Search Results

Search found 87926 results on 3518 pages for 'deft code'.

Page 799/3518 | < Previous Page | 795 796 797 798 799 800 801 802 803 804 805 806  | Next Page >

  • SQL Server &ndash; Undelete a Table and Restore a Single Table from Backup

    - by Mladen Prajdic
    This post is part of the monthly community event called T-SQL Tuesday started by Adam Machanic (blog|twitter) and hosted by someone else each month. This month the host is Sankar Reddy (blog|twitter) and the topic is Misconceptions in SQL Server. You can follow posts for this theme on Twitter by looking at #TSQL2sDay hashtag. Let me start by saying: This code is a crazy hack that is to never be used unless you really, really have to. Really! And I don’t think there’s a time when you would really have to use it for real. Because it’s a hack there are number of things that can go wrong so play with it knowing that. I’ve managed to totally corrupt one database. :) Oh… and for those saying: yeah yeah.. you have a single table in a file group and you’re restoring that, I say “nay nay” to you. As we all know SQL Server can’t do single table restores from backup. This is kind of a obvious thing due to different relational integrity (RI) concerns. Since we have to maintain that we have to restore all tables represented in a RI graph. For this exercise i say BAH! to those concerns. Note that this method “works” only for simple tables that don’t have LOB and off rows data. The code can be expanded to include those but I’ve tried to leave things “simple”. Note that for this to work our table needs to be relatively static data-wise. This doesn’t work for OLTP table. Products are a perfect example of static data. They don’t change much between backups, pretty much everything depends on them and their table is one of those tables that are relatively easy to accidentally delete everything from. This only works if the database is in Full or Bulk-Logged recovery mode for tables where the contents have been deleted or truncated but NOT when a table was dropped. Everything we’ll talk about has to be done before the data pages are reused for other purposes. After deletion or truncation the pages are marked as reusable so you have to act fast. The best thing probably is to put the database into single user mode ASAP while you’re performing this procedure and return it to multi user after you’re done. How do we do it? We will be using an undocumented but known DBCC commands: DBCC PAGE, an undocumented function sys.fn_dblog and a little known DATABASE RESTORE PAGE option. All tests will be on a copy of Production.Product table in AdventureWorks database called Production.Product1 because the original table has FK constraints that prevent us from truncating it for testing. -- create a duplicate table. This doesn't preserve indexes!SELECT *INTO AdventureWorks.Production.Product1FROM AdventureWorks.Production.Product   After we run this code take a full back to perform further testing.   First let’s see what the difference between DELETE and TRUNCATE is when it comes to logging. With DELETE every row deletion is logged in the transaction log. With TRUNCATE only whole data page deallocations are logged in the transaction log. Getting deleted data pages is simple. All we have to look for is row delete entry in the sys.fn_dblog output. But getting data pages that were truncated from the transaction log presents a bit of an interesting problem. I will not go into depths of IAM(Index Allocation Map) and PFS (Page Free Space) pages but suffice to say that every IAM page has intervals that tell us which data pages are allocated for a table and which aren’t. If we deep dive into the sys.fn_dblog output we can see that once you truncate a table all the pages in all the intervals are deallocated and this is shown in the PFS page transaction log entry as deallocation of pages. For every 8 pages in the same extent there is one PFS page row in the transaction log. This row holds information about all 8 pages in CSV format which means we can get to this data with some parsing. A great help for parsing this stuff is Peter Debetta’s handy function dbo.HexStrToVarBin that converts hexadecimal string into a varbinary value that can be easily converted to integer tus giving us a readable page number. The shortened (columns removed) sys.fn_dblog output for a PFS page with CSV data for 1 extent (8 data pages) looks like this: -- [Page ID] is displayed in hex format. -- To convert it to readable int we'll use dbo.HexStrToVarBin function found at -- http://sqlblog.com/blogs/peter_debetta/archive/2007/03/09/t-sql-convert-hex-string-to-varbinary.aspx -- This function must be installed in the master databaseSELECT Context, AllocUnitName, [Page ID], DescriptionFROM sys.fn_dblog(NULL, NULL)WHERE [Current LSN] = '00000031:00000a46:007d' The pages at the end marked with 0x00—> are pages that are allocated in the extent but are not part of a table. We can inspect the raw content of each data page with a DBCC PAGE command: -- we need this trace flag to redirect output to the query window.DBCC TRACEON (3604); -- WITH TABLERESULTS gives us data in table format instead of message format-- we use format option 3 because it's the easiest to read and manipulate further onDBCC PAGE (AdventureWorks, 1, 613, 3) WITH TABLERESULTS   Since the DBACC PAGE output can be quite extensive I won’t put it here. You can see an example of it in the link at the beginning of this section. Getting deleted data back When we run a delete statement every row to be deleted is marked as a ghost record. A background process periodically cleans up those rows. A huge misconception is that the data is actually removed. It’s not. Only the pointers to the rows are removed while the data itself is still on the data page. We just can’t access it with normal means. To get those pointers back we need to restore every deleted page using the RESTORE PAGE option mentioned above. This restore must be done from a full backup, followed by any differential and log backups that you may have. This is necessary to bring the pages up to the same point in time as the rest of the data.  However the restore doesn’t magically connect the restored page back to the original table. It simply replaces the current page with the one from the backup. After the restore we use the DBCC PAGE to read data directly from all data pages and insert that data into a temporary table. To finish the RESTORE PAGE  procedure we finally have to take a tail log backup (simple backup of the transaction log) and restore it back. We can now insert data from the temporary table to our original table by hand. Getting truncated data back When we run a truncate the truncated data pages aren’t touched at all. Even the pointers to rows stay unchanged. Because of this getting data back from truncated table is simple. we just have to find out which pages belonged to our table and use DBCC PAGE to read data off of them. No restore is necessary. Turns out that the problems we had with finding the data pages is alleviated by not having to do a RESTORE PAGE procedure. Stop stalling… show me The Code! This is the code for getting back deleted and truncated data back. It’s commented in all the right places so don’t be afraid to take a closer look. Make sure you have a full backup before trying this out. Also I suggest that the last step of backing and restoring the tail log is performed by hand. USE masterGOIF OBJECT_ID('dbo.HexStrToVarBin') IS NULL RAISERROR ('No dbo.HexStrToVarBin installed. Go to http://sqlblog.com/blogs/peter_debetta/archive/2007/03/09/t-sql-convert-hex-string-to-varbinary.aspx and install it in master database' , 18, 1) SET NOCOUNT ONBEGIN TRY DECLARE @dbName VARCHAR(1000), @schemaName VARCHAR(1000), @tableName VARCHAR(1000), @fullBackupName VARCHAR(1000), @undeletedTableName VARCHAR(1000), @sql VARCHAR(MAX), @tableWasTruncated bit; /* THE FIRST LINE ARE OUR INPUT PARAMETERS In this case we're trying to recover Production.Product1 table in AdventureWorks database. My full backup of AdventureWorks database is at e:\AW.bak */ SELECT @dbName = 'AdventureWorks', @schemaName = 'Production', @tableName = 'Product1', @fullBackupName = 'e:\AW.bak', @undeletedTableName = '##' + @tableName + '_Undeleted', @tableWasTruncated = 0, -- copy the structure from original table to a temp table that we'll fill with restored data @sql = 'IF OBJECT_ID(''tempdb..' + @undeletedTableName + ''') IS NOT NULL DROP TABLE ' + @undeletedTableName + ' SELECT *' + ' INTO ' + @undeletedTableName + ' FROM [' + @dbName + '].[' + @schemaName + '].[' + @tableName + ']' + ' WHERE 1 = 0' EXEC (@sql) IF OBJECT_ID('tempdb..#PagesToRestore') IS NOT NULL DROP TABLE #PagesToRestore /* FIND DATA PAGES WE NEED TO RESTORE*/ CREATE TABLE #PagesToRestore ([ID] INT IDENTITY(1,1), [FileID] INT, [PageID] INT, [SQLtoExec] VARCHAR(1000)) -- DBCC PACE statement to run later RAISERROR ('Looking for deleted pages...', 10, 1) -- use T-LOG direct read to get deleted data pages INSERT INTO #PagesToRestore([FileID], [PageID], [SQLtoExec]) EXEC('USE [' + @dbName + '];SELECT FileID, PageID, ''DBCC TRACEON (3604); DBCC PAGE ([' + @dbName + '], '' + FileID + '', '' + PageID + '', 3) WITH TABLERESULTS'' as SQLToExecFROM (SELECT DISTINCT LEFT([Page ID], 4) AS FileID, CONVERT(VARCHAR(100), ' + 'CONVERT(INT, master.dbo.HexStrToVarBin(SUBSTRING([Page ID], 6, 20)))) AS PageIDFROM sys.fn_dblog(NULL, NULL)WHERE AllocUnitName LIKE ''%' + @schemaName + '.' + @tableName + '%'' ' + 'AND Context IN (''LCX_MARK_AS_GHOST'', ''LCX_HEAP'') AND Operation in (''LOP_DELETE_ROWS''))t');SELECT *FROM #PagesToRestore -- if upper EXEC returns 0 rows it means the table was truncated so find truncated pages IF (SELECT COUNT(*) FROM #PagesToRestore) = 0 BEGIN RAISERROR ('No deleted pages found. Looking for truncated pages...', 10, 1) -- use T-LOG read to get truncated data pages INSERT INTO #PagesToRestore([FileID], [PageID], [SQLtoExec]) -- dark magic happens here -- because truncation simply deallocates pages we have to find out which pages were deallocated. -- we can find this out by looking at the PFS page row's Description column. -- for every deallocated extent the Description has a CSV of 8 pages in that extent. -- then it's just a matter of parsing it. -- we also remove the pages in the extent that weren't allocated to the table itself -- marked with '0x00-->00' EXEC ('USE [' + @dbName + '];DECLARE @truncatedPages TABLE(DeallocatedPages VARCHAR(8000), IsMultipleDeallocs BIT);INSERT INTO @truncatedPagesSELECT REPLACE(REPLACE(Description, ''Deallocated '', ''Y''), ''0x00-->00 '', ''N'') + '';'' AS DeallocatedPages, CHARINDEX('';'', Description) AS IsMultipleDeallocsFROM (SELECT DISTINCT LEFT([Page ID], 4) AS FileID, CONVERT(VARCHAR(100), CONVERT(INT, master.dbo.HexStrToVarBin(SUBSTRING([Page ID], 6, 20)))) AS PageID, DescriptionFROM sys.fn_dblog(NULL, NULL)WHERE Context IN (''LCX_PFS'') AND Description LIKE ''Deallocated%'' AND AllocUnitName LIKE ''%' + @schemaName + '.' + @tableName + '%'') t;SELECT FileID, PageID , ''DBCC TRACEON (3604); DBCC PAGE ([' + @dbName + '], '' + FileID + '', '' + PageID + '', 3) WITH TABLERESULTS'' as SQLToExecFROM (SELECT LEFT(PageAndFile, 1) as WasPageAllocatedToTable , SUBSTRING(PageAndFile, 2, CHARINDEX('':'', PageAndFile) - 2 ) as FileID , CONVERT(VARCHAR(100), CONVERT(INT, master.dbo.HexStrToVarBin(SUBSTRING(PageAndFile, CHARINDEX('':'', PageAndFile) + 1, LEN(PageAndFile))))) as PageIDFROM ( SELECT SUBSTRING(DeallocatedPages, delimPosStart, delimPosEnd - delimPosStart) as PageAndFile, IsMultipleDeallocs FROM ( SELECT *, CHARINDEX('';'', DeallocatedPages)*(N-1) + 1 AS delimPosStart, CHARINDEX('';'', DeallocatedPages)*N AS delimPosEnd FROM @truncatedPages t1 CROSS APPLY (SELECT TOP (case when t1.IsMultipleDeallocs = 1 then 8 else 1 end) ROW_NUMBER() OVER(ORDER BY number) as N FROM master..spt_values) t2 )t)t)tWHERE WasPageAllocatedToTable = ''Y''') SELECT @tableWasTruncated = 1 END DECLARE @lastID INT, @pagesCount INT SELECT @lastID = 1, @pagesCount = COUNT(*) FROM #PagesToRestore SELECT @sql = 'Number of pages to restore: ' + CONVERT(VARCHAR(10), @pagesCount) IF @pagesCount = 0 RAISERROR ('No data pages to restore.', 18, 1) ELSE RAISERROR (@sql, 10, 1) -- If the table was truncated we'll read the data directly from data pages without restoring from backup IF @tableWasTruncated = 0 BEGIN -- RESTORE DATA PAGES FROM FULL BACKUP IN BATCHES OF 200 WHILE @lastID <= @pagesCount BEGIN -- create CSV string of pages to restore SELECT @sql = STUFF((SELECT ',' + CONVERT(VARCHAR(100), FileID) + ':' + CONVERT(VARCHAR(100), PageID) FROM #PagesToRestore WHERE ID BETWEEN @lastID AND @lastID + 200 ORDER BY ID FOR XML PATH('')), 1, 1, '') SELECT @sql = 'RESTORE DATABASE [' + @dbName + '] PAGE = ''' + @sql + ''' FROM DISK = ''' + @fullBackupName + '''' RAISERROR ('Starting RESTORE command:' , 10, 1) WITH NOWAIT; RAISERROR (@sql , 10, 1) WITH NOWAIT; EXEC(@sql); RAISERROR ('Restore DONE' , 10, 1) WITH NOWAIT; SELECT @lastID = @lastID + 200 END /* If you have any differential or transaction log backups you should restore them here to bring the previously restored data pages up to date */ END DECLARE @dbccSinglePage TABLE ( [ParentObject] NVARCHAR(500), [Object] NVARCHAR(500), [Field] NVARCHAR(500), [VALUE] NVARCHAR(MAX) ) DECLARE @cols NVARCHAR(MAX), @paramDefinition NVARCHAR(500), @SQLtoExec VARCHAR(1000), @FileID VARCHAR(100), @PageID VARCHAR(100), @i INT = 1 -- Get deleted table columns from information_schema view -- Need sp_executeSQL because database name can't be passed in as variable SELECT @cols = 'select @cols = STUFF((SELECT '', ['' + COLUMN_NAME + '']''FROM ' + @dbName + '.INFORMATION_SCHEMA.COLUMNSWHERE TABLE_NAME = ''' + @tableName + ''' AND TABLE_SCHEMA = ''' + @schemaName + '''ORDER BY ORDINAL_POSITIONFOR XML PATH('''')), 1, 2, '''')', @paramDefinition = N'@cols nvarchar(max) OUTPUT' EXECUTE sp_executesql @cols, @paramDefinition, @cols = @cols OUTPUT -- Loop through all the restored data pages, -- read data from them and insert them into temp table -- which you can then insert into the orignial deleted table DECLARE dbccPageCursor CURSOR GLOBAL FORWARD_ONLY FOR SELECT [FileID], [PageID], [SQLtoExec] FROM #PagesToRestore ORDER BY [FileID], [PageID] OPEN dbccPageCursor; FETCH NEXT FROM dbccPageCursor INTO @FileID, @PageID, @SQLtoExec; WHILE @@FETCH_STATUS = 0 BEGIN RAISERROR ('---------------------------------------------', 10, 1) WITH NOWAIT; SELECT @sql = 'Loop iteration: ' + CONVERT(VARCHAR(10), @i); RAISERROR (@sql, 10, 1) WITH NOWAIT; SELECT @sql = 'Running: ' + @SQLtoExec RAISERROR (@sql, 10, 1) WITH NOWAIT; -- if something goes wrong with DBCC execution or data gathering, skip it but print error BEGIN TRY INSERT INTO @dbccSinglePage EXEC (@SQLtoExec) -- make the data insert magic happen here IF (SELECT CONVERT(BIGINT, [VALUE]) FROM @dbccSinglePage WHERE [Field] LIKE '%Metadata: ObjectId%') = OBJECT_ID('['+@dbName+'].['+@schemaName +'].['+@tableName+']') BEGIN DELETE @dbccSinglePage WHERE NOT ([ParentObject] LIKE 'Slot % Offset %' AND [Object] LIKE 'Slot % Column %') SELECT @sql = 'USE tempdb; ' + 'IF (OBJECTPROPERTY(object_id(''' + @undeletedTableName + '''), ''TableHasIdentity'') = 1) ' + 'SET IDENTITY_INSERT ' + @undeletedTableName + ' ON; ' + 'INSERT INTO ' + @undeletedTableName + '(' + @cols + ') ' + STUFF((SELECT ' UNION ALL SELECT ' + STUFF((SELECT ', ' + CASE WHEN VALUE = '[NULL]' THEN 'NULL' ELSE '''' + [VALUE] + '''' END FROM ( -- the unicorn help here to correctly set ordinal numbers of columns in a data page -- it's turning STRING order into INT order (1,10,11,2,21 into 1,2,..10,11...21) SELECT [ParentObject], [Object], Field, VALUE, RIGHT('00000' + O1, 6) AS ParentObjectOrder, RIGHT('00000' + REVERSE(LEFT(O2, CHARINDEX(' ', O2)-1)), 6) AS ObjectOrder FROM ( SELECT [ParentObject], [Object], Field, VALUE, REPLACE(LEFT([ParentObject], CHARINDEX('Offset', [ParentObject])-1), 'Slot ', '') AS O1, REVERSE(LEFT([Object], CHARINDEX('Offset ', [Object])-2)) AS O2 FROM @dbccSinglePage WHERE t.ParentObject = ParentObject )t)t ORDER BY ParentObjectOrder, ObjectOrder FOR XML PATH('')), 1, 2, '') FROM @dbccSinglePage t GROUP BY ParentObject FOR XML PATH('') ), 1, 11, '') + ';' RAISERROR (@sql, 10, 1) WITH NOWAIT; EXEC (@sql) END END TRY BEGIN CATCH SELECT @sql = 'ERROR!!!' + CHAR(10) + CHAR(13) + 'ErrorNumber: ' + ERROR_NUMBER() + '; ErrorMessage' + ERROR_MESSAGE() + CHAR(10) + CHAR(13) + 'FileID: ' + @FileID + '; PageID: ' + @PageID RAISERROR (@sql, 10, 1) WITH NOWAIT; END CATCH DELETE @dbccSinglePage SELECT @sql = 'Pages left to process: ' + CONVERT(VARCHAR(10), @pagesCount - @i) + CHAR(10) + CHAR(13) + CHAR(10) + CHAR(13) + CHAR(10) + CHAR(13), @i = @i+1 RAISERROR (@sql, 10, 1) WITH NOWAIT; FETCH NEXT FROM dbccPageCursor INTO @FileID, @PageID, @SQLtoExec; END CLOSE dbccPageCursor; DEALLOCATE dbccPageCursor; EXEC ('SELECT ''' + @undeletedTableName + ''' as TableName; SELECT * FROM ' + @undeletedTableName)END TRYBEGIN CATCH SELECT ERROR_NUMBER() AS ErrorNumber, ERROR_MESSAGE() AS ErrorMessage IF CURSOR_STATUS ('global', 'dbccPageCursor') >= 0 BEGIN CLOSE dbccPageCursor; DEALLOCATE dbccPageCursor; ENDEND CATCH-- if the table was deleted we need to finish the restore page sequenceIF @tableWasTruncated = 0BEGIN -- take a log tail backup and then restore it to complete page restore process DECLARE @currentDate VARCHAR(30) SELECT @currentDate = CONVERT(VARCHAR(30), GETDATE(), 112) RAISERROR ('Starting Log Tail backup to c:\Temp ...', 10, 1) WITH NOWAIT; PRINT ('BACKUP LOG [' + @dbName + '] TO DISK = ''c:\Temp\' + @dbName + '_TailLogBackup_' + @currentDate + '.trn''') EXEC ('BACKUP LOG [' + @dbName + '] TO DISK = ''c:\Temp\' + @dbName + '_TailLogBackup_' + @currentDate + '.trn''') RAISERROR ('Log Tail backup done.', 10, 1) WITH NOWAIT; RAISERROR ('Starting Log Tail restore from c:\Temp ...', 10, 1) WITH NOWAIT; PRINT ('RESTORE LOG [' + @dbName + '] FROM DISK = ''c:\Temp\' + @dbName + '_TailLogBackup_' + @currentDate + '.trn''') EXEC ('RESTORE LOG [' + @dbName + '] FROM DISK = ''c:\Temp\' + @dbName + '_TailLogBackup_' + @currentDate + '.trn''') RAISERROR ('Log Tail restore done.', 10, 1) WITH NOWAIT;END-- The last step is manual. Insert data from our temporary table to the original deleted table The misconception here is that you can do a single table restore properly in SQL Server. You can't. But with little experimentation you can get pretty close to it. One way to possible remove a dependency on a backup to retrieve deleted pages is to quickly run a similar script to the upper one that gets data directly from data pages while the rows are still marked as ghost records. It could be done if we could beat the ghost record cleanup task.

    Read the article

  • How to count each digit in a range of integers?

    - by Carlos Gutiérrez
    Imagine you sell those metallic digits used to number houses, locker doors, hotel rooms, etc. You need to find how many of each digit to ship when your customer needs to number doors/houses: 1 to 100 51 to 300 1 to 2,000 with zeros to the left The obvious solution is to do a loop from the first to the last number, convert the counter to a string with or without zeros to the left, extract each digit and use it as an index to increment an array of 10 integers. I wonder if there is a better way to solve this, without having to loop through the entire integers range. Solutions in any language or pseudocode are welcome. Edit: Answers review John at CashCommons and Wayne Conrad comment that my current approach is good and fast enough. Let me use a silly analogy: If you were given the task of counting the squares in a chess board in less than 1 minute, you could finish the task by counting the squares one by one, but a better solution is to count the sides and do a multiplication, because you later may be asked to count the tiles in a building. Alex Reisner points to a very interesting mathematical law that, unfortunately, doesn’t seem to be relevant to this problem. Andres suggests the same algorithm I’m using, but extracting digits with %10 operations instead of substrings. John at CashCommons and phord propose pre-calculating the digits required and storing them in a lookup table or, for raw speed, an array. This could be a good solution if we had an absolute, unmovable, set in stone, maximum integer value. I’ve never seen one of those. High-Performance Mark and strainer computed the needed digits for various ranges. The result for one millon seems to indicate there is a proportion, but the results for other number show different proportions. strainer found some formulas that may be used to count digit for number which are a power of ten. Robert Harvey had a very interesting experience posting the question at MathOverflow. One of the math guys wrote a solution using mathematical notation. Aaronaught developed and tested a solution using mathematics. After posting it he reviewed the formulas originated from Math Overflow and found a flaw in it (point to Stackoverflow :). noahlavine developed an algorithm and presented it in pseudocode. A new solution After reading all the answers, and doing some experiments, I found that for a range of integer from 1 to 10n-1: For digits 1 to 9, n*10(n-1) pieces are needed For digit 0, if not using leading zeros, n*10n-1 - ((10n-1) / 9) are needed For digit 0, if using leading zeros, n*10n-1 - n are needed The first formula was found by strainer (and probably by others), and I found the other two by trial and error (but they may be included in other answers). For example, if n = 6, range is 1 to 999,999: For digits 1 to 9 we need 6*105 = 600,000 of each one For digit 0, without leading zeros, we need 6*105 – (106-1)/9 = 600,000 - 111,111 = 488,889 For digit 0, with leading zeros, we need 6*105 – 6 = 599,994 These numbers can be checked using High-Performance Mark results. Using these formulas, I improved the original algorithm. It still loops from the first to the last number in the range of integers, but, if it finds a number which is a power of ten, it uses the formulas to add to the digits count the quantity for a full range of 1 to 9 or 1 to 99 or 1 to 999 etc. Here's the algorithm in pseudocode: integer First,Last //First and last number in the range integer Number //Current number in the loop integer Power //Power is the n in 10^n in the formulas integer Nines //Nines is the resut of 10^n - 1, 10^5 - 1 = 99999 integer Prefix //First digits in a number. For 14,200, prefix is 142 array 0..9 Digits //Will hold the count for all the digits FOR Number = First TO Last CALL TallyDigitsForOneNumber WITH Number,1 //Tally the count of each digit //in the number, increment by 1 //Start of optimization. Comments are for Number = 1,000 and Last = 8,000. Power = Zeros at the end of number //For 1,000, Power = 3 IF Power 0 //The number ends in 0 00 000 etc Nines = 10^Power-1 //Nines = 10^3 - 1 = 1000 - 1 = 999 IF Number+Nines <= Last //If 1,000+999 < 8,000, add a full set Digits[0-9] += Power*10^(Power-1) //Add 3*10^(3-1) = 300 to digits 0 to 9 Digits[0] -= -Power //Adjust digit 0 (leading zeros formula) Prefix = First digits of Number //For 1000, prefix is 1 CALL TallyDigitsForOneNumber WITH Prefix,Nines //Tally the count of each //digit in prefix, //increment by 999 Number += Nines //Increment the loop counter 999 cycles ENDIF ENDIF //End of optimization ENDFOR SUBROUTINE TallyDigitsForOneNumber PARAMS Number,Count REPEAT Digits [ Number % 10 ] += Count Number = Number / 10 UNTIL Number = 0 For example, for range 786 to 3,021, the counter will be incremented: By 1 from 786 to 790 (5 cycles) By 9 from 790 to 799 (1 cycle) By 1 from 799 to 800 By 99 from 800 to 899 By 1 from 899 to 900 By 99 from 900 to 999 By 1 from 999 to 1000 By 999 from 1000 to 1999 By 1 from 1999 to 2000 By 999 from 2000 to 2999 By 1 from 2999 to 3000 By 1 from 3000 to 3010 (10 cycles) By 9 from 3010 to 3019 (1 cycle) By 1 from 3019 to 3021 (2 cycles) Total: 28 cycles Without optimization: 2,235 cycles Note that this algorithm solves the problem without leading zeros. To use it with leading zeros, I used a hack: If range 700 to 1,000 with leading zeros is needed, use the algorithm for 10,700 to 11,000 and then substract 1,000 - 700 = 300 from the count of digit 1. Benchmark and Source code I tested the original approach, the same approach using %10 and the new solution for some large ranges, with these results: Original 104.78 seconds With %10 83.66 With Powers of Ten 0.07 A screenshot of the benchmark application: If you would like to see the full source code or run the benchmark, use these links: Complete Source code (in Clarion): http://sca.mx/ftp/countdigits.txt Compilable project and win32 exe: http://sca.mx/ftp/countdigits.zip Accepted answer noahlavine solution may be correct, but l just couldn’t follow the pseudo code, I think there are some details missing or not completely explained. Aaronaught solution seems to be correct, but the code is just too complex for my taste. I accepted strainer’s answer, because his line of thought guided me to develop this new solution.

    Read the article

  • Windows Azure: Announcing release of Windows Azure SDK 2.2 (with lots of goodies)

    - by ScottGu
    Earlier today I blogged about a big update we made today to Windows Azure, and some of the great new features it provides. Today I’m also excited to also announce the release of the Windows Azure SDK 2.2. Today’s SDK release adds even more great features including: Visual Studio 2013 Support Integrated Windows Azure Sign-In support within Visual Studio Remote Debugging Cloud Services with Visual Studio Firewall Management support within Visual Studio for SQL Databases Visual Studio 2013 RTM VM Images for MSDN Subscribers Windows Azure Management Libraries for .NET Updated Windows Azure PowerShell Cmdlets and ScriptCenter The below post has more details on what’s available in today’s Windows Azure SDK 2.2 release.  Also head over to Channel 9 to see the new episode of the Visual Studio Toolbox show that will be available shortly, and which highlights these features in a video demonstration. Visual Studio 2013 Support Version 2.2 of the Window Azure SDK is the first official version of the SDK to support the final RTM release of Visual Studio 2013. If you installed the 2.1 SDK with the Preview of Visual Studio 2013 we recommend that you upgrade your projects to SDK 2.2.  SDK 2.2 also works side by side with the SDK 2.0 and SDK 2.1 releases on Visual Studio 2012: Integrated Windows Azure Sign In within Visual Studio Integrated Windows Azure Sign-In support within Visual Studio is one of the big improvements added with this Windows Azure SDK release.  Integrated sign-in support enables developers to develop/test/manage Windows Azure resources within Visual Studio without having to download or use management certificates.  You can now just right-click on the “Windows Azure” icon within the Server Explorer inside Visual Studio and choose the “Connect to Windows Azure” context menu option to connect to Windows Azure: Doing this will prompt you to enter the email address of the account you wish to sign-in with: You can use either a Microsoft Account (e.g. Windows Live ID) or an Organizational account (e.g. Active Directory) as the email.  The dialog will update with an appropriate login prompt depending on which type of email address you enter: Once you sign-in you’ll see the Windows Azure resources that you have permissions to manage show up automatically within the Visual Studio Server Explorer (and you can start using them): With this new integrated sign in experience you are now able to publish web apps, deploy VMs and cloud services, use Windows Azure diagnostics, and fully interact with your Windows Azure services within Visual Studio without the need for a management certificate.  All of the authentication is handled using the Windows Azure Active Directory associated with your Windows Azure account (details on this can be found in my earlier blog post). Integrating authentication this way end-to-end across the Service Management APIs + Dev Tools + Management Portal + PowerShell automation scripts enables a much more secure and flexible security model within Windows Azure, and makes it much more convenient to securely manage multiple developers + administrators working on a project.  It also allows organizations and enterprises to use the same authentication model that they use for their developers on-premises in the cloud.  It also ensures that employees who leave an organization immediately lose access to their company’s cloud based resources once their Active Directory account is suspended. Filtering/Subscription Management Once you login within Visual Studio, you can filter which Windows Azure subscriptions/regions are visible within the Server Explorer by right-clicking the “Filter Services” context menu within the Server Explorer.  You can also use the “Manage Subscriptions” context menu to mange your Windows Azure Subscriptions: Bringing up the “Manage Subscriptions” dialog allows you to see which accounts you are currently using, as well as which subscriptions are within them: The “Certificates” tab allows you to continue to import and use management certificates to manage Windows Azure resources as well.  We have not removed any functionality with today’s update – all of the existing scenarios that previously supported management certificates within Visual Studio continue to work just fine.  The new integrated sign-in support provided with today’s release is purely additive. Note: the SQL Database node and the Mobile Service node in Server Explorer do not support integrated sign-in at this time. Therefore, you will only see databases and mobile services under those nodes if you have a management certificate to authorize access to them.  We will enable them with integrated sign-in in a future update. Remote Debugging Cloud Resources within Visual Studio Today’s Windows Azure SDK 2.2 release adds support for remote debugging many types of Windows Azure resources. With live, remote debugging support from within Visual Studio, you are now able to have more visibility than ever before into how your code is operating live in Windows Azure.  Let’s walkthrough how to enable remote debugging for a Cloud Service: Remote Debugging of Cloud Services To enable remote debugging for your cloud service, select Debug as the Build Configuration on the Common Settings tab of your Cloud Service’s publish dialog wizard: Then click the Advanced Settings tab and check the Enable Remote Debugging for all roles checkbox: Once your cloud service is published and running live in the cloud, simply set a breakpoint in your local source code: Then use Visual Studio’s Server Explorer to select the Cloud Service instance deployed in the cloud, and then use the Attach Debugger context menu on the role or to a specific VM instance of it: Once the debugger attaches to the Cloud Service, and a breakpoint is hit, you’ll be able to use the rich debugging capabilities of Visual Studio to debug the cloud instance remotely, in real-time, and see exactly how your app is running in the cloud. Today’s remote debugging support is super powerful, and makes it much easier to develop and test applications for the cloud.  Support for remote debugging Cloud Services is available as of today, and we’ll also enable support for remote debugging Web Sites shortly. Firewall Management Support with SQL Databases By default we enable a security firewall around SQL Databases hosted within Windows Azure.  This ensures that only your application (or IP addresses you approve) can connect to them and helps make your infrastructure secure by default.  This is great for protection at runtime, but can sometimes be a pain at development time (since by default you can’t connect/manage the database remotely within Visual Studio if the security firewall blocks your instance of VS from connecting to it). One of the cool features we’ve added with today’s release is support that makes it easy to enable and configure the security firewall directly within Visual Studio.  Now with the SDK 2.2 release, when you try and connect to a SQL Database using the Visual Studio Server Explorer, and a firewall rule prevents access to the database from your machine, you will be prompted to add a firewall rule to enable access from your local IP address: You can simply click Add Firewall Rule and a new rule will be automatically added for you. In some cases, the logic to detect your local IP may not be sufficient (for example: you are behind a corporate firewall that uses a range of IP addresses) and you may need to set up a firewall rule for a range of IP addresses in order to gain access. The new Add Firewall Rule dialog also makes this easy to do.  Once connected you’ll be able to manage your SQL Database directly within the Visual Studio Server Explorer: This makes it much easier to work with databases in the cloud. Visual Studio 2013 RTM Virtual Machine Images Available for MSDN Subscribers Last week we released the General Availability Release of Visual Studio 2013 to the web.  This is an awesome release with a ton of new features. With today’s Windows Azure update we now have a set of pre-configured VM images of VS 2013 available within the Windows Azure Management Portal for use by MSDN customers.  This enables you to create a VM in the cloud with VS 2013 pre-installed on it in with only a few clicks: Windows Azure now provides the fastest and easiest way to get started doing development with Visual Studio 2013. Windows Azure Management Libraries for .NET (Preview) Having the ability to automate the creation, deployment, and tear down of resources is a key requirement for applications running in the cloud.  It also helps immensely when running dev/test scenarios and coded UI tests against pre-production environments. Today we are releasing a preview of a new set of Windows Azure Management Libraries for .NET.  These new libraries make it easy to automate tasks using any .NET language (e.g. C#, VB, F#, etc).  Previously this automation capability was only available through the Windows Azure PowerShell Cmdlets or to developers who were willing to write their own wrappers for the Windows Azure Service Management REST API. Modern .NET Developer Experience We’ve worked to design easy-to-understand .NET APIs that still map well to the underlying REST endpoints, making sure to use and expose the modern .NET functionality that developers expect today: Portable Class Library (PCL) support targeting applications built for any .NET Platform (no platform restriction) Shipped as a set of focused NuGet packages with minimal dependencies to simplify versioning Support async/await task based asynchrony (with easy sync overloads) Shared infrastructure for common error handling, tracing, configuration, HTTP pipeline manipulation, etc. Factored for easy testability and mocking Built on top of popular libraries like HttpClient and Json.NET Below is a list of a few of the management client classes that are shipping with today’s initial preview release: .NET Class Name Supports Operations for these Assets (and potentially more) ManagementClient Locations Credentials Subscriptions Certificates ComputeManagementClient Hosted Services Deployments Virtual Machines Virtual Machine Images & Disks StorageManagementClient Storage Accounts WebSiteManagementClient Web Sites Web Site Publish Profiles Usage Metrics Repositories VirtualNetworkManagementClient Networks Gateways Automating Creating a Virtual Machine using .NET Let’s walkthrough an example of how we can use the new Windows Azure Management Libraries for .NET to fully automate creating a Virtual Machine. I’m deliberately showing a scenario with a lot of custom options configured – including VHD image gallery enumeration, attaching data drives, network endpoints + firewall rules setup - to show off the full power and richness of what the new library provides. We’ll begin with some code that demonstrates how to enumerate through the built-in Windows images within the standard Windows Azure VM Gallery.  We’ll search for the first VM image that has the word “Windows” in it and use that as our base image to build the VM from.  We’ll then create a cloud service container in the West US region to host it within: We can then customize some options on it such as setting up a computer name, admin username/password, and hostname.  We’ll also open up a remote desktop (RDP) endpoint through its security firewall: We’ll then specify the VHD host and data drives that we want to mount on the Virtual Machine, and specify the size of the VM we want to run it in: Once everything has been set up the call to create the virtual machine is executed asynchronously In a few minutes we’ll then have a completely deployed VM running on Windows Azure with all of the settings (hard drives, VM size, machine name, username/password, network endpoints + firewall settings) fully configured and ready for us to use: Preview Availability via NuGet The Windows Azure Management Libraries for .NET are now available via NuGet. Because they are still in preview form, you’ll need to add the –IncludePrerelease switch when you go to retrieve the packages. The Package Manager Console screen shot below demonstrates how to get the entire set of libraries to manage your Windows Azure assets: You can also install them within your .NET projects by right clicking on the VS Solution Explorer and using the Manage NuGet Packages context menu command.  Make sure to select the “Include Prerelease” drop-down for them to show up, and then you can install the specific management libraries you need for your particular scenarios: Open Source License The new Windows Azure Management Libraries for .NET make it super easy to automate management operations within Windows Azure – whether they are for Virtual Machines, Cloud Services, Storage Accounts, Web Sites, and more.  Like the rest of the Windows Azure SDK, we are releasing the source code under an open source (Apache 2) license and it is hosted at https://github.com/WindowsAzure/azure-sdk-for-net/tree/master/libraries if you wish to contribute. PowerShell Enhancements and our New Script Center Today, we are also shipping Windows Azure PowerShell 0.7.0 (which is a separate download). You can find the full change log here. Here are some of the improvements provided with it: Windows Azure Active Directory authentication support Script Center providing many sample scripts to automate common tasks on Windows Azure New cmdlets for Media Services and SQL Database Script Center Windows Azure enables you to script and automate a lot of tasks using PowerShell.  People often ask for more pre-built samples of common scenarios so that they can use them to learn and tweak/customize. With this in mind, we are excited to introduce a new Script Center that we are launching for Windows Azure. You can learn about how to scripting with Windows Azure with a get started article. You can then find many sample scripts across different solutions, including infrastructure, data management, web, and more: All of the sample scripts are hosted on TechNet with links from the Windows Azure Script Center. Each script is complete with good code comments, detailed descriptions, and examples of usage. Summary Visual Studio 2013 and the Windows Azure SDK 2.2 make it easier than ever to get started developing rich cloud applications. Along with the Windows Azure Developer Center’s growing set of .NET developer resources to guide your development efforts, today’s Windows Azure SDK 2.2 release should make your development experience more enjoyable and efficient. If you don’t already have a Windows Azure account, you can sign-up for a free trial and start using all of the above features today.  Then visit the Windows Azure Developer Center to learn more about how to build apps with it. Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • Authenticating clients in the new WCF Http stack

    - by cibrax
    About this time last year, I wrote a couple of posts about how to use the “Interceptors” from the REST starker kit for implementing several authentication mechanisms like “SAML”, “Basic Authentication” or “OAuth” in the WCF Web programming model. The things have changed a lot since then, and Glenn finally put on our hands a new version of the Web programming model that deserves some attention and I believe will help us a lot to build more Http oriented services in the .NET stack. What you can get today from wcf.codeplex.com is a preview with some cool features like Http Processors (which I already discussed here), a new and improved version of the HttpClient library, Dependency injection and better TDD support among others. However, the framework still does not support an standard way of doing client authentication on the services (This is something planned for the upcoming releases I believe). For that reason, moving the existing authentication interceptors to this new programming model was one of the things I did in the last few days. In order to make authentication simple and easy to extend,  I first came up with a model based on what I called “Authentication Interceptors”. An authentication interceptor maps to an existing Http authentication mechanism and implements the following interface, public interface IAuthenticationInterceptor{ string Scheme { get; } bool DoAuthentication(HttpRequestMessage request, HttpResponseMessage response, out IPrincipal principal);} An authentication interceptors basically needs to returns the http authentication schema that implements in the property “Scheme”, and implements the authentication mechanism in the method “DoAuthentication”. As you can see, this last method “DoAuthentication” only relies on the HttpRequestMessage and HttpResponseMessage classes, making the testing of this interceptor very simple (There is no need to do some black magic with the WCF context or messages). After this, I implemented a couple of interceptors for supporting basic authentication and brokered authentication with SAML (using WIF) in my services. The following code illustrates how the basic authentication interceptors looks like. public class BasicAuthenticationInterceptor : IAuthenticationInterceptor{ Func<UsernameAndPassword, bool> userValidation; string realm;  public BasicAuthenticationInterceptor(Func<UsernameAndPassword, bool> userValidation, string realm) { if (userValidation == null) throw new ArgumentNullException("userValidation");  if (string.IsNullOrEmpty(realm)) throw new ArgumentNullException("realm");  this.userValidation = userValidation; this.realm = realm; }  public string Scheme { get { return "Basic"; } }  public bool DoAuthentication(HttpRequestMessage request, HttpResponseMessage response, out IPrincipal principal) { string[] credentials = ExtractCredentials(request); if (credentials.Length == 0 || !AuthenticateUser(credentials[0], credentials[1])) { response.StatusCode = HttpStatusCode.Unauthorized; response.Content = new StringContent("Access denied"); response.Headers.WwwAuthenticate.Add(new AuthenticationHeaderValue("Basic", "realm=" + this.realm));  principal = null;  return false; } else { principal = new GenericPrincipal(new GenericIdentity(credentials[0]), new string[] {});  return true; } }  private string[] ExtractCredentials(HttpRequestMessage request) { if (request.Headers.Authorization != null && request.Headers.Authorization.Scheme.StartsWith("Basic")) { string encodedUserPass = request.Headers.Authorization.Parameter.Trim();  Encoding encoding = Encoding.GetEncoding("iso-8859-1"); string userPass = encoding.GetString(Convert.FromBase64String(encodedUserPass)); int separator = userPass.IndexOf(':');  string[] credentials = new string[2]; credentials[0] = userPass.Substring(0, separator); credentials[1] = userPass.Substring(separator + 1);  return credentials; }  return new string[] { }; }  private bool AuthenticateUser(string username, string password) { var usernameAndPassword = new UsernameAndPassword { Username = username, Password = password };  if (this.userValidation(usernameAndPassword)) { return true; }  return false; }} This interceptor receives in the constructor a callback in the form of a Func delegate for authenticating the user and the “realm”, which is required as part of the implementation. The rest is a general implementation of the basic authentication mechanism using standard http request and response messages. I also implemented another interceptor for authenticating a SAML token with WIF. public class SamlAuthenticationInterceptor : IAuthenticationInterceptor{ SecurityTokenHandlerCollection handlers = null;  public SamlAuthenticationInterceptor(SecurityTokenHandlerCollection handlers) { if (handlers == null) throw new ArgumentNullException("handlers");  this.handlers = handlers; }  public string Scheme { get { return "saml"; } }  public bool DoAuthentication(HttpRequestMessage request, HttpResponseMessage response, out IPrincipal principal) { SecurityToken token = ExtractCredentials(request);  if (token != null) { ClaimsIdentityCollection claims = handlers.ValidateToken(token);  principal = new ClaimsPrincipal(claims);  return true; } else { response.StatusCode = HttpStatusCode.Unauthorized; response.Content = new StringContent("Access denied");  principal = null;  return false; } }  private SecurityToken ExtractCredentials(HttpRequestMessage request) { if (request.Headers.Authorization != null && request.Headers.Authorization.Scheme == "saml") { XmlTextReader xmlReader = new XmlTextReader(new StringReader(request.Headers.Authorization.Parameter));  var col = SecurityTokenHandlerCollection.CreateDefaultSecurityTokenHandlerCollection(); SecurityToken token = col.ReadToken(xmlReader);  return token; }  return null; }}This implementation receives a “SecurityTokenHandlerCollection” instance as part of the constructor. This class is part of WIF, and basically represents a collection of token managers to know how to handle specific xml authentication tokens (SAML is one of them). I also created a set of extension methods for injecting these interceptors as part of a service route when the service is initialized. var basicAuthentication = new BasicAuthenticationInterceptor((u) => true, "ContactManager");var samlAuthentication = new SamlAuthenticationInterceptor(serviceConfiguration.SecurityTokenHandlers); // use MEF for providing instancesvar catalog = new AssemblyCatalog(typeof(Global).Assembly);var container = new CompositionContainer(catalog);var configuration = new ContactManagerConfiguration(container); RouteTable.Routes.AddServiceRoute<ContactResource>("contact", configuration, basicAuthentication, samlAuthentication);RouteTable.Routes.AddServiceRoute<ContactsResource>("contacts", configuration, basicAuthentication, samlAuthentication); In the code above, I am injecting the basic authentication and saml authentication interceptors in the “contact” and “contacts” resource implementations that come as samples in the code preview. I will use another post to discuss more in detail how the brokered authentication with SAML model works with this new WCF Http bits. The code is available to download in this location.

    Read the article

  • Azure, don't give me multiple VMs, give me one elastic VM

    - by FransBouma
    Yesterday, Microsoft revealed new major features for Windows Azure (see ScottGu's post). It all looks shiny and great, but after reading most of the material describing the new features, I still find the overall idea behind all of it flawed: why should I care on how much VMs my web app runs? Isn't that a problem to solve for the Windows Azure engineers / software? And what if I need the file system, why can't I simply get a virtual filesystem ? To illustrate my point, let's use a real example: a product website with a customer system/database and next to it a support site with accompanying database. Both are written in .NET, using ASP.NET and use a SQL Server database each. The product website offers files to download by customers, very simple. You have a couple of options to host these websites: Buy a server, place it in a rack at an ISP and run the sites on that server Use 'shared hosting' with an ISP, which means your sites' appdomains are running on the same machine, as well as the files stored, and the databases are hosted in the same server as the other shared databases. Hire a VM, install your OS of choice at an ISP, and host the sites on that VM, basically the same as the first option, except you don't have a physical server At some cloud-vendor, either host the sites 'shared' or in a VM. See above. With all of those options, scalability is a problem, even the cloud-based ones, though not due to the same reasons: The physical server solution has the obvious problem that if you need more power, you need to buy a bigger server or more servers which requires you to add replication and other overhead Shared hosting solutions are almost always capped on memory usage / traffic and database size: if your sites get too big, you have to move out of the shared hosting environment and start over with one of the other solutions The VM solution, be it a VM at an ISP or 'in the cloud' at e.g. Windows Azure or Amazon, in theory allows scaling out by simply instantiating more VMs, however that too introduces the same overhead problems as with the physical servers: suddenly more than 1 instance runs your sites. If a cloud vendor offers its services in the form of VMs, you won't gain much over having a VM at some ISP: the main problems you have to work around are still there: when you spin up more than one VM, your application must be completely stateless at any moment, including the DB sub system, because what's in memory in instance 1 might not be in memory in instance 2. This might sounds trivial but it's not. A lot of the websites out there started rather small: they were perfectly runnable on a single machine with normal memory and CPU power. After all, you don't need a big machine to run a website with even thousands of users a day. Moving these sites to a multi-VM environment will cause a problem: all the in-memory state they use, all the multi-page transitions they use while keeping state across the transition, they can't do that anymore like they did that on a single machine: state is something of the past, you have to store every byte of state in either a DB or in a viewstate or in a cookie somewhere so with the next request, all state information is available through the request, as nothing is kept in-memory. Our example uses a bunch of files in a file system. Using multiple VMs will require that these files move to a cloud storage system which is mounted in each VM so we don't have to store the files on each VM. This might require different file paths, but this change should be minor. What's perhaps less minor is the maintenance procedure in place on the new type of cloud storage used: instead of ftp-ing into a VM, you might have to update the files using different ways / tools. All in all this makes moving an existing website which was written for an environment that's based around a VM (namely .NET with its CLR) overly cumbersome and problematic: it forces you to refactor your website system to be able to be used 'in the cloud', which is caused by the limited way how e.g. Windows Azure offers its cloud services: in blocks of VMs. Offer a scalable, flexible VM which extends with my needs Instead, cloud vendors should offer simply one VM to me. On that VM I run the websites, store my DB and my files. As it's a virtual machine, how this machine is actually ran on physical hardware (e.g. partitioned), I don't care, as that's the problem for the cloud vendor to solve. If I need more resources, e.g. I have more traffic to my server, way more visitors per day, the VM stretches, like I bought a bigger box. This frees me from the problem which comes with multiple VMs: I don't have any refactoring to do at all: I can simply build my website as if it runs on my local hardware server, upload it to the VM offered by the cloud vendor, install it on the VM and I'm done. "But that might require changes to windows!" Yes, but Microsoft is Windows. Windows Azure is their service, they can make whatever change to what they offer to make it look like it's windows. Yet, they're stuck, like Amazon, in thinking in VMs, which forces developers to 'think ahead' and gamble whether they would need to migrate to a cloud with multiple VMs in the future or not. Which comes down to: gamble whether they should invest time in code / architecture which they might never need. (YAGNI anyone?) So the VM we're talking about, is that a low-level VM which runs a guest OS, or is that VM a different kind of VM? The flexible VM: .NET's CLR ? My example websites are ASP.NET based, which means they run inside a .NET appdomain, on the .NET CLR, which is a VM. The only physical OS resource the sites need is the file system, however this too is accessed through .NET. In short: all the websites see is what .NET allows the websites to see, the world as the websites know it is what .NET shows them and lets them access. How the .NET appdomain is run physically, that's the concern of .NET, not mine. This begs the question why Windows Azure doesn't offer virtual appdomains? Or better: .NET environments which look like one machine but could be physically multiple machines. In such an environment, no change has to be made to the websites to migrate them from a local machine or own server to the cloud to get proper scaling: the .NET VM will simply scale with the need: more memory needed, more CPU power needed, it stretches. What it offers to the application running inside the appdomain is simply increasing, but not fragmented: all resources are available to the application: this means that the problem of how to scale is back to where it should be: with the cloud vendor. "Yeah, great, but what about the databases?" The .NET application communicates with the database server through a .NET ADO.NET provider. Where the database is located is not a problem of the appdomain: the ADO.NET provider has to solve that. I.o.w.: we can host the databases in an environment which offers itself as a single resource and is accessible through one connection string without replication overhead on the outside, and use that environment inside the .NET VM as if it was a single DB. But what about memory replication and other problems? This environment isn't simple, at least not for the cloud vendor. But it is simple for the customer who wants to run his sites in that cloud: no work needed. No refactoring needed of existing code. Upload it, run it. Perhaps I'm dreaming and what I described above isn't possible. Yet, I think if cloud vendors don't move into that direction, what they're offering isn't interesting: it doesn't solve a problem at all, it simply offers a way to instantiate more VMs with the guest OS of choice at the cost of me needing to refactor my website code so it can run in the straight jacket form factor dictated by the cloud vendor. Let's not kid ourselves here: most of us developers will never build a website which needs a truck load of VMs to run it: almost all websites created by developers can run on just a few VMs at most. Yet, the most expensive change is right at the start: moving from one to two VMs. As soon as you have refactored your website code to run across multiple VMs, adding another one is just as easy as clicking a mouse button. But that first step, that's the problem here and as it's right there at the beginning of scaling the website, it's particularly strange that cloud vendors refuse to solve that problem and leave it to the developers to solve that. Which makes migrating 'to the cloud' particularly expensive.

    Read the article

  • MediaRecorder prepare() causes segfault

    - by dwilde1
    Folks, I have a situation where my MediaRecorder instance causes a segfault. I'm working with a HTC Hero, Android 1.5+APIs. I've tried all variations, including 3gpp and H.263 and reducing the video resolution to 320x240. What am I missing? The state machine causes 4 MediaPlayer beeps and then turns on the video camera. Here's the pertinent source: UPDATE: ADDING SURFACE CREATE INFO I have rebooted the device based on previous answer to similar question. UPDATE 2: I seem to be following the MediaRecorder state machine perfectly, and if I trap out the MR code, the blank surface displays perfectly and everything else functions perfectly. I can record videos manually and play back via MediaPlayer in my code, so there should be nothing wrong with the underlying code. I've copied sample code on the surface and surfaceHolder code. I've looked at the MR instance in the Debug perspective in Eclipse and see that all (known) variables seem to be instantiated correctly. The setter calls are all now implemented in the exaxct order specced in the state diagram. UPDATE 3: I've tried all permission combinations: CAMERA + RECORD_AUDIO+RECORD_VIDEO, CAMERA only, RECORD_AUDIO+RECORD_VIDEO This is driving me bats! :))) // in activity class definition protected MediaPlayer mPlayer; protected MediaRecorder mRecorder; protected boolean inCapture = false; protected int phaseCapture = 0; protected int durCapturePhase = INF; protected SurfaceView surface; protected SurfaceHolder surfaceHolder; // in onCreate() // panelPreview is an empty LinearLayout surface = new SurfaceView(getApplicationContext()); surfaceHolder = surface.getHolder(); surfaceHolder.setType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS); panelPreview.addView(surface); // in timer handler runnable if (mRecorder == null) mRecorder = new MediaRecorder(); mRecorder.setAudioSource(MediaRecorder.AudioSource.MIC); mRecorder.setVideoSource(MediaRecorder.VideoSource.CAMERA); mRecorder.setOutputFormat(MediaRecorder.OutputFormat.THREE_GPP); mRecorder.setAudioEncoder(MediaRecorder.AudioEncoder.AMR_NB); mRecorder.setOutputFile(path + "/" + vlip); mRecorder.setVideoSize(320, 240); mRecorder.setVideoFrameRate(15); mRecorder.setPreviewDisplay(surfaceHolder.getSurface()); panelPreview.setVisibility(LinearLayout.VISIBLE); mRecorder.prepare(); mRecorder.start(); Here is a complete log trace for the process run and crash: I/ActivityManager( 80): Start proc com.ejf.convince.jenplus for activity com.ejf.convince.jenplus/.JenPLUS: pid=17738 uid=10075 gids={1006, 3003} I/jdwp (17738): received file descriptor 10 from ADB W/System.err(17738): Can't dispatch DDM chunk 46454154: no handler defined W/System.err(17738): Can't dispatch DDM chunk 4d505251: no handler defined I/WindowManager( 80): Screen status=true, current orientation=-1, SensorEnabled=false I/WindowManager( 80): needSensorRunningLp, mCurrentAppOrientation =-1 I/WindowManager( 80): Enabling listeners W/ActivityThread(17738): Application com.ejf.convince.jenplus is waiting for the debugger on port 8100... I/System.out(17738): Sending WAIT chunk I/dalvikvm(17738): Debugger is active I/AlertDialog( 80): [onCreate] auto launch SIP. I/WindowManager( 80): onOrientationChanged, rotation changed to 0 I/System.out(17738): Debugger has connected I/System.out(17738): waiting for debugger to settle... I/System.out(17738): waiting for debugger to settle... I/System.out(17738): waiting for debugger to settle... I/System.out(17738): waiting for debugger to settle... I/System.out(17738): waiting for debugger to settle... I/System.out(17738): waiting for debugger to settle... I/System.out(17738): waiting for debugger to settle... I/System.out(17738): waiting for debugger to settle... I/System.out(17738): waiting for debugger to settle... I/System.out(17738): waiting for debugger to settle... I/System.out(17738): waiting for debugger to settle... I/System.out(17738): waiting for debugger to settle... I/System.out(17738): debugger has settled (1370) I/ActivityManager( 80): Displayed activity com.ejf.convince.jenplus/.JenPLUS: 5186 ms I/OpenCore( 2696): [Hank debug] LN 289 FN CreateNode I/AudioHardwareMSM72XX( 2696): AUDIO_START: start kernel pcm_out driver. W/AudioFlinger( 2696): write blocked for 96 msecs I/PlayerDriver( 2696): CIQ 1625 sendEvent state=5 I/OpenCore( 2696): [Hank debug] LN 289 FN CreateNode I/PlayerDriver( 2696): CIQ 1625 sendEvent state=5 I/OpenCore( 2696): [Hank debug] LN 289 FN CreateNode I/PlayerDriver( 2696): CIQ 1625 sendEvent state=5 I/OpenCore( 2696): [Hank debug] LN 289 FN CreateNode I/PlayerDriver( 2696): CIQ 1625 sendEvent state=5 W/AuthorDriver( 2696): Intended width(640) exceeds the max allowed width(352). Max width is used instead. W/AuthorDriver( 2696): Intended height(480) exceeds the max allowed height(288). Max height is used instead. I/AudioHardwareMSM72XX( 2696): AudioHardware pcm playback is going to standby. I/DEBUG (16094): *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** I/DEBUG (16094): Build fingerprint: 'sprint/htc_heroc/heroc/heroc: 1.5/CUPCAKE/85027:user/release-keys' I/DEBUG (16094): pid: 17738, tid: 17738 com.ejf.convince.jenplus Thanks in advance! -- Don Wilde http://www.ConvinceProject.com

    Read the article

  • Reference a GNU C (POSIX) DLL built in GCC against Cygwin, from C#/NET

    - by Dale Halliwell
    Here is what I want: I have a huge legacy C/C++ codebase written for POSIX, including some very POSIX specific stuff like pthreads. This can be compiled on Cygwin/GCC and run as an executable under Windows with the Cygwin DLL. What I would like to do is build the codebase itself into a Windows DLL that I can then reference from C# and write a wrapper around it to access some parts of it programatically. I have tried this approach with the very simple "hello world" example at http://www.cygwin.com/cygwin-ug-net/dll.html and it doesn't seem to work. #include <stdio.h> extern "C" __declspec(dllexport) int hello(); int hello() { printf ("Hello World!\n"); return 42; } I believe I should be able to reference a DLL built with the above code in C# using something like: [DllImport("kernel32.dll")] public static extern IntPtr LoadLibrary(string dllToLoad); [DllImport("kernel32.dll")] public static extern IntPtr GetProcAddress(IntPtr hModule, string procedureName); [DllImport("kernel32.dll")] public static extern bool FreeLibrary(IntPtr hModule); [UnmanagedFunctionPointer(CallingConvention.Cdecl)] private delegate int hello(); static void Main(string[] args) { var path = Path.Combine(AppDomain.CurrentDomain.BaseDirectory, "helloworld.dll"); IntPtr pDll = LoadLibrary(path); IntPtr pAddressOfFunctionToCall = GetProcAddress(pDll, "hello"); hello hello = (hello)Marshal.GetDelegateForFunctionPointer( pAddressOfFunctionToCall, typeof(hello)); int theResult = hello(); Console.WriteLine(theResult.ToString()); bool result = FreeLibrary(pDll); Console.ReadKey(); } But this approach doesn't seem to work. LoadLibrary returns null. It can find the DLL (helloworld.dll), it is just like it can't load it or find the exported function. I am sure that if I get this basic case working I can reference the rest of my codebase in this way. Any suggestions or pointers, or does anyone know if what I want is even possible? Thanks. Edit: Examined my DLL with Dependency Walker (great tool, thanks) and it seems to export the function correctly. Question: should I be referencing it as the function name Dependency Walker seems to find (_Z5hellov)? Edit2: Just to show you I have tried it, linking directly to the dll at relative or absolute path (i.e. not using LoadLibrary): [DllImport(@"C:\.....\helloworld.dll")] public static extern int hello(); static void Main(string[] args) { int theResult = hello(); Console.WriteLine(theResult.ToString()); Console.ReadKey(); } This fails with: "Unable to load DLL 'C:.....\helloworld.dll': Invalid access to memory location. (Exception from HRESULT: 0x800703E6) *Edit 3: * Oleg has suggested running dumpbin.exe on my dll, this is the output: Dump of file helloworld.dll File Type: DLL Section contains the following exports for helloworld.dll 00000000 characteristics 4BD5037F time date stamp Mon Apr 26 15:07:43 2010 0.00 version 1 ordinal base 1 number of functions 1 number of names ordinal hint RVA name 1 0 000010F0 hello Summary 1000 .bss 1000 .data 1000 .debug_abbrev 1000 .debug_info 1000 .debug_line 1000 .debug_pubnames 1000 .edata 1000 .eh_frame 1000 .idata 1000 .reloc 1000 .text Edit 4 Thanks everyone for the help, I managed to get it working. Oleg's answer gave me the information I needed to find out what I was doing wrong. There are 2 ways to do this. One is to build with the gcc -mno-cygwin compiler flag, which builds the dll without the cygwin dll, basically as if you had built it in MingW. Building it this way got my hello world example working! However, MingW doesn't have all the libraries that cygwin has in the installer, so if your POSIX code has dependencies on these libraries (mine had heaps) you can't do this way. And if your POSIX code didn't have those dependencies, why not just build for Win32 from the beginning. So that's not much help unless you want to spend time setting up MingW properly. The other option is to build with the Cygwin DLL. The Cygwin DLL needs an initialization function init() to be called before it can be used. This is why my code wasn't working before. The code below loads and runs my hello world example. //[DllImport(@"hello.dll", EntryPoint = "#1",SetLastError = true)] //static extern int helloworld(); //don't do this! cygwin needs to be init first [DllImport("kernel32", CharSet = CharSet.Ansi, ExactSpelling = true, SetLastError = true)] static extern IntPtr GetProcAddress(IntPtr hModule, string procName); [DllImport("kernel32", SetLastError = true)] static extern IntPtr LoadLibrary(string lpFileName); public delegate int MyFunction(); static void Main(string[] args) { //load cygwin dll IntPtr pcygwin = LoadLibrary("cygwin1.dll"); IntPtr pcyginit = GetProcAddress(pcygwin, "cygwin_dll_init"); Action init = (Action)Marshal.GetDelegateForFunctionPointer(pcyginit, typeof(Action)); init(); IntPtr phello = LoadLibrary("hello.dll"); IntPtr pfn = GetProcAddress(phello, "helloworld"); MyFunction helloworld = (MyFunction)Marshal.GetDelegateForFunctionPointer(pfn, typeof(MyFunction)); Console.WriteLine(helloworld()); Console.ReadKey(); } Thanks to everyone that answered~~

    Read the article

  • Using JDialog with Tabbed Pane to draw different pictures [migrated]

    - by Bryam Ulloa
    I am using NetBeans, and I have a class that extends to JDialog, inside that Dialog box I have created a Tabbed Pane. The Tabbed Pane contains 6 different tabs, with 6 different panels of course. What I want to do is when I click on the different tabs, a diagram is supposed to be drawn with the paint method. My question is how can I draw on the different panels with just one paint method in another class being called from the Dialog class? Here is my code for the Dialog class: package GUI; public class NewJDialog extends javax.swing.JDialog{ /** * Creates new form NewJDialog */ public NewJDialog(java.awt.Frame parent, boolean modal) { super(parent, modal); initComponents(); } /** * This method is called from within the constructor to initialize the form. * WARNING: Do NOT modify this code. The content of this method is always * regenerated by the Form Editor. */ @SuppressWarnings("unchecked") // <editor-fold defaultstate="collapsed" desc="Generated Code"> private void initComponents() { jTabbedPane1 = new javax.swing.JTabbedPane(); jPanel1 = new javax.swing.JPanel(); jPanel2 = new javax.swing.JPanel(); jPanel3 = new javax.swing.JPanel(); jPanel4 = new javax.swing.JPanel(); jPanel5 = new javax.swing.JPanel(); jPanel6 = new javax.swing.JPanel(); jPanel7 = new javax.swing.JPanel(); jLabel1 = new javax.swing.JLabel(); jLabel2 = new javax.swing.JLabel(); setDefaultCloseOperation(javax.swing.WindowConstants.DISPOSE_ON_CLOSE); javax.swing.GroupLayout jPanel1Layout = new javax.swing.GroupLayout(jPanel1); jPanel1.setLayout(jPanel1Layout); jPanel1Layout.setHorizontalGroup( jPanel1Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) .addGap(0, 466, Short.MAX_VALUE) ); jPanel1Layout.setVerticalGroup( jPanel1Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) .addGap(0, 242, Short.MAX_VALUE) ); jTabbedPane1.addTab("FCFS", jPanel1); javax.swing.GroupLayout jPanel2Layout = new javax.swing.GroupLayout(jPanel2); jPanel2.setLayout(jPanel2Layout); jPanel2Layout.setHorizontalGroup( jPanel2Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) .addGap(0, 466, Short.MAX_VALUE) ); jPanel2Layout.setVerticalGroup( jPanel2Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) .addGap(0, 242, Short.MAX_VALUE) ); jTabbedPane1.addTab("SSTF", jPanel2); javax.swing.GroupLayout jPanel3Layout = new javax.swing.GroupLayout(jPanel3); jPanel3.setLayout(jPanel3Layout); jPanel3Layout.setHorizontalGroup( jPanel3Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) .addGap(0, 466, Short.MAX_VALUE) ); jPanel3Layout.setVerticalGroup( jPanel3Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) .addGap(0, 242, Short.MAX_VALUE) ); jTabbedPane1.addTab("LOOK", jPanel3); javax.swing.GroupLayout jPanel4Layout = new javax.swing.GroupLayout(jPanel4); jPanel4.setLayout(jPanel4Layout); jPanel4Layout.setHorizontalGroup( jPanel4Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) .addGap(0, 466, Short.MAX_VALUE) ); jPanel4Layout.setVerticalGroup( jPanel4Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) .addGap(0, 242, Short.MAX_VALUE) ); jTabbedPane1.addTab("LOOK C", jPanel4); javax.swing.GroupLayout jPanel5Layout = new javax.swing.GroupLayout(jPanel5); jPanel5.setLayout(jPanel5Layout); jPanel5Layout.setHorizontalGroup( jPanel5Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) .addGap(0, 466, Short.MAX_VALUE) ); jPanel5Layout.setVerticalGroup( jPanel5Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) .addGap(0, 242, Short.MAX_VALUE) ); jTabbedPane1.addTab("SCAN", jPanel5); javax.swing.GroupLayout jPanel6Layout = new javax.swing.GroupLayout(jPanel6); jPanel6.setLayout(jPanel6Layout); jPanel6Layout.setHorizontalGroup( jPanel6Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) .addGap(0, 466, Short.MAX_VALUE) ); jPanel6Layout.setVerticalGroup( jPanel6Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) .addGap(0, 242, Short.MAX_VALUE) ); jTabbedPane1.addTab("SCAN C", jPanel6); getContentPane().add(jTabbedPane1, java.awt.BorderLayout.CENTER); jLabel1.setText("Distancia:"); jLabel2.setText("___________"); javax.swing.GroupLayout jPanel7Layout = new javax.swing.GroupLayout(jPanel7); jPanel7.setLayout(jPanel7Layout); jPanel7Layout.setHorizontalGroup( jPanel7Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) .addGroup(jPanel7Layout.createSequentialGroup() .addGap(21, 21, 21) .addComponent(jLabel1) .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED) .addComponent(jLabel2) .addContainerGap(331, Short.MAX_VALUE)) ); jPanel7Layout.setVerticalGroup( jPanel7Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) .addGroup(jPanel7Layout.createSequentialGroup() .addContainerGap() .addGroup(jPanel7Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.BASELINE) .addComponent(jLabel1) .addComponent(jLabel2)) .addContainerGap(15, Short.MAX_VALUE)) ); getContentPane().add(jPanel7, java.awt.BorderLayout.PAGE_START); pack(); }// </editor-fold> /** * @param args the command line arguments */ public static void main(String args[]) { /* Set the Nimbus look and feel */ //<editor-fold defaultstate="collapsed" desc=" Look and feel setting code (optional) "> /* If Nimbus (introduced in Java SE 6) is not available, stay with the default look and feel. * For details see http://download.oracle.com/javase/tutorial/uiswing/lookandfeel/plaf.html */ try { for (javax.swing.UIManager.LookAndFeelInfo info : javax.swing.UIManager.getInstalledLookAndFeels()) { if ("Nimbus".equals(info.getName())) { javax.swing.UIManager.setLookAndFeel(info.getClassName()); break; } } } catch (ClassNotFoundException ex) { java.util.logging.Logger.getLogger(NewJDialog.class.getName()).log(java.util.logging.Level.SEVERE, null, ex); } catch (InstantiationException ex) { java.util.logging.Logger.getLogger(NewJDialog.class.getName()).log(java.util.logging.Level.SEVERE, null, ex); } catch (IllegalAccessException ex) { java.util.logging.Logger.getLogger(NewJDialog.class.getName()).log(java.util.logging.Level.SEVERE, null, ex); } catch (javax.swing.UnsupportedLookAndFeelException ex) { java.util.logging.Logger.getLogger(NewJDialog.class.getName()).log(java.util.logging.Level.SEVERE, null, ex); } //</editor-fold> /* Create and display the dialog */ java.awt.EventQueue.invokeLater(new Runnable() { public void run() { NewJDialog dialog = new NewJDialog(new javax.swing.JFrame(), true); dialog.addWindowListener(new java.awt.event.WindowAdapter() { @Override public void windowClosing(java.awt.event.WindowEvent e) { System.exit(0); } }); dialog.setVisible(true); } }); } // Variables declaration - do not modify private javax.swing.JLabel jLabel1; private javax.swing.JLabel jLabel2; private javax.swing.JPanel jPanel1; private javax.swing.JPanel jPanel2; private javax.swing.JPanel jPanel3; private javax.swing.JPanel jPanel4; private javax.swing.JPanel jPanel5; private javax.swing.JPanel jPanel6; private javax.swing.JPanel jPanel7; private javax.swing.JTabbedPane jTabbedPane1; // End of variables declaration } This is another class that I have created for the paint method: package GUI; import java.awt.Graphics; import javax.swing.JPanel; /** * * @author TOSHIBA */ public class Lienzo { private int width = 5; private int height = 5; private int y = 5; private int x = 0; private int x1 = 0; public Graphics Draw(Graphics g, int[] pistas) { //Im not sure if this is the correct way to do it //The diagram gets drawn according to values from an array //The array is not always the same thats why I used the different Panels for (int i = 0; i < pistas.length; i++) { x = pistas[i]; x1 = pistas[i + 1]; g.drawOval(x, y, width, height); g.drawString(Integer.toString(x), x, y); g.drawLine(x, y, x1, y); } return g; } } I hope you guys understand what I am trying to do with my program.

    Read the article

  • CI Deployment Of Azure Web Roles Using TeamCity

    - by srkirkland
    After recently migrating an important new website to use Windows Azure “Web Roles” I wanted an easier way to deploy new versions to the Azure Staging environment as well as a reliable process to rollback deployments to a certain “known good” source control commit checkpoint.  By configuring our JetBrains’ TeamCity CI server to utilize Windows Azure PowerShell cmdlets to create new automated deployments, I’ll show you how to take control of your Azure publish process. Step 0: Configuring your Azure Project in Visual Studio Before we can start looking at automating the deployment, we should make sure manual deployments from Visual Studio are working properly.  Detailed information for setting up deployments can be found at http://msdn.microsoft.com/en-us/library/windowsazure/ff683672.aspx#PublishAzure or by doing some quick Googling, but the basics are as follows: Install the prerequisite Windows Azure SDK Create an Azure project by right-clicking on your web project and choosing “Add Windows Azure Cloud Service Project” (or by manually adding that project type) Configure your Role and Service Configuration/Definition as desired Right-click on your azure project and choose “Publish,” create a publish profile, and push to your web role You don’t actually have to do step #4 and create a publish profile, but it’s a good exercise to make sure everything is working properly.  Once your Windows Azure project is setup correctly, we are ready to move on to understanding the Azure Publish process. Understanding the Azure Publish Process The actual Windows Azure project is fairly simple at its core—it builds your dependent roles (in our case, a web role) against a specific service and build configuration, and outputs two files: ServiceConfiguration.Cloud.cscfg: This is just the file containing your package configuration info, for example Instance Count, OsFamily, ConnectionString and other Setting information. ProjectName.Azure.cspkg: This is the package file that contains the guts of your deployment, including all deployable files. When you package your Azure project, these two files will be created within the directory ./[ProjectName].Azure/bin/[ConfigName]/app.publish/.  If you want to build your Azure Project from the command line, it’s as simple as calling MSBuild on the “Publish” target: msbuild.exe /target:Publish Windows Azure PowerShell Cmdlets The last pieces of the puzzle that make CI automation possible are the Azure PowerShell Cmdlets (http://msdn.microsoft.com/en-us/library/windowsazure/jj156055.aspx).  These cmdlets are what will let us create deployments without Visual Studio or other user intervention. Preparing TeamCity for Azure Deployments Now we are ready to get our TeamCity server setup so it can build and deploy Windows Azure projects, which we now know requires the Azure SDK and the Windows Azure PowerShell Cmdlets. Installing the Azure SDK is easy enough, just go to https://www.windowsazure.com/en-us/develop/net/ and click “Install” Once this SDK is installed, I recommend running a test build to make sure your project is building correctly.  You’ll want to setup your build step using MSBuild with the “Publish” target against your solution file.  Mine looks like this: Assuming the build was successful, you will now have the two *.cspkg and *cscfg files within your build directory.  If the build was red (failed), take a look at the build logs and keep an eye out for “unsupported project type” or other build errors, which will need to be addressed before the CI deployment can be completed. With a successful build we are now ready to install and configure the Windows Azure PowerShell Cmdlets: Follow the instructions at http://msdn.microsoft.com/en-us/library/windowsazure/jj554332 to install the Cmdlets and configure PowerShell After installing the Cmdlets, you’ll need to get your Azure Subscription Info using the Get-AzurePublishSettingsFile command. Store the resulting *.publishsettings file somewhere you can get to easily, like C:\TeamCity, because you will need to reference it later from your deploy script. Scripting the CI Deploy Process Now that the cmdlets are installed on our TeamCity server, we are ready to script the actual deployment using a TeamCity “PowerShell” build runner.  Before we look at any code, here’s a breakdown of our deployment algorithm: Setup your variables, including the location of the *.cspkg and *cscfg files produced in the earlier MSBuild step (remember, the folder is something like [ProjectName].Azure/bin/[ConfigName]/app.publish/ Import the Windows Azure PowerShell Cmdlets Import and set your Azure Subscription information (this is basically your authentication/authorization step, so protect your settings file Now look for a current deployment, and if you find one Upgrade it, else Create a new deployment Pretty simple and straightforward.  Now let’s look at the code (also available as a gist here: https://gist.github.com/3694398): $subscription = "[Your Subscription Name]" $service = "[Your Azure Service Name]" $slot = "staging" #staging or production $package = "[ProjectName]\bin\[BuildConfigName]\app.publish\[ProjectName].cspkg" $configuration = "[ProjectName]\bin\[BuildConfigName]\app.publish\ServiceConfiguration.Cloud.cscfg" $timeStampFormat = "g" $deploymentLabel = "ContinuousDeploy to $service v%build.number%"   Write-Output "Running Azure Imports" Import-Module "C:\Program Files (x86)\Microsoft SDKs\Windows Azure\PowerShell\Azure\*.psd1" Import-AzurePublishSettingsFile "C:\TeamCity\[PSFileName].publishsettings" Set-AzureSubscription -CurrentStorageAccount $service -SubscriptionName $subscription   function Publish(){ $deployment = Get-AzureDeployment -ServiceName $service -Slot $slot -ErrorVariable a -ErrorAction silentlycontinue   if ($a[0] -ne $null) { Write-Output "$(Get-Date -f $timeStampFormat) - No deployment is detected. Creating a new deployment. " } if ($deployment.Name -ne $null) { #Update deployment inplace (usually faster, cheaper, won't destroy VIP) Write-Output "$(Get-Date -f $timeStampFormat) - Deployment exists in $servicename. Upgrading deployment." UpgradeDeployment } else { CreateNewDeployment } }   function CreateNewDeployment() { write-progress -id 3 -activity "Creating New Deployment" -Status "In progress" Write-Output "$(Get-Date -f $timeStampFormat) - Creating New Deployment: In progress"   $opstat = New-AzureDeployment -Slot $slot -Package $package -Configuration $configuration -label $deploymentLabel -ServiceName $service   $completeDeployment = Get-AzureDeployment -ServiceName $service -Slot $slot $completeDeploymentID = $completeDeployment.deploymentid   write-progress -id 3 -activity "Creating New Deployment" -completed -Status "Complete" Write-Output "$(Get-Date -f $timeStampFormat) - Creating New Deployment: Complete, Deployment ID: $completeDeploymentID" }   function UpgradeDeployment() { write-progress -id 3 -activity "Upgrading Deployment" -Status "In progress" Write-Output "$(Get-Date -f $timeStampFormat) - Upgrading Deployment: In progress"   # perform Update-Deployment $setdeployment = Set-AzureDeployment -Upgrade -Slot $slot -Package $package -Configuration $configuration -label $deploymentLabel -ServiceName $service -Force   $completeDeployment = Get-AzureDeployment -ServiceName $service -Slot $slot $completeDeploymentID = $completeDeployment.deploymentid   write-progress -id 3 -activity "Upgrading Deployment" -completed -Status "Complete" Write-Output "$(Get-Date -f $timeStampFormat) - Upgrading Deployment: Complete, Deployment ID: $completeDeploymentID" }   Write-Output "Create Azure Deployment" Publish   Creating the TeamCity Build Step The only thing left is to create a second build step, after your MSBuild “Publish” step, with the build runner type “PowerShell”.  Then set your script to “Source Code,” the script execution mode to “Put script into PowerShell stdin with “-Command” arguments” and then copy/paste in the above script (replacing the placeholder sections with your values).  This should look like the following:   Wrap Up After combining the MSBuild /target:Publish step (which creates the necessary Windows Azure *.cspkg and *.cscfg files) and a PowerShell script step which utilizes the Azure PowerShell Cmdlets, we have a fully deployable build configuration in TeamCity.  You can configure this step to run whenever you’d like using build triggers – for example, you could even deploy whenever a new master branch deploy comes in and passes all required tests. In the script I’ve hardcoded that every deployment goes to the Staging environment on Azure, but you could deploy straight to Production if you want to, or even setup a deployment configuration variable and set it as desired. After your TeamCity Build Configuration is complete, you’ll see something that looks like this: Whenever you click the “Run” button, all of your code will be compiled, published, and deployed to Windows Azure! One additional enormous benefit of automating the process this way is that you can easily deploy any specific source control changeset by clicking the little ellipsis button next to "Run.”  This will bring up a dialog like the one below, where you can select the last change to use for your deployment.  Since Azure Web Role deployments don’t have any rollback functionality, this is a critical feature.   Enjoy!

    Read the article

  • Conversion of BizTalk Projects to Use the New WCF-SAP Adaptor

    - by Geordie
    We are in the process of upgrading our BizTalk Environment from BizTalk 2006 R2 to BizTalk 2010. The SAP adaptor in BizTalk 2010 is an all new and more powerful WCF-SAP adaptor. When my colleagues tested out the new adaptor they discovered that the format of the data extracted from SAP was not identical to the old adaptor. This is not a big deal if the structure of the messages from SAP is simple. In this case we were receiving the delivery and invoice iDocs. Both these structures are complex especially the delivery document. Over the past few years I have tweaked the delivery mapping to remove bugs from original mapping. The idea of redoing these maps did not appeal and due to the current work load was not even an option. I opted for a rather crude alternative of pulling in the iDoc in the new typed format and then adding a static map at the start of the orchestration to convert the data to the old schema.  Note WCF-SAP data formats (on the binding tab of the configuration dialog box is the ‘RecieiveIdocFormat’ field): Typed:  Returns a XML document with the hierarchy represented in XML and all fields being represented by XML tags. RFC: Returns an XML document with the hierarchy represented in XML but the iDoc lines in flat file format. String: This returns the iDoc in a format that is closest to the original flat file format but is still wrapped with some top level XML tags. The files also contained some strange characters at the end of each line. I started with the invoice document and it was quite straight forward to add the mapping but this is where my problems started. The orchestrations for these documents are dynamic and so require the identity of the partner to be able to correctly configure the orchestration. The partner identity is in the EDI_DC40 segment of the iDoc. In the old project the RECPRN node of the segment was promoted. The code to set a variable to the partner ID was now failing. After lot of head scratching I discovered the problem was due to the addition of Namespaces to the fields in the EDI_DC40 segment. To overcome this I needed to use an xPath query with a Namespace Manager. This had to be done in custom code. I now tried to repeat the process with the delivery document. Unfortunately when we tried to get sample typed data from SAP an exception was thrown. The adapter "WCF-SAP" raised an error message. Details "Microsoft.ServiceModel.Channels.Common.XmlReaderGenerationException: The segment or group definition E2EDKA1001 was not found in the IDoc metadata. The UniqueId of the IDoc type is: IDOCTYP/3/DESADV01/ZASNEXT1/640. For Receive operations, the SAP adapter does not support unreleased segments.   Our guess is that when the WCF-SAP adaptor tries to down load the data it retrieves a data schema from SAP. For some reason the schema does not match the data. This may be due to the version of SAP we are running or due to a customization. Either way resolving this problem did not look easy. When doing some research on this problem I found an article showing me how to get the data from SAP using the WCF-SAP adaptor without any XML tags. http://blogs.msdn.com/b/adapters/archive/2007/10/05/receiving-idocs-getting-the-raw-idoc-data.aspx Reproduction of Mustansir blog: Since the WCF based SAP Adapter is ... well, WCF based, all data flowing in and out of the adapter is encapsulated within a SOAP message. Which means there are those pesky xml tags all over the place. If you want to receive an Idoc from SAP, you can receive it in "Typed" format (in which case each column in each segment of the idoc appears within its own xml tag), or you can receive it in "String" format (in which case there are just 2 xml tags at the top, the raw xml data in string/flat file format, and the 2 closing xml tags). In "String" format, an incoming idoc (for ORDERS05, containing 5 data records) would look like: <ReceiveIdoc ><idocData>EDI_DC40 8000000000001064985620 E2EDK01005 800000000000106498500000100000001 E2EDK14 8000000000001064985000002000000020111000 E2EDK14 8000000000001064985000003000000020081000 E2EDK14 80000000000010649850000040000000200710 E2EDK14 80000000000010649850000050000000200600</idocData></ReceiveIdoc> (I have trimmed part of the control record so that it fits cleanly here on one line). Now, you're only interested in the IDOC data, and don't care much for the XML tags. It isn't that difficult to write your own pipeline component, or even some logic in the orchestration to remove the tags, right? Well, you don't need to write any extra code at all - the WCF Adapter can help you here! During the configuration of your one-way Receive Location using WCF-Custom, navigate to the Messages tab. Under the section "Inbound BizTalk Messge Body", select the "Path" radio button, and: (a) Enter the body path expression as: /*[local-name()='ReceiveIdoc']/*[local-name()='idocData'] (b) Choose "String" for the Node Encoding. What we've done is, used an XPATH to pull out the value of the "idocData" node from the XML. Your Receive Location will now emit text containing only the idoc data. You can at this point, for example, put the Flat File Pipeline component to convert the flat text into a different xml format based on some other schema you already have, and receive your version of the xml formatted message in your orchestration.   This was potentially a much easier solution than adding the static maps to the orchestrations and overcame the issue with ‘Typed’ delivery documents. Not quite so fast… Note: When I followed Mustansir’s blog the characters at the end of each line disappeared. After configuring the adaptor and passing the iDoc data into the original flat file receive pipelines I was receiving exceptions. There was a failure executing the receive pipeline: "PAPINETPipelines.DeliveryFlatFileReceive, CustomerIntegration2.PAPINET.Pipelines, Version=1.0.0.0, Culture=neutral, PublicKeyToken=4ca3635fbf092bbb" Source: "Pipeline " Receive Port: "recSAP_Delivery" URI: "D:\CustomerIntegration2\SAP\Delivery\*.xml" Reason: An error occurred when parsing the incoming document: "Unexpected data found while looking for: 'Z2EDPZ7' The current definition being parsed is E2EDP07GRP. The stream offset where the error occured is 8859. The line number where the error occured is 23. The column where the error occured is 0.". Although the new flat file looked the same as the old one there was a differences. In the original file all lines in the document were exactly 1064 character long. In the new file all lines were truncated to the last alphanumeric character. The final piece of the puzzle was to add a custom pipeline component to pad all the lines to 1064 characters. This component was added to the decode node of the custom delivery and invoice flat file disassembler pipelines. Execute method of the custom pipeline component: public IBaseMessage Execute(IPipelineContext pc, IBaseMessage inmsg) { //Convert Stream to a string Stream s = null; IBaseMessagePart bodyPart = inmsg.BodyPart;   // NOTE inmsg.BodyPart.Data is implemented only as a setter in the http adapter API and a //getter and setter for the file adapter. Use GetOriginalDataStream to get data instead. if (bodyPart != null) s = bodyPart.GetOriginalDataStream();   string newMsg = string.Empty; string strLine; try { StreamReader sr = new StreamReader(s); strLine = sr.ReadLine(); while (strLine != null) { //Execute padding code if (strLine != null) strLine = strLine.PadRight(1064, ' ') + "\r\n"; newMsg += strLine; strLine = sr.ReadLine(); } sr.Close(); } catch (IOException ex) { throw new Exception("Error occured trying to pad the message to 1064 charactors"); }   //Convert back to stream and set to Data property inmsg.BodyPart.Data = new MemoryStream(Encoding.UTF8.GetBytes(newMsg)); ; //reset the position of the stream to zero inmsg.BodyPart.Data.Position = 0; return inmsg; }

    Read the article

  • Metro: Grouping Items in a ListView Control

    - by Stephen.Walther
    The purpose of this blog entry is to explain how you can group list items when displaying the items in a WinJS ListView control. In particular, you learn how to group a list of products by product category. Displaying a grouped list of items in a ListView control requires completing the following steps: Create a Grouped data source from a List data source Create a Grouped Header Template Declare the ListView control so it groups the list items Creating the Grouped Data Source Normally, you bind a ListView control to a WinJS.Binding.List object. If you want to render list items in groups, then you need to bind the ListView to a grouped data source instead. The following code – contained in a file named products.js — illustrates how you can create a standard WinJS.Binding.List object from a JavaScript array and then return a grouped data source from the WinJS.Binding.List object by calling its createGrouped() method: (function () { "use strict"; // Create List data source var products = new WinJS.Binding.List([ { name: "Milk", price: 2.44, category: "Beverages" }, { name: "Oranges", price: 1.99, category: "Fruit" }, { name: "Wine", price: 8.55, category: "Beverages" }, { name: "Apples", price: 2.44, category: "Fruit" }, { name: "Steak", price: 1.99, category: "Other" }, { name: "Eggs", price: 2.44, category: "Other" }, { name: "Mushrooms", price: 1.99, category: "Other" }, { name: "Yogurt", price: 2.44, category: "Other" }, { name: "Soup", price: 1.99, category: "Other" }, { name: "Cereal", price: 2.44, category: "Other" }, { name: "Pepsi", price: 1.99, category: "Beverages" } ]); // Create grouped data source var groupedProducts = products.createGrouped( function (dataItem) { return dataItem.category; }, function (dataItem) { return { title: dataItem.category }; }, function (group1, group2) { return group1.charCodeAt(0) - group2.charCodeAt(0); } ); // Expose the grouped data source WinJS.Namespace.define("ListViewDemos", { products: groupedProducts }); })(); Notice that the createGrouped() method requires three functions as arguments: groupKey – This function associates each list item with a group. The function accepts a data item and returns a key which represents a group. In the code above, we return the value of the category property for each product. groupData – This function returns the data item displayed by the group header template. For example, in the code above, the function returns a title for the group which is displayed in the group header template. groupSorter – This function determines the order in which the groups are displayed. The code above displays the groups in alphabetical order: Beverages, Fruit, Other. Creating the Group Header Template Whenever you create a ListView control, you need to create an item template which you use to control how each list item is rendered. When grouping items in a ListView control, you also need to create a group header template. The group header template is used to render the header for each group of list items. Here’s the markup for both the item template and the group header template: <div id="productTemplate" data-win-control="WinJS.Binding.Template"> <div class="product"> <span data-win-bind="innerText:name"></span> <span data-win-bind="innerText:price"></span> </div> </div> <div id="productGroupHeaderTemplate" data-win-control="WinJS.Binding.Template"> <div class="productGroupHeader"> <h1 data-win-bind="innerText: title"></h1> </div> </div> You should declare the two templates in the same file as you declare the ListView control – for example, the default.html file. Declaring the ListView Control The final step is to declare the ListView control. Here’s the required markup: <div data-win-control="WinJS.UI.ListView" data-win-options="{ itemDataSource:ListViewDemos.products.dataSource, itemTemplate:select('#productTemplate'), groupDataSource:ListViewDemos.products.groups.dataSource, groupHeaderTemplate:select('#productGroupHeaderTemplate'), layout: {type: WinJS.UI.GridLayout} }"> </div> In the markup above, six properties of the ListView control are set when the control is declared. First the itemDataSource and itemTemplate are specified. Nothing new here. Next, the group data source and group header template are specified. Notice that the group data source is represented by the ListViewDemos.products.groups.dataSource property of the grouped data source. Finally, notice that the layout of the ListView is changed to Grid Layout. You are required to use Grid Layout (instead of the default List Layout) when displaying grouped items in a ListView. Here’s the entire contents of the default.html page: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>ListViewDemos</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- ListViewDemos references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> <script src="/js/products.js" type="text/javascript"></script> <style type="text/css"> .product { width: 200px; height: 100px; border: white solid 1px; font-size: x-large; } </style> </head> <body> <div id="productTemplate" data-win-control="WinJS.Binding.Template"> <div class="product"> <span data-win-bind="innerText:name"></span> <span data-win-bind="innerText:price"></span> </div> </div> <div id="productGroupHeaderTemplate" data-win-control="WinJS.Binding.Template"> <div class="productGroupHeader"> <h1 data-win-bind="innerText: title"></h1> </div> </div> <div data-win-control="WinJS.UI.ListView" data-win-options="{ itemDataSource:ListViewDemos.products.dataSource, itemTemplate:select('#productTemplate'), groupDataSource:ListViewDemos.products.groups.dataSource, groupHeaderTemplate:select('#productGroupHeaderTemplate'), layout: {type: WinJS.UI.GridLayout} }"> </div> </body> </html> Notice that the default.html page includes a reference to the products.js file: <script src=”/js/products.js” type=”text/javascript”></script> The default.html page also contains the declarations of the item template, group header template, and ListView control. Summary The goal of this blog entry was to explain how you can group items in a ListView control. You learned how to create a grouped data source, a group header template, and declare a ListView so that it groups its list items.

    Read the article

  • ASP.NET MVC 2 throws exception for ‘favicon.ico’

    - by nmarun
    I must be on fire or something – third blog in 2 days… awesome! Before I begin, in case you’re wondering, favicon.ico is the small image that appears to the left of your web address, once the page loads. In order to learn more about MVC or any thing for that matter, it’s better to look at the source itself. Since MVC is open source (at least some part of it is), I started looking at the source code that’s available for download. While doing so, I hit Steve Sanderson’s blog site where he explains in great detail the way to debug your app using ASP.NET MVC source code. For those who are not aware, Steve Sanderson’s book - Pro ASP.NET MVC Framework, is one of the best books to learn about MVC. Alrighty, I followed the article and I hit F5 to debug the default / unchanged MVC project. I put a breakpoint in the DefaultControllerFactory.cs, CreateController() method. To know a little more about this class and the method, read this. Sure enough, the control stopped at the breakpoint and I hit F5 again and the page rendered just fine. But then what’s this? The breakpoint was hit again, as if something else was being requested. I now hovered my mouse over the ‘controllerName’ parameter and it says – favicon.ico. This by itself was more than enough for me to raise my eye-brows, but what happened next just took the ground below my feet. Oh, oh, I’m sorry I’m just typing, no code, no image, so here are a couple of screen captures. The first one shows the request for the Home controller; I get ‘Home’ when I hover over the parameter: And here’s the one that shows the same for call for ‘favicon.ico’. So, I step through the code and when the control reaches line 91 – GetControllerInstance() method, I step in. This is when I had the ‘ground-losing’ experience. Wow, an exception is being thrown for this file and that too in RTM. For some reason MVC thinks, this as a controller and tries to run it through the MvcHandler and it hits this snag. So it seems like this will happen for any MVC 2 site and this did not happen for me in the previous version of MVC. Before I get to how to resolve it, here’s another way of reproducing this exception. Revert back all your changes that you did as mentioned in Steve’s blog above. Now, add a class to your MVC project and call it say, MyControllerFactory and let this inherit from DefaultControllerFactory class. (Read this for details on the DefaultControllerFactory class is and how it is used in a different context). Add an override for the CreateController() method and for the sake of this blog, just copy the same content from the DefaultControllerFactory class. The last step is to tell your MVC app to use the MyControllerFactory class instead of the default one. To do this, go to your Global.asax.cs file and add line 6 of the snippet below: 1: protected void Application_Start() 2: { 3: AreaRegistration.RegisterAllAreas(); 4:   5: RegisterRoutes(RouteTable.Routes); 6: ControllerBuilder.Current.SetControllerFactory(new MyControllerFactory()); 7: } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Now, you’re ready to reproduce the issue. Just F5 the project and when you hit the overridden CreateController() method for the second time, this is what it looks like for me: And continuing further gives me the same exception. I believe this is something that MS should fix, as not having ‘favicon.ico’ file will be common for most of the applications. So I think the when you create an MVC project, line 6 should be added by default by Visual Studio itself: 1: public class MvcApplication : System.Web.HttpApplication 2: { 3: public static void RegisterRoutes(RouteCollection routes) 4: { 5: routes.IgnoreRoute("{resource}.axd/{*pathInfo}"); 6: routes.IgnoreRoute("favicon.ico"); 7:   8: routes.MapRoute( 9: "Default", // Route name 10: "{controller}/{action}/{id}", // URL with parameters 11: new { controller = "Home", action = "Index", id = UrlParameter.Optional } // Parameter defaults 12: ); 13: } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } There it is, that’s the solution to avoid the exception altogether. I tried this both IE8 and Firefox browsers and was able to successfully reproduce the error. Hope someone will look at this issue and find a fix. Just before I finish up, I found another ‘bug’, if you want to call it, with Visual Studio 2008. Remember how you could change what browser you want your application to run in by just right clicking on the .aspx file and choosing ‘Browse with…’? Seems like that’s missing when you’re working with an MVC project. In order to test the above bug in the other browser, I had to load a classic ASP.NET project, change the settings and then run my MVC project. Felt kinda ‘icky’, for lack of a better word.

    Read the article

  • Optimizing AES modes on Solaris for Intel Westmere

    - by danx
    Optimizing AES modes on Solaris for Intel Westmere Review AES is a strong method of symmetric (secret-key) encryption. It is a U.S. FIPS-approved cryptographic algorithm (FIPS 197) that operates on 16-byte blocks. AES has been available since 2001 and is widely used. However, AES by itself has a weakness. AES encryption isn't usually used by itself because identical blocks of plaintext are always encrypted into identical blocks of ciphertext. This encryption can be easily attacked with "dictionaries" of common blocks of text and allows one to more-easily discern the content of the unknown cryptotext. This mode of encryption is called "Electronic Code Book" (ECB), because one in theory can keep a "code book" of all known cryptotext and plaintext results to cipher and decipher AES. In practice, a complete "code book" is not practical, even in electronic form, but large dictionaries of common plaintext blocks is still possible. Here's a diagram of encrypting input data using AES ECB mode: Block 1 Block 2 PlainTextInput PlainTextInput | | | | \/ \/ AESKey-->(AES Encryption) AESKey-->(AES Encryption) | | | | \/ \/ CipherTextOutput CipherTextOutput Block 1 Block 2 What's the solution to the same cleartext input producing the same ciphertext output? The solution is to further process the encrypted or decrypted text in such a way that the same text produces different output. This usually involves an Initialization Vector (IV) and XORing the decrypted or encrypted text. As an example, I'll illustrate CBC mode encryption: Block 1 Block 2 PlainTextInput PlainTextInput | | | | \/ \/ IV >----->(XOR) +------------->(XOR) +---> . . . . | | | | | | | | \/ | \/ | AESKey-->(AES Encryption) | AESKey-->(AES Encryption) | | | | | | | | | \/ | \/ | CipherTextOutput ------+ CipherTextOutput -------+ Block 1 Block 2 The steps for CBC encryption are: Start with a 16-byte Initialization Vector (IV), choosen randomly. XOR the IV with the first block of input plaintext Encrypt the result with AES using a user-provided key. The result is the first 16-bytes of output cryptotext. Use the cryptotext (instead of the IV) of the previous block to XOR with the next input block of plaintext Another mode besides CBC is Counter Mode (CTR). As with CBC mode, it also starts with a 16-byte IV. However, for subsequent blocks, the IV is just incremented by one. Also, the IV ix XORed with the AES encryption result (not the plain text input). Here's an illustration: Block 1 Block 2 PlainTextInput PlainTextInput | | | | \/ \/ AESKey-->(AES Encryption) AESKey-->(AES Encryption) | | | | \/ \/ IV >----->(XOR) IV + 1 >---->(XOR) IV + 2 ---> . . . . | | | | \/ \/ CipherTextOutput CipherTextOutput Block 1 Block 2 Optimization Which of these modes can be parallelized? ECB encryption/decryption can be parallelized because it does more than plain AES encryption and decryption, as mentioned above. CBC encryption can't be parallelized because it depends on the output of the previous block. However, CBC decryption can be parallelized because all the encrypted blocks are known at the beginning. CTR encryption and decryption can be parallelized because the input to each block is known--it's just the IV incremented by one for each subsequent block. So, in summary, for ECB, CBC, and CTR modes, encryption and decryption can be parallelized with the exception of CBC encryption. How do we parallelize encryption? By interleaving. Usually when reading and writing data there are pipeline "stalls" (idle processor cycles) that result from waiting for memory to be loaded or stored to or from CPU registers. Since the software is written to encrypt/decrypt the next data block where pipeline stalls usually occurs, we can avoid stalls and crypt with fewer cycles. This software processes 4 blocks at a time, which ensures virtually no waiting ("stalling") for reading or writing data in memory. Other Optimizations Besides interleaving, other optimizations performed are Loading the entire key schedule into the 128-bit %xmm registers. This is done once for per 4-block of data (since 4 blocks of data is processed, when present). The following is loaded: the entire "key schedule" (user input key preprocessed for encryption and decryption). This takes 11, 13, or 15 registers, for AES-128, AES-192, and AES-256, respectively The input data is loaded into another %xmm register The same register contains the output result after encrypting/decrypting Using SSSE 4 instructions (AESNI). Besides the aesenc, aesenclast, aesdec, aesdeclast, aeskeygenassist, and aesimc AESNI instructions, Intel has several other instructions that operate on the 128-bit %xmm registers. Some common instructions for encryption are: pxor exclusive or (very useful), movdqu load/store a %xmm register from/to memory, pshufb shuffle bytes for byte swapping, pclmulqdq carry-less multiply for GCM mode Combining AES encryption/decryption with CBC or CTR modes processing. Instead of loading input data twice (once for AES encryption/decryption, and again for modes (CTR or CBC, for example) processing, the input data is loaded once as both AES and modes operations occur at in the same function Performance Everyone likes pretty color charts, so here they are. I ran these on Solaris 11 running on a Piketon Platform system with a 4-core Intel Clarkdale processor @3.20GHz. Clarkdale which is part of the Westmere processor architecture family. The "before" case is Solaris 11, unmodified. Keep in mind that the "before" case already has been optimized with hand-coded Intel AESNI assembly. The "after" case has combined AES-NI and mode instructions, interleaved 4 blocks at-a-time. « For the first table, lower is better (milliseconds). The first table shows the performance improvement using the Solaris encrypt(1) and decrypt(1) CLI commands. I encrypted and decrypted a 1/2 GByte file on /tmp (swap tmpfs). Encryption improved by about 40% and decryption improved by about 80%. AES-128 is slighty faster than AES-256, as expected. The second table shows more detail timings for CBC, CTR, and ECB modes for the 3 AES key sizes and different data lengths. » The results shown are the percentage improvement as shown by an internal PKCS#11 microbenchmark. And keep in mind the previous baseline code already had optimized AESNI assembly! The keysize (AES-128, 192, or 256) makes little difference in relative percentage improvement (although, of course, AES-128 is faster than AES-256). Larger data sizes show better improvement than 128-byte data. Availability This software is in Solaris 11 FCS. It is available in the 64-bit libcrypto library and the "aes" Solaris kernel module. You must be running hardware that supports AESNI (for example, Intel Westmere and Sandy Bridge, microprocessor architectures). The easiest way to determine if AES-NI is available is with the isainfo(1) command. For example, $ isainfo -v 64-bit amd64 applications pclmulqdq aes sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov amd_sysc cx8 tsc fpu 32-bit i386 applications pclmulqdq aes sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov sep cx8 tsc fpu No special configuration or setup is needed to take advantage of this software. Solaris libraries and kernel automatically determine if it's running on AESNI-capable machines and execute the correctly-tuned software for the current microprocessor. Summary Maximum throughput of AES cipher modes can be achieved by combining AES encryption with modes processing, interleaving encryption of 4 blocks at a time, and using Intel's wide 128-bit %xmm registers and instructions. References "Block cipher modes of operation", Wikipedia Good overview of AES modes (ECB, CBC, CTR, etc.) "Advanced Encryption Standard", Wikipedia "Current Modes" describes NIST-approved block cipher modes (ECB,CBC, CFB, OFB, CCM, GCM)

    Read the article

  • Metro: Grouping Items in a ListView Control

    - by Stephen.Walther
    The purpose of this blog entry is to explain how you can group list items when displaying the items in a WinJS ListView control. In particular, you learn how to group a list of products by product category. Displaying a grouped list of items in a ListView control requires completing the following steps: Create a Grouped data source from a List data source Create a Grouped Header Template Declare the ListView control so it groups the list items Creating the Grouped Data Source Normally, you bind a ListView control to a WinJS.Binding.List object. If you want to render list items in groups, then you need to bind the ListView to a grouped data source instead. The following code – contained in a file named products.js — illustrates how you can create a standard WinJS.Binding.List object from a JavaScript array and then return a grouped data source from the WinJS.Binding.List object by calling its createGrouped() method: (function () { "use strict"; // Create List data source var products = new WinJS.Binding.List([ { name: "Milk", price: 2.44, category: "Beverages" }, { name: "Oranges", price: 1.99, category: "Fruit" }, { name: "Wine", price: 8.55, category: "Beverages" }, { name: "Apples", price: 2.44, category: "Fruit" }, { name: "Steak", price: 1.99, category: "Other" }, { name: "Eggs", price: 2.44, category: "Other" }, { name: "Mushrooms", price: 1.99, category: "Other" }, { name: "Yogurt", price: 2.44, category: "Other" }, { name: "Soup", price: 1.99, category: "Other" }, { name: "Cereal", price: 2.44, category: "Other" }, { name: "Pepsi", price: 1.99, category: "Beverages" } ]); // Create grouped data source var groupedProducts = products.createGrouped( function (dataItem) { return dataItem.category; }, function (dataItem) { return { title: dataItem.category }; }, function (group1, group2) { return group1.charCodeAt(0) - group2.charCodeAt(0); } ); // Expose the grouped data source WinJS.Namespace.define("ListViewDemos", { products: groupedProducts }); })(); Notice that the createGrouped() method requires three functions as arguments: groupKey – This function associates each list item with a group. The function accepts a data item and returns a key which represents a group. In the code above, we return the value of the category property for each product. groupData – This function returns the data item displayed by the group header template. For example, in the code above, the function returns a title for the group which is displayed in the group header template. groupSorter – This function determines the order in which the groups are displayed. The code above displays the groups in alphabetical order: Beverages, Fruit, Other. Creating the Group Header Template Whenever you create a ListView control, you need to create an item template which you use to control how each list item is rendered. When grouping items in a ListView control, you also need to create a group header template. The group header template is used to render the header for each group of list items. Here’s the markup for both the item template and the group header template: <div id="productTemplate" data-win-control="WinJS.Binding.Template"> <div class="product"> <span data-win-bind="innerText:name"></span> <span data-win-bind="innerText:price"></span> </div> </div> <div id="productGroupHeaderTemplate" data-win-control="WinJS.Binding.Template"> <div class="productGroupHeader"> <h1 data-win-bind="innerText: title"></h1> </div> </div> You should declare the two templates in the same file as you declare the ListView control – for example, the default.html file. Declaring the ListView Control The final step is to declare the ListView control. Here’s the required markup: <div data-win-control="WinJS.UI.ListView" data-win-options="{ itemDataSource:ListViewDemos.products.dataSource, itemTemplate:select('#productTemplate'), groupDataSource:ListViewDemos.products.groups.dataSource, groupHeaderTemplate:select('#productGroupHeaderTemplate'), layout: {type: WinJS.UI.GridLayout} }"> </div> In the markup above, six properties of the ListView control are set when the control is declared. First the itemDataSource and itemTemplate are specified. Nothing new here. Next, the group data source and group header template are specified. Notice that the group data source is represented by the ListViewDemos.products.groups.dataSource property of the grouped data source. Finally, notice that the layout of the ListView is changed to Grid Layout. You are required to use Grid Layout (instead of the default List Layout) when displaying grouped items in a ListView. Here’s the entire contents of the default.html page: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>ListViewDemos</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- ListViewDemos references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> <script src="/js/products.js" type="text/javascript"></script> <style type="text/css"> .product { width: 200px; height: 100px; border: white solid 1px; font-size: x-large; } </style> </head> <body> <div id="productTemplate" data-win-control="WinJS.Binding.Template"> <div class="product"> <span data-win-bind="innerText:name"></span> <span data-win-bind="innerText:price"></span> </div> </div> <div id="productGroupHeaderTemplate" data-win-control="WinJS.Binding.Template"> <div class="productGroupHeader"> <h1 data-win-bind="innerText: title"></h1> </div> </div> <div data-win-control="WinJS.UI.ListView" data-win-options="{ itemDataSource:ListViewDemos.products.dataSource, itemTemplate:select('#productTemplate'), groupDataSource:ListViewDemos.products.groups.dataSource, groupHeaderTemplate:select('#productGroupHeaderTemplate'), layout: {type: WinJS.UI.GridLayout} }"> </div> </body> </html> Notice that the default.html page includes a reference to the products.js file: <script src=”/js/products.js” type=”text/javascript”></script> The default.html page also contains the declarations of the item template, group header template, and ListView control. Summary The goal of this blog entry was to explain how you can group items in a ListView control. You learned how to create a grouped data source, a group header template, and declare a ListView so that it groups its list items.

    Read the article

  • Accessing SharePoint 2010 Data with REST/OData on Windows Phone 7

    - by Jan Tielens
    Consuming SharePoint 2010 data in Windows Phone 7 applications using the CTP version of the developer tools is quite a challenge. The issue is that the SharePoint 2010 data is not anonymously available; users need to authenticate to be able to access the data. When I first tried to access SharePoint 2010 data from my first Hello-World-type Windows Phone 7 application I thought “Hey, this should be easy!” because Windows Phone 7 development based on Silverlight and SharePoint 2010 has a Client Object Model for Silverlight. Unfortunately you can’t use the Client Object Model of SharePoint 2010 on the Windows Phone platform; there’s a reference to an assembly that’s not available (System.Windows.Browser). My second thought was “OK, no problem!” because SharePoint 2010 also exposes a REST/OData API to access SharePoint data. Using the REST API in SharePoint 2010 is as easy as making a web request for a URL (in which you specify the data you’d like to retrieve), e.g. http://yoursiteurl/_vti_bin/listdata.svc/Announcements. This is very easy to accomplish in a Silverlight application that’s running in the context of a page in a SharePoint site, because the credentials of the currently logged on user are automatically picked up and passed to the WCF service. But a Windows Phone application is of course running outside of the SharePoint site’s page, so the application should build credentials that have to be passed to SharePoint’s WCF service. This turns out to be a small challenge in Silverlight 3, the WebClient doesn’t support authentication; there is a Credentials property but when you set it and make the request you get a NotImplementedException exception. Probably this issued will be solved in the very near future, since Silverlight 4 does support authentication, and there’s already a WCF Data Services download that uses this new platform feature of Silverlight 4. So when Windows Phone platform switches to Silverlight 4, you can just use the WebClient to get the data. Even more, if the OData Client Library for Windows Phone 7 gets updated after that, things should get even easier! By the way: the things I’m writing in this paragraph are just assumptions that I make which make a lot of sense IMHO, I don’t have any info all of this will happen, but I really hope so. So are SharePoint developers out of the Windows Phone development game until they get this fixed? Well luckily not, when the HttpWebRequest class is being used instead, you can pass credentials! Using the HttpWebRequest class is slightly more complex than using the WebClient class, but the end result is that you have access to your precious SharePoint 2010 data. The following code snippet is getting all the announcements of an Annoucements list in a SharePoint site: HttpWebRequest webReq =     (HttpWebRequest)HttpWebRequest.Create("http://yoursite/_vti_bin/listdata.svc/Announcements");webReq.Credentials = new NetworkCredential("username", "password"); webReq.BeginGetResponse(    (result) => {        HttpWebRequest asyncReq = (HttpWebRequest)result.AsyncState;         XDocument xdoc = XDocument.Load(            ((HttpWebResponse)asyncReq.EndGetResponse(result)).GetResponseStream());         XNamespace ns = "http://www.w3.org/2005/Atom";        var items = from item in xdoc.Root.Elements(ns + "entry")                    select new { Title = item.Element(ns + "title").Value };         this.Dispatcher.BeginInvoke(() =>        {            foreach (var item in items)                MessageBox.Show(item.Title);        });    }, webReq); When you try this in a Windows Phone 7 application, make sure you add a reference to the System.Xml.Linq assembly, because the code uses Linq to XML to parse the resulting Atom feed, so the Title of every announcement is being displayed in a MessageBox. Check out my previous post if you’d like to see a more polished sample Windows Phone 7 application that displays SharePoint 2010 data.When you plan to use this technique, it’s of course a good idea to encapsulate the code doing the request, so it becomes really easy to get the data that you need. In the following code snippet you can find the GetAtomFeed method that gets the contents of any Atom feed, even if you need to authenticate to get access to the feed. delegate void GetAtomFeedCallback(Stream responseStream); public MainPage(){    InitializeComponent();     SupportedOrientations = SupportedPageOrientation.Portrait |         SupportedPageOrientation.Landscape;     string url = "http://yoursite/_vti_bin/listdata.svc/Announcements";    string username = "username";    string password = "password";    string domain = "";     GetAtomFeed(url, username, password, domain, (s) =>    {        XNamespace ns = "http://www.w3.org/2005/Atom";        XDocument xdoc = XDocument.Load(s);         var items = from item in xdoc.Root.Elements(ns + "entry")                    select new { Title = item.Element(ns + "title").Value };         this.Dispatcher.BeginInvoke(() =>        {            foreach (var item in items)            {                MessageBox.Show(item.Title);            }        });    });} private static void GetAtomFeed(string url, string username,     string password, string domain, GetAtomFeedCallback cb){    HttpWebRequest webReq = (HttpWebRequest)HttpWebRequest.Create(url);    webReq.Credentials = new NetworkCredential(username, password, domain);     webReq.BeginGetResponse(        (result) =>        {            HttpWebRequest asyncReq = (HttpWebRequest)result.AsyncState;            HttpWebResponse resp = (HttpWebResponse)asyncReq.EndGetResponse(result);            cb(resp.GetResponseStream());        }, webReq);}

    Read the article

  • Silverlight for Everyone!!

    - by subodhnpushpak
    Someone asked me to compare Silverlight / HTML development. I realized that the question can be answered in many ways: Below is the high level comparison between a HTML /JavaScript client and Silverlight client and why silverlight was chosen over HTML / JavaScript client (based on type of users and major functionalities provided): 1. For end users Browser compatibility Silverlight is a plug-in and requires installation first. However, it does provides consistent look and feel across all browsers. For HTML / DHTML, there is a need to tweak JavaScript for each of the browser supported. In fact, tags like <span> and <div> works differently on different browser / version. So, HTML works on most of the systems but also requires lot of efforts coding-wise to adhere to all standards/ browsers / versions. Out of browser support No support in HTML. Third party tools like  Google gears offers some functionalities but there are lots of issues around platform and accessibility. Out of box support for out-of-browser support. provides features like drag and drop onto application surface. Cut and copy paste in HTML HTML is displayed in browser; which, in turn provides facilities for cut copy and paste. Silverlight (specially 4) provides rich features for cut-copy-paste along with full control over what can be cut copy pasted by end users and .advanced features like visual tree printing. Rich user experience HTML can provide some rich experience by use of some JavaScript libraries like JQuery. However, extensive use of JavaScript combined with various versions of browsers and the supported JavaScript makes the solution cumbersome. Silverlight is meant for RIA experience. User data storage on client end In HTML only small amount of data can be stored that too in cookies. In Silverlight large data may be stored, that too in secure way. This increases the response time. Post back In HTML / JavaScript the post back can be stopped by use of AJAX. Extensive use of AJAX can be a bottleneck as browser stack is used for the calls. Both look and feel and data travel over network.                           In Silverlight everything run the client side. Calls are made to server ONLY for data; which also reduces network traffic in long run. 2. For Developers Coding effort HTML / JavaScript can take considerable amount to code if features (requirements) are rich. For AJAX like interfaces; knowledge of third party kits like DOJO / Yahoo UI / JQuery is required which has steep learning curve. ASP .Net coding world revolves mostly along <table> tags for alignments whereas most popular tools provide <div> tags; which requires lots of tweaking. AJAX calls can be a bottlenecks for performance, if the calls are many. In Silverlight; coding is in C#, which is managed code. XAML is also very intuitive and Blend can be used to provide look and feel. Event handling is much clean than in JavaScript. Provides for many clean patterns like MVVM and composable application. Each call to server is asynchronous in silverlight. AJAX is in built into silverlight. Threading can be done at the client side itself to provide for better responsiveness; etc. Debugging Debugging in HTML / JavaScript is difficult. As JavaScript is interpreted; there is NO compile time error handling. Debugging in Silverlight is very helpful. As it is compiled; it provides rich features for both compile time and run time error handling. Multi -targeting browsers HTML / JavaScript have different rendering behaviours in different browsers / and their versions. JavaScript have to be written to sublime the differences in browser behaviours. Silverlight works exactly the same in all browsers and works on almost all popular browser. Multi-targeting desktop No support in HTML / JavaScript Silverlight is very close to WPF. Bot the platform may be easily targeted while maintaining the same source code. Rich toolkit HTML /JavaScript have limited toolkit as controls Silverlight provides a rich set of controls including graphs, audio, video, layout, etc. 3. For Architects Design Patterns Silverlight provides for patterns like MVVM (MVC) and rich (fat)  client architecture. This segregates the "separation of concern" very clearly. Client (silverlight) does what it is expected to do and server does what it is expected of. In HTML / JavaScript world most of the processing is done on the server side. Extensibility Silverlight provides great deal of extensibility as custom controls may be made. Extensibility is NOT restricted by browser but by the plug-in silverlight runs in. HTML / JavaScript works in a certain way and extensibility is generally done on the server side rather than client end. Client side is restricted by the limitations of the browser. Performance Silverlight provides localized storage which may be used for cached data storage. this reduces the response time. As processing can be done on client side itself; there is no need for server round trips. this decreases the round about time. Look and feel of the application is downloaded ONLY initially, afterwards ONLY data is fetched form the server. Security Silverlight is compiled code downloaded as .XAP; As compared to HTML / JavaScript, it provides more secure sandboxed approach. Cross - scripting is inherently prohibited in silverlight by default. If proper guidelines are followed silverlight provides much robust security mechanism as against HTML / JavaScript world. For example; knowing server Address in obfuscated JavaScript is easier than a compressed compiled obfuscated silverlight .XAP file. Some of these like (offline and Canvas support) will be available in HTML5. However, the timelines are not encouraging at all. According to Ian Hickson, editor of the HTML5 specification, the specification to reach the W3C Candidate Recommendation stage during 2012, and W3C Recommendation in the year 2022 or later. see http://en.wikipedia.org/wiki/HTML5 for details. The above is MY opinion. I will love to hear yours; do let me know via comments. Technorati Tags: Silverlight

    Read the article

  • Fast block placement algorithm, advice needed?

    - by James Morris
    I need to emulate the window placement strategy of the Fluxbox window manager. As a rough guide, visualize randomly sized windows filling up the screen one at a time, where the rough size of each results in an average of 80 windows on screen without any window overlapping another. It is important to note that windows will close and the space that closed windows previously occupied becomes available once more for the placement of new windows. The window placement strategy has three binary options: Windows build horizontal rows or vertical columns (potentially) Windows are placed from left to right or right to left Windows are placed from top to bottom or bottom to top Why is the algorithm a problem? It needs to operate to the deadlines of a real time thread in an audio application. At this moment I am only concerned with getting a fast algorithm, don't concern yourself over the implications of real time threads and all the hurdles in programming that that brings. So far I have two choices which I have built loose prototypes for: 1) A port of the Fluxbox placement algorithm into my code. The problem with this is, the client (my program) gets kicked out of the audio server (JACK) when I try placing the worst case scenario of 256 blocks using the algorithm. This algorithm performs over 14000 full (linear) scans of the list of blocks already placed when placing the 256th window. 2) My alternative approach. Only partially implemented, this approach uses a data structure for each area of rectangular free unused space (the list of windows can be entirely separate, and is not required for testing of this algorithm). The data structure acts as a node in a doubly linked list (with sorted insertion), as well as containing the coordinates of the top-left corner, and the width and height. Furthermore, each block data structure also contains four links which connect to each immediately adjacent (touching) block on each of the four sides. IMPORTANT RULE: Each block may only touch with one block per side. The problem with this approach is, it's very complex. I have implemented the straightforward cases where 1) space is removed from one corner of a block, 2) splitting neighbouring blocks so that the IMPORTANT RULE is adhered to. The less straightforward case, where the space to be removed can only be found within a column or row of boxes, is only partially implemented - if one of the blocks to be removed is an exact fit for width (ie column) or height (ie row) then problems occur. And don't even mention the fact this only checks columns one box wide, and rows one box tall. I've implemented this algorithm in C - the language I am using for this project (I've not used C++ for a few years and am uncomfortable using it after having focused all my attention to C development, it's a hobby). The implementation is 700+ lines of code (including plenty of blank lines, brace lines, comments etc). The implementation only works for the horizontal-rows + left-right + top-bottom placement strategy. So I've either got to add some way of making this +700 lines of code work for the other 7 placement strategy options, or I'm going to have to duplicate those +700 lines of code for the other seven options. Neither of these is attractive, the first, because the existing code is complex enough, the second, because of bloat. The algorithm is not even at a stage where I can use it in the real time worst case scenario, because of missing functionality, so I still don't know if it actually performs better or worse than the first approach. What else is there? I've skimmed over and discounted: Bin Packing algorithms: their emphasis on optimal fit does not match the requirements of this algorithm. Recursive Bisection Placement algorithms: sounds promising, but these are for circuit design. Their emphasis is optimal wire length. Both of these, especially the latter, all elements to be placed/packs are known before the algorithm begins. I need an algorithm which works accumulatively with what it is given to do when it is told to do it. What are your thoughts on this? How would you approach it? What other algorithms should I look at? Or even what concepts should I research seeing as I've not studied computer science/software engineering? Please ask questions in comments if further information is needed. [edit] If it makes any difference, the units for the coordinates will not be pixels. The units are unimportant, but the grid where windows/blocks/whatever can be placed will be 127 x 127 units.

    Read the article

  • Anatomy of a .NET Assembly - PE Headers

    - by Simon Cooper
    Today, I'll be starting a look at what exactly is inside a .NET assembly - how the metadata and IL is stored, how Windows knows how to load it, and what all those bytes are actually doing. First of all, we need to understand the PE file format. PE files .NET assemblies are built on top of the PE (Portable Executable) file format that is used for all Windows executables and dlls, which itself is built on top of the MSDOS executable file format. The reason for this is that when .NET 1 was released, it wasn't a built-in part of the operating system like it is nowadays. Prior to Windows XP, .NET executables had to load like any other executable, had to execute native code to start the CLR to read & execute the rest of the file. However, starting with Windows XP, the operating system loader knows natively how to deal with .NET assemblies, rendering most of this legacy code & structure unnecessary. It still is part of the spec, and so is part of every .NET assembly. The result of this is that there are a lot of structure values in the assembly that simply aren't meaningful in a .NET assembly, as they refer to features that aren't needed. These are either set to zero or to certain pre-defined values, specified in the CLR spec. There are also several fields that specify the size of other datastructures in the file, which I will generally be glossing over in this initial post. Structure of a PE file Most of a PE file is split up into separate sections; each section stores different types of data. For instance, the .text section stores all the executable code; .rsrc stores unmanaged resources, .debug contains debugging information, and so on. Each section has a section header associated with it; this specifies whether the section is executable, read-only or read/write, whether it can be cached... When an exe or dll is loaded, each section can be mapped into a different location in memory as the OS loader sees fit. In order to reliably address a particular location within a file, most file offsets are specified using a Relative Virtual Address (RVA). This specifies the offset from the start of each section, rather than the offset within the executable file on disk, so the various sections can be moved around in memory without breaking anything. The mapping from RVA to file offset is done using the section headers, which specify the range of RVAs which are valid within that section. For example, if the .rsrc section header specifies that the base RVA is 0x4000, and the section starts at file offset 0xa00, then an RVA of 0x401d (offset 0x1d within the .rsrc section) corresponds to a file offset of 0xa1d. Because each section has its own base RVA, each valid RVA has a one-to-one mapping with a particular file offset. PE headers As I said above, most of the header information isn't relevant to .NET assemblies. To help show what's going on, I've created a diagram identifying all the various parts of the first 512 bytes of a .NET executable assembly. I've highlighted the relevant bytes that I will refer to in this post: Bear in mind that all numbers are stored in the assembly in little-endian format; the hex number 0x0123 will appear as 23 01 in the diagram. The first 64 bytes of every file is the DOS header. This starts with the magic number 'MZ' (0x4D, 0x5A in hex), identifying this file as an executable file of some sort (an .exe or .dll). Most of the rest of this header is zeroed out. The important part of this header is at offset 0x3C - this contains the file offset of the PE signature (0x80). Between the DOS header & PE signature is the DOS stub - this is a stub program that simply prints out 'This program cannot be run in DOS mode.\r\n' to the console. I will be having a closer look at this stub later on. The PE signature starts at offset 0x80, with the magic number 'PE\0\0' (0x50, 0x45, 0x00, 0x00), identifying this file as a PE executable, followed by the PE file header (also known as the COFF header). The relevant field in this header is in the last two bytes, and it specifies whether the file is an executable or a dll; bit 0x2000 is set for a dll. Next up is the PE standard fields, which start with a magic number of 0x010b for x86 and AnyCPU assemblies, and 0x20b for x64 assemblies. Most of the rest of the fields are to do with the CLR loader stub, which I will be covering in a later post. After the PE standard fields comes the NT-specific fields; again, most of these are not relevant for .NET assemblies. The one that is is the highlighted Subsystem field, and specifies if this is a GUI or console app - 0x20 for a GUI app, 0x30 for a console app. Data directories & section headers After the PE and COFF headers come the data directories; each directory specifies the RVA (first 4 bytes) and size (next 4 bytes) of various important parts of the executable. The only relevant ones are the 2nd (Import table), 13th (Import Address table), and 15th (CLI header). The Import and Import Address table are only used by the startup stub, so we will look at those later on. The 15th points to the CLI header, where the CLR-specific metadata begins. After the data directories comes the section headers; one for each section in the file. Each header starts with the section's ASCII name, null-padded to 8 bytes. Again, most of each header is irrelevant, but I've highlighted the base RVA and file offset in each header. In the diagram, you can see the following sections: .text: base RVA 0x2000, file offset 0x200 .rsrc: base RVA 0x4000, file offset 0xa00 .reloc: base RVA 0x6000, file offset 0x1000 The .text section contains all the CLR metadata and code, and so is by far the largest in .NET assemblies. The .rsrc section contains the data you see in the Details page in the right-click file properties page, but is otherwise unused. The .reloc section contains address relocations, which we will look at when we study the CLR startup stub. What about the CLR? As you can see, most of the first 512 bytes of an assembly are largely irrelevant to the CLR, and only a few bytes specify needed things like the bitness (AnyCPU/x86 or x64), whether this is an exe or dll, and the type of app this is. There are some bytes that I haven't covered that affect the layout of the file (eg. the file alignment, which determines where in a file each section can start). These values are pretty much constant in most .NET assemblies, and don't affect the CLR data directly. Conclusion To summarize, the important data in the first 512 bytes of a file is: DOS header. This contains a pointer to the PE signature. DOS stub, which we'll be looking at in a later post. PE signature PE file header (aka COFF header). This specifies whether the file is an exe or a dll. PE standard fields. This specifies whether the file is AnyCPU/32bit or 64bit. PE NT-specific fields. This specifies what type of app this is, if it is an app. Data directories. The 15th entry (at offset 0x168) contains the RVA and size of the CLI header inside the .text section. Section headers. These are used to map between RVA and file offset. The important one is .text, which is where all the CLR data is stored. In my next post, we'll start looking at the metadata used by the CLR directly, which is all inside the .text section.

    Read the article

  • Slick2d/Nifty-gui input

    - by eerongal
    I'm trying to get input from slick2d into nifty gui. Ive searched online, and I've seen a few examples, but I can't seem to get it working right. i've tried the example on here but I can't seem to get everything working. I'm not entirely sure what I'm doing wrong. I've also looked at examples using the JMonkeyEngine to help point me in the right direction, but still having issues with input. I can get everything else working like i need. Here's the code for my element controller: package gui; import java.util.Properties; import de.lessvoid.nifty.Nifty; import de.lessvoid.nifty.controls.Controller; import de.lessvoid.nifty.elements.Element; import de.lessvoid.nifty.input.NiftyInputEvent; import de.lessvoid.nifty.screen.Screen; import de.lessvoid.xml.xpp3.Attributes; public class BaseElementController implements Controller { private Element element; public void bind(Nifty arg0, Screen arg1, Element arg2, Properties arg3, Attributes arg4) { this.element = element; } public void init(Properties arg0, Attributes arg1) { // TODO Auto-generated method stub } public boolean inputEvent(NiftyInputEvent arg0) { // TODO Auto-generated method stub return false; } public void onFocus(boolean arg0) { // TODO Auto-generated method stub } public void onStartScreen() { // TODO Auto-generated method stub } public void test() { System.out.println("test"); } public void bam() { System.out.println("bam"); } } Here's my XML file: <?xml version="1.0" encoding="UTF-8" standalone="no"?> <nifty> <useStyles filename="nifty-default-styles.xml"/> <useControls filename="nifty-default-controls.xml"/> <screen id="screen2" controller="gui.BaseScreenController"> <layer backgroundColor="#fff0" childLayout="absolute" id="layer4" controller="gui.BaseElementController"> <panel childLayout="center" height="30%" id="panel1" style="nifty-panel-simple" width="50%" x="282" y="334" controller="gui.BaseElementController"> <control id="checkbox1" name="checkbox"/> <control childLayout="center" id="button2" label="button2" name="button" x="381" y="224" visibleToMouse="true" controller="gui.BaseElementController"> <interact onClick="bam()"/> </control> </panel> <text text="${CALL.getPlayerName()}" style="nifty-label" width="100%" height="100%" x="0" y="10" /> </layer> </screen> </nifty> Here's how I'm trying to bind the controller: public void init(GameContainer gc) throws SlickException { Input input = gc.getInput(); inputSystem = new PlainSlickInputSystem(); inputSystem.setInput(input); gui = new Gui(); gui.init(gc, inputSystem, "gui/tset.xml", "screen2"); input.removeListener(this); input.removeListener(inputSystem); input.addListener(inputSystem); } Essentially, all that happens right now is the screen loads up and displays, and it grabs the variable correctly in the label, but none of the input seems to be getting forwarded to Nifty from slick. I assume there's something I'm missing, but I can't seem to figure out what that is. In so far as what I have tried, I attempted to define a custom input listener to pick up events and assign that to my game in order to pick up input, which did not work, so i dropped that implementation, at current i'm trying to take the default inputs and bind then with a PlainSlickInputSystem and assigning that to the input (as shown in the first example link). On code execution, all the code is hit, and i've put several system.out.println's to get ouput of what is happening (the code above has been cleaned for presentation), and i even see the elements getting bound to the controller, yet it doesn't pick up controller events. As far as EXACTLY what's wrong, that I don't know, because I've followed all implementations i can find of this, and none of them seem to do anything it's like the input is just getting thrown out. None of the objects from niftyGui appear to be recognizing any input. Here is the binding from my objects at run time: ******INITIALIZED SCREEN: de.lessvoid.nifty.screen.Screen@4a1ab1c1 ******INITIALIZED ELEMENT: button2 (de.lessvoid.nifty.elements.Element@1e8c1be9) ******INITIALIZED ELEMENT: focusable => true, width => 100px {nifty-button#panel}, backgroundImage => button/button.png {nifty-button#panel}, label => button2, paddingLeft => 7px {nifty-button#panel}, imageMode => sprite-resize:100,23,0,2,96,2,2,2,96,2,19,2,96,2,2 {nifty-button#panel}, paddingRight => 7px {nifty-button#panel}, id => button2, visibleToMouse => true, height => 23px {nifty-button#panel}, style => nifty-button, name => button, inputMapping => de.lessvoid.nifty.input.mapping.MenuInputMapping, childLayout => center, controller => gui.BaseElementController, y => 224, x => 381 ******INITIALIZED SCREEN: de.lessvoid.nifty.screen.Screen@4a1ab1c1 ******INITIALIZED ELEMENT: panel1 (de.lessvoid.nifty.elements.Element@373ec894) ******INITIALIZED ELEMENT: id => panel1, height => 30%, style => nifty-panel-simple, width => 50%, backgroundImage => panel/nifty-panel-simple.png {nifty-panel-simple}, controller => gui.BaseElementController, childLayout => center, padding => 5px {nifty-panel-simple}, imageMode => resize:9,2,9,9,9,2,9,2,9,2,9,9 {nifty-panel-simple}, y => 334, x => 282 ******INITIALIZED SCREEN: de.lessvoid.nifty.screen.Screen@4a1ab1c1 ******INITIALIZED ELEMENT: layer4 (de.lessvoid.nifty.elements.Element@6427d489) ******INITIALIZED ELEMENT: id => layer4, backgroundColor => #fff0, controller => gui.BaseElementController, childLayout => absolute the button2 object is getting bound to my BaseElementController, but i can't seem to get it into the defined "onClick" call.

    Read the article

  • class hierarchy design for small java project

    - by user523956
    I have written a java code which does following:- Main goal is to fetch emails from (inbox, spam) folders and store them in database. It fetches emails from gmail,gmx,web.de,yahoo and Hotmail. Following attributes are stored in mysql database. Slno, messagedigest, messageid, foldername, dateandtime, receiver, sender, subject, cc, size and emlfile. For gmail,gmy and web.de, I have used javamail API, because email form it can be fetched with IMAP. For yahoo and hotmail, I have used html parser and httpclient to fetch emails form spam folder and for inbox folder, I have used pop3 javamail API. I want to have proper class hierarchy which makes my code efficient and easily reusable. As of now I have designed class hierarchy as below: I am sure it can still be improved. So I would like to have different opinions on it. I have following classes and methods as of now. MainController:- Here I pass emailid, password and foldername from which emails have to be fetched. Abstract Class :-EmailProtocol Abstract Methods of it (All methods except executeParser contains method definition):- connectImap() // used by gmx,gmail and web.de email ids connectPop3() // used by hotmail and yahoo to fetch emails of inbox folder createMessageDigest // used by every email provider(gmx, gmail,web.de,yahoo,hotmail) establishDBConnection // used by every email emailAlreadyExists // used by every email which checks whether email already exists in db or not, if not then store it. storeemailproperties // used by every email to store emails properties to mysql database executeParser // nothing written in it. Overwridden and used by just hotmail and yahoo to fetch emails form spam folder. Imap extends EmailProtocol (nothing in it. But I have to have it to access methods of EmailProtocol. This is used to fetch emails from gmail,gmx and web.de) I know this is really a bad way but don't know how to do it other way. Hotmsil extends EmailProtocol Methods:- executeParser() :- This is used by just hotmail email id. fetchjunkemails() :- This is also very specific for only hotmail email id. Yahoo extends EmailProtocol Methods:- executeParser() storeEmailtotemptable() MoveEmailtoInbox() getFoldername() nullorEquals() All above methods are specific for yahoo email id. public DateTimeFormat(class) format() //this formats datetime of gmax,gmail and web.de emails. formatYahoodate //this formats datetime of yahoo email. formatHotmaildate // this formats datetime of hotmail email. public StringFormat ConvertStreamToString() // Accessed by every class except DateTimeFormat class. formatFromTo() // Accessed by every class except DateTimeFormat class. public Class CheckDatabaseExistance public static void checkForDatabaseTablesAvailability() (This method checks at the beginnning whether database and required tables exist in mysql or not. if not it creates them) Please see code of my MainController class so that You can have an idea about how I use different classes. public class MainController { public static void main(String[] args) throws Exception { ArrayList<String> web_de_folders = new ArrayList<String>(); web_de_folders.add("INBOX"); web_de_folders.add("Unbekannt"); web_de_folders.add("Spam"); web_de_folders.add("OUTBOX"); web_de_folders.add("SENT"); web_de_folders.add("DRAFTS"); web_de_folders.add("TRASH"); web_de_folders.add("Trash"); ArrayList<String> gmx_folders = new ArrayList<String>(); gmx_folders.add("INBOX"); gmx_folders.add("Archiv"); gmx_folders.add("Entwürfe"); gmx_folders.add("Gelöscht"); gmx_folders.add("Gesendet"); gmx_folders.add("Spamverdacht"); gmx_folders.add("Trash"); ArrayList<String> gmail_folders = new ArrayList<String>(); gmail_folders.add("Inbox"); gmail_folders.add("[Google Mail]/Spam"); gmail_folders.add("[Google Mail]/Trash"); gmail_folders.add("[Google Mail]/Sent Mail"); ArrayList<String> pop3_folders = new ArrayList<String>(); pop3_folders.add("INBOX"); CheckDatabaseExistance.checkForDatabaseTablesAvailability(); EmailProtocol imap = new Imap(); System.out.println("CHECKING FOR NEW EMAILS IN WEB.DE...(IMAP)"); System.out.println("*********************************************************************************"); imap.connectImap("[email protected]", "pwd", web_de_folders); System.out.println("\nCHECKING FOR NEW EMAILS IN GMX.DE...(IMAP)"); System.out.println("*********************************************************************************"); imap.connectImap("[email protected]", "pwd", gmx_folders); System.out.println("\nCHECKING FOR NEW EMAILS IN GMAIL...(IMAP)"); System.out.println("*********************************************************************************"); imap.connectImap("[email protected]", "pwd", gmail_folders); EmailProtocol yahoo = new Yahoo(); Yahoo y=new Yahoo(); System.out.println("\nEXECUTING YAHOO PARSER"); System.out.println("*********************************************************************************"); y.executeParser("http://de.mc1321.mail.yahoo.com/mc/welcome?ymv=0","[email protected]","pwd"); System.out.println("\nCHECKING FOR NEW EMAILS IN INBOX OF YAHOO (POP3)"); System.out.println("*********************************************************************************"); yahoo.connectPop3("[email protected]","pwd",pop3_folders); System.out.println("\nCHECKING FOR NEW EMAILS IN INBOX OF HOTMAIL (POP3)"); System.out.println("*********************************************************************************"); yahoo.connectPop3("[email protected]","pwd",pop3_folders); EmailProtocol hotmail = new Hotmail(); Hotmail h=new Hotmail(); System.out.println("\nEXECUTING HOTMAIL PARSER"); System.out.println("*********************************************************************************"); h.executeParser("https://login.live.com/ppsecure/post.srf","[email protected]","pwd"); } } I have kept DatetimeFormat and StringFormat class public so that I can access its public methods by just (DatetimeFormat.formatYahoodate for e.g. from different methods). This is the first time I have developed something in java. It serves its purpose but of course code is still not so efficient I think. I need your suggestions on this project.

    Read the article

  • Avoiding Agnostic Jagged Array Flattening in Powershell

    - by matejhowell
    Hello, I'm running into an interesting problem in Powershell, and haven't been able to find a solution to it. When I google (and find things like this post), nothing quite as involved as what I'm trying to do comes up, so I thought I'd post the question here. The problem has to do with multidimensional arrays with an outer array length of one. It appears Powershell is very adamant about flattening arrays like @( @('A') ) becomes @( 'A' ). Here is the first snippet (prompt is , btw): > $a = @( @( 'Test' ) ) > $a.gettype().isarray True > $a[0].gettype().isarray False So, I'd like to have $a[0].gettype().isarray be true, so that I can index the value as $a[0][0] (the real world scenario is processing dynamic arrays inside of a loop, and I'd like to get the values as $a[$i][$j], but if the inner item is not recognized as an array but as a string (in my case), you start indexing into the characters of the string, as in $a[0][0] -eq 'T'). I have a couple of long code examples, so I have posted them at the end. And, for reference, this is on Windows 7 Ultimate with PSv2 and PSCX installed. Consider code example 1: I build a simple array manually using the += operator. Intermediate array $w is flattened, and consequently is not added to the final array correctly. I have found solutions online for similar problems, which basically involve putting a comma before the inner array to force the outer array to not flatten, which does work, but again, I'm looking for a solution that can build arrays inside a loop (a jagged array of arrays, processing a CSS file), so if I add the leading comma to the single element array (implemented as intermediate array $y), I'd like to do the same for other arrays (like $z), but that adversely affects how $z is added to the final array. Now consider code example 2: This is closer to the actual problem I am having. When a multidimensional array with one element is returned from a function, it is flattened. It is correct before it leaves the function. And again, these are examples, I'm really trying to process a file without having to know if the function is going to come back with @( @( 'color', 'black') ) or with @( @( 'color', 'black'), @( 'background-color', 'white') ) Has anybody encountered this, and has anybody resolved this? I know I can instantiate framework objects, and I'm assuming everything will be fine if I create an object[], or a list<, or something else similar, but I've been dealing with this for a little bit and something sure seems like there has to be a right way to do this (without having to instantiate true framework objects). Code Example 1 function Display($x, [int]$indent, [string]$title) { if($title -ne '') { write-host "$title`: " -foregroundcolor cyan -nonewline } if(!$x.GetType().IsArray) { write-host "'$x'" -foregroundcolor cyan } else { write-host '' $s = new-object string(' ', $indent) for($i = 0; $i -lt $x.length; $i++) { write-host "$s[$i]: " -nonewline -foregroundcolor cyan Display $x[$i] $($indent+1) } } if($title -ne '') { write-host '' } } ### Start Program $final = @( @( 'a', 'b' ), @('c')) Display $final 0 'Initial Value' ### How do we do this part ??? ########### ## $w = @( @('d', 'e') ) ## $x = @( @('f', 'g'), @('h') ) ## # But now $w is flat, $w.length = 2 ## ## ## # Even if we put a leading comma (,) ## # in front of the array, $y will work ## # but $w will not. This can be a ## # problem inside a loop where you don't ## # know the length of the array, and you ## # need to put a comma in front of ## # single- and multidimensional arrays. ## $y = @( ,@('D', 'E') ) ## $z = @( ,@('F', 'G'), @('H') ) ## ## ## ########################################## $final += $w $final += $x $final += $y $final += $z Display $final 0 'Final Value' ### Desired final value: @( @('a', 'b'), @('c'), @('d', 'e'), @('f', 'g'), @('h'), @('D', 'E'), @('F', 'G'), @('H') ) ### As in the below: # # Initial Value: # [0]: # [0]: 'a' # [1]: 'b' # [1]: # [0]: 'c' # # Final Value: # [0]: # [0]: 'a' # [1]: 'b' # [1]: # [0]: 'c' # [2]: # [0]: 'd' # [1]: 'e' # [3]: # [0]: 'f' # [1]: 'g' # [4]: # [0]: 'h' # [5]: # [0]: 'D' # [1]: 'E' # [6]: # [0]: 'F' # [1]: 'G' # [7]: # [0]: 'H' Code Example 2 function Display($x, [int]$indent, [string]$title) { if($title -ne '') { write-host "$title`: " -foregroundcolor cyan -nonewline } if(!$x.GetType().IsArray) { write-host "'$x'" -foregroundcolor cyan } else { write-host '' $s = new-object string(' ', $indent) for($i = 0; $i -lt $x.length; $i++) { write-host "$s[$i]: " -nonewline -foregroundcolor cyan Display $x[$i] $($indent+1) } } if($title -ne '') { write-host '' } } function funA() { $ret = @() $temp = @(0) $temp[0] = @('p', 'q') $ret += $temp Display $ret 0 'Inside Function A' return $ret } function funB() { $ret = @( ,@('r', 's') ) Display $ret 0 'Inside Function B' return $ret } ### Start Program $z = funA Display $z 0 'Return from Function A' $z = funB Display $z 0 'Return from Function B' ### Desired final value: @( @('p', 'q') ) and same for r,s ### As in the below: # # Inside Function A: # [0]: # [0]: 'p' # [1]: 'q' # # Return from Function A: # [0]: # [0]: 'p' # [1]: 'q' Thanks, Matt

    Read the article

  • Custom Lookup Provider For NetBeans Platform CRUD Tutorial

    - by Geertjan
    For a long time I've been planning to rewrite the second part of the NetBeans Platform CRUD Application Tutorial to integrate the loosely coupled capabilities introduced in a seperate series of articles based on articles by Antonio Vieiro (a great series, by the way). Nothing like getting into the Lookup stuff right from the get go (rather than as an afterthought)! The question, of course, is how to integrate the loosely coupled capabilities in a logical way within that tutorial. Today I worked through the tutorial from scratch, up until the point where the prototype is completed, i.e., there's a JTextArea displaying data pulled from a database. That brought me to the place where I needed to be. In fact, as soon as the prototype is completed, i.e., the database connection has been shown to work, the whole story about Lookup.Provider and InstanceContent should be introduced, so that all the subsequent sections, i.e., everything within "Integrating CRUD Functionality" will be done by adding new capabilities to the Lookup.Provider. However, before I perform open heart surgery on that tutorial, I'd like to run the scenario by all those reading this blog who understand what I'm trying to do! (I.e., probably anyone who has read this far into this blog entry.) So, this is what I propose should happen and in this order: Point out the fact that right now the database access code is found directly within our TopComponent. Not good. Because you're mixing view code with data code and, ideally, the developers creating the user interface wouldn't need to know anything about the data access layer. Better to separate out the data access code into a separate class, within the CustomerLibrary module, i.e., far away from the module providing the user interface, with this content: public class CustomerDataAccess { public List<Customer> getAllCustomers() { return Persistence.createEntityManagerFactory("CustomerLibraryPU"). createEntityManager().createNamedQuery("Customer.findAll").getResultList(); } } Point out the fact that there is a concept of "Lookup" (which readers of the tutorial should know about since they should have followed the NetBeans Platform Quick Start), which is a registry into which objects can be published and to which other objects can be listening. In the same way as a TopComponent provides a Lookup, as demonstrated in the NetBeans Platform Quick Start, your own object can also provide a Lookup. So, therefore, let's provide a Lookup for Customer objects.  import org.openide.util.Lookup; import org.openide.util.lookup.AbstractLookup; import org.openide.util.lookup.InstanceContent; public class CustomerLookupProvider implements Lookup.Provider { private Lookup lookup; private InstanceContent instanceContent; public CustomerLookupProvider() { // Create an InstanceContent to hold capabilities... instanceContent = new InstanceContent(); // Create an AbstractLookup to expose the InstanceContent... lookup = new AbstractLookup(instanceContent); // Add a "Read" capability to the Lookup of the provider: //...to come... // Add a "Update" capability to the Lookup of the provider: //...to come... // Add a "Create" capability to the Lookup of the provider: //...to come... // Add a "Delete" capability to the Lookup of the provider: //...to come... } @Override public Lookup getLookup() { return lookup; } } Point out the fact that, in the same way as we can publish an object into the Lookup of a TopComponent, we can now also publish an object into the Lookup of our CustomerLookupProvider. Instead of publishing a String, as in the NetBeans Platform Quick Start, we'll publish an instance of our own type. And here is the type: public interface ReadCapability { public void read() throws Exception; } And here is an implementation of our type added to our Lookup: public class CustomerLookupProvider implements Lookup.Provider { private Set<Customer> customerSet; private Lookup lookup; private InstanceContent instanceContent; public CustomerLookupProvider() { customerSet = new HashSet<Customer>(); // Create an InstanceContent to hold capabilities... instanceContent = new InstanceContent(); // Create an AbstractLookup to expose the InstanceContent... lookup = new AbstractLookup(instanceContent); // Add a "Read" capability to the Lookup of the provider: instanceContent.add(new ReadCapability() { @Override public void read() throws Exception { ProgressHandle handle = ProgressHandleFactory.createHandle("Loading..."); handle.start(); customerSet.addAll(new CustomerDataAccess().getAllCustomers()); handle.finish(); } }); // Add a "Update" capability to the Lookup of the provider: //...to come... // Add a "Create" capability to the Lookup of the provider: //...to come... // Add a "Delete" capability to the Lookup of the provider: //...to come... } @Override public Lookup getLookup() { return lookup; } public Set<Customer> getCustomers() { return customerSet; } } Point out that we can now create a new instance of our Lookup (in some other module, so long as it has a dependency on the module providing the CustomerLookupProvider and the ReadCapability), retrieve the ReadCapability, and then do something with the customers that are returned, here in the rewritten constructor of the TopComponent, without needing to know anything about how the database access is actually achieved since that is hidden in the implementation of our type, above: public CustomerViewerTopComponent() { initComponents(); setName(Bundle.CTL_CustomerViewerTopComponent()); setToolTipText(Bundle.HINT_CustomerViewerTopComponent()); // EntityManager entityManager = Persistence.createEntityManagerFactory("CustomerLibraryPU").createEntityManager(); // Query query = entityManager.createNamedQuery("Customer.findAll"); // List<Customer> resultList = query.getResultList(); // for (Customer c : resultList) { // jTextArea1.append(c.getName() + " (" + c.getCity() + ")" + "\n"); // } CustomerLookupProvider lookup = new CustomerLookupProvider(); ReadCapability rc = lookup.getLookup().lookup(ReadCapability.class); try { rc.read(); for (Customer c : lookup.getCustomers()) { jTextArea1.append(c.getName() + " (" + c.getCity() + ")" + "\n"); } } catch (Exception ex) { Exceptions.printStackTrace(ex); } } Does the above make as much sense to others as it does to me, including the naming of the classes? Feedback would be appreciated! Then I'll integrate into the tutorial and do the same for the other sections, i.e., "Create", "Update", and "Delete". (By the way, of course, the tutorial ends up showing that, rather than using a JTextArea to display data, you can use Nodes and explorer views to do so.)

    Read the article

  • CLR Version issues with CorBindRuntimeEx

    - by Rick Strahl
    I’m working on an older FoxPro application that’s using .NET Interop and this app loads its own copy of the .NET runtime through some of our own tools (wwDotNetBridge). This all works fine and it’s fairly straightforward to load and host the runtime and then make calls against it. I’m writing this up for myself mostly because I’ve been bitten by these issues repeatedly and spend 15 minutes each However, things get tricky when calling specific versions of the .NET runtime since .NET 4.0 has shipped. Basically we need to be able to support both .NET 2.0 and 4.0 and we’re currently doing it with the same assembly – a .NET 2.0 assembly that is the AppDomain entry point. This works as .NET 4.0 can easily host .NET 2.0 assemblies and the functionality in the 2.0 assembly provides all the features we need to call .NET 4.0 assemblies via Reflection. In wwDotnetBridge we provide a load flag that allows specification of the runtime version to use. Something like this: do wwDotNetBridge LOCAL loBridge as wwDotNetBridge loBridge = CreateObject("wwDotNetBridge","v4.0.30319") and this works just fine in most cases.  If I specify V4 internally that gets fixed up to a whole version number like “v4.0.30319” which is then actually used to host the .NET runtime. Specifically the ClrVersion setting is handled in this Win32 DLL code that handles loading the runtime for me: /// Starts up the CLR and creates a Default AppDomain DWORD WINAPI ClrLoad(char *ErrorMessage, DWORD *dwErrorSize) { if (spDefAppDomain) return 1; //Retrieve a pointer to the ICorRuntimeHost interface HRESULT hr = CorBindToRuntimeEx( ClrVersion, //Retrieve latest version by default L"wks", //Request a WorkStation build of the CLR STARTUP_LOADER_OPTIMIZATION_MULTI_DOMAIN | STARTUP_CONCURRENT_GC, CLSID_CorRuntimeHost, IID_ICorRuntimeHost, (void**)&spRuntimeHost ); if (FAILED(hr)) { *dwErrorSize = SetError(hr,ErrorMessage); return hr; } //Start the CLR hr = spRuntimeHost->Start(); if (FAILED(hr)) return hr; CComPtr<IUnknown> pUnk; WCHAR domainId[50]; swprintf(domainId,L"%s_%i",L"wwDotNetBridge",GetTickCount()); hr = spRuntimeHost->CreateDomain(domainId,NULL,&pUnk); hr = pUnk->QueryInterface(&spDefAppDomain.p); if (FAILED(hr)) return hr; return 1; } CorBindToRuntimeEx allows for a specific .NET version string to be supplied which is what I’m doing via an API call from the FoxPro code. The behavior of CorBindToRuntimeEx is a bit finicky however. The documentation states that NULL should load the latest version of the .NET runtime available on the machine – but it actually doesn’t. As far as I can see – regardless of runtime overrides even in the .config file – NULL will always load .NET 2.0 even if 4.0 is installed. <supportedRuntime> .config File Settings Things get even more unpredictable once you start adding runtime overrides into the application’s .config file. In my scenario working inside of Visual FoxPro this would be VFP9.exe.config in the FoxPro installation folder (not the current folder). If I have a specific runtime override in the .config file like this: <?xml version="1.0"?> <configuration> <startup> <supportedRuntime version="v2.0.50727" /> </startup> </configuration> Not surprisingly with this I can load a .NET 2.0  runtime, but I will not be able to load Version 4.0 of the .NET runtime even if I explicitly specify it in my call to ClrLoad. Worse I don’t get an error – it will just go ahead and hand me a V2 version of the runtime and assume that’s what I wanted. Yuck! However, if I set the supported runtime to V4 in the .config file: <?xml version="1.0"?> <configuration> <startup> <supportedRuntime version="v4.0.30319" /> </startup> </configuration> Then I can load both V4 and V2 of the runtime. Specifying NULL however will STILL only give me V2 of the runtime. Again this seems pretty inconsistent. If you’re hosting runtimes make sure you check which version of the runtime is actually loading first to ensure you get the one you’re looking for. If the wrong version loads – say 2.0 and you want 4.0 - and you then proceed to load 4.0 assemblies they will all fail to load due to version mismatches. This is how all of this started – I had a bunch of assemblies that weren’t loading and it took a while to figure out that the host was running the wrong version of the CLR and therefore caused the assemblies loading to fail. Arrggh! <supportedRuntime> and Debugger Version <supportedRuntime> also affects the use of the .NET debugger when attached to the target application. Whichever runtime is specified in the key is the version of the debugger that fires up. This can have some interesting side effects. If you load a .NET 2.0 assembly but <supportedRuntime> points at V4.0 (or vice versa) the debugger will never fire because it can only debug in the appropriate runtime version. This has bitten me on several occasions where code runs just fine but the debugger will just breeze by breakpoints without notice. The default version for the debugger is the latest version installed on the system if <supportedRuntime> is not set. Summary Besides all the hassels, I’m thankful I can build a .NET 2.0 assembly and have it host .NET 4.0 and call .NET 4.0 code. This way we’re able to ship a single assembly that provides functionality that supports both .NET 2 and 4 without having to have separate DLLs for both which would be a deployment and update nightmare. The MSDN documentation does point at newer hosting API’s specifically for .NET 4.0 which are way more complicated and even less documented but that doesn’t help here because the runtime needs to be able to host both .NET 4.0 and 2.0. Not pleased about that – the new APIs look way more complex and of course they’re not available with older versions of the runtime installed which in our case makes them useless to me in this scenario where I have to support .NET 2.0 hosting (to provide greater ‘built-in’ platform support). Once you know the behavior above, it’s manageable. However, it’s quite easy to get tripped up here because there are multiple combinations that can really screw up behaviors.© Rick Strahl, West Wind Technologies, 2005-2011Posted in .NET  FoxPro  

    Read the article

  • AIX Checklist for stable obiee deployment

    - by user554629
    Common AIX configuration issues     ( last updated 27 Aug 2012 ) OBIEE is a complicated system with many moving parts and connection points.The purpose of this article is to provide a checklist to discuss OBIEE deployment with your systems administrators. The information in this article is time sensitive, and updated as I discover new  issues or details. What makes OBIEE different? When Tech Support suggests AIX component upgrades to a stable, locked-down production AIX environment, it is common to get "push back".  "Why is this necessary?  We aren't we seeing issues with other software?"It's a fair question that I have often struggled to answer; here are the talking points: OBIEE is memory intensive.  It is the entire purpose of the software to trade memory for repetitive, more expensive database requests across a network. OBIEE is implemented in C++ and is very dependent on the C++ runtime to behave correctly. OBIEE is aggressively thread efficient;  if atomic operations on a particular architecture do not work correctly, the software crashes. OBIEE dynamically loads third-party database client libraries directly into the nqsserver process.  If the library is not thread-safe, or corrupts process memory the OBIEE crash happens in an unrelated part of the code.  These are extremely difficult bugs to find. OBIEE software uses 99% common source across multiple platforms:  Windows, Linux, AIX, Solaris and HPUX.  If a crash happens on only one platform, we begin to suspect other factors.  load intensity, system differences, configuration choices, hardware failures.  It is rare to have a single product require so many diverse technical skills.   My role in support is to understand system configurations, performance issues, and crashes.   An analyst trained in Business Analytics can't be expected to know AIX internals in the depth required to make configuration choices.  Here are some guidelines. AIX C++ Runtime must be at  version 11.1.0.4$ lslpp -L | grep xlC.aixobiee software will crash if xlC.aix.rte is downlevel;  this is not a "try it" suggestion.Nov 2011 11.1.0.4 version  is appropriate for all AIX versions ( 5, 6, 7 )Download from here:https://www-304.ibm.com/support/docview.wss?uid=swg24031426 No reboot is necessary to install, it can even be installed while applications are using the current version.Restart the apps, and they will pick up the latest version. AIX 5.3 Technology Level 12 is required when running on Power5,6,7 processorsAIX 6.1 was introduced with the newer Power chips, and we have seen no issues with 6.1 or 7.1 versions.Customers with an unstable deployment, dozens of unexplained crashes, became stable after the upgrade.If your AIX system is 5.3, the minimum TL level should be at or higher than this:$ oslevel -s  5300-12-03-1107IBM typically supports only the two latest versions of AIX ( 6.1 and 7.1, for example).  AIX 5.3 is still supported and popular running in an LPAR. obiee userid limits$ ulimit -Ha  ( hard limits )$ ulimit -a   ( default limits )core file size (blocks)     unlimiteddata seg size (kbytes)      unlimitedfile size (blocks)          unlimitedmax memory size (kbytes)    unlimitedopen files                  10240 cpu time (seconds)          unlimitedvirtual memory (kbytes)     unlimitedIt is best to establish the values in /etc/security/limitsroot user is needed to observe and modify this file.If you modify a limit, you will need to relog in to change it again.  For example,$ ulimit -c 0$ ulimit -c 2097151cannot modify limit: Operation not permitted$ ulimit -c unlimited$ ulimit -c0There are only two meaningful values for ulimit -c ; zero or unlimited.Anything else is likely to produce a truncated core file that cannot be analyzed. Deploy 32-bit or 64-bit ?Early versions of OBIEE offered 32-bit or 64-bit choice to AIX customers.The 32-bit choice was needed if a database vendor did not supply a 64-bit client library.That's no longer an issue and beginning with OBIEE 11, 32-bit code is no longer shipped.A common error that leads to "out of memory" conditions to to accept the 32-bit memory configuration choices on 64-bit deployments.  The significant configuration choices are: Maximum process data (heap) size is in an AIX environment variableLDR_CNTRL=IGNOREUNLOAD@LOADPUBLIC@PREREAD_SHLIB@MAXDATA=0x... Two thread stack sizes are made in obiee NQSConfig.INI[ SERVER ]SERVER_THREAD_STACK_SIZE = 0;DB_GATEWAY_THREAD_STACK_SIZE = 0; Sort memory in NQSConfig.INI[ GENERAL ]SORT_MEMORY_SIZE = 4 MB ;SORT_BUFFER_INCREMENT_SIZE = 256 KB ; Choosing a value for MAXDATA:0x080000000  2GB Default maximum 32-bit heap size ( 8 with 7 zeros )0x100000000  4GB 64-bit breaking even with 32-bit ( 1 with 8 zeros )0x200000000  8GB 64-bit double 32-bit max0x400000000 16GB 64-bit safetyUsing 2GB heap size for a 64-bit process will almost certainly lead to an out-of-memory situation.Registers are twice as big ... consume twice as much memory in the heap.Upgrading to a 4GB heap for a 64-bit process is just "breaking even" with 32-bit.A 32-bit process is constrained by the 32-bit virtual addressing limits.  Heap memory is used for dynamic requirements of obiee software, thread stacks for each of the configured threads, and sometimes for shared libraries. 64-bit processes are not constrained in this way;  extra heap space can be configured for safety against a query that might create a sudden requirement for excessive storage.  If the storage is not available, this query might crash the whole server and disrupt existing users.There is no performance penalty on AIX for configuring more memory than required;  extra memory can be configured for safety.  If there are no other considerations, start with 8GB.Choosing a value for Thread Stack size:zero is the value documented to select an appropriate default for thread stack size.  My preference is to change this to an absolute value, even if you intend to use the documented default;  it provides better documentation and removes the "surprise" factor.There are two thread types that can be configured. GATEWAY is used by a thread pool to call a database client library to establish a DB connection.The default size is 256KB;  many customers raise this to 512KB ( no performance penalty for over-configuring ). This value must be set to 1 MB if Teradata connections are used. SERVER threads are used to run queries.  OBIEE uses recursive algorithms during the analysis of query structures which can consume significant thread stack storage.  It's difficult to provide guidance on a value that depends on data and complexity.  The general notion is to provide more space than you think you need,  "double down" and increase the value if you run out, otherwise inspect the query to understand why it is too complex for the thread stack.  There are protections built into the software to abort a single user query that is too complex, but the algorithms don't cover all situations.256 KB  The default 32-bit stack size.  Many customers increased this to 512KB on 32-bit.  A 64-bit server is very likely to crash with this value;  the stack contains mostly register values, which are twice as big.512 KB  The documented 64-bit default.  Some early releases of obiee didn't set this correctly, resulting in 256KB stacks.1 MB  The recommended 64-bit setting.  If your system only ever uses 512KB of stack space, there is no performance penalty for using 1MB stack size.2 MB  Many large customers use this value for safety.  No performance penalty.nqscheduler does not use the NQSConfig.INI file to set thread stack size.If this process crashes because the thread stack is too small, use this to set 2MB:export OBI_BACKGROUND_STACK_SIZE=2048 Shared libraries are not (shared) When application libraries are loaded at run-time, AIX makes a decision on whether to load the libraries in a "public" memory segment.  If the filesystem library permissions do not have the "Read-Other" permission bit, AIX loads the library into private process memory with two significant side-effects:* The libraries reduce the heap storage available.      Might be significant in 32-bit processes;  irrelevant in 64-bit processes.* Library code is loaded into multiple real pages for execution;  one copy for each process.Multiple execution images is a significant issue for both 32- and 64-bit processes.The "real memory pages" saved by using public memory segments is a minor concern.  Today's machines typically have plenty of real memory.The real problem with private copies of libraries is that they consume processor cache blocks, which are limited.   The same library instructions executing in different real pages will cause memory delays as the i-cache ( instruction cache 128KB blocks) are refreshed from real memory.   Performance loss because instructions are delayed is something that is difficult to measure without access to low-level cache fault data.   The machine just appears to be running slowly for no observable reason.This is an easy problem to detect, and an easy problem to correct.Detection:  "genld -l" AIX command produces a list of the libraries used by each process and the AIX memory address where they are loaded.32-bit public segment is 13 ( "dxxxxxxx" ).   private segments are 2-a.64-bit public segment is 9 ( "9xxxxxxxxxxxxxxx") ; private segment is 8.genld -l | grep -v ' d| 9' | sort +2provides a list of privately loaded libraries. Repair: chmod o+r <libname>AIX shared libraries will have a suffix of ".so" or ".a".Another technique is to change all libraries in a selected directory to repair those that might not be currently loaded.   The usual directories that need repair are obiee code, httpd code and plugins, database client libraries and java.chmod o+r /shr/dir/*.a /shr/dir/*.so Configure your system for diagnosticsProduction systems shouldn't crash, and yet bad things happen to good software.If obiee software crashes and produces a core, you should configure your system for reliable transfer of the failing conditions to Oracle Tech Support.  Here's what we need to be able to diagnose a core file from your system.* fullcore enabled. chdev -lsys0 -a fullcore=true* core naming enabled. chcore -n on -d* ulimit must not truncate core. see item 3.* pstack.sh is used to capture core documentation.* obidoc is used to capture current AIX configuration.* snapcore  AIX utility captures core and libraries. Use the proper syntax. $ snapcore -r corename executable-fullpath   /tmp/snapcore will contain the .pax.Z output file.  It is compressed.* If cores are directed to a common directory, ensure obiee userid can write to the directory.  ( chcore -p /cores -d ; chmod 777 /cores )The filesystem must have sufficient space to hold a crashing obiee application.Use:  df -k  Check the "Free" column ( not "% Used" )  8388608 is 8GB. Disable Oracle Client Library signal handlingThe Oracle DB Client Library is frequently distributed with the sqlplus development kit.By default, the library enables a signal handler, which will document a call stack if the application crashes.   The signal handler is not needed, and definitely disruptive to obiee diagnostics.   It needs to be disabled.   sqlnet.ora is typically located at:   $ORACLE_HOME/network/admin/sqlnet.oraAdd this line at the top of the file:   DIAG_SIGHANDLER_ENABLED=FALSE Disable async query in the RPD connection pool.This might be an obiee 10.1.3.4 issue only ( still checking  )."async query" must be disabled in the connection pools.It was designed to enable query cancellation to a database, and turned out to have too many edge conditions in normal communication that produced random corruption of data and crashes.  Please ensure it is turned off in the RPD. Check AIX error report (errpt).Errors external to obiee applications can trigger crashes.  $ /bin/errpt -aHardware errors ( firmware, adapters, disks ) should be reported to IBM support.All application core files are recorded by AIX;  the most recent ones are listed first. Reserved for something important to say.

    Read the article

  • Adding proper THEAD sections to a GridView

    - by Rick Strahl
    I’m working on some legacy code for a customer today and dealing with a page that has my favorite ‘friend’ on it: A GridView control. The ASP.NET GridView control (and also the older DataGrid control) creates some pretty messed up HTML. One of the more annoying things it does is to generate all rows including the header into the page in the <tbody> section of the document rather than in a properly separated <thead> section. Here’s is typical GridView generated HTML output: <table class="tablesorter blackborder" cellspacing="0" rules="all" border="1" id="Table1" style="border-collapse:collapse;"> <tr> <th scope="col">Name</th> <th scope="col">Company</th> <th scope="col">Entered</th><th scope="col">Balance</th> </tr> <tr> <td>Frank Hobson</td><td>Hobson Inc.</td> <td>10/20/2010 12:00:00 AM</td><td>240.00</td> </tr> ... </table> Notice that all content – both the headers and the body of the table – are generated directly under the <table> tag and there’s no explicit use of <tbody> or <thead> (or <tfooter> for that matter). When the browser renders this the document some default settings kick in and the DOM tree turns into something like this: <table> <tbody> <tr> <-- header <tr> <—detail row <tr> <—detail row </tbody> </table> Now if you’re just rendering the Grid server side and you’re applying all your styles through CssClass assignments this isn’t much of a problem. However, if you want to style your grid more generically using hierarchical CSS selectors it gets a lot more tricky to format tables that don’t properly delineate headers and body content. Also many plug-ins and other JavaScript utilities that work on tables require a properly formed table layout, and many of these simple won’t work out of the box with a GridView. For example, one of the things I wanted to do for this app is use the jQuery TableSorter plug-in which – not surprisingly – requires to work of table headers in the DOM document. Out of the box, the TableSorter plug-in doesn’t work with GridView controls, because the lack of a <thead> section to work on. Luckily with a little help of some jQuery scripting there’s a real easy fix to this problem. Basically, if we know the GridView generated table has a header in it, code like the following will move the headers from <tbody> to <thead>: <script type="text/javascript"> $(document).ready(function () { // Fix up GridView to support THEAD tags $("#gvCustomers tbody").before("<thead><tr></tr></thead>"); $("#gvCustomers thead tr").append($("#gvCustomers th")); $("#gvCustomers tbody tr:first").remove(); $("#gvCustomers").tablesorter({ sortList: [[1, 0]] }); }); </script> And voila you have a table that now works with the TableSorter plug-in. If you use GridView’s a lot you might want something a little more generic so the following does the same thing but should work more generically on any GridView/DataGrid missing its <thead> tag: function fixGridView(tableEl) {            var jTbl = $(tableEl);         if(jTbl.find("tbody>tr>th").length > 0) {         jTbl.find("tbody").before("<thead><tr></tr></thead>");         jTbl.find("thead tr").append(jTbl.find("th"));         jTbl.find("tbody tr:first").remove();     } } which you can call like this: $(document).ready(function () { fixGridView( $("#gvCustomers") ); $("#gvCustomers").tablesorter({ sortList: [[1, 0]] }); }); Server Side THEAD Rendering [updated from comments 11/21/2010] Several commenters pointed out that you can also do this on the server side by using the GridView.HeaderRow.TableSection property to force rendering with a proper table header. I was unaware of this option actually – not exactly an easy one to discover. One issue here is that timing of this needs to happen during the databinding process so you need to use an event handler: this.gvCustomers.DataBound += (object o, EventArgs ev) => { gvCustomers.HeaderRow.TableSection = TableRowSection.TableHeader; }; this.gvCustomers.DataSource = custList; this.gvCustomers.DataBind(); You can apply the same logic for the FooterRow. It’s beyond me why this rendering mode isn’t the default for a GridView – why would you ever want to have a table that doesn’t use a THEAD section??? But I disgress :-) I don’t use GridViews much anymore – opting for more flexible approaches using ListViews or even plain code based views or other custom displays that allow more control over layout, but I still see a lot of old code that does use them old clunkers including my own :) (gulp) and this does make life a little bit easier especially if you’re working with any of the jQuery table related plug-ins that expect a proper table structure.© Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  jQuery  

    Read the article

< Previous Page | 795 796 797 798 799 800 801 802 803 804 805 806  | Next Page >