Search Results

Search found 80052 results on 3203 pages for 'data load performance'.

Page 825/3203 | < Previous Page | 821 822 823 824 825 826 827 828 829 830 831 832  | Next Page >

  • Download Internet Explorer 9 RTM

    - by Harish Ranganathan
    The much anticipated RTM release of Internet Explorer 9 (IE9) happened today.  IE9 preview release was first showcased at MIX 2010 and post that there were 7-8 Platform Preview releases.  Also, IE9 Beta came out in September 2010 with close to 10 million downloads within a month.  More recently, the RC version was out with much improved performance.  Today, marks the launch of IE9 RTM.  What this means is that, within an year, the IE Team has shipped the stable product, much faster than the earlier cycles for IE8 and IE7.  I wanted to clarify a few things (myths) that arise in common 1. I am already using Chrome and its faster for me, why would I need IE9 IE9 uses 100% hardware acceleration which means, you are going to get the best of performance compared to any other browser that shipped/will ship in future.  With native Windows support, IE9 will outperform all other browsers in terms of performance. 2. What about standards and security Agreed IE6 hasn’t been in the best of standards, but why would someone compare IE6 which was released almost 10 years back.  Later, we shipped IE7 and IE8 which had the best of standards and supports during their timeframes, but one would agree that standards and specifications keep getting updated and its hard to keep pace with the same for older browsers.  Example. HTML5 support is not there in IE8 but it is very much there in IE9.  IE9 supports most of the stable standards of HTML5 and its going to provide preview releases for the work-in-progress standards. 3. IE doesn’t keep in pace with other browsers Agreed! we don’t force/release updates on major versions in very short time periods.  What we do is provide Windows Update that provides security updates/patches and other critical updates for not just IE but the whole of Windows operating system 4. I am running Windows XP, what do I do? This is the trickiest part.  Windows XP isn’t the supported operating system for IE9 and there are various reasons to it.  The recommended operating system is Windows Vista and Windows 7.  In the interest of technology and its pace, we had to discontinue Windows XP both from a retail selling perspective as well as IE9 support.  But, the recent 2 years has seen PCs/Laptops only shipped with Windows Vista or Windows 7 so, it shouldn't affect them. 5. Where do I verify IE9’s performance/standard support and other information. http://samples.msdn.microsoft.com/ietestcenter/  Here below is a snapshot of one of the tests. Clearly IE9 outperforms all other browsers and will continue to outperform them in future.  You can download IE9 from www.beautyoftheweb.com Cheers!!!

    Read the article

  • Customer Support Spotlight: Clemson University

    - by cwarticki
    I've begun a Customer Support Spotlight series that highlights our wonderful customers and Oracle loyalists.  A week ago I visited Clemson University.  As I travel to visit and educate our customers, I provide many useful tips/tricks and support best practices (as found on my blog and twitter). Most of all, I always discover an Oracle gem who deserves recognition for their hard work and advocacy. Meet George Manley.  George is a Storage Engineer who has worked in Clemson's Data Center all through college, partially in the Hardware Architecture group and partially in the Storage group. George and the rest of the Storage Team work with most all of the storage technologies that they have here at Clemson. This includes a wide array of different vendors' disk arrays, with the most of them being Oracle/Sun 2540's.  He also works with SAM/QFS, ACSLS, and our SL8500 Tape Libraries (all three Oracle/Sun products). (pictured L to R, Matt Schoger (Oracle), Mark Flores (Oracle) and George Manley) George was kind enough to take us for a data center tour.  It was amazing.  I rarely get to see the inside of data centers, and this one was massive. Clemson Computing and Information Technology’s physical resources include the main data center located in the Information Technology Center at the Innovation Campus and Technology Park. The core of Clemson’s computing infrastructure, the data center has 21,000 sq ft of raised floor and is powered by a 14MW substation. The ITC power capacity is 4.5MW.  The data center is the home of both enterprise and HPC systems, and is staffed by CCIT staff on a 24 hour basis from a state of the art network operations center within the ITC. A smaller business continuance data center is located on the main campus.  The data center serves a wide variety of purposes including HPC (supercomputing) resources which are shared with other Universities throughout the state, the state's medicaid processing system, and nearly all other needs for Clemson University. Yes, that's no typo (14,256 cores and 37TB of memory!!! Thanks for the tour George and thank you very much for your time.  The tour was fantastic. I enjoyed getting to know your team and I look forward to many successes from Clemson using Oracle products. -Chris WartickiGlobal Customer Management

    Read the article

  • The Breakpoint Ep. 4 —The Tour De Timeline

    The Breakpoint Ep. 4 —The Tour De Timeline Ask and vote for questions at: goo.gl The DevTools' Timeline shows the heartbeat and health of your application's performance. In this episode we'll do a deep deep dive into how to uncover the cost of internal browser operations like parsing HTML, decoding images, invalidating layout geometry and painting to screen. Paul and Addy will show you how best to approach improving the performance of your CSS and JS. From: GoogleDevelopers Views: 0 0 ratings Time: 01:00:00 More in Science & Technology

    Read the article

  • Much Ado About Nothing: Stub Objects

    - by user9154181
    The Solaris 11 link-editor (ld) contains support for a new type of object that we call a stub object. A stub object is a shared object, built entirely from mapfiles, that supplies the same linking interface as the real object, while containing no code or data. Stub objects cannot be executed — the runtime linker will kill any process that attempts to load one. However, you can link to a stub object as a dependency, allowing the stub to act as a proxy for the real version of the object. You may well wonder if there is a point to producing an object that contains nothing but linking interface. As it turns out, stub objects are very useful for building large bodies of code such as Solaris. In the last year, we've had considerable success in applying them to one of our oldest and thorniest build problems. In this discussion, I will describe how we came to invent these objects, and how we apply them to building Solaris. This posting explains where the idea for stub objects came from, and details our long and twisty journey from hallway idea to standard link-editor feature. I expect that these details are mainly of interest to those who work on Solaris and its makefiles, those who have done so in the past, and those who work with other similar bodies of code. A subsequent posting will omit the history and background details, and instead discuss how to build and use stub objects. If you are mainly interested in what stub objects are, and don't care about the underlying software war stories, I encourage you to skip ahead. The Long Road To Stubs This all started for me with an email discussion in May of 2008, regarding a change request that was filed in 2002, entitled: 4631488 lib/Makefile is too patient: .WAITs should be reduced This CR encapsulates a number of cronic issues with Solaris builds: We build Solaris with a parallel make (dmake) that tries to build as much of the code base in parallel as possible. There is a lot of code to build, and we've long made use of parallelized builds to get the job done quicker. This is even more important in today's world of massively multicore hardware. Solaris contains a large number of executables and shared objects. Executables depend on shared objects, and shared objects can depend on each other. Before you can build an object, you need to ensure that the objects it needs have been built. This implies a need for serialization, which is in direct opposition to the desire to build everying in parallel. To accurately build objects in the right order requires an accurate set of make rules defining the things that depend on each other. This sounds simple, but the reality is quite complex. In practice, having programmers explicitly specify these dependencies is a losing strategy: It's really hard to get right. It's really easy to get it wrong and never know it because things build anyway. Even if you get it right, it won't stay that way, because dependencies between objects can change over time, and make cannot help you detect such drifing. You won't know that you got it wrong until the builds break. That can be a long time after the change that triggered the breakage happened, making it hard to connect the cause and the effect. Usually this happens just before a release, when the pressure is on, its hard to think calmly, and there is no time for deep fixes. As a poor compromise, the libraries in core Solaris were built using a set of grossly incomplete hand written rules, supplemented with a number of dmake .WAIT directives used to group the libraries into sets of non-interacting groups that can be built in parallel because we think they don't depend on each other. From time to time, someone will suggest that we could analyze the built objects themselves to determine their dependencies and then generate make rules based on those relationships. This is possible, but but there are complications that limit the usefulness of that approach: To analyze an object, you have to build it first. This is a classic chicken and egg scenario. You could analyze the results of a previous build, but then you're not necessarily going to get accurate rules for the current code. It should be possible to build the code without having a built workspace available. The analysis will take time, and remember that we're constantly trying to make builds faster, not slower. By definition, such an approach will always be approximate, and therefore only incremantally more accurate than the hand written rules described above. The hand written rules are fast and cheap, while this idea is slow and complex, so we stayed with the hand written approach. Solaris was built that way, essentially forever, because these are genuinely difficult problems that had no easy answer. The makefiles were full of build races in which the right outcomes happened reliably for years until a new machine or a change in build server workload upset the accidental balance of things. After figuring out what had happened, you'd mutter "How did that ever work?", add another incomplete and soon to be inaccurate make dependency rule to the system, and move on. This was not a satisfying solution, as we tend to be perfectionists in the Solaris group, but we didn't have a better answer. It worked well enough, approximately. And so it went for years. We needed a different approach — a new idea to cut the Gordian Knot. In that discussion from May 2008, my fellow linker-alien Rod Evans had the initial spark that lead us to a game changing series of realizations: The link-editor is used to link objects together, but it only uses the ELF metadata in the object, consisting of symbol tables, ELF versioning sections, and similar data. Notably, it does not look at, or understand, the machine code that makes an object useful at runtime. If you had an object that only contained the ELF metadata for a dependency, but not the code or data, the link-editor would find it equally useful for linking, and would never know the difference. Call it a stub object. In the core Solaris OS, we require all objects to be built with a link-editor mapfile that describes all of its publically available functions and data. Could we build a stub object using the mapfile for the real object? It ought to be very fast to build stub objects, as there are no input objects to process. Unlike the real object, stub objects would not actually require any dependencies, and so, all of the stubs for the entire system could be built in parallel. When building the real objects, one could link against the stub objects instead of the real dependencies. This means that all the real objects can be built built in parallel too, without any serialization. We could replace a system that requires perfect makefile rules with a system that requires no ordering rules whatsoever. The results would be considerably more robust. We immediately realized that this idea had potential, but also that there were many details to sort out, lots of work to do, and that perhaps it wouldn't really pan out. As is often the case, it would be necessary to do the work and see how it turned out. Following that conversation, I set about trying to build a stub object. We determined that a faithful stub has to do the following: Present the same set of global symbols, with the same ELF versioning, as the real object. Functions are simple — it suffices to have a symbol of the right type, possibly, but not necessarily, referencing a null function in its text segment. Copy relocations make data more complicated to stub. The possibility of a copy relocation means that when you create a stub, the data symbols must have the actual size of the real data. Any error in this will go uncaught at link time, and will cause tragic failures at runtime that are very hard to diagnose. For reasons too obscure to go into here, involving tentative symbols, it is also important that the data reside in bss, or not, matching its placement in the real object. If the real object has more than one symbol pointing at the same data item, we call these aliased symbols. All data symbols in the stub object must exhibit the same aliasing as the real object. We imagined the stub library feature working as follows: A command line option to ld tells it to produce a stub rather than a real object. In this mode, only mapfiles are examined, and any object or shared libraries on the command line are are ignored. The extra information needed (function or data, size, and bss details) would be added to the mapfile. When building the real object instead of the stub, the extra information for building stubs would be validated against the resulting object to ensure that they match. In exploring these ideas, I immediately run headfirst into the reality of the original mapfile syntax, a subject that I would later write about as The Problem(s) With Solaris SVR4 Link-Editor Mapfiles. The idea of extending that poor language was a non-starter. Until a better mapfile syntax became available, which seemed unlikely in 2008, the solution could not involve extentions to the mapfile syntax. Instead, we cooked up the idea (hack) of augmenting mapfiles with stylized comments that would carry the necessary information. A typical definition might look like: # DATA(i386) __iob 0x3c0 # DATA(amd64,sparcv9) __iob 0xa00 # DATA(sparc) __iob 0x140 iob; A further problem then became clear: If we can't extend the mapfile syntax, then there's no good way to extend ld with an option to produce stub objects, and to validate them against the real objects. The idea of having ld read comments in a mapfile and parse them for content is an unacceptable hack. The entire point of comments is that they are strictly for the human reader, and explicitly ignored by the tool. Taking all of these speed bumps into account, I made a new plan: A perl script reads the mapfiles, generates some small C glue code to produce empty functions and data definitions, compiles and links the stub object from the generated glue code, and then deletes the generated glue code. Another perl script used after both objects have been built, to compare the real and stub objects, using data from elfdump, and validate that they present the same linking interface. By June 2008, I had written the above, and generated a stub object for libc. It was a useful prototype process to go through, and it allowed me to explore the ideas at a deep level. Ultimately though, the result was unsatisfactory as a basis for real product. There were so many issues: The use of stylized comments were fine for a prototype, but not close to professional enough for shipping product. The idea of having to document and support it was a large concern. The ideal solution for stub objects really does involve having the link-editor accept the same arguments used to build the real object, augmented with a single extra command line option. Any other solution, such as our prototype script, will require makefiles to be modified in deeper ways to support building stubs, and so, will raise barriers to converting existing code. A validation script that rederives what the linker knew when it built an object will always be at a disadvantage relative to the actual linker that did the work. A stub object should be identifyable as such. In the prototype, there was no tag or other metadata that would let you know that they weren't real objects. Being able to identify a stub object in this way means that the file command can tell you what it is, and that the runtime linker can refuse to try and run a program that loads one. At that point, we needed to apply this prototype to building Solaris. As you might imagine, the task of modifying all the makefiles in the core Solaris code base in order to do this is a massive task, and not something you'd enter into lightly. The quality of the prototype just wasn't good enough to justify that sort of time commitment, so I tabled the project, putting it on my list of long term things to think about, and moved on to other work. It would sit there for a couple of years. Semi-coincidentally, one of the projects I tacked after that was to create a new mapfile syntax for the Solaris link-editor. We had wanted to do something about the old mapfile syntax for many years. Others before me had done some paper designs, and a great deal of thought had already gone into the features it should, and should not have, but for various reasons things had never moved beyond the idea stage. When I joined Sun in late 2005, I got involved in reviewing those things and thinking about the problem. Now in 2008, fresh from relearning for the Nth time why the old mapfile syntax was a huge impediment to linker progress, it seemed like the right time to tackle the mapfile issue. Paving the way for proper stub object support was not the driving force behind that effort, but I certainly had them in mind as I moved forward. The new mapfile syntax, which we call version 2, integrated into Nevada build snv_135 in in February 2010: 6916788 ld version 2 mapfile syntax PSARC/2009/688 Human readable and extensible ld mapfile syntax In order to prove that the new mapfile syntax was adequate for general purpose use, I had also done an overhaul of the ON consolidation to convert all mapfiles to use the new syntax, and put checks in place that would ensure that no use of the old syntax would creep back in. That work went back into snv_144 in June 2010: 6916796 OSnet mapfiles should use version 2 link-editor syntax That was a big putback, modifying 517 files, adding 18 new files, and removing 110 old ones. I would have done this putback anyway, as the work was already done, and the benefits of human readable syntax are obvious. However, among the justifications listed in CR 6916796 was this We anticipate adding additional features to the new mapfile language that will be applicable to ON, and which will require all sharable object mapfiles to use the new syntax. I never explained what those additional features were, and no one asked. It was premature to say so, but this was a reference to stub objects. By that point, I had already put together a working prototype link-editor with the necessary support for stub objects. I was pleased to find that building stubs was indeed very fast. On my desktop system (Ultra 24), an amd64 stub for libc can can be built in a fraction of a second: % ptime ld -64 -z stub -o stubs/libc.so.1 -G -hlibc.so.1 \ -ztext -zdefs -Bdirect ... real 0.019708910 user 0.010101680 sys 0.008528431 In order to go from prototype to integrated link-editor feature, I knew that I would need to prove that stub objects were valuable. And to do that, I knew that I'd have to switch the Solaris ON consolidation to use stub objects and evaluate the outcome. And in order to do that experiment, ON would first need to be converted to version 2 mapfiles. Sub-mission accomplished. Normally when you design a new feature, you can devise reasonably small tests to show it works, and then deploy it incrementally, letting it prove its value as it goes. The entire point of stub objects however was to demonstrate that they could be successfully applied to an extremely large and complex code base, and specifically to solve the Solaris build issues detailed above. There was no way to finesse the matter — in order to move ahead, I would have to successfully use stub objects to build the entire ON consolidation and demonstrate their value. In software, the need to boil the ocean can often be a warning sign that things are trending in the wrong direction. Conversely, sometimes progress demands that you build something large and new all at once. A big win, or a big loss — sometimes all you can do is try it and see what happens. And so, I spent some time staring at ON makefiles trying to get a handle on how things work, and how they'd have to change. It's a big and messy world, full of complex interactions, unspecified dependencies, special cases, and knowledge of arcane makefile features... ...and so, I backed away, put it down for a few months and did other work... ...until the fall, when I felt like it was time to stop thinking and pondering (some would say stalling) and get on with it. Without stubs, the following gives a simplified high level view of how Solaris is built: An initially empty directory known as the proto, and referenced via the ROOT makefile macro is established to receive the files that make up the Solaris distribution. A top level setup rule creates the proto area, and performs operations needed to initialize the workspace so that the main build operations can be launched, such as copying needed header files into the proto area. Parallel builds are launched to build the kernel (usr/src/uts), libraries (usr/src/lib), and commands. The install makefile target builds each item and delivers a copy to the proto area. All libraries and executables link against the objects previously installed in the proto, implying the need to synchronize the order in which things are built. Subsequent passes run lint, and do packaging. Given this structure, the additions to use stub objects are: A new second proto area is established, known as the stub proto and referenced via the STUBROOT makefile macro. The stub proto has the same structure as the real proto, but is used to hold stub objects. All files in the real proto are delivered as part of the Solaris product. In contrast, the stub proto is used to build the product, and then thrown away. A new target is added to library Makefiles called stub. This rule builds the stub objects. The ld command is designed so that you can build a stub object using the same ld command line you'd use to build the real object, with the addition of a single -z stub option. This means that the makefile rules for building the stub objects are very similar to those used to build the real objects, and many existing makefile definitions can be shared between them. A new target is added to the Makefiles called stubinstall which delivers the stub objects built by the stub rule into the stub proto. These rules reuse much of existing plumbing used by the existing install rule. The setup rule runs stubinstall over the entire lib subtree as part of its initialization. All libraries and executables link against the objects in the stub proto rather than the main proto, and can therefore be built in parallel without any synchronization. There was no small way to try this that would yield meaningful results. I would have to take a leap of faith and edit approximately 1850 makefiles and 300 mapfiles first, trusting that it would all work out. Once the editing was done, I'd type make and see what happened. This took about 6 weeks to do, and there were many dark days when I'd question the entire project, or struggle to understand some of the many twisted and complex situations I'd uncover in the makefiles. I even found a couple of new issues that required changes to the new stub object related code I'd added to ld. With a substantial amount of encouragement and help from some key people in the Solaris group, I eventually got the editing done and stub objects for the entire workspace built. I found that my desktop system could build all the stub objects in the workspace in roughly a minute. This was great news, as it meant that use of the feature is effectively free — no one was likely to notice or care about the cost of building them. After another week of typing make, fixing whatever failed, and doing it again, I succeeded in getting a complete build! The next step was to remove all of the make rules and .WAIT statements dedicated to controlling the order in which libraries under usr/src/lib are built. This came together pretty quickly, and after a few more speed bumps, I had a workspace that built cleanly and looked like something you might actually be able to integrate someday. This was a significant milestone, but there was still much left to do. I turned to doing full nightly builds. Every type of build (open, closed, OpenSolaris, export, domestic) had to be tried. Each type failed in a new and unique way, requiring some thinking and rework. As things came together, I became aware of things that could have been done better, simpler, or cleaner, and those things also required some rethinking, the seeking of wisdom from others, and some rework. After another couple of weeks, it was in close to final form. My focus turned towards the end game and integration. This was a huge workspace, and needed to go back soon, before changes in the gate would made merging increasingly difficult. At this point, I knew that the stub objects had greatly simplified the makefile logic and uncovered a number of race conditions, some of which had been there for years. I assumed that the builds were faster too, so I did some builds intended to quantify the speedup in build time that resulted from this approach. It had never occurred to me that there might not be one. And so, I was very surprised to find that the wall clock build times for a stock ON workspace were essentially identical to the times for my stub library enabled version! This is why it is important to always measure, and not just to assume. One can tell from first principles, based on all those removed dependency rules in the library makefile, that the stub object version of ON gives dmake considerably more opportunities to overlap library construction. Some hypothesis were proposed, and shot down: Could we have disabled dmakes parallel feature? No, a quick check showed things being build in parallel. It was suggested that we might be I/O bound, and so, the threads would be mostly idle. That's a plausible explanation, but system stats didn't really support it. Plus, the timing between the stub and non-stub cases were just too suspiciously identical. Are our machines already handling as much parallelism as they are capable of, and unable to exploit these additional opportunities? Once again, we didn't see the evidence to back this up. Eventually, a more plausible and obvious reason emerged: We build the libraries and commands (usr/src/lib, usr/src/cmd) in parallel with the kernel (usr/src/uts). The kernel is the long leg in that race, and so, wall clock measurements of build time are essentially showing how long it takes to build uts. Although it would have been nice to post a huge speedup immediately, we can take solace in knowing that stub objects simplify the makefiles and reduce the possibility of race conditions. The next step in reducing build time should be to find ways to reduce or overlap the uts part of the builds. When that leg of the build becomes shorter, then the increased parallelism in the libs and commands will pay additional dividends. Until then, we'll just have to settle for simpler and more robust. And so, I integrated the link-editor support for creating stub objects into snv_153 (November 2010) with 6993877 ld should produce stub objects PSARC/2010/397 ELF Stub Objects followed by the work to convert the ON consolidation in snv_161 (February 2011) with 7009826 OSnet should use stub objects 4631488 lib/Makefile is too patient: .WAITs should be reduced This was a huge putback, with 2108 modified files, 8 new files, and 2 removed files. Due to the size, I was allowed a window after snv_160 closed in which to do the putback. It went pretty smoothly for something this big, a few more preexisting race conditions would be discovered and addressed over the next few weeks, and things have been quiet since then. Conclusions and Looking Forward Solaris has been built with stub objects since February. The fact that developers no longer specify the order in which libraries are built has been a big success, and we've eliminated an entire class of build error. That's not to say that there are no build races left in the ON makefiles, but we've taken a substantial bite out of the problem while generally simplifying and improving things. The introduction of a stub proto area has also opened some interesting new possibilities for other build improvements. As this article has become quite long, and as those uses do not involve stub objects, I will defer that discussion to a future article.

    Read the article

  • Oracle Open World starts on Sunday, Sept 30

    - by Mike Dietrich
    Oracle Open World 2012 starts on Sunday this week - and we are really looking forward to see you in one of our presentations, especially theDatabase Upgrade on SteriodsReal Speed, Real Customers, Real Secretson Monday, Oct 1, 12:15pm in Moscone South 307(just skip the lunch - the boxed food is not healthy at all): Monday, Oct 1, 12:15 PM - 1:15 PM - Moscone South - 307 Database Upgrade on Steroids:Real Speed, Real Customers, Real Secrets Mike Dietrich - Consulting Member Technical Staff, Oracle Georg Winkens - Technical Manager, Amadeus Data Processing Carol Tagliaferri - Senior Development Manager, Oracle  Looking to improve the performance of your database upgrade and learn about other ways to reduce upgrade time? Isn’t everyone? In this session, you will learn directly from Oracle’s Upgrade Development team about what you can do to speed things up. Find out about ways to reduce upgrade downtime such as using a transient logical standby database and/or Oracle GoldenGate, and get other hints and tips. Learn about new features that improve upgrade performance and reduce downtime. Hear Georg Winkens, DB Services technical manager from Amadeus, speak about his upgrade experience, and get real-life performance measurements and advice for a successful upgrade. . And don't forget: we already start on Sunday so if you'd like to learn about the SAP database upgrades at Deutsche Messe: Sunday, Sep 30, 11:15 AM - 12:00 PM - Moscone West - 2001Oracle Database Upgrade to 11g Release 2 with SAP Applications Andreas Ellerhoff - DBA, Deutsche Messe AG Mike Dietrich - Consulting Member Technical Staff, Oracle Jan Klokkers - Sr.Director SAP Development, Oracle Deutsche Messe began to use Oracle6 Database at the end of the 1980s and has been using Oracle Database technology together with SAP applications successfully since 2002. At the end of 2010, it took the first steps of an upgrade to Oracle Database 11g Release 2 (11.2), and since mid-2011, all SAP production systems there run successfully with Oracle Database 11g. This presentation explains why Deutsche Messe uses Oracle Database together with SAP applications, discusses the many reasons for the upgrade to Release 11g, and focuses on the operational top aspects from a DBA perspective. . And unfortunately the Hands-On-Lab is sold out already ... We would like to apologize but we have absolutely ZERO influence on either the number of runs or the number of available seats.  Tuesday, Oct 2, 10:15 AM - 12:45 PM - Marriott Marquis - Salon 12/13 Hands On Lab:Upgrading an Oracle Database Instance, Using Best Practices Roy Swonger - Senior Director, Software Development, Oracle Carol Tagliaferri - Senior Development Manager, Oracle Mike Dietrich - Consulting Member Technical Staff, Oracle Cindy Lim - PMTS, Oracle Carol Palmer - Principal Product Manager, Oracle This hands-on lab gives participants the opportunity to work through a database upgrade from an older release of Oracle Database to the very latest Oracle Database release available. Participants will learn how the improved automation of the upgrade process and the generation of fix-up scripts can quickly help fix database issues prior to upgrading. The lab also uses the new parallel upgrade feature to improve performance of the upgrade, resulting in less downtime. Come get inside information about database upgrades from the Database Upgrade development team. . See you soon

    Read the article

  • A New Threat To Web Applications: Connection String Parameter Pollution (CSPP)

    - by eric.maurice
    Hi, this is Shaomin Wang. I am a security analyst in Oracle's Security Alerts Group. My primary responsibility is to evaluate the security vulnerabilities reported externally by security researchers on Oracle Fusion Middleware and to ensure timely resolution through the Critical Patch Update. Today, I am going to talk about a serious type of attack: Connection String Parameter Pollution (CSPP). Earlier this year, at the Black Hat DC 2010 Conference, two Spanish security researchers, Jose Palazon and Chema Alonso, unveiled a new class of security vulnerabilities, which target insecure dynamic connections between web applications and databases. The attack called Connection String Parameter Pollution (CSPP) exploits specifically the semicolon delimited database connection strings that are constructed dynamically based on the user inputs from web applications. CSPP, if carried out successfully, can be used to steal user identities and hijack web credentials. CSPP is a high risk attack because of the relative ease with which it can be carried out (low access complexity) and the potential results it can have (high impact). In today's blog, we are going to first look at what connection strings are and then review the different ways connection string injections can be leveraged by malicious hackers. We will then discuss how CSPP differs from traditional connection string injection, and the measures organizations can take to prevent this kind of attacks. In web applications, a connection string is a set of values that specifies information to connect to backend data repositories, in most cases, databases. The connection string is passed to a provider or driver to initiate a connection. Vendors or manufacturers write their own providers for different databases. Since there are many different providers and each provider has multiple ways to make a connection, there are many different ways to write a connection string. Here are some examples of connection strings from Oracle Data Provider for .Net/ODP.Net: Oracle Data Provider for .Net / ODP.Net; Manufacturer: Oracle; Type: .NET Framework Class Library: - Using TNS Data Source = orcl; User ID = myUsername; Password = myPassword; - Using integrated security Data Source = orcl; Integrated Security = SSPI; - Using the Easy Connect Naming Method Data Source = username/password@//myserver:1521/my.server.com - Specifying Pooling parameters Data Source=myOracleDB; User Id=myUsername; Password=myPassword; Min Pool Size=10; Connection Lifetime=120; Connection Timeout=60; Incr Pool Size=5; Decr Pool Size=2; There are many variations of the connection strings, but the majority of connection strings are key value pairs delimited by semicolons. Attacks on connection strings are not new (see for example, this SANS White Paper on Securing SQL Connection String). Connection strings are vulnerable to injection attacks when dynamic string concatenation is used to build connection strings based on user input. When the user input is not validated or filtered, and malicious text or characters are not properly escaped, an attacker can potentially access sensitive data or resources. For a number of years now, vendors, including Oracle, have created connection string builder class tools to help developers generate valid connection strings and potentially prevent this kind of vulnerability. Unfortunately, not all application developers use these utilities because they are not aware of the danger posed by this kind of attacks. So how are Connection String parameter Pollution (CSPP) attacks different from traditional Connection String Injection attacks? First, let's look at what parameter pollution attacks are. Parameter pollution is a technique, which typically involves appending repeating parameters to the request strings to attack the receiving end. Much of the public attention around parameter pollution was initiated as a result of a presentation on HTTP Parameter Pollution attacks by Stefano Di Paola and Luca Carettoni delivered at the 2009 Appsec OWASP Conference in Poland. In HTTP Parameter Pollution attacks, an attacker submits additional parameters in HTTP GET/POST to a web application, and if these parameters have the same name as an existing parameter, the web application may react in different ways depends on how the web application and web server deal with multiple parameters with the same name. When applied to connections strings, the rule for the majority of database providers is the "last one wins" algorithm. If a KEYWORD=VALUE pair occurs more than once in the connection string, the value associated with the LAST occurrence is used. This opens the door to some serious attacks. By way of example, in a web application, a user enters username and password; a subsequent connection string is generated to connect to the back end database. Data Source = myDataSource; Initial Catalog = db; Integrated Security = no; User ID = myUsername; Password = XXX; In the password field, if the attacker enters "xxx; Integrated Security = true", the connection string becomes, Data Source = myDataSource; Initial Catalog = db; Integrated Security = no; User ID = myUsername; Password = XXX; Intergrated Security = true; Under the "last one wins" principle, the web application will then try to connect to the database using the operating system account under which the application is running to bypass normal authentication. CSPP poses serious risks for unprepared organizations. It can be particularly dangerous if an Enterprise Systems Management web front-end is compromised, because attackers can then gain access to control panels to configure databases, systems accounts, etc. Fortunately, organizations can take steps to prevent this kind of attacks. CSPP falls into the Injection category of attacks like Cross Site Scripting or SQL Injection, which are made possible when inputs from users are not properly escaped or sanitized. Escaping is a technique used to ensure that characters (mostly from user inputs) are treated as data, not as characters, that is relevant to the interpreter's parser. Software developers need to become aware of the danger of these attacks and learn about the defenses mechanism they need to introduce in their code. As well, software vendors need to provide templates or classes to facilitate coding and eliminate developers' guesswork for protecting against such vulnerabilities. Oracle has introduced the OracleConnectionStringBuilder class in Oracle Data Provider for .NET. Using this class, developers can employ a configuration file to provide the connection string and/or dynamically set the values through key/value pairs. It makes creating connection strings less error-prone and easier to manager, and ultimately using the OracleConnectionStringBuilder class provides better security against injection into connection strings. For More Information: - The OracleConnectionStringBuilder is located at http://download.oracle.com/docs/cd/B28359_01/win.111/b28375/OracleConnectionStringBuilderClass.htm - Oracle has developed a publicly available course on preventing SQL Injections. The Server Technologies Curriculum course "Defending Against SQL Injection Attacks!" is located at http://st-curriculum.oracle.com/tutorial/SQLInjection/index.htm - The OWASP web site also provides a number of useful resources. It is located at http://www.owasp.org/index.php/Main_Page

    Read the article

  • Windows Azure Virtual Machine Readiness and Capacity Assessment for SQL Server

    - by SQLOS Team
    Windows Azure Virtual Machine Readiness and Capacity Assessment for Windows Server Machine Running SQL Server With the release of MAP Toolkit 8.0 Beta, we have added a new scenario to assess your Windows Azure Virtual Machine Readiness. The MAP 8.0 Beta performs a comprehensive assessment of Windows Servers running SQL Server to determine you level of readiness to migrate an on-premise physical or virtual machine to Windows Azure Virtual Machines. The MAP Toolkit then offers suggested changes to prepare the machines for migration, such as upgrading the operating system or SQL Server. MAP Toolkit 8.0 Beta is available for download here Your participation and feedback is very important to make the MAP Toolkit work better for you. We encourage you to participate in the beta program and provide your feedback at [email protected] or through one of our surveys. Now, let’s walk through the MAP Toolkit task for completing the Windows Azure Virtual Machine assessment and capacity planning. The tasks include the following: Perform an inventory View the Windows Azure VM Readiness results and report Collect performance data for determine VM sizing View the Windows Azure Capacity results and report Perform an inventory: 1. To perform an inventory against a single machine or across a complete environment, choose Perform an Inventory to launch the Inventory and Assessment Wizard as shown below: 2. After the Inventory and Assessment Wizard launches, select either the Windows computers or SQL Server scenario to inventory Windows machines. HINT: If you don’t care about completely inventorying a machine, just select the SQL Server scenario. Click Next to Continue. 3. On the Discovery Methods page, select how you want to discover computers and then click Next to continue. Description of Discovery Methods: Use Active Directory Domain Services -- This method allows you to query a domain controller via the Lightweight Directory Access Protocol (LDAP) and select computers in all or specific domains, containers, or OUs. Use this method if all computers and devices are in AD DS. Windows networking protocols --  This method uses the WIN32 LAN Manager application programming interfaces to query the Computer Browser service for computers in workgroups and Windows NT 4.0–based domains. If the computers on the network are not joined to an Active Directory domain, use only the Windows networking protocols option to find computers. System Center Configuration Manager (SCCM) -- This method enables you to inventory computers managed by System Center Configuration Manager (SCCM). You need to provide credentials to the System Center Configuration Manager server in order to inventory the managed computers. When you select this option, the MAP Toolkit will query SCCM for a list of computers and then MAP will connect to these computers. Scan an IP address range -- This method allows you to specify the starting address and ending address of an IP address range. The wizard will then scan all IP addresses in the range and inventory only those computers. Note: This option can perform poorly, if many IP addresses aren’t being used within the range. Manually enter computer names and credentials -- Use this method if you want to inventory a small number of specific computers. Import computer names from a files -- Using this method, you can create a text file with a list of computer names that will be inventoried. 4. On the All Computers Credentials page, enter the accounts that have administrator rights to connect to the discovered machines. This does not need to a domain account, but needs to be a local administrator. I have entered my domain account that is an administrator on my local machine. Click Next after one or more accounts have been added. NOTE: The MAP Toolkit primarily uses Windows Management Instrumentation (WMI) to collect hardware, device, and software information from the remote computers. In order for the MAP Toolkit to successfully connect and inventory computers in your environment, you have to configure your machines to inventory through WMI and also allow your firewall to enable remote access through WMI. The MAP Toolkit also requires remote registry access for certain assessments. In addition to enabling WMI, you need accounts with administrative privileges to access desktops and servers in your environment. 5. On the Credentials Order page, select the order in which want the MAP Toolkit to connect to the machine and SQL Server. Generally just accept the defaults and click Next. 6. On the Enter Computers Manually page, click Create to pull up at dialog to enter one or more computer names. 7. On the Summary page confirm your settings and then click Finish. After clicking Finish the inventory process will start, as shown below: Windows Azure Readiness results and report After the inventory progress has completed, you can review the results under the Database scenario. On the tile, you will see the number of Windows Server machine with SQL Server that were analyzed, the number of machines that are ready to move without changes and the number of machines that require further changes. If you click this Azure VM Readiness tile, you will see additional details and can generate the Windows Azure VM Readiness Report. After the report is generated, select View | Saved Reports and Proposals to view the location of the report. Open up WindowsAzureVMReadiness* report in Excel. On the Windows tab, you can see the results of the assessment. This report has a column for the Operating System and SQL Server assessment and provides a recommendation on how to resolve, if there a component is not supported. Collect Performance Data Launch the Performance Wizard to collect performance information for the Windows Server machines that you would like the MAP Toolkit to suggest a Windows Azure VM size for. Windows Azure Capacity results and report After the performance metrics are collected, the Azure VM Capacity title will display the number of Virtual Machine sizes that are suggested for the Windows Server and Linux machines that were analyzed. You can then click on the Azure VM Capacity tile to see the capacity details and generate the Windows Azure VM Capacity Report. Within this report, you can view the performance data that was collected and the Virtual Machine sizes.   MAP Toolkit 8.0 Beta is available for download here Your participation and feedback is very important to make the MAP Toolkit work better for you. We encourage you to participate in the beta program and provide your feedback at [email protected] or through one of our surveys. Useful References: Windows Azure Homepage How to guides for Windows Azure Virtual Machines Provisioning a SQL Server Virtual Machine on Windows Azure Windows Azure Pricing     Peter Saddow Senior Program Manager – MAP Toolkit Team

    Read the article

  • Oracle Exadata Resource Kit available

    - by javier.puerta(at)oracle.com
    To learn more about how easy it is to achieve extreme database application performance, we now invite you to access the Oracle Exadata Resource Kit, featuring: The Oracle Exadata Launch Webcast with Mark Hurd, President, Oracle IDC's report on how Oracle Exadata exceeds expectations A technical overview of Oracle Exadata Database Machine Customer case studies, videos, podcasts, and more Don't miss this chance to learn how Oracle Exadata provides extreme performance by combining data warehousing and online transaction processing applications in a single machine. Access the Oracle Exadata Resource Kit today.

    Read the article

  • I have an apache process that takes 98% CPU. How can I find what apache call it runs?

    - by Nir
    As you can see below, a single Apache process hangs and takes large amount of CPU resources. How can I find what http call this apache process runs? PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 12554 www-data 20 0 776m 285m 199m R 97 3.7 67:15.84 apache2 14580 www-data 20 0 748m 372m 314m S 4 4.8 0:13.60 apache2 12561 www-data 20 0 784m 416m 322m S 3 5.4 0:58.10 apache2 12592 www-data 20 0 785m 427m 332m S 2 5.6 0:57.06 apache2

    Read the article

  • How one decision can turn web services to hell

    - by DigiMortal
    In this posting I will show you how one stupid decision may turn developers life to hell. There is a project where bunch of complex applications exchange data frequently and it is very hard to change something without additional expenses. Well, one analyst thought that string is silver bullet of web services. Read what happened. Bad bad mistake In the early stages of integration project there was analyst who also established architecture and technical design for web services. There was one very bad mistake this analyst made: All data must be converted to strings before exchange! Yes, that’s correct, this was the requirement. All integers, decimals and dates are coming in and going out as strings. There was also explanation for this requirement: This way we can avoid data type conversion errors! Well, this guy works somewhere else already and I hope he works in some burger restaurant – far away from computers. Consequences If you first look at this requirement it may seem like little annoying piece of crap you can easily survive. But let’s see the real consequences one stupid decision can cause: hell load of data conversions are done by receiving applications and SSIS packages, SSIS packages are not error prone and they depend heavily on strings they get from different services, there are more than one format per type that is used in different services, for larger amounts of data all these conversion tasks slow down the work of integration packages, practically all developers have been in hurry with some SSIS import tasks and some fields that are not used in different calculations in SSAS cube are imported without data conversions (by example, some prices are strings in format “1.021 $”). The most painful problem for developers is the part of data conversions because they don’t expect that there is such a stupid requirement stated and therefore they are not able to estimate the time their tasks take on these web services. Also developers must be prepared for cases when suddenly some service sends data that is not in acceptable format and they must solve the problems ASAP. This puts unexpected load on developers and they are not very happy with it because they can’t understand why they have to live with this horror if it is possible to fix. What to do if you see something like this? Well, explain the problem to customer and demand special tasks to project schedule to get this mess solved before going on with new developments. It is cheaper to solve the problems now that later.

    Read the article

  • ETPM Environment Health Monitoring Tools

    - by Paula Speranza-Hadley
    This post is to provide some useful information about the tools typically used by Oracle ETPM implementations for performance tuning and analysis.   This includes tools to monitor and gather performance information and statistics on the Database, Application Server, and Client (browser).  Enterprise Monitoring Tools Oracle Enterprise Manager - OEM Grid Control comes with a comprehensive set of performance and health metrics that allow monitoring of key components in your environment such as applications, application servers, databases, as well as the back-end components on which they rely, such as hosts, operating systems and storage. Tools for the Database Oracle Diagnostics Pack Automatic Workload Repository (AWR)  - this tool gets statistics from memory abut the Time Model or DB Time, Wait Events, Active Session History and High Load SWL queries Automatic Database Diagnostic Monitor (ADDM) - This self-diagnostic software is built into the database.  It examines and analyzes data captured in AWR to dertermine possible performance issues.  It locates the root cause of the issue, provides recommendations for correcting the issues and qualifies the expected benefit. Oracle Database Tuning Pack SQL Tuning Advisor - This enables you to submit one or more SQL statements as input and receive output in the form of specific advice or recommendations on how to tune statements.  The recommendation relates to collection of statistics on objects, creation on new indexes and restructuring of SQL statements. SQL Access Advisor - This enables you to optimize data access paths of SQL queries by recommending a proper set of materialized views, indexes and partitions for a given SQL workload. Tools for the Application Server Weblogic Console - is a web-based, user interface used to configure and control a set of WebLogic servers or clusters (i.e. a "domain").  In any logical group of WebLogic servers there must exist one admin server, which hosts the WebLogic Admin console application and manages the associated configuratoin files. WebLogic Administrators will use the Administration Console for a number of tasks, including: Starting and stopping WebLogic servers or entire clusters. Configuring server parameters, security, database connections and deployed applications. Viewing server status, health and metrics. Yourkit for Profiling - helps analyze synchronization issues, including: Which threads were calling wait(), and for how long Which threads were blocked on attempt to acquire a monitor held by another thread (synchronized methods/blocks), and for how long Tools for the Client Fiddler - allows you to inspect traffic logs, debug and set breakpoints. Firebug – allows you to inspect and edit HTML, monitor network activity and debug JavaScript

    Read the article

  • Database Security Events in April

    - by Troy Kitch
    Wed, Apr 18, Executive Oracle Database Security Round Table - Tampa, FL Tue, Apr 24, ISC(2) Leadership Regional Event Series - San Diego, CA April 24 - May 17,  Independent Oracle Users Group Enterprise Data at Risk Seminar Series Tue, Apr 24 IOUG Enterprise Data at Risk Seminar Series - Toronto Wed, Apr 25 IOUG Enterprise Data at Risk Seminar Series - New York Thu, Apr 26 IOUG Enterprise Data at Risk Seminar Series - Boston Thu, Apr 26 ISC(2) Leadership Regional Event Series - San Jose, CA

    Read the article

  • Altering a Column Which has a Default Constraint

    - by Dinesh Asanka
    Setting up a default column is a common task for  developers.  But, are we naming those default constraints explicitly? In the below  table creation, for the column, sys_DateTime the default value Getdate() will be allocated. CREATE TABLE SampleTable (ID int identity(1,1), Sys_DateTime Datetime DEFAULT getdate() ) We can check the relevant information from the system catalogs from following query. SELECT sc.name TableName, dc.name DefaultName, dc.definition, OBJECT_NAME(dc.parent_object_id) TableName, dc.is_system_named  FROM sys.default_constraints dc INNER JOIN sys.columns sc ON dc.parent_object_id = sc.object_id AND dc.parent_column_id = sc.column_id and results would be: Most of the above columns are self-explanatory. The last column, is_system_named, is to identify whether the default name was given by the system. As you know, in the above case, since we didn’t provide  any default name, the  system will generate a default name for you. But the problem with these names is that they can differ from environment to environment.  If example if I create this table in different table the default name could be DF__SampleTab__Sys_D__7E6CC920 Now let us create another default and explicitly name it: CREATE TABLE SampleTable2 (ID int identity(1,1), Sys_DateTime Datetime )   ALTER TABLE SampleTable2 ADD CONSTRAINT DF_sys_DateTime_Getdate DEFAULT( Getdate()) FOR Sys_DateTime If we run the previous query again we will be returned the below output. And you can see that last created default name has 0 for is_system_named. Now let us say I want to change the data type of the sys_DateTime column to something else: ALTER TABLE SampleTable2 ALTER COLUMN Sys_DateTime Date This will generate the below error: Msg 5074, Level 16, State 1, Line 1 The object ‘DF_sys_DateTime_Getdate’ is dependent on column ‘Sys_DateTime’. Msg 4922, Level 16, State 9, Line 1 ALTER TABLE ALTER COLUMN Sys_DateTime failed because one or more objects access this column. This means, you need to drop the default constraint before altering it: ALTER TABLE [dbo].[SampleTable2] DROP CONSTRAINT [DF_sys_DateTime_Getdate] ALTER TABLE SampleTable2 ALTER COLUMN Sys_DateTime Date   ALTER TABLE [dbo].[SampleTable2] ADD CONSTRAINT [DF_sys_DateTime_Getdate] DEFAULT (getdate()) FOR [Sys_DateTime] If you have a system named default constraint that can differ from environment to environment and so you cannot drop it as before, you can use the below code template: DECLARE @defaultname VARCHAR(255) DECLARE @executesql VARCHAR(1000)   SELECT @defaultname = dc.name FROM sys.default_constraints dc INNER JOIN sys.columns sc ON dc.parent_object_id = sc.object_id AND dc.parent_column_id = sc.column_id WHERE OBJECT_NAME (parent_object_id) = 'SampleTable' AND sc.name ='Sys_DateTime' SET @executesql = 'ALTER TABLE SampleTable DROP CONSTRAINT ' + @defaultname EXEC( @executesql) ALTER TABLE SampleTable ALTER COLUMN Sys_DateTime Date ALTER TABLE [dbo].[SampleTable] ADD DEFAULT (Getdate()) FOR [Sys_DateTime]

    Read the article

  • Das T5-4 TPC-H Ergebnis naeher betrachtet

    - by Stefan Hinker
    Inzwischen haben vermutlich viele das neue TPC-H Ergebnis der SPARC T5-4 gesehen, das am 7. Juni bei der TPC eingereicht wurde.  Die wesentlichen Punkte dieses Benchmarks wurden wie gewohnt bereits von unserer Benchmark-Truppe auf  "BestPerf" zusammengefasst.  Es gibt aber noch einiges mehr, das eine naehere Betrachtung lohnt. Skalierbarkeit Das TPC raet von einem Vergleich von TPC-H Ergebnissen in unterschiedlichen Groessenklassen ab.  Aber auch innerhalb der 3000GB-Klasse ist es interessant: SPARC T4-4 mit 4 CPUs (32 Cores mit 3.0 GHz) liefert 205,792 QphH. SPARC T5-4 mit 4 CPUs (64 Cores mit 3.6 GHz) liefert 409,721 QphH. Das heisst, es fehlen lediglich 1863 QphH oder 0.45% zu 100% Skalierbarkeit, wenn man davon ausgeht, dass die doppelte Anzahl Kerne das doppelte Ergebnis liefern sollte.  Etwas anspruchsvoller, koennte man natuerlich auch einen Faktor von 2.4 erwarten, wenn man die hoehere Taktrate mit beruecksichtigt.  Das wuerde die Latte auf 493901 QphH legen.  Dann waere die SPARC T5-4 bei 83%.  Damit stellt sich die Frage: Was hat hier nicht skaliert?  Vermutlich der Plattenspeicher!  Auch hier lohnt sich eine naehere Betrachtung: Plattenspeicher Im Bericht auf BestPerf und auch im Full Disclosure Report der TPC stehen einige interessante Details zum Plattenspeicher und der Konfiguration.   In der Konfiguration der SPARC T4-4 wurden 12 2540-M2 Arrays verwendet, die jeweils ca. 1.5 GB/s Durchsatz liefert, insgesamt also eta 18 GB/s.  Dabei waren die Arrays offensichtlich mit jeweils 2 Kabeln pro Array direkt an die 24 8GBit FC-Ports des Servers angeschlossen.  Mit den 2x 8GBit Ports pro Array koennte man so ein theoretisches Maximum von 2GB/s erreichen.  Tatsaechlich wurden 1.5GB/s geliefert, was so ziemlich dem realistischen Maximum entsprechen duerfte. Fuer den Lauf mit der SPARC T5-4 wurden doppelt so viele Platten verwendet.  Dafuer wurden die 2540-M2 Arrays mit je einem zusaetzlichen Plattentray erweitert.  Mit dieser Konfiguration wurde dann (laut BestPerf) ein Maximaldurchsatz von 33 GB/s erreicht - nicht ganz das doppelte des SPARC T4-4 Laufs.  Um tatsaechlich den doppelten Durchsatz (36 GB/s) zu liefern, haette jedes der 12 Arrays 3 GB/s ueber seine 4 8GBit Ports liefern muessen.  Im FDR stehen nur 12 dual-port FC HBAs, was die Verwendung der Brocade FC Switches erklaert: Es wurden alle 4 8GBit ports jedes Arrays an die Switches angeschlossen, die die Datenstroeme dann in die 24 16GBit HBA ports des Servers buendelten.  Das theoretische Maximum jedes Storage-Arrays waere nun 4 GB/s.  Wenn man jedoch den Protokoll- und "Realitaets"-Overhead mit einrechnet, sind die tatsaechlich gelieferten 2.75 GB/s gar nicht schlecht.  Mit diesen Zahlen im Hinterkopf ist die Verdopplung des SPARC T4-4 Ergebnisses eine gute Leistung - und gleichzeitig eine gute Erklaerung, warum nicht bis zum 2.4-fachen skaliert wurde. Nebenbei bemerkt: Weder die SPARC T4-4 noch die SPARC T5-4 hatten in der gemessenen Konfiguration irgendwelche Flash-Devices. Mitbewerb Seit die T4 Systeme auf dem Markt sind, bemuehen sich unsere Mitbewerber redlich darum, ueberall den Eindruck zu hinterlassen, die Leistung des SPARC CPU-Kerns waere weiterhin mangelhaft.  Auch scheinen sie ueberzeugt zu sein, dass (ueber)grosse Caches und hohe Taktraten die einzigen Schluessel zu echter Server Performance seien.  Wenn ich mir nun jedoch die oeffentlichen TPC-H Ergebnisse ansehe, sehe ich dies: TPC-H @3000GB, Non-Clustered Systems System QphH SPARC T5-4 3.6 GHz SPARC T5 4/64 – 2048 GB 409,721.8 SPARC T4-4 3.0 GHz SPARC T4 4/32 – 1024 GB 205,792.0 IBM Power 780 4.1 GHz POWER7 8/32 – 1024 GB 192,001.1 HP ProLiant DL980 G7 2.27 GHz Intel Xeon X7560 8/64 – 512 GB 162,601.7 Kurz zusammengefasst: Mit 32 Kernen (mit 3 GHz und 4MB L3 Cache), liefert die SPARC T4-4 mehr QphH@3000GB ab als IBM mit ihrer 32 Kern Power7 (bei 4.1 GHz und 32MB L3 Cache) und auch mehr als HP mit einem 64 Kern Intel Xeon System (2.27 GHz und 24MB L3 Cache).  Ich frage mich, wo genau SPARC hier mangelhaft ist? Nun koennte man natuerlich argumentieren, dass beide Ergebnisse nicht gerade neu sind.  Nun, in Ermangelung neuerer Ergebnisse kann man ja mal ein wenig spekulieren: IBMs aktueller Performance Report listet die o.g. IBM Power 780 mit einem rPerf Wert von 425.5.  Ein passendes Nachfolgesystem mit Power7+ CPUs waere die Power 780+ mit 64 Kernen, verfuegbar mit 3.72 GHz.  Sie wird mit einem rPerf Wert von  690.1 angegeben, also 1.62x mehr.  Wenn man also annimmt, dass Plattenspeicher nicht der limitierende Faktor ist (IBM hat mit 177 SSDs getestet, sie duerfen das gerne auf 400 erhoehen) und IBMs eigene Leistungsabschaetzung zugrunde legt, darf man ein theoretisches Ergebnis von 311398 QphH@3000GB erwarten.  Das waere dann allerdings immer noch weit von dem Ergebnis der SPARC T5-4 entfernt, und gerade in der von IBM so geschaetzen "per core" Metric noch weniger vorteilhaft. In der x86-Welt sieht es nicht besser aus.  Leider gibt es von Intel keine so praktischen rPerf-Tabellen.  Daher muss ich hier fuer eine Schaetzung auf SPECint_rate2006 zurueckgreifen.  (Ich bin kein grosser Fan von solchen Kreuz- und Querschaetzungen.  Insb. SPECcpu ist nicht besonders geeignet, um Datenbank-Leistung abzuschaetzen, da fast kein IO im Spiel ist.)  Das o.g. HP System wird bei SPEC mit 1580 CINT2006_rate gelistet.  Das bis einschl. 2013-06-14 beste Resultat fuer den neuen Intel Xeon E7-4870 mit 8 CPUs ist 2180 CINT2006_rate.  Das ist immerhin 1.38x besser.  (Wenn man nur die Taktrate beruecksichtigen wuerde, waere man bei 1.32x.)  Hier weiter zu rechnen, ist muessig, aber fuer die ungeduldigen Leser hier eine kleine tabellarische Zusammenfassung: TPC-H @3000GB Performance Spekulationen System QphH* Verbesserung gegenueber der frueheren Generation SPARC T4-4 32 cores SPARC T4 205,792 2x SPARC T5-464 cores SPARC T5 409,721 IBM Power 780 32 cores Power7 192,001 1.62x IBM Power 780+ 64 cores Power7+  311,398* HP ProLiant DL980 G764 cores Intel Xeon X7560 162,601 1.38x HP ProLiant DL980 G780 cores Intel Xeon E7-4870    224,348* * Keine echten Resultate  - spekulative Werte auf der Grundlage von rPerf (Power7+) oder SPECint_rate2006 (HP) Natuerlich sind IBM oder HP herzlich eingeladen, diese Werte zu widerlegen.  Aber stand heute warte ich noch auf aktuelle Benchmark Veroffentlichungen in diesem Datensegment. Was koennen wir also zusammenfassen? Es gibt einige Hinweise, dass der Plattenspeicher der begrenzende Faktor war, der die SPARC T5-4 daran hinderte, auf jenseits von 2x zu skalieren Der Mythos, dass SPARC Kerne keine Leistung bringen, ist genau das - ein Mythos.  Wie sieht es umgekehrt eigentlich mit einem TPC-H Ergebnis fuer die Power7+ aus? Cache ist nicht der magische Performance-Schalter, fuer den ihn manche Leute offenbar halten. Ein System, eine CPU-Architektur und ein Betriebsystem jenseits einer gewissen Grenze zu skalieren ist schwer.  In der x86-Welt scheint es noch ein wenig schwerer zu sein. Was fehlt?  Nun, das Thema Preis/Leistung ueberlasse ich gerne den Verkaeufern ;-) Und zu guter Letzt: Nein, ich habe mich nicht ins Marketing versetzen lassen.  Aber manchmal kann ich mich einfach nicht zurueckhalten... Disclosure Statements The views expressed on this blog are my own and do not necessarily reflect the views of Oracle. TPC-H, QphH, $/QphH are trademarks of Transaction Processing Performance Council (TPC). For more information, see www.tpc.org, results as of 6/7/13. Prices are in USD. SPARC T5-4 409,721.8 QphH@3000GB, $3.94/QphH@3000GB, available 9/24/13, 4 processors, 64 cores, 512 threads; SPARC T4-4 205,792.0 QphH@3000GB, $4.10/QphH@3000GB, available 5/31/12, 4 processors, 32 cores, 256 threads; IBM Power 780 QphH@3000GB, 192,001.1 QphH@3000GB, $6.37/QphH@3000GB, available 11/30/11, 8 processors, 32 cores, 128 threads; HP ProLiant DL980 G7 162,601.7 QphH@3000GB, $2.68/QphH@3000GB available 10/13/10, 8 processors, 64 cores, 128 threads. SPEC and the benchmark names SPECfp and SPECint are registered trademarks of the Standard Performance Evaluation Corporation. Results as of June 18, 2013 from www.spec.org. HP ProLiant DL980 G7 (2.27 GHz, Intel Xeon X7560): 1580 SPECint_rate2006; HP ProLiant DL980 G7 (2.4 GHz, Intel Xeon E7-4870): 2180 SPECint_rate2006,

    Read the article

  • Hype and LINQ

    - by Tony Davis
    "Tired of querying in antiquated SQL?" I blinked in astonishment when I saw this headline on the LinqPad site. Warming to its theme, the site suggests that what we need is to "kiss goodbye to SSMS", and instead use LINQ, a modern query language! Elsewhere, there is an article entitled "Why LINQ beats SQL". The designers of LINQ, along with many DBAs, would, I'm sure, cringe with embarrassment at the suggestion that LINQ and SQL are, in any sense, competitive ways of doing the same thing. In fact what LINQ really is, at last, is an efficient, declarative language for C# and VB programmers to access or manipulate data in objects, local data stores, ORMs, web services, data repositories, and, yes, even relational databases. The fact is that LINQ is essentially declarative programming in a .NET language, and so in many ways encourages developers into a "SQL-like" mindset, even though they are not directly writing SQL. In place of imperative logic and loops, it uses various expressions, operators and declarative logic to build up an "expression tree" describing only what data is required, not the operations to be performed to get it. This expression tree is then parsed by the language compiler, and the result, when used against a relational database, is a SQL string that, while perhaps not always perfect, is often correctly parameterized and certainly no less "optimal" than what is achieved when a developer applies blunt, imperative logic to the SQL language. From a developer standpoint, it is a mistake to consider LINQ simply as a substitute means of querying SQL Server. The strength of LINQ is that that can be used to access any data source, for which a LINQ provider exists. Microsoft supplies built-in providers to access not just SQL Server, but also XML documents, .NET objects, ADO.NET datasets, and Entity Framework elements. LINQ-to-Objects is particularly interesting in that it allows a declarative means to access and manipulate arrays, collections and so on. Furthermore, as Michael Sorens points out in his excellent article on LINQ, there a whole host of third-party LINQ providers, that offers a simple way to get at data in Excel, Google, Flickr and much more, without having to learn a new interface or language. Of course, the need to be generic enough to deal with a range of data sources, from something as mundane as a text file to as esoteric as a relational database, means that LINQ is a compromise and so has inherent limitations. However, it is a powerful and beautifully compact language and one that, at least in its "query syntax" guise, is accessible to developers and DBAs alike. Perhaps there is still hope that LINQ can fulfill Phil Factor's lobster-induced fantasy of a language that will allow us to "treat all data objects, whether Word files, Excel files, XML, relational databases, text files, HTML files, registry files, LDAPs, Outlook and so on, in the same logical way, as linked databases, and extract the metadata, create the entities and relationships in the same way, and use the same SQL syntax to interrogate, create, read, write and update them." Cheers, Tony.

    Read the article

  • Developing Mobile Applications: Web, Native, or Hybrid?

    - by Michelle Kimihira
    Authors: Joe Huang, Senior Principal Product Manager, Oracle Mobile Application Development Framework  and Carlos Chang, Senior Principal Product Director The proliferation of mobile devices and platforms represents a game-changing technology shift on a number of levels. Companies must decide not only the best strategic use of mobile platforms, but also how to most efficiently implement them. Inevitably, this conversation devolves to the developers, who face the task of developing and supporting mobile applications—not a simple task in light of the number of devices and platforms. Essentially, developers can choose from the following three different application approaches, each with its own set of pros and cons. Native Applications: This refers to apps built for and installed on a specific platform, such as iOS or Android, using a platform-specific software development kit (SDK).  For example, apps for Apple’s iPhone and iPad are designed to run specifically on iOS and are written in Xcode/Objective-C. Android has its own variation of Java, Windows uses C#, and so on.  Native apps written for one platform cannot be deployed on another. Native apps offer fast performance and access to native-device services but require additional resources to develop and maintain each platform, which can be expensive and time consuming. Mobile Web Applications: Unlike native apps, mobile web apps are not installed on the device; rather, they are accessed via a Web browser.  These are server-side applications that render HTML, typically adjusting the design depending on the type of device making the request.  There are no program coding constraints for writing server-side apps—they can be written in Java, C, PHP, etc., it doesn’t matter.  Instead, the server detects what type of mobile browser is pinging the server and adjusts accordingly. For example, it can deliver fully JavaScript and CSS-enabled content to smartphone browsers, while downgrading gracefully to basic HTML for feature phone browsers. Mobile apps work across platforms, but are limited to what you can do through a browser and require Internet connectivity. For certain types of applications, these constraints may not be an issue. Oracle supports mobile web applications via ADF Faces (for tablets) and ADF Mobile browser (Trinidad) for smartphone and feature phones. Hybrid Applications: As the name implies, hybrid apps combine technologies from native and mobile Web apps to gain the benefits each. For example, these apps are installed on a device, like their pure native app counterparts, while the user interface (UI) is based on HTML5.  This UI runs locally within the native container, which usually leverages the device’s browser engine.  The advantage of using HTML5 is a consistent, cross-platform UI that works well on most devices.  Combining this with the native container, which is installed on-device, provides mobile users with access to local device services, such as camera, GPS, and local device storage.  Native apps may offer greater flexibility in integrating with device native services.  However, since hybrid applications already provide device integrations that typical enterprise applications need, this is typically less of an issue.  The new Oracle ADF Mobile release is an HTML5 and Java hybrid framework that targets mobile app development to iOS and Android from one code base. So, Which is the Best Approach? The short answer is – the best choice depends on the type of application you are developing.  For instance, animation-intensive apps such as games would favor native apps, while hybrid applications may be better suited for enterprise mobile apps because they provide multi-platform support. Just for starters, the following issues must be considered when choosing a development path. Application Complexity: How complex is the application? A quick app that accesses a database or Web service for some data to display?  You can keep it simple, and a mobile Web app may suffice. However, for a mobile/field worker type of applications that supports mission critical functionality, hybrid or native applications are typically needed. Richness of User Interactivity: What type of user experience is required for the application?  Mobile browser-based app that’s optimized for mobile UI may suffice for quick lookup or productivity type of applications.  However, hybrid/native application would typically be required to deliver highly interactive user experiences needed for field-worker type of applications.  For example, interactive BI charts/graphs, maps, voice/email integration, etc.  In the most extreme case like gaming applications, native applications may be necessary to deliver the highly animated and graphically intensive user experience. Performance: What type of performance is required by the application functionality?  For instance, for real-time look up of data over the network, mobile app performance depends on network latency and server infrastructure capabilities.  If consistent performance is required, data would typically need to be cached, which is supported on hybrid or native applications only. Connectivity and Availability: What sort of connectivity will your application require? Does the app require Web access all the time in order to always retrieve the latest data from the server? Or do the requirements dictate offline support? While native and hybrid apps can be built to operate offline, Web mobile apps require Web connectivity. Multi-platform Requirements: The terms “consumerization of IT” and BYOD (bring your own device) effectively mean that the line between the consumer and the enterprise devices have become blurred. Employees are bringing their personal mobile devices to work and are often expecting that they work in the corporate network and access back-office applications.  Even if companies restrict access to the big dogs: (iPad, iPhone, Android phones and tablets, possibly Windows Phone and tablets), trying to support each platform natively will require increasing resources and domain expertise with each new language/platform. And let’s not forget the maintenance costs, involved in upgrading new versions of each platform.   Where multi-platform support is needed, Web mobile or hybrid apps probably have the advantage. Going native, and trying to support multiple operating systems may be cost prohibitive with existing resources and developer skills. Device-Services Access:  If your app needs to access local device services, such as the camera, contacts app, accelerometer, etc., then your choices are limited to native or hybrid applications.   Fragmentation: Apple controls Apple iOS and the only concern is what version iOS is running on any given device.   Not so Android, which is open source. There are many, many versions and variants of Android running on different devices, which can be a nightmare for app developers trying to support different devices running different flavors of Android.  (Is it an Amazon Kindle Fire? a Samsung Galaxy?  A Barnes & Noble Nook?) This is a nightmare scenario for native apps—on the other hand, a mobile Web or hybrid app, when properly designed, can shield you from these complexities because they are based on common frameworks.  Resources: How many developers can you dedicate to building and supporting mobile application development?  What are their existing skills sets?  If you’re considering native application development due to the complexity of the application under development, factor the costs of becoming proficient on a each platform’s OS and programming language. Add another platform, and that’s another language, another SDK. On the other side of the equation, Web mobile or hybrid applications are simpler to make, and readily support more platforms, but there may be performance trade-offs. Conclusion This only scratches the surface. However, I hope to have suggested some food for thought in choosing your mobile development strategy.  Do your due diligence, search the Web, read up on mobile, talk to peers, attend events. The development team at Oracle is working hard on mobile technologies to help customers extend enterprise applications to mobile faster and effectively.  To learn more on what Oracle has to offer, check out the Oracle ADF Mobile (hybrid) and ADF Faces/ADF Mobile browser (Web Mobile) solutions from Oracle.   Additional Information Blog: ADF Blog Product Information on OTN: ADF Mobile Product Information on Oracle.com: Oracle Fusion Middleware Follow us on Twitter and Facebook Subscribe to our regular Fusion Middleware Newsletter

    Read the article

  • Azure Diagnostics: The Bad, The Ugly, and a Better Way

    - by jasont
    If you’re a .Net web developer today, no doubt you’ve enjoyed watching Windows Azure grow up over the past couple of years. The platform has scaled, stabilized (mostly), and added on a slew of great (and sometimes overdue) features. What was once just an endpoint to host a solution, developers today have tremendous flexibility and options in the platform. Organizations are building new solutions and offerings on the platform, and others have, or are in the process of, migrating existing applications out of their own data centers into the Azure cloud. Whether new application development or migrating legacy, every development shop and IT organization needs to monitor their applications in the cloud, the same as they do on premises. Azure Diagnostics has some capabilities, but what I constantly hear from users is that it’s either (a) not enough, or (b) too cumbersome to set up. Today, Stackify is happy to announce that we fully support Azure deployments, just the same as your on-premises deployments. Let’s take a look below and compare and contrast the options. Azure Diagnostics Let’s crack open the Windows Azure documentation on Azure Diagnostics and see just how easy it is to use. The high level steps are:   Step 1: Import the Diagnostics Oh, I’ve already deployed my app without the diagnostics module. Guess I can’t do anything until I do this and re-deploy. Step 2: Configure the Diagnostics (and multiple sub-steps) Do I want it all? Or just pieces of it? Whoops, forgot to include a specific performance counter, I guess I’ll have to deploy again. Wait a minute… I have to specifically code these performance counters into my role’s OnStart() method, compile and deploy again? And query and consume it myself? Step 3: (Optional) Permanently store diagnostic data Lucky for me, Azure storage has gotten pretty cheap. But how often should I move the data into storage? I want to see real-time data, so I guess that’s out now as well. Step 4: (Optional) View stored diagnostic data Optional? Of course I want to see it. Conveniently, Microsoft recommends 3 tools to do this with. Un-conveniently, none of these are web based and they all just give you access to raw data, and very little charting or real-time intelligence. Just….. data. Nevermind that one product seems to have gotten stale since a recent acquisition, and doesn’t even have screenshots!   So, let’s summarize: lots of diagnostics data is available, but think realistically. Think Dev Ops. What happens when you are in the middle of a major production performance issue and you don’t have the diagnostics you need? You are redeploying an application (and thankfully you have a great branching strategy, so you feel perfectly safe just willy-nilly launching code into prod, don’t you?) to get data, then shipping it to storage, and then digging through that data to find a needle in a haystack. Would you like to be able to troubleshoot a performance issue in the middle of the night, or on a weekend, from your iPad or home computer’s web browser? Forget it: the best you get is this spark line in the Azure portal. If it’s real pointy, you probably have an issue; but since there is no alert based on a threshold your customers have likely already let you know. And high CPU, Memory, I/O, or Network doesn’t tell you anything about where the problem is. The Better Way – Stackify Stackify supports application and server monitoring in real time, all through a great web interface. All of the things that Azure Diagnostics provides, Stackify provides for your on-premises deployments, and you don’t need to know ahead of time that you’ll need it. It’s always there, it’s always on. Azure deployments are essentially no different than on-premises. It’s a Windows Server (or Linux) in the cloud. It’s behind a different firewall than your corporate servers. That’s it. Stackify can provide the same powerful tools to your Azure deployments in two simple steps. Step 1 Add a startup task to your web or worker role and deploy. If you can’t deploy and need it right now, no worries! Remote Desktop to the Azure instance and you can execute a Powershell script to download / install Stackify.   Step 2 Log in to your account at www.stackify.com and begin monitoring as much as you want, as often as you want and see the results instantly. WMI? It’s there Event Viewer? You’ve got it. File System Access? Yes, please! Would love to make sure my web.config is correct.   IIS / App Pool Info? Yep. You can even restart it. Running Services? All of them. Start and Stop them to your heart’s content. SQL Database access? You bet’cha. Alerts and Notification? Of course! You should know before your customers let you know. … and so much more.   Conclusion Microsoft has shown, consistently, that they love developers, developers, developers. What every developer needs to realize from this is that they’ve given you a canvas, which is exactly what Azure is. It’s great infrastructure that is readily available, easy to manage, and fairly cost effective. However, the tooling is your responsibility. What you get, at best, is bare bones. App and server diagnostics should be available when you need them. While we, as developers, try to plan for and think of everything ahead of time, there will come times where we need to get data that just isn’t available. And having to go through a lot of cumbersome steps to get that data, and then have to find a friendlier way to consume it…. well, that just doesn’t make a lot of sense to me. I’d rather spend my time writing and developing features and completing bug fixes for my applications, than to be writing code to monitor and diagnose.

    Read the article

  • PHP may be executing as a "privileged" group and user, which could be a serious security vulnerability

    - by Martin
    I ran some security tests on a Ubuntu 12.04 Server, and I've got these warnings : PHP may be executing as a "privileged" group, which could be a serious security vulnerability. PHP may be executing as a "privileged" user, which could be a serious security vulnerability. In /etc/apache2/envvars, I have this: export APACHE_RUN_USER=www-data export APACHE_RUN_GROUP=www-data And all files in /var/www are having these user/group: www-data:www-data Am I setting this correctly? What should I do to fix this problem?

    Read the article

  • Is it OK to remove appmenu-gtk and install appmenu-gtk:i386?

    - by medigeek
    I wanted to eliminate some skype errors and by installing the appmenu-gtk:i386 package the errors were gone! $ skype /usr/lib/gtk-2.0/2.10.0/menuproxies/libappmenu.so: wrong ELF class: ELFCLASS64 (skype:2841): Gtk-WARNING **: Failed to load type module: /usr/lib/gtk-2.0/2.10.0/menuproxies/libappmenu.so /usr/lib/gtk-2.0/2.10.0/menuproxies/libappmenu.so: wrong ELF class: ELFCLASS64 (skype:2841): Gtk-WARNING **: Failed to load type module: /usr/lib/gtk-2.0/2.10.0/menuproxies/libappmenu.so /usr/lib/gtk-2.0/2.10.0/menuproxies/libappmenu.so: wrong ELF class: ELFCLASS64 (skype:2841): Gtk-WARNING **: Failed to load type module: /usr/lib/gtk-2.0/2.10.0/menuproxies/libappmenu.so /usr/lib/gtk-2.0/2.10.0/menuproxies/libappmenu.so: wrong ELF class: ELFCLASS64 (skype:2841): Gtk-WARNING **: Failed to load type module: /usr/lib/gtk-2.0/2.10.0/menuproxies/libappmenu.so The change was easy: sudo apt-get install appmenu-gtk:i386 I haven't noticed any "weird" outcome (yet). The good thing was that it cleared the skype errors. But I have my doubts. Has anyone tried something similar? Removing appmenu-gtk and installing appmenu-gtk:i386 on a 64-bit system? Could it break any applications? Similar question: Resolving dependencies related to 32 bit libraries on 64 bit

    Read the article

  • Precompiling LINQ Queries

    Did you know that by precompiling LINQ queries you might actually be degrading your app’s performance if you’re not careful? Julie Lerman explains how to ensure you’re not re-precompiling queries each time and losing the expected performance benefits across post-backs, short-lived service operations and other code where critical instances are going out of scope.

    Read the article

  • Is it important for reflection-based serialization maintain consistent field ordering?

    - by Matchlighter
    I just finished writing a packet builder that dynamically loads data into a data stream for eventual network transmission. Each builder operates by finding fields in a given class (and its superclasses) that are marked with a @data annotation. When I finishing my implementation, I remembered that getFields() does not return results in any specific order. Should reflection-based methods for serializing arbitrary data (like my packets) attempt to preserve a specific field ordering (such as alphabetical), and if so, how?

    Read the article

  • Restore Gene : Automating SQL Server Database Restores

    Restore Gene is a simple 2-script framework, one PowerShell script and one SQL stored procedure, which will speed up the production of restore scripts for manual disaster recovery, as well help automate log shipping. FREE eBook – "45 Database Performance Tips for Developers"Improve your database performance with 45 tips from SQL Server MVPs and industry experts. Get the eBook here.

    Read the article

  • Characteristics of a Web service that promote reusability and change

    Characteristics of a Web service that promote reusability and change:  Standardized Data Exchange Formats (XML, JSON) Standardized communication protocols (Soap, Rest) Promotes Loosely Coupled Systems  Standardized Data Exchange Formats (XML, JSON) XML W3.org defines Extensible Markup Language (XML) as a simplistic text format derived from SGML. XML was designed to solve challenges found in large-scale electronic publishing. In addition,  XML is playing an important role in the exchange of data primarily focusing on data exchange on the web. JSON JavaScript Object Notation (JSON) is a human-readable text-based standard designed for data interchange. This format is used for serializing and transmitting data over a network connection in a structured format. The primary use of JSON is to transmit data between a server and web application. JSON is an alternative to XML. Standardized communication protocols (Soap, Rest) Soap W3Scools.com defines SOAP as a simple XML-based protocol. This protocol lets applications exchange data over HTTP.  SOAP provides a way to communicate between applications running on different operating systems, with different technologies and programming languages. Rest In 2007, Stefan Tilkov defines Representational State Transfer (REST) as a set of principles that outlines how Web standards are supposed to be used.  Using REST in an application will ensure that it exploits the Web’s architecture to its benefit. Promotes Loosely Coupled Systems “Loose coupling as an approach to interconnecting the components in a system or network so that those components, also called elements, depend on each other to the least extent practicable. Coupling refers to the degree of direct knowledge that one element has of another.” (TechTarget.com, 2007) “Loosely coupled system can be easily broken down into definable elements. The extent of coupling in a system can be measured by mapping the maximum number of element changes that can occur without adverse effects. Examples of such changes include adding elements, removing elements, renaming elements, reconfiguring elements, modifying internal element characteristics and rearranging the way in which elements are interconnected.” (TechTarget.com, 2007) References: W3C. (2011). Extensible Markup Language (XML). Retrieved from W3.org: http://www.w3.org/XML/ W3Scools.com. (2011). SOAP Introduction. Retrieved from W3Scools.com: http://www.w3schools.com/soap/soap_intro.asp Tilkov, Stefan. (2007). A Brief Introduction to REST. Retrieved from Infoq.com: http://www.infoq.com/articles/rest-introduction TechTarget.com. (2011). loose coupling. Retrieved from TechTarget.com: http://searchnetworking.techtarget.com/definition/loose-coupling

    Read the article

  • Idera SQL Doctor 3.0 and MS SQL Changes

    New features worth mentioning in SQL doctor 3.0 begin with a new server dashboard that not only gives a comprehensive overview of a SQL Server instance's current health, but also several key details to help database administrators. Some of the details include recommendations on how to optimize server configuration, how to fix certain security issues, and how to get rid of performance bottlenecks. The latest version of SQL doctor also supplies users with key server information. The status of system parameters known to affect SQL Server performance, such as processes, disk partitions, cache, m...

    Read the article

  • Replacement of Outlooksoft (SAP BPC) with Oracle EPM at Brady Corporation

    Nigel Youell, Product Marketing Director, Enterprise Performance Management Applications at Oracle discusses with Joe Bittorf, Project Manager at Brady Corporation why and how they embarked on this major project to replace SAP BPC with Oracle's Enterprise Performance Management Solution. Joe covers the outstanding improvements they have achieved in their financial close process, how they worked with Oracle Partner Emerging Solutions and the current project to further improve their planning and budgeting processes.

    Read the article

< Previous Page | 821 822 823 824 825 826 827 828 829 830 831 832  | Next Page >