Search Results

Search found 37088 results on 1484 pages for 'object element'.

Page 1016/1484 | < Previous Page | 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023  | Next Page >

  • 3D coordinate of 2D point given camera and view plane

    - by Myx
    I wish to generate rays from the camera through the viewing plane. In order to do this, I need my camera position ("eye"), the up, right, and towards vectors (where towards is the vector from the camera in the direction of the object that the camera is looking at) and P, the point on the viewing plane. Once I have these, the ray that's generated is: ray = camera_eye + t*(P-camera_eye); where t is the distance along the ray (assume t = 1 for now). My question is, how do I obtain the 3D coordinates of point P given that it is located at position (i,j) on the viewing plane? Assume that the upper left and lower right corners of the viewing plane are given. NOTE: The viewing plane is not actually a plane in the sense that it doesn't extend infinitely in all directions. Rather, one may think of this plane as a widthxheight image. In the x direction, the range is 0--width and in the y direction the range is 0--height. I wish to find the 3D coordinate of the (i,j)th element, 0

    Read the article

  • Silverlight Export Datagrid to Excel (without roundtrip)

    - by kirkktx
    I've got a silverlight 2 app with a Datagrid and a button for exporting it to Excel by making a trip back to the server. I can create an HTML string representing the datagrid. I'd like to attach this string to an html element, setting MIME type=application/vnd.ms-excel and have a prompt show up asking if I'd like to open or save the xls file. After all if ASP can do this ... <% The main feature of this technique is that %> <% you have to change Content type to ms-excel.%> Response.ContentType = "application/vnd.ms-excel" <TABLE> <TR><TD>2</TD></TR> <TR><TD>3</TD></TR> <TR><TD>=SUM(A1:A2)</TD></TR> </TABLE> ... it seems like I should be able to do something similar from within Silverlight, pushing it onto the HTML DOM. Any suggestions greatly appreciated!

    Read the article

  • deleting an array that stores pointers to some objects

    - by memC
    hi, I am storing pointers to elements of a vec_A in an array A* a_ptrs[3] . Assume that vec_A will not be resized. So, a_ptrs[i] will point to the correct element. My question is: Suppose A* a_ptrs[3] is declared in a class B. Since it is not created using 'new' I am guessing I don't need to delete it in the destructor. Am I right?? class A { public: int getNumber(); A(int val); ~A(){}; private: int num; }; A::A(int val){ num = val; }; int A::getNumber(){ return num; }; int main(){ int i =0; int num; std::vector<A> vec_A; for ( i = 0; i < 10; i++){ vec_A.push_back(A(i)); } A* a_ptrs[3]; a_ptrs[0] = &vec_A[0]; a_ptrs[1] = &vec_A[3]; a_ptrs[2] = &vec_A[5]; for (i = 0; i<3; i++){ std::cout<<"\n: a_ptrs[i].getNumber() = "<<a_ptrs[i]->getNumber(); } std::cout << "\nPress RETURN to continue..."; std::cin.get(); return 0; }

    Read the article

  • jQuery jPicker colorpicker: How to convert from 8 digit (w Transparency) to standard 6 digit hex?

    - by Scott B
    I've got a jPicker installed and running fine; its a pretty sweet script. However, the value it returns to my input box is 8 digit hex. I need it to return 6 digit hex. Rather than post-process the 8 digit into 6, I'd rather just hack into the script and force 6 digit. Alternately, I'd be ok with hooking into the change event of the jPicker to intercept the value its sending to the input element and doing the conversion there just before it updates the input with the hex. Here's my code: $(function() { $('#myThemeColor').jPicker(); /* Bind jPicker to myThemeColor input */ $("#carousel").jCarouselLite({ btnNext: ".next", btnPrev: ".prev", visible: 6, speed: 700 }); And here's the code I'm working with to intercept the myThemeColor input's change event, but its not firing at all. $('#myThemeColor').change(function() { alert(this.val()); /* does not fire on any action */) if($(this).val().length == 8) { $(this).val(function(i, v) { return v.substring(0, 6); }); } });

    Read the article

  • Proper way to communicate between divs in jquery?

    - by folder
    This is probably a simple question, and i'm just being dense. I've looked through a few jquery books and nothing has jumped out at me, i'm probably missing something. I'm looking for the 'proper', best practices way to communicate between divs/dom items on a page? For example, I have a page with 5 panels that display when a link is chosen, they hide/show/run some code that changes other pieces on the page. Something like this snippet: <ul> <li><div id="unique_name_1_anchor">Unique div 1</div></li> <li><div id="unique_name_2_anchor">Unique div 2</div></li> <li><div id="unique_name_3_anchor">Unique div 3</div></li> <li><div id="unique_name_4_anchor">Unique div 4</div></li> </ul> ...Somewhere else on the page <div id="unique_name_1_panel">Some panel 1 stuff here</div> <div id="unique_name_2_panel">Some panel2 stuff here<div> <div id="unique_name_3_panel">Some panel3 here</div> <div id="unique_name_4_panel">Some panel4 here</div> The concept being when as user clicks on a unique_name_X_anchor div, some action is performed on the corresponding panel (ie show/hide etc...). What I have been doing now is parsing the id ie ($(this).replace("_anchor","_panel") to get the div id of the other dom element. This just seems clunky and there must be a better/more proper way of doing this. Suggestions? Thanks

    Read the article

  • Applying jQuery attr value to new DOM elements (result of AJAX query)

    - by Daniel
    Hello everyone, I have a div on a page whose contents is replaced by an AJAX request when the user selects an option from a select list. When the page loads, I issue a command to disable the autocomplete feature for all of the pages text input elements: //Stop that pesky browser autocomplete $('input[type=text]').attr("autocomplete", "off"); However, when new elements appear in the div after an AJAX call, this line of code does not reference them because they were not part of the original DOM (when the page was loaded). I have tried appending the autocomplete line to the end of the post function: //AJAX Post request that changes the fields in the address div for each different country $("div#address select#country").live("change", function() { $.post("<?php print($_SERVER['PHP_SELF']); ?>", { country: $(this).val() }, function(data) { $('div#address').html(data); }, "text"); $('div#address input[type=text]').attr("autocomplete", "off"); }); But for some reason it does not work and the autocomplete pops up when text is entered into any of the address fields. As far as I am aware I cannot use .live() to select the input elements because changing an attribute is not classed as an event. So can anyone advise me how to modify the attributes of a newly created DOM element?

    Read the article

  • Assigning address to array from heap

    - by Schaltfehler
    I want to save the state of my structs as a binary file and load them again. My structs look like this: typedef struct { uint8_t pointerLength; uint8_t *pointer; uint8_t NumBla; uinT16 Bla[MAX_NUM_Bla]; ... } BAR_STRUCT, *BAR; typedef struct { int numBar; BAR bars[MAX_NUM_BAR]; } FOO_STRUCT, *FOO; Saving is no problem, but restoring the state. Iam at the point where the bytestring from the file is on the heap and a pointer is pointing to the first adress of this string. And I do as follows: const void* dataPointer //points to adress in heap unsigned char* bytePointer = (unsigned char*)dataPointer; FOO foo = (FOO_STRUCT*)bytePointer; bytePointer += sizeof(FOO_STRUCT); for (int i=0; i < MAX_NUM_BAR; i++) { foo->bars[i] = (BAR_STRUCT*)bytePointer; } The last assignment doesn't work and I get an EXC_BAD_ACCESS. Because bars is an array of pointers i need to correct the adresses of each element is pointing to. Because they are not valid anymore. So I try to assign the adress of the object I saved in the bytesteam to foo-bars[i]; But I can not change foo-bars[i] at all. Accessing works but but assigning a new adress doesn't. I wonder why.

    Read the article

  • Zend Framework: Navigation XML and duplicate page elements

    - by jakenoble
    Hi In XML I'd normal expect the following to be perfectly valid and navigable in a meaningful way using something like PHP's DomDocument: <?xml version="1.0" encoding="UTF-8"?> <configdata> <page> <name>Home</name> </page> <page> <name>Log in</name> </page> </configdata> This is not the case when using Zend_Navigation. Each <page> element needs to have a unique name, so you would need to do: <?xml version="1.0" encoding="UTF-8"?> <configdata> <page_home> <name>Home</name> </page_home> <page_log_in> <name>Log in</name> </page_log_in> </configdata> This works, but is very annoying. I'd much rather have multiple page elements which can have the same name and can be easily copy and pasted when creating many pages for navigation. Why does each one need a unique name? Is there a way of not having to have a unique name?

    Read the article

  • Cannot determine why pointer variable will not address elements in a string in this program?

    - by Smith Will Suffice
    I am attempting to utilize a pointer variable to access elements of a string and there are issues with my code generating a compilation error: #include <stdio.h> #define MAX 29 char arrayI[250]; char *ptr; int main(void) { ptr = arrayI; puts("Enter string to arrayI: up to 29 chars:\n"); fgets(arrayI, MAX, stdin); printf("\n Now printing array by pointer:\n"); printf("%s", *ptr); ptr = arrayI[1]; //(I set the pointer to the second array char element) printf("%c", *ptr); //Here is where I was wanting to use my pointer to //point to individual array elements. return 0; } My compiler crieth: [Warning] assignment makes pointer from integer without a cast [enabled by default] I do not see where my pointer was ever assigned to the integer data type? Could someone please explain why my attempt to implement a pointer variable is failing? Thanks all!

    Read the article

  • What encoding does c32rtomb convert to?

    - by R. Martinho Fernandes
    The functions c32rtomb and mbrtoc32 from <cuchar>/<uchar.h> are described in the C Unicode TR (draft) as performing conversions between UTF-321 and "multibyte characters". (...) If s is not a null pointer, the c32rtomb function determines the number of bytes needed to represent the multibyte character that corresponds to the wide character given by c32 (including any shift sequences), and stores the multibyte character representation in the array whose first element is pointed to by s. (...) What is this "multibyte character representation"? I'm actually interested in the behaviour of the following program: #include <cassert> #include <cuchar> #include <string> int main() { std::u32string u32 = U"this is a wide string"; std::string narrow = "this is a wide string"; std::string converted(1000, '\0'); char* ptr = &converted[0]; std::mbstate_t state {}; for(auto u : u32) { ptr += std::c32rtomb(ptr, u, &state); } converted.resize(ptr - &converted[0]); assert(converted == narrow); } Is the assertion in it guaranteed to hold1? 1 Working under the assumption that __STDC_UTF_32__ is defined.

    Read the article

  • How to process more that one XML document in XSLT?

    - by brain_pusher
    Is there any trick to match two XML by one XSLT? I mean the way I can apply XSLT to a parameter passed. For example (I missed declarations to be short). XML1: XML to be transformed: <myData> <Collection> </Collection> </myData> XSLT need to be applied to the previous XML: <xsl:param name='items' /> <xsl:template match='Collection'> <!-- some transformation here --> </xsl:template> XML2: XML data passed as the parameter 'items': <newData> <Item>1</Item> <Item>2</Item> <Item>3</Item> </newData> And I need to create a set of nodes in the 'Collection' node in XML1 for each 'Item' element in XML2 using XSLT. And I do not know what XML2 contains exactly at design time. It is generated at runtime, so I can't place it inside XSLT, I know only its schema.

    Read the article

  • UserControlArray in Specific ButtonControlArray in C#

    - by Phanindar
    I am new to C#.I have been thinking of adding a ButtonControlArray where i can store each button control.Here is part of my code.I am creating a 6*6 array of button Control. ButtonControl buttonControl; ButtonControl[,] arrayButtons = new ButtonControl[6,6]; public void createGrid() { l = 0; for (int i = 0; i < numberOfButtons; i++) { for (int k = 0; k < numberOfButtons; k++) { buttonControl = new ButtonControl(); buttonControl.Location = new Point(l,j); j += 55; arrayButtons[i, k] = buttonControl; //After the above statement if i print Console.WriteLine(""+arrayButtons[i,k]); i am getting only my projectname.buttoncontrol myGridControl.Controls.Add(buttonControl); } l += 55; j = 10; } } I want to access each variable in arrayButtons[][]..like in a 3*3 matrix..if i want 2nd row 1 column element..then i get something like arrayname[2][1]..same way if i want 2nd button in 2nd row how can i get..i tried doing one way but i couldnt figure it out...Can you help me out with this..

    Read the article

  • Finding k elements of length-n list that sum to less than t in O(nlogk) time

    - by tresbot
    This is from Programming Pearls ed. 2, Column 2, Problem 8: Given a set of n real numbers, a real number t, and an integer k, how quickly can you determine whether there exists a k-element subset of the set that sums to at most t? One easy solution is to sort and sum the first k elements, which is our best hope to find such a sum. However, in the solutions section Bentley alludes to a solution that takes nlog(k) time, though he gives no hints for how to find it. I've been struggling with this; one thought I had was to go through the list and add all the elements less than t/k (in O(n) time); say there are m1 < k such elements, and they sum to s1 < t. Then we are left needing k - m1 elements, so we can scan through the list again in O(n) time looking for all elements less than (t - s1)/(k - m1). Add in again, to get s2 and m2, then again if m2 < k, look for all elements less than (t - s2)/(k - m2). So: def kSubsetSumUnderT(inList, k, t): outList = [] s = 0 m = 0 while len(outList) < k: toJoin = [i for i in inList where i < (t - s)/(k - m)] if len(toJoin): if len(toJoin) >= k - m: toJoin.sort() if(s0 + sum(toJoin[0:(k - m - 1)]) < t: return True return False outList = outList + toJoin s += sum(toJoin) m += len(toJoin) else: return False My intuition is that this might be the O(nlog(k)) algorithm, but I am having a hard time proving it to myself. Thoughts?

    Read the article

  • How to get jquery to append output immediately after each ajax call in a loop

    - by david_nash
    I'd like to append to an element and have it update immediately. console.log() shows the data as expected but append() does nothing until the for loop has finished and then writes it all at once. index.html: ... <body> <p>Page loaded.</p> <p>Data:</p> <div id="Data"></div> </body> test.js: $(document).ready(function() { for( var i=0; i<5; i++ ) { $.ajax({ async: false, url: 'server.php', success: function(r) { console.log(r); //this works $('#Data').append(r); //this happens all at once } }); } }); server.php: <?php sleep(1); echo time()."<br />"; ?> The page doesn't even render until after the for loop is complete. Shouldn't it at least render the HTML first before running the javascript?

    Read the article

  • $(selector).text() equivalent in c# (Revised)

    - by Ian Jasper Bardoquillo
    Hi, I am trying check if the inner html of the element is empty but I wanted to do the validation on the server side, I'm treating the html as a string. Here is my code public string HasContent(string htmlString){ // this is the expected value of the htmlString // <span class="spanArea"> // <STYLE>.ExternalClass234B6D3CB6ED46EEB13945B1427AA47{;}</STYLE> // </span> // From this jquery code--------------> // if($('.spanArea').text().length>0){ // // } // <------------------ // I wanted to convert the jquery statement above into c# code. /// c# code goes here return htmlSTring; } using this line $('.spanArea').text() // what is the equivalent of this line in c# I will know if the .spanArea does really have something to display in the ui or not. I wanted to do the checking on the server side. No need to worry about how to I managed to access the DOM I have already taken cared of it. Consider the htmlString as the Html string. My question is if there is any equivalent for this jquery line in C#? Thanks in advance! :)

    Read the article

  • List of values as keys for a Map

    - by thr
    I have lists of variable length where each item can be one of four unique, that I need to use as keys for another object in a map. Assume that each value can be either 0, 1, 2 or 3 (it's not integer in my real code, but a lot easier to explain this way) so a few examples of key lists could be: [1, 0, 2, 3] [3, 2, 1] [1, 0, 0, 1, 1, 3] [2, 3, 1, 1, 2] [1, 2] So, to re-iterate: each item in the list can be either 0, 1, 2 or 3 and there can be any number of items in a list. My first approach was to try to hash the contents of the array, using the built in GetHashCode() in .NET to combine the hash of each element. But since this would return an int I would have to deal with collisions manually (two equal int values are identical to a Dictionary). So my second approach was to use a quad tree, breaking down each item in the list into a Node that has four pointers (one for each possible value) to the next four possible values (with the root node representing [], an empty list), inserting [1, 0, 2] => Foo, [1, 3] => Bar and [1, 0] => Baz into this tree would look like this: Grey nodes nodes being unused pointers/nodes. Though I worry about the performance of this setup, but there will be no need to deal with hash collisions and the tree won't become to deep (there will mostly be lists with 2-6 items stored, rarely over 6). Is there some other magic way to store items with lists of values as keys that I have missed?

    Read the article

  • Wrapping <%= f.check_box %> inside <label>

    - by Ben Scheirman
    I have a list of checkboxes on a form. Due to the way the CSS is structured, the label element is styled directly. This requires me to nest the checkbox inside of the tag. This works in raw HTML, if you click on the label text, the state of the checkbox changes. It doesn't work with the rails <%= f.check_box %> helper, however, because it outputs a hidden input tag first. In summary, <label> <%= f.check_box :foo %> Foo </label> this is the output I want: <label> <input type="checkbox" ... /> <input type="hidden" ... /> Foo </label> ...but this is what rails is giving me: <label> <input type="hidden" ... /> <input type="checkbox" ... /> Foo </label> So the label behavior doesn't actually work :(. Is there any way to get around this?

    Read the article

  • The Incremental Architect&rsquo;s Napkin - #5 - Design functions for extensibility and readability

    - by Ralf Westphal
    Originally posted on: http://geekswithblogs.net/theArchitectsNapkin/archive/2014/08/24/the-incremental-architectrsquos-napkin---5---design-functions-for.aspx The functionality of programs is entered via Entry Points. So what we´re talking about when designing software is a bunch of functions handling the requests represented by and flowing in through those Entry Points. Designing software thus consists of at least three phases: Analyzing the requirements to find the Entry Points and their signatures Designing the functionality to be executed when those Entry Points get triggered Implementing the functionality according to the design aka coding I presume, you´re familiar with phase 1 in some way. And I guess you´re proficient in implementing functionality in some programming language. But in my experience developers in general are not experienced in going through an explicit phase 2. “Designing functionality? What´s that supposed to mean?” you might already have thought. Here´s my definition: To design functionality (or functional design for short) means thinking about… well, functions. You find a solution for what´s supposed to happen when an Entry Point gets triggered in terms of functions. A conceptual solution that is, because those functions only exist in your head (or on paper) during this phase. But you may have guess that, because it´s “design” not “coding”. And here is, what functional design is not: It´s not about logic. Logic is expressions (e.g. +, -, && etc.) and control statements (e.g. if, switch, for, while etc.). Also I consider calling external APIs as logic. It´s equally basic. It´s what code needs to do in order to deliver some functionality or quality. Logic is what´s doing that needs to be done by software. Transformations are either done through expressions or API-calls. And then there is alternative control flow depending on the result of some expression. Basically it´s just jumps in Assembler, sometimes to go forward (if, switch), sometimes to go backward (for, while, do). But calling your own function is not logic. It´s not necessary to produce any outcome. Functionality is not enhanced by adding functions (subroutine calls) to your code. Nor is quality increased by adding functions. No performance gain, no higher scalability etc. through functions. Functions are not relevant to functionality. Strange, isn´t it. What they are important for is security of investment. By introducing functions into our code we can become more productive (re-use) and can increase evolvability (higher unterstandability, easier to keep code consistent). That´s no small feat, however. Evolvable code can hardly be overestimated. That´s why to me functional design is so important. It´s at the core of software development. To sum this up: Functional design is on a level of abstraction above (!) logical design or algorithmic design. Functional design is only done until you get to a point where each function is so simple you are very confident you can easily code it. Functional design an logical design (which mostly is coding, but can also be done using pseudo code or flow charts) are complementary. Software needs both. If you start coding right away you end up in a tangled mess very quickly. Then you need back out through refactoring. Functional design on the other hand is bloodless without actual code. It´s just a theory with no experiments to prove it. But how to do functional design? An example of functional design Let´s assume a program to de-duplicate strings. The user enters a number of strings separated by commas, e.g. a, b, a, c, d, b, e, c, a. And the program is supposed to clear this list of all doubles, e.g. a, b, c, d, e. There is only one Entry Point to this program: the user triggers the de-duplication by starting the program with the string list on the command line C:\>deduplicate "a, b, a, c, d, b, e, c, a" a, b, c, d, e …or by clicking on a GUI button. This leads to the Entry Point function to get called. It´s the program´s main function in case of the batch version or a button click event handler in the GUI version. That´s the physical Entry Point so to speak. It´s inevitable. What then happens is a three step process: Transform the input data from the user into a request. Call the request handler. Transform the output of the request handler into a tangible result for the user. Or to phrase it a bit more generally: Accept input. Transform input into output. Present output. This does not mean any of these steps requires a lot of effort. Maybe it´s just one line of code to accomplish it. Nevertheless it´s a distinct step in doing the processing behind an Entry Point. Call it an aspect or a responsibility - and you will realize it most likely deserves a function of its own to satisfy the Single Responsibility Principle (SRP). Interestingly the above list of steps is already functional design. There is no logic, but nevertheless the solution is described - albeit on a higher level of abstraction than you might have done yourself. But it´s still on a meta-level. The application to the domain at hand is easy, though: Accept string list from command line De-duplicate Present de-duplicated strings on standard output And this concrete list of processing steps can easily be transformed into code:static void Main(string[] args) { var input = Accept_string_list(args); var output = Deduplicate(input); Present_deduplicated_string_list(output); } Instead of a big problem there are three much smaller problems now. If you think each of those is trivial to implement, then go for it. You can stop the functional design at this point. But maybe, just maybe, you´re not so sure how to go about with the de-duplication for example. Then just implement what´s easy right now, e.g.private static string Accept_string_list(string[] args) { return args[0]; } private static void Present_deduplicated_string_list( string[] output) { var line = string.Join(", ", output); Console.WriteLine(line); } Accept_string_list() contains logic in the form of an API-call. Present_deduplicated_string_list() contains logic in the form of an expression and an API-call. And then repeat the functional design for the remaining processing step. What´s left is the domain logic: de-duplicating a list of strings. How should that be done? Without any logic at our disposal during functional design you´re left with just functions. So which functions could make up the de-duplication? Here´s a suggestion: De-duplicate Parse the input string into a true list of strings. Register each string in a dictionary/map/set. That way duplicates get cast away. Transform the data structure into a list of unique strings. Processing step 2 obviously was the core of the solution. That´s where real creativity was needed. That´s the core of the domain. But now after this refinement the implementation of each step is easy again:private static string[] Parse_string_list(string input) { return input.Split(',') .Select(s => s.Trim()) .ToArray(); } private static Dictionary<string,object> Compile_unique_strings(string[] strings) { return strings.Aggregate( new Dictionary<string, object>(), (agg, s) => { agg[s] = null; return agg; }); } private static string[] Serialize_unique_strings( Dictionary<string,object> dict) { return dict.Keys.ToArray(); } With these three additional functions Main() now looks like this:static void Main(string[] args) { var input = Accept_string_list(args); var strings = Parse_string_list(input); var dict = Compile_unique_strings(strings); var output = Serialize_unique_strings(dict); Present_deduplicated_string_list(output); } I think that´s very understandable code: just read it from top to bottom and you know how the solution to the problem works. It´s a mirror image of the initial design: Accept string list from command line Parse the input string into a true list of strings. Register each string in a dictionary/map/set. That way duplicates get cast away. Transform the data structure into a list of unique strings. Present de-duplicated strings on standard output You can even re-generate the design by just looking at the code. Code and functional design thus are always in sync - if you follow some simple rules. But about that later. And as a bonus: all the functions making up the process are small - which means easy to understand, too. So much for an initial concrete example. Now it´s time for some theory. Because there is method to this madness ;-) The above has only scratched the surface. Introducing Flow Design Functional design starts with a given function, the Entry Point. Its goal is to describe the behavior of the program when the Entry Point is triggered using a process, not an algorithm. An algorithm consists of logic, a process on the other hand consists just of steps or stages. Each processing step transforms input into output or a side effect. Also it might access resources, e.g. a printer, a database, or just memory. Processing steps thus can rely on state of some sort. This is different from Functional Programming, where functions are supposed to not be stateful and not cause side effects.[1] In its simplest form a process can be written as a bullet point list of steps, e.g. Get data from user Output result to user Transform data Parse data Map result for output Such a compilation of steps - possibly on different levels of abstraction - often is the first artifact of functional design. It can be generated by a team in an initial design brainstorming. Next comes ordering the steps. What should happen first, what next etc.? Get data from user Parse data Transform data Map result for output Output result to user That´s great for a start into functional design. It´s better than starting to code right away on a given function using TDD. Please get me right: TDD is a valuable practice. But it can be unnecessarily hard if the scope of a functionn is too large. But how do you know beforehand without investing some thinking? And how to do this thinking in a systematic fashion? My recommendation: For any given function you´re supposed to implement first do a functional design. Then, once you´re confident you know the processing steps - which are pretty small - refine and code them using TDD. You´ll see that´s much, much easier - and leads to cleaner code right away. For more information on this approach I call “Informed TDD” read my book of the same title. Thinking before coding is smart. And writing down the solution as a bunch of functions possibly is the simplest thing you can do, I´d say. It´s more according to the KISS (Keep It Simple, Stupid) principle than returning constants or other trivial stuff TDD development often is started with. So far so good. A simple ordered list of processing steps will do to start with functional design. As shown in the above example such steps can easily be translated into functions. Moving from design to coding thus is simple. However, such a list does not scale. Processing is not always that simple to be captured in a list. And then the list is just text. Again. Like code. That means the design is lacking visuality. Textual representations need more parsing by your brain than visual representations. Plus they are limited in their “dimensionality”: text just has one dimension, it´s sequential. Alternatives and parallelism are hard to encode in text. In addition the functional design using numbered lists lacks data. It´s not visible what´s the input, output, and state of the processing steps. That´s why functional design should be done using a lightweight visual notation. No tool is necessary to draw such designs. Use pen and paper; a flipchart, a whiteboard, or even a napkin is sufficient. Visualizing processes The building block of the functional design notation is a functional unit. I mostly draw it like this: Something is done, it´s clear what goes in, it´s clear what comes out, and it´s clear what the processing step requires in terms of state or hardware. Whenever input flows into a functional unit it gets processed and output is produced and/or a side effect occurs. Flowing data is the driver of something happening. That´s why I call this approach to functional design Flow Design. It´s about data flow instead of control flow. Control flow like in algorithms is of no concern to functional design. Thinking about control flow simply is too low level. Once you start with control flow you easily get bogged down by tons of details. That´s what you want to avoid during design. Design is supposed to be quick, broad brush, abstract. It should give overview. But what about all the details? As Robert C. Martin rightly said: “Programming is abot detail”. Detail is a matter of code. Once you start coding the processing steps you designed you can worry about all the detail you want. Functional design does not eliminate all the nitty gritty. It just postpones tackling them. To me that´s also an example of the SRP. Function design has the responsibility to come up with a solution to a problem posed by a single function (Entry Point). And later coding has the responsibility to implement the solution down to the last detail (i.e. statement, API-call). TDD unfortunately mixes both responsibilities. It´s just coding - and thereby trying to find detailed implementations (green phase) plus getting the design right (refactoring). To me that´s one reason why TDD has failed to deliver on its promise for many developers. Using functional units as building blocks of functional design processes can be depicted very easily. Here´s the initial process for the example problem: For each processing step draw a functional unit and label it. Choose a verb or an “action phrase” as a label, not a noun. Functional design is about activities, not state or structure. Then make the output of an upstream step the input of a downstream step. Finally think about the data that should flow between the functional units. Write the data above the arrows connecting the functional units in the direction of the data flow. Enclose the data description in brackets. That way you can clearly see if all flows have already been specified. Empty brackets mean “no data is flowing”, but nevertheless a signal is sent. A name like “list” or “strings” in brackets describes the data content. Use lower case labels for that purpose. A name starting with an upper case letter like “String” or “Customer” on the other hand signifies a data type. If you like, you also can combine descriptions with data types by separating them with a colon, e.g. (list:string) or (strings:string[]). But these are just suggestions from my practice with Flow Design. You can do it differently, if you like. Just be sure to be consistent. Flows wired-up in this manner I call one-dimensional (1D). Each functional unit just has one input and/or one output. A functional unit without an output is possible. It´s like a black hole sucking up input without producing any output. Instead it produces side effects. A functional unit without an input, though, does make much sense. When should it start to work? What´s the trigger? That´s why in the above process even the first processing step has an input. If you like, view such 1D-flows as pipelines. Data is flowing through them from left to right. But as you can see, it´s not always the same data. It get´s transformed along its passage: (args) becomes a (list) which is turned into (strings). The Principle of Mutual Oblivion A very characteristic trait of flows put together from function units is: no functional units knows another one. They are all completely independent of each other. Functional units don´t know where their input is coming from (or even when it´s gonna arrive). They just specify a range of values they can process. And they promise a certain behavior upon input arriving. Also they don´t know where their output is going. They just produce it in their own time independent of other functional units. That means at least conceptually all functional units work in parallel. Functional units don´t know their “deployment context”. They now nothing about the overall flow they are place in. They are just consuming input from some upstream, and producing output for some downstream. That makes functional units very easy to test. At least as long as they don´t depend on state or resources. I call this the Principle of Mutual Oblivion (PoMO). Functional units are oblivious of others as well as an overall context/purpose. They are just parts of a whole focused on a single responsibility. How the whole is built, how a larger goal is achieved, is of no concern to the single functional units. By building software in such a manner, functional design interestingly follows nature. Nature´s building blocks for organisms also follow the PoMO. The cells forming your body do not know each other. Take a nerve cell “controlling” a muscle cell for example:[2] The nerve cell does not know anything about muscle cells, let alone the specific muscel cell it is “attached to”. Likewise the muscle cell does not know anything about nerve cells, let a lone a specific nerve cell “attached to” it. Saying “the nerve cell is controlling the muscle cell” thus only makes sense when viewing both from the outside. “Control” is a concept of the whole, not of its parts. Control is created by wiring-up parts in a certain way. Both cells are mutually oblivious. Both just follow a contract. One produces Acetylcholine (ACh) as output, the other consumes ACh as input. Where the ACh is going, where it´s coming from neither cell cares about. Million years of evolution have led to this kind of division of labor. And million years of evolution have produced organism designs (DNA) which lead to the production of these different cell types (and many others) and also to their co-location. The result: the overall behavior of an organism. How and why this happened in nature is a mystery. For our software, though, it´s clear: functional and quality requirements needs to be fulfilled. So we as developers have to become “intelligent designers” of “software cells” which we put together to form a “software organism” which responds in satisfying ways to triggers from it´s environment. My bet is: If nature gets complex organisms working by following the PoMO, who are we to not apply this recipe for success to our much simpler “machines”? So my rule is: Wherever there is functionality to be delivered, because there is a clear Entry Point into software, design the functionality like nature would do it. Build it from mutually oblivious functional units. That´s what Flow Design is about. In that way it´s even universal, I´d say. Its notation can also be applied to biology: Never mind labeling the functional units with nouns. That´s ok in Flow Design. You´ll do that occassionally for functional units on a higher level of abstraction or when their purpose is close to hardware. Getting a cockroach to roam your bedroom takes 1,000,000 nerve cells (neurons). Getting the de-duplication program to do its job just takes 5 “software cells” (functional units). Both, though, follow the same basic principle. Translating functional units into code Moving from functional design to code is no rocket science. In fact it´s straightforward. There are two simple rules: Translate an input port to a function. Translate an output port either to a return statement in that function or to a function pointer visible to that function. The simplest translation of a functional unit is a function. That´s what you saw in the above example. Functions are mutually oblivious. That why Functional Programming likes them so much. It makes them composable. Which is the reason, nature works according to the PoMO. Let´s be clear about one thing: There is no dependency injection in nature. For all of an organism´s complexity no DI container is used. Behavior is the result of smooth cooperation between mutually oblivious building blocks. Functions will often be the adequate translation for the functional units in your designs. But not always. Take for example the case, where a processing step should not always produce an output. Maybe the purpose is to filter input. Here the functional unit consumes words and produces words. But it does not pass along every word flowing in. Some words are swallowed. Think of a spell checker. It probably should not check acronyms for correctness. There are too many of them. Or words with no more than two letters. Such words are called “stop words”. In the above picture the optionality of the output is signified by the astrisk outside the brackets. It means: Any number of (word) data items can flow from the functional unit for each input data item. It might be none or one or even more. This I call a stream of data. Such behavior cannot be translated into a function where output is generated with return. Because a function always needs to return a value. So the output port is translated into a function pointer or continuation which gets passed to the subroutine when called:[3]void filter_stop_words( string word, Action<string> onNoStopWord) { if (...check if not a stop word...) onNoStopWord(word); } If you want to be nitpicky you might call such a function pointer parameter an injection. And technically you´re right. Conceptually, though, it´s not an injection. Because the subroutine is not functionally dependent on the continuation. Firstly continuations are procedures, i.e. subroutines without a return type. Remember: Flow Design is about unidirectional data flow. Secondly the name of the formal parameter is chosen in a way as to not assume anything about downstream processing steps. onNoStopWord describes a situation (or event) within the functional unit only. Translating output ports into function pointers helps keeping functional units mutually oblivious in cases where output is optional or produced asynchronically. Either pass the function pointer to the function upon call. Or make it global by putting it on the encompassing class. Then it´s called an event. In C# that´s even an explicit feature.class Filter { public void filter_stop_words( string word) { if (...check if not a stop word...) onNoStopWord(word); } public event Action<string> onNoStopWord; } When to use a continuation and when to use an event dependens on how a functional unit is used in flows and how it´s packed together with others into classes. You´ll see examples further down the Flow Design road. Another example of 1D functional design Let´s see Flow Design once more in action using the visual notation. How about the famous word wrap kata? Robert C. Martin has posted a much cited solution including an extensive reasoning behind his TDD approach. So maybe you want to compare it to Flow Design. The function signature given is:string WordWrap(string text, int maxLineLength) {...} That´s not an Entry Point since we don´t see an application with an environment and users. Nevertheless it´s a function which is supposed to provide a certain functionality. The text passed in has to be reformatted. The input is a single line of arbitrary length consisting of words separated by spaces. The output should consist of one or more lines of a maximum length specified. If a word is longer than a the maximum line length it can be split in multiple parts each fitting in a line. Flow Design Let´s start by brainstorming the process to accomplish the feat of reformatting the text. What´s needed? Words need to be assembled into lines Words need to be extracted from the input text The resulting lines need to be assembled into the output text Words too long to fit in a line need to be split Does sound about right? I guess so. And it shows a kind of priority. Long words are a special case. So maybe there is a hint for an incremental design here. First let´s tackle “average words” (words not longer than a line). Here´s the Flow Design for this increment: The the first three bullet points turned into functional units with explicit data added. As the signature requires a text is transformed into another text. See the input of the first functional unit and the output of the last functional unit. In between no text flows, but words and lines. That´s good to see because thereby the domain is clearly represented in the design. The requirements are talking about words and lines and here they are. But note the asterisk! It´s not outside the brackets but inside. That means it´s not a stream of words or lines, but lists or sequences. For each text a sequence of words is output. For each sequence of words a sequence of lines is produced. The asterisk is used to abstract from the concrete implementation. Like with streams. Whether the list of words gets implemented as an array or an IEnumerable is not important during design. It´s an implementation detail. Does any processing step require further refinement? I don´t think so. They all look pretty “atomic” to me. And if not… I can always backtrack and refine a process step using functional design later once I´ve gained more insight into a sub-problem. Implementation The implementation is straightforward as you can imagine. The processing steps can all be translated into functions. Each can be tested easily and separately. Each has a focused responsibility. And the process flow becomes just a sequence of function calls: Easy to understand. It clearly states how word wrapping works - on a high level of abstraction. And it´s easy to evolve as you´ll see. Flow Design - Increment 2 So far only texts consisting of “average words” are wrapped correctly. Words not fitting in a line will result in lines too long. Wrapping long words is a feature of the requested functionality. Whether it´s there or not makes a difference to the user. To quickly get feedback I decided to first implement a solution without this feature. But now it´s time to add it to deliver the full scope. Fortunately Flow Design automatically leads to code following the Open Closed Principle (OCP). It´s easy to extend it - instead of changing well tested code. How´s that possible? Flow Design allows for extension of functionality by inserting functional units into the flow. That way existing functional units need not be changed. The data flow arrow between functional units is a natural extension point. No need to resort to the Strategy Pattern. No need to think ahead where extions might need to be made in the future. I just “phase in” the remaining processing step: Since neither Extract words nor Reformat know of their environment neither needs to be touched due to the “detour”. The new processing step accepts the output of the existing upstream step and produces data compatible with the existing downstream step. Implementation - Increment 2 A trivial implementation checking the assumption if this works does not do anything to split long words. The input is just passed on: Note how clean WordWrap() stays. The solution is easy to understand. A developer looking at this code sometime in the future, when a new feature needs to be build in, quickly sees how long words are dealt with. Compare this to Robert C. Martin´s solution:[4] How does this solution handle long words? Long words are not even part of the domain language present in the code. At least I need considerable time to understand the approach. Admittedly the Flow Design solution with the full implementation of long word splitting is longer than Robert C. Martin´s. At least it seems. Because his solution does not cover all the “word wrap situations” the Flow Design solution handles. Some lines would need to be added to be on par, I guess. But even then… Is a difference in LOC that important as long as it´s in the same ball park? I value understandability and openness for extension higher than saving on the last line of code. Simplicity is not just less code, it´s also clarity in design. But don´t take my word for it. Try Flow Design on larger problems and compare for yourself. What´s the easier, more straightforward way to clean code? And keep in mind: You ain´t seen all yet ;-) There´s more to Flow Design than described in this chapter. In closing I hope I was able to give you a impression of functional design that makes you hungry for more. To me it´s an inevitable step in software development. Jumping from requirements to code does not scale. And it leads to dirty code all to quickly. Some thought should be invested first. Where there is a clear Entry Point visible, it´s functionality should be designed using data flows. Because with data flows abstraction is possible. For more background on why that´s necessary read my blog article here. For now let me point out to you - if you haven´t already noticed - that Flow Design is a general purpose declarative language. It´s “programming by intention” (Shalloway et al.). Just write down how you think the solution should work on a high level of abstraction. This breaks down a large problem in smaller problems. And by following the PoMO the solutions to those smaller problems are independent of each other. So they are easy to test. Or you could even think about getting them implemented in parallel by different team members. Flow Design not only increases evolvability, but also helps becoming more productive. All team members can participate in functional design. This goes beyon collective code ownership. We´re talking collective design/architecture ownership. Because with Flow Design there is a common visual language to talk about functional design - which is the foundation for all other design activities.   PS: If you like what you read, consider getting my ebook “The Incremental Architekt´s Napkin”. It´s where I compile all the articles in this series for easier reading. I like the strictness of Function Programming - but I also find it quite hard to live by. And it certainly is not what millions of programmers are used to. Also to me it seems, the real world is full of state and side effects. So why give them such a bad image? That´s why functional design takes a more pragmatic approach. State and side effects are ok for processing steps - but be sure to follow the SRP. Don´t put too much of it into a single processing step. ? Image taken from www.physioweb.org ? My code samples are written in C#. C# sports typed function pointers called delegates. Action is such a function pointer type matching functions with signature void someName(T t). Other languages provide similar ways to work with functions as first class citizens - even Java now in version 8. I trust you find a way to map this detail of my translation to your favorite programming language. I know it works for Java, C++, Ruby, JavaScript, Python, Go. And if you´re using a Functional Programming language it´s of course a no brainer. ? Taken from his blog post “The Craftsman 62, The Dark Path”. ?

    Read the article

  • GPGPU

    WhatGPU obviously stands for Graphics Processing Unit (the silicon powering the display you are using to read this blog post). The extra GP in front of that stands for General Purpose computing.So, altogether GPGPU refers to computing we can perform on GPU for purposes beyond just drawing on the screen. In effect, we can use a GPGPU a bit like we already use a CPU: to perform some calculation (that doesn’t have to have any visual element to it). The attraction is that a GPGPU can be orders of magnitude faster than a CPU.WhyWhen I was at the SuperComputing conference in Portland last November, GPGPUs were all the rage. A quick online search reveals many articles introducing the GPGPU topic. I'll just share 3 here: pcper (ignoring all pages except the first, it is a good consumer perspective), gizmodo (nice take using mostly layman terms) and vizworld (answering the question on "what's the big deal").The GPGPU programming paradigm (from a high level) is simple: in your CPU program you define functions (aka kernels) that take some input, can perform the costly operation and return the output. The kernels are the things that execute on the GPGPU leveraging its power (and hence execute faster than what they could on the CPU) while the host CPU program waits for the results or asynchronously performs other tasks.However, GPGPUs have different characteristics to CPUs which means they are suitable only for certain classes of problem (i.e. data parallel algorithms) and not for others (e.g. algorithms with branching or recursion or other complex flow control). You also pay a high cost for transferring the input data from the CPU to the GPU (and vice versa the results back to the CPU), so the computation itself has to be long enough to justify the overhead transfer costs. If your problem space fits the criteria then you probably want to check out this technology.HowSo where can you get a graphics card to start playing with all this? At the time of writing, the two main vendors ATI (owned by AMD) and NVIDIA are the obvious players in this industry. You can read about GPGPU on this AMD page and also on this NVIDIA page. NVIDIA's website also has a free chapter on the topic from the "GPU Gems" book: A Toolkit for Computation on GPUs.If you followed the links above, then you've already come across some of the choices of programming models that are available today. Essentially, AMD is offering their ATI Stream technology accessible via a language they call Brook+; NVIDIA offers their CUDA platform which is accessible from CUDA C. Choosing either of those locks you into the GPU vendor and hence your code cannot run on systems with cards from the other vendor (e.g. imagine if your CPU code would run on Intel chips but not AMD chips). Having said that, both vendors plan to support a new emerging standard called OpenCL, which theoretically means your kernels can execute on any GPU that supports it. To learn more about all of these there is a website: gpgpu.org. The caveat about that site is that (currently) it completely ignores the Microsoft approach, which I touch on next.On Windows, there is already a cross-GPU-vendor way of programming GPUs and that is the DirectX API. Specifically, on Windows Vista and Windows 7, the DirectX 11 API offers a dedicated subset of the API for GPGPU programming: DirectCompute. You use this API on the CPU side, to set up and execute the kernels that run on the GPU. The kernels are written in a language called HLSL (High Level Shader Language). You can use DirectCompute with HLSL to write a "compute shader", which is the term DirectX uses for what I've been referring to in this post as a "kernel". For a comprehensive collection of links about this (including tutorials, videos and samples) please see my blog post: DirectCompute.Note that there are many efforts to build even higher level languages on top of DirectX that aim to expose GPGPU programming to a wider audience by making it as easy as today's mainstream programming models. I'll mention here just two of those efforts: Accelerator from MSR and Brahma by Ananth. Comments about this post welcome at the original blog.

    Read the article

  • Windows Presentation Foundation 4.5 Cookbook Review

    - by Ricardo Peres
    As promised, here’s my review of Windows Presentation Foundation 4.5 Cookbook, that Packt Publishing kindly made available to me. It is an introductory book, targeted at WPF newcomers or users with few experience, following the typical recipes or cookbook style. Like all Packt Publishing books on development, each recipe comes with sample code that is self-sufficient for understanding the concepts it tries to illustrate. It starts on chapter 1 by introducing the most important concepts, the XAML language itself, what can be declared in XAML and how to do it, what are dependency and attached properties as well as markup extensions and events, which should give readers a most required introduction to how WPF works and how to do basic stuff. It moves on to resources on chapter 2, which also makes since, since it’s such an important concept in WPF. Next, chapter 3, come the panels used for laying controls on the screen, all of the out of the box panels are described with typical use cases. Controls come next in chapter 4; the difference between elements and controls is introduced, as well as content controls, headered controls and items controls, and all standard controls are introduced. The book shows how to change the way they look by using templates. The next chapter, 5, talks about top level windows and the WPF application object: how to access startup arguments, how to set the main window, using standard dialogs and there’s even a sample on how to have a irregularly-shaped window. This is one of the most important concepts in WPF: data binding, which is the theme for the following chapter, 6. All common scenarios are introduced, the binding modes, directions, triggers, etc. It talks about the INotifyPropertyChanged interface and how to use it for notifying data binding subscribers of changes in data sources. Data templates and selectors are also covered, as are value converters and data triggers. Examples include master-detail and sorting, grouping and filtering collections and binding trees and grids. Last it covers validation rules and error templates. Chapter 7 talks about the current trend in WPF development, the Model View View-Model (MVVM) framework. This is a well known pattern for connecting things interface to actions, and it is explained competently. A typical implementation is presented which also presents the command pattern used throughout WPF. A complete application using MVVM is presented from start to finish, including typical features such as undo. Style and layout is covered on chapter 8. Why/how to use styles, applying them automatically,  using the many types of triggers to change styles automatically, using Expression Blend behaviors and templates are all covered. Next chapter, 9, is about graphics and animations programming. It explains how to create shapes, transform common UI elements, apply special effects and perform simple animations. The following chapter, 10, is about creating custom controls, either by deriving from UserControl or from an existing control or framework element class, applying custom templates for changing the way the control looks. One useful example is a custom layout panel that arranges its children along a circumference. The final chapter, 11, is about multi-threading programming and how one can integrate it with WPF. Includes how to invoke methods and properties on WPF classes from threads other than the main UI, using background tasks and timers and even using the new C# 5.0 asynchronous operations. It’s an interesting book, like I said, mostly for newcomers. It provides a competent introduction to WPF, with examples that cover the most common scenarios and also give directions to more complex ones. I recommend it to everyone wishing to learn WPF.

    Read the article

  • WIF, ADFS 2 and WCF&ndash;Part 4: Service Client (using Service Metadata)

    - by Your DisplayName here!
    See parts 1, 2 and 3 first. In this part we will finally build a client for our federated service. There are basically two ways to accomplish this. You can use the WCF built-in tooling to generate client and configuration via the service metadata (aka ‘Add Service Reference’). This requires no WIF on the client side. Another approach would be to use WIF’s WSTrustChannelFactory to manually talk to the ADFS 2 WS-Trust endpoints. This option gives you more flexibility, but is slightly more code to write. You also need WIF on the client which implies that you need to run on a WIF supported operating system – this rules out e.g. Windows XP clients. We’ll start with the metadata way. You simply create a new client project (e.g. a console app) – call ‘Add Service Reference’ and point the dialog to your service endpoint. What will happen then is, that VS will contact your service and read its metadata. Inside there is also a link to the metadata endpoint of ADFS 2. This one will be contacted next to find out which WS-Trust endpoints are available. The end result will be a client side proxy and a configuration file. Let’s first write some code to call the service and then have a closer look at the config file. var proxy = new ServiceClient(); proxy.GetClaims().ForEach(c =>     Console.WriteLine("{0}\n {1}\n  {2} ({3})\n",         c.ClaimType,         c.Value,         c.Issuer,         c.OriginalIssuer)); That’s all. The magic is happening in the configuration file. When you in inspect app.config, you can see the following general configuration hierarchy: <client /> element with service endpoint information federation binding and configuration containing ADFS 2 endpoint 1 (with binding and configuration) ADFS 2 endpoint n (with binding and configuration) (where ADFS 2 endpoint 1…n are the endpoints I talked about in part 1) You will see a number of <issuer /> elements in the binding configuration where simply the first endpoint from the ADFS 2 metadata becomes the default endpoint and all other endpoints and their configuration are commented out. You now need to find the endpoint you want to use (based on trust version, credential type and security mode) and replace that with the default endpoint. That’s it. When you call the WCF proxy, it will inspect configuration, then first contact the selected ADFS 2 endpoint to request a token. This token will then be used to authenticate against the service. In the next post I will show you the more manual approach using the WIF APIs.

    Read the article

  • Oracle SQL Developer Data Modeler: What Tables Aren’t In At Least One SubView?

    - by thatjeffsmith
    Organizing your data model makes the information easier to consume. One of the organizational tools provided by Oracle SQL Developer Data Modeler is the ‘SubView.’ In a nutshell, a SubView is a subset of your model. The Challenge: I’ve just created a model which represents my entire ____________ application. We’ll call it ‘residential lending.’ Instead of having all 100+ tables in a single model diagram, I want to break out the tables by module, e.g. appraisals, credit reports, work histories, customers, etc. I’ve spent several hours breaking out the tables to one or more SubViews, but I think i may have missed a few. Is there an easy way to see what tables aren’t in at least ONE subview? The Answer Yes, mostly. The mostly comes about from the way I’m going to accomplish this task. It involves querying the SQL Developer Data Modeler Reporting Schema. So if you don’t have the Reporting Schema setup, you’ll need to do so. Got it? Good, let’s proceed. Before you start querying your Reporting Schema, you might need a data model for the actual reporting schema…meta-meta data! You could reverse engineer the data modeler reporting schema to a new data model, or you could just reference the PDFs in \datamodeler\reports\Reporting Schema diagrams directory. Here’s a hint, it’s THIS one The Query Well, it’s actually going to be at least 2 queries. We need to get a list of distinct designs stored in your repository. For giggles, I’m going to get a listing including each version of the model. So I can query based on design and version, or in this case, timestamp of when it was added to the repository. We’ll get that from the DMRS_DESIGNS table: SELECT DISTINCT design_name, design_ovid, date_published FROM DMRS_designs Then I’m going to feed the design_ovid, down to a subquery for my child report. select name, count(distinct diagram_id) from DMRS_DIAGRAM_ELEMENTS where design_ovid = :dESIGN_OVID and type = 'Table' group by name having count(distinct diagram_id) < 2 order by count(distinct diagram_id) desc Each diagram element has an entry in this table, so I need to filter on type=’Table.’ Each design has AT LEAST one diagram, the master diagram. So any relational table in this table, only having one listing means it’s not in any SubViews. If you have overloaded object names, which is VERY possible, you’ll want to do the report off of ‘OBJECT_ID’, but then you’ll need to correlate that to the NAME, as I doubt you’re so intimate with your designs that you recognize the GUIDs So I’m going to cheat and just stick with names, but I think you get the gist. My Model Of my almost 90 tables, how many of those have I not added to at least one SubView? Now let’s run my report! Voila! My ‘BEER2′ table isn’t in any SubView! It says ’1′ because the main model diagram counts as a view. So if the count came back as ’2′, that would mean the table was in the main model diagram and in 1 SubView diagram. And I know what you’re thinking, what kind of residential lending program would have a table called ‘BEER2?’ Let’s just say, that my business model has some kinks to work out!

    Read the article

  • jQuery Templates on Microsoft Ajax CDN

    - by Stephen Walther
    The beta version of the jQuery Templates plugin is now hosted on the Microsoft Ajax CDN. You can start using the jQuery Templates plugin in your application by referencing both jQuery 1.4.2 and jQuery Templates from the CDN. Here are the two script tags that you will want to use when developing an application: <script type="text/javascript" src=”http://ajax.microsoft.com/ajax/jquery/jquery-1.4.2.js”></script> <script type="text/javascript" src=”http://ajax.microsoft.com/ajax/jquery.templates/beta1/jquery.tmpl.js”></script> In addition, minified versions of both files are available from the CDN: <script type="text/javascript" src="http://ajax.microsoft.com/ajax/jquery/jquery-1.4.2.min.js"></script> <script type="text/javascript" src="http://ajax.microsoft.com/ajax/jquery.templates/beta1/jquery.tmpl.min.js"></script> Here’s a full code sample of using jQuery Templates from the CDN to display pictures of cats from Flickr: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Cats</title> <style type="text/css"> html { background-color:Orange; } #catBox div { width:250px; height:250px; border:solid 1px black; background-color:White; margin:5px; padding:5px; float:left; } #catBox img { width:200px; height: 200px; } </style> </head> <body> <h1>Cat Photos!</h1> <div id="catBox"></div> <script type="text/javascript" src="http://ajax.microsoft.com/ajax/jquery/jquery-1.4.2.min.js"></script> <script type="text/javascript" src="http://ajax.microsoft.com/ajax/jquery.templates/beta1/jquery.tmpl.min.js"></script> <script id="catTemplate" type="text/x-jquery-tmpl"> <div> <b>${title}</b> <br /> <img src="${media.m}" /> </div> </script> <script type="text/javascript"> var url = "http://api.flickr.com/services/feeds/groups_pool.gne?id=44124373027@N01&lang=en-us&format=json&jsoncallback=?"; // Grab some flickr images of cats $.getJSON(url, function (data) { // Format the data using the catTemplate template $("#catTemplate").tmpl(data.items).appendTo("#catBox"); }); </script> </body> </html> This page displays a list of cats retrieved from Flickr: Notice that the cat pictures are retrieved and rendered with just a few lines of code: var url = "http://api.flickr.com/services/feeds/groups_pool.gne?id=44124373027@N01&lang=en-us&format=json&jsoncallback=?"; // Grab some flickr images of cats $.getJSON(url, function (data) { // Format the data using the catTemplate template $("#catTemplate").tmpl(data.items).appendTo("#catBox"); }); The final line of code, the one that calls the tmpl() method, uses the Templates plugin to render the cat photos in a template named catTemplate. The catTemplate template is contained within a SCRIPT element with type="text/x-jquery-tmpl". The jQuery Templates plugin is an “official” jQuery plugin which will be included in jQuery 1.5 (the next major release of jQuery). You can read the full documentation for the plugin at the jQuery website: http://api.jquery.com/category/plugins/templates/ The jQuery Templates plugin is still beta so we would really appreciate your feedback on the plugin. Let us know if you use the Templates plugin in your website.

    Read the article

  • Tool to convert blogger.com content to dasBlog

    - by Daniel Moth
    Due to blogger.com dropping FTP support, I've had to move my blog. If you are in a similar situation, this post will help you by showing you the necessary steps to take. Goals No loss on blog posts, comments AND all existing permalinks continue to work (redirect to the correct place). Steps Download the XML files corresponding to your blogger.com content and store them in a folder. Install and configure dasBlog on your local machine. Configure your web.config file (will need updating once you run step 4). Use the tool I describe further down to generate the content and place it at the right place. Test your site locally. Once you are happy, repeat step 2 on your hosting provider of choice. Remember to copy up your dasBlog theme folder if you created one. Copy up the local web.config file and the XML dasBlog content files generated by the tool of step 4. Test your site on the server. Once you are happy, go live (following instructions from your hoster). In my case, I gave the nameservers from my new hoster to my existing domain registrar and they made the switch. Tool (code) At step 4 above I referred to a tool. That is an overstatement, it is simply one 450-line C#code file that you can download here: BloggerToDasBlog.cs. I used this from a .NET 2.0 console app (and I run it under the Visual Studio debugger, i.e. F5) like this: Program.cs. The console app referenced the dasBlog 2.3 ASP.NET Blogging Engine i.e. the newtelligence.DasBlog.Runtime.dll assembly. Let me describe what the code does: Input: A path to a folder where the XML files from the old blogger.com blog reside. It can deal with both types of XML file. A full file path to a file where it creates XML redirect input (as required by the rewriteMap mentioned here). The blog URL. The author's email. The blog author name. A path to an empty folder where the new XML dasBlog content files will get created. The subfolder name used after the domain name in the URL. The 3 reg ex patterns to use. You can use the same as mine, but will need to tweak the monthly_archive rule. Again, to see what values I passed for all the above, see my Program.cs file. Output: It creates dasBlog XML files in the folder specified. It creates those by parsing the old blogger.com XML files that reside in the folder specified. After that is generated, copy it to the "Content" folder under your dasBlog installation. It creates an XML file with a single ignorable root element and a bunch of inner XML elements. You can copy paste these in the web.config file as discussed in this post. Other notes: For each blog post, it detects outgoing links to itself (i.e. to the same blog), and rewrites those to point to the new URLs. So internal links do not rely on the web.config redirects. It deals with duplicate post titles; it does not deal with triplicates and higher. Removes all references to blogger.com (e.g. references to [email protected], the injected hidden footer for statistics that each blog post has and others – see the code). It creates a lot of diagnostic output (in the Output window) and indeed the documentation for the code is in the Debug.WriteLine statements ;) This is not code I will maintain or support – it was a throwaway one-use project that I am sharing here as a starting point for anyone finding themselves in the same boat that I was. Enjoy "as is". Comments about this post welcome at the original blog.

    Read the article

  • Subterranean IL: Pseudo custom attributes

    - by Simon Cooper
    Custom attributes were designed to make the .NET framework extensible; if a .NET language needs to store additional metadata on an item that isn't expressible in IL, then an attribute could be applied to the IL item to represent this metadata. For instance, the C# compiler uses DecimalConstantAttribute and DateTimeConstantAttribute to represent compile-time decimal or datetime constants, which aren't allowed in pure IL, and FixedBufferAttribute to represent fixed struct fields. How attributes are compiled Within a .NET assembly are a series of tables containing all the metadata for items within the assembly; for instance, the TypeDef table stores metadata on all the types in the assembly, and MethodDef does the same for all the methods and constructors. Custom attribute information is stored in the CustomAttribute table, which has references to the IL item the attribute is applied to, the constructor used (which implies the type of attribute applied), and a binary blob representing the arguments and name/value pairs used in the attribute application. For example, the following C# class: [Obsolete("Please use MyClass2", true)] public class MyClass { // ... } corresponds to the following IL class definition: .class public MyClass { .custom instance void [mscorlib]System.ObsoleteAttribute::.ctor(string, bool) = { string('Please use MyClass2' bool(true) } // ... } and results in the following entry in the CustomAttribute table: TypeDef(MyClass) MemberRef(ObsoleteAttribute::.ctor(string, bool)) blob -> {string('Please use MyClass2' bool(true)} However, there are some attributes that don't compile in this way. Pseudo custom attributes Just like there are some concepts in a language that can't be represented in IL, there are some concepts in IL that can't be represented in a language. This is where pseudo custom attributes come into play. The most obvious of these is SerializableAttribute. Although it looks like an attribute, it doesn't compile to a CustomAttribute table entry; it instead sets the serializable bit directly within the TypeDef entry for the type. This flag is fully expressible within IL; this C#: [Serializable] public class MySerializableClass {} compiles to this IL: .class public serializable MySerializableClass {} For those interested, a full list of pseudo custom attributes is available here. For the rest of this post, I'll be concentrating on the ones that deal with P/Invoke. P/Invoke attributes P/Invoke is built right into the CLR at quite a deep level; there are 2 metadata tables within an assembly dedicated solely to p/invoke interop, and many more that affect it. Furthermore, all the attributes used to specify p/invoke methods in C# or VB have their own keywords and syntax within IL. For example, the following C# method declaration: [DllImport("mscorsn.dll", SetLastError = true)] [return: MarshalAs(UnmanagedType.U1)] private static extern bool StrongNameSignatureVerificationEx( [MarshalAs(UnmanagedType.LPWStr)] string wszFilePath, [MarshalAs(UnmanagedType.U1)] bool fForceVerification, [MarshalAs(UnmanagedType.U1)] ref bool pfWasVerified); compiles to the following IL definition: .method private static pinvokeimpl("mscorsn.dll" lasterr winapi) bool marshal(unsigned int8) StrongNameSignatureVerificationEx( string marshal(lpwstr) wszFilePath, bool marshal(unsigned int8) fForceVerification, bool& marshal(unsigned int8) pfWasVerified) cil managed preservesig {} As you can see, all the p/invoke and marshal properties are specified directly in IL, rather than using attributes. And, rather than creating entries in CustomAttribute, a whole bunch of metadata is emitted to represent this information. This single method declaration results in the following metadata being output to the assembly: A MethodDef entry containing basic information on the method Four ParamDef entries for the 3 method parameters and return type An entry in ModuleRef to mscorsn.dll An entry in ImplMap linking ModuleRef and MethodDef, along with the name of the function to import and the pinvoke options (lasterr winapi) Four FieldMarshal entries containing the marshal information for each parameter. Phew! Applying attributes Most of the time, when you apply an attribute to an element, an entry in the CustomAttribute table will be created to represent that application. However, some attributes represent concepts in IL that aren't expressible in the language you're coding in, and can instead result in a single bit change (SerializableAttribute and NonSerializedAttribute), or many extra metadata table entries (the p/invoke attributes) being emitted to the output assembly.

    Read the article

< Previous Page | 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023  | Next Page >