-hansi- mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} WebCenter in Action Series: Qualcomm Provides a Seamless Experience for Customers with Oracle WebCenter Featuring Qualcomm & Keste 12.00 Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 -"/ /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:Calibri; mso-fareast-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} 12.00 Normal 0 false false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-family:"Calibri","sans-serif"; mso-fareast- mso-bidi-font-family:"Times New Roman";}

    Read the article

  • Building an OpenStack Cloud for Solaris Engineering, Part 1

    - by Dave Miner
    One of the signature features of the recently-released Solaris 11.2 is the OpenStack cloud computing platform.  Over on the Solaris OpenStack blog the development team is publishing lots of details about our version of OpenStack Havana as well as some tips on specific features, and I highly recommend reading those to get a feel for how we've leveraged Solaris's features to build a top-notch cloud platform.  In this and some subsequent posts I'm going to look at it from a different perspective, which is that of the enterprise administrator deploying an OpenStack cloud.  But this won't be just a theoretical perspective: I've spent the past several months putting together a deployment of OpenStack for use by the Solaris engineering organization, and now that it's in production we'll share how we built it and what we've learned so far.In the Solaris engineering organization we've long had dedicated lab systems dispersed among our various sites and a home-grown reservation tool for developers to reserve those systems; various teams also have private systems for specific testing purposes.  But as a developer, it can still be difficult to find systems you need, especially since most Solaris changes require testing on both SPARC and x86 systems before they can be integrated.  We've added virtual resources over the years as well in the form of LDOMs and zones (both traditional non-global zones and the new kernel zones).  Fundamentally, though, these were all still deployed in the same model: our overworked lab administrators set up pre-configured resources and we then reserve them.  Sounds like pretty much every traditional IT shop, right?  Which means that there's a lot of opportunity for efficiencies from greater use of virtualization and the self-service style of cloud computing.  As we were well into development of OpenStack on Solaris, I was recruited to figure out how we could deploy it to both provide more (and more efficient) development and test resources for the organization as well as a test environment for Solaris OpenStack.At this point, let's acknowledge one fact: deploying OpenStack is hard.  It's a very complex piece of software that makes use of sophisticated networking features and runs as a ton of service daemons with myriad configuration files.  The web UI, Horizon, doesn't often do a good job of providing detailed errors.  Even the command-line clients are not as transparent as you'd like, though at least you can turn on verbose and debug messaging and often get some clues as to what to look for, though it helps if you're good at reading JSON structure dumps.  I'd already learned all of this in doing a single-system Grizzly-on-Linux deployment for the development team to reference when they were getting started so I at least came to this job with some appreciation for what I was taking on.  The good news is that both we and the community have done a lot to make deployment much easier in the last year; probably the easiest approach is to download the OpenStack Unified Archive from OTN to get your hands on a single-system demonstration environment.  I highly recommend getting started with something like it to get some understanding of OpenStack before you embark on a more complex deployment.  For some situations, it may in fact be all you ever need.  If so, you don't need to read the rest of this series of posts!In the Solaris engineering case, we need a lot more horsepower than a single-system cloud can provide.  We need to support both SPARC and x86 VM's, and we have hundreds of developers so we want to be able to scale to support thousands of VM's, though we're going to build to that scale over time, not immediately.  We also want to be able to test both Solaris 11 updates and a release such as Solaris 12 that's under development so that we can work out any upgrade issues before release.  One thing we don't have is a requirement for extremely high availability, at least at this point.  We surely don't want a lot of down time, but we can tolerate scheduled outages and brief (as in an hour or so) unscheduled ones.  Thus I didn't need to spend effort on trying to get high availability everywhere.The diagram below shows our initial deployment design.  We're using six systems, most of which are x86 because we had more of those immediately available.  All of those systems reside on a management VLAN and are connected with a two-way link aggregation of 1 Gb links (we don't yet have 10 Gb switching infrastructure in place, but we'll get there).  A separate VLAN provides "public" (as in connected to the rest of Oracle's internal network) addresses, while we use VxLANs for the tenant networks. One system is more or less the control node, providing the MySQL database, RabbitMQ, Keystone, and the Nova API and scheduler as well as the Horizon console.  We're curious how this will perform and I anticipate eventually splitting at least the database off to another node to help simplify upgrades, but at our present scale this works.I had a couple of systems with lots of disk space, one of which was already configured as the Automated Installation server for the lab, so it's just providing the Glance image repository for OpenStack.  The other node with lots of disks provides Cinder block storage service; we also have a ZFS Storage Appliance that will help back-end Cinder in the near future, I just haven't had time to get it configured in yet.There's a separate system for Neutron, which is our Elastic Virtual Switch controller and handles the routing and NAT for the guests.  We don't have any need for firewalling in this deployment so we're not doing so.  We presently have only two tenants defined, one for the Solaris organization that's funding this cloud, and a separate tenant for other Oracle organizations that would like to try out OpenStack on Solaris.  Each tenant has one VxLAN defined initially, but we can of course add more.  Right now we have just a single /24 network for the floating IP's, once we get demand up to where we need more then we'll add them.Finally, we have started with just two compute nodes; one is an x86 system, the other is an LDOM on a SPARC T5-2.  We'll be adding more when demand reaches the level where we need them, but as we're still ramping up the user base it's less work to manage fewer nodes until then.My next post will delve into the details of building this OpenStack cloud's infrastructure, including how we're using various Solaris features such as Automated Installation, IPS packaging, SMF, and Puppet to deploy and manage the nodes.  After that we'll get into the specifics of configuring and running OpenStack itself.

    Read the article

< Previous Page | 542 543 544 545 546 547 548 549 550 551 552 553  | Next Page >