Search Results

Search found 4320 results on 173 pages for 'vertex arrays'.

Page 98/173 | < Previous Page | 94 95 96 97 98 99 100 101 102 103 104 105  | Next Page >

  • How can I perform an idiomatic non-recursive flatten in ruby?

    - by nasmorn
    I have a method that returns an array of arrays. For convenience I use collect on a collection to gather them together. arr = collection.collect {|item| item.get_array_of_arrays} Now I would like to have a single array that contains all the arrays. Of course I can loop over the array and use the + operator to do that. newarr = [] arr.each {|item| newarr += item} But this is kind of ugly, is there a better way?

    Read the article

  • Symfony 1.4: Storing an array in session with SetAttribute

    - by Tom
    Hi, I'm wondering if someone knows how to store an array into a user session? This is the method to store a single attribute: $this->getUser()->setAttribute('something', $something); And the documentation says: "User attributes can store any type of data (strings, arrays, and associative arrays)" ... but doesn't say anything more. The API documentation doesn't have a "SetAttributes" or something similarly obvious. Thank you.

    Read the article

  • C# Array or Dictionary?

    - by Valentin
    Hi. I wanted to know is C# array has a constant access speed? I need to store 1000 items in static array, that will be initialized during server startup. This array will be used readonly, so there will be no changes to array. Should I use a simple C# array (new MyClass[]) or Dictionary instead. I am really new to C# and trying to understand how C# arrays access works. Can they be compared to c++ arrays by speed?

    Read the article

  • C vs. C++ for performance in memory allocation

    - by Andrei
    Hi, I am planning to participate in development of a code written in C language for Monte Carlo analysis of complex problems. This codes allocates huge data arrays in memory to speed up its performance, therefore the author of the code has chosen C instead of C++ claiming that one can make faster and more reliable (concerning memory leaks) code with C. Do you agree with that? What would be your choice, if you need to store 4-16 Gb of data arrays in memory during calculation?

    Read the article

  • Java copyOf method problem with an Array of Objects

    - by Greg
    elementData = Arrays.copyOf(elementData, newCapacity); Gives error: "The method copyOf(Object[], int) is undefined for the type Arrays" This was not a problem on my home computer, but at my school's it gives the error above. I'm guessing it's running an older JRE version - any workaround? Thanks

    Read the article

  • GC generation 3 appearing in windbg

    - by Johnv2020
    I've a dump file of a process I'm running (trying to find a memory leak) One thing I've noticed is that when I dump the bigger objects via !do windbg tells me that they are GC generation 3 ?? All of these are byte arrays so when I look at all the byte arrays in the dump I can see GC generations 0, 1, 2 & 3. Could someone explain whats going on here as I thought there was only 3 generations of GC.

    Read the article

  • Possible ways of representing data in memory (.net)

    - by This is it
    Hi What are the possible ways of representing data in memory in .Net (or in general)? It would be great if data could be sorted and looked up by key (or multiple keys). We are thinking to use collections, arrays, list of collections/arrays. One object would be in several collections (one sorted asc, other desc, etc.). Maybe this is not a good idea, and we would like to hear some other possible solutions. Thank you

    Read the article

  • Can PHP and Oracle pass complex types to each other?

    - by RenderIn
    I want to pass/bind an array of (key1, key2) to an Oracle PL/SQL stored procedure using PHP. I'm able to bind primitive types and arrays of primitive types, but haven't found a way to pass complex datatypes back and forth. Is this unsupported? So far I've been having to pass along multiple arrays -- one for each subtype in my complex type -- and then depend on their indexes to reconstitute them in the procedure.

    Read the article

  • Why use one dimensional array instead of a two dimensional arrray?

    - by user3869145
    I was doing some work handling a lot of information and my partner told me that I was using too many matrices to manipulate the variables of the problem. The idea was to use one dimension arrays int a[] instead of the 2 dimensional arrays int b[][], to save memory and processing speed of the algorithm. How certain is that this change will accelerate the speed of execution or compilation of my code in c ++?

    Read the article

  • Problem calling linux C code from FIQ handler

    - by fastmonkeywheels
    I'm working on an armv6 core and have an FIQ hander that works great when I do all of my work in it. However I need to branch to some additional code that's too large for the FIQ memory area. The FIQ handler gets copied from fiq_start to fiq_end to 0xFFFF001C when registered static void test_fiq_handler(void) { asm volatile("\ .global fiq_start\n\ fiq_start:"); // clear gpio irq asm("ldr r10, GPIO_BASE_ISR"); asm("ldr r9, [r10]"); asm("orr r9, #0x04"); asm("str r9, [r10]"); // clear force register asm("ldr r10, AVIC_BASE_INTFRCH"); asm("ldr r9, [r10]"); asm("mov r9, #0"); asm("str r9, [r10]"); // prepare branch register asm(" ldr r11, fiq_handler"); // save all registers, build sp and branch to C asm(" adr r9, regpool"); asm(" stmia r9, {r0 - r8, r14}"); asm(" adr sp, fiq_sp"); asm(" ldr sp, [sp]"); asm(" add lr, pc,#4"); asm(" mov pc, r11"); #if 0 asm("ldr r10, IOMUX_ADDR12"); asm("ldr r9, [r10]"); asm("orr r9, #0x08 @ top/vertex LED"); asm("str r9,[r10] @turn on LED"); asm("bic r9, #0x08 @ top/vertex LED"); asm("str r9,[r10] @turn on LED"); #endif asm(" adr r9, regpool"); asm(" ldmia r9, {r0 - r8, r14}"); // return asm("subs pc, r14, #4"); asm("IOMUX_ADDR12: .word 0xFC2A4000"); asm("AVIC_BASE_INTCNTL: .word 0xFC400000"); asm("AVIC_BASE_INTENNUM: .word 0xFC400008"); asm("AVIC_BASE_INTDISNUM: .word 0xFC40000C"); asm("AVIC_BASE_FIVECSR: .word 0xFC400044"); asm("AVIC_BASE_INTFRCH: .word 0xFC400050"); asm("GPIO_BASE_ISR: .word 0xFC2CC018"); asm(".globl fiq_handler"); asm("fiq_sp: .long fiq_stack+120"); asm("fiq_handler: .long 0"); asm("regpool: .space 40"); asm(".pool"); asm(".align 5"); asm("fiq_stack: .space 124"); asm(".global fiq_end"); asm("fiq_end:"); } fiq_hander gets set to the following function: static void fiq_flip_pins(void) { asm("ldr r10, IOMUX_ADDR12_k"); asm("ldr r9, [r10]"); asm("orr r9, #0x08 @ top/vertex LED"); asm("str r9,[r10] @turn on LED"); asm("bic r9, #0x08 @ top/vertex LED"); asm("str r9,[r10] @turn on LED"); asm("IOMUX_ADDR12_k: .word 0xFC2A4000"); } EXPORT_SYMBOL(fiq_flip_pins); I know that since the FIQ handler operates outside of any normal kernel API's and that it is a rather high priority interrupt I must ensure that whatever I call is already swapped into memory. I do this by having the fiq_flip_pins function defined in the monolithic kernel and not as a module which gets vmalloc. If I don't branch to the fiq_flip_pins function, and instead do the work in the test_fiq_handler function everything works as expected. It's the branching that's causing me problems at the moment. Right after branching I get a kernel panic about a paging request. I don't understand why I'm getting the paging request. fiq_flip_pins is in the kernel at: c00307ec t fiq_flip_pins Unable to handle kernel paging request at virtual address 736e6f63 pgd = c3dd0000 [736e6f63] *pgd=00000000 Internal error: Oops: 5 [#1] PREEMPT Modules linked in: hello_1 CPU: 0 Not tainted (2.6.31-207-g7286c01-svn4 #122) PC is at strnlen+0x10/0x28 LR is at string+0x38/0xcc pc : [<c016b004>] lr : [<c016c754>] psr: a00001d3 sp : c3817ea0 ip : 736e6f63 fp : 00000400 r10: c03cab5c r9 : c0339ae0 r8 : 736e6f63 r7 : c03caf5c r6 : c03cab6b r5 : ffffffff r4 : 00000000 r3 : 00000004 r2 : 00000000 r1 : ffffffff r0 : 736e6f63 Flags: NzCv IRQs off FIQs off Mode SVC_32 ISA ARM Segment user Control: 00c5387d Table: 83dd0008 DAC: 00000015 Process sh (pid: 1663, stack limit = 0xc3816268) Stack: (0xc3817ea0 to 0xc3818000) Since there are no API calls in my code I have to assume that something is going wrong in the C call and back. Any help solving this is appreciated.

    Read the article

  • creating a 3d plane using Frank Luna's technique

    - by numerical25
    I am creating a 3d plane that lays on the x and z axis. and has hills that extend on the y axis. bulk of the code looks like this float PeaksAndValleys::getHeight(float x, float z)const { return 0.3f*( z*sinf(0.1f*x) + x*cosf(0.1f*z) ); } void PeaksAndValleys::init(ID3D10Device* device, DWORD m, DWORD n, float dx) { md3dDevice = device; mNumRows = m; mNumCols = n; mNumVertices = m*n; mNumFaces = (m-1)*(n-1)*2; // Create the geometry and fill the vertex buffer. std::vector<Vertex> vertices(mNumVertices); float halfWidth = (n-1)*dx*0.5f; float halfDepth = (m-1)*dx*0.5f; for(DWORD i = 0; i < m; ++i) { float z = halfDepth - i*dx; for(DWORD j = 0; j < n; ++j) { float x = -halfWidth + j*dx; // Graph of this function looks like a mountain range. float y = getHeight(x,z); vertices[i*n+j].pos = D3DXVECTOR3(x, y, z); // Color the vertex based on its height. if( y < -10.0f ) vertices[i*n+j].color = BEACH_SAND; else if( y < 5.0f ) vertices[i*n+j].color = LIGHT_YELLOW_GREEN; else if( y < 12.0f ) vertices[i*n+j].color = DARK_YELLOW_GREEN; else if( y < 20.0f ) vertices[i*n+j].color = DARKBROWN; else vertices[i*n+j].color = WHITE; } } D3D10_BUFFER_DESC vbd; vbd.Usage = D3D10_USAGE_IMMUTABLE; vbd.ByteWidth = sizeof(Vertex) * mNumVertices; vbd.BindFlags = D3D10_BIND_VERTEX_BUFFER; vbd.CPUAccessFlags = 0; vbd.MiscFlags = 0; D3D10_SUBRESOURCE_DATA vinitData; vinitData.pSysMem = &vertices[0]; HR(md3dDevice->CreateBuffer(&vbd, &vinitData, &mVB)); // Create the index buffer. The index buffer is fixed, so we only // need to create and set once. std::vector<DWORD> indices(mNumFaces*3); // 3 indices per face // Iterate over each quad and compute indices. int k = 0; for(DWORD i = 0; i < m-1; ++i) { for(DWORD j = 0; j < n-1; ++j) { indices[k] = i*n+j; indices[k+1] = i*n+j+1; indices[k+2] = (i+1)*n+j; indices[k+3] = (i+1)*n+j; indices[k+4] = i*n+j+1; indices[k+5] = (i+1)*n+j+1; k += 6; // next quad } } D3D10_BUFFER_DESC ibd; ibd.Usage = D3D10_USAGE_IMMUTABLE; ibd.ByteWidth = sizeof(DWORD) * mNumFaces*3; ibd.BindFlags = D3D10_BIND_INDEX_BUFFER; ibd.CPUAccessFlags = 0; ibd.MiscFlags = 0; D3D10_SUBRESOURCE_DATA iinitData; iinitData.pSysMem = &indices[0]; HR(md3dDevice->CreateBuffer(&ibd, &iinitData, &mIB)); } My question pretains to the cosf and sinf. I am formiluar with trigonometry and I understand sin, cosine, and tangent. but I am not formiluar with cosf and sinf and what they do. From looking at this example. they have alot to do with finding a y value.

    Read the article

  • What is the relaxation condition in graph theory

    - by windopal
    Hi, I'm trying to understand the main concepts of graph theory and the algorithms within it. Most algorithms seem to contain a "Relaxation Condition" I'm unsure about what this is. Could some one explain it to me please. An example of this is dijkstras algorithm, here is the pseudo-code. 1 function Dijkstra(Graph, source): 2 for each vertex v in Graph: // Initializations 3 dist[v] := infinity // Unknown distance function from source to v 4 previous[v] := undefined // Previous node in optimal path from source 5 dist[source] := 0 // Distance from source to source 6 Q := the set of all nodes in Graph // All nodes in the graph are unoptimized - thus are in Q 7 while Q is not empty: // The main loop 8 u := vertex in Q with smallest dist[] 9 if dist[u] = infinity: 10 break // all remaining vertices are inaccessible from source 11 remove u from Q 12 for each neighbor v of u: // where v has not yet been removed from Q. 13 alt := dist[u] + dist_between(u, v) 14 if alt < dist[v]: // Relax (u,v,a) 15 dist[v] := alt 16 previous[v] := u 17 return dist[] Thanks

    Read the article

  • OpenGL basics: calling glDrawElements once per object

    - by Bethor
    Hi all, continuing on from my explorations of the basics of OpenGL (see this question), I'm trying to figure out the basic principles of drawing a scene with OpenGL. I am trying to render a simple cube repeated n times in every direction. My method appears to yield terrible performance : 1000 cubes brings performance below 50fps (on a QuadroFX 1800, roughly a GeForce 9600GT). My method for drawing these cubes is as follows: done once: set up a vertex buffer and array buffer containing my cube vertices in model space set up an array buffer indexing the cube for drawing as 12 triangles done for each frame: update uniform values used by the vertex shader to move all cubes at once done for each cube, for each frame: update uniform values used by the vertex shader to move each cube to its position call glDrawElements to draw the positioned cube Is this a sane method ? If not, how does one go about something like this ? I'm guessing I need to minimize calls to glUniform, glDrawElements, or both, but I'm not sure how to do that. Full code for my little test : (depends on gletools and pyglet) I'm aware that my init code (at least) is really ugly; I'm concerned with the rendering code for each frame right now, I'll move to something a little less insane for the creation of the vertex buffers and such later on. import pyglet from pyglet.gl import * from pyglet.window import key from numpy import deg2rad, tan from gletools import ShaderProgram, FragmentShader, VertexShader, GeometryShader vertexData = [-0.5, -0.5, -0.5, 1.0, -0.5, 0.5, -0.5, 1.0, 0.5, -0.5, -0.5, 1.0, 0.5, 0.5, -0.5, 1.0, -0.5, -0.5, 0.5, 1.0, -0.5, 0.5, 0.5, 1.0, 0.5, -0.5, 0.5, 1.0, 0.5, 0.5, 0.5, 1.0] elementArray = [2, 1, 0, 1, 2, 3,## back face 4, 7, 6, 4, 5, 7,## front face 1, 3, 5, 3, 7, 5,## top face 2, 0, 4, 2, 4, 6,## bottom face 1, 5, 4, 0, 1, 4,## left face 6, 7, 3, 6, 3, 2]## right face def toGLArray(input): return (GLfloat*len(input))(*input) def toGLushortArray(input): return (GLushort*len(input))(*input) def initPerspectiveMatrix(aspectRatio = 1.0, fov = 45): frustumScale = 1.0 / tan(deg2rad(fov) / 2.0) fzNear = 0.5 fzFar = 300.0 perspectiveMatrix = [frustumScale*aspectRatio, 0.0 , 0.0 , 0.0 , 0.0 , frustumScale, 0.0 , 0.0 , 0.0 , 0.0 , (fzFar+fzNear)/(fzNear-fzFar) , -1.0, 0.0 , 0.0 , (2*fzFar*fzNear)/(fzNear-fzFar), 0.0 ] return perspectiveMatrix class ModelObject(object): vbo = GLuint() vao = GLuint() eao = GLuint() initDone = False verticesPool = [] indexPool = [] def __init__(self, vertices, indexing): super(ModelObject, self).__init__() if not ModelObject.initDone: glGenVertexArrays(1, ModelObject.vao) glGenBuffers(1, ModelObject.vbo) glGenBuffers(1, ModelObject.eao) glBindVertexArray(ModelObject.vao) initDone = True self.numIndices = len(indexing) self.offsetIntoVerticesPool = len(ModelObject.verticesPool) ModelObject.verticesPool.extend(vertices) self.offsetIntoElementArray = len(ModelObject.indexPool) ModelObject.indexPool.extend(indexing) glBindBuffer(GL_ARRAY_BUFFER, ModelObject.vbo) glEnableVertexAttribArray(0) #position glVertexAttribPointer(0, 4, GL_FLOAT, GL_FALSE, 0, 0) glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ModelObject.eao) glBufferData(GL_ARRAY_BUFFER, len(ModelObject.verticesPool)*4, toGLArray(ModelObject.verticesPool), GL_STREAM_DRAW) glBufferData(GL_ELEMENT_ARRAY_BUFFER, len(ModelObject.indexPool)*2, toGLushortArray(ModelObject.indexPool), GL_STREAM_DRAW) def draw(self): glDrawElements(GL_TRIANGLES, self.numIndices, GL_UNSIGNED_SHORT, self.offsetIntoElementArray) class PositionedObject(object): def __init__(self, mesh, pos, objOffsetUf): super(PositionedObject, self).__init__() self.mesh = mesh self.pos = pos self.objOffsetUf = objOffsetUf def draw(self): glUniform3f(self.objOffsetUf, self.pos[0], self.pos[1], self.pos[2]) self.mesh.draw() w = 800 h = 600 AR = float(h)/float(w) window = pyglet.window.Window(width=w, height=h, vsync=False) window.set_exclusive_mouse(True) pyglet.clock.set_fps_limit(None) ## input forward = [False] left = [False] back = [False] right = [False] up = [False] down = [False] inputs = {key.Z: forward, key.Q: left, key.S: back, key.D: right, key.UP: forward, key.LEFT: left, key.DOWN: back, key.RIGHT: right, key.PAGEUP: up, key.PAGEDOWN: down} ## camera camX = 0.0 camY = 0.0 camZ = -1.0 def simulate(delta): global camZ, camX, camY scale = 10.0 move = scale*delta if forward[0]: camZ += move if back[0]: camZ += -move if left[0]: camX += move if right[0]: camX += -move if up[0]: camY += move if down[0]: camY += -move pyglet.clock.schedule(simulate) @window.event def on_key_press(symbol, modifiers): global forward, back, left, right, up, down if symbol in inputs.keys(): inputs[symbol][0] = True @window.event def on_key_release(symbol, modifiers): global forward, back, left, right, up, down if symbol in inputs.keys(): inputs[symbol][0] = False ## uniforms for shaders camOffsetUf = GLuint() objOffsetUf = GLuint() perspectiveMatrixUf = GLuint() camRotationUf = GLuint() program = ShaderProgram( VertexShader(''' #version 330 layout(location = 0) in vec4 objCoord; uniform vec3 objOffset; uniform vec3 cameraOffset; uniform mat4 perspMx; void main() { mat4 translateCamera = mat4(1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, cameraOffset.x, cameraOffset.y, cameraOffset.z, 1.0f); mat4 translateObject = mat4(1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, objOffset.x, objOffset.y, objOffset.z, 1.0f); vec4 modelCoord = objCoord; vec4 positionedModel = translateObject*modelCoord; vec4 cameraPos = translateCamera*positionedModel; gl_Position = perspMx * cameraPos; }'''), FragmentShader(''' #version 330 out vec4 outputColor; const vec4 fillColor = vec4(1.0f, 1.0f, 1.0f, 1.0f); void main() { outputColor = fillColor; }''') ) shapes = [] def init(): global camOffsetUf, objOffsetUf with program: camOffsetUf = glGetUniformLocation(program.id, "cameraOffset") objOffsetUf = glGetUniformLocation(program.id, "objOffset") perspectiveMatrixUf = glGetUniformLocation(program.id, "perspMx") glUniformMatrix4fv(perspectiveMatrixUf, 1, GL_FALSE, toGLArray(initPerspectiveMatrix(AR))) obj = ModelObject(vertexData, elementArray) nb = 20 for i in range(nb): for j in range(nb): for k in range(nb): shapes.append(PositionedObject(obj, (float(i*2), float(j*2), float(k*2)), objOffsetUf)) glEnable(GL_CULL_FACE) glCullFace(GL_BACK) glFrontFace(GL_CW) glEnable(GL_DEPTH_TEST) glDepthMask(GL_TRUE) glDepthFunc(GL_LEQUAL) glDepthRange(0.0, 1.0) glClearDepth(1.0) def update(dt): print pyglet.clock.get_fps() pyglet.clock.schedule_interval(update, 1.0) @window.event def on_draw(): with program: pyglet.clock.tick() glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT) glUniform3f(camOffsetUf, camX, camY, camZ) for shape in shapes: shape.draw() init() pyglet.app.run()

    Read the article

  • Python 3 with the range function

    - by Leif Andersen
    I can type in the following code in the terminal, and it works: for i in range(5): print(i) And it will print: 0 1 2 3 4 as expected. However, I tried to write a script that does a similar thing: print(current_chunk.data) read_chunk(file, current_chunk) numVerts, numFaces, numEdges = current_chunk.data print(current_chunk.data) print(numVerts) for vertex in range(numVerts): print("Hello World") current_chunk.data is gained from the following method: def read_chunk(file, chunk): line = file.readline() while line.startswith('#'): line = file.readline() chunk.data = line.split() The output for this is: ['OFF'] ['490', '518', '0'] 490 Traceback (most recent call last): File "/home/leif/src/install/linux2/.blender/scripts/io/import_scene_off.py", line 88, in execute load_off(self.properties.path, context) File "/home/leif/src/install/linux2/.blender/scripts/io/import_scene_off.py", line 68, in load_off for vertex in range(numVerts): TypeError: 'str' object cannot be interpreted as an integer So, why isn't it spitting out Hello World 490 times? Or is the 490 being thought of as a string? I opened the file like this: def load_off(filename, context): file = open(filename, 'r')

    Read the article

  • how to export bind and keyframe bone poses from blender to use in OpenGL

    - by SaldaVonSchwartz
    EDIT: I decided to reformulate the question in much simpler terms to see if someone can give me a hand with this. Basically, I'm exporting meshes, skeletons and actions from blender into an engine of sorts that I'm working on. But I'm getting the animations wrong. I can tell the basic motion paths are being followed but there's always an axis of translation or rotation which is wrong. I think the problem is most likely not in my engine code (OpenGL-based) but rather in either my misunderstanding of some part of the theory behind skeletal animation / skinning or the way I am exporting the appropriate joint matrices from blender in my exporter script. I'll explain the theory, the engine animation system and my blender export script, hoping someone might catch the error in either or all of these. The theory: (I'm using column-major ordering since that's what I use in the engine cause it's OpenGL-based) Assume I have a mesh made up of a single vertex v, along with a transformation matrix M which takes the vertex v from the mesh's local space to world space. That is, if I was to render the mesh without a skeleton, the final position would be gl_Position = ProjectionMatrix * M * v. Now assume I have a skeleton with a single joint j in bind / rest pose. j is actually another matrix. A transform from j's local space to its parent space which I'll denote Bj. if j was part of a joint hierarchy in the skeleton, Bj would take from j space to j-1 space (that is to its parent space). However, in this example j is the only joint, so Bj takes from j space to world space, like M does for v. Now further assume I have a a set of frames, each with a second transform Cj, which works the same as Bj only that for a different, arbitrary spatial configuration of join j. Cj still takes vertices from j space to world space but j is rotated and/or translated and/or scaled. Given the above, in order to skin vertex v at keyframe n. I need to: take v from world space to joint j space modify j (while v stays fixed in j space and is thus taken along in the transformation) take v back from the modified j space to world space So the mathematical implementation of the above would be: v' = Cj * Bj^-1 * v. Actually, I have one doubt here.. I said the mesh to which v belongs has a transform M which takes from model space to world space. And I've also read in a couple textbooks that it needs to be transformed from model space to joint space. But I also said in 1 that v needs to be transformed from world to joint space. So basically I'm not sure if I need to do v' = Cj * Bj^-1 * v or v' = Cj * Bj^-1 * M * v. Right now my implementation multiples v' by M and not v. But I've tried changing this and it just screws things up in a different way cause there's something else wrong. Finally, If we wanted to skin a vertex to a joint j1 which in turn is a child of a joint j0, Bj1 would be Bj0 * Bj1 and Cj1 would be Cj0 * Cj1. But Since skinning is defined as v' = Cj * Bj^-1 * v , Bj1^-1 would be the reverse concatenation of the inverses making up the original product. That is, v' = Cj0 * Cj1 * Bj1^-1 * Bj0^-1 * v Now on to the implementation (Blender side): Assume the following mesh made up of 1 cube, whose vertices are bound to a single joint in a single-joint skeleton: Assume also there's a 60-frame, 3-keyframe animation at 60 fps. The animation essentially is: keyframe 0: the joint is in bind / rest pose (the way you see it in the image). keyframe 30: the joint translates up (+z in blender) some amount and at the same time rotates pi/4 rad clockwise. keyframe 59: the joint goes back to the same configuration it was in keyframe 0. My first source of confusion on the blender side is its coordinate system (as opposed to OpenGL's default) and the different matrices accessible through the python api. Right now, this is what my export script does about translating blender's coordinate system to OpenGL's standard system: # World transform: Blender -> OpenGL worldTransform = Matrix().Identity(4) worldTransform *= Matrix.Scale(-1, 4, (0,0,1)) worldTransform *= Matrix.Rotation(radians(90), 4, "X") # Mesh (local) transform matrix file.write('Mesh Transform:\n') localTransform = mesh.matrix_local.copy() localTransform = worldTransform * localTransform for col in localTransform.col: file.write('{:9f} {:9f} {:9f} {:9f}\n'.format(col[0], col[1], col[2], col[3])) file.write('\n') So if you will, my "world" matrix is basically the act of changing blenders coordinate system to the default GL one with +y up, +x right and -z into the viewing volume. Then I also premultiply (in the sense that it's done by the time we reach the engine, not in the sense of post or pre in terms of matrix multiplication order) the mesh matrix M so that I don't need to multiply it again once per draw call in the engine. About the possible matrices to extract from Blender joints (bones in Blender parlance), I'm doing the following: For joint bind poses: def DFSJointTraversal(file, skeleton, jointList): for joint in jointList: bindPoseJoint = skeleton.data.bones[joint.name] bindPoseTransform = bindPoseJoint.matrix_local.inverted() file.write('Joint ' + joint.name + ' Transform {\n') translationV = bindPoseTransform.to_translation() rotationQ = bindPoseTransform.to_3x3().to_quaternion() scaleV = bindPoseTransform.to_scale() file.write('T {:9f} {:9f} {:9f}\n'.format(translationV[0], translationV[1], translationV[2])) file.write('Q {:9f} {:9f} {:9f} {:9f}\n'.format(rotationQ[1], rotationQ[2], rotationQ[3], rotationQ[0])) file.write('S {:9f} {:9f} {:9f}\n'.format(scaleV[0], scaleV[1], scaleV[2])) DFSJointTraversal(file, skeleton, joint.children) file.write('}\n') Note that I'm actually grabbing the inverse of what I think is the bind pose transform Bj. This is so I don't need to invert it in the engine. Also note I went for matrix_local, assuming this is Bj. The other option is plain "matrix", which as far as I can tell is the same only that not homogeneous. For joint current / keyframe poses: for kfIndex in keyframes: bpy.context.scene.frame_set(kfIndex) file.write('keyframe: {:d}\n'.format(int(kfIndex))) for i in range(0, len(skeleton.data.bones)): file.write('joint: {:d}\n'.format(i)) currentPoseJoint = skeleton.pose.bones[i] currentPoseTransform = currentPoseJoint.matrix translationV = currentPoseTransform.to_translation() rotationQ = currentPoseTransform.to_3x3().to_quaternion() scaleV = currentPoseTransform.to_scale() file.write('T {:9f} {:9f} {:9f}\n'.format(translationV[0], translationV[1], translationV[2])) file.write('Q {:9f} {:9f} {:9f} {:9f}\n'.format(rotationQ[1], rotationQ[2], rotationQ[3], rotationQ[0])) file.write('S {:9f} {:9f} {:9f}\n'.format(scaleV[0], scaleV[1], scaleV[2])) file.write('\n') Note that here I go for skeleton.pose.bones instead of data.bones and that I have a choice of 3 matrices: matrix, matrix_basis and matrix_channel. From the descriptions in the python API docs I'm not super clear which one I should choose, though I think it's the plain matrix. Also note I do not invert the matrix in this case. The implementation (Engine / OpenGL side): My animation subsystem does the following on each update (I'm omitting parts of the update loop where it's figured out which objects need update and time is hardcoded here for simplicity): static double time = 0; time = fmod((time + elapsedTime),1.); uint16_t LERPKeyframeNumber = 60 * time; uint16_t lkeyframeNumber = 0; uint16_t lkeyframeIndex = 0; uint16_t rkeyframeNumber = 0; uint16_t rkeyframeIndex = 0; for (int i = 0; i < aClip.keyframesCount; i++) { uint16_t keyframeNumber = aClip.keyframes[i].number; if (keyframeNumber <= LERPKeyframeNumber) { lkeyframeIndex = i; lkeyframeNumber = keyframeNumber; } else { rkeyframeIndex = i; rkeyframeNumber = keyframeNumber; break; } } double lTime = lkeyframeNumber / 60.; double rTime = rkeyframeNumber / 60.; double blendFactor = (time - lTime) / (rTime - lTime); GLKMatrix4 bindPosePalette[aSkeleton.jointsCount]; GLKMatrix4 currentPosePalette[aSkeleton.jointsCount]; for (int i = 0; i < aSkeleton.jointsCount; i++) { F3DETQSType& lPose = aClip.keyframes[lkeyframeIndex].skeletonPose.joints[i]; F3DETQSType& rPose = aClip.keyframes[rkeyframeIndex].skeletonPose.joints[i]; GLKVector3 LERPTranslation = GLKVector3Lerp(lPose.t, rPose.t, blendFactor); GLKQuaternion SLERPRotation = GLKQuaternionSlerp(lPose.q, rPose.q, blendFactor); GLKVector3 LERPScaling = GLKVector3Lerp(lPose.s, rPose.s, blendFactor); GLKMatrix4 currentTransform = GLKMatrix4MakeWithQuaternion(SLERPRotation); currentTransform = GLKMatrix4TranslateWithVector3(currentTransform, LERPTranslation); currentTransform = GLKMatrix4ScaleWithVector3(currentTransform, LERPScaling); GLKMatrix4 inverseBindTransform = GLKMatrix4MakeWithQuaternion(aSkeleton.joints[i].inverseBindTransform.q); inverseBindTransform = GLKMatrix4TranslateWithVector3(inverseBindTransform, aSkeleton.joints[i].inverseBindTransform.t); inverseBindTransform = GLKMatrix4ScaleWithVector3(inverseBindTransform, aSkeleton.joints[i].inverseBindTransform.s); if (aSkeleton.joints[i].parentIndex == -1) { bindPosePalette[i] = inverseBindTransform; currentPosePalette[i] = currentTransform; } else { bindPosePalette[i] = GLKMatrix4Multiply(inverseBindTransform, bindPosePalette[aSkeleton.joints[i].parentIndex]); currentPosePalette[i] = GLKMatrix4Multiply(currentPosePalette[aSkeleton.joints[i].parentIndex], currentTransform); } aSkeleton.skinningPalette[i] = GLKMatrix4Multiply(currentPosePalette[i], bindPosePalette[i]); } Finally, this is my vertex shader: #version 100 uniform mat4 modelMatrix; uniform mat3 normalMatrix; uniform mat4 projectionMatrix; uniform mat4 skinningPalette[6]; uniform lowp float skinningEnabled; attribute vec4 position; attribute vec3 normal; attribute vec2 tCoordinates; attribute vec4 jointsWeights; attribute vec4 jointsIndices; varying highp vec2 tCoordinatesVarying; varying highp float lIntensity; void main() { tCoordinatesVarying = tCoordinates; vec4 skinnedVertexPosition = vec4(0.); for (int i = 0; i < 4; i++) { skinnedVertexPosition += jointsWeights[i] * skinningPalette[int(jointsIndices[i])] * position; } vec4 skinnedNormal = vec4(0.); for (int i = 0; i < 4; i++) { skinnedNormal += jointsWeights[i] * skinningPalette[int(jointsIndices[i])] * vec4(normal, 0.); } vec4 finalPosition = mix(position, skinnedVertexPosition, skinningEnabled); vec4 finalNormal = mix(vec4(normal, 0.), skinnedNormal, skinningEnabled); vec3 eyeNormal = normalize(normalMatrix * finalNormal.xyz); vec3 lightPosition = vec3(0., 0., 2.); lIntensity = max(0.0, dot(eyeNormal, normalize(lightPosition))); gl_Position = projectionMatrix * modelMatrix * finalPosition; } The result is that the animation displays wrong in terms of orientation. That is, instead of bobbing up and down it bobs in and out (along what I think is the Z axis according to my transform in the export clip). And the rotation angle is counterclockwise instead of clockwise. If I try with a more than one joint, then it's almost as if the second joint rotates in it's own different coordinate space and does not follow 100% its parent's transform. Which I assume it should from my animation subsystem which I assume in turn follows the theory I explained for the case of more than one joint. Any thoughts?

    Read the article

  • Finding the Reachability Count for all vertices of a DAG

    - by ChrisH
    I am trying to find a fast algorithm with modest space requirements to solve the following problem. For each vertex of a DAG find the sum of its in-degree and out-degree in the DAG's transitive closure. Given this DAG: I expect the following result: Vertex # Reacability Count Reachable Vertices in closure 7 5 (11, 8, 2, 9, 10) 5 4 (11, 2, 9, 10) 3 3 (8, 9, 10) 11 5 (7, 5, 2, 9, 10) 8 3 (7, 3, 9) 2 3 (7, 5, 11) 9 5 (7, 5, 11, 8, 3) 10 4 (7, 5, 11, 3) It seems to me that this should be possible without actually constructing the transitive closure. I haven't been able to find anything on the net that exactly describes this problem. I've got some ideas about how to do this, but I wanted to see what the SO crowd could come up with.

    Read the article

  • OpenGL Color Interpolation across vertices

    - by gutsblow
    Right now, I have more than 25 vertices that form a model. I want to interpolate color linearly between the first and last vertex. The Problem is when I write the following code glColor3f(1.0,0.0,0.0); vertex3f(1.0,1.0,1.0); vertex3f(0.9,1.0,1.0); . .`<more vertices>; glColor3f(0.0,0.0,1.0); vertex3f(0.0,0.0,0.0); All the vertices except that last one are red. Now I am wondering if there is a way to interpolate color across these vertices without me having to manually interpolate color natively (like how opengl does it automatically) at each vertex since, I will be having a lot more number of colors at various vertices. Any help would be extremely appreciated. Thank you!

    Read the article

  • HLSL: Enforce Constant Register Limit at Compile Time

    - by Andrew Russell
    In HLSL, is there any way to limit the number of constant registers that the compiler uses? Specifically, if I have something like: float4 foobar[300]; In a vs_2_0 vertex shader, the compiler will merrily generate the effect with more than 256 constant registers. But a 2.0 vertex shader is only guaranteed to have access to 256 constant registers, so when I try to use the effect, it fails in an obscure and GPU-dependent way at runtime. I would much rather have it fail at compile time. This problem is especially annoying as the compiler itself allocates constant registers behind the scenes, on top of the ones I am asking for. I have to check the assembly to see if I'm over the limit. Ideally I'd like to do this in HLSL (I'm using the XNA content pipeline), but if there's a flag that can be passed to the compiler that would also be interesting.

    Read the article

  • count of distinct acyclic paths from A[a,b] to A[c,d]?

    - by Sorush Rabiee
    I'm writing a sokoban solver for fun and practice, it uses a simple algorithm (something like BFS with a bit of difference). now i want to estimate its running time ( O and omega). but need to know how to calculate count of acyclic paths from a vertex to another in a network. actually I want an expression that calculates count of valid paths, between two vertices of a m*n matrix of vertices. a valid path: visits each vertex 0 or one times. have no circuits for example this is a valid path: but this is not: What is needed is a method to find count of all acyclic paths between the two vertices a and b. comments on solving methods and tricks are welcomed.

    Read the article

  • directx 9 hlsl vs. directx 10 hlsl : syntex the same.

    - by numerical25
    For the past month or so I been busting my behind trying to learn directx. So I been mixing back back and fourth from directx 9 to directx 10. One of the major changes I've seen in the two is how to process vectors in the graphics card. one of the drastic changes I notice is how you get the gpu to recognize your structs. In directx 9 you define the Flexible Vertex Formats your typical set up would be like this... #define CUSTOMFVF (D3DFVF_XYZRHW | D3DFVF_DIFFUSE) in directx 10 I believe the equivalent is the input vertex description D3D10_INPUT_ELEMENT_DESC layout[] = { {"POSITION",0,DXGI_FORMAT_R32G32B32_FLOAT, 0 , 0, D3D10_INPUT_PER_VERTEX_DATA, 0}, {"COLOR",0,DXGI_FORMAT_R32G32B32A32_FLOAT, 0 , 12, D3D10_INPUT_PER_VERTEX_DATA, 0} }; I notice in directx 10. it is more descriptive. besides this, what are some of the drastic changes made. and is the hlsl syntax the same for both.

    Read the article

  • DirectX 9 HLSL vs. DirectX 10 HLSL: syntax the same?

    - by numerical25
    For the past month or so, I have been busting my behind trying to learn DirectX. So I've been mixing back back and forth between DirectX 9 and 10. One of the major changes I've seen in the two is how to process vectors in the graphics card. One of the drastic changes I notice is how you get the GPU to recognize your structs. In DirectX 9, you define the Flexible Vertex Formats. Your typical set up would be like this: #define CUSTOMFVF (D3DFVF_XYZRHW | D3DFVF_DIFFUSE) In DirectX 10, I believe the equivalent is the input vertex description: D3D10_INPUT_ELEMENT_DESC layout[] = { {"POSITION",0,DXGI_FORMAT_R32G32B32_FLOAT, 0 , 0, D3D10_INPUT_PER_VERTEX_DATA, 0}, {"COLOR",0,DXGI_FORMAT_R32G32B32A32_FLOAT, 0 , 12, D3D10_INPUT_PER_VERTEX_DATA, 0} }; I notice in DirectX 10 that it is more descriptive. Besides this, what are some of the drastic changes made, and is the HLSL syntax the same for both?

    Read the article

< Previous Page | 94 95 96 97 98 99 100 101 102 103 104 105  | Next Page >